Bachelor Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Data-Driven Automated Dynamic Pricing
for E-commerce

Jiti Moravcik

Supervisor: Ing. Jan Mrkos

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science
May 2021

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
s N
Student's name: Moravcik Jiri Personal ID number: 483741

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Data-Driven Automated Dynamic Pricing for E-commerce

Bachelor’s thesis title in Czech:

Automatizovana dynamicka cenotvorba pro e-shop na zakladé dat

Guidelines:

The goal of this thesis is to propose, develop and test a data-driven dynamic pricing solution for an e-commerce platform.
To this end, student is to achieve the following objectives:

1. Collect, and clean data generated by the e-commerce platform into a dataset. Analyze the dataset, propose suitable
metrics and features base on the dataset.

2. Perform a survey of methods used for dynamic pricing in e-commerce. Focus on models based on Markov decision
process and methods such as offline reinforcement learning or imitation learning. Evaluate drawbacks and benefits of the
methods regarding the available data. Propose a method for implementation.

3. Implement a dynamic pricing solution. Design data features to be used with the solution and evaluation metrics for
evaluating the performance of the solution.

4. Evaluate the performance of the method. Test on testing data.

Bibliography / sources:

[1] Russell, Stuart J. and Norvig, Peter - Artificial Intelligence: A Modern Approach (2nd Edition) — 2002

[2] Liu Jiaxi et al. - Dynamic Pricing on E-commerce Platform with Deep Reinforcement Learning - 2019

[3] Osa Takayuki et al. - An Algorithmic Perspective on Imitation Learning - 2018

[4] Sutton, Richard S. and Barto, Andrew G.. Reinforcement Learning: An Introduction. Second: The MIT Press, 2018
[5] Arnoud V den Boer. Dynamic pricing and learning: historical origins, current research, and new directions. Surveys in
operations research and management science, 20(1):1-18, 2015

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Mrkos, Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 08.01.2021 Deadline for bachelor thesis submission: 21.05.2021

Assignment valid until: 30.09.2022

Ing. Jan Mrkos prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.
Jan Mrkos for guidance, insights and help
with this work.

Furthermore, I would like to thank ev-
eryone that supported me while I worked
on this thesis.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 21. May 2021

Abstract

In this thesis, we propose a novel approach
to dynamic pricing in the setting of e-
commerce, specifically fashion retail. For
the first time, we attempt to use the meth-
ods of Offline Reinforcement Learning and
Imitation Learning in the domain of dy-
namic pricing. We use two algorithms,
namely, the Conservative Q-learning and
Behavioral Cloning.

We formalize the pricing problem as a
Markov Decision Process, then we apply
the proposed algorithms to a real-world
dataset from a small e-commerce busi-
ness. The results show that our methods
are able to achieve good results on par
with human experts. We carry out two
separate evaluations. In the first one, a
human expert grades the pricing recom-
mendations of the best method with an
average grade 1.31 out of 5 (1 being the
best possible score). The second evalua-
tion shows that all our proposed methods
outperform the static baseline method by
a minimum margin of 27%. We perform
this simulated evaluation via a custom
simulator implemented in OpenAl’s Gym.
For the expert evaluation, we develop a
custom methodology based on a web in-
terface.

Keywords: dynamic pricing,
reinforcement learning, e-commerce

Supervisor: Ing. Jan Mrkos

vi

Abstrakt

V této praci navrhujeme novy pfistup
k dynamické cenotvorbé v prostiedi e-
commerce, konkrétné internetového ob-
chodu s médou. Poprvé se pokusime vy-
uzit metod offline zpétnovazebniho uceni
a napodobovaciho uceni v oblasti dyna-
mické cenotvorby. Pouzivime dva algo-
ritmy, a to konzervativni Q-uceni a klono-
vani chovani.

Formalizujeme problém cenotvorby
jako Markoviv rozhodovaci proces, pak
aplikujeme navrhované algoritmy na sku-
tecnou datovou sadu z malého interneto-
vého obchodu. Vysledky ukazuji, ze nase
metody jsou schopné dosdhnout dobrych
vysledkt srovnatelnych s lidskymi odbor-
niky. Provadime dvé samostatné evaluace.
V prvni z nich lidsky expert hodnoti ce-
nové doporuceni nejlepsi metody s pru-
mérnou znadmkou 1,31 z 5 (1 je nejlepsi
mozné skore). Druhd evaluace ukazuje,
Ze vSechny nase navrhované metody pre-
konéavaji zakladni statickou metodu mi-
nimalné o 27 %. Tuto simulovanou eva-
luaci provadime pomoci vlastniho simu-
latoru implementovaného ve frameworku
OpenAl Gym. Pro exeprtni evaluaci vy-
tvarime vlastni metodiku zaloZenou na
webovém rozhrani.

Klicova slova: dynamicka cenotvorba,
zpétnovazebni uceni, e-commerce

Preklad nazvu: Automatizovans
dynamicka cenotvorba pro e-shop na
zakladé dat

Contents

1 Introduction 1l
1.1 General Overview.............. 1l

1.2 Dynamic Pricing on an

E-commerce Platform 2l
2 Literature Review 7l
2.1 Dynamic Pricing.
2.2 Reinforcement Learning

2.2.1 Deep Reinforcement Learning
2.2.2 Offline Reinforcement Learning

2.2.3 Imitation Learning

3 Data Retrieval and Description (13|

3.1 Data Retrieval 14
3.2 Data Description
4 Algorithms Overview 19
4.1 Markov Decision Process 19
4.2 Reinforcement Learning

4.3 Deep Reinforcement Learning . .

4.3.1 A Quick Introduction to Deep

Learning
4.3.2 Deep Q-network
4.4 Soft Actor-Critic..............

4.5 Offline Reinforcement Learning .

4.6 Conservative Q-Learning.
4.7 Imitation Learning

4.7.1 Behavioral Cloning
5 Model 37
5.1 Dynamic Pricing Model

vii

5.2 Simulator

6 Experiments

6.1 Domain Expert Evaluation.

6.1.1 Evaluation Methodology

6.1.2 Expert Evaluated Pricing

Policies...........

6.1.3 Results of Expert Evaluation

6.2 Simulation Results
7 Conclusions
Glossary

Bibliography

Figures

3.1 Diagram of the data retrieval

pipeline
3.2 The histogram of sell prices from

the training data
3.3 Number of sold shirts for every

month from the training data
4.1 Hlustration of difference between

online and offline RL methods 22
4.2 Tllustration of the conservative

Q-function

6.1 The evaluation page of the web
interface used for expert evaluation

6.2 Average grade for used policies in

the expert evaluation............
6.3 Histogram of pricing directions
from the expert evaluation

6.4 Distribution of proposed prices for
each policy from the evaluation

dataset
6.5 Histogram of grades for every
policy in the expert evaluation ...

6.6 Simulation performance averaged
over 100,000 runs

6.7 Training of CQL on sampled
transitions from the random and
static policies from the simulator .

viii

Tables

3.1 Description of data values collected
for each month/row

3.2 Training data metrics aggregated
over all products and months

3.3 Evaluation data metrics aggregated
over all products and months

Chapter 1

Introduction

. 1.1 General Overview

Dynamic pricing is an area of revenue optimization. Various scientific fields,
including operations research, management science, marketing, econometrics,
and computer science have extensively studied dynamic pricing. This work
focuses on the usages of machine learning in the field of dynamic pricing,
mainly focusing on the usage of Offline Reinforcement Learning (RL). For a
comprehensive overview, please refer to Chapter [2|

Businesses have always tried to set the prices of their goods and services
in a way that would either maximize their revenue or customer satisfaction.
Determining such prices is a complex task and this is where dynamic pricing
comes into play. The usage ranges from hospitality (higher prices during
peaks in the season), transport (airplane tickets, surge pricing in ride-sharing
services), to retail (e-commerce product pricing). The task requires that the
seller has extensive knowledge of their own costs and supply elasticity but
also the knowledge of their customer’s needs and possible future demand.

With the rise of big data and general improvements in data collection,
companies have better opportunities to predict their customer’s behavior
based on the collected data. Another relevant factor is the competition,
nowadays price comparison services enable customers to see all prices in one
place. If the seller wants to gain an advantage, the seller should take the
competition into account.

1. Introduction

The idea of having a powerful autonomous algorithm behind one’s business
is very appealing and nowadays, many businesses are trying to adopt such
approaches to pricing. The benefits include decreased labor costs, increased
profit, and other possibilities of optimizing the seller’s resources.

B 12 Dynamic Pricing on an E-commerce Platform

One suitable domain for dynamic pricing is an e-commerce platform. E-
commerce solutions are usually implemented as websites offering various
products, the differences compared to normal stores include the ability to
choose and purchase products without actually needing to go to the physical
store and having the products delivered directly to the customer’s home
(although not always the case). Because of these features, such businesses saw
a large increase in popularity, the outbreak of COVID-19 virus also helped
this phenomenon.

Nowadays, e-commerce businesses try to maximize their revenue in a highly
competitive market where buyers are able to easily compare products and
their prices. At the same time, modern analytic and big data tools allow
sellers to collect large amounts of data about their customers’ behavior.

Dynamic pricing based on collected data can help businesses to mitigate
risks connected with a very dynamic environment of online retail like demand
fluctuation and price battles between competitors. For the sake of complete-
ness, we refer the reader to a complete overview of dynamic pricing models
used in electronic business [33].

B Fashion E-commerce Dynamic Pricing Domain Description

The domain considered in this work is a small e-commerce business. The main
focus of the business are cosmetics, clothes, and accessories for men. A large
part of the business consists of fashion, the owners have their own clothes
brand, and one of such products are ready-to-wear shirts, which are studied
in this work. We have data from over 3 years of sales including customer
traffic like unique page views and average time spent on the page (for more
information about the data, please refer to Chapter (3)).

1.2. Dynamic Pricing on an E-commerce Platform

We will now formalize the environment for dynamic pricing in e-commerce
for our specific needs. Please refer to Section 4.1 for an exact algorithmic
formulation. We consider all shirts to be priced in an aggregated manner,
because the amount of data required to train dynamic pricing algorithms is
large (for more information about the algorithms, please refer to Chapter 4)).

The pricing update process will be performed on a monthly basis. The
data available does not allow shorter update periods due to its small size
and unfriendly data access. The data features used in pricing consist of: the
product’s current price, the product’s stock price, unique page visits for a
given product, or the number of stock available. We describe the data in
Section 3.2l

For completeness, we provide an exact specification of the products. The
ready-to-wear shirts, whose prices we will be trying to optimize are considered
seasonal from the business perspective. We classify the pricing problem as
that of finite-stock perishable products for the following reasons:

B finite-stock — the seasonal shirts are manufactured for a given season
and never get restocked,

® perishable — the business objective is to sell the shirts in a horizon of
one year, because the warehouse needs space for the next seasonal shirts,
thus we optimize for a finite selling horizon.

B Main Design Decisions

We proceed to define three important questions that have to be answered when
trying to employ a dynamic pricing solution. The first important decision we
have to make is to define the price change interval. We may decide to keep a
strictly regular change interval such as day, week, or month. The other option
is doing irregular price changes. In that case, we can base them on specific
events important for us, such as a surge in customer traffic or stocking of
new products. Due to the nature of our dataset, we decided to use a regular
change interval of one month.

