
Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s thesis

Trajectory Planning
for the 3D Dubins Vehicle
Jáchym Herynek

Supervisor: Ing. Petr Váňa

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483733Personal ID number:Herynek JáchymStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Trajectory Planning for the 3D Dubins Vehicle

Bachelor’s thesis title in Czech:

Plánování trajektorií pro 3D Dubinsovo vozidlo

Guidelines:
1. Familiarize yourself with the Markov-Dubins problem [1], its extension for multi-goal trajectory planning [2], and the
extension to 3D space with the pitch angle constraint [3].
2. Propose a method based on the non-linear optimization to find trajectories for the 3D Dubins vehicle.
3. Extend the proposed method for multi-goal trajectories in 3D, similarly as in [2] for the 2D Dubins vehicle.
4. Empirically evaluate the influence of the number of segments in the proposed discretization.
5. Empirically evaluate the developed approach's performance and compare the proposed approach with the available
solutions [3, 4].

Bibliography / sources:
[1] BEVILACQUA, P., et al. A novel formalisation of the Markov-Dubins problem. In: 2020 European Control Conference
(ECC). IEEE, 2020. p. 1987-1992.
[2] FREGO, Marco, et al. An Iterative Dynamic Programming Approach to the Multipoint Markov-Dubins Problem. IEEE
Robotics and Automation Letters, 2020, 5.2: 2483-2490.
[3] VÁŇA, Petr, et al. Minimal 3D Dubins path with bounded curvature and pitch angle. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020. p. 8497-8503.
[4] WANG, Yu, et al. Real-time dynamic Dubins-Helix method for 3-D trajectory smoothing. IEEE Transactions on Control
Systems Technology, 2014, 23.2: 730-736.

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Váňa, Department of Computer Science, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 27.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Petr Váňa

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration
I declare that the presented work was developed independently ant that I have listed all sources
of the information used within it in accordance with the methodical instructions for observing
the ethiclal principles in the preparation of university theses.

Prague, May 21, 2021

. .
Jáchym Herynek

i

Acknowledgement
I would like to thank my supervisor Ing. Petr Váňa, who provided advice and insight and
managed to guide me along the way even though we never even met in person. I would also
like to thank the friends I met at the school who helped me throughout the studies more than
they probably realize. The access to the computational infrastructure of the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics” is also gratefully
acknowledged.

ii

Abstrakt
V této práci navrhujeme novou metodu pro nalezenı́ co nejkratšı́ cesty ve 3D s omezeným
poloměrem zatáčenı́ a úhlem náklonu založenou na nelineárnı́m programovánı́. Metoda rozděluje
cestu na předem stanovený počet segmentů. Navržená formalizace umožňuje popis kruhových
oblouků i rovných segmentů pomocı́ stejných rovnic. Navržená optimalizačnı́ metoda dosahuje
zlepšenı́ i oproti nejlepšı́ dostupné heuristické metodě. Rozdı́l vůči dolnı́ mezi je zhruba o
25% nižšı́. Výpočetnı́ čas je závislý na počtu segmentů, pro 100 segmentů činı́ přibližně 1
sekundu. Použitý Ipopt solver konverguje výrazně rychleji pro nižšı́ počty segmentů, za cenu
horšı́ch výsledků. Navrhovaná formulace je dále rozšı́řena tak, aby pokryla variantu problému,
ve které je kromě vstupnı́ a výstupnı́ konfigurace zadána také množina bodů v prostoru, kterými
musı́ výsledná cesta procházet. Výsledky pro tuto variantu problému jsou srovnatelné s výsledky
vzorkovacı́ metody použité jako referenčnı́ řešenı́, ale navrhovaná optimalizace jich dosáhne v
podstatně kratšı́m čase.

Klı́čová slova: Dubinsova cesta, 3D Dubinsova cesta, Plánovánı́ trajektorie, Dubinsova cesta s
vı́ce cı́li

iii

Abstract
In this thesis, we propose a novel non-linear programming approach to the problem of finding
the shortest path in 3D space under the turning radius and pitch angle constraints. The path is
divided into a number of segments in 3D space. The proposed formalisation enables to encode
straight segments as well as circular arcs using the same equations. Even when initialized by the
best-known heuristic method, the optimization is able to reduce the lower bound margin by about
25%, with computational times around one second using 100 segments. The computational time
is greatly dependant on the selected segment count. The utilized Ipopt solver converges signifi-
cantly faster for lower segment counts, at the cost of worse solutions. The proposed formulation
is also extended to cover a variant of the problem, in which the path has to visit a number of lo-
cations in a given order. This extension achieves similar results as the sampling-based reference
solution with much shorter computational times.

Keywords: Dubins path, 3D Dubins path, Trajectory planning, Multi-goal Dubins path

iv

Contents

1 Introduction 1

2 Related Work 3
2.1 2D Dubins Path . 3
2.2 3D Dubins Path . 3
2.3 Multipoint 3D Dubins Path . 4
2.4 Non-Linear Programming . 5

3 Problem Statement 7
3.1 2D Dubins Path . 7
3.2 3D Dubins Path . 7
3.3 Multipoint 3D Dubins Path . 9

4 Proposed Method 11
4.1 Objective Approximation . 13
4.2 Choosing Initial Optimization Values . 13

4.2.1 Decoupled Path . 14
4.2.2 2D Dubins Path . 14
4.2.3 Other Options . 15

4.3 Multipoint 3D Extension . 15
4.3.1 Multipoint Initialization . 17

5 Results 19
5.1 Methodology of Generating Random Instances 19
5.2 Fail Rate . 20
5.3 Path Length Improvement . 22

5.3.1 Relative to the Point Distance . 22
5.3.2 Relative to the Height Difference . 23

5.4 Computational Time . 25
5.5 The Influence of the Segment Count . 25
5.6 Multipoint 3D Extension . 26
5.7 Discussion . 26

6 Conclusion 31

References 33

v

List of Figures
1 Exapmle of a result of the optimization . 1
2 Examples of 2D Dubins curves . 8
3 Multipoint curve example . 9
4 Segmentation example . 11
5 Multipoint example . 16
6 Sampling exapmle . 17
7 The fail rate of different initialization paths . 21
8 The fail rate of different segment counts . 21
9 Results, with respect to end point distance . 22
10 Results, with respect to height difference . 24
11 The computational times of the optimization . 25
13 Multipoint computational times . 28
14 The parameters of the multipoint variant . 28
15 Examples of the results with curvature plots . 29
16 The path length improvement with respect to the lower bound 30

vi

Chapter 1

Introduction

The goal of this thesis is to find the shortest path between two configurations in 3D space, under
the constraints of maximum turning radius and minimal and maximal pitch angle. The original two-
dimensional variant of this problem was first addressed by L. E. Dubins in [1] in 1957. Such a path is,
for example, the path of a simplified model of a car that can go only forward or the path of a train. The
three-dimensional variant of the problem could be used to describe the trajectory of a fixed-wing aerial
vehicle, such as an airplane or unmanned aerial vehicle (UAV). The work of L. E. Dubins addresses
the problem of finding the optimal path in a 2D plane. He proved that the optimal path consists of
three segments and has either the form CCC, or CSC, where C stands for a circular segment, and S
stands for a straight segment. Furthermore, the circular segments have curvature equal to the maximal
curvature.

The 3D variant (see Figure 1) of the problem has come into focus later for the purposes of trajec-
tory planning for unmanned aerial vehicles. Current heuristic methods can find feasible solutions, but
the solutions are not optimal. The currently best heuristic method (to the best of the authors’ knowl-
edge) is the decoupled approach [2]. This method solves the horizontal and the vertical parts of the
path separately and then joins the two results into one path.

X

0
5

10
15

20
25

30

Y

0

5

10

15

20

25

30

Z

5

10

15

20

25

30

35

Reference Solution

Optimization Result

Sampling

Figure 1: Example of a 3D Dubins path found by the proposed optimization (black curve) compared to
reference solution (Blue curve). The proposed method is able to generate curves closer to the curvature
limit.

In this work, we propose a novel non-linear programming (NLP) formulation of the problem,
which is utilized to improve existing solutions. The proposed formulation divides the path into a large
number of segments, where each of those segments is a circular arc in 3D space or a straight line. This

1

1. Introduction

formulation can approximate any feasible curve. The precision of the approximation depends on the
segment count. An example of a result of this optimization compared to a reference solution generated
by the decoupled approach is shown in Figure 1. A part of this work was already submitted to the
European Conference of Mobile Robots (ECMR 2021), and is currently awaiting a review [3]. The
proposed NLP-based optimization approach is also extendable to cover other variants of the problem.
One of those variants is presented in this work. In addition to the initial and final configurations, the
curve visits additional points in a given order.

