
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

DNS Zone Transfer Test Tool

Bachelor’s thesis

Daniel Hubáček

Bc programme: Open Informatics
Branch of study: Artificial Intelligence and Computer Science

Supervisor: Doc. Ing. Jǐŕı Novák, Ph.D.

Prague, May 2021

ii

Thesis Supervisor:
Doc. Ing. Jǐŕı Novák, Ph.D.
Department of Measurement
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic

Copyright © Prague 2021 Daniel Hubáček

iii

iv

Declaration

I declare that the presented work was developed independently and that I have listed all sources
of information used within it in accordance with the methodical instructions for observing the
ethical principles in the preparation of university theses.

In Prague, May 2021

..
Daniel Hubáček

v

vi

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483726Personal ID number:Hubáček DanielStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

DNS Zone Transfer Test Tool

Bachelor’s thesis title in Czech:

Testování transferu doménových zón

Guidelines:
Design a primary DNS server, which generates specific changes in a zone and propagates these changes into a secondary
server (server under test). Each zone change should focus on a possibly critical scenario, which could be processed
incorrectly on the secondary DNS server side and therefore different zone states could have come into existence on
particular servers managing the same zone. Finally, the server should verify the correctness of the zone transfer result
and analyze the network load.
Abstract design and modularity are also important aspects of the resulting software. It should be possible to easily create
new test cases, extensions and to perform any feasible scenario.

Bibliography / sources:
[1] Mockapetris Paul – RFC 1035: Domain names – Implementation and specification – Information Sciences Institute,
1987
[2] Ohta Masataka – RFC 1995: Incremental Zone Transfer in DNS – Tokyo Institute of Technology, 1996
[3] Vixie Paul – RFC 1996: A Mechanism for Prompt Notification of Zone Changes – Information Sciences Institute, 1987
[4] Lewis Edward – RFC 5936: DNS Zone Transfer Protocol (AXFR) – NeuStar, Inc., 2010

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Jiří Novák, Ph.D., Department of Measurement, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 19.12.2020

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Ing. Jiří Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

viii

Abstract

The DNS represents one of the backbone technologies of the current internet. For latency,
stability, and safety issues, it is distributed over multiple servers. With every distributed system,
it is important to have a reliable mechanism of synchronization, when some changes happen. In
the DNS, it is a mechanism called zone transfer. In order to preserve safety and stability, it is
important for this mechanism to work correctly and therefore it has to be thoroughly tested.
One approach of testing zone transfers of DNS servers is to test the whole functionality. It
means propagate some zone changes to the server and then check whether or not have been
these changes correctly processed. Because particular implementations of DNS servers may
suffer from different bugs, it is more efficient to have just a testing tool or environment, using
which it is possible and simple to create and run any test scenario. The development of such a
tool is described in the thesis and also one server implementation, knot, is tested by this software.

Keywords: Domain Name System, zone transfer, testing, distributivity, KnotDNS

Anotace

DNS je jednou z páteřńıch technologíı dnešńıho internetu. Pro zaručeńı stability, bezpečnosti
a ńızké odezvy jsou tyto systémy distribuovány přes v́ıce server̊u. U každého distribuovaného
systému je ovšem d̊uležité mı́t spolehlivý proces synchronizace dat v př́ıpadě jakýchkoliv změn.
V DNS se tento proces nazývá zone transfer (přenos zóny). Pro zachováńı bezpečnosti a stability
je d̊uležité, aby tento proces přenosu zóny fungoval bezchybně a proto muśı být řádně otestován.
Jeden z př́ıstup̊u k testováńı přenos̊u zón je testováńı celé funkcionality jako takové. To znamená
propagovat nějaké změny v zóně do testovaného serveru a následně ověřit, že všechny požadované
změny byly správně zpracovány. Jelikož r̊uzné implementace DNS server̊u mohou obsahovat
r̊uzné chyby, je efektivněǰśı mı́t celý testovaćı nástroj či prostřed́ı, pomoćı kterého je možné a
jednoduché vytvořit a spustit jakýkoliv testovaćı scénář. Vývoj takového testovaćıho nástroje
je popsán v této práci a následně je tento nástroj také využit k otestováńı jedné implementace
DNS serveru, knot.

Kĺıčová slova: systém doménových jmen, přenos zóny, testováńı, distributivita, KnotDNS

ix

x

Acknowledgements

I would like to express my sincere thanks to all the people who helped and supported me during
my Bachelor’s studies, especially the ones who stayed close to me during writing the final thesis.
Firstly, I must thank my friends and family for helping me in deciding important matters and
caring about my occasional distraction from the hard work and studying. To Ondřej Švec, who
gave me a huge help in the field of technical writing and LaTeX language. To Marko Uusitalo,
M.Sc from the Metropolia University of Applied Sciences, who made it possible for me to write
the thesis abroad and provided me great technical facility. To Doc. Ing. Jǐŕı Novák, Ph.D.
for professional counsels and consultations while writing the thesis. I also sincerely thank Ing.
Petr Špaček, who initiated me into the world of DNS and was the perfect guide during the
implementation.

xi

xii

List of Figures

2.1 DNS hierarchy example with fel.cvut.cz . 5
2.2 Resolving process of fel.cvut.cz. 6
2.3 DNS message header. [6] . 10
2.4 Format of the Question section. [6] . 10
2.5 Format of the Answer, Authority and Additional sections. [6] 11
2.6 AXFR message example. 13
2.7 Example of IXFR message with more increments. [7] 15
2.8 Example of IXFR message with one increment. [7] 16

3.1 Workflow diagram. 19
3.2 Diagram of a test example. 21
3.3 Diagram of an advanced test example. 21

4.1 Components diagram. 25
4.2 Example implementation of generating a random domain name. 34
4.3 Example implementation of generating a random domain name using random

strings. 34
4.4 Hierarchy of used classes and components. 35

5.1 Example of BasicARecordsTestCase increment change from version 1 to 2. 42
5.2 Example of SingleRecordTestCase increment change from version 4 to 5. 43
5.3 Example of MultiIncrementalTestCase incremental changes. 43
5.4 Example of SOAChangesOnlyTestCase incremental changes. 44
5.5 Serial number arithmetic visualized with a circle. 45
5.6 Example of NameOcclusionTestCase incremental changes. 47
5.7 Example of journal for JournalTestCase. 47
5.8 Implementation of the ARecordsGenerator using GenericRecordGenerator. 50
5.9 Example configuration of the KnotDNS server. 52
5.10 Implementation of a ResponseManager for special AXFR-style-IXFR answers. . . 55
5.11 The KnotDNS server output, failure. 56
5.12 The KnotDNS server output, success. 56

xiii

xiv

List of Acronyms

AXFR DNS Zone Transfer Protocol. 8, 9, 11–15, 17, 20, 21, 25, 28, 31–33, 38, 52, 54, 55

DDoS Distributed Denial of Service. 7

DNS Domain Name System. 1, 3–9, 11, 12, 16–18, 20, 21, 23–26, 28, 29, 31, 36, 38–40, 45, 46,
51–54

DoS Denial of Service. 7

EDNS Extension mechanisms for DNS. 12

GIL Global Interpreter Lock. 38

HTTP Hyper Text Transfer Protocol. 6

IDN Internationalized Domain Names. 34

IP Internet Protocol. 3, 51, 52

IXFR Incremental Zone Change. 8, 13–15, 21, 31, 32, 42, 50, 51, 54

LDAP Lightweight Directory Access Protocol. 1

MX Mail Exchange. 5, 49

NS Name Server. 46, 49

OOP Object Oriented Programming. 23, 24, 40

RFC Request for Comments. 5

RR Resource Record. 12

RRset Resource Record set. 26, 31, 38, 55

SOA Start of Authority. 7, 8, 13–16, 20, 21, 26, 27, 31, 32, 38, 41, 42, 44, 48–50, 53, 54

SQA Software Quality Assurance. 18, 24

TCP Transmission Control Protocol. 11, 21, 28–30, 52

TTL Time To Live. 10, 14, 33, 39, 41, 46

UDP User Datagram Protocol. 11, 21, 52

XFR AXFR and IXFR. 17, 20, 24, 27, 49

xv

xvi

Contents

Abstract ix

Anotace ix

Acknowledgements xi

List of Figures xiii

List of Acronyms xv

1 Introduction 1

2 Basics of DNS 3
2.1 Origin of DNS . 3
2.2 How does DNS work . 4
2.3 Distributivity of DNS . 6
2.4 Zone replication between servers . 7
2.5 Details of the zone transfer protocols . 9

2.5.1 AXFR messages . 11
2.5.2 IXFR messages . 13
2.5.3 DNS NOTIFY mechanism . 15

3 Requirements and expected functionality 17
3.1 Test example . 18

4 Implementation 23
4.1 Project structure . 24

4.1.1 Notify manager . 26
4.1.2 Network analyst . 27
4.1.3 Client . 28
4.1.4 Server . 29
4.1.5 Test scenarios . 30
4.1.6 Quick overview . 34

4.2 Project core . 36
4.3 Running a test . 39
4.4 Requirements fulfilment . 39

5 Test cases implementations 41
5.1 Default set of implemented test cases . 41
5.2 Complex test scenario . 48

5.2.1 Records generators . 49
5.2.2 Complex test case . 50

5.3 Testing of KnotDNS . 51
5.3.1 Further testing of KnotDNS . 53

xvii

6 Conclusion 59

Bibliography 62

xviii

Chapter 1

Introduction

The demands on computing resources are becoming higher and higher, as are the requirements

for network infrastructure. Lots of systems are based on mutual communication between more

devices (computers, smartphones, watches, sensors, and so on) and lots of systems are also

based on cooperation between multiple different services (for example web applications, tele-

phone exchanges, email servers, or Lightweight Directory Access Protocol (LDAP) servers). It

is important to keep some sort of order between those stuff and make it more readable and

intuitive for society.

The Domain Name System (DNS) represents one of the backbone technologies of the current

internet. It makes the communication between individual services and devices much easier for

people to manage. For latency issues, DNS servers are usually distributed over more places

around the world (or some smaller particular places), and therefore some management issues

appear. Every modification must be applied to all the servers to preserve the system stable and

faultless. For this purpose, a mechanism called zone transfer has been designed.

There are many DNS server implementations (for example BIND9, PowerDNS or KnotDNS)

and all of them have to implement this zone transfer mechanism according to the specification.

Incorrect processing of a zone transfer might lead to unstable results and therefore it needs to

be properly tested.

Every piece of code should be covered by some unit tests, but it is useful to also thoroughly

test the mechanism as a whole, as it works in the real operation. Testing such a complex

mechanism is not simple, because there are many cases that could go possibly wrong and also

because simulating a real operation requires many side utilities. Basically, it is needed to create

a fake, testing, DNS server, which pretends to be a primary server, which tries to propagate some

changes into another, tested, secondary server. These pseudo-changes could be just random or

may also aim at a particular weak spot of the software. After the changes are applied, it is

also needed to check the resulting zone version of the tested secondary server and evaluate the

success.

Individual products (in the meaning of the DNS server implementations) differ in the imple-

mentation and therefore different products may suffer from different bugs. Once a bug is found

and fixed, it should be also covered by tests. It means that every DNS server implementation

1

2 CHAPTER 1. INTRODUCTION

needs its own test scenarios and it would not be really efficient to create one universal testing

tool for everything. Much more efficient is to create a tool, or a testing environment, using

which it would be quick and easy to create and run any possible scenario.

Chapter 2

Basics of DNS

This thesis is dealing with the distributivity of DNS servers, specifically with a process of zone

changes transfer, where changes made on a primary server must be also replicated on secondary

servers.

The goal is to create a testing DNS server, which is generating some zone changes and

subsequent propagation of these changes to a secondary server. Each change should focus on

a possibly critical scenario, which could be processed incorrectly on the secondary DNS server

side. In the end, this testing primary server verifies the correctness of the zone transfer result

and analyzes the network load.

This chapter describes the basics of DNS - what are domain names, why and how did they

come into existence, and why are they actually so useful. Then, more advanced issues about

distributivity are described - why is it so important, how is it solved, and which troubles can

occur. Details and specifications of zone transfer protocols are described at the end of this

chapter.

It should be a sufficient introduction into the world of DNS, which is necessary for under-

standing the issues described in the thesis.

2.1 Origin of DNS

Computer networks can contain tens, hundreds, or millions of interconnected devices. Nowadays

it is not just about computers, but also cameras, televisions, watches, fridges, light bulbs, vacuum

cleaners and so on. Almost every piece of electronics can be designed or made to communicate

with its surroundings and together with other devices, they create networks of any size. The

connection between smartwatches and a mobile phone, internet search engine, both are based

on a communication between some devices.

To be possible to send some messages between particular devices, these messages must be

addressed to someone. Therefore every device must have an address within a network. In case of

Internet Protocol (IP), it can be an IPv4 address, for example 192.168.0.99. Using an address,

every device can determine whether or not does a message belong to it and if the device should

send the message somewhere else or just ignore it. These addresses are simple to work with, for

3

4 CHAPTER 2. BASICS OF DNS

computers. It is hard to even remember for people.

That is the reason why devices started to be named with more human-readable names.

One simple file has been created and this file contained pairs of name-address. The computer

always went through this mapping file and found an address (”readable” for computer), which

corresponded to a name (readable for humans).

Note that this file can be still found on today’s devices. It is stored in /etc/hosts for UNIX

systems or in %SystemRoot%\system32\drivers\etc\hosts for Windows. It is used as a static

translator of domain names with the highest priority.

In the beginning, when every network was composed of a few devices, it was a sufficient

solution. Changes in networks were rather rare, it could be managed by one person or there

was a mechanism, which synchronized this file with another, remote, file - a database. But this

solution was not sufficient for a long time. There were more and more devices in particular

networks and these networks started to be also mutually connected. This file domain system

was not sufficient anymore, it was unbearable to manage so large networks with this primitive

system.

In 1983, an American computer scientist Paul Mockapetris proposed in RFC 882 [1] and

RFC 883 [2] a DNS protocol, which was supposed to suit all requirements and solve all the

problems, so primarily fast management of resource records - adding and removing. Four years

later, in 1987, DNS protocol has been updated in RFC 1034 [3] and RFC 1035 [4] into the form,

which is still in effect now - after more than 30 years. After a huge increase of computational

resources, number of devices, and also expectations of users, this protocol is still sufficient.

2.2 How does DNS work

The fundamental block of domain names is the hierarchy. The domain fel.cvut.cz can be used

as an illustration. Dots in this domain name represent individual parts or labels. It is quite

intuitive that the first label, cz, stays for the Czech republic. Second label, cvut, represents the

Czech Technical University (České Vysoké Učeńı Technické), and the last label, fel, represents

the faculty of electrical engineering (fakulta elektrotechnická). There is the hierarchy, where

every label somehow makes the previous label more specific. And this hierarchy is present even

in the core of the DNS, as it is described in this chapter.

This whole hierarchy of domain names can be understood as a tree, wherein every vertex

there is one part of the domain (for example cz) and from this vertex then go edges to other,

subordinate, vertexes (for example cvut.cz) and other subordinate vertexes (fel.cvut.cz). So

every vertex has its own sub-tree, which contains all the sub-domains. On the very top of this

imaginary tree there must be one more vertex, which would roof all the first-labels, so-called

top-level domains, as is cz or sk, com, net and so on. This very first vertex is called root. The

imaginary hierarchical tree is illustrated in the Figure 2.1.

Note that this root vertex can be explicitly inserted into a domain name by adding one dot

at the end - fel.cvut.cz.. After the last comma, it is possible to imagine an empty string, which

represents exactly this root. Domain names without the ending dot are considered as relative

2.2. HOW DOES DNS WORK 5

.

cz.com. sk.

cvut.cz.

fel.cvut.cz.

seznam.cz.nic.cz.

