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Abstract
The dissertation thesis is focused on the numeri-
cal modelling of the mechanical response of aux-
etic structures to uniaxial compressive loading.
According to the primary application of auxet-
ics in terms of deformation energy mitigation,
where their unique characteristics arising from
the negative Poisson’s ratio of the structure,
high strain rate response is emphasised. Addi-
tionally, quasi-static characteristics are assessed
to obtain reference data for the evaluation of
the strain-rate dependency induced particularly
by micro-inertia effects. Mechanical properties
are studied using stress-strain characteristics,
whereas the microstructural response is evalu-
ated based on the function of Poisson’s ratio. In
the thesis, three auxetic unit-cells having uni-
or biaxial auxetic characteristics are considered.
The structures are developed by a periodic as-
sembly of unit-cells in the respective spatial
directions. Due to the complex deformation re-
sponse of the auxetic structures, the reference
data for the development of numerical simula-
tions are obtained from the experiments with
the samples of structures manufactured using
3D printing. Dynamic loading is performed
using a Split Hopkinson Pressure Bar (SHPB)
apparatus, while an approach to the numerical
simulations consisting of the development of
a full-scale virtual SHPB for an explicit time
integration scheme in LS-DYNA was selected.
In the dynamic simulations, geometrical models
of the lattices precisely corresponding to the
geometry of the structures for the 3D printing
are used. The numerical aspects of the simu-
lations together with the influence of the 3D
printing quality on the reliability of the results

are discussed. The ability of the numerical sim-
ulations to describe the deformation response
of the investigated auxetic lattices is assessed
based on the numerical stress-strain curves and
the graphs of the strain-dependent Poisson’s
ratio.

Keywords: auxetic materials, meta-materials,
uni-axial compression, quasi-static response,
dynamic loading, Split-Hopkinson Pressure
bar (SHPB), finite element method (FEM),
strain-rate sensitivity, digital image
correlation (DIC), additive
manufacturing (AM)
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Abstrakt
Dizertační práce je zaměřena na numerické mo-
delování mechanické odezvy auxetických struk-
tur, porézních meta-materiálů s negativním
Poissonovým číslem, při namáhání jednoosým
tlakem. Vzhledem k použití těchto struktur
zejména jako součástí absorbérů deformační
energie je důraz kladen na analýzu jejich de-
formačního chování za vysokých rychlostí de-
formace. Vedle toho je provedena analýza při
kvazi-statických podmínkách pro získání refe-
renčních dat pro vyhodnocení vlivu jevů souvi-
sejících s vysokou rychlostí deformace, jakými
jsou např. efekty mikro-setrvačnosti. Mecha-
nické vlastnosti jsou sledovány na křivkách
napětí-deformace, přičemž mikrostrukturální
odezva struktur je studována s využitím funkce
Poissonova čísla v závislosti na rychlosti defor-
mace. Práce je zaměřena na studium chování tří
typů auxetických jednotkových buněk s jedno-
a dvouose negativním Poissonovým číslem, z
nichž jsou výsledné struktury generovány je-
jich periodickým opakováním s různým počtem
buněk v jednotlivých směrech souřadného sys-
tému. Významná část práce je věnována právě
testování vzorků struktur vyrobených různými
metodami 3D tisku, protože referenční data
pro kalibraci a verifikaci numerických simulací
lze vzhledem ke složitosti chování studovaných
struktur obdržet pouze provedením příslušných
experimentů. Dynamická odezva na tlakové za-
tížení je studována metodou dělené Hopkin-
sonovy tyče (Split Hopkinson Pressure Bar -
SHPB), přičemž numerické simulace jsou pro-
vedeny řešičem LS-DYNA s explicitní časovou
integrací. Je vytvořen virtuální model sestavy
SHPB a inverzní simulace využívají geometrii

struktur přesně odpovídající vyrobeným vzor-
kům. Diskutovány jsou numerické aspekty si-
mulací i vliv kvality 3D tisku na spolehlivost
výsledků. S využitím křivek napětí - deformace
a grafů funkce Poissonova čísla studována me-
chanická odezva struktur z hlediska schopnosti
vytvořených numerických simulací popsat defor-
mační chování uvažovaných auxetických struk-
tur.

Klíčová slova: auxetické materiály,
meta-materiály, jednoosý tlak, kvazi-statické
vlastnosti, dynamické zatěžování, dělená
Hopkinsonova tyč (SHPB), metoda konečných
prvků, citlivost na rychlost deformace,
digitální korelace obrazu, aditivní výroba

Překlad názvu: Numerické modelování
auxetických struktur
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Chapter 1

Introduction

In light of the current trend of extensive optimisation efforts in many fields
of knowledge, complementary solutions to legacy engineering practices or
substitutes for standard construction materials are also being sought in the
field of structural materials for the absorption of deformation energy. One
of the possible solutions on how to increase the efficiency of structures is
the utilisation of structural cellular solids. Such materials, in the form of
structural metal foams, were developed in the last decades of the 20th century
and, to a certain extent, revolutionised design practices in vibration damping
and the crash-worthiness of vehicles.

Metal foams are typical representatives of bio-mimicking materials, materi-
als that imitate models, systems, and elements of nature to solve complex
human problems. As such, either form of the metal foams’ microstructure
(i.e., open-cell or closed-cell microstructure) is, in terms of its microgeometry,
similar to various naturally developed materials. The natural counterpart in
the case of the closed-cell metal foam is typically wood, whereas, interestingly,
the typical natural counterpart of the open-cell foams is a trabecular bone.
The response of metal foams to different types of mechanical loading has
been studied intensively using various approaches leading to a relatively
thorough understanding of the related constitutive laws. Following advances
in the production methods, microstructural analysis and assessment of the
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mechanical properties, cellular materials have been widely used in various
applications including protective structures, packaging, structural functions,
due to their good energy-absorption capacity, high strength/weight ratio, and
the outstanding tailor-made ability [15, 16]. Particular attention has been
paid to the assessment of their effective (overall) mechanical characteristics
to facilitate their use in engineering practice by omitting the geometry of
their internal structure [2,3]. The cellular material can be then equally repre-
sented by a combination of solid geometry and an appropriate (homogenised)
material model. The material model itself can be obtained based on both an-
alytical (i.e., modulus-porosity relations, homogenisation schemes, etc.) and
numerical methods (finite element modelling using either real microgeometry
or geometrical analogies, numerical homogenisation, and others).

Metal foams, particularly aluminium foams, are materials suitable for appli-
cations requiring significant mass reduction and simultaneous high impact
energy absorption. This is given by the foams’ low specific weight and thus
high specific stiffness. However, for certain applications (including blast
protection), it may be necessary to use materials with a relatively high com-
pressive strength, which disqualifies the usage of most types of aluminium
foams [17]. To improve the strength and energy absorption capacity without
increasing the mass of the construction elements, a new type of material
had to be found. Recently, there were efforts to improve the mechanical
properties of metal foams by coating light-alloy foams with hard materials,
such as hybrid nickel/aluminium foams [18–21]. Ni/Al hybrid foams combine
a standard open-cell aluminium skeleton with a coating of nanocrystalline
nickel. Here, the combination of three design strategies is skillfully utilised:
cellular lightweight construction, nanotechnology, and composites. When
these strategies are cleverly coupled and the synergies are used, nanocrys-
talline coated hybrid foams have become an innovative and multifunctional
nano-material for future applications in the fields of lightweight construction
and energy absorption [5].

An alternative solution has been found in a new class of composite materials
- interpenetrating phase composites (IPC) or specifically metal porous poly-
mer composites (MPPC) and open-cell hybrid foams consisting of a coated
metallic skeleton. MPPC materials have an interpenetrating microstruc-
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ture, where both phases form a topologically continuous network through a
three-dimensional mutual interconnection [22]. Liu [23] considered aluminium-
polyethene (Al-PE) and Aluminium-Epoxy (Al-Ep) composites manufactured
using the infiltration method (vacuum-assisted low negative pressure moulding
process). Two important characteristics were revealed during the experimental
compressive testing. The Al-Ep with 63 % of a polymer exhibited a multifold
increase in the plateau stress compared to the pure aluminium foam. The
Al-PE specimen with the same volumetric polymer content showed a slightly
higher plateau stress compared to the pure foam, but the plateau was extended
up to 75 % of the strain before densification begun. Compared to the pure
foam, both MPPC materials were also superior in terms of the energy absorp-
tion capabilities. Regarding the flexural characteristics, Dukhan et al. [24]
tested aluminium-polypropylene foam samples with different pore densities
and concentrated their work on the determination of the flexural stiffness and
strength. Comparison with either of the base foam materials showed superior
properties of the MPPC and higher flexural stiffness with a decreasing pore
size. It has been also shown that moderate strain-rate loading induced by a
drop-tower causes insignificant changes in the deformation curves in the case
of the open-cell foam, while an increased energy-absorption capacity can be
observed in the case of the samples equipped with the polymeric filling [4].
Additionally, impact testing of polymer-filled auxetics at high strain-rate
using SHPB showed that polyurethane filling increases the specific absorbed
energy by a factor of 1.05 − 1.4, whereas the effect of gelatine leads to an
increase of only 5− 10 %. Analysis of the strain-dependent Poisson’s ratio
revealed the influence of filling on the achievable (negative) values of Poisson’s
ratio, when compared to the unfilled specimens. The results for the function
of Poisson’s ratio apparently yielded different values as the assessed minima
of the quasi-static Poisson’s ratio in small deformations are constrained by
a factor of 15 [8]. To fully utilise the potential of the MPPC, accurate and
reliable methods for the prediction of their properties have to be developed.
Here, finite element parametric modelling is used as a powerful tool to perform
a large set of simulations to find the best computational representation of this
type of material. Su [25] has already shown that mechanical characteristics
of various aluminium MPPCs (Al-PA6 and Al-LDPE) can be computation-
ally determined using microscopic models composed of periodic patterns of
spherical or Kelvin’s cells and also at different temperatures. Jhaver [26]
also introduced a numerical modelling scheme based on Kelvin’s cell and
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demonstrated the possibility to cure the open-cell network using silane to
increase the adhesion between the metallic network and the polymer foam.

Artificial porous constructs

According to the fact that the internal structure of metal foams can be
controlled to a certain extent only, their microgeometry can still be considered
’natural’. This follows from the available set of parameters controllable during
the manufacturing process, which include the porosity, cell-size, cell-wall
thickness, pore orientation, and shape of the pores in general (i.e., spherical
or polyhedral). All of these parameters, or even a single one, may significantly
influence the resulting effective characteristics of the material. However,
the final characteristics are still a result of only the marginally controlled
natural physical processes occurring during the foaming process, hence, the
term ’natural’ microgeometry. The characteristics of the manufacturing
process, thus, limits the application potential of the metal foams, which
is further accentuated by recent advancements in other fields of material
science. Among others, direct manufacturing methods comprised of additive
manufacturing techniques, such as 3D printing including fused deposition
modelling, stereolithography, selective laser melting/sintering, and CNC
machining have received increasing attention. Independently from the method
used for production, it has now become possible to literally construct porous
materials with a pore-size even on a sub-millimetric scale [27, 28]. The
resulting products are then artificial constructs, whose micro-geometry can
be pre-determined in detail by an arbitrary modelling tool, and which can
be subjected to relatively simple (compared to metal foams) optimisation
routines. Therefore, the properties of the produced material are limited only
by the capabilities of the production device’s instrumentation.

3D printing or additive manufacturing (AM) is a technology used extensively
for the production of prototypes and, more recently, for the final product
development. There are many different production processes used in AM. The
most common one is a material extrusion technique called fused deposition
modelling (FDM), which is, by far, the least expensive and most often used
technique. However, the first additive technology that has been used since the
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early 1980s is stereolithography, in which the desired object is produced by
cross-linking, i.e., by generating inter-molecular bonds in polymers. The last
group of methods uses a high-power laser to fuse a powdered base material
into solid 3D objects and is called laser sintering [29]. Two basic methods can
be distinguished - Selective Laser Sintering (SLS) and Selective Laser Melting
(SLM). The notable advantage of using AM methods lies in a large variety of
powdered materials suitable for sintering - from plastics (nylon, polyamides,
etc.) to metals and alloys (stainless steel, aluminium, nickel alloys, titanium,
cobalt, chromium, copper) [30]. However, especially for the case of the SLS
of metal alloys, there are several open questions. Particularly the behaviour
of the printed parts and structures under high strain-rate loading, the failure
mechanisms, and energy absorption remain insufficiently researched areas.