The rest of the thesis is organized as follows. Existing methods for solving this problem are
presented and discussed in Chapter 2. The original 2D variant of the problem is presented. The 3D
variant is presented next. Chapter 2 also covers the extension of the problem to cover multiple points
and the heuristic methods used to solve this problem. Chapter 3 presents a formal formulation of
the problem for the 2D and 3D variant as well as the Multipoint extension. The proposed approach is
presented in Chapter 4, and a new formulation is introduced, and the formal optimization is built. Each
of the constraints of this optimization is discussed more in-depth, as well as the different initialization
methods. The formal optimization task is extended to cover the multipoint extension of the problem.
The results of this approach are shown and discussed in depth in Chapter 5. The improvement over the
reference solution is presented. Lastly, Chapter 6 offers a summary of the whole work and the results.

2

Chapter 2

Related Work

This chapter presents existing approaches to the Dubins path problem and its variants. The original
2D variant of the problem is presented first, followed by the extension of the problem to 3D and to
cover multiple points. A short description of the optimization method used in this work is presented
at the end of this chapter. The works within each section are presented in chronological order.

2.1 2D Dubins Path
The problem of finding the shortest path with a bounded curvature in a plane was first posed by Andrey
Markov at the end of the nineteenth century. The optimal solution of this problem was found in 1957
by L. E. Dubins [1]. He showed that for any input configurations, the optimal path consists of three
segments. Each of those segments is either a straight line or a circular arc. Moreover, the optimal path
can be only one of two types: CCC or CSC (C stands for curve segment, and S stands for a straight
segment). It was also shown that each of the curved segments has a turning radius equal to the minimal
turning radius. An alternative proof of this using optimal control theory was presented in [4]. Other
approaches to the solution of the problem were also explored. Notably, in [5], the path segments were
reformulated so that both the straight segments and the circular arcs could be represented using the
same formula, which enables the formulation of the problem as an optimization problem. Also in [5],
a transformation of the problem was presented, which shows the symmetries of the problem.

2.2 3D Dubins Path
The Markov-Dubins problem was considered in 3D as well. With only the curvature constraint, if
the two configurations are sufficiently far apart, the optimal curve has two curved segments at both
ends and a straight segment between them, similarly to the 2D variant. Unlike 2D, the two curves will
likely not be in the same plane. A geometric solution of this variant of the problem was presented
in [6] and [7].

An extension of the Dubins car to a Dubins airplane was presented in 2007 in [8]. A new constraint
for the pitch angle was introduced. This limits how steep climbs and dives a Dubins airplane can
perform, which is motivated by the limitations of real-world airplanes. This work also presents an
analysis of the problem. The individual input configurations are divided into three categories based
on the altitude difference, and each of the categories is considered separately. The three heuristics are
based on finding the necessary length of the path so that the pitch angle constraint is met and then
finding a feasible two-dimensional path of that length. Note that the pitch angle of the initial and final
configurations is not considered in [8] .

Later works on the subject of 3D Dubins path with the pitch angle constraint include the initial
and final pitch angle as part of the problem. In [6], a numeric solution to the problem is presented.
The authors claim to have found the optimal path. However, this claim is not supported by any proof.
Furthermore, the computational times are very high in comparison to the other methods.

A number of heuristic approaches to the 3D Dubins path problem were proposed. In [9], the path
was composed of three parts. The middle part is very similar to 2D Dubins curves (if the altitude
difference is not too great), while the other two parts coped with the pitch angle change. A common
method of dealing with significant altitude differences are helix curves [10], [9], [11], [8]. A helix

3

2.3 Multipoint 3D Dubins Path

curve is used in order to mitigate the height difference of the two points, and a simple 2D Dubins
curve can then be used for the rest of the path. In [12], a completely different approach was presented,
utilizing Bézier curves to find a feasible path.

One of the most recent heuristic methods is the decoupled approach [2]. Since this method is used
as a reference solution for testing the optimization presented here, it will be presented in more detail.
The general idea of this method is that the final path can be split into its vertical component and its
horizontal component, and those are computed separately. A 2D Dubins curve of the projection of
the input configurations into the xy plane is computed as the horizontal part. Its length is then used
as the x coordinate in the vertical part of the curve. The y coordinates of the two points are set to
the z coordinates of the points of the initial problem. If the pitch angle constraint is met, those two
paths joined together form the resulting 3D path. Otherwise, the turning radius of the horizontal path
is increased, which in turn increases its length and the distance of the two points in the vertical part of
the path. In [2], a lower and an upper bound for the 3D Dubins path are also presented. The results of
this method are very close to the optimum, as is shown by comparison with the proposed lower bound
and has low computational time. It capable of generating paths less than 1% from the lower bound
when the points are far apart or (in some cases) when the altitude difference is the limiting factor. The
main shortcoming of the decoupled approach is the curvature. The reason for this is that the curvature
in a given point depends on both the turning radius of the horizontal part and the turning radius of the
vertical part in that point. Those radii are selected and fixed for the whole curve and thus need to be
selected in a way that works even for the worst case. Therefore the curvature of the path is sub-optimal
and can be optimized.

2.3 Multipoint 3D Dubins Path
The multipoint variant of the problem can be seen as a sequence of 3D Dubins paths. Thus, the
challenge of finding the optimal heading and pitch angles for the inner points arises. Note that most
of the works and algorithms presented here are dealing with the 2D variant of this problem. Since
the optimal solution to the 2D Dubins path problem is known and is fast to compute, the Multipoint
2D problem can be reduced to finding the optimal heading angles for the inner points. Arguably, this
could also be said about the Multipoint 3D problem, but since there is no known optimal solution for
the 3D Dubins path problem, even if there was a method that could find the optimal heading and pitch
angles, it could not find the optimal path.

One of the first works addressing the problem of finding a Dubins path visiting additional locations
was [13]. It considers two variants of the problem: the more common variant where the sequence of
the points is known in advance, and an on-line variant, where only the directly next point is known. A
simple approximation of the optimal curve is presented together with a proof of its 5.03 approximation
factor.

Several other heuristics were presented in other publications. In the works [14] and [15], an
alternating algorithm is proposed. This algorithm selects the heading angles so that every even segment
is a straight line. A similar algorithm is the mean algorithm presented in [16]. The mean algorithm tries
to minimize the usage of CCC style Dubins curves. It does so by selecting the segments close enough
that a CCC style curve might be necessary and setting their heading angles so that they are straight.
The remaining angles are then estimated as the mean of the direction vectors from the previous point
and the direction to the next. The algorithm presented in [17] is similar to the mean algorithm. The
difference is that instead of using mean and setting the segments that are too short to straight lines, it
uses weighted mean. The weight used is based on the distance of the points and the turning radius.
In [18] and [19], two lower bounds based on relaxation of the restrictions are presented.

Another heuristic is the sampling-based method. In this method, some angles are sampled for
every point, and then for every pair of consecutive points, the length of the 2D Dubins path is com-

4

2.4 Non-Linear Programming

puted. The result is then constructed as the shortest possible method from those precalculated paths. A
variation of this approach utilizing dynamic programming is presented in [20]. This method has good
results and is quite fast in 2D. Another variation of this method is proposed in [21]. This algorithm
does not use uniform sampling but instead explores only areas which seem promising, based on the
lower bounds presented in [19] and [18]. This can greatly reduce the number of samples and thus the
computational time.

The mentioned algorithms were designed for 2D, but most of them could be extended to 3D as
well. In terms of time requirements, the methods based on selecting the heading angles, such as the
alternating algorithm or the mean algorithm, would not change at all. On the other hand, the sampling-
based methods would be slower because the pitch angle needs to be sampled in addition to the heading
angle. This increases the number of necessary samples and thus the computational times.

2.4 Non-Linear Programming
The goal of this work is to formulate the 3D Dubins path as a non-linear optimization problem. A
non-linear programming (NLP) problem is an optimization task of the variable x ∈ Rn where the
objective function f (x) ,Rn → R or some of the constraints g (x) are non-linear. The general form
of the problem could look like this:

Problem 1 (General NLP)
min
x∈Rn

f (x) (1)

s.t.

aL ≤ g (x) ≤ aU (2)

xL ≤ x ≤ xU , (3)

where x are the optimization variables, xL and xU are the lower bounds, and g (x) with the values
gU and gU are the constraints.

There exist several optimization solvers for solving NLP problems, such as Ipopt [22], Artelys
Knitro [23], NLopt [24], SCIP [25]. In this work, the Ipopt solver was used. This solver uses the
Interior point method to solve NLP problems. The general idea behind this method is to include
the constraints of the problem in the objective function using a barrier function. The value of this
function is infinity at the edge of the feasible region, and it is undefined outside of it. This results in
an auxiliary problem with optimum arbitrarily close (depending on the scaling of the barrier function)
to the original optimum. As this parameter approaches zero, the optimum of the auxiliary barrier
problem approaches the optimum of the original problem. The whole problem is then solved as a
sequence of auxiliary barrier problems with decreasing barrier parameters. Each of those problems is
initialized by the result of the previous one, which is (depending on the outer step size) very close to
the optimum, and thus converges quickly.

