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Abstract

In the thesis, we developed a method to
automatically generate insights into em-
ployees’ satisfaction with their workplace
and perception of their wellbeing based
on textual answers to questionnaires. To
be able to process a large body of data,
we developed a pipeline to preprocess and
aggregate textual data from a number
of different sources. Further, we trained
an NLP classifier (RandomForest) to de-
tect labels in the user responses and veri-
fied the classifier performs sufficiently for
the task. On these sets of detected la-
bels, we run frequent itemset analysis and
subject the results to significant support
and (in)dependence tests. On the practi-
cal side, the method is open-sourced and
available to support decisions at Human
Resources (HR) departments based on
data-driven feedback. We evaluated the
method on real-world data from various
companies located in the Czech Republic
and showed that we are able to find sig-
nificant frequent itemsets, and design a
workflow to interpret the results and trace
them back to actual problems.

Keywords: frequent itemset, NLP,
multi-label classification of text,
wellbeing insights, chi-squared test, data
mining, feedback

Supervisor: Ing. Marek Otáhal

Abstrakt

Tato práce se zabývá automatickou tvor-
bou vhledů do spokojenosti zaměstnanců
s jejich pracovním prostředí a wellbein-
gem na základě textových odpovědí z do-
tazníků. Pro zpracování velkého korpusu
dat byl vyvinut postup, který zpracoval
a seskupil texty z různých zdrojů. Dále
byl natrénován klasikátor, který zpracová-
ním přirozeného jazyka odhaluje témata
v uživatelských odpovědích a bylo ově-
řeno, že funguje dostatečně dobře pro naše
zadání. Na souborech nalezených témat
byly nalezeny časté podmnožiny, tyto vý-
sledky byly podrobeny chí-kvadrát testu
pro zjištění (ne)závislosti jednotlivých té-
mat. Z praktické stránky, tato metoda má
open-source licence a je HR oddělením k
dispozici pro podporu jejich rozhodnutí
na základě dat ze zpětné vazby. Metoda
byla otestována na reálných datech růz-
ných společností se sídlem v ČR a bylo
ukázáno, že je pomocí ní možné najít (sta-
tisticky významné) časté podmnožiny a
navrhnout postup k interpretaci dat a je-
jich zpětnému vysledování ke skutečným
problémům.

Klíčová slova: časté podmnožiny,
zpracování přirozeného jazyka,
multi-label klasifikace textu, vhled do
wellbeingu, chí-kvadrát test, dolování dat,
zpětná vazba

Překlad názvu: Hledání častých
podmnožin a multi-label klasifikace
uživatelských odpovědí na téma
wellbeingu
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Chapter 1

Introduction

Nowadays, every company, every city, every person generates lots of data.
Therefore the challenge is usually not obtaining the data, but its preprocessing
for statistical or machine learning methods and interpreting the results. We
aim to provide methods for processing textual data from questionnaires
regarding employees’ wellbeing and offer insights into the results.

Human Resources, and specifically Wellbeing Management (sometimes
called Employees Engagement), is a field without much hard data. Decision
making often relies on subjective perception and judgement calls of an HR
manager. The management might not always fully appreciate this, but
a systematic approach to employees’ wellbeing is crucial to a company’s
performance. “Being satisfied” is surely beneficial for the employees but the
companies profit from it as well as a link between wellbeing and productivity
is assumed. A study conducted by Fisher [Fis03] showed that almost 92% of
Australians believed that “A happy worker is likely to be a productive worker.”
Moreover, talented employees are always hard to find and good reputation of
the employer’s brand and their workplace wellbeing helps to attract them.

While it is possible to know about 50 people at work by heart, including
their wishes and obstacles to productive work, there is a limit to an HR
representative’s mental capacity to be familiar with everyone on their own.
As the company grows substantially (more than 300 full time employees) HR
finds itself in the need of some kind of quantitative analysis. Be it external
consulting or internal surveys concerning employee satisfaction. Our goal
in this thesis is to help HR managers or whoever is tasked with managing
employees’ wellbeing (meaning satisfaction and productivity) with gaining

1



1. Introduction .....................................
insight into such survey’s collected data. We aim to do so by taking on the
data from questionnaires from various companies as an input and suggest
effective automated methods which successfully identify the challenges a given
company faces. Crucial factors are the ability to understand the employees’
answers in the form of natural language and secondly the ability to distinguish
commonly shared opinions in order to formulate representative conclusions.
Such obtained insights should serve the management as the grounds for
data-driven decision making on improvements of employees’ wellbeing and
company’s workplace. With successful implementation of this thesis, we’ll
provide a set of tools, a pipeline capable of automatically processing feedback
from employees, and a method of generating insights into the most relevant
issues for the tested workplace, and back it up with evidence.

2
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1. Introduction .....................................

Part I

Theoretical Part
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Chapter 2

Classifiers in Natural Language Processing
(NLP)

In this chapter we will focus on classification tasks in NLP, namely labelling
textual data. The outline of the chapter is as follows: Multi-label classification
and approaches used for solving, decision trees, Random Forest classifier -
used in our solution, and introduction of metrics often used for evaluating
classifiers. When figuring out how to process data in a form of natural
language one has two options. First one is using a “black box” model such
as a (deep) neural network (NN). The input is in a form of raw data which
the model pulls through and outputs the result. Second one is using a model
such as a decision tree following logical rules. Although neural networks can
reach a lot higher accuracy, the latter types of models are often employed
(at the expense of accuracy) for their comprehensibility and interpretability,
according to [WDH+20]. The top down approach for tackling the data can
be studied and separate decisions can be challenged instead of receiving an
output without proper justification or trying to interpret the numeric weights
of the connections between the nodes. [Kot13]

2.1 Multi-Label Classification

The following part is dedicated to providing an overview of Multi-Label
Classification problems. As it is the approach that was used in the practical
part to solve the given task. It is frequently used for organizing text documents
such as agreements, e-mails, invoices, books, magazines, blog posts etc.

5



2. Classifiers in Natural Language Processing (NLP) .....................
[HCRdJ16]

Note the difference between Multi-Label and Multi-Class Classification
problems. In both of them we look at multiple categories. If each instance is
assigned only one of those categories i.e. one label we talk about Multi-Class
Classification whereas assigning several not mutually exclusive categories
indicates we are dealing with the Multi-Label Classification. A nice way to
keep this difference in mind is via a pizza similarity. Let one set of labels be
the toppings - tomato sauce, mozzarella, basil, cheddar cheese, blue cheese,
salami, ham, etc. and the other one the types of pizza - Margherita, Marinara,
Capricciosa, Quattro Formaggi, etc. On each round of dough we can put
multiple toppings (let’s say tomato sauce, mozzarella, basil), this is (multi)
labeling. A combination of topics on a dough can be classified only as one
type of pizza (Margherita for previous example), this is classification.

2.1.1 Approaches for Solving Multi-Label Classification
Problems

There are two, respectively three approaches to solving multi-label classifica-
tion problems. We can either modify the dataset and use existing algorithms
or modify the algorithms. Third technique emerges from the first one - using
an ensemble.

Problem/Data Transformation

The original dataset is transformed in such a way that it is possible to treat
the problem as a single-label problem. This allows the use of traditional
classifiers.

Binary relevance is the most straightforward technique which trains and
evaluates a different classifier for each label. This method does not consider
label correlations as each of the classifiers is handled independently.[ZLLG18]

Classifier Chains likewise transform an n-label problem to n single-label
classifiers. The difference is that the first classifier is trained only on the
features and every next classifier is trained on features combined with the
information about previously assigned labels. Thus, forming a so-called chain
and considering label correlations.[RPHF21]

6



.................................... 2.2. Decision Trees

Label Powerset creates from each unique label combination a different class
and so the task now presents a multi-class problem. It is obvious that this
method also acknowledges the label correlations.

Adapted Algorithm

Rather than transforming the dataset and creating smaller problems it is
possible to modify existing algorithms to generate multi-label outputs. Sup-
port Vector Machines (SVM) is an example of an algorithm developed for
binary classification, but which can be modified to work also with multi-label
[Bur98]. A k-Nearest Neighbours (kNN) can easily predict multi-label with-
out sophisticated adjustments. We just check whether the nearest neighbors
accommodate more than just one class.

Ensemble Approach

Combining several binary and/or multi-class classifiers whose outputs can
be weighted to compensate for their shortcomings and biases is efficient and
commonly used method. It is also possible to tackle the imbalance datasets
with this approach.[GFB+11]

2.2 Decision Trees

An algorithm that recursively divides features into separate classes based on
maximal gain in each split and thus forming a decision tree. The recursion is
repeated until all nodes contain only instances of the same class. More about
implementation algorithms and basic issues can be found in [Kot13]

7



2. Classifiers in Natural Language Processing (NLP) .....................

Figure 2.1: Decision tree shown as a graph. Source: [WDH+20]

2.2.1 Random Forest Classifier

Random Forest (RF) reveals quite a lot just by its name. It is a supervised
learning algorithm that consists of a series of decision trees which operate as
an ensemble.[Pal05]

Random Forest Classifier functions by taking into account a lot of predic-
tions from uncorrelated trees and assigning the sample the label with the most
votes. It is vital that the trees are uncorrelated, so that they compensate for
each other’s errors as the decision trees are known for overfitting training data.
This drawback is partly tackled by taking the average of all the predictions
and partly by a method called Bagging (or Bootstrap Aggregation). Bagging
allows individual trees to randomly replace some samples from the drawn set.
Classic decision trees consider all the features and then split based on the
one that creates the biggest difference in the observations in the nodes while
bagging in RF results in trees deciding based only on a random subset of the
features - the outcome of this is more variety among the trees.