Split Hopkinson Pressure Bar

Many engineering applications subject structural materials to an extreme
environment of dynamic loading. Components designed for defence, aerospace,
automotive, and even industrial applications can experience high stresses
and high strain rate loading conditions that are characteristic for impact or
shock loading [31]. This kind of loading is accomplished by the stress wave
propagation. Most research activities in the given area have been focused on
the dynamic behaviour of metallic materials studied since the middle of the
last century. Among the various experimental techniques developed over the
past century, the Kolsky Bar system, as presented by Kolsky in 1949, which
is more frequently denoted as the Split Hopkinson Pressure Bar (SHPB) test,
is the most straightforward and simple technique as far as its use and data
reduction are concerned. Figure 1.1 depicts a typical configuration of the
SHPB consisting of an impacting striker bar, an input incident bar, an output
transmission bar, a damper for the absorption of the residual energy, and a
specimen placed between the incident and transmission bars.

The loading of a sample using the SHPB is performed by the strain waves
formed at the impact of the striker bar onto the incident bar with the purpose
of inducing a high strain-rate within the sample. During the experiment, the
incident, reflected, and transmitted pulses are recorded with strain-gauges.
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Figure 1.1: Principle of the SHPB apparatus.

The recorded strain-gauge signals and known properties of the experimental
setup (e.g., bar dimensions, Young’s modulus, density, wave propagation
velocity, etc.) are used for the evaluation of the stress-strain diagram of
the specimen for the given strain-rate. For a valid experiment, two crucial
requirements have to be fulfilled - the satisfactory dynamic stress equilibrium
and the approximately constant strain-rate. In the specimen, the wave is
also reflected on the interface of the specimen with the transmission bar.
Therefore, a defined number of reflections has to pass through the specimen
before the dynamic stress equilibrium is reached. The dynamic equilibrium
condition in the experiment is crucial as the standard mathematical methods
for the evaluation of the specimen response are valid only in the equilibrium
state. Figure 1.2 shows the pulses measured using the strain-gauges and the
space-time diagram of the propagating waves; t is time, x is spatial coordinate,
ε is strain, σ is stress, εI is incident strain, εT is transmitted strain, and εR

is reflected strain.

Figure 1.2: Signals measured during a typical SHPB experiment (left) and a
space-time diagram of the propagating waves (right).

Chen and Song [32] reviewed the different versions of this technique, under
which the specimen is deformed at uniaxial stress conditions (compression,
tension, or shear) at various strain rates. The use of viscoelastic bars for
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testing low mechanical impedance specimens, which is important for testing
porous solids, was demonstrated by, e.g., Zhao et al. [33]. Other high-rate
loading techniques include plate impacts, both normal and inclined, in which
the specimens are subjected to high pressures and temperatures, as well as
high strain rates. The overall picture, which these techniques outline is that
the flow stresses of the metals (and their alloys) increase with the rate of
strain they experience. The dynamic yield stress of a metal can be generally
described by a function of the plastic strain, strain rate, temperature, and
internal state variables related to the structural evolution of the material.
Generally, there are two types of constitutive models - the first one is a high-
pressure type and the other one a regular-pressure type. The high-pressure
type considers the pressure effect of a strong shock, which is established in one-
dimensional strain experiments like a pressure-shear plate impact test. The
other is the regular-pressure type, which does not need to include the pressure
state variable and is established on the one-dimensional stress experiments
like the SHPB test. The distinct states of stress and strain in the two types
of experiments may result in different plastic deformation mechanisms since
the deviatoric stress and pressure induce different microstructural responses
in the materials [34]. Additionally, the Taylor test consisting of the impact
of a cylinder against the rigid wall or on other specimen is often used in
the dynamics of materials to investigate crushing up to high compressive
strains [35]. From the point of constitutive modelling, high-pressure models,
as reviewed in [36], include the Steinberg-Guinan model, the Steinberg-Lund
model, and the Preston-Tonks-Wallace model. Regular-pressure models, as
reviewed by Chaboche [37] and Lin and Chen [38], include the widely used
Johnson-Cook model [39], the Khan-Huang-Liang model [40, 41], and the
Hollomon/Voce model [42].

Although there are other issues and open questions in SLS/SLM produced
parts, most of the research that has been done so far was aimed at the
quasi-static properties and quasi-static behaviour. However, considering
the utilisation in deformation energy mitigation applications, the dynamic
behaviour also needs to be described properly not only for the bulk material
and related to the intrinsic properties (e.g., the change from ductile behaviour
at lower strain rates to brittle above a certain level), but also in relation
to the structures and the particular type of loading. While under quasi-
static conditions, the deformation of printed structures and lattices has been
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studied in many papers [43–45], the papers dealing with the behaviour of
printed structures under dynamic loading and especially impact conditions are
more scarce. Research has been performed on 3D printed cellular materials,
such as ultralight metallic micro lattices [46], cellular composites [47], auxetic
cellular structures [48], polymer-derived ceramics structures, octet truss lattice
materials [49] and many others. These structures exhibit, e.g., outstanding
absorption capacity to blast loading [50]. Research has also been focused
on 3D printed sacrificial honeycomb cladding [51]. This technology may
also lead to an improvement in the ballistic resistance of Al alloys, e.g., [52].
Owing to this fact, research on the dynamic mechanical properties of the 3D
printed materials is still desirable [53]. In dynamic testing, special attention
is being paid to the investigation of additively manufactured bulk materials
like steel [54], titanium [55], Al alloys [40, 56, 57], lattices [58, 59] and the
coupled thermomechanical effects in the materials [60].

Auxetic metamaterials

The introduction of direct production methods opens up the possibilities
to introduce conceptually new types of materials with unique mechanical
properties highly optimised with respect to their application. One such
interesting material property is the negative Poisson’s ratio (NPR) of the
so-called auxetic materials [61]. The NPR is, among natural materials, a
rather unique phenomenon seen for the first time in crystals of iron pyrites
and followed only by isolated reports in the 1970’s and 1980’s. The first
artificially prepared auxetic polymeric foam was reported by Lakes et al. in
1987 [62], when the commercially available foam was modified in a process
involving 30 % volumetric compression and heating of the samples to the
polymer’s softening temperature followed by cooling, whilst remaining under
compression. Although research involving microstructures prepared by various
similar techniques from existing materials has continued, the investigation
into auxetic-based materials for deformation energy absorption has closely
followed advances in direct production methods. Application-wise, artificial
auxetic constructs have the potential to outperform the current types of metal
foams in terms of the specific absorbed deformation energy, the ability to
be used as ballistic protection, to mitigate effects of blasts and to exhibit
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strain-rate dependent deformation characteristics (Figure 1.3).

microstructure concentrating 

against the impacting object

auxeticnon-auxetic

contraction perpendicular to 

stress

stretch perpendicular to 

stress

Figure 1.3: The principles of auxetic lattices in structural applications.

However, to fully utilise the aforementioned properties in the field of construc-
tion design, the detailed description of the deformation characteristics must
be given. This involves, in particular, experimentally verified computational
methods as a technique for the necessary parametric predictive and optimisa-
tion procedures. The high strain-rate loading of foams has been extensively
studied in many works that comprised both polymeric [63–66] and metal
foams [67, 68] including papers concentrated on the dynamic crushability
of foams and early cell-collapse response [69]. Similarly, high strain-rate
testing and the related numerical simulations concerning 3D printed struc-
tures including auxetics is a very complex problem from the point of view of
theoretical mechanics, thermodynamics, material science, and the numerical
solution itself [61]. Several phenomena have to be included in the correct
modelling of such scenarios including inertia effects, wave propagation in
solid bodies, contact constraints on the boundaries and inside the objects
including friction, nonlinear geometrical effects of large displacements, and
large rotation kinematics. In the case of the structures, the stability problems
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of slender beams together with the related bifurcation behaviour is also an
important issue. At the level of constitutive models, the response of the
materials with respect to large elastoplastic deformation including strain-rate
effect, fracture properties, internal material friction, and damping, and the
effect of temperature due to the dissipation of deformation energy into heating
have to be taken into account. For these reasons, the accurate and robust
numerical solution of the impact problems of metal foams and 3D printed
structures is not a trivial task. Here, the explicit time integration in finite
element analysis (FEA) is preferred due to the possibility of dealing with the
problems concerning the fast impact response of the materials and to consider
the wave propagation phenomena [70,71]. Although an intensive effort has
been concentrated on developing new methods in FEA including the disper-
sion and stability analyses [72], treatment of contact interfaces [73], local and
global searching algorithms, or explicit methods for time integration [74, 75],
commercial software packages such as LS-DYNA are suitable for modelling
the contact-impact problems related to the SHPB testing.

Numerical modelling of dynamic compression

Along with the development of the experimental testing using a SHPB ap-
paratus, the analytical and simulation methods have been sought to enable
the prediction of the materials’ behaviour and the development of consti-
tutive material models. Initially, only the analytical methods based on the
physics of materials and the interpretation of the experimental data were
developed due to the limitations of contemporary simulation methods. The
recent development of numerical methods including FEA with explicit time
integration complemented by advances in the performance of the computer
hardware enabled development of accurate numerical representations of the
SHPB tests in various fields of material science. Significant attention has
been paid, in SHPB testing and simulations, to the investigation of geological
materials such as rocks [76] and artificial building materials including con-
crete [77–79]. Similarly, FEA with explicit time integration has proved to be
a powerful tool in the case of high strain-rate dynamics and contact-impact
problems of lattice structures [80] and auxetics. For instance, Novak et. al
demonstrated simulations of an inverted tetrapod unit-cell [81] up to a strain
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rate of 1 · 104 s−1 [82], while Qiao showed the numerical results for a double
arrowhead auxetic unit-cell [83]. Furthermore, Hou et al. presented results
on the bending of auxetic and non-auxetic sandwich composites subjected to
a low-velocity impact, which can be used for the development of constitutive
models incorporating material failure and erosion in different crushing modes
observed in the porous core of the panels [84]. Since the high strain-rate
compression of materials and structures is a complex problem involving ma-
terial characteristics including damage and thermomechanical characteristics,
various constitutive models have been considered in the literature. In the
group of regular-pressure constitutive models, the Johnson-Cook material
model is commonly used [85–87] together with, e.g., the Ogden constitutive
model [86] and the Cowper-Symonds constitutive model [87]. However, inter-
esting results have also been obtained using much simpler material models
with an incorporated plasticity and damage model [88] or a piecewise linear
plasticity model with Cowper-Symonds strain-rate effects [80–82]. Depending
on the sample geometry considered in the numerical simulations, either the
axisymmetric representation of the loading apparatus is commonly used for
geological materials and solid metal samples (having, in all cases, a cylindrical
geometry) [76,78,89] or a fully 3D model for other sample geometries [90,91].
When the full-scale numerical representation of the SHPB setup is considered,
it has been shown that both the three-bar model, where the loading is per-
formed by a strain wave generated by the simulated impact of the striker bar
onto the incident bar [79], or the defined strain-history representing the stress
wave propagating in the incident bar can be effectively used [77]. In several
cases though, it is not necessary to include the numerical representation of
the experimental setup itself in the simulations, if appropriate boundary and
initial conditions are used depending on the type of loading. Here, several
possible combinations of both conditions are available: a constant velocity
rigid-wall on the impact face and a fixed rigid wall on the distal face [83, 85],
an initial velocity rigid-wall on the impact face and a fixed rigid wall on the
distal face [82, 88], an initial velocity elastic-plate on the impact face and
a fixed elastic-plate on the distal face [81], a direct stress loading mode for
problems involving the advanced shaping of the incident wave (where the
pulse duration and stress amplitude can be represented by, e.g., a rectangular
waveform and a half-sine waveform to simulate spindle striker) [76], and a
constant velocity prescribed to the nodes on the impact face with a simple
support prescribed to the nodes of the distal face [92]. In the case of the
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contact definitions, many problems referenced herein before involve a signifi-
cant mismatch in the stiffness of the sample and the bars and/or mismatch
in the element size, which can result in an hourglass deformation mode and
the non-physical energy dissipation, particularly during late stages of the
simulated experiments. This phenomenon can be overcome, depending on
the FE code used in the simulations, basically by three means. For the case
of element-size difference, the obvious solution may consist in a homogeneous
mesh density in all of the bodies [79], which, however, results in a possible
low critical time step and the high computational cost of the simulation. The
other option is to refine the mesh in the volume close to the vicinity of the
contact, including a gradual mesh refinement, where a lower mesh size in
the contact region reduces the undesirable numerical energy dissipation to
an acceptable level. Such an approach can be found in [90], or [77], while
even the mesh transition from hexahedra to tetrahedra can be found [78].
Nevertheless, the LS-DYNA software used in this work offers an effective
tool to counter the material and element related contact numerical problems
by using a ’soft’ option for the contact interfaces. In this formulation, the
contact stiffness is based on stability considerations taking the time step size
into account as the contact, which is similar in this formulation to a group
of spring-mass systems, each with a Courant number matched to the actual
time step used in the simulation.