This method can be used to solve any problem in the same form as Problem 1 [22]: Any problem
defined this way can be reformulated using slack variables so that it has only equality constraints
and variables with only lower bounds equal to zero. This formulation can then be used in the barrier
function. This method was initially developed for convex linear problems. It is capable of solving
linear problems with thousands of variables and constraints. It was so successful that it was eventually
modified for non-linear and non-convex problems as well.

5

2.4 Non-Linear Programming

6

Chapter 3

Problem Statement

A Dubins path is the shortest path between two points with the initial and the final orientation of
the vehicle given, satisfying a set of constraints. This problem can be formulated in a 2D plane (as
solved by L. E. Dubins, [1]) or 3D space, e.g. [10]. While the formulations are similar, the difference
is not only the space dimensionality. Both 2D and 3D formulations impose a curvature constraint. In
addition, the formulation in 3D then poses the pitch angle constraint.

3.1 2D Dubins Path
The 2D Dubins path is an optimal path between two configurations in a plane, with given maximal
curvature. The configuration q of the vehicle is expressed using the x and y coordinates and the
heading angle φ, i.e., q = [x, y, φ]. The configuration space is C2D = R2 × S with two coordinates
and an angle. Let qI, qF ∈ C2D be the initial and the final configuration. A Dubins path in 2D is a
path between configurations qI and qF, such that the curvature of the curve is smaller than or equal to
a given maximal curvature κmax at every point on the path. The motion of the Dubins vehicle along a
Dubins path with a given constant forward speed v can be expressed using the following equations

q̇ =

ẋẏ
φ̇

 = v

cos (φ)sin (φ)
u1

, (4)

for control input u1 limited by the maximal curvature κmax

|u1| ≤ κmax. (5)

The goal is to find a path γ(l) : [0, λ] → C2D, where λ is the minimized length of the path for the
given speed v. The whole problem can then be formulated as follows:

Problem 2 (Dubins Path 2D)
min
γ
λ (6)

subject to:

γ (0) = qI (7)

γ (λ) = qF (8)

Equations (4), (5) (9)

3.2 3D Dubins Path
The Dubins path in 3D is an extension of the Dubins path in 2D. All the constraints of the 2D Dubins
path still hold, and a new constraint is introduced. In 3D, the configuration is given by three coordi-
nates x, y and z, and two angles, heading angle φ, and pitch angle ψ: q = [x, y, z, φ, ψ] ∈ C3D. The
3D configuration space C3D = R3 × S2 consists of three coordinates, the heading angle and the pitch
angle. The heading angle is the angle in the xy plane, and the pitch angle is the vertical inclination of

7

3.2 3D Dubins Path

(a) An example of a CSC 2D Dubins curve (b) An example of a CCC 2D Dubins curve

Figure 2: Examples of Dubins curves. Curved segments are highlighted in red, straight segments in
blue. The values wI and wF are the initial and final heading angles.

the vehicle. Similarly to 2D, a 3D Dubins curve is a curve from an initial configuration to a final con-
figuration, which satisfies the same curvature constraint as a 2D Dubins curve. However, an additional
constraint is introduced in the pitch angle constraint

ψk ∈ [ψmin, ψmax]. (10)

The pitch angle constraint limits the dive/climb of the vehicle. As in 2D, we can express the
motion of the vehicle given a constant forward speed v

q̇ =

ẋ
ẏ
ż

φ̇

ψ̇

 = v

cos (φ) cos (ψ)
sin (φ) cos (ψ)

sin (ψ)
u1
u2

 , (11)

for some control inputs u1 and u2 and a constant forward speed v. The two control inputs need to
meet the curvature limit √

u21 cos
4 (ψ) + u22 ≤ κmax. (12)

Notice that the equations for x and y coordinate derivatives are very similar to the equations in 2D.
The only difference is the dive/climb correction. If vertical movement is forbidden, the equations (11)
and (12) are reduced to their two-dimensional equivalents, equations (4) and (5).

The resulting path is a parametric curve γ(t) : [0, λ] → C3D. Again, a feasible path has to have
continuous first derivatives and satisfy both the turning radius constraint and the pitch angle constraint.
The Dubins path is the shortest feasible path between the two input configurations. The problem can
be formulated as an optimization problem, similarly to 2D:

Problem 3 (Dubins Path 3D)
min
γ
λ (13)

subject to:

γ (0) = qI (14)

γ (λ) = qF (15)

Equations (10), (11), (12) (16)

8

3.3 Multipoint 3D Dubins Path

3.3 Multipoint 3D Dubins Path
The Dubins path problem can also be extended to visit some given number of points or locations along
the way. In this extension, the problem parameters are the initial and final configurations qI and qF,
and an ordered set of points P = (p1, . . . ,pn) ,p1, . . . ,pn ∈ R3 for some n ≥ 1 (for n = 0 the
problem would be reduced to the 3D Dubins path). The heading and pitch angles φ and ψ of the
points are not given. A simplified example of such a curve in 2D with one point visited is depicted in
Figure 3.

Figure 3: A simplified example of a 2D Multipoint curve, with one additional point visited. The initial
and final configurations qI and qF, and the visited point p1 are labeled.

All the Dubins 3D path constraints, the turning radius constraint, and the pitch angle constraint,
still apply. A feasible solution would then be a set of paths γi(l) : [0, λi] → C3D, such that all the
provided points were visited in the given order, and γi (λi) = γi+1 (0), the final configuration of one
path is the initial configuration of the next. For a path γi, the initial position γi (0)

xyz = pi and the
final position γi (λi)

xyz = pi+1. The notation axyz used here represents the x, z and z component
of the vector a. Additionally, for γ1 and γn+1 the heading angles φI and φF, and the pitch angles ψI
and ψF are also known: γ1 (0) = qI and γn+1 (λn+1) = qF. The goal is to minimize the total length:

Problem 4 (Multipoint Dubins 3D Path)

min
γi

n+1∑
i=1

λi (17)

Subject to:

γ1 (0) = qI (18)

γn+1 (λn+1) = qF (19)

γi (λi) = γi+1 (0) , i = 1, . . . , n (20)

γi (λi)
xyz = pi, i = 1, . . . , n (21)

Equations (10), (11), (12) (22)

This results in n + 1 paths. The initial configuration of each path is the final configuration of
the previous one, which means that the joined path is continuous and has continuous first derivatives.
Those paths together then form the desired multipoint Dubins path. Note that this formulation of the
problem assumes that the solution for the Problem 3 is known.

9

3.3 Multipoint 3D Dubins Path

10

Chapter 4

Proposed Method

In this chapter, we propose a novel approach to the 3D Dubins Path problem that determines the
problem as a Non-Linear Programming (NLP) optimization problem. For this, a new parametrization
of the path is necessary.

The proposed parametrization divides the curve into a number of segments. Each of those seg-
ments is a circular arc in 3D or a straight line. This means that the curvature parameters, the turning
radius, and the origin of the arc stay the same within each segment. A path is represented by a large
number of segments. Any path can be approximated using this parametrization. The precision of the
approximation increases with increasing segment counts.

Both curved and straight segments are well defined by their initial and final direction vectors wi
and wi+1, and the distance between their ends. However, instead of the distance, a distance multipli-
cator d is used. This multiplicator is defined so that

pF = pI +

(
wi +wi+1

2

)
di, (23)

where pF and pI are the initial and final points of the segment. Notice that for straight segments, the
multiplicators are equal to the length of the segment. Figure 4 offers a simplified example of a curve
split into segments.

qI

qF

w1

w2

w3

w4

w5w6

Figure 4: A simplified example of a curve between configurations qI and qF split into segments. The
direction vectors wi are shown in red. Green lines connect the ends of each segment to the origin of
the turn.

From those values, the initial and final direction vectors, and the distance multiplicator, the cur-
vature parameters of the segment can be determined. Within a segment, the path itself is then an
interpolation between the two vectors situated in space. For each segment, the final direction vector is
the initial direction vector of the next segment. This ensures that the curve is smooth.

