
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Manipulation with a Robotic Gripper Using
Tactile Information

Lucie Vajnerová

Supervisor: Prof. Ing. Václav Hlaváč, CSc.
Field of study: Cybernetics and Robotics
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483515Personal ID number:Vajnerová LucieStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Manipulation with a Robotic Gripper Using Tactile Information

Bachelor’s thesis title in Czech:

Manipulace robotickým chapadlem využívající taktilní informaci

Guidelines:
1. Make yourself familiar with 3FG, Takktile sensors and their control.
2. Attach the gripper to a force-compliant industrial manipulator and use ROS for working with it.
3. Solve a simplified peg and hole manipulation task and develop related software. Python environment is recommended.
4. Document your work and software well.

Bibliography / sources:
[1] R.M. Murray, Z. Li., S.S. Sastry: A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994. 456 p.
[2] M.T. Mason: Towards Robotic Manipulation. Annual Review of Control, Robotics, and Autonomous Systems, Vol. 1,
2018. 28 p.

Name and workplace of bachelor’s thesis supervisor:

prof. Ing. Václav Hlaváč, CSc., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 05.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Ing. Václav Hlaváč, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iii

iv

Acknowledgements

Over the course of my work on this bach-
elor thesis project I have received a great
deal of support and assistance.

I would first like to thank my supervisor,
Professor Václav Hlaváč, for his invaluable
expertise and support over the course of
the project.

I would also like to acknowledge Ing.
Libor Wagner for his help and knowledge
with ROS-related matters and Ing. An-
tonín Mík for his assistance with creat-
ing our technical tools for the peg-in-hole
task.

Lastly, I would like to thank my fam-
ily for their unending patience with my
constant state of panic and stress.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 20. May 2021

v

Abstract

We seek to solve a robotic assembly peg-in-
hole task using only feedback information
from tactile sensors and a force/torque
compliant robot. Tactile sensing is less
used in industry than visual-servoing, due
to its lower endurance and reliability. We
attempt to understand if deeper knowl-
edge of a problem and new tactile sensors
technologies can boost their application in
industry. We aim to use Robot Operating
System of the next generation (ROS 2).
We studied first the approaches of others
over the last 50 years as well as the current
methods. We introduce our methods and
solutions and explain their applications.
We evaluate our result and analyze its
limitations. We conclude optimistically
that the tactile sensors development and
the available force/torque compliant robot
has potential from an industrial point of
view. Our implementation was hindered
by the COVID-19 constraints which pre-
vented us from experimenting with a real
robot Franka Emika Panda. The avail-
able ROS 2 version did not support all
we needed. The new ROS 2 version, an-
nounced for release in June 2021, should
solve several issues we had.

Keywords: robotic manipulation,
tactile sensing, ROS

Supervisor: Prof. Ing. Václav Hlaváč,
CSc.
CIIRC CTU, Praha 6, Jugoslávských
partyzánů 1580/3

Abstrakt

Snažíme se vyřešit klasický dílčí úkol ro-
botické montáže, tj. zasouvání kolíku do
díry (peg-in-hole), a to pouze pomocí
zpětné vazby z taktilních senzorů a při
použití silově/momentově poddajného ro-
botu. Hmatové vnímání je v průmyslu
méně používáno než vizuální servo, přede-
vším kvůli nižší trvanlivosti a spolehlivosti.
Pokoušíme se pochopit, zda hlubší znalost
problému a novějších technologií hmato-
vých senzorů může pomoci jejich většímu
průmyslovému zapojení. Naším implemen-
tační cílem je použít robotický operační
systém nové generace (ROS 2). Nejprve
jsme studovali přístupy ostatních, a to jak
během 50 let své historie, tak i součas-
ných metod. Představujeme své metody a
řešení a vysvětlujeme jejich aplikace. Vy-
hodnocujeme naše experimenty a analy-
zujeme jejich omezení. Dospěli jsme k op-
timistickému závěru, že moderní taktilní
senzory ve spojení se silově/momentově
poddajnými roboty mají silný potenciál
z hlediska budoucích průmyslových nasa-
zení. Naši praktickou implementaci ovliv-
nila omezení způsobená pandemií COVID-
19. Nemohli jsme experimentovat s robo-
tem Franka Emika Panda. Také dostupná
verze ROS 2 nepodporovala vše, co jsme
potřebovali. Nová verze ROS 2 ohlášená
na červen 2021 by měla několik nynějších
potíží vyřešit.

Klíčová slova: robotická manipulace,
taktilní vnímání, ROS

Překlad názvu: Manipulace robotickým
chapadlem využívající taktilní informaci

vi

Contents

1 Introduction 1

2 Assignment 5

3 State of the Art 7

3.1 Peg-in-hole; Assembly Strategies . 7

3.2 Peg-in-hole; History 8

3.3 Peg-in-hole; Modern Approach . . 9

3.4 ROS 1 Principles 11

3.5 ROS 2 Development 11

3.6 Work of Previous Students on This
Project . 13

4 Our Method and Its
Implementation 15

4.1 Takktile Sensors 15

4.2 3FG Control 19

4.3 Experiments with Our Peg 21

4.4 ROS 2 Simulation 22

5 Evaluation 27

6 Conclusion 31

6.1 Brief Summary of the Thesis’
Achievements 31

6.2 Contributions 32

6.3 Suggestion for Future
Improvements 33

Bibliography 35

vii

Figures

1.1 Our 3FG photograph 2

1.2 Our Takktile sensors 3

3.1 Peg-in-hole assembly strategies
graph . 8

3.2 Passive compliance (RCC) [12] . . 8

3.3 Cranfield Benchmark Examples . 10

3.4 Visualization of ROS
communication [16] 11

3.5 Comparison between ROS and
ROS 2 processes [9] 12

4.1 Visualization of tactile sensors . . 16

4.2 Tactile sensors indexing 17

4.3 Tactile sensors while at rest 18

4.4 Visualization of ROS nodes 20

4.5 3FG (the gripper) and tactile
sensors used in our experiments. . . 22

4.6 Our peg-in-hole setup 23

4.7 Our simulation 25

5.1 Visualisation of tactile sensors
while holding a peg with no external
influence . 28

5.2 Visualisation of tactile sensors
while holding a peg and pressing on
the back of its face 29

viii

Chapter 1

Introduction

This bachelor project and thesis contributes to CIIRC CTU Robotic Per-
ception group effort to progress in robotic manipulation tasks using tactile
information sensed in a robot gripper.