2.2.2 Neural-Backed Decision Trees (NBDT)

[WDH+20] recently combined in their work the interpretability of decision
trees with the accuracy of neural networks and called these models Neural-
Backed Decision Trees. In NBDT predictions are made by a decision tree,

8



...................................2.3. Model Evaluation

but each node contains a neural network making the low-level decision such
as Is curly or Is waffle like.

2.3 Model Evaluation

In this section we will describe ways of training and measuring performance
of a classifier. We will discuss suitability for different tasks.

2.3.1 Cross Validation

Cross Validation (CV) is a method commonly used to reduce bias in the
model by ensuring that every sample can serve in the training and testing set.
It splits the dataset into k folds (usually 5 or 10), uses k-1 folds for training
and the last one for testing. This process is repeated until all of the parts
were used for testing. It then averages the obtained scores and that is the
performance of the model.

Figure 2.2: Illustration of k-fold cross validation. Source: Wikimedia Commons

2.3.2 Confusion Matrix

A confusion matrix is basically a table that visualizes the performance of a
model. The rows represent the number of instances in the predicted class and
columns represent the number of instances in an actual class (or vice versa).

9



2. Classifiers in Natural Language Processing (NLP) .....................

Figure 2.3: Illustration of confusion matrix and its 4 boxes. Source: Under-
standing Confusion Matrix by Sarang Narkhede on Towards Data Science

Each of the four boxes has its name. True Positive (TP) - model predicted
1 and the actual class is 1. False Positive (FP) - model predicted 1, but the
actual class is 0. False Negative (FN) - model predicted 0, but the actual
class is 1. True Negative (TN) - model predicted 0 and the actual class is 0.

2.3.3 Metrics

A metric is a quantifiable measure that is used to track and assess the status
of a specific process. Our goal is to choose a suitable model and find out
its classification capabilities. For this purpose, we will use different metrics.
The hard part about using different metrics for model evaluation is setting
expectations on what part of the problem we are focusing on. Do we want to
minimize false positives even at the cost of decreasing true positives? Do we
want to maximize true positives? Then we will likely encounter more false
positives.

Below we will list and briefly describe several common and frequently used
metrics. Followed by a discussion regarding their pitfalls and suitability for
different datasets and tasks.

Classification Accuracy

Classification Accuracy is often shortened to accuracy. It is the number of
correct predictions (True Positives and True Negatives) to the total number

10



...................................2.3. Model Evaluation

of items (which we make predictions about).

Accuracy = Number of Correct predictions

Total number of predictions made
(2.1)

Its usefulness is highly dependent on the number of items from each class. If
the ratio is balanced we can view accuracy as a reliable metric for evaluation,
but if class A has an apriori probability of 95% and B only 5%, then we can
classify all the items as A and get 95% accuracy. A perfectly balanced dataset
(P(A) = 0.5, P(B) = 0.5) with the same classifier gives us only 50% accuracy
which is nothing more than a coin flip.

Balanced Accuracy

Balanced accuracy was designed for dealing with unbalanced datasets. [BOSB10]

Balanced Accuracy = Sensitivity + Specificity

2 (2.2)

where Sensitivity (also known as True Positive rate or Recall) is computed
as

Sensitivity = True Positives

True Positives+ False Negatives
(2.3)

and Specificity (also known as True Negative rate) is computed as

Specificity = True Negatives

True Negatives+ False Positives
(2.4)

Getting back to the example from above and following the same classifica-
tion, balanced accuracy would be 0.5.

Logarithmic Loss

Logarithmic Loss or Log Loss penalizes the wrong classification.

Logarithmic Loss = −1
N

N∑
i=1

M∑
j=1

yij ∗ log(pij) (2.5)

where yij indicates whether sample i belongs to class j or not
and pij indicates the probability of sample i belonging to class j
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2. Classifiers in Natural Language Processing (NLP) .....................
Log Loss has no upper bound and it exists on the range 〈0, inf) The smaller

the better. [Yil]

Note that when there are not just two classes 1/0 or in our case - the
text contains or does not contain the topic - the metric is usually called
logarithmic loss. When there are more than two classes (whose predictions
can be either probabilities or discrete) the metric is called cross entropy loss
or simply cross entropy. The underlying math is the same - it is always the
negative sum of the products of the logs of the predicted probabilities times
the actual probabilities - the only difference is the terminology used. [McC]

Logarithmic loss is often the number one choice of evaluation in Kaggle
competitions and justifiably. Other classifiers evaluate based on the final
decisions (0/1). However, log loss takes into account the predicted probabilities
for each class and adjusts the evaluation by “how wrong the wrong prediction
was”.

A simple example below illustrates how logarithmic loss functions. We
are given a dataset with ytrue = [1, 0, 0, 1, 1]. Consider two predictions:
ypred1 = [1, 0, 0, 0, 1] and ypred2 = [1, 0, 0, 0, 1] according to the accuracy score
they are performing equally, but log loss goes deeper than this. For its
evaluation it requires the probabilities of each class. So we give the metric
just that ypred1 = [[0.2, 0.8], [0.6, 0.4], [0.7, 0.3], [0.65, 0.35], [0.25, 0.75]] and
ypred2 = [[0.2, 0.8], [0.6, 0.4], [0.7, 0.3], [0.85, 0.15], [0.25, 0.75]], they only differ
in the fourth prediction. The log loss for the former predictions is 0.4856
and for the latter 0.6550. Log loss reflects that the first model was closer to
getting the right prediction.

Log loss vs. Mean Squared Error

One of the considered metrics was Mean Squared Error (MSE):

MSE = 1
N

N∑
i=1

(yi − ỹi)2 (2.6)

But it is a lot more suitable for regression instead of classification. Compared
to Log loss, MSE also penalizes the wrong classification, but the loss (penal-
ization for misclassification) is not as high as we would like it to be. If we
were to use neural networks to obtain the labels, the backpropagation would
not show the wrong classification to be as bad as they are and the network
would not learn as efficiently. [All71]
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...................................2.3. Model Evaluation

Macro F1 Score

F1-Score balances between precision and recall. There are actually two
formulas for calculating Macro F1 score - ‘averaged F1’ and ‘F1 of averages’
[OB19]. Averaged F1 is calculated as an arithmetic mean over harmonic
means meaning F1 scores are computed for each class and then averaged via
arithmetic mean.

F1 = 1
N

∑
x

F1x = 1
N

∑
x

2PxRx

Px +Rx
(2.7)

F1 of averages is the opposite - harmonic mean over arithmetic means.
The harmonic mean is computed over the arithmetic means of precision and
recall.

F2 = H(P̄ , R̄) = 2P̄ R̄
P̄ + R̄

= 2
( 1

N

∑
x Px)( 1

N

∑
xRx)

1
N

∑
x Px + 1

N

∑
xRx

(2.8)

The scale of Macro F1 is 〈0, 1〉, 1 being the best value. In this thesis
equation 2.7 is used, as 2.8 is likely to provide misleadingly high scores with
imbalanced datasets.

Macro F1 vs F1 weighted

Similarly to Macro F1 Score, F1 Score Weighted calculates metrics for each
label, but instead of using arithmetic means to find their average it weights
the average by the number of true instances for each label. This alters Macro
F1 to account for label imbalance.

Macro F1 treats all classes (in our case just two) equally and is insensitive
to imbalanced datasets and therefore it will be low for models that do well
on the common classes while performing badly on the rare classes. Weighted
Macro F1 does just the opposite and when putting together the scores it
considers the imbalance. [GM05]
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2. Classifiers in Natural Language Processing (NLP) .....................
Cohen’s Kappa Coefficient

κ (kappa) is often used to measure the level of agreement between two raters.
One of them can be a classification model and so kappa assesses the model.

Its value can be obtained by the following equation:

κ = po − pe

1− pe
= 1− 1− po

1− pe
(2.9)

where
po = TP + TN

TP + FP + FN + TN
(2.10)

is overall accuracy and pe is the hypothetical probability of chance agreement
between the model predictions and the actual class values, using the observed
data to calculate the probabilities of each observer randomly seeing each
category.

pe = pe1 + pe2 = pe1,target ∗ pe1,pred + pe2,target ∗ pe2,pred (2.11)

which can be also written as

pe = TP + FP

all
· TP + FN

all
+ TN + FN

all
· FP + TN

all
(2.12)

where all = TP +FP +FN+TN and pe1 is the probability of the predictions
agreeing with actual values of class 1 by chance.

The value of Cohen’s kappa theoretically varies on a scale from −1 to 1, 1
being the perfect agreement and 0 indicating that the agreement is as good
as a random guess. Negative values meaning that the overall accuracy is even
worse than a random guess. [Bla08]

Not equally achievable perfect score

Achieving a kappa value equal to 1 would not only mean that there is a
complete agreement between the two raters, but also that the labels are
perfectly distributed - 50% zeroes and 50% ones. The maximum reachable
Cohen’s kappa value lowers with the difference between the distributions
of the predicted and actual target classes. Obtaining the maximum value
means correctly predicting all samples in either class, i.e. the number of false
negatives or false positives in the confusion matrix being zero. [Bla08] It can
be computed as:

κmax = pmax − pe

1− pe
(2.13)
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where

pmax = min(ptarget=1, ppredicted=1) +min(ptarget=0, ppredicted=0) (2.14)
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Chapter 3

Frequent Itemsets

3.1 Basic Notions

Frequent itemset mining is one of well known and used data mining techniques.
The task of finding frequent patterns has grown in popularity likely due to
an article by Agrawal et al. [AIS93] published in 1993. They introduced the
task in association with a problem known as basket case analysis - finding out
which products customers frequently buy together. They followed up in 1994
with an article introducing fast algorithms for solving the problem [AS+94].
According to Google Scholar, those two articles have been cited over 50 000
times. Nonetheless the cornerstone of what’s nowadays called “association
rules” was proposed as early as in 1966 in an article by Petr Hájek et al.
[HHC66]. The first applications of the presented GUHA method were mainly
in the field of physiology.