The whole curve can then be defined as a sequence of such segments. This can in turn be repre-
sented as a sequence of distance multiplicators di ∈ R, di ≥ 0, i = 1, . . . , s and the direction unit
vectorswi ∈ R3, i = 1 . . . , s+ 1. Thus, the i-th segment is described by the vectorswi andwi+1

and the distance multiplicator di. Given the heading angle φi and the pitch angle ψi, the vector wi is

11

4. Proposed Method

computed as follows:

wi =

cos (ψi) cos (φi)cos (ψi) sin (φi)
sin (ψi)

 . (24)

The objective function is defined as the length of the path that is minimized as defined Problem (3)
The length of the segment is computed from the angle change α and the curvature κ:

Li =
αi
κi

(25)

The angle change αi in the segment can be computed from the dot product of the two vectors wi and
wi+1:

αi = arccos (wi ·wi+1) (26)

and from αi and the distance multiplicator d, the curvature is determined:

κi = 2
tan

(
αi
2

)
di

. (27)

The angle change α from equation (26) can be substituted into equation (27), and the result can be
transformed into

κi = 2

√
1−wi ·wi+1

di
√
1 +wi ·wi+1

. (28)

Combining equations (25), (26), and (28), the length of a segment can be computed using the following
formula:

Li =
di
2
arccos (wi ·wi+1)

√
1 +wi ·wi+1√
1−wi ·wi+1

, (29)

Notice, that the equations (25) and (29) are undefined for segments with κi = 0. In equation (25), no
curvature would lead to division by zero. In equation (29) no curvature would lead towi = wi+1 and
wi ·wi+1 = 1 which would again lead to division by zero.

Based on the equations describing the individual segments, the optimization formulation can be
constructed. In the following equations, the notation wx for the x coordinate of vector w has been
used. Similarly, for the y and z coordinate and the position part of a configuration q: qxyz . Based on
the previously derived equations, we can finally formulate the optimization as

Problem 5 (NLP Formulation for Dubins 3D Path)

min
s∑
i=1

Li, (30)

subject to:

‖wi‖ = 1, i = 1, . . . , s+ 1, (31)

1−wi ·wi+1 ≤
d2i
4
κ2max (1 +wi ·wi+1) , i = 1, . . . , s, (32)

wz
i ∈ [sin (ψmin) , sin (ψmax)], i = 1, . . . , s+ 1, (33)

qxyzI +
s∑
j=1

(
(wj +wj+1)

2
dj

)
= qxyzF , (34)

di−1
di

= ρi, i = 1, . . . , s− 1, (35)

w1 = winit, (36)

ws+1 = wfinal. (37)

12

4.1 Objective Approximation

The constraint (31) constrains all direction vectors to be unit vectors. This restriction does not
constraint the problem in any way, and it simplifies the other constraints. The turning radius constraint
(32) limits the curvature of the path so that it is less than κmax, the maximal curvature given as a
parameter. This constraint is derived from the equations (28). The equation was squared for conve-
nience, and both sides were multiplied by the denominator. The pitch angle constraint (33) ensures
that the pitch angle lies within the specified range, [ψmin, ψmax].

The end point of the path is constrained by the end configuration constraint (34). It constrains
the final point of the path constructed using the current values of the optimization variables. The
endpoint of each segment can be computed by multiplying the mean of the two vectors by the distance
multiplicator of the segment and adding that to the initial point (23). The endpoint of the whole curve
is then the sum of all the means multiplied by their respective multiplicators plus the initial point of
the curve qI.

The ratio constraints (35) ensure that the ratios between the distance multiplicators do not change.
The values ρi are selected upon initialization and stay constant throughout the optimization. They
represent the ratios between the individual multiplicators of the segments. This constraint ensures that
no segments collapse to zero length, which would effectively reduce the number of segments.

The initial and final vectors are compared to the input configurations using the initial vector con-
straint (36) and the final vector constraint (37). Those two constraints bind the vectors w1 and ws+1

to the initial and final vectors of the initial and final configurations wqI and wqF , computed using the
equation 24 from the input configurations qI and qF.

4.1 Objective Approximation
The actual lengths of the segments as formulated above in equation (29) are undefined for straight
segments and thus cannot be used in the code. One solution would be to use its Taylor series. However,
for sufficiently high segment counts, a simpler approximation is also accurate enough:

Li ≈ di. (38)

With this approximation, the objective function is a sum of the distance multiplicators, which are
directly used in the whole optimization. This makes it much simpler than the proper path length we are
trying to minimize. The curve and the approximation of the objective function get more precise with
increasing segment counts. With increasing segment counts, the angle change between consecutive
vectors gets smaller. This can be expressed using the following equation:

lim
s→∞

wi ·wi+1 = 1, (39)

We can substitute p = wi ·wi+1 into the equation (29). As p approaches 1, it can be shown that

Li ≈ lim
p→ 1

di
2
arccos (p)

√
1 + p√
1− p

= di. (40)

This means that in the limit, the multiplicators di approach the actual length of the segments. In-
tuitively, this makes sense. For a straight segment, the multiplicator is equal to its length. With
increasing segment count, the angle change within each segment approaches zero. Thus, its length
approaches the value of the multiplicator.

4.2 Choosing Initial Optimization Values
This problem is greatly dependent on the initial values provided to the optimization. Without any
initialization, the solver would very likely converge to either a sub-optimal solution or no solution at

13

4.2 Decoupled Path

all, and would need a lot of iterations to do so. This basically means that it is necessary to provide
a high-quality solution to initialize the optimization with. If the initial solution is close to a local
optimum, the optimization may converge to that point instead. Note that the initial solution does not
need to be a feasible path. If some of the constraints are violated, the optimization is still likely to
converge. An initialization with all the constraints violated might still converge but is much more
likely to fail than one that is close to feasible.

The values of variables di, i = 1 . . . , s, and wi, i = 1 . . . , s + 1 need to be initialized, and the
values of constants ρi (the ratios between the multiplicators of the segments) found (other constants are
computed from input configurations). Several options were tested: Initialization using the decoupled
approach path [2], 2D Dubins path, Circle arc with or without an additional turn (left or right), and
a straight line from the initial to the final point (without any consideration for the heading and pitch
angles).

To compute the segment values, both the initial and final points of the segment need to be known.
For this, s+1 equidistant configurations are sampled from the computed path. For each of those con-
figurations, the vectorswi are computed using the equations (24). Those vectors are then normalized,
and the variables wi are initialized with these values. From the positions of the points on the curve,
the values of the multiplicators di are approximated, using the following equation:

di ≈ 2
‖qxyzi − qxyzi+1‖√
wi ·wi+1

, (41)

where the notation ‖ · ‖ stands for Euclidean distance. From those multiplicators, the values of the
constants ρi =

di−1

di
are computed.

4.2.1 Decoupled Path

The decoupled approach path is already very close to a lower bound (both the lower bound and the
results are presented in [2]), and with computational times around 0.5 ms, it is fast to compute. This
means that the optimization will have a high-quality initial solution to start from and will very likely
finish after a small number of iterations and find the optimum.

From the results of the decoupled approach, the optimization variables are initialized as described
above. This results in an almost feasible initial configuration, which can then be optimized. The
infeasibility is caused by the fact that the optimization works with only circular arcs and straight lines.
While most of the found decoupled path will be representable this way, there is no guarantee that all
of it will. Because the configurations are sampled evenly, it is not possible to ensure that the sampled
segments have uniform curvature. Even though a 2D Dubins path can always be separated into a
number of segments, which have uniform curvature, the combination of two such paths generated by
the decoupled approach likely cannot.

4.2.2 2D Dubins Path

The initialization using the 2D Dubins path is very similar to the initialization using the decoupled
approach path, but instead of the decoupled path, the 2D Dubins path between the projection of the
configurations into the xy plane is used. The sampling from this path yields the values for the x and y
coordinates and part of the vector values (the heading angle is known, the pitch angle is missing). For
the z coordinate and the pitch angle, a linear interpolation is used. The z coordinate at each segment
end is computed as follows:

zi = (qzF − qzI)
i− 1

s
, i = 1 . . . s+ 1. (42)

14

4.2 Other Options

The z coordinate of the direction vectors is then set accordingly. This initialization is not feasible but
can work well for cases without too significant height differences, where the optimal path is likely
similar to the 2D Dubins path in that it has two circular arcs at the ends and a straight line in between.

4.2.3 Other Options
Other (even simpler) initialization options were also considered, namely using a simple arc, an arc
with a left or right turn added, and a straight line. The advantage of simpler initialization is that they
have lower computational times. However, it is unlikely that this would outweigh the increase in
computational time of the optimization itself (the results confirmed this assumption).

The idea behind the arc initialization is that it is a very simple initialization method, which can
still meet some of the constraints. The constructed path was an interpolation between the initial and
final direction vectors, completely disregarding the positions of the configurations. The i-th direction
vector is computed using the following equation:

wi =
(i− 1)

s
wI +

(s+ 1− i)
s

wF, i = 1, . . . , s+ 1. (43)

This is basically a weighted mean of the two vectors. It is also possible to compute the angle first
and then convert it to the vector. This has the advantage that adding (subtracting) 2π to (from) the
heading angle adds an additional turn (left or right) to the path. This meets the restriction that the final
direction vector has to be the same as the direction vector of the final configuration and, in many cases,
also the pitch angle and curvature constraints. The distance multiplicators were set to the Euclidean
distance between the two points multiplied by 3

2s (1s would be a straight line, the value 1.5 walks the
line between a straight line and curve). Since all the segments have the same lengths, the values of ρi
were all set to one.