Our assignment has been to perform autonomously a traditional robotic
manipulation task called peg-in-hole using a 3-Finger Adaptive Gripper (3FG)
from the company Robotiq, haptic sensors for pressure feedback from company
Takktile and the Robot Operating System (ROS, a widely used open-source
robotic software middleware). Our motivation has been to master the state
of the art in sensory supported robotic manipulation exploring tactile sensing
and a force/torque compliant robot. Tactile sensing has been much less used
in industry in general compared with computer vision based feedback, e.g.
visual-servoing. Tactile servoing has been less reliable due to tactile sensors
limitations. The research conducted in the lab aims at better understanding
why is it so and if sensor deficiencies can be replaced by knowing more about
the semantics of the particular assembly task.

We had the opportunity to choose between KUKA iiwa LBR R700 model
and Franka Emika Panda available in CIIRC CTU labs. We selected the
latter because it is supported better in ROS 2 (advanced version of ROS).

The peg-in-hole manipulation task has been addressed since industrial
robotics were born in 1960s. We aim to solve the peg-in-hole task using tactile
feedback only. We are able to utilise the equipment technology available at
CIIRC CTU. We follow the traditional strategy which decomposes the peg-
in-hole assembly into two feedback supported steps: contact-state recognition

1

1. Introduction
and force/torque control [24].

We have the privilege to use an expensive (≈ e 10k) adaptive gripper 3FG
with three mechanical fingers where each can be controlled separately [1]. Its
application includes grasping objects with a set speed and force manually
defined by the user. This is possible thanks to the 3FG own current feedback.
There are four modes of movement and grasping. Thanks to the wide variety
of options, the 3FG is capable of picking up objects of various size and shape.
The 3FG has been used in academic researches, but its high cost makes it
only rarely appear in industry.

Figure 1.1: Our 3FG photograph

Takktile sensors are a form of tactile technology based on pressure sensing
MEMS barometers that are embedded in a rubber casing. In our case, 36
Takktile sensors are mounted on our 3FG, capable of measuring pressure
between approximately 0-65 kPa. The Takktile company also provides a
communication board using I2C protocol with a USB bridge. However,
our board was destroyed and so we had to work with an Arduino board
replacement.

As per its documentation, “The Robot Operating System (ROS) is a set
of software libraries and tools for building robot applications” [18]. It is an
open-source system used for robot control, giving us a framework we can use
to connect our robot to our computer. ROS 2 is an in-development system
that aims to replace outdated parts of ROS [15]. ROS 2 adds real-time
control of robots, improved communication over different networks, better
C++, Python support and more.

2

......................................1. Introduction

(a) : Takktile sensors for 3FG palm (b) : Takktile sensors for 3FG finger

Figure 1.2: Our Takktile sensors

Upon instruction from this thesis’ advisor, we focused special attention
to working with ROS 2, rather than the older variant ROS 1. ROS 2 has
been under rapid development by the wide robotic community. However,
it has created a caveat for us as some ROS 2 modules have not been fully
functional, e.g. ros2_control. Our solution has been to combine ROS 1 and
ROS 2 where needed, even if this combination is not straightforward.

The contribution of this thesis is in:..1. Mastering the available gripper (3FG) equipped by tactile sensors (Takk-
tile). We have modified the program of the gripper/sensors microcon-
troller and documented it for other users...2. Analysing the use of the gripper with tactile sensors in a peg-in-hole
assembly task. We had to manufacture a wooden rectangular peg, i.e. a
parallelepiped with matching dimensions to our relatively bulky gripper.
We chose the rectangular cross-section of the peg because it is more
likely to get stuck in the hole than a circular cross-section peg. Our
desire was to make the assembly task more difficult. We used plastics to
3D print the hole. We designed a rather deep hole to stimulate getting
stuck1. The gripper grasped the peg and we moved the peg by hand,
while recording pressures perceived by tactile sensors. We analyzed the
data recorded from tactile sensors...3. We have used our peg and hole in solving the peg-in-hole task with
the robot. The COVID-19 restrictions have not allowed us to perform
experiments with a real robot. We used a simulator and the model of
the Franka Emika Panda robot for the purpose. We have developed the
related C++ programs and documented them.

1The peg was made by my supervisor. The hole was designed by the technician of our
lab, Antonín Mík.

3

1. Introduction
This thesis is organized as follows: Chapter 1 provides the introduction

and motivation for the work. Chapter 2 summarizes the assignment given
to us. It clarifies the wording of the official brief assignment in more detail
and corrects it to match the conditions under which the bachelor project has
been developed. Chapter 3 briefly summarizes the related state of the art.
Chapter 4 describes our approach, design of methods and their implementation.
Chapter 5 evaluates our methods and implementations practically. Chapter 6
concludes the thesis, provides the executive summary and outlines a possible
future work on the project.

4

Chapter 2

Assignment

This chapter extends the formal assignment shown already at page iii. It
should help the reader to understand what the diploma thesis’ advisor ex-
pected from this work. We also include the modifications, which were imple-
mented, because COVID-19 hindered the application of the suggested method
to a real robot...1. Familiarity with the SW environment and 3FG gripper

Our task was to familiarize ourselves with 3FG (gripper), Takktile sensors
and their control. We had to embed the gripper with tactile sensors into
ROS environment..We had done the preparatory work on the topic already in the

winter semester 2020/2021 while solving a semester project. In the
project, we were able to connect the 3FG to a computer, read the
data from tactile sensors, perform simple movement of the gripper’s
fingers.. The new work should connect the gripper to the superior control
implemented in ROS...2. Attaching the gripper to a real robot

We are to attach the gripper to a force-compliant industrial manipulator
and use ROS as a middleware enabling its services to a higher-level
control. We intended to use ROS 2, despite knowing that some necessary
ROS 2 packages are yet in development stages only. ROS 2 enables us to
use a secured real-time performance. Due to COVID-19 and technology
limitations, we had to constrain ourselves to simulation experiments only.

5

2. Assignment3. Simplified peg-in-hole manipulation task.
In this task, a gripper is meant to pick up a peg and carry it over to a
hole and place it inside. The feedback from tactile sensors could have
been used to help with this manipulation in real life.. The formal assignment asks us to connect 3FG (gripper) to the

Franka Emika Panda robot..We have to perform a simple peg and hole task using a tactile
feedback only...4. Document the work

We are tasked with thoroughly documenting our work, the suggested
method and developed software. A guide for using 3FG and Takktile
sensors has had to be created as well as a GitLab repository for our code
to document our work for the simulation.. The goal is to make it possible for others to quickly set up their

3FG and Takktile sensors and recreate our work, so that they can
continue developing this project further.. A development branch has been created on CIIRC GitLab for our
simulation and 3FG control.