The knowledge obtained can be used for example to increase sales by
putting the items frequently bought together next to each other on the shelf,
creating a bargain, marketing the items in a campaign or putting a section
“people who bought this also bought that” section on your e-shop.

It can be formally defined as: a set B = i1, ..., in of items, called the
item base, and a database T = (t1, ..., tm) of transactions. The items may
represent for example products offered by a shop or in our case the topics
people mention when giving information about the biggest problems in their
workplace. The transactions represent sets of items people bought together or
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3. Frequent Itemsets...................................
topics an individual employee mentions together. The itembase can be given
explicitly, but it is usually done implicitly as the union of all transactions,
that is, B = ∪k ∈ 1, ...,mtk.

3.1.1 The Support of an Itemset

The support of an itemset represents the number of transactions it is contained
in, mathematically speaking: Consider the cover KT (I) = {k ∈ {1, ...,m}|I ⊆
tk} of an item set I. The support sT (I) is then sT (I) = |KT (I)|. An itemset
is called frequent iff sT (I) ≥ smin, where smin ∈ {N} is given by the user. It
is also possible to define a frequent itemset based on its relative frequency in
the database T as σT (I) = sT (I)/m which is compared against a user given
σmin ∈ (0, 1)

3.1.2 Search Space

Generating all itemsets in the power set 2B, computing support, and filtering
out the non-frequent itemsets can be quite challenging, especially with a
larger itembase. Luckily there are some facts that allow us to better manage
the computational complexity.

The item set support is antimonotone. Meaning that adding an item to
an itemset cannot increase its support. Mathematically said: ∀I ⊆ J ⊆ B :
sT (I) ≥ sT (J) This property is the foundation for the Apriori property: no
superset of an infrequent itemset can be frequent ∀I ⊆ J ⊆ B : sT (I) <
smin ⇒ sT (J) < smin

Thanks to this the subset relationships between itemsets form a partial
order on 2B, which can be represented by a Hasse diagram. [Bor12]
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.................................... 3.1. Basic Notions

Figure 3.1: Hasse diagram for the partial order induced by ⊆ on 2{a,b,c,d,e}

When searching through the space from the top down some sets are created
duplicity by adding the items in a different order. This can be eliminated
by transforming the Hasse diagram to a tree by assigning a unique parent to
each itemset, see Fig. 3.2. As the sibling sets only differ in the last item it is
common practice to merge them into one node as shown in Fig. 3.3. [Bor12]

Figure 3.2: Tree that results from assigning a unique parent to each itemset.
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3. Frequent Itemsets...................................

Figure 3.3: A prefix tree in which the sibling nodes with the same prefix are
merged.

3.2 Statistically Sound Pattern Discovery

Exploring large search spaces and looking for itemsets that fulfill user-given
constraints is extremely prone to type-1 error, that is, finding itemsets that
are frequent (satisfy user-given constraints), but appear due to chance alone.
[Web07] In statistics, there are two approaches for significance testing -
analytical expressions or randomization tests. Gionis et al. focus on the
latter approach and uses swap randomization in his work [GMMT07]. Webb
proposes two ways of applying statistical tests to pattern discovery to set
an upper limit on the risk of experimentwise error [Web07]. The first one
divides the significance level α by the number of patterns (itemsets) in the
search space in order to obtain the critical value κ (a Bonferroni correction for
multiple tests ([Sha95])). The second one splits the dataset into exploratory
and holdout sets (or train and test sets). It is then very similar to machine
learning processes, the exploratory data are used for itemset mining (in ML
this is training the model) which are then assessed by the holdout data (in ML
evaluating the trained model on test data). More on the holdout approach
[Web06]. Another method for distinguishing statistically significant patterns
was developed by [KMP+12]. They offer a method for finding support s∗ such
that any itemset with support at least s∗ represents a substantial deviation
from itemsets in a random dataset with the same number of transactions and
same item frequencies. Lastly, we would like to mention [HW19] and [SBM98]
who consider statistically dependent patterns in their papers. Dependence
being defined as the absence of independence.
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.......................... 3.2. Statistically Sound Pattern Discovery

3.2.1 The Chi-squared Test for Independence

Silverstein et al. propose measuring the significance of dependence via the
chi-squared test for independence [SBM98]. In the supermarket settings
they define R = {i1, i1} × · · · × {in, in} as all possible combinations (event
sets) of presence or absence of items in a basket. Each r = r1 · · · rk ∈ R
represents a basket value. When viewing R as a k-dimensional table, called a
contingency table, each r also denotes a cell in this table. They then define
O(r) as the number of baskets in cell r. O(r) has to significantly deviate from
expected value in order for a cell r to be considered dependent. For single
event Silverstein et al. use maximum likelihood estimators E(ij) = On(ij)
and E(ij) = n−On(ij). Assuming independence the expected count for sets
of events is calculated as E(r) = n × E(r1)/n × · · · × E(rk)/n. They then
define chi-squared statistic as:

χ2 =
∑
r∈R

(O(r)− E(r))2

E(r) (3.1)

Finding out whether the k-items are k-way independent can be done
by calculating the chi-squared statistics and obtaining p value which is
corresponding to the statistics and a degrees of freedom count (always 1, for
boolean variables). P value gives us the probability of observing the baskets
if the variables were independent. If the probability is very small (usually
between 0.05 and 0.0005) we reject the hypothesis that the variables are
independent and say that the itemset is dependent at significance level α for
p ≤ 1− α.

For p value equal to 0.05 and one degree of freedom the χ2 cutoff value is
3.84. Hence any itemset with χ2 ≥ 3.84 is significant at the 95% confidence
level.

Not all cells contribute to the dependence equally, so in order to give a
more precise characterization of the dependence Silverstein et al. suggest
the interest of a cell I(r) = O(r)/E(r). The paper then shows that the cell
with the highest interest (must be bigger than 1) is, in some sense, the most
dependent cell in the contingency table. Interests below 1 indicate negative
dependence. Note that the absolute value is meaningless as well as trying
to compare interests from different contingency tables. Nonetheless if for
example the two highest values were very close to each other, we could say
that the corresponding cells have almost the same dependence.
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3. Frequent Itemsets...................................
3.3 Methods for Frequent Itemset Mining

Among the most common methods are Apriori algorithm ([AS+94], [AMS+96])
(deriving its name from Apriori property), using breadth first search to traverse
its nodes in combination with a priori and a posteriori pruning, Eclat (alt.
ECLAT, stands for Equivalence Class Transformation) ([ST04]), FP-Growth
(Frequent Pattern Growth, [HPY00]) and LCM (Linear time Closed item
set Miner) ([UAUA03], [UKA+04], [UKA05]) which all use depth first search
with some form of divide-and-conquer strategy.

The fastest frequent itemset mining algorithms are currently the Eclat-
variant LCM and FP-Growth [Bor12]. However, the challenge in this topic
does not seem to be the speed, but rather filtering the produced frequent
itemsets and discovering relevant patterns among them.

3.4 Closed, Maximal and K-Itemsets

In the problem of frequent itemset mining the number of itemsets can be
enormously huge (depending on the chosen support) and thus some sets with
restrictions were introduced. An itemset I is closed (frequent) if none of its
immediate supersets have the same support count as I. This can be formally
written as a frequent itemset I is called closed iff ∀J ⊃ I : sT (J) < sT (I).
An itemset I is maximal (frequent) if none of its supersets are frequent.
This can be formally written as a frequent itemset I is called maximal iff
∀J ⊃ I : sT (J) < smin. Itemset I which contains K items is called a
K-itemset. K-itemset is frequent if K ≤ minimum support count. [Bor12]

3.5 Association Rules

After obtaining frequent itemsets, so-called association rules [AIS93] can
be generated. A frequent itemset is split into two disjoint subsets - one of
them is used as the antecedent (X) and the other as the consequent (Y ) of
the rule. The confidence for a rule X → Y is computed as cT (X → Y ) =
sT (X ∪Y )/sT (X), sT being support in the transaction database T . Similarly
to finding frequent itemsets the confidences of individual association rules
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...................................3.5. Association Rules

are compared against a user-specified minimum confidence cmin and only the
ones with cT ≥ cmin are returned.
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Part II

Practical Part
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Chapter 4

System Design/Architecture

As specified by the assignment we had three main objectives:..1. Convert the text data from all the sources into a suitable format for the
following NLP and frequent itemset mining...2. Implement a multi-label classifier using a RandomForestClassifier. Train,
evaluate annotated dataset and choose suitable metric...3. Find frequent itemsets in the dataset now represented as a set of sets of
classes. Discuss gained insights and compare the frequent itemsets from
different settings.

Analyzing those objectives resulted in the definition of features we would like
to have in our solution:..1. Find ways to reasonably combine data from different sources (D1-likert

answers; D2-answers to open-ended questions; D3-“Partial”/contextual
answers; and D4-“spontaneous feedback”)..2. Automatic annotation (pipeline) for new data...3. Select a suitable metric for measuring the performance of the classifier...4. Find a way to compare a single company to the market average...5. Identify the most important problems within a single company and the
demographic groups it troubles.
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4. System Design/Architecture ................................6. Examine whether the frequent itemsets found on manually annotated
data differ from the ones found on data classified by the classifier...7. Come up with functions for advanced filtering of frequent itemsets...8. Check the statistical significance of found frequent itemsets.