The second decision is whether we should price each product separately
or not. Here, we consider a product to be the most granular unit that a
given business can sell, e.g., blue checked shirts. If we choose to price each
product separately, we may not have enough historical data to create good

3

1. Introduction

pricing decisions. On the other hand, if we decide to price several products
the same, we may run into issues with data bias. If we price several similar
products (similar products could be shirts with different colors) the same, we
are creating a price approximation based on multiple products that can lead
to errors.

These errors clearly depend on the size of the product aggregation. In an
ideal world, we would have enough data for every product, but that happens
rarely. Therefore, we should carefully examine our data and perform an
extensive study to make an informed decision on which products to aggregate.
In our case, we choose to aggregate the priced products due to the small size
of our dataset (see Section (3.2 for more information).

The last and the most important decision is evaluation. We have to choose
how to evaluate the performance of our dynamic pricing solution. And this
choice is difficult. The market is a highly complex environment, therefore we
cannot accurately simulate the dynamics of such system. On the other hand,
a simple simulation is useful for the development phase to get a rough idea of
the pricing solution’s performance. We propose a custom simulator for this
purpose in Section [5.2l

A natural idea for evaluation is deployment into the real market. In our
case, this choice is not feasible for two reasons. The first reason is the danger
of capital loss in case of wrong choices made by the pricing algorithm. Prices
set too high would mean that products will not be sold and occupy the
warehouse. Overly low prices would lose revenue to customers that are willing
to pay more. Weird pricing patterns could damage the seller’s reputation.

The second reason against the feasibility of real market deployment is
the length of period needed to collect data. In our case, we would need a
minimum of twelve months to collect a dataset for evaluation. Due to the
nature of this work, this is not possible. One possible way out of this problem
is an evaluation performed by domain experts (see Section [6.1). For more
information about the experiments and evaluation of this work, please refer
to Chapter |6l

B Methods

Having determined the domain and the kind of dynamic pricing we would
like to use, we are additionally constrained by the real-world dataset.

4

1.2. Dynamic Pricing on an E-commerce Platform

Usually, Reinforcement Learning (RL) assumes access to a simulator, which
we do not have. Recently, a new subfield of |RL| called Offline |RL| emerged,
Offline |RL| assumes no access to a simulator and learns exclusively from prior
offline data.

It turns out that this work is actually the first attempt to approach
dynamic pricing using methods of Offline RL]. Specifically, we use the algorithm
Conservative Q-learning| (CQLJ|), and our evaluation results show that this
approach is feasible and achieves great results (see Chapter 6 for evaluation).
We also use the methods of Imitation Learning (IL), with the specific algorithm
being Behavioral Cloning (BC)), which is able to learn from offline data only.

B Outline of the Thesis

We introduce the general concept of dynamic pricing and discuss its usages
in Chapter (1, this work successfully uses the methods of Offline RL| for the
first time in the context of dynamic pricing.

Researchers have studied dynamic pricing in many scientific fields, this
work approaches the dynamic pricing problem with the methods of RL|and |ILL
We provide a literature review on these topics in Chapter 2 The data used
for training and evaluation is an important part of every machine learning
project, we describe the data retrieval pipeline and the data itself in Chapter
Il

We need to pair the data with an algorithm to produce pricing decisions,
this work uses the algorithms |Conservative Q-learning (CQL)| and Behavioral
Cloning (BC). Chapter |4 defines the algorithms CQL| and BC| with the
necessary context. The underlying model of the environment used in the
algorithms is a Markov Decision Process (MDP), we discuss the model with
respect to our domain in Chapter [5]

We put the data, algorithms, and the model together in Chapter |6 where
we perform the evaluation of this work, which shows that both [CQL| and
BC| outperform baseline methods and are able to train on a small real-world
dataset. Specifically, we provide two methods of evaluation: domain expert
evaluation (Section [6.1), and simulation (Section 6.2) We conclude the work
with a high-level evaluation of the results, discussion of the strong and weak
sides of this work, and mention some ideas for future work in Chapter [7|

Chapter 2

Literature Review

In this chapter, we present an overview of the literature on the topics of
dynamic pricing and We look at dynamic pricing in Section we
provide an overview of in Section

B2 Dynamic Pricing

The topic of dynamic pricing has been studied in many scientific fields. While
the scope of this work does not allow us to review the whole field of dynamic
pricing, we will look into the area of dynamic pricing concerned with machine
learning. For a comprehensive overview of dynamic pricing with a broad
scope, we refer the reader to [6].

The first attempts to use for dynamic pricing date to 1998, when
researchers from IBM Watson proposed a method [44] for multi-agent dynamic
pricing based on methods of specifically Dynamic Programming. The
same researchers then followed up with the usage of neural networks [43]
(1999) and regression trees [40] (2002) paired with Q-learning. [7] (2001)
created a platform for analyzing dynamic pricing called “Learning Curve
Simulator” that uses different demand curves to simulate the price elasticity
of demand. Futuristic expectations of a global economy merged with the
internet are envisioned in [20] (2000), where the authors coin out a term
pricebot — an intelligent agent based on Machine Learning methods (one
example given is Q-learning) that competes in a multi-agent setting while

7

2. Literature Review

trying to optimally price goods and services.

A broad overview on dynamic pricing for electronic businesses is provided
n [33], the authors look at different models for dynamic pricing and then
expand on the usage of RL|in dynamic pricing with a simple simulation using
a Poisson process as a customer arrival model. [46] uses RL|in multi-agent
setting for dynamic pricing in a Grid market environment. The algorithm
used in this work is based on Policy-gradient theorem introduced in [42]. The
authors claim that this is the first usage of gradient-based methods in the
setting of dynamic pricing. Policy-gradient theorem and the usage of gradient
descent in the optimization of neural networks is a pivotal topic of Deep
Reinforcement Learning (see Section 4.4)).

Simulation of pricing environments is a difficult task and for the purposes
of modelling, we may choose to create a simple simulation to get a rough
idea of the algorithm’s performance. One good example of such an approach
s [19], the proposed simulation uses a Poisson process for arrival rate and a
uniform distribution as the acceptable price for a given product, the inventory
of products is finite. The setting considers two homogeneous sellers. Authors
then proceed to test their algorithms based on RL (specifically Q-learning)
in the mentioned simulation. We draw inspiration from [19] and introduce
our own simulation in Section 5.2l

[36] proposes a simple simulation of a single-seller market with customer
arrival rates approximated via a Poisson process. The authors consider a
discrete set of actions and solve the problem using Q-learning computed
via the techniques of dynamic programming. This simulation is simple and
interpretable, but the discrete set of actions renders it useless in domains
with continuous action space.

The follow-up research from the same authors [35] considers a monopolistic
retail market with customer segmentation. Customers are segmented into
two groups, captives and shoppers. Captives are considered as loyal buyers
with a higher acceptable price. On the other hand, shoppers are more price
sensitive and get attracted by sales, promotions, etc. The algorithm used
is Q-learning. The simulation used to evaluate uses a Poisson process for
customer arrival rate and the acceptable price is modelled using a uniform
distribution. While the base part of the simulation proposed by [35] is the
same as [19], the addition of so-called captives and shoppers is not useful
in the domain of fashion retail. [37] looks at the problem of interdependent
products in a finite selling horizon and solves this task with a Temporal
Difference Q-learning approach. Considering product interdependence is an
interesting idea, but our data does not enable us to do so.

8

2.1. Dynamic Pricing

Researchers have looked at the problem of selling a given amount of stock in
a finite horizon in the setting of dynamic pricing using RL| [4] uses Q-learning
paired with a predecessor of today’s deep learning called “self-organizing map”
or “map neural network”. The simulation used to evaluate this method is
using a Poisson process to model arrival rates and uses discrete coefficients
for the uncertainty of demand. A follow-up work [5] studies a Q-learning
approach based on real-time demand learning. The simulation here is a
bit different. The author assumes that the arrival rate follows a gamma
distribution.

The domain of this work is fashion retail. We cite two works that performed
analytics and optimization of pricing for a fashion retailer. The first work [3]
concerns itself with clearance pricing in the fast fashion retailer Zara. The
authors perform a field experiment and establish a new process of pricing
products during clearance sales. They report an increase of revenue by about
6%. The methodology uses sales data from past seasons to estimate the
demand.

The latter [8] discusses demand forecasting for the fashion retailer Rue
La La. The analysis is concerned with products that have never been sold
before, specifically with their pricing and demand prediction. The authors
report an improvement of the revenues by about 9.7%. The method used is
based on Integer Linear Programming. While these works concern itself with
fashion retail, they do not use the methods of RL|to solve the dynamic pricing
problem. This work attempts to use [RL| specifically its offline variants, as a
method to solve the problem of dynamic pricing in fashion retail.

The main paper used as an inspiration for this work is [29]. The authors
present a formalization of the pricing environment using an MDP| We provide
a similar one in Chapter 5. The methodology in [29] uses Deep Reinforcement,
Learning (DRL), for more info, see Section 4.3l Specifically, their dynamic
pricing framework uses the algorithms [Deep Q-learning from Demonstrations
(DQID)[1I7] and Deep Deterministic Policy Gradient from Demonstrations
(DDPGID)[45]. Their experiments and evaluations are performed on the
website tmall.com based on the data from Alibaba. Field experiments show
that dynamic pricing outperforms manual pricing,.

9

2. Literature Review

B 2.2 Reinforcement Learning

RL has been a popular research topic in many scientific disciplines for several
decades. The generality of makes it a viable research topic in many areas,
such as operations research, game theory, multi-agent systems, etc. With this
in mind, we have to declare that the scope of this work is not able to include
a review of the whole field of We refer to [41] for a review of the history
of the field and its classical algorithms. We follow up with a more detailed
review of and then we review its offline variants. At last, we review [ILL

B 2.2.1 Deep Reinforcement Learning

Usage of deep neural networks as function approximators has brought large
success in [31], [32] achieved superhuman performance on several Atari
games, using only pixels and game scores as input. The famous Nature journal
published the article [32]. This accelerated the interest in the research areas
of The mentioned papers present an algorithm called Deep Q-network

that uses a Replay Buffer, The usage of a Replay Buffer|is important
in Offline (see Section , where we prefill a [Replay Buffer| with the

offline dataset and perform training without adding any more data to it.

Researchers have looked at the combination of actor-critic methods (see
Section and deep neural networks (see Section [4.3.1). The algorithm
Deep Deterministic Policy Gradient (DDPG)|27] solved the same tasks as
but used a factor of 20 fewer steps. In addition to faster learning,

works with continuous action spaces, unlike which works with
discrete action spaces. The |Asynchronous Advantage Actor-Critic (A3C)[30]

is a algorithm that does not use the Replay Buffer] yet it achieves good
results. The main idea behind is the parallelization of learning.