Figure 2.1: DNS hierarchy example with fel.cvut.cz

to a context. It is used mostly in configuration files.

Every vertex contains (next to the domain name) also some resource records. One of them

is for example the IP address, or information about email services, server applications, contact

on the domain administrator, and so on. Actually, it is possible to insert here any information.

Every type of information has some sort of identifier, rdtype (resource data type). For example,

IPv4 addresses are called A records, IPv6 addresses are AAAA records, mail servers have Mail

Exchange (MX) records, SRV for service locators, PTR for domain name pointers (useful for

reverse lookups - find a domain by an address), NS for authoritative name servers, or TXT for

any other text data. There are many other rdtypes defined in different Request for Comments

(RFC) documents, according to their usage. In all messages, these rdtypes have 2 bytes reserved,

so it is a number from the interval 0..65535, which is large enough for all the types of records.

This distribution of domain names to some vertexes of an imaginary tree is actually a re-

ally strong approach, which allows delegating all the management of particular sub-trees to

particular, independent, servers. The whole top-level domain cz can be managed completely in-

dependently from other top-level domains, moreover, it can delegate a part of itself (for example

cvut) to another server. This delegation mechanism can be recursively repeated over and over

again.

Every domain, every vertex, contains some information (in the form of records) about itself

and the rest about its subordinates delegates (or to be exact - can delegate) to another server,

without any dependencies on itself or its predecessors. Every vertex has a DNS server. This

server has all the records of a domain and some records of some sub-domains or can delegate

some sub-domains to another server. This imaginary part of the hierarchical tree, which is

managed by the DNS server, is called a zone. So a zone is a part of a sub-tree, part of the whole

DNS space.

The whole DNS space is divided into zones and every server can delegate a part of a zone to

another server. And this is exactly the way, how it works during resolving (resolving is a process

6 CHAPTER 2. BASICS OF DNS

when a resolver looks at some particular records of a domain). The resolver asks a server and

receives either the answer or a hint, where to ask. When resolving the fel.cvut.cz domain, the

first query goes to a root. The root does not know the answer, but knows, where to find the

cz domain. The second query goes to the cz domain, but neither this server knows the desired

records, so it answers with a hint where is cvut.cz. So the third query goes to the cvut.cz, which

answers with a hint about fel.cvut.cz and finally, this server knows the answer, so it answers with

the IPv4 address - with the A record. This process is illustrated in the Figure 2.2 (shortened).

user@ntb:~$ dig +trace fel.cvut.cz

cz. 172800 IN NS c.ns.nic.cz.

;; Received 622 bytes from 198.41.0.4#53(a.root-servers.net)

cvut.cz. 3600 IN NS nss.cvut.cz.

;; Received 309 bytes from 194.0.14.1#53(c.ns.nic.cz)

fel.cvut.cz. 6400 IN NS lux.fel.cvut.cz.

;; Received 302 bytes from 147.32.1.9#53(nss.cvut.cz

fel.cvut.cz. 36000 IN A 147.32.192.12

;; Received 114 bytes from 147.32.192.250#53(lux.fel.cvut.cz)

Figure 2.2: Resolving process of fel.cvut.cz.

This process might seem to be quite long and annoying. Therefore there are DNS resolvers,

which do this work and return just the final answer. These resolvers are usually pre-installed in

all operation systems. Also, all the records can be cached, so it is not necessary to execute this

whole recursive process every time.

2.3 Distributivity of DNS

It has been already explained, that DNS was created for the possibility of naming some devices

in a readable, easily memorable, and meaningful way. It has been also explained how does

resolving work and how does domain (or zone) management work. Or almost. There is still one

thing, which is important in computer science and it is speed!

When a computer is located in Prague and tries to resolve the fel.cvut.cz domain, it is all

right and fast. But when a computer is located on the other side of the world, it takes some

more time.

One of the important aspects is the distance from a DNS server. It is obvious, that the

best location of a server managing the cz domain is the Czech Republic and also that servers

of the Czech Technical University should be somewhere in Prague. The overwhelming majority

of clients is from the Czech Republic so the average latency is minimized. If all the mentioned

servers were only in the Czech Republic, the latency on the other side of the world would be

significant and even increased by the number of queries, which has to be actually sent - query

for cz., cvut.cz., fel.cvut.cz. and also the final Hyper Text Transfer Protocol (HTTP) query of a

web browser. All 4 messages would go all over the world and back, therefore the latency would

2.4. ZONE REPLICATION BETWEEN SERVERS 7

significantly increase. And this latency might be increasing linearly with every other label, with

every other sub-domain.

Latency from a server can be reduced only by a shorter path between the client and the

server, or by upgrading the communication technologies. It is not really possible to move the

client nor the server, and it is not really possible to upgrade for example a metal wiring to optics.

But it is possible to duplicate the server to somewhere else. Somewhere closer to other clients.

Then, when a resolver asks a root server for the servers of cz domain, the root server could

return a list of servers and the resolver might choose the best one of them (the most reliable

and fastest one based on some statistical data).

Another important advantage of server duplication is stability. When, for some reason, a

server becomes unavailable, there are other servers with all the important information (all the

resource records) to provide the service. The latency would be higher, but the service would still

work, which is also a great way, how to prevent some types of attacks, such as Denial of Service

(DoS) or Distributed Denial of Service (DDoS), when the attacker tries to flood a victim with

tons of requests so it is not possible to answer to other, regular, clients.

It can be noticed that in this situation (when a zone is distributed over multiple servers) there

are multiple servers, from which the very same behaviour and very same answers are expected.

The zone administrator is supposed to manage multiple servers. It is actually the same problem,

which also had the simple system with one hosts file before - the need to replicate a database

across multiple servers. But DNS has a solution for it.

Servers of a zone are either primary or secondary. A primary server is a server, which

provides information about zone changes to other servers. A secondary server is a server, which

asks another server about these changes. These definitions are not contradictory, which means

that one server can be primary and secondary at the same time:

Let have three servers A, B and C. A zone administrator makes some changes in the server

A. This server propagates the changes into the server B. The server B applies the changes and

furthermore, it propagates the changes even to the server C. So the server B was the one, who

accepts the changes and at the same time provides changes to another server.

This variant is valid. When the servers are configured properly it is needed to perform the

changes only in one server and they are thereafter propagated even to other servers.

2.4 Zone replication between servers

In the first place, there is one record type named Start of Authority (SOA). It is a record, which

must be present in every zone exactly once. Its value contains some important information about

the whole zone - email address of a responsible administrator; serial number of the zone (kind

of a zone version); an amount of time, when a secondary server should ask for zone changes; an

amount of time, after which the server should try to contact the primary server again in case

the primary server had not answered; an amount of time, after which the server should stop

providing the answers, because they may not be in force anymore.

Already the SOA record contains some information, which determines when should a sec-

8 CHAPTER 2. BASICS OF DNS

ondary server ask for changes and how should the secondary server behave. But this refresh

time can be long and the primary server may not be available at the time when the secondary

server is asking for the changes. So the secondary server may not provide current answers quite

a long time after a zone has been officially changed. Another situation would be when the DNS

servers are logically connected in a chain (as exampled above with the A, B and C servers). It

would take some time until the changes would be propagated to the end of this chain, so the

answers would differ depending on which server is being queried.

That was the motivation while designing a mechanism named DNS NOTIFY, which is de-

scribed in the RFC 1996 [5]. It is a simple way, how to indicate new zone changes to a secondary

server. When a DNS server updates its content (straightly by an administrator or automatically

according to a primary server), it sends a Notify message about it to all its secondary servers.

It is expected that these secondary servers are going to update their version of the zone as well,

so they have actual resource records and the whole zone remains stable all over the servers.

It is important to be aware of the fact that reception of a Notify message does not necessarily

mean a need for the zone refresh. Imagine a situation, when a secondary server has two primary

servers. Both of them send a Notify message, but one message arrives later for some reason.

Meanwhile, the secondary server has received the Notify message from the other primary server

and updated its zone. When the delayed Notify message is received, there is no need to update

the zone anymore since the zone version is actual.

The naive implementation is to pull the whole zone every time a Notify message is received.

It is certain that the zone is always correct. The transfer of the whole zone follows the DNS

Zone Transfer Protocol (AXFR), which is described in the RFC 5936 [6]. But as it has been

described, the zone might have been already updated and therefore the zone transfer might be

completely superfluous.

A small improvement of the naive implementation is to check the zone version (the serial

number of the SOA record) first. A simple query for the SOA record is sent to the primary

server. If the received SOA record has a greater serial number than the SOA record of the

secondary server, a zone transfer should be executed.

Zones might be really large, so a transfer of a whole zone might take some time and also

might excessively load down the network. For illustration, 1. 1. 2021 the top-level domain cz

contained 1 370 749 registered domains (source: https://stats.nic.cz). It is highly ineffective

to transfer over 1 million records after an addition of one new record, just to replicate the zone.

That was the motivation for the Incremental Zone Change (IXFR) protocol, which is specified

in the RFC 1995 [7].

Incremental zone transfer consists only of the changes between particular zone versions. If

one new domain is added into a zone, the incremental zone transfer contains exactly this (new)

record. The rest of the (unchanged) records is not included in the message, which saves some

computational time and also reduces the network load. But even this way of transferring zone

changes has some disadvantages, which might not be really obvious.

To be able to send only the changes between particular zone versions, it is needed to know

https://stats.nic.cz

2.5. DETAILS OF THE ZONE TRANSFER PROTOCOLS 9

these changes. So the server must have some sort of a log (often called journal), which contains

all the information about the last few changes. A secondary server might not be available at

the time (for example because of some blackout, attack, and so on) and it might ask for changes

after a longer time, after a few more zone changes. If the primary server does not remember all

the incremental changes anymore, it is forced to send the whole zone via AXFR.

And also, the application of the incremental changes may not be processed totally correctly,

which would have fatal consequences! There would be two different zone versions, which would

be considered the same, and answers on queries might be strongly inconsistent depending on

which server is being asked. These errors are hard to find or debug, and moreover - the server

is not able to detect them. The only two situations, how to miraculously fix this error, are:

1. Other incremental changes in all affected records, which would the secondary server be

able to apply.

2. Pull the whole zone via AXFR. But that is what the secondary server is trying to avoid.

It is a trap, which is not easily detectable and the server is not really able to fix it by itself.

Therefore it is important to implement the zone transfers perfectly, especially the incremental

changes application, and this implementation must be thoroughly tested.

2.5 Details of the zone transfer protocols

Like every other communication protocol, even DNS has its own format for messages, which

has been described in the RFC [4]. The message is divided into 5 sections - header, Question,

Answer, Authority and Additional. Not every section has to contain some data. In certain cases,

some sections, except the header, might remain empty. It is fully dependent on the type of the

message, what information is the message supposed to carry. The zone transfer is essential for

this project, therefore this type of message is going to be described more deeply in this section.

Firstly, it is useful to describe the header which is the same for all the messages. It consists

of 6 parts, where each part is 16 bits, so in total it is 96 bits long header section.

The first part of the header contains an ID using which it is possible to recognize answers to

a particular question. The ID in an answer must be the same as in the question corresponding

to the answer. In questions or queries, there can be any number. It is up to the client, which

ID will be chosen to distinguish particular answers.

The second part of the header is reserved for flags and codes. Each flag and code is deeply

described in the RFC [4]. At this point, most of the header flags are not important and therefore

their explanation will be skipped.

The last 4 parts of the header section contain numbers (unsigned 16-bit integer) of entries

(resource records) in the corresponding sections (Question, Answer, Authority, Additional) of

the message.

The message header format is displayed in Figure 2.3.

10 CHAPTER 2. BASICS OF DNS

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Figure 2.3: DNS message header. [6]

After the header section follow the Question, Answer, Authority, and Additional sections.

According to the RFC [4], the Question section is slightly different from the others. It says that

every entry (there is usually only one) contains a domain name, a type, and a class. This triplet

could be understood as some kind of key to the specific records.

The other three sections extend this triplet with two other attributes. The first one is the

Time To Live (TTL). It is a 32-bit unsigned integer that says for how long time (in seconds) can

be the records cached. The second attribute is, of course, the data itself. There can be multiple

values that are just stacked behind each other and together they create a set of record values.

Formats of these sections are represented in Figure 2.4 (for the Question section) and Fig-

ure 2.5 (for Answer, Authority and Additional sections). Notice how do these two formats differ.

The beginning is exactly the same, the Figure 2.5 just extends the Figure 2.4 by the TTL and

the data (length of the data and the data itself), as described above.

Note that the letter Q in the Figure 2.4 stands for question. The values are still equivalent

to values in the Figure 2.5.

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ QNAME /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QTYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QCLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Figure 2.4: Format of the Question section. [6]

At the very end, every message is compressed. This mechanism is supposed to reduce the

size of the final message, so the network load is not that high. This mechanism is based on

2.5. DETAILS OF THE ZONE TRANSFER PROTOCOLS 11

1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| |

/ /

/ NAME /

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TYPE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| CLASS |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| TTL |

| |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| RDLENGTH |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|

/ RDATA /

/ /

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Figure 2.5: Format of the Answer, Authority and Additional sections. [6]

replacing parts of domain names with pointers to a prior occurrence of the same name. So every

domain name is written in the message only once and every other use of the same domain name,

or its sub-part, is written only as a pointer on the first occurrence with the full wording. Since

every domain name can be up to 253 characters long, this mechanism has the potential to save

a lot of space.

Message compression is not essential for the purposes of this project, but, as it will be

mentioned later, it is important to keep in mind that something like this happens and mainly

that it happens at the very end when all the content in all sections is known.

Usually, the DNS messages in general are not so long and therefore the User Datagram

Protocol (UDP) is used. For example, when resolving an address, questions contain only a

desired domain name and answers contain a few records. On the other side, zone transfers

usually consist of more records. Tens, hundreds, thousands or even more. That is the reason

why the Transmission Control Protocol (TCP) is mostly used for zone transfers - for its reliability

and stability.

2.5.1 AXFR messages

The most essential part of zone transfers is the AXFR described in RFC 5936 [6]. This protocol

enables to transfer the whole zone at once. It means all records are transferred in one message,

or in one set of messages (in case the content is too long for one message, the size limit is 65535

bytes), so the receiver has the current version of the zone.

As explained previously, all DNS messages share the same format and differ mostly in the

content. Also, messages distinguish whether they are queries (questions) or responses (answers).

For this purpose, there is the QR flag in the header of the message.

12 CHAPTER 2. BASICS OF DNS

The AXFR query message is sent by a client whenever the zone transfer might be needed

and in compliance with the specification the header must contain the following flags:

• QR must be set to 0 as an indication that it is a Query.

• OPCODE must be set to 0 as an indication that it is a Standard Query.

• RCODE must be set to 0 as an indication that there is no error.

• QDCOUNT must be set to 1 as an indication that in the Question section there is just

1 entry. This entry describes the question (the triplet of domain name, class, and type).

• ANCOUNT must be set to 0 since the Answer section must be empty

• NSCOUNT must be set to 0 since the Authority section must be empty

• ARCOUNT must be set to the number of records in the Additional section. This section

can contain up to 2 records: Extension mechanisms for DNS (EDNS) and DNS transac-

tion security. In case of the testing, this section will be mostly empty and therefore the

ARCOUNT will be set to 0.

More important is then the Question section, which must contain exactly 1 entry - the triplet

of domain name, class, and type. The domain name and class are obvious - they contain the key

values which the secondary server is asking for. The type is not that obvious since the secondary

server does not want just one exact type of records, but all of them. Therefore there is a pseudo

Resource Record (RR) type for this kind of zone transfer, the AXFR type with the value of 252.