Two more variants of this initialization option were also tested, with an additional left/right turn.
This can essentially force the optimization solver into a certain curvature direction or provide a helix
turn. This can be useful because the optimizer cannot break or construct a loop. The general idea was
that if the initialization contained an unnecessary loop, it would be countered by a loop in the other
direction.

The last tested initialization option was a straight line. This initialization was included mainly
for completeness, as it seems to be worse than any of the other options. The points were obtained
using interpolation between the two points without taking into consideration the angles or any of the
constraints.

4.3 Multipoint 3D Extension
The proposed method was also extended to cover the Problem (4). In this variant of the Dubins Path
problem, additional points need to be visited. An example of such a curve is presented in Figure 5
There are three big changes necessary to extend this formulation to cover the multipoint variant of
the problem. The first change is that the end configuration constraint (34) is rewritten to check that
all the necessary points are visited. The second change is that the ratio constraints (35) need to allow
the ratios to change between two neighboring parts. The third change is the initialization, the path
generated by the decoupled approach alone will no longer be usable as initialization.

For the purposes of this optimization, the path can be seen as several shorter paths with common
ending points. The sequence of the visited points is then pi, i = 0, . . . , n + 1 for n additional visited
points, where p0 = qxyzI and pn+1 = qxyzF . We also need to split the available segments between
those path parts. The values si i = 1, . . . , n represent the number of segments preceding the point
pi. This makes it possible to use the End configuration constraint (34) almost as it is, but use it for
every middle point as well. The new optimization problem looks like this:

15

4.3 Multipoint 3D Extension

X

0

10

20

30

40

Y

0

10

20

30

40

50

Z

0

10

20

30

40

50

Reference Solution

Optimization Result

Sampling

Points

Figure 5: An example of the multipoint problem, with n = 3 points. Blue path is the reference
solution, result of a sampling based method ran with 24 horizontal and 7 vertical samples; black line
is the result of the optimization ran with 80 segments, 20 between every two consecutive points.

Problem 6 (Multipoint Dubins 3D NLP Formulation)

min
s∑
i=1

Li, (44)

subject to:

‖wi‖ = 1, i = 1, . . . , s+ 1, (45)

1−wi ·wi+1 ≤
d2i
4
κ2max (1 +wi ·wi+1) , i = 1, . . . , s, (46)

wz
i ∈ [sin (ψmin) , sin (ψmax)], i = 1, . . . , s+ 1, (47)

pi +

si+1∑
j=si

(
(wj +wj+1)

2
dj

)
= pi+1, i = 0, . . . , n, (48)

dj−1
dj

= ρj , j = si, . . . , si+1 − 1, i = 1, . . . , n− 1, (49)

w1 = qwI , (50)

ws+1 = qwF . (51)

Only the two constraints changed: (48) and (49). The difference between (48) and the original (34)
is that the equality is between two neighboring points and not the initial and final points. Similarly,
within each separate path part, the ratios between the segment lengths stay the same, but the ratio of the
multiplicators between two segments adjacent to a point pi is not restricted. Note that this extension
of the optimization can still be used for the 3D Dubins path problem without any visited points.

16

4.3 Multipoint Initialization

4.3.1 Multipoint Initialization
The optimization is greatly dependant on the provided initial values. Therefore it is necessary to find
a suitable initialization path. The path used is a sampling-based method. This method uniformly
samples kh heading angles and kv pitch angles. Then, all the possible combinations of the angles
are computed, and the best is used. Figure 6 shows an example of such a path, with kh = 8 and
kv = 1. Note that the values of kh and kv sufficient for initialization of the optimization can be
significantly lower than might be otherwise used, even though better initialization obviously leads to
a better solution.

X

−10
0

10
20

30
40

Y

0

10

20

30

40

50

Z

0

10

20

30

40

50

Figure 6: An example of the sampling based method used as initialization and reference. The vales
used were kh = 8 and kv = 1. Each green ray corresponds to one sampled direction vector.

The optimization improves known solutions, which means that any other method could be used
as initialization. However, for the multipoint variant of the problem, the computational time of the
initialization path is usually not negligible. On the other hand, if a fast method is found, it could
be used as initialization for the optimization in place of the sampling-based method and improve the
results.

17

4.3 Multipoint Initialization

18

Chapter 5

Results

The proposed NLP-based method has been empirically evaluated, and the results are presented in
this chapter. The dependences of the fail rate are further examined in Section 5.2. The results of the
experiments are presented and compared with the reference solution with respect to different factors.
The properties of the optimization are discussed in-depth, together with the computational times.

The optimization was implemented in the julia programming language [26] using the Ipopt op-
timization solver [22]. All the results were computed using a single core of the Intel Xeon Scalable
Gold 6146 processor. The results are considered with respect to a reference solution, the decoupled ap-
proach [2], and the lower bound proposed in [2]. This heuristic was selected as the reference solution
because it is currently the best-known method (to the best of the authors’ knowledge). The real-time
dynamic Dubins-Helix (RDDH) [10] method was considered as well, but the evaluation in [2] shows
that the decoupled approach offers better solutions in most cases. Furthermore, the source code of the
RDDH method is not available, which means that the results could be compared on only a handful of
instances.

5.1 Methodology of Generating Random Instances
The proposed method was empirically evaluated on 1250 randomly generated instances. Every in-
stance is determined by its initial and final configurations qI and qF . For every pair of configura-
tions, their positions on the xy plane were fixed at a selected value, while the z coordinate of the
final configuration was generated with a slight variation. Heading angle φ and pitch angle ψ were
generated randomly with uniform distribution within their respective restrictions, φ ∈ [0, 2π] and
ψ ∈ [−ψmin, ψmax].

For the generation of an instance, two input values were used: the end point distance E and
the altitude difference multiplicator Z. From those two values the instance was generated: qI =
[0, 0, 0, φI, ψI] and qF = [xF, 0, zF, φF, ψF]. The distance between the two points on the xy plane is
given in multiples of the turning radius: xF = 1

κmax
E. The height was given in multiples of the height

achievable by a straight line between the two points:

zmax = tan (ψmax) ‖qxyI − qxyF ‖Z. (52)

A slight variation was then added to this value: zf ∈ [0.9zmax, 1.1zmax]. The reason for this is that
the level of limitation the pitch angle constraint poses is still subject to randomness due to the random
generation of the two angles. This means that there is no value in having the same values of zf for
every instance, unlike the xy distance, which is always limiting. Adding slight variation provides a
slightly wider range of possible instances while keeping the same properties.

Any instance generated this way can be characterized using the two values: the end point distance
E and the height difference Z. For the experiments presented here, the values for E and Z were
chosen from predetermined sets: E ∈ [0.5, 1, 1.5, 2, 3, 5, 7, 10, 15, 20] and Z ∈ [0.5, 1, 2, 3, 5]. For
every combination of the two values, 25 instances were generated, resulting in 1250 instances total.
The values were chosen to cover as many cases as possible and provide data for illustration of the
properties of the optimization. The range for the values of Z was chosen smaller because its influence
is to an extent binary: either the pitch angle constraint is limiting, or it is not.

This way of generating the instances was selected because it allows splitting the results by one of
the two properties. It allows for selection of all the results with end point distance equal to one and

19

5.2 Fail Rate

have different height differences and vice versa. In most graphs the values are split by one of the two
values. That means that within each column, all instances with the one value are shown, covering the
whole range of the other value. For example, a column with end point distance E = 1 has instances
with Z values from the whole set. Notice that the results for E = 7 and E = 15 are not shown
in graphs split by the end point distance. Their results did not offer any new conclusions, and the
inclusion rendered the figures hard to read. Note, however, that they are still taken into account in
graphs split by the height difference.

Notice that since the maximal height was calculated without taking the heading and pitch angles
into consideration, additional curves to increase the path length so that the pitch angle constraint is met
might not have been necessary at z difference of three, in some cases even four. The threshold where
the altitude difference starts to be a limiting factor is around three but is dependant on the distance of
the points as well as the angles. If the points are further apart, it will take a relatively shorter distance
to compensate for the heading angle, which in turn decreases the threshold.

For all of the evaluations, the minimal turning radius was set to ρ = 10, and the pitch angle
constraints were set to ψmin = − pi

10 and ψmax = pi
10 . Note, however, that since all the distances

are directly dependant on the turning radius, any other value could have been chosen with the same
results. All the values were intentionally left without units because they have no influence over the
results.

5.2 Fail Rate
In some cases, the solver did not finish successfully. This section addresses those cases and studies
the fail rate of different initializations and with respect to the segment count.