An important algorithm for this work is the [Soft Actor-Critic (SAC)
algorithm, because we use it as the base for the algorithm. We use
to solve the dynamic pricing problem. uses entropy regularization [14]
and Clipped Double Q-learning [I1], the algorithm itself was first presented
in 2018 [I5], but nowadays, there is a modern version that is simplified (does
not learn a value function in addition to the Q-functions) [16]. We describe
this modern version with the necessary context in Section 4.4l

Notable predecessors to the family of Offline [RL algorithms are the algo-

10

2.2. Reinforcement Learning

rithms [DQfD[I7] and DDPG{D[45]. They are based on [DQN|and DDPG
algorithms. The difference is the introduction of a pretraining phase. We store
the demonstrations in the [Replay Buffer| when we initialize the algorithm. We
consider the demonstrations to be a static dataset of previously collected data.
The agent pretrains itself using these demonstrations. While this accelerates
learning when we switch to online learning, the agent trained only in the
pretraining (offline) phase does not achieve reasonable results. See Section
4.2 for more information about online and offline learning.

We review algorithms that can achieve good results only using offline data
in the next section [2.2.2.

B 2.2.2 Offline Reinforcement Learning

The modern era of Offline |RL| began with the [Batch-Constrained Deep Q-
learning (BCQ)[10] algorithm, the main idea of the algorithm is to learn from
a fixed dataset that was collected in the past, and does not change. The
algorithm uses a Variational Auto-Encoder (VAE)[22] as the generative model
for perturbations that are used to constrain the data that was sampled from
the [Replay Buffer, The motivation behind this is the success of supervised
algorithms (e.g., computer vision) learned on a large static dataset. Offline
RL| is sometimes called batch RL[25].

While this area of [RL]is quite new, researches have already made some
progress. [23] presents the Bootstrapping Error Accumulation Reduction
(BEAR) algorithm, the authors claim that it is less restrictive than BCQ),
and it achieves superior results. The authors of [BEAR| have also released
an overview over the Offline RL research [26]. The same team authored
a project called D4RL[9], “Datasets for Deep Data-Driven Reinforcement
Learning” based on OpenAl’s Gym[2] environments using the MuJoCo physics
simulation.

The algorithm used in this work, CQL[24] is a follow-up of BEARL CQL
achieves state-of-the-art results. Moreover, (CQLJ is relatively simple to imple-
ment on top of other algorithms like SAC| (see Section 4.4)). For a rigorous
algorithm description, see Section 4.6l

Even though there has been a lot of research in the area of dynamic pricing
using [RLL nobody has yet tried to use new algorithms that can train deep
neural networks completely from offline data. This work’s contribution is the
first usage of Offline RL]|in the setting of dynamic pricing.

11

2. Literature Review

B 2.2.3 Imitation Learning

The topic of IL] is an honorable mention in this review due to the fact that
we use the algorithm. [T learns a policy based on expert behavior, i.e.,
tries to mimic some demonstrations in a dataset. We refer to [34] for an
in-depth algorithmic overview of

We use the toolkit Garage[12], which has a implementation based
on [18]. For more information, see Section 4.7,

12

Chapter 3

Data Retrieval and Description

We use real-world data from a small e-commerce business to set up our pricing
model. In this chapter, we describe the business domain, the data collection
pipeline, and we describe and analyze the collected data.

The business is mainly focused on cosmetics, clothes, and accessories for
men, offering a wide range of clothes, e.g., shirts, t-shirts, sweaters, boots,
and jackets. A part of the clothes belong to a brand created by the business
owners, these clothes are exclusive to the business that provided us with
the data. No other business sells them, that is why we do not consider
competitiveness as a factor in this work.

The primary market of the business consists of Czechia and Slovakia, but
some other regions in Central Europe such as Poland or Hungary are also
targeted with their own regional URLs. There is also one generic domain for
customers from the whole of Europe, but it is the minority of market focus.

We narrow our focus to the seasonal shirts of the business owners’ brand.
Currently, the business performs a static discount procedure for the seasonal
shirts. There are always two seasons in a year, summer and winter season.
The business discounts the unsold shirts from the previous seasonal collection
before introducing new shirts for the next season. The current procedure just
makes two fixed discounts, the first one is 20% on all seasonal products and
the second one is 40%, then the second one stays active until the products get
sold out. This is the area in which we are trying to achieve an improvement,
mainly by introducing a dynamic pricing method that can leverage historical
data.

13

3. Data Retrieval and Description

We describe the methods and challenges of data retrieval and cleaning in
Section |3.1. The description of the data itself follows in Section |3.2

. 3.1 Data Retrieval

In this section, we describe the data retrieval from external sources, data
parsing, cleaning, and merging.

Starting with data retrieval, we retrieve the data from two separate sources:

® The e-commerce administration interface

® Google Analytics (GA)

The first source, the e-commerce administration interface, is a third party
solution. This interface does not allow machine-friendly data export. Data
mining is a common issue in many machine learning applications and our
problem is no different. We choose to extract the data from raw HTML
tables that are used to show statistics to the users of the administration
interface. Currently, there is no other way to extract the required data from
the interface.

This approach has one major pitfall: The data retrieved from the HTML
tables is chunked into monthly periods. That is why it is not possible to
have better time granularity like weeks or days. The absence of a better time
granularity in the data does not enable us to examine details like sales on
workdays vs weekend, etc. A Julia script performs the data extraction and
parsing directly from the raw HTML tables. We use the extensions Gumbo
and Cascadia for HI'ML parsing and extensions DataFrames and CSV for
data merging.

We perform data cleaning and sanitizing on the data retrieved from the
administration interface. Specifically, we convert dates and numbers into
machine-friendly formats and redistribute stock data from one table row to
others to achieve machine readability.

The second source is the |(GA|platform API. This API is highly configurable
and provides a reliable way of tracking customer traffic. The data we obtain

14

3.1. Data Retrieval

from [GA]is split into monthly periods. While the [GA] API allows shorter time
periods, we were limited by the data from the e-commerce administration
interface. The data from |GA|serves as a complement to these data in terms
of customer traffic. We obtain the actual data from the [GA] API via a
Python script using the extension Google API Client. We also use the Python
extension Pandas for data manipulation in this script.

Merging of the data from the administration interface and [GA| results in
the final dataset used for training (see Chapter 6/ for evaluation). The merging
key is the product’s URL. We store the dataset as a |(Comma-separated values
(CSV)| file. We provide an illustration of the whole data pipeline in Figure
3.1l

E-commerce
Website

N

Administration Google Analytics
Interface API
HTML parsing Google Analytics

Python extension

i

Data cleanmg and J Data retrieval and

via Julia script

—

merging into CSV storing into CSV

—

Merge into
final CSV dataset

Figure 3.1: Diagram of the data retrieval pipeline

15

3. Data Retrieval and Description

B 32 Data Description

In this section, we describe the data we retrieved via the pipeline described
in the previous section.

We ran the pipeline on the records with their dates ranging from November
2017 to February 2021. We tried to obtain the largest training dataset possible,
we ended up with a |[CSV]|file with 1902 rows. Each row represents a month
of data for one variant of a shirt.

It is difficult to determine whether the size of 1902 rows is enough, but we
managed to stabilize the learning and achieve good results on this dataset,
for more information, see Chapter [6. It is important to note that we could
not obtain a larger dataset. The data we have is the maximum that could be
retrieved from the administration interface.

We ran the same data extraction pipeline on newer records, specifically
those from March and April 2021. This [CSV]|file contains 45 rows. We use
this smaller dataset for evaluation in Section 6.1l

The [CSVlfile of the dataset contains 8 columns that are used as dimensions
of the state space (see Chapter [5| for more information about the state space).
The columns concerned with price, stock, and total earned come from the
e-commerce administration interface. The other columns related to website
traffic come from [GAlL We provide a description of the relevant data columns
in Table [3.1, the reader should be aware that the metrics are provided with
respect to the given month.

We present the basic metrics of the data columns for the training set in
Table [3.2. Furthermore, we emphasize that the dataset comes from a real-
world e-commerce store, so we cannot assume a specific distribution. We also
provide the same metrics for the evaluation dataset in Table 3.3l However,
we look at the histogram of sell prices in Figure [3.2] this provides us with
some insights about the data distribution. We provide the number of sales
for each month in Figure [3.3|

16

3.2. Data Description

Metric Description (with respect to the given month)

Sale price The sale price of the product

Stock price The price the product was bought for by the business
Stock The amount of products in the warehouse

Sold The amount of sold products

Total Earned The total revenue for all sold products

Unique page views Unique page views for the product
Average time spent Average time spent on the product’s detail page

Table 3.1: Description of data values collected for each month/row

Metric Mean Std Min Max Median

Sale Price (CZK) 1043.24 195.79 570.25 1251.73 1137.79
Stock price (CZK) 589.37 69.19 481.84 942.07 600.00
Stock (pcs) 20.84 19.12 0.00 166.00 20.00

Sold (pcs) 4.36 4.40 0.00 47.00 3.00
Total Earned (CZK) 4613.77 4790.42 0.00 51035.54 3400.12

Unique page views 66.37 62.67 3.00 1119.00 47.00
Average time spent (s) 59.24 29.84 10.14 366.84 53.83

Table 3.2: Training data metrics aggregated over all products and months

Metric Mean Std Min Max Median

Sale Price (CZK) 957.37 288.93 528.93 1320.44 735.54
Stock price (CZK) 528.42 11.07 514.10 547.12 530.09
Stock (pcs) 19.93 17.37 0.00 46.00 12.00

Sold (pcs) 3.00 2.37 1.00 2.00 10.00

Total Earned (CZK) 3115.45 3166.31 528.93 13015.48 2204.38
Unique page views 38.22 27.43 4.00 125.00 30.00
Average time spent (s) 57.45 28.95 17.00 128.00 46.44

Table 3.3: Evaluation data metrics aggregated over all products and months

17

3. Data Retrieval and Description

Number of rows
w
o
S
1

200 A
100 A
O .
600 700 800 900 1000 1100 1200
Sell price

Figure 3.2: The histogram of sell prices from the training data

1000 A

(0]

o

(=]
1

Number of sold shirts

200 A

0 -

6 8 10 12
Month

[e=]
[\
S

Figure 3.3: Number of sold shirts for every month from the training data

Chapter 4

Algorithms Overview

In this chapter, we look at the algorithms used in this work. We define the
necessary prerequisites that enable us to build the algorithms. We begin
with the definition of a Markov Decision Process| (MDP)) in Section We
will use this definition in Section for the [Reinforcement Learning
problem introduction. We follow up on the topic of in Section where
we narrow our scope to using deep neural networks. [Soft Actor-Critic|
is the state-of-the-art off-policy algorithm for online We provide a
description of the algorithm in Section The ability to learn from static
datasets is very appealing, and we introduce the concept of Offline R in
Section We need an algorithm for Offline to serve as the base for
our dynamic pricing solution. (Conservative Q-learning| (CQLJ) is the main
algorithm of choice for this work. We look at its details in Section 4.6l A
sidestep to Imitation Learning| happens in Section we look at the
Behavioral Cloning| algorithm.

. 4.1 Markov Decision Process

In this section, we describe a formalism for sequential decision problems with
uncertainty. The decision only depends on the current state and does not

consider the past. Commonly used formalism for this kind of problem is an
MDP.

An MDP|is a tuple (S, A, P,R,~). Here, S is the state space, where the

19

4. Algorithms Overview

state sg € S is the initial state, A is the action space, P is the transition
model, R is the reward function, and v € (0, 1] is the discount factor. Note
that S and A can be infinite.