In case of the response, the header again follows the general specification for DNS messages:

• ID must be copied from the request.

• QR must be set to 1 as an indication that it is a response.

• OPCODE must be set to 0 as an indication that it is a Standard Response.

• AA must be set to 1 in case there is no error (and therefore RCODE is set to 0). Otherwise,

the value must be set according to the rules for that error code.

• RDCODE must be set to 0 in case there was no error. Otherwise, this flag should be set

to the appropriate value (for example 9 in case the server is not authorized to provide this

information or 1 when the query message has been malformed).

• QDCOUNT must be set to 0 or 1, further explanation will be provided later.

• ANCOUNT must be set to the number of messages sent in the Answer section.

• NSCOUNT must be set to 0 since there are no records in the Authority section.

• ARCOUNT must be set to the number of records in the Additional section, which has

the same rules as for the query message.

2.5. DETAILS OF THE ZONE TRANSFER PROTOCOLS 13

In the first place, it is important to keep in mind that one AXFR response might consist of

multiple messages. And the rules for the Question section differ depending on whether or not is

the message the first one sent. The Question section must be copied from the query in the first

message. In subsequent messages, this section may either remain empty or be copied from the

query as well.

The Answer section contains the zone content itself, all the resource records. But the form of

this section must comply with few rules. The very first and the very last record must be the SOA

record of the zone. Thanks to this rule it is possible to identify the last message of the transfer.

Not only would the secondary server not know if the connection could be terminated, but there

would also be no guarantee that the zone transfer contained all the records and therefore that

it was the entire zone.

The resource records between those SOA records represent a set, or unordered collection, of

records. Although servers usually attempt to send related records as a continuous group, they

are not required to do so. However, these records must not contain any SOA records since the

SOA record is already at the beginning and at the end. Violating this rule might result in a zone

transfer collapse or, in the worse case, in incorrect processing of the zone transfer and therefore

the existence of more different zones versions.

The AXFR message is pretty simple, as it can be seen in the example in the Figure 2.6. The

zone nic.cz has serial number 1 and contains two A records and one MX record.

+---+

Header | OPCODE=QUERY, RESPONSE |

+---+

Question | QNAME=NIC.CZ., QCLASS=IN, QTYPE=AXFR |

+---+

Answer | NIC.CZ. IN SOA serial=1 |

| NIC.CZ. IN A 127.0.0.1 |

| NIC.CZ. IN A 127.0.0.2 |

| NIC.CZ. IN MX 1000 nic.cz. |

| NIC.CZ. IN SOA serial=1 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 2.6: AXFR message example.

2.5.2 IXFR messages

The IXFR protocol (described in RFC 1995 [7]) is an enhancement of the previous AXFR. In

the AXFR messages, plenty of superfluous records are sent since the secondary server might

have already had them. In case of one little change (like the addition of one single record),

everything has to be transferred again even though the only important part might be just one

single record. And that is what this new protocol tries to solve.

14 CHAPTER 2. BASICS OF DNS

The simplest possible description of the IXFR is that the message contains only the changes

between two zone versions (version is given by the SOA serial number).

The header of a query message does not differ from the AXFR format. The first difference

can be found in the Question section, where the entry does not have the AXFR (= 252) type,

but IXFR type with the value of 251. The domain name and class remain unchanged.

Because the incremental changes represent a difference between two states, an old one and

a new one, it is a necessity to have the first state (identified with the SOA serial number) from

which it is supposed to be started. Therefore in the query message, it is required to have the

SOA record, from which the incremental changes will be listed. This record is inserted into the

Authority section. Note that because there is a record in this section, this information has to

be reflected even in the header and therefore the NSCOUNT number must be set to 1.

The server has actually two options for how to answer the query. For some reason, the

incremental zone transfer might not be available (for example the client’s version is too old and

the primary server does not remember all the changes anymore). In this case, the primary server

can send the AXFR response (it means the whole zone) with one small difference - the Question

section is still copied from the query, therefore in the Question section entry the IXFR type

(= 251) remains unchanged even though it is being responded with the AXFR. The fact that

the response is not in the form of incremental changes can be ascertained from the form of the

Answer section, as described later.

The second, and most preferred, option is to send the incremental changes. These changes

between two zone versions can be described as a set of removed records together with a set of

added records. Even a change of one particular record (for example change in the value or the

TTL) can be represented as remove and add operation - just remove the old record and add a

new, changed, one.

These two sets of records need to be inserted into the Answer section in a form that the

secondary server can distinguish which records are supposed to be added and which of them are

supposed to be removed.

As described in the RFC [7] and as in the AXFR response, the very first and the very last

record must be the actual SOA record of the zone so it is possible to determine the end of the

transfer (mostly when it takes more than one message). More important is the content between

these SOA records.

Firstly, there is the old SOA record, which is supposed to be removed. Then follows the set

of records which is also supposed to be removed. Next comes the new SOA record followed by

the set of records to be added.

This one step, this one increment (old SOA, removed records, new SOA, added records)

represents the changes between two versions of a zone. And this increment can be repeated

more times in one zone transfer message. So a change from version n to version n+2 can be

expressed as either two increments n −→ n+1 −→ n+2 or one direct compressed increment n −→
n+2.

An example with two increments, 1 −→ 2 −→ 3, is showed in the Figure 2.7. During the

2.5. DETAILS OF THE ZONE TRANSFER PROTOCOLS 15

changes from 1 to 2, one A record is removed and two are added. During the changes from 2

to 3, one A record is removed (the one which had been added in the previous increment) and

another one is added.

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=JAIN.AD.JP., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | JAIN.AD.JP. IN SOA serial=3 |

| JAIN.AD.JP. IN SOA serial=1 |

| NEZU.JAIN.AD.JP. IN A 133.69.136.5 |

| JAIN.AD.JP. IN SOA serial=2 |

| JAIN-BB.JAIN.AD.JP. IN A 133.69.136.4 |

| JAIN-BB.JAIN.AD.JP. IN A 192.41.197.2 |

| JAIN.AD.JP. IN SOA serial=2 |

| JAIN-BB.JAIN.AD.JP. IN A 133.69.136.4 |

| JAIN.AD.JP. IN SOA serial=3 |

| JAIN-BB.JAIN.AD.JP. IN A 133.69.136.3 |

| JAIN.AD.JP. IN SOA serial=3 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 2.7: Example of IXFR message with more increments. [7]

This incremental zone transfer can be compressed to a message with just one increment 1

−→ 3. The very same situation, as in the previous example, is showed in the Figure 2.8, but this

time there is just one increment containing one record to remove and two records to add. The

record from the previous example, which was added in the version 2 and removed in the version

3, completely disappeared since it was not present in the original version 1 and neither is in the

new version 3. The other records really changed between the compared versions and therefore

remained in the message.

Notice two important things. The IXFR response can be either the AXFR or IXFR. Also,

in the AXFR Answer section it is strictly forbidden to have any SOA records in the middle (in

the meaning of between the border ones) while in the IXFR they have the important role of

breakpoints.

2.5.3 DNS NOTIFY mechanism

Secondary server can ask his primary server for zone transfer at any time. It can be right

after the start, regularly on daily basis, after the EXPIRE countdown from the SOA record (this

attribute gives the number of seconds after which secondary servers should stop providing the

answers for the zone) and so on. But the secondary server itself does not know when is the right

time for asking for changes and possibly for the zone transfer.

The primary server is able to notify the secondary server when any change happens. Every

16 CHAPTER 2. BASICS OF DNS

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=JAIN.AD.JP., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | JAIN.AD.JP. IN SOA serial=3 |

| JAIN.AD.JP. IN SOA serial=1 |

| NEZU.JAIN.AD.JP. IN A 133.69.136.5 |

| JAIN.AD.JP. IN SOA serial=3 |

| JAIN-BB.JAIN.AD.JP. IN A 133.69.136.3 |

| JAIN-BB.JAIN.AD.JP. IN A 192.41.197.2 |

| JAIN.AD.JP. IN SOA serial=3 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 2.8: Example of IXFR message with one increment. [7]

change is expressed via increasing the SOA serial number and every time this happens, the pri-

mary server can send a special message to the secondary server as a notification. The secondary

server is not obliged to take this message into consideration, which means that the server is not

obligated to ask for changes and the zone transfer immediately. Nevertheless, the secondary

server is still obligated to answer this notification as an indication to the primary server that

this server knows about the latest happenings.

This mechanism is called A Mechanism for Prompt Notification of Zone Changes (DNS

NOTIFY) and is specified in the RFC 1996 [5]. The first message is sent by the primary server

which has just made some changes in a zone and therefore increased the SOA serial number.

This message is characterized by:

• Header QR flag is set to 0. It can be understood as a request for keeping up-to-date.

• Authoritative Answer (AA) flag should be set to 1 since the primary server is the source

of information.

• The OPCODE must be set to 4, which is the number reserved for this purpose.

• The Question section contains one entry with the domain name, class, and the SOA type

(= 6).

Moreover, this message can also contain the new SOA record in the Answer section as an

insecure hint for the secondary server. The secondary server is free to use this hint in the

meaning of skipping the zone transfer, because it may have been already done using another

primary server. However, this hint is optional from the side of the primary server.

As mentioned earlier, the secondary server is still obligated to answer this request. The

response is the exactly same message with the only one difference and it is that the QR header

flag is set to 1 this time.

Chapter 3

Requirements and expected

functionality

It is important to be conscious of what are the goals of the software. It is not a goal, and it is

not even possible (as mentioned later), to create software that would test just everything, every

possible scenario and every possible problem. The goals are:

• to prepare a work-space or environment using which it will be possible to easily and

efficaciously implement and run any particular test scenario.

• to prepare some basic set of test scenarios covering well-known vulnerabilities.

• to make it easy for future use or other programmers to extend the software and add new

test cases, since some DNS servers might be suffering from product-specific vulnerabilities.

Using the Section 2.5 it is possible to describe the goal of the software more precisely: The

final software should be answering on AXFR and IXFR (XFR) requests with some configured or

random content and it should be also capable of checking whether or not have all the responses

been correctly processed by the tested secondary server. The secondary server zone version can

be obtained again via the AXFR protocol. To speed up the testing, the software is also supposed

to send DNS NOTIFY messages to indicate new zone changes, which should convince the tested

secondary server to begin with the zone transfer every time when new changes in a zone are

generated.

The software itself must also meet some requirements, which describe its structure and

design:

• The possibility to reproduce every possible scenario which could ever happen. All the

correct scenarios, in the meaning, that the messages could really happen in the real-life

operation, and the incorrect scenarios as well, in the meaning, that the messages should

be rejected by the tested server.

• Make test scenarios implementation as easy as possible. It is not correct if it is needed to

write hundreds of lines of code just to create one simple scenario.

17

18 CHAPTER 3. REQUIREMENTS AND EXPECTED FUNCTIONALITY

• The ability to configure independent modules and create a wider range of possible test

scenarios. The DNS protocol is very complex and also, as described before, there are

more ways how to perform a zone transfer. But usually, one way does not differ from

another that much. The difference can be just the protocol, which has been used, the

content of the DNS NOTIFY message, which had been sent before the zone transfer, or

an unexpected answer in the form of an AXFR response. All these methods should be

somehow configurable so it is easy to combine them in the final scenarios. Said with

different words, the components should be as much independent as possible. They should

be modular in the way that it should be easy to change or extend them.

• The ability of the final software to be extended. The product will be used by programmers

and testers (testers in the meaning of Software Quality Assurance (SQA) engineers) and it

will help them to ensure that their product, their DNS server implementation, is working

properly. If they find a bug or a weak spot in their particular product, they might want

to create their own test scenario for it so next time the problem is covered by tests. It is

required to make this interaction for other programmers simple and elegant.

• It is mandatory the software must be easy to run. It is expected that one function takes

some configuration parameters and the whole testing process will be executed automati-

cally according to the parameters.

• At the end the software will verify the correct processing of all the zone changes by the

secondary server.

• The software will collect basic statistics about the network load, which can be then used

to compare different implementations.

It is important to keep in mind, that the software is supposed to be able to reproduce any

scenario, not really reproduce all the scenarios, which could ever happen. It is not even possible

since there is an infinite number of combinations (proof: one record can be always added to the

zone and so to a zone transfer message). Moreover, the point is not to do a brute force testing

but to test the most common, most important, and meaningful scenarios.

Two significant aspects are not very important for the software - time and memory com-

plexity. The software does not need to be really fast or memory efficient. It will not be used as

an ordinary program for clients who are waiting for a response. It will be used only for testing

purposes, as a utility to ensure the correctness of processing zone transfers. Therefore it is not

needed to focus on time or memory complexity, but rather on the abstract and modular design

so that the software satisfies all the requirements which have been mentioned so far.

3.1 Test example

For a better understanding of what is supposed to happen, the simplified process of testing is

shown in the Figure 3.1. Except for the last part, where the final check happens, it is the same

as a normal operation in everyday life.

3.1. TEST EXAMPLE 19

Secondary DNS
Server

Primary DNS
Server

 DNS NOTIFY with SOA record

 DNS NOTIFY without SOA record

 Notification confirmation

Primary DNS
Server

 SOA response

OPTIONAL

 AXFR request

 IXFR request

 IXFR response
 AXFR response

 Malformed response

Primary DNS Server
 AXFR request

 AXFR response

Primary DNS Server
 AXFR request

 AXFR response

In
iti

al
iz

at
io

n
Zo

ne
 c

ha
ng

es
 (r

ep
ea

ts
 a

ll
ov

er
 a

ga
in

)
Zo

ne
 c

he
ck

 SOA request

Figure 3.1: Workflow diagram.

20 CHAPTER 3. REQUIREMENTS AND EXPECTED FUNCTIONALITY

Everything starts on the side of a secondary server. This server knows from its configuration,

that there is a zone and that there is also a primary server of this zone. But that is all, at the

moment only the information that something exists is known. No exact records are known yet.

Therefore, the secondary server needs to get these records by sending an AXFR request to the

primary server. The primary server answers with the zone content and since this moment the

secondary server has everything that is needed for serving data. This process is represented in

the Initialization section in the Figure 3.1.

Note that for security reasons the primary server can refuse to provide the AXFR response.

Usually, secondary servers must be listed in the configuration and AXFR requests are refused

unless the configured list of secondary servers contains the questioner. The same applies for the

DNS NOTIFY messages described later. A server follows these messages only if the message

came from an authorized source listed in a configuration.

Everything works perfectly until a zone change is made. When this happens, the primary

server sends a DNS NOTIFY message to the secondary server. The secondary server must

confirm the receipt of this notification and then it is supposed to start the zone transfer.

Optionally, a SOA request can be sent first to make sure there really are new changes for

the particular secondary server. Then, since there is already an old zone version on the side of

the secondary server, a request for incremental changes can be sent. Also, for some reason, the

AXFR protocol can be chosen for the transfer.

In both cases, the primary server is supposed to answer with the corresponding answer. Also,

an error can potentially happen. The secondary server has to deal with that cannot make any

zone change.

This is how the workflow of DNS distributivity really works. Every time a change in the

zone occurs, this process is executed all over again.

At the end of the testing, it is needed to check the zone content of the secondary server

and that is represented in the Zone check part in the Figure 3.1. The primary server gets the

secondary server’s zone via the AXFR protocol and compares it with the expected version of

the zone.

As explained earlier, the testing software is supposed to test the processing of the zone

transfer messages and therefore the main part is generating the responses on XFR requests. A

simple test scenario can be for example the following:

Create a zone with 10 default A records. Then make 9 changes where one record is removed.