Concerning the approach used in this work, a further two factors have to be
considered in the simulations. The first one is the geometrical representation
of the auxetic lattice, where it is possible to use either a beam analogy to model
its microstructure or a geometrically precise model identical to the geometry
prescribed for the AM production of the samples. While the majority of the
authors use the discretisation based on the beam analogy (e.g., [82,83]), Xiao
et al. [85] used a hexahedral voxel model based on the micro-tomography
of a sample. This is an interesting approach, which, however, also brings
significant disadvantages in the required number of elements and their low
size. This is overcome in the beam analogy formulation of the problem,
but significant discrepancies between geometry of the real specimen and its
model representation, particularly in the joints of struts, may result in a
different deformation behaviour and have a questionable influence on the
micro-inertia effects. This is further exaggerated, when correlation with
the experimental SHPB data is sought as the true shape of the incident
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stress wave and variable strain-rate is considered. The second factor is the
numerical aspects related to the modelling of the stress wave propagation,
where the Courant number and the bandwidth of the mesh have to be taken
into account for the precise modelling of the physics of the SHPB testing.
In the full-scale representation of the SHPB setups, a common factor found
in the literature is the missing mesh sensitivity considerations of the bars
particularly resulting in omitted frequency characteristics [86] influencing the
extracted strain-histories at the virtual strain-gauges including the behaviour
related to the Pochhammer-Chree oscillations [89]. It will be shown in this
work that a combination of the full-scale numerical representation of the
SHPB setup with the evaluated frequency characteristics coupled with the
precise geometry of the AM produced auxetic samples represented by a
simple elastoplastic constitutive model can be used for the estimation of both
their overall stress-strain response and the function of Poisson’s ratio with
reasonable precision.

1.1 Aims and objectives

The aim of the dissertation is to investigate of the mechanical behaviour of
auxetic materials using a combination of experimental testing and numerical
FE modelling techniques with an emphasis put on the dynamic response of
the lattices. The studied auxetic constructs are intended to be used as a core
in modular panels for ballistic protection and the mitigation of deformation
energy of blasts. Thus, the analyses are primarily focused on the development
of modelling schemes for the reliable prediction of the materials’ mechanical
properties under dynamic loading. From the scientific context and according
to the development of methods used in this thesis, the compressive stress-strain
characteristics of the considered constructs and experimentally determined
functions of Poisson’s ratio are also shown also for the quasi-static response.
Particular attention is, in the numerical studies, paid to the evaluation of the
influence of the numerical aspects of the modelling methods including the
development of a virtual SHPB apparatus for analysis in a dynamic field.

The research related to the auxetic lattices builds upon the methods developed

15



1. Introduction .........................................
for the investigation of metal foams and the results acquired from respective
experiments and numerical simulations. For this reason, a brief overview of
the author’s contribution to the research of metal foams including modelling
using beam discretisation and strain-rate sensitive foams is given in the
chapter devoted to the state-of-the-art porous solids for deformation energy
absorption. The methods developed for the inverse estimation of the effective
mechanical properties of the metal foams are shown as they were used as the
basis for the development of a simulation framework for the auxetic structures
in both the quasi-static and dynamic field. The core of the dissertation
is then aimed at the analyses of three auxetic structures exhibiting both
in-plane NPR and fully 3D structures with volumetric NPR characteristics.
In the quasi-static analyses, the stiffness and yield criteria are studied for
the individual constructs since these parameters are important, when the
auxetic lattices are used as structural elements in the constructions. The
explicit dynamic simulations are then used to develop a full-scale virtual
SHPB apparatus used in the experiments and to assess the structural and
mechanical characteristics of the investigated constructs under a high-strain
rate, large deformation conditions. The achievement of the goal will then
enable to continue with the development of structurally optimised sandwich
panels with the auxetic core as a solution for the mitigation of the deformation
energy during impact loading. Simultaneously, the results obtained from
the sensitivity studies related to the development of the virtual SHPB and
determination of the numerical aspects influencing the explicit dynamics
analysis to enhance the high strain-rate experiments with the ability to
predict and select the appropriate parameters of the measurements.

Several sub-tasks are performed to achieve the objective:

Quasi-static loading

. experimental investigation of the compressive properties of the constructs
for validation of the numerical simulations. employment of DIC for the evaluation of the stress-strain characteristics
and the function of Poisson’s ratio
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. development of the FE simulations for the inverse estimation of the
effective mechanical characteristics of the constructs based on metal-
foam discretisation schemes. development of parametric models of the auxetic constructs for the
additive manufacturing

Dynamic loading

. experimental investigation of the compressive properties of the constructs
for validation of the numerical simulations. employment of DIC for the evaluation of the function of Poisson’s ratio
from high-speed camera data. development of the virtual SHPB apparatus of the device used in the
experiments. development of explicit FE simulations for the estimation of the mechan-
ical characteristics and the function of Poisson’s ratio of the constructs
using the virtual SHPB. verification of the numerical results

1.2 Structure of the thesis

Chapter 1 introduces the topic of the doctoral thesis including a review of the
state-of-the-art techniques in the field of metal foams, additive manufacturing,
dynamics of materials at a high strain-rate and the related FE modelling; the
sub-tasks and objectives are additionally defined.

Chapter 2 provides an introduction to the auxetic materials together with
the fundamental NPR induced effects on the overall mechanical characteristics.
Additionally, the auxetic lattices investigated in this thesis are presented
together with a detailed description of the additively manufactured samples

17



1. Introduction .........................................
used in the experiments and the FE simulations. The chapter also covers the
methods of the specimen production using AM from a polymeric material
and powdered stainless steel.

Chapter 3 deals with the quasi-static response of the auxetic constructs.
The chapter covers the fields of the experimental investigation using DIC,
numerical simulations, and comparison of the numerical and experimental
results. According to the sub-objectives necessary during the development
of the research methods, this chapter includes the analysis of the polymeric
samples using both the experiments and the FEA. The experimental analysis
of the steel samples is then performed as a reference for the dynamic results.

Chapter 4 deals with the dynamic response of the auxetic constructs. The
chapter covers the fields of the experimental investigation using DIC, the
fundamentals of the explicit FE analysis, the development of the virtual SHPB
apparatus including sensitivity studies to reveal the numerical aspects of the
simulations, and a comparison of the numerical and experimental results.

Chapter 5 summarises the work performed in the doctoral thesis and con-
cludes the possibilities of using a combination of experimental and numerical
procedures to predict the compressive characteristics of auxetic lattices.

1.3 Limitations

The presented work is concentrated on the use of a virtual SHPB apparatus
for simulation of the dynamic compressive response of periodic auxetic lattices
based on three different unit-cell geometries. For this reason, the outcomes
of the thesis do not have the ambition of evaluating the performance of the
considered lattices, nor the formulation of the trends or recommendations in
the development of auxetic lattices for specific applications and with specific
NPR characteristics. Additionally, the structure of the thesis follows historical
context in terms of research activities concerning NPR structures, where the
goal, according to the applications in the deformation energy mitigation, is
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......................................... 1.3. Limitations

their dynamic response. Thus, the primary purpose of the chapter concen-
trated on the quasi-static response of the lattices is to provide data acquired
at a low strain rate for comparison with the dynamic loading. The related
numerical simulations based on the beam analogy modelling of the lattices
are then only a demonstration of the capabilities of parametric numerical
simulations to reveal the microstructural, mechanical, and numerical influ-
ences to the effective mechanical characteristics and Poisson’s ratio of the
structures. This is also an explanation for the use of polymeric samples in the
quasi-static analysis as the AM of the PMMA is significantly easier, provides
a better resolution, and guarantees a higher reliability in terms of quality
and conformity of the constructs. In contrast, the PMMA is prone to shock
response during the dynamic compression and that is why all the remaining
experiments and simulations are performed only using the steel specimens.
In the dynamic FEA, a relatively simple material model is considered, which
is a known limitation. However, this selection was performed deliberately due
to its numerical stability and possibility for the easy calibration using the
experimental data. The additional effects of the strain rate hardening and
thermal softening of the AM steel are being evaluated as a part of the ongoing
research. Unlike the SHPB experiments, the presented numerical simulations
do not include the pulse shaper, which is typically a piece of soft material
inserted between the striker and the incident bar. Its purpose is changing the
incident wave shape to reduce the wave dispersion effects by the generation of
smoother pulses that guarantee the faster equilibrium of the dynamic forces
during the test. However, this is a very complex problem from the perspective
of numerical simulations, the related tasks are being solved in parallel for
the future integration in the virtual SHPB apparatus, and has been solved
in the Master’s thesis of Radim Dvorak under the author’s supervision [93].
As a result, a difference in the slope of an incident wave’s rising and falling
edge can be observed between the numerical and experimental test, which
has implications on the strain rate in the specimen and on the oscillations
in the strain waves. The resulting impact on the calculated response of the
specimen consists in a difference of the simulated behaviour up to the initial
parts of the plateau stress region and in the late stages of the compression in
the densification region.
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1.4 Collaboration

Due to the complexity of the studied topic, the realisation of the presented
thesis would not be possible without collaboration with scientific partners
having possession of state-of-the-art testing and computational equipment:

. The Czech Academy of Sciences, Institute of Theoretical and Applied
Mechanics, v. v. i..mechanical experiments. scanning electron microscopy. processing of tomographical data. The Czech Academy of Sciences, Institute of Geonics, v. v. i..microfocus X-ray tomography
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Chapter 2

Auxetics

It has already been shown that cellular solids are able to absorb large amounts
of deformation energy during impacts with the possibility to introduce strain-
rate dependent characteristics into their deformation response. However,
certain applications, such as blast and flying debris protection systems,
may require a material with a relatively high strength in addition to the
excellent deformation absorption capabilities. Such complex mechanical
characteristics can be achieved without altering existing lightweight alloys
(such as aluminium-based materials) used for the material’s production, when
the microstructure is constructed in such a way to exhibit NPR behaviour,
forming a so-called auxetic material.

Auxetic structures are metamaterials that possess NPR due to the deforma-
tion response of their internal structure to the applied loading. As a result,
they expand in a transverse direction when loaded in tension and shrink
when compressed. The example of a material with NPR was described by
Kolpakov in 1985 [94]. This behaviour can be achieved artificially due to the
special design of the internal structuring, but examples of naturally occurring
materials with the same property also exist, such as mineral rods, zeolites,
silicates, and a few biological tissues [95]. The first cellular materials with
NPR were designed and synthesised in 1987 by Lakes et al. from conventional
low-density open-cell polymer foams by tri-axial compression and the sub-

21



2. Auxetics...........................................
sequent placing in a mould causing the ribs of each cell to protrude inward
permanently [62]. The word ’auxetic’ referring to a material with NPR was
first used by Evans in 1991 [96]. With the advancement of material science
and especially with the emergence of computer-aided design together with
additive manufacturing technologies, different structures with 2D and 3D aux-
etic behaviour have been designed, produced, and tested [97–99]. Currently,
there are generally eight types of common auxetic structures that can be
classified as: (a) rigid node rotation, (b) chiral, (c) re-entrant lattice, (d) elas-
tic instability, (e) kirigami fractal cut, (f) origami, (g) star shape connected,
and (h) missing-rib [100–103]. Design optimisation and improvements to the
deformation characteristics have been also investigated [104–106] including
the out-of-plane deformation characteristics and bending behaviour [107,108].
Owing to their specific properties, many interesting applications of auxetic ma-
terials have been described as potentially rendering use in different application
areas, ranging from the medical (foldable devices, angioplasty, or oesophagal
stents) [109,110] to the automotive, aerospace, sport, or defence industries.
Due to the possible increase in the strain energy absorption, special attention
has been paid to the application of auxetic materials for energy absorption
purposes during a crash, blast, and other impact loading situations [111–113].
Advancements in additive manufacturing and particularly the introduction of
SLS/SLM, powder metallurgy (P/M) sintering, and pulsed electric current
sintering (PECS) has enabled one to use metals as the base material for the
production of the structures [114]. This has broadened the application area of
auxetic materials in impact protector devices [115] and increased the energy
absorption capability through the possibility of using lighter and thinner
components. These new technologies are still rather expensive, but with their
increasing accessibility and their potential utilisation in mass production
leading to a reduction in the final price, the application of 3D printing in this
area is expanding.

The deformation behaviour, both elastic and plastic, of such an auxetic
construct is determined by the concurrent effects of the intrinsic behaviour
of the material used for its production, cell topology, and connectivity. To
optimise its microstructure to suit the intended application and to achieve a
stable NPR up to high strains, control over the pore structure is required.
Here, the use of additive manufacturing is favourable as all the intended
geometrical characteristics can be attained deterministically, satisfying the
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.............................. 2.1. Important mechanical characteristics

need for the high mechanical integrity of the construct during deformation
and the possibility for the precise tuning of the overall stiffness and plastic
properties [116]. The mechanical characteristics of such auxetic lattices are
given not only by the overall geometrical arrangement of struts in the unit-cell
and their connectivity, but by the deformation properties of the strut joints as
well. The influence of all these factors on the effective mechanical properties,
in both an elastic and plastic regime, has to be thoroughly evaluated and taken
into account in the analytical and numerical prediction of their mechanical
characteristics [117,118].