We now introduce an agent that will observe a state of the environment
sy € S, where t is the time step. The agent performs an action a; € A based
on the observed state s;. The agent receives a reward r, = R (s, a;) for his
action. This process continues until the environment reaches a terminal state.

A function that maps a state s € S to an action a € A is called a policy.
The common symbol notation for a policy is 7 : § — A. We get the action
a € Ain a given state s € S from our policy as a = 7(s). On a higher level,
we can view a policy as an instance of the agent’s behavior in the MDPL

Every useful policy needs to take the transition model into consideration.
Generally, we consider the transition model P(siy1|s¢,ar) € [0,1] to be the
probability of transitioning to state s;+1 when the action a; is executed in
the state s;.

In Equation 4.1, we introduce a wutility function. This function describes
the cumulative expected reward in a state s € S while following a policy .

This utility function considers a so-called finite horizon [MDPL. A finite
horizon MDP)| has a finite number of transitions 7. An MDP)| with infinite
horizon would have T' = co. We usually consider T' = 12 as twelve months,
according to our domain description from Section |1.2l

The discount factor -y is usually tied to the infinite horizon MDPs. The
reason behind this is that an agent could potentially exploit the rewards of
the MDP]| forever. While this phenomenon cannot happen in a finite MDP|
we include the discount factor to help us optimize the pricing process. It is
better to sell the product earlier than later, because of the space it occupies
in the warehouse. Thus, the agent prefers to sell the item sooner than later.

T

UW(S) =K [Rt|8t = S] ,Rt = Z ’)/kR(St+k, at+k) (41)
k=0

Let us again look at the problem of maximization of the cumulative expected
reward. We need an optimal policy for our agent. We denote it as 7*. The

20

4.2. Reinforcement Learning

optimal policy maximizes the rewards and is recursively defined as follows
(Equation 4.2).

7 (s;) = argmax Z P(ses1 | s6,a0)U™ (s041) (4.2)

at€A si41€8

If we have the knowledge of the transition model, we can find the optimal
policy via Value or Policy iteration. We refer to [38] for an overview of Value
and Policy iteration methods. We will discuss the methods of solving this
problem without a transition model in Section 4.2 using [RLL

B 4.2 Reinforcement Learning

In this section, we follow up on the definition of an [MDP|with [RL. Generally,
RL|examines how an agent can learn from success and failure, reward, and
punishment[38]. In other words, the agent is expected to learn from its own
experience in an uncharted territory[41].

Let us consider an MDP)| for which we do not know the exact transition
model probabilities. An MDP)|with this property cannot be directly solved
using the traditional methods mentioned in Section [4.1]

The main idea of |RL|is to learn a policy that maximizes the cumulative
reward. We cannot use the direct transition model probabilities P(s;4+1]|s¢, at),
because these probabilities are unknown. This renders the Equation 4.2
useless. We need a different approach that does not require the transition
model probabilities. Such approaches are called model-free methods. On the
other hand, model-based methods learn the environment’s transition model.
We will not work with model-based methods in this work, we refer to [41] for
more information.

While Equation 4.1/ looks at the cumulative expected reward in each state
s € §, we may want to look at the same property with respect to both state
s € § and action a € A. This leads us to the definition of a Q-function in
Equation (4.3

21

4. Algorithms Overview

reinforcement learning offline reinforcement learning

this is done \
\ many times
=

Figure 4.1: Tllustration of difference between online and offline methods [39]

big dataset from
past interactions

deploy learned policy in new scenarios

Q(st,ar) = R(sp.ar) +v Y Plsis1 | st @) max Q(si+1, a) (4.3)

st+1€S

Q-function has a direct relationship with the utility function. The relation-
ship is shown in Equation 4.4

U(st) = max Q(s¢,at) (4.4)

Equation still includes the transition model probabilities. The solution
to this is the Q-learning algorithm [47].

Q-learning uses a technique called temporal difference learning. This
technique enables us to iteratively estimate the Q-function without the
transition model. We obtain the estimation by “experience”, the agent
repeatedly experiences the environment and the transitions are used in the
Q-learning update. We present the Q-learning update in Equation [4.5, the
notation adopted from [38]. « is the learning rate.

The idea of environment exploration implies the ability of the agent to
directly interact with the environment. This environment is referred to as the
simulator. [RL] algorithms learning with a simulator available are called online
algorithms. When there is no simulator available, we call these algorithms
offtine. We provide an illustration of the difference between online and offline

in Figure We take a look at Offline in Section [4.5]

Q(s4,at) < Q(s¢,at) + a(R(st, ar) + 7 max Q(st+1,a) — Q(st,ar)) (4.5)

22

4.2. Reinforcement Learning

A similar algorithm to Q-learning is called SARSA, which stands for State-
Action-Reward-State-Action [38]. The difference versus Q-learning is in the
choice of Q-value in the next state. While Q-learning takes the maximum over
all possible Q-values in Q-learning update (Equation |4.5), SARSA chooses the
actual Q-value observed while executing the current behavior policy. Because
Q-learning does not take the actual policy into account, we call it an off-policy
algorithm. SARSA is an on-policy algorithm, we need to observe the complete
transition quintuple (s, ag, r¢, St4+1, ai+1), where r, = R(s¢, ar). The SARSA
update (Equation 4.6) uses all elements of this quintuple.

Q(s¢,at) < Q(s¢,at) + (R(s¢, at) +vQ(St41, A1) — Q(5¢,a1)) (4.6)

An important topic of [RL|is the trade-off between exploration and exploita-
tion when performing subsequent “runs” in the environment. This problem
arises due to the fact that the agent does not know the environment’s exact
model and is learning the model’s estimates through interaction with the
environment.

Exploration enables the agent to learn a better model of the environment,
but the agent needs to exploit the states and actions that yield the highest
rewards. A policy that would always exploit the current, possibly suboptimal,
estimate and never explore new possibilities is a greedy policy.

One common approach to this trade-off is an e-greedy policy. The agent
performs a random action with a probability of €. Otherwise, the agent
greedily chooses the maximizing action according to the Q-values.

Q-learning in its basic form only works for discrete state spaces and actions.
This limitation, paired with the so-called curse of dimensionality, renders it
useless for our problem because we are dealing with continuous state and action
spaces. We can handle continuous spaces by using function approximators on
top of Q-learning. Current state-of-the-art function approximators are based
on deep neural networks. We look into DRL|in the next section 4.3.

23

4. Algorithms Overview

B a3 Deep Reinforcement Learning

In this section, we introduce Deep Learning and apply its methods to RL.
Specifically, we use deep neural networks to represent the Q-function. We
use this to introduce the Deep Q-network (DQN)) algorithm.

B 4.3.1 A Quick Introduction to Deep Learning

Deep Learning uses deep neural networks as function approximators to solve
challenging tasks in machine learning. We usually build a deep neural network
from an input layer, an arbitrary number of hidden layers, and an output
layer. The number of hidden layers is considered the depth of the network.
The term “Deep Learning” arose from this terminology [13].

Neurons are the building blocks of each layer. The number of neurons per
layer is the layer size. The most common linear layers consist of neurons
that represent an affine transformation. We show the affine transformation
in Equation where z € R" is the neuron input, w € R™,b € R are the
parameters, and y € R is the neuron output.

y(x) =wlz+b (4.7)

Naturally, a deep neural network that only consists of linear layers is linear.
We would like to approximate nonlinear functions. To introduce nonlinearity
to the network, we add activation functions. We use the activation function
after each linear layer. The most common activation functions are:

® Rectified Linear Unit (ReLU) y(z) = max(0, z)

1

® Logistic Sigmoid y(z) = ;=

® Hyperbolic Tangent y(z) = tanh(x) = H%Qz -1

Equation includes parameters w and b. However, so far, we have not
described a way to learn these parameters. It is important to note that deep

24

4.3. Deep Reinforcement Learning

neural networks have many parameters, and it is common to denote them all
combined as 6.

Deep neural networks learn their parameters from training data. This data
consists of the input data and its ground truth values. We pass the data
through our network and get some output. We call this step the forward pass.
The next step is to compute the network’s loss. The loss describes the error
between ground-truth values and the network’s predictions. The last step
tries to improve the network’s parameters, we call this step backward pass.
The general algorithm is called Backpropagation.

Backward pass computes the gradients via the chain rule, beginning with
the loss function and then starting at the last layer. Hence, the name backward
pass. We use the calculated gradients to update the network’s parameters.
This concludes a single training step.

A method for gradient computation is a pivotal part of Deep Learning. Cur-
rently, methods based on Stochastic Gradient Descent (SGD)| with momentum
are prominent. The state-of-the-art method used nowadays is ADAM[21] or
its variants.

While this Deep Learning overview may be quite brief, anything more
detailed would fall outside the scope of this work. We refer the reader to [13]
for more information about Deep Learning.

B 4.3.2 Deep Q-network

The introduction of DQN|3T] is the beginning of the DRL era. [DQN|combines
RL|and Deep Learning. Here, we describe the improved DQN| version from [32].
A deep neural network represents the Q-function. [RL] usually diverges when
paired with a nonlinear function approximator to represent the Q-function.
The mitigation of this problem is done by two key ideas.

The first idea is the usage of experience replay|28]. The agent stores his
experience in the form of a transition (s, at,r¢, s¢4+1) into a Replay Buffer!
During training, a batch of samples is drawn from the Replay Buffer| in a
uniform fashion. This technique helps to break the correlation between obser-
vation sequences and improves data efficiency by reusing previous transitions.

25

4. Algorithms Overview

The second idea introduces a second deep neural network to help stabilize
the learning. We refer to this network as the target network Q, the notation
adopted from [32]. The target network Q begins with the same parameters
as the main network). The difference is the update frequency. While the
main network) gets updated every training step, the target network Q only
gets updated once every C training steps. The actual update just copies the
parameters from @ to Q We use Q in the Q-learning update adapted for
DQN| (Equation 4.8]).

Comparing Equation [4.8] and Equation 4.5, we see that the only relevant
change is the usage of Q in the learning part of the equation. One other
subtle difference is the introduction of 6 and #’. These symbols represent the
learnable parameters for each Q-function network.

Q(st,a1;0) < Q(s¢,a4;0) + a(R(se,ar) + 7 max Q(st+1, a;0) — Q(sy, az;0))
(4.8)

The “learning” part of the Q-learning update is often called the Temporal
Difference error. Temporal Difference error is shown in Equation [4.9.

R(st,at) +y max Q(s141,a;0") — Q(s¢, a; 0) (4.9)

We show the actual loss function of the neural network in Equation 4.10
(notice the usage of the Temporal Difference error from Equation 4.9). We
then perform the standard backpropagation procedure (See Section 4.3.1| for
more information). For more specific details, please refer to [32].

L(Q) = Est,at73t+1ND (R(Stv a’t) + Igleaj(Q(StJrlv a; 9/) - Q(Stv at; 0))2
(4.10)

While [DQN| made a breakthrough in [RL| and is a fundamental algorithm
for DRL, nowadays, there are algorithms that have surpassed its performance.
Soft Actor-Critic| (SAC) is the state-of-the-art algorithm for DRLL We describe
SAC! in the next section 4.4l

26

4.4. Soft Actor-Critic

. 4.4 Soft Actor-Critic

In this section, we introduce the family of policy gradient methods, restrict

their scope to actor-critic methods, and then we describe the |[Soft Actor-Critic
(SAC) algorithm.