Propagate these 9 changes into the secondary server and check that at the end the secondary

server’s zone really contains just the one and only last record. This scenario is showed in the

Figure 3.2.

Or a little bit advanced scenario might be to create a zone with 10 default A records, then

remove 5 of them and then try to add another 5 new records. But this time answer with a

malformed message. It can be just cut in the middle or it can contain incorrect values in the

header (for example one bit in the header is reserved and must be 0 every time). After this,

check the secondary server’s zone version and make sure it contains just the five records. This

3.1. TEST EXAMPLE 21

Secondary DNS
Server

Primary DNS
Server

Primary DNS
Server

Primary DNS Server AXFR request
 AXFR response, expected to contain just one A record

Primary DNS Server
 AXFR request

 AXFR response: 10 A records in the zone

 DNS NOTIFY
 Notification confirmation

 IXFR request
 IXFR answer: Remove one record from the zone

9x

Figure 3.2: Diagram of a test example.

scenario is showed in the Figure 3.3.

Secondary DNS
Server

Primary DNS Server

Primary DNS Server

Primary DNS Server AXFR request
 AXFR response, expected to contain five A record

Primary DNS Server
 AXFR request

 AXFR response: 10 A records in the zone

 DNS NOTIFY
 Notification confirmation

 IXFR request
 IXFR answer: Remove five record from the zone

Primary DNS Server

Primary DNS Server

 DNS NOTIFY
 Notification confirmation

 IXFR request
 Malformed answer with adding five records

Figure 3.3: Diagram of an advanced test example.

But these scenarios are widely generalized, the exact case can depend even on other details

- the DNS NOTIFY messages might (not) contain the SOA record, it might answer with AXFR

response on IXFR request, it might (not) answer with some malformed messages, used protocol

can be one of TCP or UDP, and so on. The design of the software should make it as simple as

possible to adjust all these details and therefore create a much wider variety of test cases.

22 CHAPTER 3. REQUIREMENTS AND EXPECTED FUNCTIONALITY

Chapter 4

Implementation

First of all, the right development tools must be chosen. There are many possibilities, especially

in the large selection of programming languages. Moreover, some programming languages have

other libraries and packages, which might make some parts of working with DNS much easier.

The basic programming language is C. C has the big advantages, that it is very fast and

memory efficient. Also, there are some open-source projects for working with DNS, which could

be possibly used. But the management of C projects and files is not really simple and big

attention must be paid while compiling. Because C is a low-level language, it would be really

hard to satisfy the requirement that scenarios implementations should be easy to make. It means

some higher-level approach for the DNS messages is needed and this approach would have to be

created.

Small improvement brings the C++. This language is as fast and memory-efficient as C, but

gives Object Oriented Programming (OOP) approach, which is very useful while designing, and

implementing, modular systems. Because C++ is compatible with the C language, the same open-

source extensions can be used and even some new C++ libraries could be used. But still, the C++

is also too low-level language, which makes it hard to create higher-level approaches and it also

needs to be compiled first.

Another option would be Java. It is a nice compromise between low-level and higher-level

programming languages. It has all the low-level features for working with bytes, wide variety of

structures to use, it is also fast and memory-efficient (but not as much as C or C++) and it also

has some open-source projects for working with DNS. Moreover, it is a class-based and object-

oriented programming language, which allows creating modular systems very easily. It has a

garbage collector, which takes care of memory management. Java code also needs to be compiled

before running, but there are tools like Maven, which make the dependencies management and

subsequent build very simple. It sounds really great so far, but Java has one big disadvantage

and that is the code length. Its programs tend to be long and this does not correspond with the

requirement that it is not correct if it is needed to write hundreds of lines of code just to create

a simple scenario.

The last and the best programming language, which has been taken into consideration and

also chosen for development, is Python (https://www.python.org/). It is not as fast and

23

https://www.python.org/

24 CHAPTER 4. IMPLEMENTATION

memory-efficient as all the previous options, but it is not really important for testing purposes,

as mentioned earlier. On the other side, it has a really powerful packaging system offering great

libraries for working with the DNS, for example dnspython (https://www.dnspython.org/),

which has been used during the development. The code does not need to be compiled and can

be run directly via an interpreter, which is easily accessible for all operating systems. Python

provides great OOP approach, which makes it easy to design modular systems and enables

simple extensions of classes.

Moreover, Python is a great language for functional programming. Writing code in that way

is not really easy and requires experience in this field, but some aspects of functional program-

ming might be used throughout the project, such as calling a function with some arguments

always returns the same result and cannot be affected by any mutable state or other side effects.

This aspect is also demanded since the very same test scenarios (the very same messages, the

very same sequences of bits) must be reproducible to ensure a bug has been fixed.

During the development, Python 3.6 and dnspython 2.0.0 have been used. The software

is also suitable for Python versions up to 3.9 and dnspython 2.1.0.

4.1 Project structure

As explained before, testing requirements and preferences may vary from product to product.

Therefore the main goal is to create an environment where it will be simple and fast to adapt all

details of a specific scenario with a minimum of work. Also, the software must be really modular

so every particular independent module can be exchanged to widen the scale of possible test

scenarios.

The project itself is divided into a few independent parts in the way that it abides by the

requirements explained in the Section 3 (Requirements and expected functionality) and with a

good abstraction over creating the XFR messages described before. Each part is fully modular -

every module has just an abstract interface that has to be implemented and which is then used

for testing purposes. The internal implementation may vary depending on the objectives of the

testing scenario and this is what makes the abstract design of the software so powerful.

The first part cares about creating the DNS NOTIFY messages. Since there are more ways

how to construct them, a special module called NotifyManager has been dedicated for this

purpose.

Then there is a module, NetworkAnalyst, which cares about the analysis of network load.

Every tester (in the meaning of programmers and SQA engineers) might need different infor-

mation to check the improvement and difference between two versions of their software and

therefore this is also dedicated into a special module, which can be then configured.

The testing is based on a communication between two servers - the testing software in the role

of a primary server and the tested software in the role of a secondary server. This communication

can be distinguished by the initiator of the communication. Therefore two modules have been

designed for these purposes:

https://www.dnspython.org/

4.1. PROJECT STRUCTURE 25

1. The Client, which handles all the communication, which is initiated by the primary server.

It contains sending the DNS NOTIFY messages or sending AXFR requests for the zones

comparison.

2. The Server, which handles all the incoming requests from the secondary server and answers

on them. Moreover, this module has to be running in a separated process, as explained

later.

The last, and the most important, component is the module that generates all the test scenar-

ios and decides which data will be answered by the Server. These answers are constructed using

a ResponseManager, which basically takes some records and puts them into a byte-message.

All together, these independent components can make the whole testing happen. The work-

flow is shown in the Figure 4.1. TestCase generates some changes in a zone in the form of

a ResponseManager instance and wants to propagate them into the tested secondary server.

By NotifyManager a Notify message is constructed and then sent to the secondary server via

the Client class. The secondary server is supposed to register this notification and send a

zone transfer query to the Server. In the generated ResponseManager, a response message is

constructed and via Server sent back to the tested secondary server.

Notify Manager

Client Server

Network Analyst

Test Case

Response
Manager

Secondary DNS
Server

TestCase generates changes

1

Pass the SOA RR
2

Create DNS NOTIFY message

3

Send the DNS NOTIFY

4

Ask for changes

5

Pass the request
6

Get response 7

Reply the changes

8

Figure 4.1: Components diagram.

This process might happen all over again until the TestCase would be exhausted. In the

26 CHAPTER 4. IMPLEMENTATION

end, the Client gets the zone content from the secondary server which is then compared with

the expected zone content received from the TestCase.

The NetworkAnalyst does not have any straight impact at any point of this process but is still

present in the Client and Server, so all the statistics are computed during the communication.

4.1.1 Notify manager

The task for every Notify manager is to construct the DNS NOTIFY messages according to the

specification [5], which is then sent by the Client to the secondary server.

Since there are more possibilities for how to correctly create the Notify message (or Notify

request) in the testing software, there is its own module for this purpose. The NotifyManager

abstract class. In its constructor, it takes the domain name as the only argument. The reason

is that the Question section has to contain one entry, where the domain name is required.

This class has also one abstract method and it is get notify message(self, soa rr:

RRset). It takes one argument and that is the Resource Record set (RRset) containing the

SOA record of the zone, which can be possibly added to the message.

The return value is the message, which is supposed to be sent as the notification. A message

(here and even in general throughout this project) is understood as a bytes-form message or an

instance of the dns.message.Message, which gives a higher-level approach over the messages

and also has the to wire() method, which returns the bytes-form message, which is then sent.

The project contains one notify manager class named DefaultNotifyManager. It is con-

structed in the way that it can create both of the most basic Notify messages - either with and

without the hint in the Answer section. In the constructor, it takes another two arguments and

those are the probability of inserting the hint into the message together with a Random instance.

The probability argument is obvious and does not need to be explained. The Random instance

is provided because of the possibility to generate the exactly same text scenario all over again.

This method is widely used throughout the project and is based on controlling the pseudo-

random aspects in random decisions via a seed. A seed is a base number that is passed into the

Random class constructor and the instance then generates the same sequences of numbers every

time. Using this trick it is possible to preserve the functional approach over the testing while

adding some random aspects.

This default notify manager covers three mostly used types of generating the Notify messages.

The one where the hint is always present (when the probability argument equals 1), the one

where the hint is never present (when the probability argument equals 0), and a mix of those

two, where some messages do contain the hint (with some probability) and some of them do

not.

The naive condition for adding the hint into the message would be writing something like if

add soa probability > rand.random(). This can be optimized for the mostly used values, 0

and 1. In those cases, the random number does not have to be computed at all, and therefore

it is possible to reduce some computational time by a simple condition which checks whether or

not does the add soa probability equal to 0 or 1.

4.1. PROJECT STRUCTURE 27

4.1.2 Network analyst

Network analyst is an independent and tangential component used for the network load analysis.

Its instances are passed to the Server and Client, where it collects all needed data for the

statistics.

Every message from the secondary server has to be captured and properly registered. At the

end of testing, it is possible to create a summary of the network load and the tested software

can be then optimized to minimize the load according to these results.

For this purpose, there is a component named NetworkAnalyst. This class takes two im-

portant arguments in its constructor. The first one is just a title of the instance and is used

to distinguish the results of multiple instances in the final summary. The second argument is

a set of analyst modules. These modules are the most important in the whole analysis. The

NetworkAnalyst just groups them together and offers a simple interface for working with all of

them at once - it somehow broadcasts method calls into method calls of all the modules.

AnalystModule is a simple unit for measuring one single quantity. Every message, which is

received from the tested secondary server, is registered via register message(self, message:

Message, time received: float) method and it depends on the particular module, which in-

formation does it take from the message. Moreover, there is also a get results(self) method,

which is supposed to return the computed statistics at the end of the testing in the form of a

string so it can be printed on the standard output.

In most of the implementations, every module collects data only about one single unit, and

this unit is then returned in the get results method in the form of a string. Therefore the

abstract AnalystModule itself creates a variable self.stat unit already in the constructor

and returns it in the get results method. For most of the sub-classes, it is needed only to

implement the register message method. This method is usually pretty simple since it just

collects some data. Most of them can be written just in one line. This makes it really simple to

add other module implementations.

There are 5 module implementations. Two of them measure the time of the first and last

message, one of them counts how many messages have been received, another one counts how

many bytes have been received and the last one counts the message types. As the message type,

it is meant the QTYPE of the first entry in the Question section. In the cases during testing,

there are supposed to be only SOA and XFR queries and therefore this module is sufficient

enough. Even if an unexpected query was received, this method would give sufficient enough

results since most of the queries contain one entry in the Question section as well.

As it has been mentioned before, the NetworkAnalyst is just a tool for grouping these

module instances. It also has the register message method, which broadcasts the arguments

to the modules, and it also has the print results(self) method, which is supposed to print

all the statistics to the standard output. The results are taken from the get results module

method.

This implementation has been chosen, because most of the statistical information is mutu-

ally independent and not every statistics information might be important for both Client and

28 CHAPTER 4. IMPLEMENTATION

Server. This way it is easily configurable and any other statistics aspect can be easily added.

4.1.3 Client

All the communication between this pseudo-primary server and a tested secondary server can be

divided by the one who initiates the communication. There is a component, which is listening

to all incoming connections and answers the queries, named Server (will be described in the

Section 4.1.4). Also, there is a component, which initiates a connection with the secondary

server and sends him a message. This component is named Client.

Reasons for the primary server in this project to initiate a connection are two:

1. Send a DNS NOTIFY message.

2. Send an AXFR request to check the zone.

The Client class takes two arguments in the constructor. The first one is the IP address of

the secondary server in the form of two elements tuple with the address and the port. The second

argument is an instance of NetworkAnalyst, which has been described in the Section 4.1.2. The

client is supposed to register every received message via the NetworkAnalyst.register message

method. In the case of the AXFR response, it is a set of messages containing the whole zone,

and in the case of the notification, it is the confirmation about receiving the message.

The first abstract method (abstract means that it has to be implemented in a subclass) is

send(self, message: BytesMessage). The purpose of this message is very simple - send

a message passed as an argument, wait for the confirmation in the form of an answer and

return the answer. This method is being used for sending the Notify messages generated by the

NotifyManager.

Next method is receive axfr(self, request: BytesMessage). The only argument of

this method is a message containing the AXFR request message. The client is supposed to send

this message and after that receive all messages containing the zone. This list of messages is

also returned. The way how to recognize whether or not all messages have been sent during the

transfer has been explained in the Section 2.5.1 and it is the reason why a special method has

been designed for this purpose.

The last method of the Client is the stop(self) method, which is being called at the end

of testing. This method is not abstract and therefore does not need to be implemented in every

subclass, but should be overridden or extended when a client implementation needs to do some

cleaning, for example closing sockets. By default, it contains only the results printing of the

network analyst instance.

The project contains one client named TcpClient. As the name indicates, this implemen-

tation uses the TCP for communication. Moreover, in the dns.query module there are two

useful functions - send tcp and receive tcp. The main advantage of using those utilities is

that they are working with instances of the dns.message.Message class, which provide a higher

level approach over the message and therefore easier manipulation with details.

4.1. PROJECT STRUCTURE 29

The TCP has been chosen for implementation primarily for the zone transfers reasons. With

larger zones (or even smaller zones with large changes) the zone transfers consist of multiple

messages, therefore TCP (as the safer and more stable protocol) should be preferred.

4.1.4 Server

The second component intended for the communication is the Server and it is supposed to han-

dle all the incoming requests and answer them. The answers are taken from a ResponseManager,

which is generated by a particular TestCase.

This module is basically very simple, but other circumstances make it seem like a complicated

one - the server has to be running all the time so the tested secondary DNS server can connect

to him at any time. This will be described later in the Section 4.2 about the project core, but

for now, it is important to keep in mind that the software is supposed to be doing two things at

once - act as a server and generate changes in a zone - and therefore it has to run in a separated

process or thread.

The constructor of the Server takes 4 arguments:

1. A two elements tuple of an IP address and a port. The server is supposed to run on this

address.

2. A state, which can be understood as a zone state. It is a variable, or a structure, which

is shared between the two processes and using which all the generated changes are prop-

agated to the server so it is able to provide actual data in its answers. By calling simple

state.get responses(request) the server receives all messages which are supposed to

be sent as an answer.

3. An event, which is a multiprocessing synchronization feature. It could be compared to

semaphores in the C language but works a little bit differently. It has just two values -

whether or not is an imaginary flag set. By using three simple methods (set, wait and

clear) is is simple to signalize some events to the other process and get perfect process

synchronization.