2.1 Important mechanical characteristics

2.1.1 Resistance to indentation

The load applied by the indenter locally compresses the material, when a
conventional non-auxetic material is subjected to indentation. As a result,
the material spreads in the direction perpendicular to the applied load to
compensate for the localised pressure [119]. However, a local contraction
against the penetrating object is observed, when an indentation loading is
applied to a microstructure of an isotropic auxetic material. The material
accumulates under the indenter due to a connectivity-induced displacement
of the unit-cells and an area of denser material with higher resistance to
the indentation is created [120]. This mechanism improves the indentation
resistance of auxetic materials, when compared to conventional materials [121,
122]. Here, the increase in the indentation resistance can be justified by the
theory of elasticity. The material hardness H is correlated to Poisson’s ratio
by the equation [123]

H ∝
[

E

(1− ν2)

]γ
, (2.1)

where E is Young’s modulus, ν is Poisson’s ratio of the base material, and

23



2. Auxetics...........................................
γ is the constant that assumes the value 1 or 2/3 in the case of a uniform
pressure distribution or Hertzian indentation, respectively. It can be inferred
that for 3D isotropic materials and Poisson’s ratio decreasing to extreme
values near −1, the hardness of the material tends towards infinity [124].

2.1.2 Shear resistance

Auxetic materials are more resistant to shear forces [123]. The classical theory
of elasticity for 3D isotropic solids implies that the elastic behaviour of a
body can be described by two of four constants among Young’s modulus E,
the shear modulus G, the bulk modulus K, and Poisson’s ratio ν [125]. The
relationship between these constants is given by the following equations in 3D

G = 3K (1− 2ν)
2 (1 + ν) , (2.2)

G = E

2 (1 + ν) . (2.3)

It can be observed that the value of the shear modulus and the shear re-
sistance increases, when Poisson’s ratio decreases. Furthermore, for stable
unconstrained solids, the shear modulus must be positive [126]. This implies
that Poisson’s ratio has values between −1 and the isotropic solid limit of
0.5. This relationship causes that the shear modulus tends to lean towards
infinity at the extreme negative values of Poisson’s ratio.

2.1.3 Fracture resistance

It has been shown that auxetic materials exhibit increased resistance to
fracturing [127,128] as well as having high crack propagation resistance [129]
yielding a fragile fracture behaviour. Maiti demonstrated, in the work on
crack growth, that the stress intensity factor for conventional foams (K∗IC)
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is proportional to the normalised density and can be described by the equa-
tion [130]

K∗IC
σf
√
πl

= 0.19
(
ρ∗

ρS

)
, (2.4)

where σf is the fracture stress of the cell strut, l is the strut length, ρ∗ is
the foam density, and ρS is the density of the base material used for the
foam production. Later, the work by Choi and Lakes showed that in the case
of re-entrant foams, Equation (2.4) was not applicable and that the stress
intensity factor for these foams (Kr

IC can be expressed by the equation [127]

Kr
IC

σf
√
πl

= 0.1

√
1 + sin

(
π

2 − ϕ
)

1 + cos (2ϕ)
ρ∗

ρS
, (2.5)

where ϕ is the re-entrant angle of the unit-cell. In the same work, Choi
observed that for the analysed re-entrant foam, the relationship between the
stress intensity factors could be established according to the equation [120]

Kr
IC

K∗IC
= 0.53

√
1 + sin

(
π

2 − ϕ
)

1 + cos (2ϕ) . (2.6)

The experimental results also showed that re-entrant foams achieve an in-
creased fracture toughness at higher values of volumetric compression. This
behaviour can be explained using the dimensional growth of the auxetic
material, if it is subjected to tensile loading, which can be easily verified
macroscopically. As the growth is an inevitable result of the dimensional
growth of each individual unit-cell, whenever a crack is formed, the expan-
sion of the cell naturally tends to close it. As a result, while taking other
macroscopic characteristics into account, auxetic materials have the potential
to significantly improve the state-of-the-art in deformation energy mitigation
and particularly their resistance to impact loading.
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2. Auxetics...........................................
2.2 Investigated auxetic lattices

In this work, three different types of unit-cell geometries have been inves-
tigated: i) the two-dimensional cut missing-rib, ii) the two-dimensional
re-entrant (inverted) honeycomb, and iii) the three-dimensional re-entrant
honeycomb. These unit-cells were periodically arranged so that a predictable
(determinate) in-plane or volumetric negative strain-dependent Poisson’s ra-
tio was achieved in the case of the two-dimensional and three-dimensional
geometries, respectively. Constructs of the two-dimensional geometries were
generated by extruding a planar (single layer) arrangement of the unit-cells,
whereas the three-dimensional construct was created by generating a three-
dimensional pattern of the fully three-dimensional unit-cells along all spatial
directions.

Three different groups of specimens having the aforementioned unit-cell
geometries were created in a parametric modeller and produced using two
additive manufacturing technologies. To obtain the initial estimation on the
stiffness, yield, and failure behaviour of the auxetic lattices during quasi-static
compression, the specimens were first printed using a polymeric material.
Then, to be able to assess the dynamic characteristics of the lattices, SLS
using powdered stainless steel was used to manufacture samples conforming
with the properties of the SHPB device used in the experiments. The SLS
printed specimens were divided into two sub-groups according to the number
of unit-cells in the periodic assembly. The initial experiments and numerical
simulations were performed with lattices having 3 unit-cells along every
relevant spatial direction to gain experience with the SHPB testing, the
repeatability of the SLS printing, and the numerical simulations with the
FE models having a modest number of elements. Then, the same types
of unit-cells were used to generate lattices satisfying the requirements on
the RVE of cellular solids as defined by Ashby et al. [15] by generating a
periodic assembly of 6 × 6 or 6 × 7 unit-cells depending on a specific type
of lattice. SolidWorks (Dassault Systèmes SolidWorks Corp., France) and
Inventor (Autodesk, USA) parametric modellers were used to design the
samples’ geometry that was, for the additive manufacturing, exported to STL
format, while the FE meshes were generated from IGS format files.
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2.2.1 Production methods and materials

Multi-jet modelling

The polymeric specimens for the quasi-static testing were manufactured from
a VisiJet EX200 (3D Systems, USA) UV curable acrylic material suitable
for high-resolution 3D printing. The physical properties of the material are
summarised in Table 2.1.

Material property Label Value Unit

Mass density % 1.02 g/cm3

Glass transition temperature Tg 52.5 ◦C
Young’s modulus E 1283 MPa
Poisson’s ratio ν 0.2 -
Yield stress σY 42.4 MPa
Tangent stiffness Et 12.8 MPa

Table 2.1: Properties of the VisiJet EX200 material.

For the specimen production, a Pro Jet HD3000 3D printer(3D Systems,
USA) set to the high-definition mode was used. The manufacturing principle
is based on the multi-jet modelling technology, where a special printing head
covers the whole working area (198× 185 mm) and builds up the model by
adding individual layers of the produced geometry (up to the maximum height
of 203 mm). Simultaneously to the modelling material, a supporting wax
material is automatically added to the construct to enable the production of
very complex geometries. Thanks to its low melting point (approx. 55−65 ◦C),
all the supporting wax material can be simply removed from the products by
heating in a water bath to approx. 80 ◦C without any potential mechanical
damage to the products. The final samples were produced with a resolution
of 328×328×606 DPI (x, y, z direction) with layer thickness of 0.036 mm. In
this mode, the accuracy of the printing was approximately 0.025− 0.05 mm
and the production process took 11 hours. The visualisation of the specimens
is depicted in Figure 2.1.
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Figure 2.1: Multi-jet modelling printed specimens for quasi-static testing: 2D
missing-rib (left), 2D re-entrant honeycomb (middle), 3D re-entrant honeycomb
(right).

SLS

The specimens for the dynamic testing were printed with an AM 250 device
(Renishaw, UK) using the SLS method by sintering powdered SS316L-0407
austenitic stainless steel composed of iron alloyed by 16−18 wt% of chromium,
10− 14 wt% of nickel, and 2− 3 wt% of molybdenum. The maximum permis-
sible content of carbon is up to 0.03 wt% making this material an extra-low
carbon modification of a standard SS316L alloy. The melting range of the ma-
terial is 1371− 1399 ◦C and the density of the wrought solid is 7990 kg ·m−3.
The mechanical properties of the additively manufactured components (accord-
ing to the manufacturer of the sintering device) are summarised in Table 2.2.
The visualisation of the specimens is depicted in Figures 2.2 and 2.3.

Parameter Horizontal direction Vertical direction Unit

Compressive strength 662 ± 2 574 ± 10 MPa
Yield strength 518 ± 5 440 ± 10 MPa
Modulus of elasticity 167 ± 8 134 ± 17 GPa
Elongation at break 43 ± 2 35 ± 8 %

Table 2.2: Properties of the wrought SS316L-0407 steel.
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Figure 2.2: SLS printed specimens for dynamic testing: 2D missing-rib (left),
2D re-entrant honeycomb (middle), 3D re-entrant honeycomb (right).

Figure 2.3: SLS printed specimens with RVE number of unit-cells for dynamic
testing: 2D missing-rib (left), 2D re-entrant honeycomb (middle), 3D re-entrant
honeycomb (right).

2.2.2 Specimen geometry

Missing-rib

The missing-rib model is formed by removing selected ribs (elements forming
the unit-cell) from a periodical arrangement of squares and by rotating the
construct by 45 ◦ to the direction of loading [98]. The auxetic behaviour of
such a construct depends on the unit-cell dimensions and the angles between
the individual ribs.

Polymeric samples. The dimensions of the polymeric constructs were 25.05×
25.40× 37.75 mm (width, depth, height), the overall porosity was 72.8 %, and
the construct consisted of 10 × 15 cells with a nominal strut thickness of
0.25 mm.
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Steel samples. The SLS produced samples with 3 × 3 unit-cells (9 unit-
cells in total) had the nominal dimensions of 11.7 × 12.0 × 13.0 mm and a
nominal porosity of 53.1 % at a nominal strut thickness of 0.6 mm. The
samples having 6× 6 unit-cells for a total of 36 unit-cells had the dimensions
of 14 × 14 × 14.8 mm and a nominal porosity 74.37 % at a nominal strut
thickness of 0.2 mm.

Re-entrant honeycomb

The re-entrant mesh is generated by changing the four side angles between
the ribs in a six-sided honeycomb [131]. The magnitude of Poisson’s ratio
at a given strain is here primarily given by the length ratio of the individual
ribs forming the unit-cell.

Polymeric samples. The dimensions of the 2D polymeric assemblies were
25.65× 25.40× 58.89 mm, the overall porosity was 73.2 % and the construct
consisted of 10 × 15 cells with a nominal strut thickness of 0.25 mm. The
dimensions of the 3D polymeric assemblies were 7.87 × 7.87 × 18 mm, the
overall porosity was 91.7 % and the construct consisted of 3 cells in every
spatial direction.

Steel samples. The SLS manufactured 2D re-entrant honeycomb with
3× 3 unit-cells (8 unit-cells in total) had the nominal dimensions of 12.0×
12.0× 13.0 mm and a nominal porosity 72.3 % at a nominal strut thickness of
0.6 mm. The samples having 6× 7 unit-cells for a total of 42 unit-cells had
the dimensions of 14.0× 14.0× 14.5 mm and a nominal porosity 73.43 % at
a nominal strut thickness of 0.2 mm. The SLS manufactured 3D re-entrant
honeycomb with 3× 3 unit-cells (22 unit-cells in total) had the dimensions
of 12.1 × 12.0 × 13.0 mm and a nominal porosity 74.0 % at nominal strut
thickness of 0.6 mm. The samples having 6× 7 unit-cells for a total of 252
unit-cells had the dimensions of 14.0× 14.0× 14.5 mm and a nominal porosity
72.36 % at nominal strut thickness of 0.2 mm.
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Chapter 3

Quasi-static response

3.1 Introduction

This chapter is devoted to the investigation of the compressive response
of the studied auxetic structures to loading in a quasi-static regime using
both experimental and numerical methods. In the experimental part, the
description of the loading setup and its optical instrumentation is given
together with the method for the digital image correlation of the displacement
and strain fields, which is also utilised in the chapter describing the dynamic
response of the lattices. Consequently, the evaluation of the stress, the
strain, and Poisson’s ratio is provided. The experimental results acquired
for the polymeric samples are then used as a basis for the development
of the numerical methods for the inverse estimation of the compressive
characteristics.

The results section is in this chapter divided according to the base material
used for the production of the lattices. For the polymeric samples, the
comparison of the experimental and numerical results, in terms of the elastic
part and the yield characteristics of the effective material response to the
compression, is shown. Then, the influence of the numerical aspects such as a
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small deformation or the finite strain formulation and the constitutive material
model are discussed to show factors that have to be taken into account during
optimisation of the auxetic structures using parametric simulations. The
experimental results acquired for the SLS printed lattices are then further
divided into the stress-strain response and the analysis of the function of
Poisson’s ratio.