After examining the acquired data several questions arose and some decisions
had to be made...1. Every text record in the file could be treated separately or we could join

all texts from one user. Although the classifier implementation would
not be affected by either one, we decided on the latter format as the
users often mentioned the same thing in multiple text answers and the
former approach would ruin the insights gained from frequent itemsets...2. When including the answers to follow-up questions we noticed that some
of them do not involve any keywords that could be used in classification,
so we came up with “artificial sentences” (explained in section 5.2.3)
constructed from those answers...3. The choice of programming language - Python - was quite straightforward.
It is popular and we managed to find libraries implementing all the diverse
tasks we were planning on doing - working with csv files, implementing
a random forest classifier and mining frequent itemsets...4. The data types used for storing the processed data were to a great extent
given by functions of the libraries we chose.

All codes and sample data files can be found in this GitHub repository
https://github.com/crimsoncress/bachelor_thesis.

Figure 4.1: An overview of workflow in Practical Part, which is separated into
5 part.
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...............................4. System Design/Architecture

Each part of the flow of data in figure 4.1 is further in this chapter explained
in detail. Chapter 5 describes part 0.1 - process data, chapter 6 describes
part 0.2, chapter 7 matches 0.3, chapter 8 describe 0.4 and last part 0.5 is
explained in 9.
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Chapter 5

The Data

We were given access to data collected over the period of two years. They con-
sist of 3 csv files - button_answers.csv, bot_mentions.csv and demog_answers.csv.
First one involves answers to several types of questions - general ones about
the overall feeling from the company, 12 questions about satisfaction with
various aspects of workplace (temperature, air, acoustics, light, ergonomics,
culture, coffee and snacks, focus, cleanliness, design, relaxation, meetings),
follow-up questions for finding out why specific area is perceived so low
and two open-ended questions about biggest pain point, that should be
fixed as soon as possible and three wishes for users’ workspace. The file
bot_mentions.csv involves spontaneous messages from users, nearly all of
them turned out to be useless for the NLP since the users were mostly ex-
perimenting with the tool(chatbot) and exploring its functions. Last file
demog_answers.csv holds predefined answers to demographic questions. First
and second file have answers sometimes in english, sometimes in czech. Be-
low are provided previews of mentioned files, more can be found in GitHub
repository https://github.com/crimsoncress/bachelor_thesis
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5. The Data ......................................
id user question answer timestamp

14 user21

How likely are you to recom-
mend working in an office
like yours to a friend or col-
league?

5 1606204074

14 user21 Are you satisfied with the
tidiness? 8 1606204105

14 user21 How well are you able to fo-
cus at work? 2 1606204130

14 user21 How could we make it bet-
ter? Can’t focus much @ work 1606204156

14 user21

Do you feel like you have
enough opportunities to re-
store energy during your
workdays?

2 1606204199

14 user21 How could we make it bet-
ter?

There is no off zone. Too
small of an office. 1606204199

19 user7

What is the most important
problem in your workplace
that should be fixed right
now?

1. I have a lot of work at
the moment and I don’t
think anyone appreciates
it. For example, a bonus.,
2. According to the mea-
sures, we do not have
enough offices. People
have to move often.

1612792937

Table 5.1: An example of raw data from file button_answers.csv. The column
"id" identifies the company, "user" is a unique user identifier, "question" is either
a likert scale question or an open-ended one, followed by the answer to it in the
"answer" column, last column "timestamp" is the time of user’s response.

id user message timestamp
14 user22 I hate my chair 1606396158
14 user23 No 1611593222
19 user17 Thank youuuuu! 1613133206
14 user27 Hi bot, you there? 1613135745
14 user27 How are you? 1613135778

Table 5.2: An example of raw data from file bot_mentions.csv. The column
"id" identifies the company, "user" is a unique user identifier, "message" is a
spontaneous message from a user, last column "timestamp" is the time of user’s
response.
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.................................. 5.1. The Questionnaire

id user question answer timestamp
19 user1 What is your gender? female 1612793367
19 user1 How old are you? 2635 1612793371
19 user1 Do you work in an office or at home? office 1612793376
14 user1 What is your gender? male 1612794142
19 user2 How old are you? 3645 1612794145

Table 5.3: An example of raw data from file demog_answers.csv. The column
"id" identifies the company, "user" is a unique user identifier, "question" has
predefined options, last column "timestamp" is the time of user’s response.

5.1 The Questionnaire

The data we obtained and analysed, was collected using a questionnaire which
in total consisted of at least 16 questions (up to 28). From that at least 3
open-ended (up to 15) and the scale on the remaining being 1 - 10, 1 - Not at
all, 10 - Definitely. It could be divided into four logical parts (with meaning
provided below):..1. Initial questions - 1 likert scale, 1 open-ended..2. 12 topic questions - 12 likert scale, up to 12 open-ended..3. Biggest problem and three wishes - 2 open-ended..4. Demographic questions - 2 choose from predefined options

Initial question is the overall look at the company, employees’ feelings about
it and follow up with why. The 12 topics were chosen by domain experts as the
ones with the biggest influence on employee wellbeing (wellbeing being defined
as satisfaction and productivity). They include the following: temperature,
air, acoustics, light, ergonomics, culture, coffee and snacks, focus, cleanliness,
design, relaxation, meetings. If the users answer to topic question was 1 or 2
the respondent was given a follow up open-ended question “How could we
make it better?” The whole questionnaire is available as an Appendix B.
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5. The Data ......................................
5.2 Data Preprocessing

The challenge of compiling a user input is even greater when the input
contains natural language. In the following section we will provide methods
for preprocessing the existing textual data as well as an automatic pipeline
for new data.

5.2.1 Outline

After assessing all obtained data files and reviewing the requirements of our
solution we came up with this process for combining all the data from different
question types and transforming it into a dataset suitable for NLP classifier
as well as frequent itemset mining. The process can be divided into 4 parts:

. creating an empty dictionary for each user,

. filling the dictionary with processed data,

. labelling the text,

. saving the dictionaries incorporating all the data about a user,

that are explained in detail below.

5.2.2 User Structs (1)

For each user a blank struct is created, the struct is in a form of dictionary
in our solution.
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Figure 5.1: An illustration diagram of the first part of data processing - creating
blank dictionaries.

users = get_all_users(company7) (1.1)
user_data = {}
for u in users:

user_data[u] = {"text": "", "temp": 0, "air": 0, "acou": 0, ...,
"male": 0, "female": 0, "1825": 0, "2635": 0, ..., "company1": 0,
...,"company17": 1} (1.2)

5.2.3 Data Files Processing (2)

The files (2.0) are described in part The Data with examples.

Figure 5.2: An illustration diagram of the second part of data processing -
processing files and filling user dictionaries.
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5. The Data ......................................
First steps (2.1, 2.7) in button_answers and bot_mentions pipelines are

translations of czech answers to english. This was needed for unification of
language. Bot_mentions did not need any further processing and so the
answers were added to corresponding user (2.8):

for row in bot_mentions:
user = row[user]
user_data[user]["text"] += row[message]

Next part in the button_answers pipeline was matchmaking (2.2). Answers
to the follow up questions “How could we make it better?” were saved on a
different row in the csv than the question the follow up was related to. The
user saw the follow up in relation to some topic question and in order not to
lose the connection we matched the follow ups to questions they were related
to.

id user question answer timestamp

19 user10

Do you feel like you have
enough opportunities to re-
store energy during your
workdays?

2 1606204130

19 user10 How could we make it bet-
ter?

make transparent door
non-transparent and feel
OK to have power nap
without interruptions

1606204156

Table 5.4: Example of how the answers were stored before matching the answers
to follow-up questions to the topic questions.

id user question answer timestamp answer2

19 user10

Do you feel like you
have enough opportu-
nities to restore energy
during your workdays?

2 1606204130

make transparent
door non-transparent
and feel OK to have
power nap without
interruptions

Table 5.5: Example of how the answers were stored before matching the answers
to follow-up questions to the topic questions.

After matching there were only two types of rows in the button_answers
file that we were interested in. Either the question belonged to initial or topic
questions and the answer to it was negative (1 or 2) 5.5 or the question was
“What is the most important problem in your workplace that should be fixed
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right now?” or “If you could wish for three changes in your work environment,
what would they be?”. In the former case an “artificial sentence” was created
(2.4) using this equation - a random negative start of a sentence (chosen from
manually created list - sent_sentences.csv) + the topic of the question + the
answer to “How could we make it better?” question (which was after the
match making in the same row).

Example of an “artificial sentence” created from the merged answer in
5.5: “I don’t appreciate the relax zones, to improve: make transparent door
non-transparent and feel OK to have power nap without interruptions”

The sentence was added to the user text string (2.5), this is the same as in
2.8. On top of that the topic the user marked as unsatisfied with was marked
as one in his dictionary (2.6):

topic = get_question_topic(question)
user_data[user][topic] = 1

The latter case involved answers to open-ended questions Q1: “What is the
most important problem in your workplace that should be fixed right now?”
and Q2: “If you could wish for three changes in your work environment, what
would they be?”. Those answers were just added to the user text string like
in 2.5 or 2.8.