6

Chapter 3

State of the Art

In this chapter, we will go over the various strategies of the peg-in-hole task.
We will discuss its history and related works of others to ours. We explain
basic principles of ROS 1 and explain the development processes of ROS 2
and its differences to ROS 1. In spring 2020, a group of students began
working on this project by setting up the 3FG and Takktile sensors.

3.1 Peg-in-hole; Assembly Strategies

A research into various forms of peg-in-hole tasks has been done by a team
led by Jing Xu in 2019 [24]. They have divided robotic peg-in-hole assembly
strategies into two distinctive types: contact model-based and contact model-
free. The contact model-free approach uses learning from environment or
through demonstration, thanks to techniques like reinforcement learning
methods or interpreting human demonstrations. The contact model-based
type of peg-in-hole assembly uses sensing systems to acquire feedback from
its environment. The various categories include vision sensors, force sensors
and sensor-less systems. A graph of various assembly strategies can be seen
in Figure 3.1.

Force feedback is used in active and passive compliance modes. Passive
compliance completes the peg-in-hole task using a set of springs and dampers
attached to the end-effector, also known as RCC shown in Figure 3.2. Active
compliance measures contact forces to build a force feedback. It is also

7

3. State of the Art
Peg-in-hole assembly strategies

Contact model-based Contact model-free

Learn from environment Learn from demonstrationContact state recognition

Compliant control

Figure 3.1: Peg-in-hole assembly strategies graph

Figure 3.2: Passive compliance (RCC) [12]

possible to base active compliance on impedance feedback of the robotic arm.

3.2 Peg-in-hole; History

Inserting objects into a hole belongs to basic skills needed in assembly tasks in
industry. As soon as the industrial robots appeared in 1960s, the peg-in-hole
tasks followed.

In 1975 a team from University of Canterbury conducted research into
the peg-in-hole assembly task using tactile methods [23]. They focused on
a cylindrical-shaped peg and hole. They discovered that when the peg and
the hole come into contact, a reaction force occurs at the point of contact.
The reaction depends on several factors: the forcing effort, the peg-hole axes
alignment angle, the contact friction and the contact geometry. They deduced

8

............................. 3.3. Peg-in-hole; Modern Approach

that tactile sensing on the peg allows better state recognition than tactile
sensing on the hole. The possibility of simple tactile feedback was investigated
and found to be better for fine manipulation than vision feedback.

In 1978, Paul C. Watson patented the use of Remote Center Compliance
system (RCC), a device used to insert a peg (or other similar objects) into a
tight hole without jamming it in the process [20]. The RCC is an example of
passive compliance, a method non-dependent on measuring contact forces.

Whitney and Asada assumed chamfered holes in 1982. Whitney [21] divided
the assembly process into four parts: chamfer crossing, single-point contact,
two-point contact and insertion.

3.3 Peg-in-hole; Modern Approach

Though peg-in-hole assembly is a common industrial task that has been
extensively researched, contemporary industry requires much more complex
assembly tasks and seeks high precision. Some manual assembly tasks achieve
higher flexibility by using collaborative robots and instructive assistance
systems, such as remote simplified control over tablets or smartphones [22].
VR (virtual reality) devices can also be used for robotic manipulation, but
they are mostly still in their early stages of development.

A more complex version of our peg-in-hole task is the Cranfield Assembly
Benchmark. This assembly task requires the insertion of different pegs (round
and square in cross-section) into the corresponding holes of the base plate and
the placement of a separator onto the previously inserted pegs (Figure 3.3).
This Cranfield Benchmark was used in many experiments, e.g. in [2], [8].
Both experiments chose the contact model-free approach of learning by human
demonstration and achieved a high level of learning speed and precision.

Collaborative robots and the contact-model free approach to solving the
peg-in-hole tasks both require human involvement and are not robust to
uncertainties or sudden variations to the environment. A possible solution to
these issues is to implement a deep reinforcement learning approach. In [3],
the choice of SAC (Soft Actor Critic) algorithm led to a high success rate
under different conditions like uncertainty of goal position, environmental
stiffness and novel insertion tasks. A recurrent neural network such as Long
Short Term Memory (LSTM) can be trained using reinforcement learning on
a finite number of actions, as presented in [4].

9

3. State of the Art
In [5], the focus is on identifying the position of the hole in respect to our

robot using only force-guided robotic arm. This is to avoid the low precision
of visual-servoing often used in peg-in-hole tasks. Position uncertainty can
cause a significant delay in task completion and extra energy expenditure. [5]
solves this issue using Expectation Maximization based Gaussian Mixtures
Model (EM-GMM) Contact-State recognition scheme that uses captured
wrench (the Cartesian force and torque) signals of the manipulated object.

(a) Version from [2]

(b) Version from [8]

Figure 3.3: Cranfield Benchmark Examples

Many types of grippers can be used for the peg-in-hole task. In [19], a
research group led by Amirul Syafiq Sadun provided an open-loop grasping
analysis of the 3FG (the same gripper we chose to use) and its force feedback.
They were using Force Sensing Resistor sensors mounted on the gripper’s
three fingers and an encoder. They also observed the current of 3FG motors.
Their report successfully deduced appropriate sensor response and motion
control of the gripper for picking up objects of various stiffness with reasonable
sensor response.

10

................................... 3.4. ROS 1 Principles

3.4 ROS 1 Principles

ROS (Robot Operating System) is a free software system for controlling
robotic components from a Linux distribution system. Its main function
comes in the form of nodes. A node is a process that does computation.
Many nodes can be called simultaneously and act independently of each other.
Nodes can be used to control robot motors, observe sensor reactions or plan
the robot’s path. They use a publish/subscribe messaging model over so
called ROS topics (communication channels between the nodes). Publishers
send messages while the subscriber nodes read data from topics. There are
other ways for communication between nodes, for example the ROS services (a
pair of messages with request/reply interactions). In ROS 1, the whole traffic
system is controlled by a single master node, which acts as a DNS-server and
helps nodes find one another. A simplified visualization of ROS 1 processes
can be seen in Figure 3.4.

Figure 3.4: Visualization of ROS communication [16]

ROS packages are used to organize software and may include ROS nodes,
independent libraries, configuration files or any other form of a usable module.
The codes can be written in different languages, the most common being
C++ and Python. Due to a large number of publicly available packages and
user-friendly systems, ROS is one of the most often-used public middleware
for robotics.

3.5 ROS 2 Development

ROS 2 is an improved release of ROS 1 with many modern features. There are
few available ROS 2 distributions (a predefined main set of ROS packages).