A result was classified as a failure if it did not, for some reason, finish successfully. The most
common causes for this are converging to a point of local infeasibility, and exceeding the maximum
number of iterations. Converging to a point of local infeasibility should mostly be eliminated by
proper initialization but can still occur even when the path is initialized by the decoupled approach.
The maximum number of iterations was set to 500 for all the test cases. This number was chosen
because most of the experiments initialized with the decoupled approach finish within 100 iterations,
so 500 should give enough space for the optimization to finish and still give enough space for unusually
long computations. Tests that finished with a relative length of more than one (that means tests with
results worse than the decoupled approach used as initialization) were considered successful, even
though they did not improve the initial solution in any way. Note that in all of the figures describing
improvement rate and computational times, all the failed computations were disregarded.

The fail rate was studied with respect to the initialization method, see Figure 7, and with respect
to the segment count, see Figure 8. Seven different initialization methods were considered. The six
presented in 4.2 and a method called here ”Best”. This method is a combination of all the other
initialization methods in that it takes the results from all the other different initialization methods and
uses the best of them. For most of the instances, at least one of the initialization methods led to a
successful result, which is shown by the fact that the method ”Best” finished. Excluding the ”Best”
initialization method, initialization using the decoupled approach path has by far the best fail rate,
with an overall fail rate under 10% and under 5% for most input configurations. Initialization using
2D Dubins path can also have good results for the shorter instances, however mostly just worse than
the decoupled approach path. The initialization with a straight line has surprisingly good fail rate as
well, likely because it provides a path that leads to the final configuration and meets the curvature
constraint. For most of the initialization options, there were instances (even though only a few) in
which all other initialization options failed. This means that all of the tested initialization options offer
something the other options do not.

Since the decoupled approach initialization has a significantly lower fail rate than the other initial-

20

5.2 Fail Rate

ization methods, further on, the other options will be disregarded. For all the results presented here,
the decoupled approach initialization was used.

The segment count seems to have no effect on the fail rate of the optimization. However, Figure 8
suggests that the fail rate of the decoupled approach initialization is slightly worse for the shorter
paths.

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0

10

20

30

40

50

60

70

80

F
a
il

R
a
te

[%
]

Decoupled
2D Dubins
Arc
Arc Left
Arc Right
Line
Best

Figure 7: The fail rate of different initialization paths

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0

2

4

6

8

F
a
il

R
at

e
[%

]

s=20
s=30
s=40
s=60
s=80
s=100

Figure 8: The fail rate of the optimization using decoupled approach for initialization with relation to
the segment counts

21

5.3 Path Length Improvement

5.3 Path Length Improvement
The generated path was compared to a reference solution generated by the decoupled approach [2].
Even though all the initialization options were tested, only the results of the optimization initialized
by the decoupled approach are presented, even though in some cases, some of the other initialization
methods resulted in a better solution.

The 3D Dubins path can have two main cases (that can be further distinguished). The first case is
when the distance and the curvature constraints are the limiting factors. The other case is limited by the
altitude difference of the two points and the pitch angle constraint. The properties of the optimization
will be considered for both of these cases separately.

5.3.1 Relative to the Point Distance

This section discusses the improvement rate with respect to the distance of the two points. Distances
from 1/2 up to 20 were tested (given in the multiples of the turning radius, for details on the instances
see Section 5.1).

In general, the improvement is much more significant for shorter paths. This is clear from the
nature of the Dubins path. In the case when the limiting factor is the distance (the height difference is
low), the path mostly looks very similar to the 2D Dubins path. This means that there are two possible
forms: CCC and CSC. The straight part cannot be optimized. This means that any improvement must
come from the curved parts. This naturally leads to greater improvement in cases where the straight
part of the path is short or missing altogether, which happens for instances with the points close to
each other. This can be seen in Figure 9.

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0.85

0.90

0.95

1.00

1.05

1.10

R
el

at
iv

e
L

en
gt

h

s=20 s=60 s=100

Figure 9: The results of the optimization initialized using the decoupled approach path separated by
the distance between the two points (in multiples of the turning radius); horizontal bar represents
median

22

5.3 Relative to the Height Difference

The reason why the curved parts of the path can be improved is that the optimization approach can
generate paths with curvature exactly equal to the maximal curvature. This means that the necessary
direction change occurs on a shorter curve. Other methods can struggle with the curvature, especially
when the pitch angle is non-zero.

Another reason for this is also a side-effect of the segmentation of the curve. When the curve
is very long, the relative segment count of the curved part gets lower (in comparison to the segment
count of the straight part). This means that fewer segments are used to represent the parts where they
are actually useful. As a result, the computation of paths with longer straight parts will be inefficient.
Furthermore, the curvature within a segment is constant. This means that if the optimal curve would
end in a segment, the optimization has to find a longer curve that covers the whole segment.

A special case of the path limited by the distance occurs when the points are very close to each
other (and the initial and final directions differ significantly). This means all instances which lead to
a CCC style curve or to a CSC style curve with close-to-zero straight parts. In this case, the path is
limited not by the distance of the points but solely by the curvature constraint. In this particular case,
the improvement is greater than most other cases. Since the most improvement happens on the curved
parts, the whole path gets improved. Furthermore, since the whole curve gets shorter, if there was a
reverse turn, this turn might become shorter or even unnecessary, which further improves the length.

For points close to each other, the median improvement rate can be at around 4%. At a distance of
10 radii, the median of the improvement is close to zero (for the higher segment counts), and further
increasing the distance of the points decreases it even more. This is, however, most likely not caused
by the properties of the optimization. The shortcoming of the decoupled approach is the curvature
(and some edge cases). Therefore when most of the path is a straight line, there is not much room for
improvement. The decoupled approach has results very close to optimal in those cases.

5.3.2 Relative to the Height Difference
The other splitting property of the instances is the height difference. This section discusses the results
with respect to this property.

Overall, according to Figure 10, the instances with medium height difference seem to yield the
best results. This is caused by the fact that the segments generated by the optimization can have
the maximal possible curvature regardless of the slope, which is something the decoupled approach
struggles with. If the height difference is small enough so that the pitch angle constraint does not come
into effect, the optimization will be able to find shorter curves that are still within the constraints.

When the height difference is the limiting factor and prolonging the path is necessary to meet the
pitch angle constraint, the results get worse. There are two big reasons for this. The first is that the
decoupled approximate is able to approximate the height profile of the optimal path and thus can have
nearly optimal results in those cases. Outside of some edge cases, there is very small (or even no)
room for improvement. The second reason is that when the height difference is the limiting factor,
there are infinitely many feasible curves with the optimal length, and there may not be a single curve
the optimization can converge to. Furthermore, for instances with the initial and final points far from
each other, the curves have a relatively small turning radius, which results in even more options.

On the other hand, when the height difference is too small, the decoupled approach can have results
close to the optimum as well. The shortcoming of the decoupled approach is the approximation of the
curvature, which cannot incorporate the slope into the turning radius. When the slope is smaller, the
problem is lesser as well.

An interesting edge case occurs when the altitude difference is very small, and the points are close
to each other. For instances with very low or zero height difference, a 2D Dubins curve could be
almost feasible. However, that does not mean that this path is the optimal solution. If the points are
close to each other, there might be a path that can utilize a dive to perform the necessary turn without
going around. The optimization can find this path, but the initialization using the decoupled approach

23

5.3 Relative to the Height Difference

0.5 1.0 2.0 3.0 5.0

Z Coordinate Difference

0.80

0.85

0.90

0.95

1.00

1.05

1.10

R
el

at
iv

e
L

en
gt

h

s=20 s=60 s=100

Figure 10: The improvement rate of the optimization initialized using the decoupled approach with
relation to the height difference between the two points (see section Data 5.1)

24

5.4 Computational Time

20 30 40 60 80 100

Segment count

10−1

100

101
C

om
p

u
ta

ti
on

a
l

T
im

e
[s

]

(a) The computational time of the optimization initial-
ized using the decoupled approach with with different
segment counts

Deco
upled

2D
Dubins

Arc

Arc
Left

Arc
Right

Line

Best
of

Initialization Method

10−1

100

C
o
m

p
u

ta
ti

o
n

a
l

T
im

e
[s

]

(b) The comparison of computational times of the dif-
ferent initialization methods across all segment counts

Figure 11: The computational times of the optimization

may land in the 2D Dubins path. This seems to be a local minimum, which the optimization solver
cannot improve. In that case, it is necessary to use another initialization.

5.4 Computational Time

At around 0.1s and up to over 1s for higher segment counts, the optimization is much slower than the
decoupled approach reference method (which has times around 0.5 ms), but is still quite fast, at least
for lower segment counts.

As Figure 11b shows, out of all the different tested initialization methods, the initialization using
the decoupled approach is clearly the fastest. This is no surprise, as the optimization is initialized with
an almost feasible path that is very close to (a local) optimum already. The other initialization options
are all similarly slow, with the Dubins path initialization being slightly faster than the others.