Not all users answered all the questions and not all answers were useful
(cca 2% were “I don’t know” or just left blank). Note to why only answers
from follow up questions with prior negative answers (1 and 2) were included:
As we did not look for sentiment in the sentences we could not ensure that
the topic in the sentence was mentioned in a positive way. Therefore we chose
only answers in which we believe the topic is associated with a problem or
a drawback (note that both the questions Q1, Q2 are meant in a “negative
sentiment” - asking what the problems are).

As demog_answers contained only answers that were retrieved form button
clicks, we found it to be easiest for processing.

gender_values = ["male", "female"]
age_values = ["1825", "2635", "3645", "4660", "60+"]
if answer in gender_values or age_values:

user_data[user][answer] = 1

37



5. The Data ......................................
5.2.4 User Text Labeling (3)

Figure 5.3: An illustration diagram of the third part of data processing -
labelling joined texts from one user. Considering we have a train set (3.0), we
can preprocess its texts (3.1), train the classifiers (3.2) and label (3.3) the user
string (3.0). We then (similarly to 2.6) mark the corresponding found labels in
user’s dictionary (3.4).

Processing the files left us with strings containing answers to various questions.
At this point we will employ the classifiers. This process is explained in figure
5.3. Considering we have a train set (3.0), we can preprocess its texts (3.1),
train the classifiers (3.2) and label (3.3) the user string (3.0). We then
(similarly to 2.6) mark the corresponding found labels in user’s dictionary
(3.4).

5.2.5 User Data Saving (4)

Figure 5.4: An illustration diagram of the fourth part of data processing - saving
the dictionaries and creating employable dataset.
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.................................. 5.2. Data Preprocessing

At this point the structs are filled with all the data we know about a user.
We simply add them to a file containing the rest of our user data (4.1).

user_dataframes = []
for u in users:

df = pd.DataFrame(user_data[u])
user_dataframes.append(df)

with open(’data/MLdata-ClassData.csv’, ’a’) as f:
user_dataframes.to_csv(f, header=False, index=False,
quoting=csv.QUOTE_NONNUMERIC, quotechar=’"’)

Below are some samples from the processed data, more can be found in
GitHub repository https://github.com/crimsoncress/bachelor_thesis.

text temp · · · male female 1825 · · · c_1 · · ·
The minimum amount of
natural light. No possibil-
ity for ventilation and fresh
air. Non-adjustable tables,
chairs non-ergonomic. Mini-
mum greenery.

0 · · · 0 1 0 · · · 0 · · ·

I don’t appreciate the
relax zones, to improve:
make transparent door non-
transparent and feel OK
to have power nap without
interruptions. Some space
to move. Clean desk

0 · · · 1 0 1 · · · 0 · · ·

Table 5.6: An example of raw data from file demog_answers.csv. (c_1 =
company1)
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Chapter 6

Implementation of NLP Classifier

After reviewing approaches for tackling the Multi-Label classification problem
we decided to implement binary relevance as there might be (class) dependency
in our data, but we do not know for sure and do not want the classifier to
take it into account. Random Forest (RF) has been suggested as a baseline
classifier - likely for its balance between accuracy and moderate requirements
for implementation, and its interpretability. Figure 6.1 shows steps for
implementing the RF classifier that are further described in following parts:..1. Splitting the dataset into stratified train and test sets..2. Extracting the features by vectorizing the data..3. Training the classifiers using the extracted features..4. Labelling new data

Figure 6.1: An illustration diagram of the implementation of NLP classifier.
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6. Implementation of NLP Classifier ............................
6.1 Splitting the Data into Stratified Train and
Test Sets (5.1)

Splitting the data is usually the first step of almost every supervised learning
method. The usual ratio is 70/30 or 80/20 for train/test. In cases where we
don’t have large datasets 98/2 is commonly used. Our dataset has numerous
labels and each label has different frequency (unbalanced labels) and appears
in different texts. Therefore for each of those labels it is needed to stratify
the split of the data accordingly, that is, in a way that both train and test
sets contain approximately the same percentage of samples of each target
class. Below is outlined the train-test split for each label and how the data is
stored as a dictionary. “Topics” is an array of all topics (temperature, air...)
and “i” is the number of column corresponding to the label. We arranged
that the array of labels is ordered by the column headers in the dataframe.

df = pd.read_csv(“data/MLdata-PeopleData.csv”)

for topic, i in zip(topics, range(1, len(topics)+1)):
train, test = train_test_split(df, train_size=0.8, shuffle=True,
stratify=df[topic])
nlp[topic]["text"]["train"] = train.iloc[:, 0].values
nlp[topic]["text"]["test"] = test.iloc[:, 0].values
nlp[topic]["train"] = train.iloc[:, i].values
nlp[topic]["test"] = test.iloc[:, i].values

6.2 Vectorizing the Data (5.2)

As we chose one of the supervised learning methods some data preprocessing
and feature extraction is required. This is vital for the model’s ability to
learn and make correct predictions. In the field of NLP this includes pars-
ing/tokenization - splitting the document into sentences and words, removing
the uninformative words (stopwords) such as “I, are, a, the”; stemming -
cutting the prefixes and suffixes and lemmatization - mapping words like gone,
going, went onto one word - go. We can then adjust some more parameters
- maximum features extracted, number of words that pose as one feature,
minimum or maximum term/document frequency, etc. At the end of this
process, each raw text has its row in the dataset and the columns correspond
to words and their frequencies or some other kind of representation such as
TF/IDF (Term Frequency/Inverse Document Frequency, [SFW83]).
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........................... 6.3. Fitting/Training the Classifier (5.3)

For each label an individual matrix of TF-IDF features (X) is created, see
below.

Xs = {}

for topic in topics:
Xs[topic] = vectorizers[topic].fit_transform(nlp[topic]["text"]["train"])
.toarray()

6.3 Fitting/Training the Classifier (5.3)

We now possess an array of features for each of the labels (Xs[topic]) . We
will build trees for the forest and fit those features (training input samples)
to previously extracted labels of the train data.

for topic in topics:
nlp[topic]["classifier"] = RandomForestClassifier(n_estimators=200)
nlp[topic]["classifier"].fit(Xs[topic], nlp[topic]["train"])

6.4 Label New Data (5.4)

Successfully finishing part 5.3 we now have a set of trained classifiers for
each label ready to predict. A new string (text, document) is transformed
to a document-term matrix and then each classifier is employed to yield a
prediction, creating a binary array, where 1 indicates the corresponding label
is contained in the text.

predicted_labels = []
for topic in topics:

data = vectorizers[topic].transform([text]).toarray()
preds = nlp[topic]["classifier"].predict(data)
predicted_labels.append(preds[0])

return np.array(predicted_labels)
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Chapter 7

Model Evaluation

In chapter 5 (see 5.3) we use the classifiers to evaluate new user answers,
we want to know how much we can trust those predictions. This chapter is
dedicated to evaluating the model.

Figure 7.1: An illustration diagram of evaluation of NLP classifier.

Considering specifications of our task which are: NLP, labeling, unbalanced,
possibly mislabeled data, etc. we consider the following metrics: accuracy,
balanced average, logarithmic loss, macro F1, weighted F1 and kappa.

Fig. 7.2 shows how substantially some of the topics are unbalanced. This
is important for understanding why cross validation and stratification when
splitting the dataset into test and train (train and test sets contain the same
percentage of classes) was crucial.
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7. Model Evaluation...................................
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Figure 7.2: Percentage representation of each topic label.

accuracy balanced
accuracy log loss macro F1 weighted F1 kappa

temperature 0.932 0.930 2.342 0.931 0.932 0.862
air 0.933 0.933 2.305 0.932 0.933 0.865
acoustics 0.871 0.865 4.462 0.867 0.870 0.735
light 0.952 0.911 1.673 0.927 0.950 0.855
facilities 0.707 0.704 10.114 0.705 0.706 0.410
ergonomics 0.945 0.846 1.897 0.879 0.941 0.759
culture 0.936 0.499 2.193 0.484 0.907 0.002
coffee/snacks 0.940 0.569 2.082 0.604 0.918 0.226
focus 0.901 0.539 3.421 0.545 0.864 0.126
cleanliness 0.945 0.598 1.896 0.644 0.928 0.300
design 0.952 0.500 1.673 0.488 0.928 0.000
relaxation 0.948 0.547 1.785 0.565 0.928 0.149
meetings 0.936 0.743 2.194 0.786 0.929 0.575

Table 7.1: Results for all topics and the chosen metrics. The data was stratified
and the results are 5-fold cross validated.(part in 7.1) As suitable metrics for
our task are considered balanced accuracy and macro F1.
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................................... 7. Model Evaluation

As mentioned earlier some of the classes in our dataset are highly unbalanced
and so plain accuracy expectedly gave us a false sense of doing very well
even on those. Second one is balanced accuracy which - as the name suggests
- takes into account the a priori probabilities of each of the labels on the
classes. Balanced accuracies on balanced topics in the dataset were very
similar to results of previously mentioned accuracy. With differences as low
as 0.018. However, given a highly unbalanced topic for example culture
where the a priori probability is 0.063 balanced accuracy dropped significantly.
Specifically by 0.437 in the culture example.

One of the most unbalanced topics - culture will be a nice example again.
Macro F1 for culture is 0.685 while the weighted version gives us 0.938. The
huge difference between the two metrics reveals that our model performs
poorly only on the rarer class. Given that we know 1 is the rarer class it can
be concluded that the model does not recognize the topic culture in the text
very well.