3.2 Experimental methods

3.2.1 Experimental setups

In the case of polymeric samples, the experiments were carried out using an in-
house designed loading setup based on a modular compression/tension loading
device suitable for both optical and X-ray observations of the deformation
processes [132] equipped with an U9B force transducer (HBM, Germany) with
a nominal force capacity of 2 kN. A signal from the load-cell was read-out
using an OM502T (Orbit Merret, CZ) load-cell indicator at a sampling rate
of 50 Hz. The loading of the samples was performed as a displacement driven
uni-axial compression. The maximum displacement was set to 8 mm with a
loading rate 20µm · s−1. A detailed description of the loading setup is shown
in Figure 3.1.

The response of the SLS printed specimens to the uni-axial compression was
performed using an electromechanical loading device (Instron 3382, Instron,
USA) due to higher load-bearing capacity of the stainless steel constructs.
The cross-head speed was set to 0.5 mm ·min−1 (strain-rate of 0.006 s−1) up
to 50 % of the overall deformation defined by the cross-head displacement. A
detailed description of the loading setup is shown in Figure 3.2.

The deforming microstructure of the samples was during all the experiments
observed by a CCD digital camera to enable the optical evaluation of the
displacement and strain fields of the investigated microstructures, which was
necessary for the evaluation of the stress-strain diagrams and the functions of
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Figure 3.1: Loading setup used in the experiments with the polymeric samples.

Figure 3.2: Loading setup used in the experiments of the SLS printed samples.

Poisson’s ratio. The optical instrumentation of the experimental setup was
composed of a monochromatic camera (Manta G-504B, AVT, Germany) with
a resolution of 2452×2056 px operated at 3 fps and attached to a bi-telecentric
zoom revolver (TCZR072, OptoEngineering, Italy). The lens uses a stepper
motor controlled zoom revolver to set 4 different scene magnifications in the
range of 0.125− 1 with very high image centre stability, parfocality, and no
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need for re-calibration after zooming to guarantee the high reliability of the
correlation procedure and accuracy of the computed strains. The specimens
were illuminated using a KL2500 (Schott, Germany) high-power cold-light
LED source. The acquisition of the projections was controlled with custom-
developed software based on the OpenCV library and Python programming
language [133]. The observed faces of the specimens were sprayed using a
granite paint to generate a random pattern to enable the reliable optical
deformation tracking.

3.2.2 Digital Image Correlation of the Quasi-Static
Experiments

The acquired series of images were exported to a PNG format using a lossless
compression algorithm and subjected to a custom DIC procedure implemented
in Matlab (Mathworks, USA). The procedure, based on the Lucas-Kanade
tracking algorithm [134], uses a zero-mean normalised sum-of-square dif-
ferences (ZNSSD) criterion to compute the similarity in the pixel intensity
between the reference and the deformed image subsets, which is then followed
by the optimisation of the received displacement by the Newton-Raphson
iterative algorithm to achieve a sub-pixel accuracy of the results. Thus, a
periodic grid of correlation points is generated for every investigated sample,
where the location and distance between the individual correlation points were
selected to track the deformation of the joints between the individual struts to
enable the reliable evaluation of the function of Poisson’s ratio. Each marker
was then tracked throughout the acquired series of projections by searching
for the highest correlation coefficient between two consequent projections.
As a result, the in-plane displacement and strain fields of the deforming
microstructures were obtained and averaged over all the measurements com-
prising the respective auxetic microarchitecture. Particular attention has to
be paid to the treatment of noise in the data to achieve the high reliability
of the correlation procedure. For this reason, a correlation window was set
to 25 px and its neighbourhood, where the correlation was sought around a
centroid of the correlation window in two consequent projections, was set to
30 px and kept constant in all the evaluated quasi-static experiments.
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Figure 3.3: Loading scene captured using a CCD camera during the experiment
- missing-rib specimen with a sprayed surface for the DIC strain evaluation (left),
visualisation of the optically determined displacements (right).

Stress and strain evaluation

The engineering stress (σeng) and strain (εeng) values were determined from
the geometrical properties of the tested specimens and the optically measured
displacements of the markers. Then, the true stress (σtrue) and true strain
(εtrue) were calculated according to Equations (3.1a) and (3.1b)

σtrue = σeng · (1 + εeng) , (3.1a)

εtrue = ln (1 + εeng) . (3.1b)

Evaluation of Poisson’s ratio

From the strain fields assessed by DIC, Poisson’s ratio ν12 was calculated
using the formula

ν12 = −ε2
ε1
, (3.2)
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where ε2 is the lateral strain in the direction perpendicular to the loading
direction and ε1 is the strain in the loading direction.

In the case of the 3× 3 unit-cell samples, the deformation perpendicular to
the loading direction was evaluated from the middle parts of the specimens’
microstructure, where the concentration of the lateral strain occurred during
both the quasi-static and dynamic experiments. Different methods were used
for determining the function of Poisson’s ratio for both the quasi-static and
dynamic experiments of the RVE sized samples as described in detail in [12].
The methods for calculating Poisson’s ratio were based on the different sets
of correlation markers selected for the analysis. In this thesis, the "inner-
inner" method based on the analysis of the inner part of the specimens’
microstructure, where the concentration of the lateral strain occurred (see the
red markers of the correlation points in Figure 3.4), was used to determine
both the deformation parallel and perpendicular to the loading direction.
Three specimens of each microarchitecture were tested in the quasi-static
experiments and five specimens were tested at each strain-rate during the
SHPB experiments, the mean curves, and standard deviation envelopes of
the functions of Poisson’s ratio for each type of experiment were calculated.

Figure 3.4: Example of the correlation pattern (green colour) generated on the
2D re-entrant honeycomb specimen showing the inner (red) and outer part used
for the DIC evaluation of the results.
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3.3 Numerical methods

Apart from the experimental methods, analytical and FE models can be
used to describe the deformation behaviour of auxetic constructs, allowing
the prediction and optimisation of the effective mechanical characteristics
that facilitate the material design for a specific application. Most of the
analytical models assume small deflections, neglecting the axial deformation
of the struts. Thus, the analytical approach can be used to prove the concept
of the NPR, optimise the parameters of a structure (e.g., the re-entrant angle,
relative density, strut thickness), and maximise the effective parameters of the
resulting constructs (i.e., deformation energy per unit volume, yield strength
of the structure, compressive strength) according to the specific requirements.
Typically, for the unit-cells considered in this work, the derived Poisson’s
ratio depends on the magnitude of the re-entrant angle governing the topology
of the unit-cell and/or the strut length ratio. Using the Timoshenko beam
theory and the elastic-behaviour assumption, it is possible to calculate the
overall elastic modulus E and critical-yield compressive force Fm based on
the yield strength σm of the bulk solid material. From the yield compressive
force, the compressive strength of the structure can be then expressed.

However, these analytical models are effective only when simplifying assump-
tions such as when the small deflection theory and linear elastic-material
properties are used. Consequently, these models only give satisfactory results
for small deformations and are limited to the calculation of the overall elastic
properties or the estimation of the yield point of a structure. When large
strains with non-linear material properties are to be considered, FE models
have to be used instead. Thus, FE models of the tested auxetic structures
were developed and subjected to the same loading conditions as during the
compression tests. The deformation behaviour of the tested samples under
large strains (up to 10 % or 20 % strain) was then compared with the pre-
dictions obtained from the numerical models to verify their suitability for
the representation of such microarchitectures. The stress-strain curves were
inversely assessed from the FE simulations, i.e., from the reaction forces
calculated at the restrained side of a sample. Using such inverse FE simula-
tions, it is relatively easy not only to obtain the stress-strain curves for each
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considered sample, but also to establish the stresses and strains arising at
the individual struts from the deformation of the structure. Hence, these
strains can be easily compared to the values experimentally obtained from
the digital image correlation at the same positions (i.e., individual markers).

The parametric FE model of each auxetic structure has been then developed.
The geometries have been discretised with beam elements having 6 degrees of
freedom at every nodal point. The elements were based on the Timoshenko
beam theory, which considers a first-order shear deformation theory, where
the transverse shear strain is constant through the cross-section; that is, the
cross-sections remain planar and undistorted after deformation. The material
model set in the simulations was elasto-plastic, combining von Mises yield
criteria and bilinear isotropic work hardening. The material properties of the
EX200 material are summarised in Table 3.1.

Parameter Value Unit

Young’s modulus 1.159 GPa
Yield stress 42.4 MPa
Poisson’s ratio 0.2 −
Hardening tangent modulus 12.8 MPa

Table 3.1: Material properties of the EX200 material used in the FE simulations.

To inversely calculate the stress-strain relationship of the structures, the
models included both geometric and material nonlinearities. The loading was
prescribed in 100 loading steps, i.e., in each step a 0.1 % or 0.2 % deformation
was applied. In the case of such a large-strain analysis, a highly deformed
geometry has an important effect on the strain and, therefore, geometric
nonlinearities must be considered. To consider the post-buckling behaviour of
thin beams subjected to a large compression, strain measures have to account
for higher-order terms. Thus, in the analyses, the material stress-strain
properties were input in terms of the true stress versus the logarithmic strain.
In every loading step, the reaction forces originating from the supports were
calculated and the true stresses and strains were established using Equations
(3.1a) and (3.1b). The visualisations of the FE models for the individual
unit-cells can be seen in Figure 3.5, the visualisation of the planar auxetic
lattices is shown in Figure 3.6, and the visualisation of the 3D re-entrant
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honeycomb is shown in Figure 3.7.

Figure 3.5: Visualisation of the FE-model unit-cells used in the numerical
simulations with details of the unit-cells: a) missing-rib structure, b) 2D re-
entrant honeycomb, and c) 3D re-entrant honeycomb.

Figure 3.6: FE model of the missing-rib structure and the 2D re-entrant honey-
comb. Detailed view of the elements inside the periodic unit-cell in the upper
right corner.
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Figure 3.7: FE model of the 3D re-entrant structure: side view of the FE
mesh (left), isometric view (right) with a detailed view of the elements inside
the periodic unit-cell in the lower right corner.

3.4 Results

3.4.1 Polymeric samples

Using the values for the parameters of the considered material model listed
in Table 2.1, the numerical stress-strain diagrams have been obtained for
the polymeric samples. The comparison of the numerical and experimental
curves is provided in Figures 3.8 - 3.10.

It can be seen that the missing-rib lattice exhibits a similar initial compressive
behaviour to a typical closed-cell foam. The initial linear elastic part is
followed by an apparent yield point and a compaction region with a constant
stress plateau. These regions are then at approximately 17.5 % of the strain
followed by a localised densification due to the NPR of the unit-cell and
repeated decreases in the stress that can be attributed to the beams ruptures
due to the excessive bending and brittle behaviour of the material used
for the production. Importantly, a good correlation of the numerical and
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Figure 3.8: Comparison of the experimental stress-strain curve and the numeri-
cally calculated curve for the missing-rib structure.

experimental results was obtained in terms of the stiffness, yield point, and
plateau stress up to a 15 % strain.

The inspection of the stress-strain diagrams of both the 2D and the 3D
re-entrant honeycomb lattices reveals that such a construct exhibits a signifi-
cantly different deformation behaviour than the missing-rib structure. After
the initial linear elastic region, a drop of stress is followed by cyclic increasing
and decreasing stress levels in the specimens with an apparent progressive
trend. Following the visual inspection of individual projections during the
deformation, the occurrence of cycles can be attributed to the collapse of indi-
vidual layers of unit-cells in the microstructure, which is further facilitated by
cracking in the highly stressed regions in the vicinity of the strut joints caused
by the characteristics of the printed PMMA material. The FE simulations
yield, in this case, a reasonable prediction in terms of the yield stress of
the structure and the overall shape of the stress-strain response during the
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Figure 3.9: Comparison of the experimental stress-strain curve and the numeri-
cally calculated curve for the 2D re-entrant structure.

collapse of the first layer of the unit-cells in the lattice. However, the FE simu-
lations of the re-entrant structures predict a smaller overall stiffness, which is
apparent from the comparison between the experimental stress-strain curves
and the numerically obtained responses. Since the trend of the stress-strain
curve obtained from the experimental and numerical analysis is identical
and the yield stress is also similar, this difference in the effective stiffness of
the lattices can be attributed to the mechanical properties of the wrought
EX200 material, which are different from the available nominal values and to
non-conformity of the printed samples to the beam analogy considered in the
FE simulations.