11

3. State of the Art
In 2015, the first beta version of ROS 2 was released to public [14]. The
goal is to provide a new ROS 2 distribution at least once a year. The first
non-beta distribution was published on December 8, 2017 under the name
‘Ardent Apalone’ with an EOL (End of Life) date expectancy set at one year.
Our work was done under the ROS 2 ‘Foxy Fitzroy’ distribution released
on June 5, 2020 with an EOL date in 2023. The newest distribution titled
‘Galactic Geochelone’ is set to be released on May 23, 2021.

ROS 2 is utilizing the Data Distribution Service (DDS). Unlike in ROS 1,
where a master node was necessary and no real-time support was possible,
the DDS is suitable for real-time distributed embedded systems thanks to its
various transport configurations (e.g., deadline and fault tolerance) [9]. More
OS layers are also to be added, making it possible to use ROS 2 on Windows
or Mac devices in the future.

Figure 3.5: Comparison between ROS and ROS 2 processes [9]

The MoveIt software runs on top of ROS and lets us manipulate our robots
using ROS messaging and build systems, utilizing such ROS tools like the
ROS Visualizer (rviz) and the ROS robot format (URDF) [11]. Motion
planning, inverse kinematics, 3D perception, collision checking and more –
all is provided in MoveIt itself. MoveIt2 is then simply a straight port of
MoveIt over to ROS 2, its first non-beta released on September 4, 2020 [17].
A new MoveIt 2.2 is planned to be released after the ‘Galactic Geochelone’
distribution in the summer of 2021. MoveIt 2.2 should also provide the
much needed ros2_control package integration, necessary for parts of real-
life robotic manipulation with Franka Emika Panda robot. Due to these
limitations with MoveIt 2.1 and restrictions during the COVID-19 pandemic,
we could not finalize our experiment in real life settings and could only
simulate our peg-in-hole task.

12

....................... 3.6. Work of Previous Students on This Project

Despite the still-in-development status of ROS 2, a fair amount of doc-
umentation and work has already been done for it. Helpful tutorials and
multiple example demos are provided freely to the public. Sadly, most of the
documentation is simply a copy of its version for ROS 1, so a fair amount
of programming is necessary to implement these options and translate them
into an ROS 2 working environment.

3.6 Work of Previous Students on This Project

In the summer of 2020, students Kristýna Míková and Petr Kužela commenced
their work on our 3FG. They mounted the tactile sensors on the 3FG and
used an I2C communication board and a bridge to USB. They tested the
capabilities of our tactile sensors with an external pressure dynamometer and
documented their results. However, the communication board provided by
Soft Robotics Toolkit stopped working after some time and a replacement
Arduino board was used from then on instead. The Arduino code they used
was based on a program written by Ashrarul Haq Sifat and downloaded from
GitHub. Issues with this implementation were found, but not fully resolved.
A simplified approach to pressure calculation was chosen to fix these issues.

Their work is carefully documented and their experiments described in the
research report [10].

13

14

Chapter 4

Our Method and Its Implementation

This chapter shall explain our work method, implementations and experiments
as we have done them in the chronological order. We first begun our work on
the tactile sensors, then moved to the control of 3FG (gripper), then tested
holding our peg and sensor feedback and finally worked on the simulation of
the peg-in-hole task itself.

4.1 Takktile Sensors

The tactile sensors are mounted on the fingers and the palm of the 3FG.
A microcontroller provides communication over a I2C protocol and uses an
integrated 10-bit ADC. With such a connection board, the information from
haptic sensors is carried over to the computer, where we can visualize the
end results.

Our work began by recreating and setting up our 3FG and the tactile
sensors as done previously by Kristýna Míková and Petr Kužela. The students
previously created a Python code that could be used to visualize pressure
applied to the Takktile sensors as shown in Figure 4.1a.

We have decided to improve their code. First, we have optimized the code,
making it run more effortlessly by removing redundant creation of sensor
visual boxes in each iteration and instead only updating the numbers in each

15

4. Our Method and Its Implementation...........................
loop. A significant delay between the moment of applied pressure and its
consequent visualization that previously had a tendency to increase in length,
but our modification helped eliminate the issue. Changes in the program
for connecting to the Arduino board were made, allowing for repeatable
connection should it fail in the first place. Next, we have added 18 palm
sensors into our visualization and made the rectangles color changeable based
on applied pressure. Our final result can be seen in Figure 4.1b.

(a) : As created by previous students
(b) : Our version

Figure 4.1: Visualization of tactile sensors

The indexing of our tactile sensors and their placement on the Python
visualization corresponds to what the uses sees when facing the front side of
3FG (that features the logo and connection inputs/outputs). In Figures 4.2a,
4.2b and 4.2c we can observe the specific placement of sensors according
to their official factory addresses. Figure 4.2d shows their position in our
visualization.

In the work done on the project by previous students, a simplified approach
to calculating pressure measured by the Takktile sensors was chosen. The
raw pressure conversion is done using Equation 4.1.

Pcomp = a0 + (b1 + c12 · Tadc) · Padc + b2 · Tadc (4.1)

Padc is the raw pressure ADC output, Tadc is the raw temperature ADC output,
a0 is the pressure offset coefficient, b1 is the pressure sensitivity coefficient,
b2 is the temperature coefficient of offset (TCO), c12 is the temperature
coefficient of sensitivity (TCS). To convert Pcomp into pressure p in kPa, we
use Equation 4.2.

p = Pcomp · (65
1023) + 50 kPa (4.2)

Previously, a mistake in the Arduino code made it impossible to read b1
and b2 coefficients correctly. Kristýna Míková and Petr Kužela chose to
use average values of the coefficients instead. However, we have found this
error was caused by reading binary data as unsigned floats instead of signed
floats. We fixed this, making it possible to read factory applied coefficients

16

................................... 4.1. Takktile Sensors

(a) : Indexing of the adjacent fingers’
sensors

(b) : Indexing of the single finger’s
sensors

(c) : Indexing of the palm’s sensors (d) : Indexing of our Python visual-
ization

Figure 4.2: Tactile sensors indexing

for each sensor. This also improved the reading of pressure on the palm
sensors. Previously, the palm sensor values oscillated between 0 - 7. Now,
they oscillate between -1 and 2. Figure 4.3 shows the sensor status while the
tactile sensors are not in contact with any object.