Interpreting Cohen’s Kappa score is not straightforward at all given the
imbalance in our dataset. As mentioned in chapter 2.3.3 the first thing we
have to keep in mind is that the maximum value of kappa depends on the
difference between distribution of the predicted and actual target classes.
Secondly different papers define the fair performance of a classifier based on
the kappa value differently, see 7.2 below.

Landis and Koch Cicchetti and Sparrow Fleiss
<0.01 Poor Poor Poor
.00 - .20 Slight
.21 - .40 Fair
.41 - .60 Moderate Fair Fair to good
.61 - .75 Substantial Excellent
.76 - .80 Excellent
.81 - 1.00 Almost Perfect

Table 7.2: Results for all topics and the chosen metrics. The data was stratified
and the results are 5-fold cross validated.(part in 7.1)

While Cicchetti and Sparrow consider .61 excellent Landis and Koch moved
this boundary up to .81 and .61 consider only substantial.
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7. Model Evaluation...................................
7.1 Selected Metrics for Our Task

Our task deals with a quite delicate subject - employees’ wellbeing. Therefore
some problems might be only subtly indicated in text and hard for the
classifier to detect. We also do not want to replace HR as we believe only
people can truly understand other people and perceive this task as only an
enhancement of HR’s existing methods. Recognizing all this we are preferring
more false positives even at the cost of more true negatives ergo we prefer
the classifier falsely predicting that the text contains the topic.

That said, we consider balanced accuracy and macro F1 suitable metrics
for our task if using RandomForest Classifier (part 5.4 in 7.1). Both of them
give both classes the same weight unlike accuracy or weighted F1. They are
also easily interpretable in contrast with kappa where the upper limit can
vary. If using some form of neural network with the need for backpropagation,
logarithmic loss would probably be our metric of choice.
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Chapter 8

Frequent Itemset Mining Implementation

In the following chapter we will implement frequent itemset mining. As we
use a state of the art library for the task we need to ensure the data is in
required format - represented as sets of binary labels. We then compute
the itemsets, and discuss the meaning of the support and its interpretation.
We discuss the issue of comparing a single entity (a company) to the whole
dataset.

The illustration below shows the data flow from raw data to the found
itemsets.

Figure 8.1: An illustration diagram of mining frequent itemsets.
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8. Frequent Itemset Mining Implementation.........................
8.1 Used Functions and Libraries

In our solution, we implemented the frequent itemsets method with the help
of python library mlxtend. It offers Apriori frequent pattern mining algorithm
as well as FP-Growth frequent pattern mining algorithm. The difference
between those two is the speed. Note considering that our dataset is quite
small and our focus is on filtering and gaining insight, we do not aim for the
fastest algorithm, but one that is reasonably well implemented and easy to
use. FP-Growth does not require candidate generation. Instead it uses a
so-called FP-tree (frequent pattern tree) - a datastrucure without generating
the candidate sets explicitly, which makes it especially handy when dealing
with large datasets and not being patient. Lastly the library involves FP-Max
algorithm - a variant of FP-Growth, which focuses on obtaining maximal
itemsets.

8.2 Dataset Preparation

The first thing we needed to do was prepare our dataset. Functions imple-
menting the algorithm for frequent itemset mining that we chose require the
data to be in binary form. So when creating the dataset in part Data Prepro-
cessing we already knew the specifics and so the dictionary for user data was
equipped with variables that were not needed for classification, but only for
frequent itemset mining. Those were categorical variables that represented
information about the users: gender - male, female, age group - 18-25, 26-35,
36-45, 46-60, 60+ and company they are employed at - company1, company2,
. . . , company17. During the data preprocessing this categorical data was
one-hot encoded [CVK18], that is for every possible value/category of each
attribute, a separate column had to be made. The last part of transform-
ing the data into binary form (as required by functions from mlxtend) was
deleting the column with texts (part 6.1 in 8.1).

After meeting the demands of our chosen library, we required some more
conditions to be met:

. df["male"] + df["female"] == 1,. the sum of all age categories equals to one,. the sum of all company columns equals to one,
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.............................8.3. Mining Frequent Itemsets (7.2)

As a person cannot have two genders, belong to more than one age group or
work at two companies.

temperature air · · · male female 1825 · · · c_1 · · ·
0 0 · · · 0 1 0 · · · 0 · · ·
1 0 · · · 1 0 1 · · · 0 · · ·
0 0 · · · 0 1 0 · · · 1 · · ·
0 1 · · · 1 0 1 · · · 1 · · ·

Table 8.1: Head of data prepared for frequent itemset mining. (c_1 = company1)

8.3 Mining Frequent Itemsets (7.2)

Firstly we used the mlxtend.frequent_patterns.apriori() for computing
the a priori probabilities, one of the parameters is min_support which tells
us how many percent of data is following the rule. We set it as low as 0.001
as we can specify this number later on when we are filtering the frequent
itemsets.

frequent_itemsets = apriori(df, min_support=0.001)

The second part was counting the number of items in each item set and
saving this number for filtering.

frequent_itemsets[’length’] = frequent_itemsets[’itemsets’]
.apply(lambda x: len(x))

The last thing we would like to filter the itemsets by is if the itemset
contains a certain item, such as "male", "company17", or "air".

Using all of the options mentioned above we were able to create something
like querying the database. We can specify minimum support - how frequently
the items occur together in the database), length - how many items are there
in the itemset and lastly fname - an item of interest contained in the itemsets
(part 7.3 in 8.1).
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8. Frequent Itemset Mining Implementation.........................
frequent_itemsets[(frequent_itemsets[’support’] >= 0.02) &
(frequent_itemsets[’length’] > 1) &
(frequent_itemsets[’itemsets’].astype(str).str.contains(fname))]
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Chapter 9

Interpretation of Found Frequent Itemsets

In the previous chapter we have shown a method to obtain frequent itemsets
from the data. The following part focuses on interpretation of the sets, their
support, and independence of items. Such knowledge is used to analyse
significance of the found itemsets and help us interpret them in terms of real
life relevance, outcomes, etc. The relativity of support and significance of
found frequent itemsets will be discussed.

9.1 The Relativity of Support

The support of itemset from the whole dataset is proportional to the item
frequencies of all companies combined, so if a company has only 50 employ-
ees and the dataset contains over 900 entries, then the support of frequent
itemsets regarding the company can be quite small and therefore might
seem unimportant. If one is interested in only a specific company and
want the minimum support to be relative only to the company it is pos-
sible to pick only the rows from dataframe which belong to the company
df = df.loc[df["company17"] == 1] (part 7.2.1 in 8.1).

In our example we take two different dataframes:

//file with frequent itemsets dataset
df1 = pd.read_csv("data/PeopleData-notext.csv")
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9. Interpretation of Found Frequent Itemsets ........................
//choose only rows with messages from employees of company4
df2 = df1.loc[df[’company4’] == 1]

frequent_itemsets1 = apriori(df1, min_support=0.01)
frequent_itemsets2 = apriori(df2, min_support=0.01)

For the same "query request", where fname = ‘company4’:

frequent_itemsets[(frequent_itemsets[’support’] >= 0.02) &
(frequent_itemsets[’length’] > 1) &
(frequent_itemsets[’itemsets’].astype(str).str.contains(fname))]

We get exactly the same itemsets, but with different support. See below
first 10 items meeting our criteria, descending by support.

support1 support2 itemsets length
0.060703 0.575758 (26-35, company4) 2
0.059638 0.565657 (company4, male) 2
0.053248 0.505051 (air, company4) 2
0.050053 0.474747 (company4, acoustics) 2
0.048988 0.464646 (company4, light) 2
0.046858 0.444444 (facilities, company4) 2
0.045793 0.434343 (company4, female) 2
0.034079 0.323232 (26-35, company4, male) 3
0.031949 0.303030 (air, company4, light) 3
0.031949 0.303030 (air, 26-35, company4) 3

Table 9.1: Support 1 is support of the itemset in the whole dataset. Support 2
is support of the itemset in dataset of only company 4.

One can see that the itemsets are the same, but the support is different.
Meaning that this way we have the support relative only to company4 and
it is, therefore, higher and the frequency of the itemsets might be more
apprehensible.

Another way of achieving the support with respect only to one company
(or any other one item) (i.e. transforming the support values from the first
example to the second one) can be done by multiplying the support by the
apriori probability of company4 i.e. the percentage of rows (employees) w.r.t.
the whole dataset.
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.................... 9.2. Statistical Significance of Found Frequent Itemsets

9.2 Statistical Significance of Found Frequent
Itemsets

There is one more obvious question that begs for an answer. Considering the
whole dataset one might be tempted to say some unexpected correlations were
discovered. E.g. If we compare the support for itemsets (18-25, temperature)
and (25-36, temperature) the support is 0.066028 and 0.223642 respectively,
a huge difference - but only seemingly. It is important to remember that the
different age groups have different apriori probabilities in the dataset.

We offer two ways for avoiding spurious patterns. The basis of the first one
was mentioned in chapter The Relativity of Support. Below is an illustration
of how to treat the example situation in the first paragraph.

We have to first filter only the age groups by using df = df.loc[df[’18-25’]
== 1] or divide the support with apriori probability of the age group as men-
tioned above and work with those numbers.

Doing this it can be found that roughly 48% of employees aged 18-25 think
temperature is a problem at their workplace compared to employees aged
26-35 of which circa 46% considers temperature a problem. The difference is
actually marginal.

This method normalizes in some way the support values and allows us to
compare them, but discloses nothing regarding the statistical significance.
Therefore we present the second approach developed by [SBM98] and reviewed
in part Statistically Sound Pattern Discovery of this thesis.

female not female row sum
acoustics 192 210 402
not acoustics 274 263 537
col sum 466 473 939

Table 9.2: Contingency table for female and acoustics.