4. The well-known NetworkAnalyst instance.

Also, in the constructor, the handler for SIGTERM is set. The SIGTERM means signal termi-

nation and signalizes that the server should be stopped, terminated. This signal is sent from

the main process at the end of testing when there is no need to have a server running anymore.

This handler just raises SigtermException, which is supposed to be caught (or excepted, in

the language of Python) by the particular server implementation so the server can be stopped

properly - close all sockets and print the analysis results.

The abstract Server class has 3 methods to be implemented - start, run and stop. During

the run-time of the program, they are called in this very order. Neither of them accepts any

arguments nor returns any value. In the start method, the server is supposed to prepare needed

sockets bound to the address, which had been passed to the constructor. The run method should

30 CHAPTER 4. IMPLEMENTATION

contain the (infinite) loop for managing the queries received from the tested secondary server

until the SigtermException is raised. And finally, in the stop method, the server is supposed

to finish its job and properly stop itself.

As it was mentioned, in the constructor there is the state argument with its get responses

method. This method returns a tuple with two items - responses and force close. The

responses part is a list of messages to be sent as an answer. The force close part (or flag) is

a True/False value indicating whether or not should be the connection closed right after sending

the last message from the responses list. Using this it is possible to pretend a blackout, server

error, or any other unexpected circumstances. The tested secondary server must survive it (in

the meaning of not terminating) and also the zone must remain correct.

As well as the Client, the project contains one server, which uses the TCP for communication

- TcpServer. The reason is the same - zone transfers consisting usually from multiple messages

and therefore TCP gives the certitude of successful transfer.

One more thing, which the server has to do after serving the responses, is setting the event

flag. It works as a notification for the other process, that the zone transfer should have been

done and therefore generation of another zone changes may begin.

4.1.5 Test scenarios

The last fully modular component is the TestCase. It configures and manages the whole zone,

cares about its changes, determines which records should be present on the side of the tested

secondary server, and so on. The simplest explanation would be that a test case just prepares

some initial data (data in the meaning of default resource records of a zone), then generates some

changes and at the end determines the expected set of resource records, which is then compared

with the final resource records of the secondary server. But the design of this component is

much more abstract, so the test cases can be way more complex.

The TestCase works mostly with the Response managers, which will be also described in

this section. These Response managers are then shared with the Server, which uses them for

receiving answers on all the queries accepted from the tested secondary server.

The management of test scenarios is the most important part of the project, so it is no

wonder that this component is the largest. For better understanding, the description is split

into two parts - the scenario generator itself and the ResponseManager.

Response manager

The ResponseManager is an abstract interface, which figures as an intermediary segment between

test scenarios and the Server. It determines concrete versions of messages according to the query

received from the secondary server and the data received from the TestCase.

Firstly, it might be a good idea to describe the interface itself and later on explain the

interest of the TestCase, because the idea of this component is basically pretty simple. It

is just a class, which implements two methods: get soa rr(self) and get responses(self,

request: Message).

4.1. PROJECT STRUCTURE 31

The get soa rr is supposed to return the SOA RRset. Since there can be only one SOA

record in a zone, this RRset contains exactly this one record. It is used as argument for the

method NotifyManager.get notify message.

The other method, get responses, has been actually already mentioned in the Section 4.1.4

(Server). This method takes as an argument a message, which was received from the secondary

server, and is supposed to return a tuple with a list of messages to be sent together with the flag,

whether or not should be the connection immediately terminated. The design is really abstract

and therefore all the implementations might do whatever they want - answer regular responses,

answer just half of the response, do not answer at all, answer only a non-zero error code, answer

just random bytes with no DNS meaning, and so on. Of course, the most used answer will be

the first type, where the server answers a regular response filled with valid data received from

the TestCase, but it is important to keep in mind, that there are actually no limitations and

therefore it is possible to reproduce any scenario with this design and mechanism.

The most common (and most generalized) usage is, of course, answering regular responses. In

those responses, the most variable part is the answer section, which contains just a list of records

(which are generated by a TestCase). For this purpose, there are already 3 implementations.

First and the most abstract implementation is named DummyResponseManager. In the con-

structor it takes the SOA RRset (which is used for answering on SOA queries), the AXFR

content (list of resource records sets used for answering on AXFR queries) and IXFR content

(again list of resource records sets used for answering on IXFR queries). In the get responses

method it just maps the question type to the corresponding content.

Second implementation extends the DummyResponseManager. It overrides the IXFR content

with the AXFR content and therefore it is named AxfrResponseManager. Because no IXFR

content argument is needed, the constructor is left only with the two arguments for SOA and

AXFR. This response manager is not used only on special occasions to test a server if it is able

to process the AXFR response on IXFR query, but it is also used for the very first query, where

the tested secondary server just downloads the initial data, the initial zone content.

The third implementation, named BasicResponseManager, also extends the first one, even

with two things. Firstly, the constructor takes much more arguments. Old SOA record, new SOA

record, all records of the zone, removed records during the zone change, and added records during

the zone change. The content for AXFR and IXFR responses is then constructed simply from

these arguments, which saves lots of effort and repetitive work during the scenario generation.

The other thing, which is improved, is the zone serial number check during the IXFR. The query

contains a SOA record in its Authority section. This record is then compared with the old SOA

record of the zone and if there is a mistake, AXFR response is replied instead.

During message construction, it is important to keep in mind the maximum limit of the

message size. The dns.message.Message class works with data and at the end, during the

conversion into the bytes form, it executes the final compression. It can easily happen that the

message is too large and therefore cannot be sent. The DummyResponseManager solves it in the

way that it tries to convert the message into the bytes form and if it fails, it randomly splits

32 CHAPTER 4. IMPLEMENTATION

the content of the message (in the meaning of the Answer section, which is the largest one)

and makes multiple shorter messages from the original large one. This mechanism continues

recursively until all messages are short enough to be sent.

Because the software is not supposed to be fully deterministic (by randomization, larger

scale of cases is covered), this splitting of a message is randomized. Also, the response manager

uses the randomization trick described before - it takes a Random instance in its constructor as

an optional argument to be able to produce the very same splitting sequence all over again, if

needed.

So the response manager is supposed to generate concrete messages, but not changes in a

zone nor any other data. For these purposes there is the TestCase component.

Another implementation of the response manager, which would boost the randomization and

the scale of possible scenarios, is to return an AXFR response on IXFR query once in a while.

In case there is an IXFR query, the response manager would (with some probability) respond

with the AXFR message and the tested secondary server would have to adapt to it.

TestCase

TestCase implementations generate various test scenarios and also define the expected state

of a zone on the side of a tested secondary server. They have 3 abstract methods, which are

essential for the testing, and one other method, which has a huge impact on the test and its

default implementation can be overridden.

The first abstract method, which is used at the beginning of testing and must be imple-

mented, is named get init data(self). This method returns a ResponseManager, which

contains the initial records of a zone. The test scenario may want to have the zone completely

clean, but every zone must contain at least a SOA record and therefore the zone is not literally

clean and its initial form has to be propagated to the secondary server as well.

Another abstract method is the next (self) method. All the changes are generated here

and this method also returns a ResponseManager. Instances are supposed to remember their

inner state and adjust those changes to it. Once all changes have been generated, this method

should raise a StopIteration exception, which is a signal to stop the testing.

Last abstract method is get zone(self) and, how the name indicates, returns the actual

zone in the form of a dns.zone.Zone instance. The content of the zone must be adapted to the

inner state of the TestCase instance. If the testing software decides to check the zone of the

secondary server, this zone is used as the expected state. If these zones differ, an exception is

raised and the test is designated as failed.

There is one more method, which can be overridden and it is require zone(self). The

return value is either True or False and it means whether or not should the testing software

run a zone check - check the zone of the secondary server. Thanks to this feature it is possible

to enforce a zone check any time in the middle of testing, for example after a dangerous zone

update.

The design of the test cases is very simple and together with the response manager compo-

4.1. PROJECT STRUCTURE 33

nent, they make up a very strong testing utility. Moreover, the design of the test cases is even

abstract enough for creating so-called wrappers. A wrapper is a TestCase subclass, which takes

another class as an argument and just slightly changes its behaviour.

An example is the XfrBlackoutTestCase. This wrapper takes another test case and in

every iteration, it firstly returns a modified response manager and after that the normal, original,

response manager. The modified one is just another wrapper over the normal response manager,

which cuts all the messages in half and sends just the first half. After that, it forces the server

to immediately close the connection and pretend a blackout.

Utilities for generating random values

During generating the test data, there are a few functions, which might be useful. Mostly they

help during randomization when it is needed to come up with some values.

A simple, but often used function is a function for a random TTL. The maximum value for

a TTL is 231 − 1 seconds, which equals to more than 68 years.

Another utility is the get zone from records function. It takes a list of resource records

sets as an argument and returns a dns.zone.Zone instance. This may come in handy since

there is a need to put all resource records to the response manager for the AXFR responses and

also to get the Zone instance in the get zone method.

A next useful function is for generating random domain names. This may seem to be really

simple, but it is actually not really true. Domain names have few rules and limitations, which

have to be observed. The maximal length of a domain name is 253 characters. Every domain

name consists of labels, which are separated by dots and whose maximal length is 63 characters.

Because of the labels limitation, it is a good idea to generate a new label, add this label to

the beginning of a domain name, and repeat this procedure while the whole domain name is not

long enough.

The problem is that at the end it might miss just one character until the name has the desired

length. But by adding one more label, one dot is also added and it makes two more characters,

which overfills the domain name. A naive solution is not to add a whole new label (when just

one character is missing), but just add one single character to the lastly added one. And yet,

it is not a sufficient solution. It might happen, that the last label is exactly 63 characters long,

and adding the one character breaks the rule about labels.

Although the task sounds pretty simple, the solution is not. There are lots of rigours which

must be covered. An example of an implementation is in the Figure 4.2.

Another completely different solution might be generating random strings and then checking

whether or not is the string a valid domain name with a regular expression, as shown in the

Figure 4.3. Surprisingly, this solution is only 3.5 times slower than the previous one (measured

10 times with 1000 function calls) while being much shorter and the code is more readable. But

it brings lots of complications. For example, there is still a (very) small chance that the function

might run for an extremely long time or the necessity of coming up with a regular expression,

which might not be simple for more complex domain names.

34 CHAPTER 4. IMPLEMENTATION

Note that these functions do not generate all possible domain names, but only a subset,

which is the most common. Although there is RFC 3696 [8], which introduces some sort of

”preferred form” of a domain name, the RFC 2181 [9] permits any combination of bits. This

allows even non-ASCII labels, as described in the RFC 3490 [10]. The .cz domain is ready for

the implementation of Internationalized Domain Names (IDN), but it has not been implemented

yet due to low interest from the community (sourced from https://háčkyčárky.cz/).

while curr_len < max_length:

label_len = min(

[max_length - curr_len - 1, rand.randint(1, 63)])

It's a trap, not enough space for the last label!

if max_length - curr_len - label_len - 1 == 1:

We cannot enlarge the label, just generate another label length

if label_len == 63:

continue

Or we can enlarge the label length by the missing one byte

else:

label_len += 1

labels.append(rand_label(label_len))

curr_len += label_len + 1

Figure 4.2: Example implementation of generating a random domain name.

characters = string.ascii_lowercase + string.digits + '-.'

while True:

s = ''.join(random.choices(characters, k=252))

if re.match(r'^([\w\d-]{1,63}\.)+[\w\d-]{1,63}$', s):

return s

Figure 4.3: Example implementation of generating a random domain name using random strings.

4.1.6 Quick overview

It is not easy to keep track of all the components described above and think about how do

they cooperate together. The diagram in the Figure 4.4 should help to illustrate how are the

components and their implementations segmented and which components are used together.

Red lines represent inheritance between particular classes (the outer classes inherit from the

inner ones). For example in response managers, OneByOneAxfrResponseManager inherits from

AxfrResponseManager, which inherits from DummyResponseManager, which finally inherits from

the original abstract ResponseManager class.

Rectangles represent components. Most of them have been already described above, so

now it should be clear that each component is a class with abstract methods, which are then

implemented in particular sub-classes. (The only exception is the NetworkAnalyst, which is

not abstract, because it would not have any benefits, but it does not matter. It is just an

implementation detail.)

4.1. PROJECT STRUCTURE 35

TestCase

ClientServer

NotifyManager

NetworkAnalyst

AnalystModule

ResponseManager

TcpServer

 FirstMessageTimeModule
 LastMessageTimeModule

 MessagesCounterModule

 BytesCounterModule

 MessageTypesCounterModule

 TcpClient

 DefaultNotifyManager

 DummyResponseManager

 AxfrResponseManager

OneByOneAxfrResponseManager

 BasicResponseManager

 BlackoutResponseManager

JournalTestCase

ComplexTestCase

SOAChangesOnlyTestCase
SerialNumberArtihmeticTestCase

BasicATestCase

MultiIncrementalTestCase

XfrBlackoutTestCase

SingleRecordTestCase

NameOcclusionTestCase

SingleRecordAxfrTestCase
AbstractRecordGenerator

GenericRecordGenerator

OneByOneSoaRecordGenerator

MaxDiffSoaRecordGenerator
ARecordsGenerator

MXRecordsGenerator
NSRecordsGenerator

UnknownRecordsGenerator

Figure 4.4: Hierarchy of used classes and components.

36 CHAPTER 4. IMPLEMENTATION

Green lines represent cooperation between individual classes, as described below (goes from

top to bottom):

• NetworkAnalyst contains a set of AnalystModule that gather some information and create

statistical data.

• Client uses NetworkAnalyst to collect information about the network load.

• Server uses NetworkAnalyst to collect information about the network load as well.

• Client uses NotifyManager for creating all DNS NOTIFY messages.

• Server uses TestCase for answering queries from the tested secondary server.

• TestCase uses ResponseManager for providing bytes as answers to queries.

• NotifyManager uses TestCase for providing the SOA record used in DNS NOTIFY mes-

sages.

• And finally, some test cases use AbstractRecordGenerator for generating some records,

but this part has not been described nor mentioned yet.

The blue highlighted part of the diagram (blue background) has been just described in this

section (Section 4.1). So the blue part together with stuff associated with those components

should sound familiar at the moment. In the next section (Section 4.2), it will be described how

these components interact with each other in more details.

The yellow highlighted part of the diagram (yellow background) refers to test scenario im-

plementations and have not been described yet, it will be described in the Section 5. If the

hierarchy of described classes will not be clear, this diagram should make it better.

4.2 Project core

All modules with their abstract interface have been introduced. The last thing is to put them

together to create a solid testing utility. And that is what the last component, Core, is for. It

tries to implement (and moreover, extend with other features) the simple and ideal workflow

showed already in the Figure 3.1.

The task for the core is to receive a configuration via its arguments and make the whole

testing happen. Use all the designed modules and components in the way they are supposed to

be used and also compare the results of the testing.

Core implementation

The Core class takes lots of arguments in the constructor. Some of them are just passed into

constructors of other components, some of them are used for the configuration of the testing,

which makes the scope of possible test scenarios again even larger. The arguments are:

4.2. PROJECT CORE 37

• domain containing the tested zone domain name.

• client with the Client instance.

• test case with the TestCase instance. This test scenario is being used for the testing.

• notify manager is the instance of NotifyManager.

• server cls containing the Server class. The whole class, not an instance! The class is

then started in its own process.

• test server ip is a tuple with an IP address and a port, where is the server supposed to

run. Of course, it has to be identical to the primary server, which is set in the configuration

of the tested secondary server.

• server network analyst with an instance of the NetworkAnalyst, which is then used in

the server.