The main influence over the computational time is the segment count. Figure 11a shows that in-
creasing the segment count leads to an exponential computational time increase. This is not surprising,
as each segment adds more variables and more constraints to the optimization task.

5.5 The Influence of the Segment Count

This section discusses how the properties of the optimization change with different segment counts.
The segment count is the number of segments used to approximate the curve. The results show (see
Figure 9 and Figure 10) that increasing the segment count leads to more optimal paths. This is ex-
pectable since the segment count is directly responsible for the precision of the used approximations.
Increasing segment count helps to smooth out the areas where the optimization struggles. Especially
longer paths, where the fact that within a segment, the curvature is fixed, leads to curves with subop-
timal curvature because the limited segment count forces longer turns than necessary. The difference
between lower segment counts (around 20) and higher (60 or more) is rather significant, at more than
1%. The differences between the higher segment counts are much lower than between the lower ones.
This offers a trade-off. While increasing the segment count improves the results, it also causes an
exponential increase in computational time.

25

5.6 Multipoint 3D Extension

5.6 Multipoint 3D Extension
An extension of the optimization was also tested, the multipoint problem. This version of the problem
is harder to test for several reasons. One reason is that the multipoint version (and especially the
reference solution) take much more time to compute. The second reason is data generation. While
the single segment had the point distance and height difference to work with, the multipoint adds the
point count and mixing the height differences and point distances between the individual points of the
path. In the results presented here, the points were generated with equal distance and given order. This
approach has the advantage of clearly showing the properties of the optimization with respect to the
distance between the points.

The instances were generated in a similar manner as the instances for the 3D Dubins path. A first
point was created with random heading angle φ and pitch angle ψ. For every additional point, the
direction from the previous point was selected randomly. The distance was set to be the same for all
the points, and the height difference was similar for all the points (generated in the same way as the
height of the instances for the single segment variant, with a possibility of being negative). This results
in instances split by the same properties as the instances for the 3D Dubins path.

For the multipoint reference, a simple implementation (using dynamic programming) of a sampling-
based approach with 24 samples for the heading angle and 7 for the pitch angle was used. Those
values were chosen because they are big enough to yield good results but small enough so that the
computation of the reference does not take too long. The heuristic is the same as the one used for
the initialization ran with higher sample counts. The sample counts used for the initialization were 8
samples for the heading angle and 1 for the pitch angle. With this low sample counts, the resulting
curve is obviously sub-optimal, but as initialization for the optimization, it is sufficient.

The results for the multipoint extension look very similar to the 3D Dubins path results, with two
big differences. The first is that the multipoint is way more likely to end up with a solution worse
than the reference. This is caused by the fact that since the optimization does not start in the reference
solution, there is a possibility of converging to a local minimum and stopping the optimization. This
could obviously be solved by using the reference as the initial solution, but the computational time of
the reference is by no means negligible. Despite this, as Figure 12b shows, the median relative length
of the results of the optimization is below one for the short paths and around one for the longer ones.
Note that the optimization has a much higher fail rate for longer paths.

The second big difference is the computational times. As Figure 14 shows, for the cases with more
than one point the optimization managed to finish much faster than the reference in most cases. The
reference is much faster for the single point, because there is only a single configuration to sample.
Similarly to the 3D Dubins paths, the computational time grows exponentially with increasing segment
counts. The computational time seems to have a linear dependence on the visited point count for both
the reference and the optimization.

Altogether, while the optimization has mostly similar results as the used reference (with outliers in
both directions), it achieves those results much faster than the sampling-based method. It is important
to note that those results are highly dependant on the initialization method. The same method as the
reference could have been used for initialization. That would very likely lead to much fewer results
worse than the initialization, but the optimization would then be slower than the reference.

5.7 Discussion
Overall, this non-linear optimization approach can achieve results much closer to the lower bound (the
lower bound presented in [2] was used) than the reference solution, by up to 25% of the margin. The
improvement is about 4%, in terms of the relative path lengths, for favorable paths. As Figure 16
shows, the decoupled approach can, in some cases, generate paths that are provably optimal, and those
cannot get improved. On the other hand, for the cases with which the decoupled approach struggles,

26

5.7 Discussion

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0.0

2.5

5.0

7.5

10.0

12.5

F
ai

l
R

a
te

[%
]

s=20
s=30
s=40

(a) The fail rate of the multipoint extension with re-
spect to the point distance of the individual points

0.5 1.0 1.5 2.0 3.0 5.0 10.0 20.0

End Point Distance

0.8

0.9

1.0

1.1

1.2

1.3

R
el

a
ti

ve
L

en
gt

h

s=20 s=30 s=40

(b) The improvement rate of the multipoint extension
with respect to the point distance of the individual
points

the optimization achieved a consistent improvement with reasonably low fail rates. If only the cases
when the reference solution has a margin bigger than 1% are considered, the optimization offers a
significant improvement (in terms of the lower bound margin) in almost all the cases. Additionally, the
optimization managed to get reasonable results for the edge cases with which the decoupled approach
struggles. Also, note that the lower bound is by no means perfect. This means that a margin of 5%
does not necessarily imply a possibility of improvement.

The results of the decoupled approach are close to the optimum, when either the distance, or the
height difference are the limiting factor. In those cases, the longer paths and the paths with a big
height difference, there is little room for improvement. However, the optimization is able to use the
available curvature much more efficiently than the decoupled approach. Thanks to this, for paths
where the height difference is not too constraining and the initial and final configurations are not too
far apart, the optimization can compute paths that are shorter by 3-5% or more. The Figure 15a and
Figure 15b illustrate this very well. (Note that the examples were handpicked to illustrate this point,
the improvement rate in both the figure is above average) The curvature plots compare the curvatures
of the optimization generated paths and the paths generated by the decoupled approach.

Figure 15a shows an example where the height difference was the limiting factor. The curvature
plot of the optimization in Figure 15c seems, at first glance, a bit strange, but it makes sense. The
middle part of the curve can be any path long enough to satisfy the pitch angle constraint. The opti-
mization found a path with the form CSCSC, while the decoupled approach had to use a 2D Dubins
path, which (in this particular case) was suboptimal.

The second figure, Figure 15b, illustrates the case where the limiting factors are the distance and
the curvature. The Figure 15d and Figure 15f clearly show the main advantage of the optimization.
The decoupled approach can achieve the full curvature only when the curvature is maximal on both
parts of the path (the horizontal and the vertical), while the optimization can maximize the curvature
at any point necessary.

27

5.7 Discussion

1 2 3 4 5

Point Count

10−2

10−1

100

101

102

103

T
im

e

s=20
s=30

s=40 ref

Figure 13: The computational time with respect to the number of points

Figure 14: The parameters of the multipoint extension: the fail rate and the improvement rate

28

5.7 Discussion

X

−10

0

10

20

30 Y
−10

0

10

20
30

Z

−50

−40

−30

−20

−10

0

reference solution

optimization result

sampling

(a) Comparison of the two paths, the optimization re-
sult and the decoupled approach, path limited by the
height difference, for a curve limited by the altitude
difference.

X

−10
0

10
20

30
40

50

Y −10
0

10
20

30
4050

Z

0

10

20

30

40

50

60

reference solution

optimization result

sampling

(b) Comparison of the two paths, the optimization re-
sult and the decoupled approach, path limited by the
point distance, for a curve limited by the distance of
the points.

0 20 40 60 80 100
segment number

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

cu
rv

at
u

re

Relative Curvature

Relative Height

(c) The curvature of the result of the optimization

0 20 40 60 80 100
segment number

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

cu
rv

at
u

re

Relative Curvature

Relative Height

(d) The curvature of the result of the optimization

0 20 40 60 80 100
segment number

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

cu
rv

at
u

re

Relative Curvature

Relative Height

(e) The curvature of the path generated by the decou-
pled approach

0 20 40 60 80 100
segment number

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

cu
rv

at
u

re

Relative Curvature

Relative Height

(f) The curvature of the path generated by the decou-
pled approach

Figure 15: Examples of the results. For both examples, the comparison of the path generated by the
proposed method and the reference solution are presented, together with the curvature profiles (the
blue curve) and the height profiles (the orange curve) are presented, for both, the proposed method,
and the decoupled approach reference solution.