E(acoustics) = O(acoustics) = 402, E(female) = O(female) = 466
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9. Interpretation of Found Frequent Itemsets ........................
The chi-squared value is

(192− 402× 466/939)2

402× 466/939 + (210− 402× 473/939)2

402× 473/939 + (274− 537× 466/939)2

537× 466/939 +

(263− 537× 473/939)2

537× 473/939 = 0.282 + 0.278 + 0.211 + 0.208 = 0.979

(9.1)

As mentioned earlier the chi-squared cutoff value for p = 0.05 and η = 1 is
3.84 and because 0.979 is less we do not reject the independence hypothesis
at the 95% confidence level.

The statistical test tells us that the independence between those two
variables is very likely, while the support for this itemset is one of the highest
with 0.204(192/939).

company17 not company17 row sum
coffee and snacks 51 15 66
not coffee and snacks 304 569 873
col sum 355 584 939

Table 9.3: Contingency table for coffee and snacks and company17.

Let us show another example where the chi-squared value is 47.044 which is
more than 3.84 and therefore significant at the 95% significance level, whereas
the support of this itemset is 0.054(51/939.

company17 not company17
coffee and snacks 2.046 0.365
not coffee and snacks 0.921 1.046

Table 9.4: Interest of cells from 9.3.

The obviously standing out value in the up left cell shows significant
dependence between being dissatisfied with coffee and snacks and being an
employee of company 17.

There is also quite a large negative dependence between being dissatisfied
with coffee and snacks and not being an employee of company 17.
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........... 9.3. Frequent Itemsets in Annotated Data vs. Data Labeled by the Classifier

9.3 Frequent Itemsets in Annotated Data vs.
Data Labeled by the Classifier

Aim of this chapter is to evaluate whether using the developed classifier
somehow (negatively) affects the found frequent itemsets. To test this, we
develop and train a classifier, then create a “classifier’s dataset” by detecting
labels in our (text) dataset. As a comparative method (ground truth) we
use manually labeled sentences. We then find frequent itemsets on each of
these new datasets, and compare whether the found frequent itemsets could
be considered the same. When researching the most common problems of
employees of a new company the classifier will predict the topics with some
accuracy, but we do not know whether the accuracy will be high enough and
the frequent itemsets found on those data will be meaningful. Therefore we
concluded an experiment to find out whether using the classifiers predictions
would affect the frequent itemsets distinctly. We recreated the 5-fold cross
validation process. Trained the classifier using each of the train sets and
classified the test sets. We then found frequent itemsets with minimum
support = 0.2 on the original dataset (9.5) and on a dataset we created by
merging the test sets where the labels were as predicted by the classifier (9.6).

id support itemset
A 0.267306 (female, temperature)
B 0.244941 (female, air)
C 0.239617 (facilities, male)
D 0.238552 (air, temperature)
E 0.232162 (facilities, female)
F 0.230032 (facilities, 26-35)
G 0.223642 (temperature, 26-35)
H 0.223642 (male, acoustics)
I 0.219382 (air, 26-35)
J 0.218317 (temperature, company17)
K 0.209798 (facilities, company17)
L 0.204473 (female, acoustics)

Table 9.5: Frequent itemsets found on the original dataset.
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9. Interpretation of Found Frequent Itemsets ........................
id support itemset
A 0.268371 (female, temperature)
B 0.251331 (female, air)
D 0.250266 (air, temperature)
H 0.223642 (male, acoustics)
I 0.223642 (air, 26-35)
E 0.220447 (facilities, female)
C 0.219382 (facilities, male)
F 0.216187 (facilities, 26-35)
G 0.211928 (temperature, 26-35)
J 0.204473 (temperature, company17)

Table 9.6: Frequent itemsets found on the dataset where data was labeled by
the classifier.

Both sets contain almost exactly the same itemsets - the one with the
classified data misses K - (facilities, company17) and L - (woman, acoustics).
The support of itemset K is 0.187433 and of L it is 0.186368 in the dataset
with classifier predicted labels. The order of the itemsets (descending by
support) is shuffled, but the supports differ only marginally - maximum
absolute difference is 0.020235 and minimal is only 0.001065 (considering
only itemsets containing at least one topic item). The biggest differences in
support are between itemsets with facilities (remember, that the only itemset
missing also contains facilities). Classifier for the label facilities was one of
not so well performing (macro F1 = 0.705), so this is expected.

The performance of our set of classifiers was fairly solid on labels with
high frequency (temperature, air) and mediocre on labels with few samples
(design, culture). It was easier for itemsets containing items (topics/labels)
with high frequency to fulfill the user-specified minimum support and thus
those items naturally appear in more frequent itemsets. Taking those facts
we concluded that if the classifier is very likely to recognize the topics that
most frequently appear in the found frequent itemsets, then the ones found
on the classifier annotated data will not differ much from the ones mined
from the manually annotated data (ground truth). As our classifier does not
perform well regarding the non frequent labels (most misclassifications are
false negatives) we would recommend to lower the minimum support when
mining itemsets on classifier annotated data. In conclusion the found frequent
itemsets are similar using both methods for labelling, so we can assume it is
safe to use the automation (classifier) in the preprocessing pipeline.
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................... 9.4. Comparing a Single Company to the Whole Dataset

9.4 Comparing a Single Company to the Whole
Dataset

Comparing frequent itemsets from the whole dataset and from a single
company is hugely dependent on having a large enough dataset to derive
meaningful statistics. It is crucial that one company is not dominant in the
dataset, that is easily tested by the following check (in equation 9.2 s is
support):

∀company : swholedataset(itemset) ≈ sdataset−company(itemset) (9.2)

Note that comparing a company to the whole dataset is too general and
therefore can prove to be meaningless. We suggest comparing the company
to only a group of companies that are alike or might deal with similar issues
(e.g. due to the same office location). For example if our company’s industry
is IT and the dominant group are males aged 18-50 we would probably want
to compare with another IT company.

Below we provide examples of frequent itemsets found on company 15 in
comparison with frequent itemsets found on dataset without this company’s
data.

id support itemset
A 0.310345 (female, facilities)
B 0.275862 (female, temperature)
C 0.275862 (acoustics, male)
D 0.275862 (facilities, acoustics)
E 0.275862 (female, acoustics)
F 0.241379 (meetings, acoustics)
G 0.206897 (facilities, male)
H 0.206897 (air, facilities)
I 0.206897 (air, female)
J 0.206897 (meetings, facilities)
K 0.172414 (meetings, acoustics, male)
L 0.172414 (air, acoustics)
M 0.172414 (light, facilities)

Table 9.7: Frequent itemsets found on data from company 15.
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9. Interpretation of Found Frequent Itemsets ........................
id support itemset
B 0.267033 (female, temperature)
I 0.246154 (female, air)
G 0.240659 (facilities, male)
A 0.229670 (facilities, female)
C 0.221978 male, acoustics)
E 0.202198 (female, acoustics)
H 0.194505 (facilities, air)

0.190110 (facilities, temperature)
M 0.180220 (acoustics, air)
D 0.179121 (facilities, acoustics)

0.158242 (acoustics, temperature)

Table 9.8: Chosen frequent itemsets found on the dataset without company 15.

A lot of frequent itemsets can be found in both of those sets, some of them
have similar support (G, H, I, L, average difference is 0.023). While the rest
have bigger differences ranging from 0.053 to 0.096. Some of those differences
can be likely caused by the fact that some of those itemsets contain “female”
and the employees of company 15 are 69% females, while the whole dataset is
gender balanced. Whereas others like D - (facilities, acoustics) clearly show
that this itemset constitutes an above average problem in company 15.

Itemsets F, J, K and M do not have a counterpart, so we can assume that
they pose a truly significant problem for the company.

9.5 Frequent Itemsets Tracing to Real-Life
Problems

Trying to deduce what truly upsets people by considering one number is
meaningless. However, going through significant frequent itemsets can bring
an insight about what to focus on when reading the answers or discussing
improvements during a meeting. We propose a method for obtaining the
insights while minimizing the risk of accepting spurious patterns...1. Find frequent itemsets and order them by support...2. From top down check whether the items in itemsets are dependent, using

chi-squared test.
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..................... 9.5. Frequent Itemsets Tracing to Real-Life Problems..3. Check whether the itemset can make sense. (It is very unlikely that
snacks and light might be actually dependent.)..4. Filter out texts with labels corresponding to your itemset...5. Read some of them and try to determine what is the reason for the
dependency of those items or how could this be interpreted.

Below we provide possible interpretations of such itemsets after reading
some of the user texts with corresponding labels.