For this reason, a set of three-point-bending experiments was carried out
using prismatic beams with rectangular cross-sections that were carefully cut
from the printed specimens using a micro-lathe. Based on the DIC strain
evaluation using the same method utilised for the uniaxial compression tests,
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Figure 3.10: Comparison of the experimental stress-strain curve and the numer-
ically calculated curve for the 3D re-entrant honeycomb structure.

a bending modulus of approximately 1.5 GPa was calculated on the basis
of the Euler-Bernoulli theory. This value is close to the nominal flexural
modulus of 1.5 GPa provided by the manufacturer that was also used in the
FE simulations. Thus, the discrepancies between the numerically and the
experimentally evaluated stiffness might have been caused on the material-
model level by properties that were different from the predicted properties of
the joints between the individual struts, influencing the bending characteristics
of individual layers, which formed the principal mode of deformation of the
re-entrant structures. Additionally, by comparing Figures 3.5 and 3.25, it is
evident that the discrepancy between the discretised and real geometry of
the samples in the region of strut-joints is also an important contributing
factor (see, particularly, the fillet acting as a reinforcement in the joint).

Hence, a parametric FE study was performed to investigate the required
compensation measures for the proper calibration of the discretised numerical
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models. Here, Young’s modulus prescribed by the material model to the
elements of struts was varied in the numerical simulations until a smaller
than 5 % difference between the numerical and experimental yield strain
was reached. This measure was selected since the visual inspection of the
deforming re-entrant honeycombs during experiments revealed the rigid-like
behaviour of the strut joints, while the bending of the struts themselves is the
principal mode of deformation of the unit-cells. Using this approach, Young’s
modulus of 3.3 GPa (increased by a factor of 2.85) for the 2D re-entrant
honeycomb and 3.57 GPa (increased by a factor of 3.08) for the 3D re-entrant
honeycomb were identified to satisfy the 5 % yield strain difference criterion.
Figures 3.11 and 3.12 then show a comparison of the experimentally and
numerically acquired stress-strain diagrams for both the re-entrant structures
with the modified stiffness of the strut joints.
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Figure 3.11: Comparison of the experimental stress-strain curve and the numer-
ically calculated curve for the 2D re-entrant structure.

It was possible to perform the FE analysis up to 20 % strain only for the
missing-rib auxetic structure. Larger strain values could not be calculated as
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Figure 3.12: Comparison of the experimental stress-strain curve and the numer-
ically calculated curve for the 3D re-entrant honeycomb structure.

the elements become extremely distorted yielding to the instability and conver-
gence issues in the simulations. Furthermore, to capture the stiffening during
compaction, it would have been necessary to include the self-contact between
the individual struts, which would significantly increase the complexity and
computational costs of the simulations.

After verification of the the FE models of selected geometries against the
experimental data, the FE models were fully parametrised to enable the fast
calculation of the dependencies between the design parameters (strut thickness,
orientation angle, strut length) and the overall mechanical properties (stiffness,
Poisson’s ratio, yield stress). For each structure, calculations were performed
in a repetitive manner, while the selected design parameter was varied and
the effective properties were established. This enables one to use the FE
models for the description of the deformation behaviour of auxetic structures
and allows for the effortless and fast prediction (optimisation) of the effective

45



3. Quasi-static response .....................................
mechanical characteristics that facilitates the material’s design for a specific
application. Although there are many analytical models available in the
literature, here, only a numerical approach was used. One reason is that the
analytical models assume small deflections neglecting the axial deformation
of the struts. The other reason is that, for the investigation of very large
deformations, one must analyse the self-contact between the individual struts.
The analytical models are effective only when simplifying assumptions such
as when the small deflection theory and linear elastic material properties are
used. In contrast, the FE approach can be used to prove not only the concept
of the NPR and/or to optimise the parameters of the structure (e.g., the
re-entrant angle, relative density, struts’ thickness), but also to maximise the
effective parameters of the resulting constructs (i.e., deformation energy per
unit volume, yield strength of the structure, compressive strength) according
to the specific requirements.

First, only elastic material properties were applied and the basic properties
of the structure were determined. This approach was used for all the FE
models, in which the following parameters were varied: (i) strut thickness
(b× h), (ii) strut length, and (iii) re-entrant angle. Then, the elasto-plastic
material properties were applied and the stress-strain curves were assessed
from the FE simulations inversely, i.e., from reaction forces calculated at the
restrained side of the sample. Such inverse FE simulations provide not only
the stress-strain curves for each considered sample, but it is also possible
to map the stresses and strains arising at the individual struts from the
deformation of the structure. Hence, the strains can be easily compared
to the experimentally obtained values from the DIC at the same positions.
To demonstrate the importance of nonlinear material properties and finite
strain theory in the FE analyses, comparative FE simulations were performed.
These simulations were carried out for a variable strut thickness and the
results were plotted against the calculated relative density of the FE model.
The following graphs show the dependency of the overall stiffness on the
relative density. The relative density of the FE models is varied by changing
the cross-sectional area of the struts. The relative density is then calculated
from the known strut thickness t and the dimensions of the periodic unit-cell.

An important property of an auxetic structure is its overall stiffness. To
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calculate the stiffness of each designed auxetics, the FE models were loaded
in a longitudinal direction. Instead of using force, the upper side of the model
was loaded by a vertical displacement corresponding to 10 %. All degrees of
freedom corresponding to the bottom plane of the model were removed. The
stiffness was calculated as the normal stress σn (calculated as the reaction
force at the lower support divided by the cross-sectional area A) divided by
the applied strain ε = 0.1. Figures 3.13 - 3.15 show the effective stiffness
(the reaction force divided by the cross-sectional area) of the studied auxetic
lattices plotted against the relative density as computed by the parametric
model. The influence of the material models, the linear elastic and von Mises
plasticity with isotropic hardening, and also the strain formulation in terms
of the small deformation theory and finite strain theory are also compared.
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Figure 3.13: Overall stiffness plotted against the relative density for the missing-
rib structure - the difference in the small/finite strain theory and the elastic/elasto-
plastic material models.
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Figure 3.14: Overall stiffness plotted against the relative density for the 2D
re-entrant structure - the difference in the small/finite strain theory and the
elastic/elasto-plastic material models.
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Figure 3.15: Overall stiffness plotted against the relative density for the 3D
re-entrant structure - the difference in the small/finite strain theory and the
elastic/elasto-plastic material models.

To show the applicability and the important differences in the small deforma-
tion versus the finite strain formulations, the dependency of the calculated
Poisson’s ratio on the relative density of the structure is plotted in Figures 3.16
- 3.18. Poisson’s ratio is calculated from the transversal nodal displacements
in the mid-cross-section of the model (i.e., εx,y in the middle of the sample
divided by applied εz). Here, in the finite strain formulations, the Green-
Lagrange strain tensor G = 1

2
(
FTF− I

)
, which is based on the deformation

gradient F = ∂x

∂X (derivatives of the deformed coordinates with respect to
the original coordinates X), is used. As the work-conjugate stress measure
to the Green-Lagrange strain tensor, the second Piola-Kirchhoff stresses are
then used.
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Figure 3.16: Calculated Poisson’s ratio plotted against the relative density
for the missing-rib structure showing the importance of taking geometrical
non-linearity into account.
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Figure 3.17: Calculated Poisson’s ratio plotted against the relative density
for the 2D re-entrant structure showing the importance of taking geometrical
non-linearity into account.
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Figure 3.18: Calculated Poisson’s ratio plotted against the relative density
for the 3D re-entrant structure showing the importance of taking geometrical
non-linearity into account.
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3.4.2 Steel samples

Stress-strain response

The stress-strain diagrams of the auxetic lattices having 3× 3 unit-cells and
the comparison with the RVE sized assemblies are depicted in Figures 3.19 -
3.21. It can be seen that the quasi-static response of the samples with twice
the number of unit-cells in every relevant spatial direction is very similar to
the previous set even though the overall size of the unit-cells and, consequently,
the cross-sectional dimensions of the constituting geometrical elements have
been lowered significantly.
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Figure 3.19: Comparison of the experimental quasi-static stress-strain curve -
2D missing-rib lattice with a different number of unit-cells.

The 2D missing-rib lattice is typical for its plateau of constant stress up to
15 % of the compressive strain due to uniform compression in all the unit-cells
and their negligible rotations. According to the orientation of the unit-cells in
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the lattice, one or more layers of the unit-cells exhibit lateral movement until
the collapse of the struts in one layer causes a significant increase in the stress
visible at strains over 15 %. This process then repeatedly continues until
the densification of the whole structure occurs and due to the quasi-static
strain-rate, a significant difference in the lateral positions of the upper and
bottom layer of the unit-cells can be observed. The increase in the number
of unit-cells to the RVE dimensions resulted in a 0.5 times reduction of the
apparent yield stress and a 30 % lower average plateau stress together with
the lower slope of the densification part of the response that also reaches 50 %
stress at the end of the experiment at the compressive strain of 0.45. The
transfer between the plateau region and the densification part is sharper in
the case of the 3 × 3 lattice, but the strain levels of the oscillations in the
densification region are interestingly the same indicating that the number of
layers is not the dominant factor influencing the overall compressive response
of the missing-rib structure, when quasi-static loading is applied.
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Figure 3.20: Comparison of the experimental quasi-static stress-strain curve -
2D re-entrant honeycomb lattice with a different number of unit-cells.

Both the 2D and the 3D re-entrant honeycomb lattices exhibit compressive
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Figure 3.21: Comparison of the experimental quasi-static stress-strain curve -
3D re-entrant honeycomb lattice with a different number of unit-cells.

behaviour very similar to the response of closed-cell metal foams, where the
initial elastic part is followed by a relatively wide plateau of constant stress
until the self-contact of the microstructural elements occurs and densification,
represented by an approximately linear increase of stress, is observed. The
difference between the 2D and 3D lattice consists particularly in the shape of
the plateau stress as the 3D lattice is prone to a stability loss of the individual
struts resulting in an easier collapse of the layers, which then yields a repeated
increase and decrease in the overall stress. In the case of the 3× 3 lattices,
the apparent yield of the 3D lattice also takes place at a stress below 45 MPa,
approximately 30 % lower than the 2D assembly, due to its higher porosity
and lower stiffness of the struts. The same findings can be attributed to
the 2D re-entrant honeycomb structure with the difference in the influence
of the number of layers in the lattice. When comparing the shape of the
plateau stress curve, the 6× 7 unit-cell lattice exhibits repetitive oscillations
with the number of local maxima correlating with the number of layers in
the structure. Consequently, when the last layer undergoes self-contact of
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the geometrical elements, the densification part of the specimen response
is started. However, the yield point and the plateau stress is decreased by
approximately 50 % due to decrease in the cross-section of the struts that are
then prone to an earlier loss of stability.

A different behaviour can be seen in the case of the 3D re-entrant honeycomb.
Here, the lattice with a larger number of unit-cells not only reaches a higher
apparent yield strength, but the increase of the stress level is monotonic
and gradual from 10 % of the strain without any oscillations typical for a
structure composed of 3 × 3 unit-cells. The resulting stress-strain curve
is analogous to the compressive response of low-porosity closed-cell metal
foams. Similarity can also be found in the compressive behaviour of the
open-cell cubic elementary cells forming the constituting elements of the
beam analogies for the simulation of closed-cell metal foams [2], when the
elasto-plastic material model is used for the inverse estimation of the effective
mechanical properties. Probably due to the lower unit-cell dimensions and
lower void space within the microstructure of the lattice, the stress levels
of the RVE sized lattice are two times higher than in the case of the 3× 3
lattice.

Strain-dependent Poisson’s ratio

Both the compressive and lateral strains were calculated using the DIC method
by tracking the deformation of the strut joints. The lateral strains were
calculated from the displacements in the central layer of the printed lattices,
where the deformation is not affected by the boundary conditions influencing
the response of the cells neighbouring the free faces of the specimens. In all
the cases, the values of Poisson’s ratio reach positive and/or negative extreme
values for a compressive strain close to 0 as a result of the division by very
low numbers. Figures 3.22 - 3.24 depict Poisson’s ratio plotted against the
compressive strain of the lattices subjected to the quasi-static loading as a
comparison of the assemblies with a different number of cells.

Poisson’s ratio of the 2D missing-rib structure is negative only in a narrow
deformation range up to approximately 4 % of the compressive strain. The
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Figure 3.22: Comparison of the experimental quasi-static function of Poisson’s
ratio - 2D missing-rib lattice with a different number of unit-cells and the
standard deviation for the 6× 6 lattice.

minimum reliably identified Poisson’s ratio of −0.13 is reached at 3 % of the
compressive strain. From this value, Poisson’s ratio gradually increases to
0.25 and oscillates around this value until the end of the experiment. It is
apparent that the low number of unit-cells in the lattice and evaluation of
Poisson’s ratio from the displacement of the outer unit-cells (in the lateral
direction) yields unreliable and unrepresentative results. The functions of
Poisson’s ratio calculated from all three layers were, for this reason, studied
and significant discrepancies have been found, supporting the importance
of the RVE dimensions. Here, the RVE sized samples exhibit a smooth
monotonic increase in Poisson’s ratio from the minimum reliable value of
−0.04 at a 2 % strain up to zero at a 12 % strain, where the auxetic behaviour
vanishes and Poisson’s ratio remains positive until the end of the experiment.
The reason for this behaviour is similar to the 3×3 lattice and is given by the
low loading rate causing the lateral displacements of the whole layers, which
negates the auxetic character of the whole assembly. Following the visual
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inspection of the captured image series’ in the late stages of the experiments,
such a behaviour can account for the overall loss of stability in the specimens
due to excessive rotations of the individual strut joints.
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Figure 3.23: Comparison of the experimental quasi-static function of Poisson’s
ratio - 2D re-entrant honeycomb lattice with a different number of unit-cells and
the standard deviation for the 6× 7 lattice.