29

5.7 Discussion

0 5 10 15 20

Gap Between Lower Bound and Reference[%]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
ap

B
et

w
ee

n
L

ow
er

B
ou

n
d

an
d

O
p

ti
m

iz
at

io
n

[%
]

Results

(a) 100 segments, zoomed to 20%

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Gap Between Lower Bound and Reference[%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ap

B
et

w
ee

n
L

ow
er

B
ou

n
d

an
d

O
p

ti
m

iz
at

io
n

[%
]

Results

(b) 100 segments, zoomed to 3%

0 5 10 15 20

Gap Between Lower Bound and Reference[%]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
ap

B
et

w
ee

n
L

ow
er

B
ou

n
d

an
d

O
p

ti
m

iz
at

io
n

[%
]

Results

(c) 20 segments, zoomed to 20%

0 1 2 3 4 5

Gap Between Lower Bound and Reference[%]

0

1

2

3

4

5

G
ap

B
et

w
ee

n
L

ow
er

B
ou

n
d

an
d

O
p

ti
m

iz
at

io
n

[%
]

Results

(d) 20 segments, zoomed to 5%

Figure 16: The results with respect to the margin to the lower bound. Every cross represents a single
solution, its position on the x axis is the margin of the reference solution, its position on the y axis rep-
resents the margin of the Optimization results. Every point below the diagonal has better Optimization
results than the reference solution.

30

Chapter 6

Conclusion

In this work, a novel non-linear programming formulation of the 3D Dubins path problem was
presented. The final curve was modeled as a sequence of straight or circular segments. This can
be represented using only the heading vectors at the two endpoints of the segments and the distance
of those two points. The curvature and pitch angle constraint can then be formulated based on the
geometric properties of the vectors. An extension of the optimization to cover the Multipoint variant
of the problem was also presented. Thanks to the nature of the optimization formulation of the original
problem, the extension differs slightly and can be used to compute both. In some sense, it is more an
improved version rather than an extension.

The proposed optimization formulation was implemented in the julia programming language us-
ing the Ipopt optimization solver. The implementation was then empirically evaluated on randomly
generated instances and compared with known methods: the decoupled approach for the 3D Dubins
path and a sampling-based method utilizing dynamic programming for the Multipoint variant of the
problem. It was shown that for the 3D Dubins path problem, the paths generated by the optimiza-
tion can follow the constraints more closely than the heuristic methods, which leads to more optimal
paths. The results were considered with respect to the different properties of the random instances.
It was shown that while the decoupled approach can generate paths very close to the optimum, the
optimization can consistently reduce the optimality gap by an additional 25%, which corresponds to
an improvement of 3-4% path length for favorable paths. Similar relations hold for the multipoint
variant of the problem. There are two big differences: greater variance and decreased computational
time, relatively to the used reference.

In general, the proposed method can improve known solutions in that it can construct curves
that have the maximal possible curvature and thus are shorter. However, the optimization is greatly
dependant on proper initialization. Several initialization options were tested, and in most cases, the
decoupled approach initialization produced the best results. There are, however, cases when a simpler
initialization resulted in shorter paths. Initialization is even more important to the Multipoint variant
of the problem, where the computational times for the heuristic methods, and thus the computational
time of the initialization, are much larger.

The extension of the proposed method to the Multipoint variant of the problem generated paths
shorter by about 2-3% but has significantly lower computational times compared to the sampling-
based reference. For instances with five additional points visited, the median computational time
of the proposed method was around two seconds, while the sampling-based method needed around
twenty seconds.

31

6. Conclusion

32

References

[1] Lester E Dubins. On curves of minimal length with a constraint on average curvature, and
with prescribed initial and terminal positions and tangents. American Journal of mathematics,
79(3):497–516, 1957.

[2] P. Váňa, A. Alves Neto, J. Faigl, and D. G. Macharet. Minimal 3d dubins path with bounded
curvature and pitch angle. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 8497–8503, 2020.

[3] J. Herynek, P. Váňa, and J. Faigl. Finding dubins path with pitch angle constraint using non-
linear optimization (in review). In 2021 European Conference on Mobile Robots (ECMR), 2021.

[4] J. . Boissonnat, A. Cerezo, and J. Leblond. Shortest paths of bounded curvature in the plane.
In Proceedings 1992 IEEE International Conference on Robotics and Automation, pages 2315–
2320 vol.3, 1992.

[5] P. Bevilacqua, M. Frego, D. Fontanelli, and L. Palopoli. A novel formalisation of the markov-
dubins problem. In 2020 European Control Conference (ECC), pages 1987–1992, 2020.

[6] S. Hota and D. Ghose. Optimal path planning for an aerial vehicle in 3d space. In 49th IEEE
Conference on Decision and Control (CDC), pages 4902–4907, 2010.

[7] S. Hota and D. Ghose. Optimal geometrical path in 3d with curvature constraint. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 113–118, 2010.

[8] H. Chitsaz and S. M. LaValle. Time-optimal paths for a dubins airplane. In 2007 46th IEEE
Conference on Decision and Control, pages 2379–2384, 2007.

[9] G. Ambrosino, M. Ariola, U. Ciniglio, F. Corraro, E. De Lellis, and A. Pironti. Path generation
and tracking in 3-d for uavs. IEEE Transactions on Control Systems Technology, 17(4):980–988,
2009.

[10] Y. Wang, S. Wang, M. Tan, C. Zhou, and Q. Wei. Real-time dynamic dubins-helix method for
3-d trajectory smoothing. IEEE Transactions on Control Systems Technology, 23(2):730–736,
2015.

[11] Mark Owen, Randal W. Beard, and Timothy W. McLain. Implementing Dubins Airplane Paths
on Fixed-Wing UAVs*, pages 1677–1701. Springer Netherlands, Dordrecht, 2015.

[12] A. A. Neto, D. G. Macharet, and M. F. M. Campos. 3d path planning with continuous bounded
curvature and pitch angle profiles using 7th order curves. In 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4923–4928, 2015.

[13] Jae-ha Lee, Otfried Cheong, Woo-Cheol Kwon, Sung Shin, and Kyung-Yong Chwa. Approx-
imation of curvature-constrained shortest paths through a sequence of points. In Algorithms -
ESA 2000, volume 1879, 09 2000.

[14] K. Savla, E. Frazzoli, and F. Bullo. On the point-to-point and traveling salesperson problems
for dubins’ vehicle. In Proceedings of the 2005, American Control Conference, 2005., pages
786–791 vol. 2, 2005.

33

[15] K. Savla, E. Frazzoli, and F. Bullo. Traveling salesperson problems for the dubins vehicle. IEEE
Transactions on Automatic Control, 53(6):1378–1391, 2008.

[16] D. G. Macharet, A. A. Neto, V. F. da Camara Neto, and M. F. M. Campos. Data gathering tour
optimization for dubins’ vehicles. In 2012 IEEE Congress on Evolutionary Computation, pages
1–8, 2012.

[17] Douglas Macharet and Mario Campos. An orientation assignment heuristic to the dubins travel-
ing salesman problem. In IBERAMIA, pages 457–468, 11 2014.

[18] S. Manyam, S. Rathinam, and D. Casbeer. Dubins paths through a sequence of points: Lower
and upper bounds. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 284–291, 2016.

[19] Satyanarayana Manyam, Sivakumar Rathinam, David Casbeer, and Eloy Garcı́a. Tightly bound-
ing the shortest dubins paths through a sequence of points. Journal of Intelligent & Robotic
Systems, 88, 12 2017.

[20] M. Frego, P. Bevilacqua, E. Saccon, L. Palopoli, and D. Fontanelli. An iterative dynamic pro-
gramming approach to the multipoint markov-dubins problem. IEEE Robotics and Automation
Letters, 5(2):2483–2490, 2020.

[21] J. Faigl, P. Váňa, M. Saska, T. Báča, and V. Spurný. On solution of the dubins touring problem.
In 2017 European Conference on Mobile Robots (ECMR), pages 1–6, 2017.

[22] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical programming,
106(1):25–57, 2006.

[23] Byrd Richard H., Nocedal Jorge, Waltz Richard A., and Roma M. Knitro: An Integrated Package
for Nonlinear Optimization, pages 35–59. Springer US, Boston, MA, 2006.

[24] Steven G. Johnson. The nlopt nonlinear-optimization package. https://nlopt.
readthedocs.io/en/latest/. Accessed: 2021-5-21.

[25] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias
Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger,
and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online,
March 2020.

[26] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

34

https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/

	1 Introduction
	2 Related Work
	2D Dubins Path
	3D Dubins Path
	Multipoint 3D Dubins Path
	Non-Linear Programming

	3 Problem Statement
	2D Dubins Path
	3D Dubins Path
	Multipoint 3D Dubins Path

	4 Proposed Method
	Objective Approximation
	Choosing Initial Optimization Values
	Decoupled Path
	2D Dubins Path
	Other Options

	Multipoint 3D Extension
	Multipoint Initialization

	5 Results
	Methodology of Generating Random Instances
	Fail Rate
	Path Length Improvement
	Relative to the Point Distance
	Relative to the Height Difference

	Computational Time
	The Influence of the Segment Count
	Multipoint 3D Extension
	Discussion

	6 Conclusion
	 References