• iter wait is a value determining whether or not should the first process (process, which

is generating zone changes) wait for the other process (the server process, until the last

generated zone transfer happens). It can be either a True/False value or a function re-

turning a True/False value. Using the function approach, it is possible to randomize it or

affect it in a deterministic way. Together with specific test cases, it may create interesting

scenarios. Note that this function is not supposed to accept any arguments.

• iter sleep describes whether or not should the process give some time to the secondary

server to process the transfer before generating new changes. Basically, it is a sleep at the

end of every iteration. The value can be either None (do not give any extra time, do not

sleep the process), a float (static sleep time at the end of every iteration), or a function

returning a float. Again, using this approach it is possible to make the scenario scale

larger. Note that even this function is not supposed to accept any arguments.

• compare zone attempts. When there is a zone check and a zone comparison fails, the

reason might be that the secondary server has not managed to apply the changes yet and

just needs some more time. Therefore, it is possible to give it some time and repeat the

zone check a few more times. This number gives how many tries should be performed.

• The last argument is compare zone sleep time, which sets the sleep time between the

zone checks attempts.

These arguments represent a configuration for running the test. As described below, the class

consists of three main parts and functions, which has to be called in this very order: start, run

and stop. As well as in Server or Client components, neither these methods do not accept

any arguments.

The start method sets up the shared resources (in the meaning of shared between the

two processes) and then starts the server in its own process. The reason is that the server

38 CHAPTER 4. IMPLEMENTATION

must be available the whole time, so the tested secondary server can connect to it and ask

for data. Meanwhile, it is needed to generate some changes in the test case and this might be

computationally intensive, so some queries might run out of time before they would be answered

if everything was done just in one single process and one single thread. Unfortunately, Python

has a feature called Global Interpreter Lock (GIL), which allows only one thread to hold control

over the interpreter. In other words, in Python, two different threads are not running at the

same time. Therefore threads would have not solved this issue. Neither would have using the

asyncio library (Asynchronous Input and Output). The only possibility is to split it into two

processes and communicate via some shared objects.

The second method to be described is the run method, but since it contains more stuff to

explain, a special section will be dedicated to this topic.

Last method is the stop method. It just stops other dependent components so the program

can terminate successfully. Firstly it sends the SIGTERM to the Server. As described in the

Section 4.1.4 about servers, it handles the signal, closes all sockets, and peacefully shuts down

the server. Then the main process joins the server process, so no collisions happen (the collision

might be for example mixing the printings of analysis between the Client and the Server).

After the server process is terminated, the shared structures are destroyed and after all the

Client.stop method is called. By this, the whole testing ends and the program terminates with

zero (means successful) code.

The run method

This method takes care of the whole testing process, mechanism. After the server starts, in

the shared ResponseManager there is the return value of the TestCase.get init data method,

which contains the basic and initial data about the zone.

When the tested secondary server downloads these data, a signal is sent to the run method

and all the test iterations might begin. At this point, it is known that the secondary server is

properly configured and is running, ready for testing.

The first set of changes is generated. The new response manager is set to the shared structure

so this change can appear in the server as well. The SOA RRset is passed to the notify manager

and a DNS NOTIFY message is sent from the client to the secondary server. At this point, it

is expected that the secondary server is going to ask for changes and process the zone update.

According to the iter wait configuration, the process either waits for the zone transfer or

immediately continues. Next, according to the iter sleep configuration, it either sleeps for a

while or immediately continues again.

At the end of every iteration, now, the test case can determine whether or not should

be executed a zone check. As described before, it is conditioned by the return value of the

TestCase.require zone method. If the zone check is required, it is also executed.

The zone check starts in the client, which sends an AXFR query to the secondary server.

The answers are then passed back to the Core, where the zones (received and expected one) are

compared. Unfortunately, in the equality implementation (eq method) of the dns.zone.Zone

4.3. RUNNING A TEST 39

class, the TTL is not taken into consideration. Therefore, own zone comparison, which checks

even TTL values, had to be implemented.

If the zones are not equal, another zone check attempts are executed according to the con-

figuration. If none of those attempts are successful, the testing immediately ends.

If the zones are equal, testing continues until there are no more zone updates to propagate to

the secondary server. When the test case is out of zone updates, one final zone check is executed.

After this last zone comparison, the method ends and calling the stop method is expected.

4.3 Running a test

Running a test is just a matter of configuration. Lots of details can be adjusted through the

Core constructor. Set up a domain, a client, a server, a notify manager and primarily the test

case, create a Core instance and run the trio start, run and stop.

At this point, calling the 3 main methods (plus constructor) is needed. However, it does

not satisfy the requirement, which has been set down in the Section 3, that It is expected that

one function takes some configuration parameters and the whole testing process will be executed

automatically according to the parameters. Therefore the shortcut has been created and it is

possible to trim the code to just calling Core.test(args). The arguments are passed to the

constructor and the three methods are called in the correct order.

Remember, that the tested secondary server must be also properly configured. Lots of

implementations restrict zone transfers due to security reasons. For every zone (corresponds

to the domain argument) a set of primary servers must be provided (has to contain the server

address) as well as a set of servers, from which it can receive the DNS NOTIFY messages (again,

has to contain the client address). And last but not least, the secondary server IP address and

port must be set accordingly to the address given to the Client.

All the configuration is prepared in the main file. It is only needed to edit the configuration

according to the particular needs and then run simply python xfr tester. When the software

is running, it is possible to invoke the secondary server to download the initial zone and then

the testing process begins automatically.

4.4 Requirements fulfilment

All the structure and components have been deeply described and explained. It is important to

have a look back and check whether or not are all the predefined requirements fulfilled, whether

or not is the design correct.

• ”The possibility to reproduce every possible scenario which could ever happen.”

The ResponseManager can return any sequence of bytes, which is then sent. Therefore it

is possible to send anything, it is possible to reproduce any scenario.

• ”Make test scenarios implementation as easy as possible.”

There are prepared basic implementations of the ResponseManager, which simplify the

40 CHAPTER 4. IMPLEMENTATION

conversion of data (records) to a message. Also, the TestCase abstract design does not

have many methods to be implemented and after all, there are some helpful utilities, which

can be used during testing. The software is able to handle the raw byte data, but also it is

compatible with the dnspython structures bringing a higher-level approach over the DNS

messages.

• ”The ability to configure independent modules and create a wider range of possible test

scenarios.”

The abstract design fulfils this requirement in general. All independent parts of the mech-

anism (both the testing mechanism and the zone transfer mechanism) were detached and

the final configuration can mix different combinations of implementations.

• ”The ability of the final software to be extended.”

One example of possible extensions are for example the wrappers of test cases or the

implemented Response managers. But all the modules are, thanks to the OOP approach,

fully extendable.

• ”It is mandatory the software must be easy to run.”

The project itself needs just a Python interpreter and installed package dnspython. The

testing can be run using only one command, python xfr tester, which then runs the

predefined configuration. In the code, the testing is started by calling one single method,

which then starts the whole workflow - Core.test(args).

• ”At the end, the software will verify the correct processing of all the zone changes by the

secondary server.”

It is being done and moreover, the zone check can be executed any time in the middle of

the testing. It is suggestible in the TestCase.

• ”The software will collect basic statistics about the network load, which can be then used

to compare different implementations.”

This is done by the NetworkAnalyst. The concrete set of modules is easily configurable

and implementation of new modules can be also very simple - even one-liners, as described

before.

Chapter 5

Test cases implementations

At this point, all the testing environment is designed and all the components have at least one

implementation, which can be used for testing. It is the right time for creating the basic set of

scenarios to show, how is this testing tool supposed to be used and which can be then used for

testing a real server implementation.

5.1 Default set of implemented test cases

The very first, basic and the simplest test scenario is BasicARecordsTestCase. It starts with the

serial number 1 and 10 A records in the zone. Then, in every iteration, all records are removed

and replaced by another 10 records. The serial number is incremented by 1. The values of the A

records have the form 127.0.X.Y, where X represents the iteration number (starting with 1 for

initial records) and Y is an index of the particular record in each iteration, so values from 1 to

10. Thank to this indexing rule, it is possible to build the whole zone in every situation, the only

needed information is an index - the iteration number. All the other data (TTL of records and

SOA refresh, retry, expire, and minimum attributes) are static, so they are not changed during

the zone changes. An example of one message with an incremental change between versions

with serials 1 and 2 is showed in the Figure 5.1.

This scenario is very simple, therefore, unlikely to be inaccurately processed. However, it

is also important to test the most obvious scenarios and is advised to have at least one simple

scenario. By using this simple test case, it is possible to check that everything is configured

correctly and failures of other, more advanced, test cases are not caused because of various

setting incongruities.

Next test case, which has been implemented, is the SingleRecordTestCase. In this scenario,

a set of records is removed and immediately added back to the zone. So every increment is

semantically empty but syntactically nonempty. Moreover, if there are not any other records,

the zone is completely empty after applying the remove part of the increment. This situation

might be forbidden in the configuration of some server implementations, for example BIND9 has

empty-zones-enable option. But after applying the other part of the increment, the add part,

the zone becomes non-empty (and therefore valid) again. The secondary server must not fail in

41

42 CHAPTER 5. TEST CASES IMPLEMENTATIONS

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=zone., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | zone. IN SOA serial=2 |

| zone. IN SOA serial=1 |

| zone. IN A 127.0.1.1 |

| zone. IN A ... |

| zone. IN A 127.0.1.10 |

| zone. IN SOA serial=2 |

| zone. IN A 127.0.2.1 |

| zone. IN A ... |

| zone. IN A 127.0.2.10 |

| zone. IN SOA serial=2 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 5.1: Example of BasicARecordsTestCase increment change from version 1 to 2.

the middle of the transfer and must apply the whole increment. Since the zone content looks

exactly the same every time (only SOA record changes), it is simple to build the whole zone for

the final check.

An example of this test case is in the Figure 5.2. Increment from the serial 4 to the serial

5 consists of deletion and addition of two same records, A records with values 127.0.0.1 and

127.0.0.2. Note that it is not the same, as the first example. Here the very same records are

immediately added back, while in the first case the records have been changed, so the increment

was not semantically empty.

Another test case is MultiIncrementalTestCase. It tests the capability of processing one

zone transfer message consisting of multiple increments, as described in the Section 2.5.2 about

IXFR messages. This situation is not really common, because usually, the primary servers try

to propagate all changes to secondary servers immediately, before any other increment appears,

but yet must be covered accordingly to the specification.

Every zone transfer consists of N increments, in every increment one A record and one MX

record are removed and one A record and one MX record are also added. Again, the whole zone

can be built just by knowing the actual iteration index, so the final zone check can be done

easily.

An example is showed in the Figure 5.3. The message contains serial changes 1 −→ 2 −→ 3 in

one message (so the N parameter equals to 2), every time A and MX records from the previous

version are removed and new records are added. The A records are different in the last part of

the IP address, the MX records differ in the sub-domain of the exchange attribute.

Next implemented test case is SOAChangesOnlyTestCase. As the name indicates, the changes

in this scenario are only in the SOA records. All other records remain untouched. The IXFR

5.1. DEFAULT SET OF IMPLEMENTED TEST CASES 43

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=zone., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | zone. IN SOA serial=5 |

| zone. IN SOA serial=4 |

| zone. IN A 127.0.0.1 |

| zone. IN A 127.0.0.2 |

| zone. IN SOA serial=5 |

| zone. IN A 127.0.0.1 |

| zone. IN A 127.0.0.2 |

| zone. IN SOA serial=5 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 5.2: Example of SingleRecordTestCase increment change from version 4 to 5.

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=zone., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | zone. IN SOA serial=3 |

| zone. IN SOA serial=1 |

| zone. IN A 127.0.0.1 |

| zone. IN MX 1000 m1.zone. |

| zone. IN SOA serial=2 |

| zone. IN A 127.0.0.2 |

| zone. IN MX 1000 m2.zone. |

| zone. IN SOA serial=2 |

| zone. IN A 127.0.0.2 |

| zone. IN MX 1000 m2.zone. |

| zone. IN SOA serial=3 |

| zone. IN A 127.0.0.3 |

| zone. IN MX 1000 m3.zone. |

| zone. IN SOA serial=3 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 5.3: Example of MultiIncrementalTestCase incremental changes.

44 CHAPTER 5. TEST CASES IMPLEMENTATIONS

message contains only 4 SOA records in the Answer section, which might seem a little bit strange,

but it is a completely valid scenario.

The initial zone contains 3 A records and 2 MX records by default. Then, only SOA record

is changed, nothing is removed or added, so the final zone consists only from the default records

and the actual SOA record, which is given by the iteration number (how many iterations have

been executed).

Example of this increment is in the Figure 5.4, where the only change is in the SOA serial

number 5 −→ 6.

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=zone., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | zone. IN SOA serial=6 |

| zone. IN SOA serial=5 |

| zone. IN SOA serial=6 |

| zone. IN SOA serial=6 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 5.4: Example of SOAChangesOnlyTestCase incremental changes.

Following test case, SerialNumberArithmeticTestCase, is not so simple and it is needed

to explain serial number arithmetic first. This topic is described in RFC 1982 [11] in details.

Basically, the SOA SERIAL number is an unsigned 32-bit integer, which as a data type gives

enough space, but not infinite space, so after some finite time, the defined space for serial

numbers might overflow.

The solution is to merge the beginning of the scale (0x0 in HEX) and the end of the scale

(0xffffffff), so 0xffffffff + 1 = 0x0. In the mathematical terms, it can be expressed

as c = (a + b) mod 232. In this way, the scale becomes infinite (or to be more precise - the

increments can be done infinitely), but the comparison mechanism must also be adjusted. Reason

is obvious - 0x0 is less than 0xffffffff, even though it actually comes right after.

Comparison of two numbers is more complicated. Two numbers are equal if and only if they

are the same (if and only if they have the same bites representation). Then, according to the

specification [11], a is greater than b if and only if a is not equal to b and:

(a < b and b− a > 231) or

(a > b and a− b < 231)
(5.1)

That is the exact definition, but it is not really clear how it works. The comparison can be

understood in the way, that a is greater than b, if and only if the count of increments from b to

a is lower than the count of increments from a to b. It can be visualized via a circle, as shown in

5.1. DEFAULT SET OF IMPLEMENTED TEST CASES 45

the Figure 5.5. Numbers are being incremented clockwise, and the length from b to a is smaller,

than the length from a to b. Therefore, serial number a is greater than serial number b.

b

a

0xffffffff 0x0

Figure 5.5: Serial number arithmetic visualized with a circle.

A problem appears when the count of increments from a to b is the same as the count of

increments from b to a. In this situation, an attempt to use this ordering operator produces an

undefined result.

In the real-life operation it means that serial numbers with their maximum difference of

(232/2) − 1 = 231 − 1 = 2 147 483 647 can be compared while the result still corresponds to

reality. If a secondary server is off for a long time, a zone could make up to 231 increments and

the mechanism would still work perfectly. For illustration, 231 seconds is over 68 years. But

the serial number is not required to increment by 1. The increment between zone versions can

be higher. One approach for numbering the zone versions is described in the RFC 1912 [12].

The recommended syntax is YYYYMMDDnn, where YYYYMMDD is the date of the zone change and

nn is the revision number of the day (this revision number increments by one and resets to 01

every day). This format is enough for updating the zone every 15 minutes (what is enough for

practical usage) and will not overflow until the year 4294.

SerialNumberArithmeticTestCase is testing exactly this ability to compare serial numbers

and refuse zone transfers with serial number, which is not higher than the actual one. Some naive

implementations of DNS servers may ignore this restriction because it is not very ordinary situa-

tion. During the testing, one regular zone transfer is generated (for example 1 −→ 2 147 483 648,

difference 231− 1) and after that one false zone transfer is generated (2 147 483 648 −→ 0, differ-

ence 231). The tested secondary server is supposed to refuse the second transfer.