The analogous findings have been made in the case of the 2D re-entrant
honeycomb up to the compressive strain of 0.25. Here, Poisson’s ratio
reaches 0.2 at a 5 % strain and remains constant up to 10 % of compressive
strain. Then, Poisson’s ratio repeatedly decreases and increases together
with the collapse of the individual layers and the structure regains an auxetic
behaviour from 32 % of the compressive strain. The comparison of the 2D
re-entrant honeycombs, in view of the different number of unit-cells, reveals
the conformity of both curves in their general shape, although the influence
of the deformation localisation into the particular layer is more significant
in the case of the structure with the 3 × 3 unit-cells. The increase in the
number of unit-cells leads to values of Poisson’s ratio lower than −0.8 at 1 %
compressive strain and the average Poisson’s ratio from all the experiments
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remains negative until the end of the experiments, even though the standard
deviations are higher than for the missing-rib structure and reach positive
values at strains over 17 %.
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Figure 3.24: Comparison of the experimental quasi-static function of Poisson’s
ratio - 3D re-entrant honeycomb lattice a with different number of unit-cells and
the standard deviation for the 6× 7 lattice.

Apparently, a different behaviour was identified for the 3D re-entrant hon-
eycombs, where the highest similarity of the results was obtained for the
assemblies with a different number of unit-cells. Apart from the initial region
of very small compressive strains, both assemblies not only exhibit auxetic
behaviour throughout the quasi-static experiments, but the shape of the
curves is analogous and both structures reach the same asymptotic value of
−0.05 at compressive strains over 25 %. Here, the function of Poisson’s ratio
of the 3 × 3 lattice monotonically increases towards zero and the function
values are within the standard deviation intervals of the RVE sized lattice in
all the stages of the experiment.
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3.5 Discussion

The quasi-static compressive response of auxetic lattices with three different
porous microarchitectures exhibiting in-plane and volumetric NPR was studied
both experimentally and numerically. The samples for the development of
the quasi-static FE simulations were printed from PMMA using a multi-jet
modelling technology of direct production. Experiments with the optical
tracking of the deformation were performed to obtain the true stress - true
strain diagrams in compression. The FE models of all the considered polymeric
microarchitectures were developed and their ability to predict the mechanical
response of the studied constructs were assessed by comparing numerically
and experimentally obtained stress-strain diagrams. The presented FE models
can be readily used for the optimisation of the auxetic structures for the
given overall (desired) mechanical properties and material properties at the
level of the struts.

Taking advantage of the direct 3D printing, it was possible to verify the FE
models and the overall optimisation methodology against the precise experi-
mental data assessed by the DIC. The results of the study showed the general
agreement between the FE simulations, the theoretical models used for the
small deformations, and the compressive experiments. However, for larger
strain values, one must use the finite strain theory and proper constitutive
equations for the material, depending on the geometrical properties (slender-
ness of the struts). In this work, an elastoplastic material with von Mises
plasticity and isotropic linear hardening was used. Combining the plasticity
(material nonlinearity) being introduced through stress-strain relations from
an incremental plasticity theory with the incremental technique developed
to account for the effects of geometric nonlinear behaviour (finite strain and
large deflections), the analyses were capable of treating the combined effects
of the material and geometric nonlinearity. A parametric study showed that
great attention must also be paid to the discretisation of the geometry. It
was found, for all the considered FE models, that it was necessary to use a
large number of elements per strut to capture the behaviour of the 3D printed
specimens with sufficient precision.
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Due to the initial disagreement of the simulated and experimentally obtained
stress-strain curves in terms of effective stiffness of re-entrant structures,
bending experiments of the single struts extracted from the printed specimens
were performed. The derived constants of the FE material model were found
to be insufficient and the dominant deformation modes of the unit-cells were
studied. Then, the stiffness of the base material was varied in a paramet-
ric study to reach conformity between the numerically and experimentally
obtained stress-strain curves. As a contributing factor, the disagreement
between the geometrical model of the lattices, the 3D printed specimens,
and the method of the strut-joining in the beam analogy used in the sim-
ulations was identified, as the 3D printing performed even at 600 DPI still
produces significant fillets instead of sharp edges (see the SEM-SE images of
the strut-joint region depicted in Figure 3.25).

Figure 3.25: Details of the strut joints of the re-entrant lattice acquired using
the SEM-SE imaging.

Still, the quasi-static simulations were predominantly used to obtain a frame-
work for the evaluation of the influence of the different geometric parameters
of the unit-cells on the resulting compressive response of the lattices, particu-
larly the unit-cell size, strut cross-section dimensions, and re-entrant angle.
For this reason, simulations capturing only a limited part of the stress-strain
response up to approximately 10 % to 20 % of the compressive strain were suf-
ficient. However, a further increase in the prescribed compression was found
to be problematic for several reasons. The large localised deformation and
rotation of the individual geometrical elements cause a difficult convergence
of the simulations, which is hard to treat in the quasi-static formulation of
the problem. Furthermore, the material properties of the wrought PMMA are
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significantly more complex than the description provided by the elastoplastic
material models with a hardening rule and would require the introduction of
a damage model into the FE simulations since the re-entrant honeycombs are
particularly typical cases for cracking at the strut-joints yielding typical oscil-
lating stress response. Moreover, a self-contact definition of the problem is
required to capture the collapse of the cell layers bringing further problematic
factors into the simulations.

One of the disadvantages of the studied auxetic structures was also the
overloading at the joints. To demonstrate a possible solution to this problem
while maintaining the general topology of the unit-cell, one of the structures
was modified to remove this limitation. This modification consisted of adding
additional material in the joints between the struts. This has been achieved
by modelling a sphere of variable radius (see Figure 3.26).

Figure 3.26: Unit-cell of a 3D re-entrant honeycomb with spheres generated at
the strut-joints.

Because direct 3D printing is used for the production of such structures,
this modification could be theoretically easily achieved in real geometries.
However, this type of treatment of the overloading also brings a trade-off in
terms of the simulation costs. Here, the relatively computationally cheap
beam-analogy has to be exchanged for a costly solid formulation with FE
mesh refined so that the sphere is represented with sufficient precision. The
problem of the computational costs would be in this case further manifested in
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the explicit dynamics simulations. The spheres generated at the strut-joints
solve the problem of the stress-overloading as shown in Figure 3.27.

Figure 3.27: Comparison of the stress concentrations inside one unit-cell of the
3D re-entrant structure: a beam model with a rectangular cross-section (left), a
beam model with a circular cross-section (middle), and an enhanced model with
solid spheres at the joints (right).

In the experimental study on the influence of the strut-joint reinforcement [9],
the enhanced 3D re-entrant honeycombs with differently sized spheres placed
in the intersections of the struts were studied. Three different sphere radii
were selected to control the joint stiffness with the upper limit of 1.125 mm,
a medium radius of 0.9375 mm, and the lower limit of 0.75 mm were used
to avoid contact between the neighbouring spheres, while a control group
of specimens was manufactured to obtain reference data. 3D printing using
PMMA in high-definition with a resolution 387×387×300 dpi was selected for
the production of the samples. An identical DIC strain-evaluation was utilised
and the obtained curves exhibited consistent behaviour among each group
(i.e., sphere radius) in terms of the stiffness in the linear part, the ultimate
compressive strength and strain at the first collapse. It was found out that the
stress at the collapse of the first-row unit-cells increases proportionally to the
stiffness of the joints, while the strain remains unchanged. The magnitude of
the auxetic effect also exhibits a marginal increase, when the spheres with the
lowest radius are used in the lattice. Then, with an increasing sphere radius,
the auxetic behaviour gradually becomes less significant. These results, thus,
show the promising possibility of optimising the cellular structures based on
a controlled stiffness in the strut joints. In further studies, this knowledge
will be employed for the optimisation of the auxetics using different materials
in the interconnection regions.
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Even more pronounced imperfections can be observed on the SEMmicrographs
of the SLS printed lattices as shown in Figure 3.28. The images show the
surface of the specimens in the region of the strut joint in the 2D re-entrant
honeycomb in the as-delivered state, i.e., without any surface treatment
such as grinding and polishing. The micrographs highlight similar problems
with the conformity of the prescribed geometry and the produced specimens
consisting of the apparent fillet radii in the strut joints. Furthermore, the
surface quality of the SLS printing procedure is significantly lower due to the
imperfect sintering of the powder particles resulting in significant roughness,
loose unmelted particles with single point-like connectivity to the surface,
and probable cracks in the microstructure.

Figure 3.28: SEM-SE micrographs of the SLS printed re-entrant lattices: 3D
assembly with the 3× 3 cells (left), 2D assembly with RVE dimensions (right).
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3.6 Summary - quasi-static regime

In the quasi-static part, uni-axial compressive experiments with all the PMMA
samples and two groups of SLS printed steel samples (having a different num-
ber of unit-cells in the lattice) were performed to obtain their stress-strain
response and the strain-dependent Poisson’s ratio characteristics under quasi-
static strain rate loading. Beam analogy FE simulations were developed and
validated against the PMMA results to investigate its suitability for the opti-
misation of the structures due to its easy parametrisation and relatively low
computational costs. Simultaneously, the influence of the strain formulation
and material model selection on the stiffness and the predicted Poisson’s ratio
was shown. The influence of the printing quality on the agreement between
the experimental and numerical results, together with the overloading in
the strut joints causing cracking in the PMMA samples were discussed and
a possible solution has been outlined. The SLS printed steel samples were
experimentally tested for a consecutive comparison with the dynamic response
of the lattices during the SHPB testing.
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Chapter 4

Dynamic response

4.1 Introduction

The chapter is concentrated on the assessment of the compressive behaviour
of the studied auxetic constructs under dynamic loading conditions using
experimental testing and numerical simulations. The experimental part
contains a description of the SHPB setup used for the testing, as well as
the instrumentation used for the optical deformation measurement for the
calculation of the strain-dependent Poisson’s ratio. This section also covers
the method for the calibration of the SHPB setup and strain-gauge data
processing together with the DIC of the displacement fields. Since the
numerical part is emphasised in this chapter according to the main goal of the
thesis, only a brief description of the experimental methods is provided and
further details can be found in the related papers [8,12] and dissertation [135].
The numerical part is introduced by a general description of the virtual
SHPB developed in LS-DYNA including the element type selection, hourglass
stabilisation methods, contact definitions, constitutive material models of
the bars and the specimen, and the computational costs of the simulations.
To further orient the reader, fundamentals of the numerical dynamics using
explicit time integration are provided in terms of the governing equations and
methods important for the precision and reliability of the simulations. Because
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extensive sensitivity analyses had to be performed during the development of
the virtual SHPB, the following subsections discuss the mesh development
of the bars in view of its frequency response, the mesh development for the
auxetic lattices, and calibration of the 316L sintered austenitic steel material
model. The results section is then divided into two subsections concentrated
on the experimental and numerical results, respectively, and the numerical
results also show a comparison with the experimental data. In each case, the
sections are divided into parts related to the stress-strain response of the
lattices and the analysis of the function of Poisson’s ratio.

4.2 Experimental methods

4.2.1 SHPB setup

A modified Kolsky SHPB setup was used in the study to evaluate the re-
sponse of the auxetic structures under dynamic conditions. The incident,
transmission, and striker bars had the same nominal diameter of 20 mm
with a solid cross-section and were made of a high-strength aluminium alloy
(EN-AW-7075) to match the mechanical impedance of the specimens as close
as possible. A gas-gun system with a 16 bar maximum pressure was used to
accelerate the striker bar. The gas-gun system consisted of a 20 l air reservoir,
a pressure gauge, a high-flow fast release solenoid valve (366531, Parker,
USA), a steel barrel with a maximal stroke of 500 mm, and other peripherals
(compressor unit, safety elements, piping etc.). The incident bar and the
transmission bar had the same length of 1600 mm and were supported by eight
low-friction polymer-liner slide bearings with an aluminium housing (Drylin
FJUM housing, IGUS, Germany). A striker bar with a length of 500 mm was
used for the generation of the incident wave. A fixed aluminium rod and a
hydraulic damper were used as the absorbers of the residual kinetic energy of
the experiment. The experiments were carried out without the momentum
trap as the damping elements were not in initial contact with the transmission
bar. The experimental setup was carefully adjusted to reduce the negative
effects of an improper geometrical alignment. Selected high precision extruded
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rods with a tight diameter tolerance were used for the experiments. The
surfaces of the bars were ground and polished. The position of the bars was
adjusted in the bearing housings to achieve a system axis straightness better
than 1 mm ·m−1 and the friction effects of the slider bearings were minimised.
The impact faces of the bars were finished using high-precision grinding and
polishing and were adjusted to be in full contact at the interfaces (striker to
incident bar interface and bars to specimen interface). The precision of the
contact was measured by a feeler gauge and the maximal distortion of the
in-plane contact was in the order of tens of micrometres. As the experiments
with the auxetic structures required a high impact velocity, it was necessary
to use a pulse shaper at the striker to the incident bar interface to reduce the
spurious effects of wave dispersion, while the wave shape was not significantly
influenced. This allowed for constant strain rates in the plateau region with
no wave interference in the bars. The overall dimensions of the steel samples
were chosen to fit in the SHPB setup and, based on the SHPB performance,
to reach the densification region in the impact experiment. The cross-section
to specimen height ratio was approximately 1 to minimise the frictional and
inertia effects in the SHPB experiment.