. (acoustics, focus). support: 0.067093. chi-squared value: 20.614. explanation: Loud and/or sudden noises often interrupt one’s deep
work, the noises can be door slamming, colleagues talking to each
other or on the phone etc.. samples:. Noise from others (no noise cancellation in headphones. Hearing

doors slam, colleagues talk etc.. There is always someone running, stomping.. Closed but small room for 11 people - everyone hears everything
and the noise can not be switched off.. (temperature, air). support: 0.238552. chi-squared value: 26.312. explanation: Stale and stuffy air is often associated with higher

temperatures, second common explanation is cold air from air
condition blowing too close to one’s working station.. samples:. Strange functioning air conditioning. My work place is cold

and still on me blowing cool air. Air circulation - sometimes stuffy, due to a late response of the
air temperature outside, that is too hot or cold. (facilities, temperature). support: 0.187433. chi-squared value: 7.437
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9. Interpretation of Found Frequent Itemsets ........................
. explanation: Unsatisfactory temperature is often associated with

not working air conditioning (or badly set) or the inability to open
windows (in new office buildings). samples:

. Better air quality (maybe change the windows so it’s possible
to open up a little and get fresh air?). inoperable air conditioning, heating. Bad air in the office - air conditioning is either cooling so that
everyone in office wears jackets, or is not working whole day

. (facilities, cleanliness)

. support: 0.043663. chi-squared value: 9.570. explanation: This itemset was very frequent in one company where
the users answers regarded the cleanliness of toilets, kitchen spaces,
and sometimes colleagues desks and the absence of soap.. samples:

. that they would fix the tap in the bathroom cause it is broke
for months and also they do not refill the soap. Ladies toilets in very poor conditions (in regards of cleanliness),
soap often not available.. proper cleaning, clean desk policy for shared seats

9.6 Possible Adjustments to the Topics

The topics/labels in our data are given by experts. We want to check that
the labels are optimal in a sense of (semantically) non-overlapping partitions.
The library mlxtend we chose for the implementation of mining frequent
itemsets offers in addition to apriori and fpgrowth functions a function for
computing maximal itemsets - fpmax(). Using the FP-Max function on our
dataset, sorting the results, picking nine with the highest support we obtain
following results:
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........................... 9.6. Possible Adjustments to the Topics

support itemset
0.0224 (focus, 26-35, male, acoustics)
0.0224 (46-60, male, acoustics)
0.0213 (female, company15)
0.0213 (company11, 26-35, male, facilities)
0.0213 (temperature, female, company17, air, 26-35, facilities)
0.0202 (male, facilities, meetings)
0.0202 (light, temperature, male, acoustics)
0.0202 (light, male, 36-45, acoustics)
0.0202 (air, male, 46-60)

Table 9.9: Results of maximal itemsets on the whole dataset, sorted descending
by support.

Based on the first row we suggest merging focus and acoustics into one
topic (e.g. deep work). This would make sense as the topic acoustics is
associated with noises that can disturb your flow. In contrast merging age
group - “46-60” and gender - “male” does not make sense as those are clearly
independent.
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Chapter 10

Conclusion

First, we developed a pipeline to automatically process the obtained data
and transform it into a format suitable for NLP. Contextual answers, posing
as the biggest challenge, were combined with topic questions and “artificially”
combined into one sentence with self-contained meaning.

Further on we trained an NLP classifier (RandomForest) that performs
the labeling task. We evaluated its performance using suitable metrics.
Comparison with the ground truth (manually annotated dataset) confirmed
that the results are indeed well sufficient for the use for frequent itemset
mining.

To perform the frequent itemset mining, the categorical data were one-hot
encoded as needed by the functions.

We suggested a way for modifying the support to be proportionate to only
one item and a way for determining the (in)dependence of items in frequent
itemset using the chi-squared test for independence.

Lastly, we offered an interpretation of some of the frequent itemsets in real
life by reading some of the users texts and suggested possible adjustment to
the topics - merging acoustics and focus.
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Appendix B

The Questionnaire..1. How likely are you to recommend working in an office like yours to a
friend or colleague?. 0 - 10 scale, 0 - Not at all, 10 - Definitely..2. And why?. open-ended..3. How well are you able to focus/concentrate at work?. 0 - 10 scale, 0 - Not at all, 10 - 100 %..4. How satisfied are you with the acoustic conditions at your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied..5. How satisfied are you with the temperature at your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied..6. How satisfied are you with the lighting conditions at your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied..7. How satisfied are you with the air quality at your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied..8. How satisfied are you with the design of your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied
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B. The Questionnaire ....................................9. How well are you sitting?. 0 - 10 scale, 0 - Terribly, 10 - Great...10. Are you satisfied with the tidiness?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied...11. Do you feel like you have enough opportunities to restore energy during
your workdays?. 0 - 10 scale, 0 - Not at all, 10 - Definitely...12. How satisfied are you with the coffee and snacks at your workplace?. 0 - 10 scale, 0 - Not at all, 10 - Very satisfied...13. Do you agree with the decisions this company makes?. 0 - 10 scale, 0 - Not at all, 10 - 100 %...14. Do you feel like the meetings you attend are valuable for the work you
are doing?. 0 - 10 scale, 0 - Not at all, 10 - Definitely...15. What is the most important problem in your workplace that should be
fixed right now?. open-ended...16. If you could wish for three changes in your work environment, what
would they be?. open-ended...17. Are you a male or a female?. options: male, female...18. How old are you?. options: 18-25, 26-35, 36-45, 45-60, 60+

Note: If the user’s answer to questions 3 - 14 had a low rating/negative
sentiment (value ≤ 2 on scale 1 - 10) , then the respondent was given a follow
up open-ended question “How could we make it better?”
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Appendix C

Examples of Most Common
Misclassifications

There are six kinds of mistakes our classifier makes. First one is not actually
the classifier’s error, but simply a human error - mislabeled data. Meaning
the person who labeled the data did not indicate that the text contains the
topic temperature, but it in fact does, and our classifier labeled the data
correctly and vice versa. Then there are cases in which the text was correctly
labeled as “contains the topic temperature”, but the classifier labeled it as
“does not contain the topic temperature” and vice versa. Next reason for
misclassification is losing the key words due to translation from colloquial
czech (e.g. “it is vydejcháno”, “I can work in separate místnůstkách”, “there
are still some drills, rambajs”). The last one is that identifying some topics
can be hard, because they do not have common key words (e.g. culture -
“nobody appreciates me”, “Anna is always annoying”,...).

Examples where a person mislabeled the text as “does not contain the
topic temperature”, while the classifier correctly labeled the text as “contains
the topic temperature”.

. text: Bc of air condition and impossibility to open windows. Open space
may be loud and air condition sometimes is too windy... Windy cold air
condition from the ceiling All tables to be adjustable, better air condition,
lemon for tea in the kitchen :). predicted: {temperature, air, acoustics, ergonomics, coffee_snacks}. ground truth: {air, acoustics, ergonomics, coffee_snacks}
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C. Examples of Most Common Misclassifications ......................
. text: Lack of light, bad air, a lot of people in small spaces (in the

afternoon, the air is stale quite unnatural temperature (cold in summer).
air (possibility of opening windows). predicted: {temperature, air, light, facilities}. ground truth: {air, light, facilities}. text: Noise, hot, stale air. Fresh air. predicted: {temperature, air, acoustics}. ground truth: {air, acoustics}

Examples where a person mislabeled the text as “contain the topic temper-
ature”, while the classifier correctly labeled the text as “does not contain the
topic temperature”.

. text: noisy areas, lots of noisy people around me, not respect others. predicted: {}. ground truth: {temperature, acoustics, culture}. text: A little too noisy. Unhealthy air conditioning, more quiet spaces,
standing tables. predicted: {air, acoustics}. ground truth: {temperature, air, acoustics, ergonomics}

Examples where a person correctly labeled the text as “contains the topic
temperature”, but the classifier mislabeled the text as “does not contain the
topic temperature”.

. text: Open spaces are often distracting. There are no places for napping.
Warmer mornings. predicted: {focus, relax}. ground truth: {temperature, focus, relax}. text: open space, beeping every time to go to the kitchen for a water, etc,
strong sun shining against the eyes, shades not helping, high temperatures
in the morning while sun is shining.... predicted: {light}
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....................... C. Examples of Most Common Misclassifications

. ground truth: {temperature, facilities}

Examples where a person correctly labeled the text as “does not contain
the topic temperature”, but the classifier mislabeled the text as “contains the
topic temperature”.

. text: air quality, to be able to ventilate (in winter) better air. predicted: {temperature, air}. ground truth: {air}. text: The working place is comfortable but there could be more options
to stretch out or warm up after a long sitting. predicted: {temperature}. ground truth: {relax}

77


	Introduction
	Theoretical Part
	Classifiers in Natural Language Processing (NLP)
	Multi-Label Classification
	Approaches for Solving Multi-Label Classification Problems

	Decision Trees
	Random Forest Classifier
	Neural-Backed Decision Trees (NBDT)

	Model Evaluation
	Cross Validation
	Confusion Matrix
	Metrics


	Frequent Itemsets
	Basic Notions
	The Support of an Itemset
	Search Space

	Statistically Sound Pattern Discovery
	The Chi-squared Test for Independence

	Methods for Frequent Itemset Mining
	Closed, Maximal and K-Itemsets
	Association Rules


	Practical Part
	System Design/Architecture
	The Data
	The Questionnaire
	Data Preprocessing
	Outline
	User Structs (1)
	Data Files Processing (2)
	User Text Labeling (3)
	User Data Saving (4)


	Implementation of NLP Classifier
	Splitting the Data into Stratified Train and Test Sets (5.1)
	Vectorizing the Data (5.2)
	Fitting/Training the Classifier (5.3)
	Label New Data (5.4)

	Model Evaluation
	Selected Metrics for Our Task

	Frequent Itemset Mining Implementation
	Used Functions and Libraries
	Dataset Preparation
	Mining Frequent Itemsets (7.2)

	Interpretation of Found Frequent Itemsets
	The Relativity of Support
	Statistical Significance of Found Frequent Itemsets
	Frequent Itemsets in Annotated Data vs. Data Labeled by the Classifier
	Comparing a Single Company to the Whole Dataset
	Frequent Itemsets Tracing to Real-Life Problems
	Possible Adjustments to the Topics

	Conclusion

	Appendices
	Bibliography
	The Questionnaire
	Examples of Most Common Misclassifications