B Policy Gradient Methods

Up until now, all methods described for solving the RL| problem used the
iterative estimate of the Q-function (Equation 4.5) to train a policy. The
policy gradient methods take a different approach. They learn a parametrized
policy without using a Q-function for action selection.

We need to define a parametrized policy. Up until now, we only considered
deterministic policies. A deterministic policy is a direct mapping from a state
s € S to an action a € A. A stochastic policy is defined in Equation [4.11)
Each state-action pair has a probability to be chosen by the policy.

m(als): AxS —[0,1],ae A,s €S (4.11)

Coming back to the parametrized policy, we define a parametrized policy
as a stochastic policy, based on a parameter § € R?, in Equation 4.12} the
notation inspired by [41].

m(als,0) : Ax S xR = [0,1,a € A,;s € S,0 € R? (4.12)

The name “Policy Gradient Methods” implies the usage of gradient. Here,
we will follow the notation from [41]. To specify this, we introduce a scalar
measure J(f) with respect to the policy parameter §. We want to maximize
the perforrrﬁn\ce, so we perform gradient ascent in Equation |4.13| « is the

step size. VJ(6;) is a stochastic estimate of V.J(6) with respect to 6;.

—

0t+1 = 975 + aVJ(Gt) (413)

27

4. Algorithms Overview

Methods using this general idea of gradient ascent are called policy gradient
methods. We need to obtain the estimated gradient of the scalar measure
VJ(0) with respect to the policy parameter 6. Fortunately, an answer for
this problem exists. The answer is the policy gradient theorem, shown in
Equation |4.14 p, is the state distribution with respect to the policy w. The
state distribution essentially represents the fraction of time spent in every
state s € S while following the policy 7. ¢r(s,a) is the value of taking an
action a € A in a state s € S under policy .

VJ(0) ~ Z pr(8) Z q=(s,a)Vr(als,0) (4.14)

seS acA

B Actor-Critic Methods

The actor-critic methods are a subset of policy gradient methods. They draw
ideas from temporal difference methods, e.g. Q-learning (Equation [4.5)). We
could say that actor-critic methods combine policy gradient methods and
temporal difference methods. One example of using actor-critic methods
combined with neural networks is the |A3C[30].

We will build upon the basic definition of the policy gradient theorem
(Equation 4.14). We define a generalized policy gradient theorem with a
baseline b(s) : S — R in Equation 4.15. For the proof of correctness, see [41].
We use the baseline to determine whether the returns are better or worse
than average.

VJ(0) ~ Z tr(s) Z(qﬂ(s, a) —b(s))Vr(als,) (4.15)

seS acA

A good choice for the baseline is the utility function (Equation [4.1). We
cannot get the exact utility, so we have to settle for an estimate. We obtain
the utility estimate Uy (s) via supervised learning. This estimate is the critic
part of actor-critic methods. For completeness, the actor is the actual policy.
Specifically, we use a neural network that approximates the utility function of
the most recent policy w. The utility estimate is concurrently updated with
the policy while training.

The network is learned by standard [SGD| methods using the mean squared

28

4.4. Soft Actor-Critic

error of the temporal difference error. The actual objective minimizes the
difference between the reward of a transition sampled from the current policy
7, and the estimated utility function. We define the temporal difference
error in Equation [4.16l We assume that we sampled a transition tuple
(S¢,at, 7, S¢11). Let us define ry = R(s¢, ay) to simplify the notation.

A

§ = (re +7Ux(5141)) = Ur(s:) (4.16)

B Maximum Entropy Reinforcement Learning

Maximum entropy RL| augments the standard RL| objective with an entropy
term. In this section, we follow the notation from [I4], the article proposing
the maximum entropy RL. We define the standard optimal policy in Equation
4.17. 7 is the policy. p, is the state distribution of trajectories.

7T;ktd = arg II17Er1X Z E(st,at)fvuﬂ [R(Stv at)] (4.17)
t

Equation 4.17| augmented with the entropy term is shown in Equation 4.18]
where a determines the relative importance of the entropy term, we refer to
« as the temperature, H(w(+|s¢)) is the entropy of the action distribution in
state sy for the policy 7.

Thaggnt = AEMAX Y By, 0)np, [R5ty ae) + aH(7([s1))] (4.18)
t

We define the soft Q-function in Equation 4.19. We use r; = R(s¢, a;) for
simpler notation.

Q:oft(stv a’t) =T+ E(Sz+1,-..)NM7r Z Pyk(rtJrk + O‘H(ﬂhaz‘Ent('|st+k>))
k=1
(4.19)

29

4. Algorithms Overview

For more information and proofs, see [14]. We use a soft Q-function
approximated by a neural network in the |SAC| algorithm.

B Clipped Double Q-learning

The idea of clipped double Q-learning comes from the [Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm[IT]. This technique is another
tool that improves learning stability. Specifically, clipped double Q-learning
helps to prevent overestimation bias. This overestimation bias happens due
to the fact that the critic is an estimate of the true function.

We need to clarify one thing. In Equation 4.15 we have the term ¢, (s, a) —
b(s). This term is the standard policy gradient theorem with a baseline,
which is very general. Equation 4.16 replaces this with a term called one-
step actor-critic, sometimes named TD actor-critic. From now on, we will
only consider so-called @ actor-critic. Essentially, this actor-critic uses a
Q-function estimate as a critic. Proof can be found in [IJ.

Let us now consider a critic Qg(s,a). This critic is an estimate of the
Q-function (Equation 4.3). We approximate the Q-function using a neural
network. 6 denotes the network’s parameters. We use the stabilization trick
from DQNJ using a second network called target network. We denote its
parameters by ¢’.

The authors of [I1] show that overestimation bias is an issue. The method
of mitigation is simple. Instead of using a single network, we introduce a
second one. The same is done with the target network. We then denote the
parameters as 61, 62,0}, 6).

These networks are learned independently using standard |SGD| methods.
The interesting part happens in the training of these networks. Their loss
is calculated as the mean squared error. When we calculate this loss, we
use the minimum of those two networks. The formula of the general idea
is min;—1 2 Qg (St+1, ar+1). This reduces the overestimation bias. We refer
to [11] for technical details. We use clipped double Q-learning in the |SAC
algorithm.

30

4.4. Soft Actor-Critic

B Soft Actor-Critic

Up until now, we have been building up the theory and ideas to build the
state-of-the-art [RL| algorithm [Soft Actor-Critic| (SAC). Now, we define the
SA(] algorithm, connect it with previous ideas, and describe its attributes.

A side note, the authors of [SAC|introduced the first version in [I5]. This
algorithm used an explicit utility function estimate and worked with a fixed
temperature parameter. The authors introduced an updated version [16].
This version does not work with a utility function estimate and has automatic
temperature parameter tuning.

SAC| is an online, model-free, off-policy RL| algorithm that works with
continuous state and action spaces. The algorithm’s main new idea is the
maximum entropy [RL|4.4. [SAC| uses two core ideas from DQN| namely,
experience replay and target networks, see Section |4.3.2| for more information.
The last core idea is the usage of clipped double Q-learning 4.4l

We show the algorithm pseudocode in Algorithm |1 This pseudocode is
mostly copied from [I6] with some minor variations to keep the notation
consistent. We follow up with a high level description of the algorithm.

First, we need to describe all parameters. ¢ are the policy weights. A
neural network represents the policy. Four more neural networks represent
the Q-functions. Weights 61, 05 are for the main networks and the weights

1,05 are for the target networks. « is the temperature parameter. The next
mentioned parameters are constant. We call them hyperparameters. All A
parameters are the step sizes for the [SGDL 7 controls the speed of target
network learning.

We now look at the actual algorithm steps. The first step is the initialization.
We have some initial parameters 61,62, . We copy the Q-function weights
into the target networks. We start with an empty |Replay Buffer| D.

We now perform training iterations. It is common to use a fixed number
of iterations while training, commonly referred to as epochs.

Every iteration, we perform policy rollouts. Policy rollouts take the current
policy m and sample actions that are forwarded to the environment. The
complete transition tuples are then stored in the [Replay Buffer| D.

31

4. Algorithms Overview

Algorithm 1: Soft Actor-Critic

Input: 61,05, ¢ > Initial parameters
01 < 01,05 < 0y > Initialize target network weights
D+ > Initialize an empty replay buffer

for each iteration do
for each environment step do
> Sample action from the policy
a ~ mg(ar|st)
> Sample transition from the environment
St+1 ~ P(si41]5¢, ar)
> Store the transition in the replay buffer
D+ DU {(St, at, R(St, at), 3t+1)}
end for
for each gradient step do
> Update the soft Q-function weights
0; < 0; — A\qVo,Jo(6;) for i € {1,2}
> Update policy weights
¢ ¢ &= AV Jn(0)
> Adjust temperature
o a— A VeJ(a)
> Update target network weights
0 < 70; + (1 — 7)0} for i € {1,2}
end for

end for
Output: 61,609, ¢ > Optimized parameters

Naturally, we have to update the learnable parameters to see improvement.
For the sake of simplicity, we will not include exact gradient formulas for the
updates. For information on the formulas, see [16]. We update 61,602, ¢,
via SGD. Batch of data for SGD]|is sampled from the |[Replay Buffer. The
weights for the target networks, 6}, 05, are updated using polyak averaging
with respect to the hyperparameter 7.

This concludes the description of SAC|. Our problem is not solved by [SAC
only, but we use it as the base for the |[CQL| algorithm, described in Section
4.6l

32

4.5. Offline Reinforcement Learning

B 4.5 Offline Reinforcement Learning

The idea of learning strong policies via a generalized algorithm that does not
need fine-tuning for specific tasks is very appealing. For this reason, is
a hot research topic. However, a major issue prevents the adoption of [RLj
in real-world environments. Most real-world domains do not enable online
collection of data. The data collection is either expensive or risky.

This motivated a new branch of Offline Reinforcement Learning,
sometimes referred to as batch Offline tries to learn an optimal policy
only from prior data without any online interaction with the environment.
The motivation behind this is the success of supervised learning in domains
like computer vision, where neural networks learn from large previously
collected datasets and do not require any other data. Offline RL] builds on
top of algorithms, so we can consider Offline as a subfield of

It is important to realize that learning from offline datasets creates a lot of
challenges. The primary challenge is the distributional shift. Offline dataset
does not guarantee that the distribution of its data corresponds to the real
distribution. This produces an overestimation error when the evaluated
state varies from the offline dataset. The agent would choose a suboptimal
action that has overestimated Q-function. This renders conventional online
methods useless in the setting of a fixed dataset. The attempt to fix
this issue tries to restrict the policy so that the policy only chooses actions
that are in the dataset or close to these. Restrictions on the policy cripple
the generalization capabilities. Algorithms like BCQ, choose such a
restrictive approach.