We also overcame a problem that came with 10bit numbers coming from
the sensors and then overflowing with added pressure. The raw pressure ADC
value starts at around 600 when at rest. By adding pressure, the value drops
until it reaches 0 and then overflows to 1024. It can reach values around 950
with maximum pressure applied to the sensors. A newly added ‘if’ clause
in our Arduino code ensures that when the raw pressure value is above 900,
we subtract 1024 from it. This solution appears to work quite well. In the
original visualization code we removed the computation of absolute value,
letting the sensors work with negative pressure as well. The exact calculation
process can be seen in Listing 4.1.

Listing 4.1: Arduino example code
1 void read_and_send() {
2 uint16_t otemp, opressure;
3 float pressureComp;
4 float *pointer = &pressureComp;
5 for (int i = 0; i < addressLength; i++) {

17

4. Our Method and Its Implementation...........................

Figure 4.3: Tactile sensors while at rest

6 readData(addressArray[i], &otemp, &opressure);
7 if((float)opressure > 900.0) {
8 *pointer = a0[i] + (b1[i] + c12[i] * (float)

otemp) * ((float)opressure - 1024)+ b2[i] *
(float)otemp;

9 }
10 else {
11 *pointer = a0[i] + (b1[i] + c12[i] * (float)

otemp) * (float)opressure + b2[i] * (float)
otemp;

12 }
13 // Calculate temp & pressure
14 float oPressure = ((65.0 / 1023.0) * pressureComp)

+ 50.05; // kPa
15 float oTemp = ((float) otemp - 498.0F) / -5.35F +

25.0F; // C
16 Serial.print((float)oPressure,0);
17 Serial.print(’,’);
18 }
19 Serial.println(addressLength);
20 delay(10);
21 }

We have tested the functionality of our new visualization, finding it to be
reacting faster to outside stimulants and encountering fewer lags and crashes.
Our new implementations thus seemed to work as intended.

18

..................................... 4.2. 3FG Control

4.2 3FG Control

The 3-Finger Adaptive Robot Gripper from Robotiq is fitted to be installed
on a Franka Emika Panda arm [1]. Robotiq provides software for testing and
control purposes. A gripper software called URCap is available for easy and
basic control of the gripper and a robotic arm. Options for simple program-
ming and setting up of tasks is also possible. The primary communication
protocol is Modbus RTU. Modbus TCP, EtherNet, CANopen protocols and
others are also available.

First, we have decided to test the communication between our 3FG and
computer. We have downloaded the Robotiq User Interface (RUI) and
installed it under Windows. The application can be downloaded from the
official website of Robotiq. We connected to the gripper via USB for Modbus
RTU. The application scanned for all available Robotiq devices and their IP
addresses. After it had successfully detected our 3FG connection, we were
able to connect to the gripper. The RUI provides simple control options,
including switching gripper modes; setting a required position, speed and
force; current measurement and individual finger control. The RUI also lets
us change the 3FG IP address, if necessary.

Next, we decided to control our 3FG over ROS 1. This decision was
made before we decided to switch to ROS 2. We first downloaded a ROS-
Industrial Robotiq meta-package from public repository. For our needs, we
have only focused on the 3FG related packages. The most important ones
are: robotiq_3f_gripper_control, robotiq_modbus_tcp and
robotiq_3f_gripper_articulated_msgs.

First, we attempted to set our connection over the Modbus RTU protocol.
We had, however, encountered an issue where our gripper did not respond
to our commands beyond simply activating. Unable to find a solution, we
switched to Modbus TCP communication protocol. This time, the connection
was established successfully and we had full control over ROS for our 3FG. The
robotiq_modbus_tcp package gives us the option to establish the connec-
tion. The robotiq_3f_gripper_control package defines three impor-
tant ROS nodes: the Modbus TCP Communication Node, Simple Controller
and Status Listener. The robotiq_3f_gripper_articulated_msgs
package includes the description of messages used by ROS topics.

In order to control our 3FG over ROS, we first have to start a Modbus TCP
communication node. It’s necessary to know the IP address of the gripper.
We let this node run in the background while we work with the 3FG.

19

4. Our Method and Its Implementation...........................
An easy way to switch between modes is provided by a Simple Controller

ROS node. The 3FG has four different modes of movement that can each
be used to pick up objects of various size and shape. The ‘Basic’ and ‘Wide’
modes are generally used for manipulating bigger objects, while ‘Pinch’ and
‘Scissor’ modes allow higher precision for holding small objects. The node
can change speed and force of the 3FG and specify the exact position of the
fingers. All options can be seen in Figure 4.4a. The ROS node responds to
simple keyboard commands.

Status Listener ROS node for our 3FG lists the names and values of each
register. More detailed explanation for each register is provided for simpler
understanding. Status Listener node can be used to check the current status
of the 3FG, its finger positions and more. Its visualization can be seen in
Figure 4.4b.

(a) : Simple Controller ROS node

(b) : Status Listener ROS node

Figure 4.4: Visualization of ROS nodes

We have become familiar with the provided Simple Controller and Status
Listener ROS nodes. Using our knowledge of 3FG registers, we have expanded
the Simple Controller node with additional functionalities, like individual
finger control and individual control of scissors. While controlling each finger

20

...............................4.3. Experiments with Our Peg

individually, we can set unique speed, force and position for every finger. The
fingers follow the same path as in ‘Basic’ mode, meaning all three fingers
close down towards the palm like a hand closing into a fist. In the ‘Scissors’
mode, the two adjacent fingers move towards each other while the opposite
finger remains stationary. Thanks to the individual scissors’ control, we can
set the speed, force and position of the two fingers as they follow the ‘Scissors’
mode trajectory. We have created a guide detailing each option to ensure
better understanding for future users [6].

Thanks to the RUI, we have established the 3FG was functioning correctly.
We have encountered an issue, when trying to connect over the Modbus RTU
protocol did not work until we used a network switch. Additionally, we had
to use Modbus TCP protocol for ROS control of our gripper, as Modbus RTU
did not function correctly. Our new control options for Simple Controller
worked just as we intended.

At this point, we have decided to connect our Takktile sensor visualization
and our 3FG ROS controller. We have taken our tactile sensor visualization
Python code and implemented it as a new ROS node.

The new Sensor Listener ROS node functioned as expected. After a long
period of operational time, however, the visualization seems to accumulate
lag from real time response. In extreme cases, the visualization itself crashes.
The node can simply be restarted to fix this issue.

4.3 Experiments with Our Peg

For our peg-in-hole task, we must implement the use of feedback from our
tactile sensors. This will allow us to finish our assigned task using a contact
model-based active compliance. A working real life environment for the
peg-in-hole task must be created for this purpose. We must test the tactile
sensor response with the peg in 3FG’s grasp. The 3FG gripper used in our
experiments is depicted in Figure 4.5.