46 CHAPTER 5. TEST CASES IMPLEMENTATIONS

Another implemented test scenario is NameOcclusionTestCase. Name occlusion is a situa-

tion, which appears in a combination of Name Server (NS) records with other types of records.

It is described in the RFC 2136 [13]. NS records delegate a part of a zone (it could be said

subdomain) to another server, but there might still be some records in the part of the zone,

which has been delegated somewhere else. Those records are fully-fledged, they still belong to

the zone, but they cannot be reached during a resolving. For illustration, think of the following

example.

A com. server has the following records:

example.com. 600 IN NS ns.example.com.

www.example.com. 600 IN A 127.0.0.1

A resolver is looking for the A record of www.example.com. It asks a root server. The root

server answers with an NS record of com. domain. The resolver asks this server with the same

question. Now, the com. server knows a desired A record of www.example.com., but it answers

with the NS record, which points to ns.example.com., so the resolver asks this name server and

uses its A record (which can be possibly different). The A record from the com. server with

the value 127.0.0.1 has been somehow ignored, but only during the resolving! This record still

belongs to the zone and must be taken into account while zone transfers.

One of the main purposes of DNS servers is to provide fast and correct results. Therefore

some server implementations might use some kind of efficient structures or algorithms to provide

these answers more quickly. But it is still important for zone transfers to keep all the records

and work with them (the NS record might get deleted and then the ”ignored” A record stops

being ignored). And that is exactly what is this test case for.

In the beginning, the zone consists of some NS records, then some static A records (static in

the meaning that they are not changed during zone increments), and some dynamic A records

(dynamic in the meaning that they are changed during zone increments). One zone change

removes the dynamic A records together with the NS records and replaces them with new A

and NS records. One change is showed in the Figure 5.6.

The last simple test case is named JournalTestCase. Changes of a zone are saved into

so-called journals. It is useful to have a facility to take a journal and re-run the scenario. And

that is exactly what this implementation does. It takes a journal, parses it, and tries to apply all

the changes in a specified order. An example of a journal (created by KnotDNS) is illustrated

in the Figure 5.7. The first section contains the initial zone version with serial number 1, 1 NS

record, and 3 A records. Then it contains one incremental change, which is divided into two

parts - removed and added. It is actually a journal of the NameOcclusionTestCase described

before.

The most important part of this journal test is reading and parsing a journal file. Every row

contains either a comment (starts with two semicolons) or one record. Every record consists of

4 parts separated by a tabulator - domain name, TTL, record type, and record value. A class of

the records is not included in the journal file, so the IN class (= 1) is used by default. Every line

containing a resource record is properly parsed and converted to a dns.rrset.RRset instance.

5.1. DEFAULT SET OF IMPLEMENTED TEST CASES 47

+---+

Header | OPCODE=SQUERY, RESPONSE |

+---+

Question | QNAME=zone., QCLASS=IN, QTYPE=IXFR |

+---+

Answer | zone. IN SOA serial=4 |

| zone. IN SOA serial=3 |

| zone. IN NS ns.g3.i1.zone. |

| dyn.i3.zone. IN A 127.0.3.1 |

| zone. IN SOA serial=4 |

| zone. IN NS ns.g4.i1.zone. |

| dyn.i4.zone. IN A 127.0.4.1 |

| zone. IN SOA serial=4 |

+---+

Authority | <empty> |

+---+

Additional | <empty> |

+---+

Figure 5.6: Example of NameOcclusionTestCase incremental changes.

;; Zone-in-journal, serial: 1, changeset: 1

;; Added

zone. 600 SOA zone. admin.zone. 1 600 600 600 600

zone. 600 NS ns.g1.i1.

dyn.i1.zone. 600 A 127.0.1.1

static.zone. 600 A 127.0.0.1

static.zone. 600 A 127.0.0.2

;; Changes between zone versions: 1 -> 2, changeset: 2

;; Removed

zone. 600 SOA zone. admin.zone. 1 600 600 600 600

zone. 600 NS ns.g1.i1.

dyn.i1.zone. 600 A 127.0.1.1

;; Added

zone. 600 SOA zone. admin.zone. 2 600 600 600 600

zone. 600 NS ns.g2.i1.

dyn.i2.zone. 600 A 127.0.2.1

Figure 5.7: Example of journal for JournalTestCase.

48 CHAPTER 5. TEST CASES IMPLEMENTATIONS

The journal is composed of some sections - the initial zone version and particular zone

increments. Each zone increment section consists of two more sub-sections - removed and added

records. When reading a journal, it is possible to orient by the comment rows to distinguish

between different sections. But this approach is not very stable since the comment formats

might differ between products or even versions of one product. A more general approach is to

observe the SOA records because every single section begins with a SOA record and the sections

repeat regularly.

The last important piece of information to mention is the size of a journal. A journal can

be a few gigabytes big, so it is a bad and dangerous idea to parse the whole journal and then

start the testing. A better approach is to read the journal progressively, section by section, and

every time when a new section is needed.

The implementation of JournalTestCase takes a reader generator as an argument. The

generator is supposed to read a journal and yield every record. The test case then calls the

generator every time, when new records are needed and groups the records into desired sec-

tions. This design allows to have only one shared test case implementation and provide multiple

different journal readers for multiple different journal formats.

Also remind the XfrBlackoutTestCase from the Section 4.1.5. Using this wrapper, it is

possible to extend every described test case and create other unique scenarios.

5.2 Complex test scenario

All these simple test cases have one thing in common - they just fill a message with some data.

It would be possible to randomly generate some records and insert them into some messages.

Possibly, after some time, the randomization might cause that all the previous scenarios would

be tested - it might generate a message without changes, just an increment of the SOA serial

number (alias SOAChangesOnlyTestCase). Or it could generate a message with multiple incre-

ments (alias MultipleIncrementTestCase). It could also generate the same combinations of

NS records with other types of records (alias NameOcclusionTestCase). Or it could remove a

record and immediately add it back into the zone (alias SingleRecordTestCase).

This test case would just use some random records, insert them into some messages and all

these cases might be covered, if the test runs for a long enough amount of time. Simple as that.

The question is how to solve the randomization and which records should be used.

It should depend on the configuration. If completely everything would be random (random

domain names, random record types, random record values, and so on), the space of all possible

combinations would be so huge that none of the previously described situations could be possibly

generated (actually could, but the probability would be approaching zero). But also, it might be

intended to have this randomized test case, so it should be also possible to randomize completely

everything.

Test case like this was also designed and implemented. It is named ComplexTestCase and it is

based on records generators. A record generator is an abstract interface, whose implementations

take care of generating the records, which are then inserted into messages, so it is possible to

5.2. COMPLEX TEST SCENARIO 49

control the randomization aspect, as it was required.

5.2.1 Records generators

A record generator takes care of records, which are then used during the testing. It is a

very simple component, which has an abstract interface with two methods - next add() and

next remove().

The first method, next add(), is supposed to generate a record, which is then added into

a zone. It returns a dns.rrset.RRset instance, which contains the generated resource record,

and this RRset is also inserted into the XFR message. Which particular resource record is

generated, it depends on the purpose of every implementation. One can focus on generating

some records with the same type, another one can focus on generating records of a domain or

some implementations can generate just completely random records.

The second method, next remove(), takes care of removing the generated items from the

zone. It returns either a record (again in the form of a RRset instance) or None. The returned

record must have been generated by the next add() method first!

Most common implementations would just generate some records in the next add() method,

save them into a list, and then it would be removing these records from this list one by

one in the next remove() method. Also, some of the implementations would just random-

ize the domain name. This general implementation has been already implemented in the

GenericRecordGenerator class.

GenericRecordGenerator takes domain and randomize names (True/False) flag as argu-

ments in the constructor. Furthermore, it has two class attributes - RD CLASS (IN (= 1) by

default) and RD TYPE. Then, it has a method get record(), which has to be implemented in

its sub-classes and return a dns.rdata.Rdata instance (which is basically just a single record).

Using these, it is possible to take care of the next add() and next remove() methods, as it is

going to be described now.

In the adding part, it just creates an RRset according to the RD CLASS, RD TYPE, domain and

randomize names configuration. Then, it inserts one resource record (from the get record()

method) into this RRset and saves it to a list, which is then used for removing records. Every

instance has also a self.i attribute, which means index, and this index attribute is incremented

every time in the next add() method. This index is supposed to be used in the get record()

method, so it can generate different values every time.

As mentioned, the next remove() method just pops first item from the list and returns it.

If the list is empty, then None is returned, so no record is removed (because there is actually no

record to be removed).

This GenericRecordGenerator makes the implementation of basic record generators very

simple. For example a generator of A records just needs to specify the RD TYPE attribute and

the value of the record in the get record() method. It takes just a few lines of code, as it is

showed in the Figure 5.8.

Other implemented generators are for SOA, MX and NS records. Also, there is one im-

50 CHAPTER 5. TEST CASES IMPLEMENTATIONS

class ARecordsGenerator(GenericRecordGenerator):

"""Generator of A records."""

RD_TYPE = RdataType.A

def get_record(self) -> Rdata:

"""Get next A record."""

return A(RdataClass.IN, RdataType.A, f'127.0.0.{self.i}')

Figure 5.8: Implementation of the ARecordsGenerator using GenericRecordGenerator.

plementation, which generates random records with unknown types. It means it uses those

resource record type values, which are not reserved for any purposes. The value structures of

these records are not specified (it cannot be converted into a text format, compressed nor han-

dled in a type-specific way), so the server must treat it as unstructured binary data. Those

records must be stored and transmitted without any change [14].

5.2.2 Complex test case

The ComplexTestCase basically takes some record generators and uses them to add/remove

resource records to/from a zone. The constructor takes a domain, the desired number of itera-

tions, instance of a record generator with SOA records, and then a list of generators with normal

(in the meaning of not SOA) records. Also, it has some optional arguments, which control the

count of changes in every iteration, but they are not important for understanding this test case,

therefore will not be described.

The initial zone is empty. Every zone is represented as a list of all records. Then, in every

iteration, a number of increments is generated and for every increment, there are generated some

changes in the zone, which are also saved as the content for IXFR messages. These changes are

created in the following way:

• Generate a random number of attempts to remove a record.

• In every attempt, select randomly a record generator and via the next remove method

get a resource record to remove.

• If the return value of the next remove method is not None (in most cases it means nothing

to remove, but of course it can be also a purpose), remove this record from the list of all

records and also add this record into the content of the IXFR message.

• When all attempts are executed, generate a new SOA record via the SOA records generator

(taken in the constructor of the test case) and also add it into the IXFR message content.

• Generate a random number of attempts to add a record.

• For every attempt, select randomly a record generator and via the next add method get

a resource record to add.

5.3. TESTING OF KNOTDNS 51

• Add this resource record into the list of all records and also add it to the IXFR message

content.

After this loop, the list of all records is updated accordingly to the generated changes and

also there is the IXFR content, which contains the whole zone update. Everything can be passed

to the ResponseManager (described in the Section 4.1.5) and propagated to a tested secondary

server.

Every TestCase must also implement the get zone method. The implementation is very

simple - the complex test case has the list of all records and furthermore, there is the utility

get zone from records (described also in the Section 4.1.5), which can convert this list into

the dns.zone.Zone instance.

Shortly - the ComplexTestCase gets a list of record generators and then makes some random

changes in the zone. With the right record generators, it is possible to simulate almost all

scenarios from the default set and moreover, to create other scenarios very easily.

5.3 Testing of KnotDNS

Software chosen for testing is the KnotDNS (https://knot-dns.cz). It is a high-performance

authoritative DNS server, which is being developed by a Czech association CZ.NIC and which

is deployed (for example) on 3 root servers.

Note that testing of any other DNS server implementation (BIND9, PowerDNS, and others)

would be very similar. The main point is that the testing software simulates an authoritative

server and acts as an authoritative server. Setup the tested DNS server implementation so that

it considers the testing software as its primary server of a specified zone and the testing software

takes care of the rest.

Testing any software is actually mostly about correct configuration. The tested secondary

server and the testing tool (or software) must share their IP addresses, ports, and also the zone,

which will be used for testing purposes.

For the illustration, the following configuration was used:

• IP address of the tested secondary (KnotDNS) server is 127.0.0.1, port 5301.

• IP address of the primary server is 127.0.0.1, port 5302.

• Used zone is dh.

The configuration of the tested KnotDNS server is shown in the Figure 5.9. The first part,

server, defines global settings, in this case, the IP address, where the server will be running.

The remote section defines all the primary servers. Here it is the address, where will be running

the testing software. The third section, acl, contains the setting for accepting Notify messages

and zone transfers. It also has to be explicitly configured. And finally, in the zone part, the dh.

zone is created and the primary server is assigned to it together with the acl.

In the configuration of the testing tool, the Core (see the Section 4.2) takes 3 arguments,

which must correspond to the previous settings:

https://knot-dns.cz

52 CHAPTER 5. TEST CASES IMPLEMENTATIONS

server:

listen: 127.0.0.1@5301

remote:

- id: master

address: 127.0.0.1@5302

acl:

- id: notify_from_master

address: 127.0.0.1

action: notify

- id: transfer_from_client

address: 127.0.0.1

action: transfer

zone:

- domain: dh

storage: /tmp/knot/zones/

file: dh.zone

master: master

acl: [notify_from_master, transfer_from_client]

Figure 5.9: Example configuration of the KnotDNS server.

1. The zone must be set to dh., as it is in the configuration of the tested KnotDNS server.

2. The Client must receive the same IP address, which has been set in the server section

of the tested KnotDNS server - 127.0.0.1:5301

3. The test server ip argument must be set to the 127.0.0.1:5302, according to the

remote section in the KnotDNS configuration file.

The default port of DNS servers is 53 for both UDP and TCP [4], but it is not a requirement.

As any other software, even DNS servers can listen to any ports they need (according to security

options of the machine, where it runs). Therefore, ports and addresses used in the configuration

are not set in stone, they can be changed according to any needs. It would be also possible to

run the primary server inside one virtual machine and the secondary server in another virtual

machine and use the assigned IP addresses of those virtual machines together with the ports 53.

When everything is set properly, the testing may begin. The testing tool is run via python

xfr tester. It takes the scenario configured in the main .py file. The KnotDNS server is

run with the command knotd -c knot.conf (where the knot.conf is the configuration file,

default is /etc/knot/knot.conf). It is also recommended to use the --verbose (-v shortly)

flag, which enables debug output. It is very useful during debugging.

When the KnotDNS server is started, it loads the configuration and finds out that there

should be a dh. zone. But it does not have any data in the memory, so it automatically starts

the zone transfer via AXFR (because it has no zone to increment from). This query starts the

testing workflow and everything continues automatically.

Every time a zone transfer is executed, Knot sets a timer, which disables initial zone transfers

5.3. TESTING OF KNOTDNS 53

for a period of time. It means that when the server is started repeatedly, the server stops

executing the initial zone transfer. It is needed to force the server to perform this initial zone

transfer. It can be done using the Knot DNS control utility - knotc. This utility has the option

to refresh all zones via knotc -c knot.conf zone-refresh. This zone-refresh starts the initial

zone transfer, which then starts the testing workflow again.

At the end of the testing, the xfr tester outputs the results and terminates itself. The

KnotDNS server still runs. It is possible to run some custom queries to check the functionality

or the server can be also terminated. The server must be restarted before running another test

and the zone files must be removed. Otherwise, the server would load the old zone file from

the previous test and refuse some zone transfers, because it would evaluate the zone transfers

as outdated (its SOA record may have a greater serial number).