The state-of-the-art Offline RLj algorithm [Conservative Q-learning| (CQL) [24]
takes a different approach. learns a conservative Q-function that lower
bounds its true value. In practice, only adds a slight change to the
learning objective of online algorithms. In this work, we use on top

of SACl We describe in Section

B 26 Conservative Q-Learning

In this section, we look at the state-of-the-art Offline [RL| algorithm |CQL[24].
It is important to note that[CQL|is not an exact algorithm, a better description

33

4. Algorithms Overview

would be an algorithmic framework. The primary issue that happens while
learning from a fixed dataset is the distributional shift. A Q-function trained
on this dataset will overestimate unseen actions. The primary idea behind
CQL| is to learn a conservative Q-function that lower bounds the true Q-
function. We provide an illustration of the conservative Q-function idea in
Figure 4.2,

Naive Q-function

Q(s,a) Q(s,a)

Conservative Q-function

~ .
\
Q
7/
-,

Actual Q-function

Action support a Action support a

Figure 4.2: Tllustration of the conservative Q-function [39]

We build |[CQL| on top of SAC|in Algorithm [2. For an overview of SAC] see
Section 4.4.

Algorithm 2: Conservative Q-learning using [SAC

Input: 61,05,¢,D > Initial parameters and replay buffer
0] < 01,0, + 05 > Initialize target network weights
for each iteration do

for each gradient step do

> Update the soft (Q-function weights
0; < 0; — A\qVo, CQL(6;) for i € {1,2}
> Update policy weights
¢ ¢ = AV Jr(9)
> Adjust temperature
o a—AVaJ()
> Update target network weights
0 < 70; + (1 — 7)0. for i € {1,2}
end for

end for
Output: 61,609, 0 > Optimized parameters

Next, we look at the differences between vanilla |SAC| and (CQLL First, the
Replay Buffer| D is an input, instead of being an empty set. We prefill the
Replay Buffer| D with the previously collected transitions from our offline
dataset. The transition collection is also missing. We do not collect new
trajectories in Offline RL. The optimization step remains unchanged for the
most part, but there is a change in the Q-function update objective. The
change is highlighted in red in Algorithm [2.

34

4.7. Imitation Learning

We use the objective here, which is given in Equation a is
the temperature parameter, 7g is an approximation of the original policy

from the offline dataset, and D is the [Replay Buffer] The minimizing term is
the [CQL] regularizer, which prevents the overestimation of unseen actions,

the second term is the standard mean squared difference of the temporal
difference error (see Equation 4.10)).

CQL(Q) = Hgn aEStND llog Z exp(Q(8t7 atg; 9)) - Eathrg(aﬂst) [Q(St) ag; 9)]‘|

ag

+ Est,at,st+1~D |:(R(St7 at) + Y I;leajl(Q(St+17 a; HI) - Q(St7 Qg 0))2:| (420)

For more information on the objective and theoretical background
with proofs, see [24].

B 4.7 Imitation Learning

In this section, we provide an introduction to Imitation Learning] (IL). We
then introduce the Behavioral Cloning (BC|) algorithm.

B Introduction to Imitation Learning

We use Imitation Learning| to learn a desired behavior by imitating the
expert’s behavior [34]. is closely related to , specifically because they
both use the formalism. However, there is a fundamental difference
that separates L] and RLL

learns a policy by mimicking the provided expert demonstrations, and
therefore it is not able to generalize in any sense. On the other hand,
is able to generalize. This creates a difference in the reward interpretation.
While uses the reward as the driving metric for training. The main motive
of I is to mimic the provided behavior given by the expert.

35

4. Algorithms Overview

B 4.7.1 Behavioral Cloning

The simplest variant of L is Behavioral Cloning| (BC]). BC|learns a direct
mapping from a state s € S to an action a € A. Because of this fact, the BC
task is a simple supervised learning regression. We implement this regression
task as a deep neural network (see 4.3.1 for a quick intro to Deep Learning).
We denote the network’s parameters by 6. Furthermore, we describe the
neural network as a deterministic policy in Equation |4.21l

7(5:0): SxRT = A, s€S,0 € R (4.21)

We perform the optimization of the network’s parameters 6 via [SGDL The
loss function is simply the mean squared error of the action given by the
neural network and the expert’s action. We denote the expert’s behavior by
a policy mg(s) : § = A,s € S. We perform the optimization on batches of
states, we denote a single batch by B. Finally, we give the loss function of
the neural network in Equation 4.22,

L(0) = Bqus |(n(5:0) — 7i(s))?] (4.22)

In practice, we use the RL|toolkit Garage[I12], which has an implementation
of BC based on [18].

We use |[CQL| and BC| for dynamic pricing in this work. We describe the
underlying [MDP| in Chapter |5l Lastly, we evaluate our results via domain
expert evaluation and simulation in Chapter |6l

36

Chapter 5

Model

In this chapter, we provide a model of the underlying used for dynamic
pricing (Section , and we describe a custom simulator used in Chapter |§|
for evaluation (Section [5.2)).

B 51 Dynamic Pricing Model

We described the general domain of this work in Chapter [I, we introduced
the formalism of in Section 4.1l Furthermore, we combine the
formalism and the domain description to create a concrete model. We
draw inspiration from [29], but the data available is the deciding factor in
most cases. We follow up with the description of three pivotal parts of the
model, namely, the state space S, the action space A, and the reward function
R:SxA—R.

B State Space

We use a continuous state space S, we consider a single state s € S to be
a vector of carefully selected features. All elements of the state space have
a dimension of eight, and we consider all elements of the vector to be real
numbers. Thus, we say that s € R%,

37

5. Model

By doing this, we introduce inaccuracies, because some features are discrete
numbers, e.g., month in the year, count of products in stock. Nevertheless, an
implementation of a state space that has some discrete and some continuous
elements is not a common approach. Therefore, we proceed with the usage of
a continuous state space, but it should be noted that some features only have
a discrete set of possible values.

It is important to realize that all features describe the dynamics of a single
month in the e-commerce store. We proceed to describe every used feature
and give some motivation behind the particular choice. The feature vector
has eight dimensions, we start with the first dimension, the month. This
dimension represents the calendar month of the year that the state happened
in. It makes sense to have the month as one of the features, because the
customer behavior changes during the year.

The second dimension is the number of sold shirts. We use this number to
determine the exact number of sold shirts, and we subtract this number from
the stock count. The total revenue is the third dimension of the state vector,
it represents the sheer amount of money that was gained from the given
month of sales. We use the CZK currency for all money-related features.

The actual selling price of the shirt is the fourth dimension, this represents
the price that is visible to customers when they browse the store’s website.
The fifth dimension represents the stock price. This is the price that the
e-commerce store bought the shirt from its supplier. We use the stock price
for profit calculation in the reward function. Naturally, we should keep track
of the stock in the warehouse, and this number is stored in the sixth dimension
of the feature vector.

The last two dimensions of the feature vector represent the data from
Google Analytics (GA]). We store the unique page views in the seventh
dimension. This metric describes the unique number of visits to the product’s
detail page. The unique number of visits is also used in the reward function.
The last dimension is the average time spent on the product’s detail page.
We decided not to use this feature in the reward function.

We do not include any exact metrics here, for data metrics, see Table 3.2

38

5.1. Dynamic Pricing Model

B Action Space

The action space we use is continuous and has one dimension. The action
a € A is the price choice for the next month. We have to choose a lower and
upper bound for the price.

A natural choice for the bounds is the maximum and minimum of the prices
from the training data. We decide to choose the bounds as 500 and 1500
for the lower and upper bounds, respectively. The chosen bounds for prices
create a larger action space than the action space induced by the maximum
and minimum of the training data. This allows for better flexibility of the
pricing framework.

B Reward Function

The choice of the reward function is important. A general first choice may
be the total revenue or profit from the sales. This is a short-sighted choice
in the e-commerce domain, because the customer demand could drastically
fluctuate.

A reward that takes demand into account is preferable. Fortunately, we
can get a pretty good demand estimate from the [GA] data. Specifically, we
use the unique page view metric as the demand estimate.

When we take the revenue or profit and divide it by the unique page views,
we obtain the reward function. We consider this to be a new artificial metric
called conversion rate. We tried to use the revenue conversion rate, but we
did not achieve reasonable results. Specifically, the agent started to choose
low prices with the motivation to sell as much as possible, and the actual
profit was low. For the rest of this work, we use the profit conversion rate as
the reward function, as shown in Equation [5.1]

profit (5.1)

conversionRate = - -
uniquePageViews

39

5. Model

. 5.2 Simulator

We choose to base our simulation on [19] because the authors proposed a
straightforward and interpretable simulation. Specifically, we use a Pois-
son process to model the general customer demand, and we use a uniform
distribution spanning over the whole action space to model the acceptable
price.

This simulation is a finite horizon MDP|. We consider the horizon T' = 12,
which corresponds to one year (one step corresponds to one month). The
simulation can terminate in fewer steps if the stock gets sold out.

We implement the simulation in OpenAl’'s Gym[2], written in Python, for
exact implementation details and metrics, see Section 6.2}

40

Chapter 6

Experiments

In this chapter, we evaluate the proposed methods, compare them with
baselines, discuss the observed phenomenons, and provide strengths and
weaknesses. We examine the domain expert evaluation in Section Next,
we dive into results of the simulation in Section [6.2.

B 6.1 Domain Expert Evaluation

In this section, we describe the methodology and results of an evaluation
performed by a domain expert. Specifically, the evaluator is the chief financial
officer of the business that provides us with real-world data. Due to the
exclusivity of the products to a single seller, the number of possible domain
experts is small. Thus, the domain expert that performed the evaluation
is the best possible evaluator for the data we have. Next, we describe the
evaluation methodology.

B 6.1.1 Evaluation Methodology

We propose a simple evaluation methodology that aims to reduce possible
bias, the methodology consists of three main parts:

41

6. Experiments

B evaluation instructions,
® method of evaluation results collection,

B sample selection and randomization.

B Evaluation Instructions

To help reduce the possibility of bias in the evaluation results, we gave a
strict set of rules to the evaluator to ensure maximum objectivity:

® the evaluation must be performed in one take, without any distractions,

B the domain expert must evaluate every sample independently, with equal
effort, and

B there is no option to reevaluate any of the samples.

B Evaluation Collection

We ensure a smooth evaluation results collection by introducing a simple web
interface, we used React (JavaScript) for the frontend, FastAPI (Python)
for the backend, and PostgreSQL as the database. The main objective
of the interface was to provide a simple, yet elegant method for domain
expert evaluation. The website consists of two pages, the login page and the
evaluation page.

The login page is rather simple, the user only uses it to log in based on
credentials. The evaluation page is the main part of the web interface, the
user uses it to evaluate the samples from the dataset. We show a sample
screenshot from the evaluation page in Figure 6.1l

The website shows the user all features of the state space for the current
month (see Section 5.1 for more information on the features). The website
also shows the proposed price for the next month coming from one of our
algorithms. The user decides whether the choice is good or not but is not
told what method was used to generate the price.

42

6.1. Domain Expert Evaluation

We use a discrete set of “grades” for the ranking, lower means better. The
actual set of grades is {1,2,3,4,5}. For grades lower than one, we also use a
helper metric called “pricing direction”, this metric has two choices: too high
or too low. This means that the proposed choice sets the price too high or
too low.