We have created a wooden peg in a cuboid shape. Dimensions of the
peg are as follows: 100 x 50 x 290 mm. Thanks to the combined efforts of
Antonín Mík (a lab technician, who designed and 3D printed the hole) and
Václav Hlaváč (thesis advisor, who manufactured the peg in his woodworking
workshop at home), the 3D printed hole was fixed to a wooden board to
increase stability. Our final setup can be seen in Figure 4.6. Antonín Mík

21

4. Our Method and Its Implementation...........................

Figure 4.5: 3FG (the gripper) and tactile sensors used in our experiments.

also designed and 3D printed a two-sided handle that could be connected to
the 3FG and used to manually simulate a robotic arm (Figure 4.5). It enables
an experiment where a human acts instead of a robot in the peg-in-hole task.
The outcome of the experiment is a time series of values, which the individual
tactile sensors measure.

We experimented with our peg-in-hole, 3FG and tactile sensors. We were
most interested in the way tactile sensors reacted to holding the peg as it was
being inserted into the hole. We intentionally tested the sensors’ reaction if
the peg got stuck or was being inserted incorrectly. The ‘Close’ command of
3FG simple controller was used to catch the peg with our gripper. Later we
have started using the option of ‘Set position’ to compare the results. We
have moved the peg around and slowly inserted the peg in the hole. We were
sure to test as many different positions as possible and document each case
carefully for future use.

4.4 ROS 2 Simulation

While still in development, ROS 2 provides many desired upgrades from ROS.
As such, we have decided at this point to move the rest of our work over to
ROS 2. We have familiarized ourselves with new processes of ROS 2 and
created a simulation of our peg-in-hole task in preparation for future real-life
control. We will create a script of commands using the MoveGroup class that
subscribes to the move_group node and controls predefined movement of
the robot in rviz.

22

.................................. 4.4. ROS 2 Simulation

Figure 4.6: Our peg-in-hole setup

We have begun our work with assistance from Libor Wagner, a lab tech-
nician. Thanks to his previous experience with ROS 2, we were able to use
ROS 2 inside an image in a Singularity container. The image includes ROS 2
distribution Foxy and MoveIt2. We have learned to use rviz visualisation tool
for MoveIt2 before moving on to create our simulation.

Learning to use the MoveGroup class, we have decided to base our simula-
tion on one of the provided tutorials [13]. The provided script was written in
C++ and so we have chosen to write our simulation in this language as well.
We begun with simply moving the robotic arm around a box with an attached
cylindrical peg in its gripper. Both the box and the peg were created in the
environment using Collision Object messages. However, we ran into an issue
which we called ‘ghost peg’, for our peg kept moving (in other words phasing)
through the box.

To fix the ‘ghost peg’ error, we decided to make our box part of the robot’s
description instead. The model of our robot is represented in the Unified
Robotic Description Format (URDF) file. Learning to edit and write in the
XML file format, we managed to modify the robot’s URDF to include our
box. Using the combination of URDF box and Collision Object message to

23

4. Our Method and Its Implementation...........................
create our peg, we finally managed to solve our ‘ghost peg’. We changed the
peg to a cuboid shape and set its dimensions and the box’s to be a perfect
copy of those in real life.

We wrote our simulation into a set of simple commands. Single steps can
be seen in Figure 4.7. Their order is as follows:..1. Move the robot from its starting position (4.7a) to the right side of the

gripper (4.7b) by defining a pose goal and executing the movement...2. Add the peg using Collision Object message and attach it to the end-
effector (the gripper)...3. Move the robot from the right side of the box to its left side (4.7c), to
demonstrate how the peg avoids collision with the outline of the box...4. Move the robot so that the peg stops above the hole (4.7d)...5. Switching to Cartesian path planning, we move the peg (and the robot)
down along the z-axis and insert it into the hole (4.7e).

During the final stages of programming, we have found a possible reason
for our ‘ghost peg’ error. After setting a pose goal, there are two options of
reaching the goal. The first option is to call the Plan function first creating
the Plan object (which describes our found trajectory); the second step is to
subsequently select the Execute function separately, which results in moving
the robot according to the Plan object. The second option combines the two
functions in a single function called Move. In the first case, we encounter
the ‘ghost peg’. However, using the Move function, the ‘ghost peg’ error
completely disappeared. It would thus seem the ‘ghost peg’ error originates
in the Plan function and the Plan object (which stores the plan function
results). This seems to be an innate error with ROS 2 code and is possibly
to be solved in future distributions.

We attempted to replace the original end-effector gripper in Franka Emika
Panda robot URDF with our 3FG. We used meshes provided by the Robotiq
GitHub repository to set our new URDF gripper. Visually we were successful,
but it does not function correctly during motion planning yet. The Robotiq
meta-package provides detailed description of gripper’s kinematics, sadly it
is only set for ROS 1. We have tried to port this into ROS 2, but were
ultimately unsuccessful.

We also tried to make a simulation using Python code. We have learned
to create basic packages sending simple messages. Sadly, when we tried to

24

.................................. 4.4. ROS 2 Simulation

(a) : Starting position (b) : New position to the right

(c) : New position to the left (d) : New position to the top

(e) : Final position

Figure 4.7: Our simulation

recreate our simulation in Python, we ran into an issue. In ROS 1, the Move
Group Python Interface uses a moveit_commander namespace, where we can
find all necessary class description for moving our robot. Unfortunately, the
moveit_commander namespace has not been ported into ROS 2 yet. This
made us give up our attempts at recreating our simulation in Python under
ROS 2.

25

26

Chapter 5

Evaluation

In this chapter, we will go over each of our method implementations and
evaluate their results.

We have successfully managed to implement a visualization for our Takktile
sensors and fix its previous issues. Our new version measures pressure more
precisely and steadily. Sadly, we were not able to fix the issue, which causes
the visualization to crash after running for an extended time. While we have
done our best to fix connectivity issues with our Arduino board, sometimes
the sensors do not all load correctly. Mostly, this results in our visualization
showing the last palm sensor (address 35) only as 0 kPa, no matter the
pressure we apply to it. The other sensors then tend to be moved ‘in a row’
of their set addressing (as seen in Figure 4.2). This is most likely due to
problems with the I2C protocol and the connection to our Arduino board
that causes a sensor data to be ‘lost’ during communication.

For our 3FG our ROS control nodes work just as we intended. We had to
switch from Modbus RTU communication protocol to Modbus TCP during
the design stage of the project. For now, Simple Controller node only responds
to a set of very basic keyboard commands. Our new node for tactile sensors
visualization faces the same issues as mentioned for its Python code version,
but otherwise functions as intended.