Note that when running the server with a custom configuration, the server must have per-

missions to the configuration file. Also, when specifying zone files and journal databases, the

server needs the permissions. It is recommended to run the server as the knot user. It can be

done using the sudo -u knot command.

KnotDNS has been tested with all described test scenarios, every test case was also extended

with the XfrBlackoutTestCase wrapper. All tests were successful, which affirms the reliability

of this software.

5.3.1 Further testing of KnotDNS

According to the testing results, which have been already presented, it seems like the KnotDNS

is faultless and perfect. But there is also a possibility, that the testing software (xfr tester) is

not working properly. It is a great approach to intentionally configure the server incorrectly to

see if the tester evaluates the behaviour as incorrect.

Another approach, how to prove (or rather show) that the xfr tester is working properly,

is to find a real bug and cover it with a test scenario. In this section it is going to be explained,

how is the software supposed to be used and it will turn out, how powerful the design really is!

Open-source projects usually maintain something called a changelog or release notes. It is a

very simple text file that contains all the important changes between versions. The KnotDNS

also has these release notes (https://gitlab.nic.cz/knot/knot-dns/-/blob/master/NEWS)

and it is possible to find there that one bug was fixed in version 2.7.3: ”Improper processing of

an AXFR-style-IXFR response consisting of one-record messages”! The intention now is clear -

install the old, broken version (2.7.2) and try to write a test case, which would detect this bug.

It is going to be useful to be able to easily change KnotDNS versions and try to run the test

case with different implementations. Therefore, the git repository with all the source code is

cloned.

Then, it is intended to install a particular version. Every version is specified via a git tag

and the installation process is described in the README.md file.

1. git checkout v2.7.2

https://gitlab.nic.cz/knot/knot-dns/-/blob/master/NEWS

54 CHAPTER 5. TEST CASES IMPLEMENTATIONS

2. autoreconf -it

3. ./configure

4. make

5. sudo make install

6. sudo ldconfig

The correct installation can be verified by printing the version - knotd --version.

Now, it is needed to write a test case for the situation, which was shortly described in the

release notes. It says that it is about AXFR answers on IXFR queries and that those responses

are ”consisting of one-record messages”.

There are two possible ways how to understand this sentence:

1. The content of the AXFR message contains only one single resource record, so the whole

zone consists only of one record.

2. One zone transfer message is split into N DNS messages, where every message is sent

separately and every message contains only one single record in the Answer section.

To test the first case, a new TestCase has to be written. This test case will need a way how

to generate the SOA records. For this purpose, a AbstractRecordGenerator (which generates

SOA resource records) from the complex test cases can be used. It saves a lot of work and code!

Again - great modular design and reusable components are paying off. Just pass it through the

constructor as an argument.

The initial zone is not important and can be empty (so the method has only one line of

code). The most important part is generating the changes. Only AXFR responses are intended

to be used, so it will return an AxfrResponseManager. And this response manager will contain

only the SOA record and one other record. It can be written on 4 lines of code - update the

SOA, create a RRset, add a record into this RRset and finally return the response manager.

Lastly, the get zone method must be implemented. Since the zone really contains just

two records, it is also simple. The dns.zone.Zone instance can be built directly or using the

get zone from records utility. It takes again only 3 lines of code.

After all, the require zone method can be overridden to always return True, so the zone

check is required in every iteration, and therefore it is possible to watch the server more closely.

The test case is finished and the important parts are only on less than 10 lines of code!

Perfectly according to the requirements.

The test case is prepared, KnotDNS is installed with the specified version and the configu-

ration is ready from the previous testing. It is possible to run the scenario. Unfortunately, the

test results are successful.

It seems like it was not the bug. But there is still the second possible explanation of the

release notes and that is: ”One zone transfer message is split into N DNS messages, where every

5.3. TESTING OF KNOTDNS 55

message is sent separately and every message contains only one single record in the answer

section.”

It has nothing to do with the changes generation. It is about transforming some data into

messages. For this purpose, there is the response manager component! Firstly, clarify the goal:

Every zone change should be propagated into the secondary server via AXFR and it should

consist of multiple messages where every single message contains only one single resource record

in its Answer section.

There already is one implementation of the abstract ResponseManager, which answers only

using the AXFR - AxfrResponseManager. It is possible to extend it and just add the second

feature - the content splitting. In the parent class, the message splitting is performed in the

get messages(request, answer) method, so it is possible just to override this method and

adjust the behaviour to the new purpose (the purpose is to create a special message for every

resource record). Arguments of this method are the request message and a list of RRset instances

to be answered.

Every message is supposed to contain only one resource record. It is possible to simplify it -

insert only one RRset (not record) into every message and then use a test case, which generates

only one record per RRset. For example, the new, previously implemented, test case. The

splitting of content is just one simple for -loop.

The implementation of the ResponseManager is showed in the Figure 5.10, it is just a few

lines of code again. Then, this response manager can be used in the test case and the testing

may continue.

This time the test successfully fails! The server output is illustrated in the Figure 5.11. It

can be seen that the server tries to process the zone transfer, but it fails to free some memory

and is immediately aborted. The connection between the secondary server and the xfr tester

is unexpectedly closed, which causes an exception, which is then printed on the standard output.

class OneByOneAxfrResponseManager(AxfrResponseManager):

def _get_messages(

self, request: Message, answer: List[RRset]

) -> List[BytesMessage]:

ret = []

for rrset in answer:

response = make_response(request)

response.answer.append(rrset)

ret.append(response)

return ret

Figure 5.10: Implementation of a ResponseManager for special AXFR-style-IXFR answers.

Now, upgrade the server to version 2.7.3, which is (according to the release notes) supposed

to fix this bug. The newer version can be installed in the very same way, which was described

before. The only change is that the checkout must lead to the tag v2.7.3.

After re-installation, run the very same test with the very same configuration. The test

finishes successfully, as it can be seen in the log, which is illustrated in the Figure 5.12.

56 CHAPTER 5. TEST CASES IMPLEMENTATIONS

user@ntb:~$ knotd -v -c knot.conf

...

info: Knot DNS 2.7.2 starting

....

info: notify incoming, 127.0.0.1@44265: received, serial none

info: refresh outgoing, 127.0.0.1@5302: remote serial 2, zone is outdated

info: IXFR incoming, 127.0.0.1@5302: receiving AXFR-style IXFR

info: AXFR incoming, 127.0.0.1@5302: starting

free(): double free detected in tcache 2

Aborted (SIGABRT)

Figure 5.11: The KnotDNS server output, failure.

user@ntb:~$ knotd -v -c knot.conf

...

info: Knot DNS 2.7.3 starting

...

info: AXFR incoming, 127.0.0.1@5302: starting

info: AXFR incoming, 127.0.0.1@5302: finished, 0.00 seconds,

1 messages, 269 bytes

info: refresh, outgoing, 127.0.0.1@5302: zone updated, serial none -> 1

...

info: notify incoming, 127.0.0.1@39987: received, serial none

info: refresh outgoing, 127.0.0.1@5302: remote serial 2,

zone is outdated

info: IXFR incoming, 127.0.0.1@5302: receiving AXFR-style IXFR

info: AXFR incoming, 127.0.0.1@5302: starting

info: AXFR incoming, 127.0.0.1@5302: finished, 0.00 seconds,

2 messages, 120 bytes

info: refresh outgoing, 127.0.0.1@5302: zone updated, serial 1 -> 2

....

info: notify incoming, 127.0.0.1@36089: received, serial 10

...

info: refresh outgoing, 127.0.0.1@5302: zone updated, serial 9 -> 10

...

Figure 5.12: The KnotDNS server output, success.

5.3. TESTING OF KNOTDNS 57

The bug has been corroborated and moreover, a test case has been written. From now on,

there is a prepared scenario, which ensures that this bug will not happen again.

This was exactly the way, how is this xfr tester supposed to be used. Find a bug or a

suspicion and write a test case for it. Creating a new scenario is really simple, as it could be

seen, and moreover, thanks to the modular design it is possible to combine the modules and get

a larger scale of scenarios.

Note that this bug could have been detected even with the ComplexTestCase with a non-zero

probability. According to analysis via Wireshark, the KnotDNS server terminates after receiving

the second message. Now imagine the following situation: ComplexTestCase generates some

changes, which are too big for one message. Therefore the message must be cut in two. This

cutting mechanism is random (described in the Section 4.1.5 about response managers), so with

a small (but non-zero) probability, it can be cut right after the first RRset, which is exactly the

problematic case.

58 CHAPTER 5. TEST CASES IMPLEMENTATIONS

Chapter 6

Conclusion

The final version of the testing tool meets all the requirements specified in the Section 3 (Re-

quirements and expected functionality), as listed at the end of the Section 4.4 (Requirements

fulfilment). It is easy to use and easy to extend, so it can be used for testing any scenarios.

The abstract design was described in detail as well as the basic set of test scenarios and then

the KnotDNS was tested with successful results. The newest version of KnotDNS (currently

3.0.0) has correctly processed all the test scenarios from the basic set of test cases and also has

correctly processed the more complex test cases which were randomly generated.

Also, one bug in an old version was discovered and verified. A new test scenario for this bug

has been written, so for future versions, this problem is covered and should never happen again.

It was also checked that this bug has been fixed in version 2.7.3.

New test cases can be added according to specific needs of particular server implementations

(as illustrated in the Section 5.3.1), but in general, it would be useful to have some more tests, for

example, to check the ability to refuse an invalid transfer or the ability to work with the digital

signatures of resource records sets (the RRSIG (= 46) type), which is important for security

reasons.

There are also many ideas for other possible enhancements, not related to testing scenarios.

First of all, it would be really useful to be able to run a whole list of test scenarios, not only one

case. It could be easily done by wrapping the core into a loop. Another nice-to-have improvement

is to create a command-line interface, using which it would be possible to configure the testing

process already from the command line, so it would not be needed to write the configuration in

the python code. It could be implemented with the click library, which shows up to be the best

in comparison with argparse, docopt or typer. Also, more sophisticated error handling might

be used. At this version, not all exceptions are caught - for example when the tested server dies

(as it happened with the old version of KnotDNS), the xfr tester just raises an exception,

but does not terminate itself. The testing process must be then terminated manually. This

issue could be easily solved by adding one simple try..except construct, or also more of these

constructs on multiple places to have more detailed information about all these exceptions.

Note that the final implementation of the testing software can be found in a public repository

at https://gitlab.nic.cz/knot/xfr-tester.

59

https://gitlab.nic.cz/knot/xfr-tester

60 CHAPTER 6. CONCLUSION

Bibliography

[1] P. Mockapetris, Domain names: Concepts and facilities, RFC 882, Obsoleted by RFCs
1034, 1035, updated by RFC 973, Internet Engineering Task Force, Nov. 1983. [Online].
Available: http://www.ietf.org/rfc/rfc882.txt.

[2] ——, Domain names: Implementation specification, RFC 883, Obsoleted by RFCs 1034,
1035, updated by RFC 973, Internet Engineering Task Force, Nov. 1983. [Online]. Avail-
able: http://www.ietf.org/rfc/rfc883.txt.

[3] ——, Domain names - concepts and facilities, RFC 1034 (Standard), Updated by RFCs
1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592,
5936, Internet Engineering Task Force, Nov. 1987. [Online]. Available: http://www.ietf.
org/rfc/rfc1034.txt.

[4] ——, Domain names - implementation and specification, RFC 1035 (Standard), Updated
by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,
2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, Internet Engineering Task
Force, Nov. 1987. [Online]. Available: http://www.ietf.org/rfc/rfc1035.txt.

[5] P. Vixie, A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY), RFC
1996 (Proposed Standard), Internet Engineering Task Force, Aug. 1996. [Online]. Avail-
able: http://www.ietf.org/rfc/rfc1996.txt.

[6] E. Lewis and A. Hoenes, DNS Zone Transfer Protocol (AXFR), RFC 5936 (Proposed
Standard), Internet Engineering Task Force, Jun. 2010. [Online]. Available: http://www.
ietf.org/rfc/rfc5936.txt.

[7] M. Ohta, Incremental Zone Transfer in DNS, RFC 1995 (Proposed Standard), Internet
Engineering Task Force, Aug. 1996. [Online]. Available: http://www.ietf.org/rfc/
rfc1995.txt.

[8] J. Klensin, Application Techniques for Checking and Transformation of Names, RFC 3696
(Informational), Internet Engineering Task Force, Feb. 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3696.txt.

[9] R. Elz and R. Bush, Clarifications to the DNS Specification, RFC 2181 (Proposed Stan-
dard), Updated by RFCs 4035, 2535, 4343, 4033, 4034, 5452, Internet Engineering Task
Force, Jul. 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2181.txt.

[10] P. Faltstrom, P. Hoffman, and A. Costello, Internationalizing Domain Names in Applica-
tions (IDNA), RFC 3490 (Proposed Standard), Obsoleted by RFCs 5890, 5891, Internet
Engineering Task Force, Mar. 2003. [Online]. Available: http://www.ietf.org/rfc/
rfc3490.txt.

[11] R. Elz and R. Bush, Serial Number Arithmetic, RFC 1982 (Proposed Standard), Internet
Engineering Task Force, Aug. 1996. [Online]. Available: http://www.ietf.org/rfc/
rfc1982.txt.

[12] D. Barr, Common DNS Operational and Configuration Errors, RFC 1912 (Informational),
Internet Engineering Task Force, Feb. 1996. [Online]. Available: http://www.ietf.org/
rfc/rfc1912.txt.

61

http://www.ietf.org/rfc/rfc882.txt
http://www.ietf.org/rfc/rfc883.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1996.txt
http://www.ietf.org/rfc/rfc5936.txt
http://www.ietf.org/rfc/rfc5936.txt
http://www.ietf.org/rfc/rfc1995.txt
http://www.ietf.org/rfc/rfc1995.txt
http://www.ietf.org/rfc/rfc3696.txt
http://www.ietf.org/rfc/rfc3696.txt
http://www.ietf.org/rfc/rfc2181.txt
http://www.ietf.org/rfc/rfc3490.txt
http://www.ietf.org/rfc/rfc3490.txt
http://www.ietf.org/rfc/rfc1982.txt
http://www.ietf.org/rfc/rfc1982.txt
http://www.ietf.org/rfc/rfc1912.txt
http://www.ietf.org/rfc/rfc1912.txt

62 BIBLIOGRAPHY

[13] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, Dynamic Updates in the Domain Name
System (DNS UPDATE), RFC 2136 (Proposed Standard), Updated by RFCs 3007, 4035,
4033, 4034, Internet Engineering Task Force, Apr. 1997. [Online]. Available: http://www.
ietf.org/rfc/rfc2136.txt.

[14] A. Gustafsson, Handling of Unknown DNS Resource Record (RR) Types, RFC 3597 (Pro-
posed Standard), Updated by RFCs 4033, 4034, 4035, 5395, 6195, Internet Engineering
Task Force, Sep. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3597.txt.

http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc3597.txt

	Abstract
	Anotace
	Acknowledgements
	List of Figures
	List of Acronyms
	Introduction
	Basics of DNS
	Origin of DNS
	How does DNS work
	Distributivity of DNS
	Zone replication between servers
	Details of the zone transfer protocols
	AXFR messages
	IXFR messages
	DNS NOTIFY mechanism

	Requirements and expected functionality
	Test example

	Implementation
	Project structure
	Notify manager
	Network analyst
	Client
	Server
	Test scenarios
	Quick overview

	Project core
	Running a test
	Requirements fulfilment

	Test cases implementations
	Default set of implemented test cases
	Complex test scenario
	Records generators
	Complex test case

	Testing of KnotDNS
	Further testing of KnotDNS

	Conclusion
	Bibliography