Evaluation for item id 181

Month Sell price in the current month

Stock price Current stock

Sold in the current month Total earned for sales in the current month
Unique page views for the current month Average time spent on the product detail

The proposed price for the next month is

1201.19 CZK

How do you rate this pricing decision?

Grade (1 best, 5 worst)
O1@®@2 030405
The price is:

@® Toohigh (O Toolow

SAVE AND LOAD NEXT

Figure 6.1: The evaluation page of the web interface used for expert evaluation

B Sample Selection and Randomization

We randomize the data for evaluation with respect to the used policies.
Specifically, we used four different policies to evaluate the data and randomized
the order of the resulting dataset. We described the evaluation dataset in
Section 3.2, this dataset only consists of 45 samples. While this may seem
like a small dataset, we have to take the time required for evaluation into
consideration. Furthermore, with the usage of four different policies, the total
number of evaluated samples is 180. The evaluator was not aware of the fact
that different policies were used.

43

6. Experiments

B 6.1.2 Expert Evaluated Pricing Policies

We now describe the four pricing policies used in the evaluation process. The
first policy we used is the random policy. This policy just samples a random
action from the uniform distribution given by the action space. We use this
policy as a baseline, because it feels reasonable to expect nonrandom policies
to outperform a random one.

The second and third policies use the BC| algorithm (see Section [4.7.1]).
The difference between the two |[BC| policies is the training set. We trained
the first policy (denoted “BC (seasonal)”) using a reduced dataset including
only seasonal shirts. This dataset consists of 590 samples, which is about
three times less than the full training dataset described in Section [3.2. We
trained the second policy (denoted “BC”) on the whole dataset. We managed
to train good policies on both of these datasets, however, due to the nature of
the |BC| algorithm, we cannot expect these policies to have any generalization
properties.

The last policy uses the CQL algorithm (see Section |4.6) trained on the
full training dataset described in Section [3.2l We did not manage to stabilize
learning on the reduced dataset including only seasonal shirts. [CQL| needs a
large enough and diverse dataset to learn a reasonable policy, we explore this
problem in more detail in Section [6.2l We expect that the [CQL| algorithm
trains a policy that is able to generalize.

B 6.1.3 Results of Expert Evaluation

The actual results of the domain expert evaluation are shown in Figure 6.2
The grades show that all trained algorithms outperformed the random policy.
While the average results show the general performance of the evaluated
policies, we do not see much detail.

The grades were not the only collected evaluation metric, we also collected
“pricing directions”. The results show that all algorithms usually overestimated
reasonable prices as set by the domain expert. We show a histogram of pricing
directions in Figure 6.3 Looking back at Figure [3.2 we can see that our
dataset is biased towards higher prices, this provides some explanation on
why are we observing such overestimation phenomenon. We back this fact
up with Figure |6.4, which shows the distribution of proposed prices for each
policy.

44

6.2. Simulation Results

1.5 1

1.0 -
BC (seasonal) BC CQL Random

Policy

Figure 6.2: Average grade for used policies in the expert evaluation (lower is
better)

Furthermore, we can see that trained on seasonal data only shows a
much more conservative policy in terms of maximum proposed prices and
in terms of the median. We note that this is expected, after all, BC| simply
learns to mimic an expert’s behavior, in this case, mimics the historical
seasonal data pricing. A future direction with a more diverse dataset could
enable us to train even better policies.

Nevertheless, the results of the domain expert evaluation still look promising,
we show a detailed histogram of all grades for every policy in Figure We
can see that nonrandom policies achieve great results with respect to the
small size of the training dataset. While the algorithm does not perform
as well as the BC| variants, this is expected due to the fact that [CQL| requires
a large dataset to train well, and the results it achieves considering the size
of our dataset are still great.

. 6.2 Simulation Results

In this section, we evaluate the results we obtained from experiments per-
formed on our custom simulator. We provide a high-level introduction to the

45

6. Experiments

35 A I Too High
W Too Low

30 I No Change

Number of pricing direction ratings

BC (seasonal) BC CQL Random
Policy

Figure 6.3: Histogram of pricing directions from the expert evaluation

simulator in Section Next, we follow up with the exact implementation
details.

B Simulator Implementation Details

We implement the simulator in OpenAI’s Gym[2]. Specifically, we create
a Python package named gym-pricing that includes the implementation of
the pricing environment. The interface for the package is quite simple. The
environment has two methods, namely, reset and step.

The reset method sets the simulator into its initial state sy € S and returns
this state from the method. The step method performs a time step ¢ of the
environment, the method expects the action as its input. The agent provides
the action based on the state provided by the environment in the previous
step. The environment simulates a single time step and then returns a triplet,
specifically the next state, reward and a boolean determining whether the
state is terminal or not.

We now describe the internal dynamics of the simulation environment.
There are two stochastic elements in the simulation. The first one is the

46

6.2. Simulation Results

1400 A
1200
g
A
g
Z 1000 1
2
2
¥
800
600 J— i
BC (seasonal) BC CQL Random
Policy

Figure 6.4: Distribution of proposed prices for each policy from the evaluation
dataset (the green line represents the median)

customer arrival rate, we model it with a Poisson process. Specifically, we
use A = 60. We consider every tenth customer to be a buyer. The second
stochastic element is the acceptable price the customer is willing to pay.
We model the acceptable price as a uniform distribution with the range of
[500, 1500].

We always start from the initial state so € S. Furthermore, we know that
every state s € S is an element of R®, where R® represents a vector space
with dimensions representing the features described in Section [5.1. We fix
the following parameters based on the averages given in the historical data
and suggestions of the domain expert. The initial state sg always begins in
the same month, March. The product’s stock price is 600 CZK. The initial
selling price is 1231 CZK (this corresponds to 1490 CZK with VAT). The
initial stock is 50 shirts. The simulation keeps the average time spent feature
constant for more simplicity.

The general description of a simulation step is the following:

1. Receive the action from the agent as an input (the action is the new
price).

2. Sample customers from the Poisson process, every tenth customer is

47

6. Experiments

35 - Il
. 2
30 . - 3
4
& 25 . 5
<
3
&
< 20 1
z
E 15
Z.
10 A
5 .
0
BC (seasonal) BC CQL Random
Policy

Figure 6.5: Histogram of grades for every policy in the expert evaluation

considered a buyer.

3. Take every buyer and sample their acceptable price from the uniform
distribution (done for every buyer independently).

4. Calculate the number of bought shirts from the customer’s acceptable
price and the new price.

5. Update the state according to the number of bought products.

6. Return the next state, reward and boolean indication whether the state
is terminal or not.

The simulation usually has T" = 12 steps, where each step corresponds to
one month. Sometimes, the stock can sell out faster and the simulation has
fewer steps. This determines whether a state is terminal or not.

B Primary Simulation Evaluation Metric

The primary metric we use for the simulation evaluation is the average return.
The average return is the expected value of the cumulative reward when
following a policy 7. It is important to note that the policy 7 is fixed, we

48

6.2. Simulation Results

are evaluating the policy that was trained before. We give the exact formula
for the average return in Equation |6.1. Notice that this equation does not
include a discount factor 7, the reason for that is that we use the average
return for the evaluation of a fixed policy. In contrast to this, we have the
definition of the utility function in 4.1, where we use a discount factor to
make early rewards more valuable (useful when training a policy).

T
R(r)=E [Z R(st,at)] (6.1)

t=0

We experimented with a lot of different representations of the reward
function. First, we tried to use the revenue divided by unique page views
as the reward function. This setting failed because the agent started to
aggressively underprice to obtain rewards. We decided to switch to a reward
function using profit, as described in Section |5.1. The results we obtained
indicated success.

B Baseline Policies

We need to introduce baseline policies against that we compare our trained
algorithms. Our first baseline is a random policy. It seems reasonable to expect
better results than those coming from a random policy. The implementation
is rather simple, we use a uniform distribution over the action space to sample
random actions.

The second baseline is a rule-based static policy. This policy corresponds
to the current discounting strategy used by the e-commerce business. For the
first three months, the business keeps the price at its starting price. After
that, for the next two months, the business discounts the product by 20%.
At last, the discount of 40% from the original price happens. We are trying
to create a policy that can outperform the current strategy, so it makes sense
to use the static policy as a baseline.

I Simulation Results

We trained two algorithms, namely, |[CQL| and [BCl using the training dataset
we describe in Section [3.2. Specifically, we trained the [CQL| algorithm for

49

6. Experiments

2000 epochs and the algorithm for 50 epochs. It is important to realize
the difference between [CQL| and BCl While [CQLJ considers the rewards of
the just mimics the training data. In our simple simulation,
achieves better results than [CQL, but we cannot expect [BC| to generalize
well. This also explains the necessary difference in training epochs, learning a
policy using rewards is much more difficult than just doing regular supervised
learning.

We provide our simulation results in Figure We expect to
outperform [BC| on data that requires generalization with respect to unseen
states. For good generalization properties, we would need a large and most
importantly diverse dataset. We back this up by an experiment in the next
section.

200 A

175 1

150 A

125 A

100 A

Average returns

75 A

50

25 1

Random Static CQL BC
Policy

Figure 6.6: Simulation performance averaged over 100,000 runs

B CQL and Data Diversity Experiment

While outperformed in our simple simulation, we claim that

can perform better if we give it more data that is diverse. We validate our
claim with a simple experiment:

First, we note that the baseline random policy performed worse than the
baseline static policy (see Figure . Continuing with our experiment, we

50

6.2. Simulation Results

run both of these policies on our simulator and sample transitions from them.
We sample around 1,000,000 |MDP] transitions from both of these policies.
Next, we create offline datasets from the sampled transitions. We train the
CQL algorithm using these offline datasets.

The results show that data diversity is a key factor in |[CQL| training.
Specifically, we know that the static policy only uses 3 discrete actions. On
the other hand, the random policy uses actions from the whole action space.
We present the results of this experiment in Figure [6.7. We can see that
CQLJlearns an optimal policy from the random policy dataset and fails when
trained on the static policy dataset.

200 A r v

n
£
Z
I —— CQL trained from the random policy
% 100 A —— CQL trained from the static policy
-
50 A
0 -
T T T T T T T T T
0 25 50 75 100 125 150 175 200
Epoch

Figure 6.7: Training of CQL on sampled transitions from the random and static
policies from the simulator

Possible future work with a larger and more diverse dataset could enable
us to train a better (CQL| policy with strong generalization properties. The
latter cannot be said about |BC, because |BC| does not consider the reward
function and therefore is not able to generalize.

o1

52

Chapter 7

Conclusions

In this work, we investigated the problem of learning dynamic pricing policies
from historical datasets in the setting of e-commerce, specifically fashion
retail.

We chose to approach the problem of dynamic pricing via the methods
of Offline and Il We used Offline and [II] because these methods
can learn from offline historical data without the need of a simulator. To
obtain this historical data, we created a data pipeline that retrieves a dataset
from a real-world e-commerce store, specifically it retrieves the data from
two separate services, the first one is the administration interface, and the
second one is the [GA| API. The most challenging part was the data cleaning
and merging into the final dataset.