During our experiments with holding the peg in our gripper and inserting
it in a hole, we have discovered the best mode for holding our peg was the
‘Basic’ mode. Sensors responded to the fingers closing around our peg as
expected. However, while inserting the peg into the hole, the reaction of

27

5. Evaluation
sensors to the various different positions were similar even in very different
use-cases and sometimes the tactile sensors did not even register a change
in pressure detection. We tried to decrease the force with which the gripper
closed around the peg, but noticed no visible difference in sensors’ reactions
under such change. We have found that if we open the gripper slightly after
calling the ‘close’ command, the sensors react much better. Sadly, there does
not seem to be one ‘optimal’ position the 3FG can be set to and hold the
peg securely with best sensor results. Position 77 or position 78 seemed to
be closest to our desired goal, but these positions change depending on each
activation and calibration of the gripper and are not necessarily always the
same.

We can compare the difference on a set of given figures. In Figure 5.1 we
have a situation in which our gripper holds our peg securely and no other
forces are being applied to the construct. Figure 5.2 reflects the changes in
the sensors that occurred once we manually applied pressure on the peg from
the back side of the 3FG. In the case of Figure 5.2b, we can read the situation
more easily than in Figure 5.2a.

(a) : Using CLOSE command (b) : Using SET POSITION command

Figure 5.1: Visualisation of tactile sensors while holding a peg with no external
influence

We experimented to find out the best way to hold the peg. The optimal
way we found was to call the ‘Close’ command, use the gripper Status Listener
node to check the actual position of fingers and then use the Simple Controller
to move to a new position with a subtraction of 1 unit. In this case, the
tactile sensors provided the best reading and sensed the most positions and
issues during insertion of the peg into the hole. However, this method is not
very favorable for our future peg-in-hole task.

Our simulation of the peg-in-hole task works as expected. Sometimes, the
inverse kinematics task does not correctly calculate. In that case, the robot
simply stays in its old location without moving to the new set goal state. Our

28

...................................... 5. Evaluation

(a) : Using CLOSE command (b) : Using SET POSITION command

Figure 5.2: Visualisation of tactile sensors while holding a peg and pressing on
the back of its face

attempts at translating our simulation from C++ into Python ended in a
failure due to the missing ROS 2 packages. Our simulation also includes the
3FG (gripper) mesh as the end-effector. We fully implemented the 3FG in our
robot description file, but did not manage to write an inverse kinematics task
for it. This means we can see our 3FG during rviz planning visualization and
check that our joints can correctly move from an ‘open’ state into a ‘close’
position. However, when we attempt to call for gripper position change using
a ‘Plan and Execute’ option of rviz, the task fails due to the right kinematics
descriptor missing.

29

30

Chapter 6

Conclusion

6.1 Brief Summary of the Thesis’ Achievements

As part of our work, we had to familiarize ourselves with the 3FG and its
control. We used ROS nodes to send commands to the gripper to active it,
change its modes, set position and speed of its fingers and catch objects. Using
Takktile sensors mounted on 3FG fingers and its palm, we helped improve a
simple visualization of pressure recognition. We did this by upgrading the
Python code and recreating it as a new ROS node. We also re-configured the
Arduino code for the tactile sensors for more precise pressure calculation.

We had created a wooden peg (100×50×290 mm in dimensions) and printed
out our ‘hole’ using 3D printing technology. First, we had tested the reaction
of tactile sensors when in contact with the peg and experimented with the
3FG holding the peg under various force settings. Then we inserted the
peg into the hole and documented the pressure sensors’ response. We have
deduced that relaxing the hold of our gripper on the peg leads to better sensor
response and is more suitable for future pressure feedback manipulation.

Deciding to implement our experiment in the new ROS 2 environment, we
had first begun with creating a simulation for our peg-in-hole manipulation
task. Our simulation was using the Franka Emika Panda robot. The sim-
ulation was created thanks to a provided ‘Run Move Group’ tutorial and
programmed in C++. We also learned to modify ‘URDF’ files to suit our
requirements and added our hole and gripper into the scene. We attempted

31

6. Conclusion......................................
to create a second simulation in Python code, but missing packages for ROS 2
made it impossible to finish.

We did not manage to create a real-life experiment of our peg-in-hole task.
This was mostly due to the restrictions placed on our work by the COVID-19
pandemic and the fact that we were missing vital parts of necessary software
from ROS 2 to transform our simulation onto a real robot. By June 2021, a
new distribution of ROS 2 will contain much needed packages to allow us to
continue working on this project and finally move to real-life implementation.

6.2 Contributions

Our first contribution is the analysis of the peg-in-hole assembly task assuming
only tactile and force/torque feedback is available. The thesis summarizes
the state of the art and formulates openings for further investigation.

Our second contribution covers methods and software tools enabling use of
3FG (the gripper) and the tactile sensors attached to it. The related software,
mostly developed in this bachelor thesis project, is available in two separate
CIIRC GitLab repositories.

Everything necessary for real-life 3FG control is available in the reposi-
tory [6]. This includes: modified ROS 1 nodes for 3FG control; Takktile
sensors’ visualisation Python code; and the new code for our Arduino board.
We have also added a folder for our documentation and our guide for 3FG
usage and control of nodes. We have also uploaded a more detailed research
for our peg-in-hole experiment with our tactile sensors.

The second repository includes a simulation of our peg-in-hole task under
ROS 2 [7]. The repository was created with an easy set-up and use in mind
and with a simple guide provided by the README.md file. The repository
holds our C++ code for our simulation and necessary launch files for rviz
and its nodes. All URDF and mesh files were added and configured for
installation in the CMakeLists.txt for our unique description of robot and its
environment.

32

.......................... 6.3. Suggestion for Future Improvements

6.3 Suggestion for Future Improvements

The work completed and assembled while working on this project has many
possibilities for further development. The project can be further expanded
by transforming our simulation onto a real-life Franka Emika robot. The
missing ROS 2 packages should be added this summer, making it possible
for us to continue working on this project. Ideally, we would also port our
ROS 1 control nodes for our 3FG into ROS 2, either by writing new ROS 2
dedicated nodes with same functionalities or by using a bridge between ROS 1
and ROS 2.

33

34

Bibliography

[1] 3-finger adaptive robot gripper official website. https://robotiq.
com/products/3-finger-adaptive-robot-gripper. Accessed:
2020-04-27.

[2] Fares Abu-Dakka, Bojan Nemec, Aljaz Kramberger, Anders Buch, Nor-
bert Krüger, and Ales Ude. Solving peg-in-hole tasks by human demon-
stration and exception strategies. Industrial Robot: An International
Journal, 41:575–584, Oct 2014.

[3] Cristian Camilo Beltran-Hernandez, Damien Petit, Ixchel Georgina
Ramirez-Alpizar, and Kensuke Harada. Variable compliance control for
robotic peg-in-hole assembly: A deep reinforcement learning approach.
CoRR, abs/2008.10224, 2020.

[4] Tadanobu Inoue, Giovanni De Magistris, Asim Munawar, Tsuyoshi
Yokoya, and Ryuki Tachibana. Deep reinforcement learning for high
precision assembly tasks, 2017.

[5] Ibrahim F. Jasim, Peter W. Plapper, and Holger Voos. Position iden-
tification in force-guided robotic peg-in-hole assembly tasks. Procedia
CIRP, 23:217–222, 2014. 5th CATS 2014 - CIRP Conference on Assembly
Technologies and Systems.

[6] Lucie Vajnerová (Maintainer). Robotiq 3f gripper control.
https://gitlab.ciirc.cvut.cz/vajneluc/robotiq_3f_
gripper_control/-/tree/master, May 2021.

[7] Lucie Vajnerová (Maintainer). Run move group. https://gitlab.
ciirc.cvut.cz/vajneluc/run_move_group, May 2021.

35

https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://gitlab.ciirc.cvut.cz/vajneluc/robotiq_3f_gripper_control/-/tree/master
https://gitlab.ciirc.cvut.cz/vajneluc/robotiq_3f_gripper_control/-/tree/master
https://gitlab.ciirc.cvut.cz/vajneluc/run_move_group
https://gitlab.ciirc.cvut.cz/vajneluc/run_move_group

6. Conclusion......................................
[8] David Martínez, Guillem Alenya, and Carme Torras. Relational rein-

forcement learning with guided demonstrations. Artificial Intelligence,
247:295–312, 2017. Special Issue on AI and Robotics.

[9] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the
performance of ros2. In Proceedings of the 13th International Confer-
ence on Embedded Software, EMSOFT ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[10] Using takktile sensors with robotiq three finger adaptive gripper.
http://people.ciirc.cvut.cz/~hlavac/pub/MiscText/
2020-08-04KuzelaMikovaUsingTakkTileSensorsRobotiqGripper.
pdf. Accessed: 2021-05-13.

[11] Official moveit website. https://moveit.ros.org/. Accessed: 2021-
05-03.

[12] Ati industrial automation: Rcc remote center compen-
sators. https://www.ati-ia.com/products/compliance/
compensator_product_desc.aspx. Accessed: 2021-04-27.

[13] Move group c++ interface – moveit2_tutorials foxy documentation.
http://moveit2_tutorials.picknik.ai/doc/move_group_
interface/move_group_interface_tutorial.html. Accessed:
2021-04-27.

[14] Ros and ros 2 releases. https://docs.ros.org/en/foxy/
Releases.html#releases. Accessed: 2021-04-27.

[15] Changes between ros 1 and ros 2. http://design.ros2.org/
articles/changes.html. Accessed: 2021-04-27.

[16] Hands-on introduction to robot operating sys-
tem (ros). https://trojrobert.github.io/
hands-on-introdution-to-robot-operating-system(ros)
/. Accessed: 2021-05-15.

[17] Moveit roadmap. https://moveit.ros.org/documentation/
contributing/roadmap/. Accessed: 2021-05-03.

[18] Official ros website. https://www.ros.org/. Accessed: 2021-05-03.

[19] A. S. Sadun, J. Jalani, and F. Jamil. Grasping analysis for a 3-finger
adaptive robot gripper. 2016 2nd IEEE International Symposium on
Robotics and Manufacturing Automation (ROMA), pages 1–6, 2016.

[20] Paul C. Watson. Remote center compliance system, U.S. Patent
4098001A, filed October 13, 1976, issued July 4, 1978.

[21] D. E. Whitney. Quasi-Static Assembly of Compliantly Supported
Rigid Parts. Journal of Dynamic Systems, Measurement, and Con-
trol, 104(1):65–77, 03 1982.

36

http://people.ciirc.cvut.cz/~hlavac/pub/MiscText/2020-08-04KuzelaMikovaUsingTakkTileSensorsRobotiqGripper.pdf
http://people.ciirc.cvut.cz/~hlavac/pub/MiscText/2020-08-04KuzelaMikovaUsingTakkTileSensorsRobotiqGripper.pdf
http://people.ciirc.cvut.cz/~hlavac/pub/MiscText/2020-08-04KuzelaMikovaUsingTakkTileSensorsRobotiqGripper.pdf
https://moveit.ros.org/
https://www.ati-ia.com/products/compliance/compensator_product_desc.aspx
https://www.ati-ia.com/products/compliance/compensator_product_desc.aspx
http://moveit2_tutorials.picknik.ai/doc/move_group_interface/move_group_interface_tutorial.html
http://moveit2_tutorials.picknik.ai/doc/move_group_interface/move_group_interface_tutorial.html
https://docs.ros.org/en/foxy/Releases.html#releases
https://docs.ros.org/en/foxy/Releases.html#releases
http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/
https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/
https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/
https://moveit.ros.org/documentation/contributing/roadmap/
https://moveit.ros.org/documentation/contributing/roadmap/
https://www.ros.org/

.......................... 6.3. Suggestion for Future Improvements

[22] Josef Wolfartsberger, Jean Hallewell Haslwanter, and René Lindorfer.
Perspectives on assistive systems for manual assembly tasks in industry.
Technologies, 7:12, 01 2019.

[23] P. C. Wong. Peg-hole assembly; an investigation into tactile methods.
PhD thesis, University of Canterbury, 1975.

[24] J. Xu, Zhimin Hou, Zhi Liu, and H. Qiao. Compare contact model-based
control and contact model-free learning: A survey of robotic peg-in-hole
assembly strategies. ArXiv e-prints, abs/1904.05240:arXiv:1904.05240,
April 2019.

37

	Introduction
	Assignment
	State of the Art
	Peg-in-hole; Assembly Strategies
	Peg-in-hole; History
	Peg-in-hole; Modern Approach
	ROS 1 Principles
	ROS 2 Development
	Work of Previous Students on This Project

	Our Method and Its Implementation
	Takktile Sensors
	3FG Control
	Experiments with Our Peg
	ROS 2 Simulation

	Evaluation
	Conclusion
	Brief Summary of the Thesis' Achievements
	Contributions
	Suggestion for Future Improvements

	Bibliography