While the real-world dataset is not perfect, we still managed to successfully
train policies based on and algorithms and achieve great results.
Specifically, we carried out two separate evaluations, the first one, an evalu-
ation by a domain expert, showed that the best method, BC| achieved an
average grade of 1.31 out of 5. With 1 being the best possible score, we
obtained an almost perfect score, furthermore, all other methods we proposed
outperformed the random benchmark. The second evaluation done in a
simulator showed that all our proposed methods outperformed the static
baseline method by a minimum margin of 27%.

We consider these results a success, since this is the first application of
Offline RL| to dynamic pricing problems.

53

7. Conclusions

The main weakness of this work is the small dataset. This is indeed related
to the nature of a real-world application, but we admit that the dataset is
the major bottleneck in the training of policies.

To summarize, in this work, we have for the first time applied Offline
RL| methods to dynamic pricing. For this application, we have collected a
new dataset which we used to train multiple pricing policies. For evaluation,
we used two fundamentally different approaches: a domain expert and a
simulation. Both methods have shown the viability of Offline [RL| for dynamic
pricing.

B Future work

As the scope of this work is large, there are a lot of possibilities for future
work. One possible future work lies in the choice of the algorithm itself, the
research in the domain of RLJis very active, and moving forward quickly, new
methods could enable us to train even better policies that generalize well.

The model itself is a possible direction of future work, specifically, the
evaluation of possible features and state space choices, a comparison of discrete
and continuous action spaces, or an analysis of the possible reward functions
are all promising directions that could improve the pricing solution.

The improvement of evaluation methods is also a promising idea for future
work, specifically, a more sophisticated simulation or any novel method for
offline evaluation could greatly improve the whole dynamic pricing process.

o4

Glossary

A3C Asynchronous Advantage Actor-Critic.

BC Behavioral Cloning. [5], 12} 44,
BCQ Batch-Constrained Deep Q-learning.

BEAR Bootstrapping Error Accumulation Reduction. [11]

CQL Conservative Q-learning. 11}, 45,
CSV Comma-separated values.

DDPG Deep Deterministic Policy Gradient.
DDPGfD Deep Deterministic Policy Gradient from Demonstrations. (9,

DQfD Deep Q-learning from Demonstrations. [9,

DQN Deep Q-network. [10]
DRL Deep Reinforcement Learning. (9, 10} [23,

GA Google Analytics. 38,
IL Imitation Learning. [5| 35,

MDP Markov Decision Process. [5] [9, 40,

55

7. Conclusions

Replay Buffer is an array of chosen size that stores prior transitions that
have been observed in the IMDPL It is used to break the correlation be-
tween new transitions coming from a similar policy. For more information,

see 251 10 11, 25, 31, B2, 31 55
RL Reinforcement Learning. 19, 31,

SAC Soft Actor-Critic. 27,
SGD Stochastic Gradient Descent.

TD3 Twin Delayed Deep Deterministic Policy Gradient.

VAE Variational Auto-Encoder.

56

Bibliography

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym.

//gym.openai.com, 2016.

Felipe Caro and Jérémie Gallien. Clearance Pricing Optimization for a
Fast-Fashion Retailer. Operations Research, 60(6):1404-1422, December
2012.

Yan Cheng. Dynamic Pricing Decision for Perishable Goods: A Q-
Learning Approach. 2008.

Yan Cheng. Real Time Demand Learning-Based Q-learning Approach for
Dynamic Pricing in E-retailing Setting. In 2009 International Symposium
on Information Engineering and Electronic Commerce, pages 594-598,
Ternopil, Ukraine, 2009. IEEE.

Arnoud V. den Boer. Dynamic pricing and learning: Historical origins,
current research, and new directions. Surveys in Operations Research
and Management Science, 20(1):1-18, June 2015.

Joan Morris DiMicco, Amy Greenwald, and Pattie Maes. Dynamic
pricing strategies under a finite time horizon. In Proceedings of the
3rd ACM conference on Electronic Commerce - EC 01, pages 95-104,
Tampa, Florida, USA, 2001. ACM Press.

Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi.
Analytics for an Online Retailer: Demand Forecasting and Price Opti-
mization. Manufacturing & Service Operations Management, 18(1):69-88,
February 2016.

o7

https://gym.openai.com
https://gym.openai.com

7. Conclusions

[9]

[10]

[11]

[12]

[13]

[14]

[17]

[19]

[20]

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey
Levine. D4RL: Datasets for Deep Data-Driven Reinforcement Learning.
arXiv:2004.07219 [es, stat], February 2021. arXiv: 2004.07219.

Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep
Reinforcement Learning without Exploration. arXiv:1812.02900 [cs,
statf, August 2019. arXiv: 1812.02900.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function
Approximation Error in Actor-Critic Methods. arXiv:1802.09477 [cs,
stat], October 2018. arXiv: 1802.09477.

The garage contributors. Garage: A toolkit for reproducible reinforce-
ment learning research. https://github.com/rlworkgroup/garage,
2019.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Rein-
forcement Learning with Deep Energy-Based Policies. arXiv:1702.08165
[es], July 2017. arXiv: 1702.08165.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. arXiv:1801.01290 [cs, stat], August
2018. arXiv: 1801.01290.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker,
Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms and Applica-
tions. arXiv:1812.05905 [cs, stat], January 2019. arXiv: 1812.05905.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul,
Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-
Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys.
Deep Q-learning from Demonstrations. arXiv:1704.03732 [cs], November
2017. arXiv: 1704.03732.

Jonathan Ho, Jayesh K. Gupta, and Stefano Ermon. Model-Free Imi-
tation Learning with Policy Optimization. arXiv:1605.08478 [cs], May
2016. arXiv: 1605.08478.

W. Jintian and Z. Lei. Application of reinforcement learning in dy-
namic pricing algorithms. In 2009 IEEE International Conference on
Automation and Logistics, pages 419-423, August 2009. ISSN: 2161-816X.

Jeffrey O. Kephart, James E. Hanson, and Amy R. Greenwald. Dynamic
pricing by software agents. Computer Networks, 32(6):731-752, May
2000.

o8

https://github.com/rlworkgroup/garage
http://www.deeplearningbook.org

[21]

[22]

23]

7. Conclusions

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980 [cs], January 2017. arXiv: 1412.6980.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
arXiv:1312.611/ [cs, stat], May 2014. arXiv: 1312.6114.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Sta-
bilizing Off-Policy Q-Learning via Bootstrapping Error Reduction.
arXiv:1906.00949 [cs, stat], November 2019. arXiv: 1906.00949.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conser-
vative Q-Learning for Offline Reinforcement Learning. 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforce-
ment Learning. In Marco Wiering and Martijn van Otterlo, editors,
Reinforcement Learning, volume 12, pages 45-73. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012. Series Title: Adaptation, Learning, and
Optimization.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Re-
inforcement Learning: Tutorial, Review, and Perspectives on Open Prob-
lems. arXiw:2005.01643 [cs, stat], November 2020. arXiv: 2005.01643.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv:1509.02971 [cs, stat],
July 2019. arXiv: 1509.02971.

Long-Ji Lin. Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. REINFORCEMENT LEARNING,
1992.

Jiaxi Liu, Yidong Zhang, Xiaoqing Wang, Yuming Deng, and Xingyu
Wu. Dynamic Pricing on E-commerce Platform with Deep Reinforce-
ment Learning. arXiw:1912.02572 [cs, stat], December 2019. arXiv:
1912.02572.

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves,
Tim Harley, Timothy P Lillicrap, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning. 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, February 2015.

99

7. Conclusions

[33]

[34]

[42]

[43]

[44]

Y. Narahari, C. V. L. Raju, K. Ravikumar, and Sourabh Shah. Dynamic
pricing models for electronic business. Sadhana, pages 2—3, 2005.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell,
Pieter Abbeel, and Jan Peters. An Algorithmic Perspective on Imitation
Learning. Foundations and Trends in Robotics, 7(1-2):1-179, 2018.

C. V. L. Raju, Y. Narahari, and K. Ravikumar. Learning dynamic
prices in electronic retail markets with customer segmentation. Annals
of Operations Research, 143(1):59-75, March 2006.

C.V.L. Raju, Y. Narahari, and K. Ravikumar. Reinforcement learning
applications in dynamic pricing of retail markets. In IEEFE International
Conference on E-Commerce, 2003. CEC 2003., pages 339-346, Newport
Beach, CA, USA, 2003. IEEE Comput. Soc.

Rupal Rana and Fernando S. Oliveira. Dynamic pricing policies for inter-
dependent perishable products or services using reinforcement learning.
Expert Systems with Applications, 42(1):426-436, January 2015.

Stuart J. Russell, Peter Norvig, and Ernest Davis. Artificial intelligence:
a modern approach. Prentice Hall series in artificial intelligence. Prentice
Hall, Upper Saddle River, 3rd ed edition, 2010.

Daniel Seita. Offline Reinforcement Learning: How Conservative Al-
gorithms Can Enable New Applications. http://bair.berkeley.edu/
blog/2020/12/07/0ffline/| 2020.

Manu Sridharan and Gerald Tesauro. Multi-agent Q-learning and re-
gression trees for automated pricing decisions. 2002.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an
introduction. Adaptive computation and machine learning series. The
MIT Press, Cambridge, Massachusetts, second edition edition, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay
Mansour. Policy Gradient Methods for Reinforcement Learning with
Function Approximation. 1999.

Gerald Tesauro. Pricing in agent economies using neural networks and
multi-agent Q-learning. In Lecture Notes in Computer Science, pages
288-307. Springer-Verlag, 1999.

Gerald J. Tesauro and Jeffrey O. Kephart. Foresight-based pricing
algorithms in an economy of software agents. In Proceedings of the first
international conference on Information and computation economies -
ICE 98, pages 37-44, Charleston, South Carolina, United States, 1998.
ACM Press.

60

http://bair.berkeley.edu/blog/2020/12/07/offline/
http://bair.berkeley.edu/blog/2020/12/07/offline/

7. Conclusions

[45] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothorl, Thomas Lampe, and
Martin Riedmiller. Leveraging Demonstrations for Deep Reinforcement
Learning on Robotics Problems with Sparse Rewards. arXiv:1707.08817
[es], October 2018. arXiv: 1707.08817.

[46] David Vengerov. A gradient-based reinforcement learning approach to
dynamic pricing in partially-observable environments. Future Generation
Computer Systems, 24(7):687-693, July 2008.

[47] C.J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Oxford, 1989.

61

	Introduction
	General Overview
	Dynamic Pricing on an E-commerce Platform

	Literature Review
	Dynamic Pricing
	Reinforcement Learning
	Deep Reinforcement Learning
	Offline Reinforcement Learning
	Imitation Learning

	Data Retrieval and Description
	Data Retrieval
	Data Description

	Algorithms Overview
	Markov Decision Process
	Reinforcement Learning
	Deep Reinforcement Learning
	A Quick Introduction to Deep Learning
	Deep Q-network

	Soft Actor-Critic
	Offline Reinforcement Learning
	Conservative Q-Learning
	Imitation Learning
	Behavioral Cloning

	Model
	Dynamic Pricing Model
	Simulator

	Experiments
	Domain Expert Evaluation
	Evaluation Methodology
	Expert Evaluated Pricing Policies
	Results of Expert Evaluation

	Simulation Results

	Conclusions
	Glossary
	Bibliography