SHPB instrumentation

For the strain wave measurement during the test, the incident and transmission
bars of the SHPB setup were equipped with foil strain gauges (3/120 LY61,
HBM, Germany) having an active length of 3 mm. Foil strain gauges were
selected despite their lower sensitivity in comparison to semiconductor strain
gauges (approximately a hundred times lower), because of their linearity
and ability to measure higher strain values (50000µε compared to 2500µε
in the case of semiconductor gauges) expected during the experiments and
also for their higher service-life. A relatively small length of selected strain
gauges enabled the reliable strain measurement (integration of the strain
wave along the length of the strain gauge) concerning the wavelength of the
strain wave. Two strain gauges were applied on each measurement point
using a single component low-viscosity cyanoacrylate adhesive (Cyberbond
2003, Cyberbond Europe GmbH, Germany) in a Wheatstone half-bridge
arrangement to eliminate the potential influence of bending, and cured for
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at least 24 h. This solution enabled one to compensate for the possible
minor bending of the bars during the impact test and to amplify the output
signal two times in comparison with a quarter-bridge arrangement. One
measurement point in the middle of both the incident and transmission bars
was selected in the case of the 3× 3 unit-cell specimens. For the measurement
of the RVE sized samples, three measurement points were used on the incident
bar (one point in the middle of the bar and the other two points 200 mm
from each of the bars’ faces), while the transmission bar was equipped with
one measurement point located 200 mm from the impact face of the bar. To
maximise the signal-to-noise ratio, each strain gauge circuit was powered
using a battery pack (with an excitation voltage of 3 V) to decrease the noise
of the strain gauge signal to a minimum. Due to the small sensitivity of
the foil strain gauges, it was necessary to use an active differential low noise
amplifier (EL-LNA-2, Elsys AG, Switzerland) with a gain of 10 (bandwidth:
20 MHz) or 100 (bandwidth: 15 MHz). The amplified strain gauge signals
were digitised and recorded using a high-speed 16-bit digitiser (PCI-9826H,
ADLINK Technology, Inc., Taiwan) with a maximal 20 MHz sample rate. A
laser through-beam photoelectric sensor (FS/FE 10-RL-PS-E4, Sensopart,
Germany) was employed for the measurement triggering. Two pairs of these
sensors were installed on the barrel of the SHPB at a fixed distance from each
other. The laser beam interruption of the first pair (closer to the air tank) was
used to start the data acquisition (signal from strain gauges, image data from
the high-speed camera, etc.), while the interrupt signals from both sensors
enabled one to assess the speed of the projectile. The deformation process of
the samples was observed using a high-speed digital camera (FASTCAM SA5,
Photron, Japan) with a 20 mm square CMOS sensor. Due to the hardware
configuration of the camera, the value of the maximal frame rate depends on
the image resolution and vice versa. As a compromise between the frame rate
and the image resolution with respect to the DIC analysis, a 100 kfps and
320×192 px image resolution were selected for the imaging of the 3×3 unit-cell
samples and a 256× 168 px image resolution at approximately 130 kfps was
used in the case of the RVE sized samples. Because high-speed imaging is very
sensitive to the proper illumination of the scene, a pair of high intensity LED
lights was used for illumination of the sample during the deformation process.
The triggering of the camera was performed using the same photoelectric
sensor used for the triggering of the data acquisition system. Thus, the image
sequence was synchronised with the strain-gauge measurement. A custom
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virtual instrument was designed in LabView (National Instruments, USA) and
used to control the instruments, data acquisition, and source synchronisation
during the SHPB test. The overall view of the SHPB experimental setup is
shown in Figure 4.1.

Figure 4.1: Hopkinson bar experimental setup used for the dynamic compression
of the specimens. [14]

4.2.2 SHPB experiments

A prepared sample was placed into the SHPB setup between the incident bar
and the transmission bar. The faces of the bars were carefully aligned on the
faces of the sample to eliminate the distortion of the strain pulse. The ends
of both bars (adjacent to the sample) were covered by an artificial speckle
pattern to increase the contrast for the image tracking algorithm.

The impact velocity of the striker bar for the 3 × 3 unit-cell samples was
33 m · s−1, which resulted from an optimisation procedure to achieve the
maximal deformation in the specimen and a constant strain-rate during the
experiment. Based on the results from the calibration experiments that were
carried out prior to the experiments with the auxetics, a thick cellulose paper
(2× 0.25 mm) pulse shaper was placed on the impact face of the incident bar.
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To reach two different strain-rates in the RVE sized specimens, two impact
velocities of the striker bar were used. A lower striker impact velocity of
approximately 21 m · s−1 was used to compress the specimens at a strain-rate
of approximately 1500 s−1 (referred to as ’low-rate’ in the following text).
A higher striker impact velocity of approximately 43 m · s−1 was used to
compress the specimens at a strain-rate of approximately 3000 s−1 (referred
to as ’high-rate’ in the following text). The maximum reachable strain
in the SHPB method is dependent on the striker impact velocity and the
striker length. However, a longer striker bar could not be used in the low-
rate experiments due to the superposition of the forward-propagating and
backwards-propagating waves in the strain-gauge signals. Depending on the
type of the auxetic structure, the specimens in the low-rate experiments were
compressed to a maximum overall strain of approximately 25− 30 %. The
specimens in the experiments conducted at the high-rate reached a significantly
higher overall strain of approximately 40− 50 %. For the minimisation of the
wave dispersion effects, cylindrical soft copper pulse-shapers were placed on
the incident bar’s impact face in this set of experiments. Depending on the
type of auxetic structure and strain-rate, the diameter and the thickness of
the pulse-shapers varied between 7− 8 mm and 0.5− 1 mm, respectively. The
pulse-shapers were very effective in filtering out the high frequencies causing
the Pochhammer-Chree oscillations and in the reduction of the ramp-in effect
during the initial phase of the wave impact on the specimen. A sufficient
quality of the dynamic equilibrium was reached in all the experiments at all
strain-rates. Using the pulse-shaping technique, it was possible to maintain a
constant strain-rate during the impact up to the densification of the auxetic
structure. All the methods used for the evaluation of the stress-strain curves
exhibited good convergence after the initial phase of the impact, representing
a good quality dynamic equilibrium during the experiment. The strain-rate-
strain curve showed constant values of the strain-rate up to the densification
of the structures. Approximately 35 images of the deforming specimen during
the first deformation pulse were captured using the high-speed camera and
processed using the DIC technique.
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SHPB Data Processing

As the mechanical impedance of the bars and specimen was significantly
different, a number of calibration and correction methods was utilised to
evaluate the results. A series of calibration experiments and void tests were
carried out at different impact velocities to obtain the correction data. The
data from void tests were used to evaluate the actual mechanical properties
of the aluminium bars and to correct the signals from the strain-gauges. Two
types of void tests were performed: an ’incident bar apart’ void test and
a ’bars together’ void test. The ’incident bar apart’ void test was carried
out to analyse the impact velocity, the elastic properties of the bar, the
wave propagation velocity, the damping characteristics, the wave shape, the
strain-gauge position error, and the linearity of the incident bar. The ’bars
together’ void test was carried out to analyse the same properties valid for
the transmission bar, the quality of the contact between the bars, the wave
transfer parameters, the strain-gauge signals equilibrium, and the friction
losses of the system. All the evaluated parameters were consistent and the
experimental setup was evaluated as being suitable for the measurements of
auxetic structures with adequate precision. Void tests with a 50 mm short
striker bar and no pulse shaper were performed to record the wave dispersion
effects in the bars. The data were used to calculate the experimentally
determined wave transfer function and wave propagation coefficient in the
frequency domain, according to Bacon’s method and its modification [136,137].
The wave propagation coefficient was calculated separately for the incident
and transmission bars using the ’bars together’ and ’incident bar apart’ void
tests. Fourier transforms of the first measured pulse in the bar ε̃1 (ω) and
its reflection ε̃2 (ω) on the free end of the bar were used to calculate the
wave transfer function H∗ (ω) of the system in the frequency domain. The
propagation coefficient was obtained using the equation

H∗ (ω) = − ε̃2 (ω)
ε̃1 (ω) = exp−γ(ω)2d (4.1)

where γ (ω) is the propagation coefficient and d is the distance between
the strain-gauge and the free end of the bar [138]. The recorded incident,
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transmission, and reflected strain-gauge signals measured in the centre of the
bars were shifted to the specimen boundary using the propagation coefficient.
The aforementioned geometrical calibration, pulse-shaping technique, and
correction methods ensured that the dynamic equilibrium was achieved in
the specimen and the SHPB experiments were valid. Thus, the sample was
undergoing a homogeneous deformation after the initial ramp-in effect of the
incident pulse.

Digital Image Correlation of SHPB measurements

The deformation of the samples was recorded using a high-speed camera. The
camera was triggered by the interruption of a laser beam of a photoelectric
sensor installed on the barrel. Images were taken at a frame rate of 100 kfps
with a recorded image size of 320 × 192 px. The total number of recorded
frames per experiment showing the whole deformation process of the samples
was approximately 30. The raw data from the high-speed camera were
exported to a PNG image file format with lossless compression and the
identical region of interest was cropped from the images [139]. To verify
that the compression level is only a trade-off between the resulting file
size and the encoding/decoding speed and does not affect the image data
quality, the converted images were subtracted from the original images and
the zero matrices were obtained. From the captured image sequence, 10
frames that captured the first part of the deformation process (the first image
represented the undeformed state and the next nine images captured the
deformation process up to approximately 20 % deformation) were selected.
These images were used in the DIC analysis using the Ncorr open-source
2D-DIC tool for Matlab (MathWorks, USA). To ensure the same image
processing procedure was applied to all the measurements, no histogram
equalisation was performed, and the raw data were used in the correlation
procedure. For all the measurements, every parameter set in the DIC scheme,
such as the correlation criteria, subpixel registration algorithm, interpolation
scheme, initial guess, and convergence conditions (the number of iterations
and PCG error criterion) was kept identical. Because the basic principles of
the DIC algorithm have been fully described in the literature, the algorithm
is described only briefly here for clarity [140, 141]. DIC generally employs
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a zero normalised sum-of-squares difference (ZNSSD) criterion to compute
the similarity in the pixel intensity between the reference and deformed
image subsets [142]. In this manner, displacements with a pixel accuracy
are obtained. Then, to obtain deformation with sub-pixel accuracy, the
above-mentioned ZNSSD criterion is iteratively optimised using the classic
Newton-Raphson iterative algorithm. From the displacement fields, the full-
field strains were calculated as Green-Lagrange strain tensors. This involves
differentiation of the displacements fields, which is sensitive to noise and one
must be careful that the displacement fields are not excessively noisy prior
to the differentiation. Attention was paid to keep the smoothing window
as low as possible not to oversmooth the resulting strain fields. In all the
experiments, the smoothing window was 15 pixels. The set of parameters
used for the calculation of the results (displacements, strains, Poisson’s ratios)
were kept constant for all the experiments performed. The only smoothing
procedure used in the DIC was the initial displacement smoothing using a
2× 2 pixel Gaussian kernel. Since the position and settings for the camera
used in the experiments did not change, all the experiments were processed
using the same Matlab scripts. This enabled an easy and reliable result
evaluation and comparison.

4.3 Numerical methods

To be able to calibrate the numerical simulations and to compare the numerical
results with the experimental data, the approach based on the development
of a virtual SHPB apparatus used in the experiments was selected. For this
reason, a fully three-dimensional model of the SHPB apparatus was developed
in LS-DYNA. The experimental arrangement (i.e., the striker, incident, and
transmission bars with the specimen placed in contact with both the incident
and transmission bars) and the dimensions of the individual components was
considered including the geometry of the specimens directly derived from
the parametric models used for the SLS production of the samples. Any
of the possible analogies for the representation of the auxetic lattices (i.e.,
beam analogy, solid representation with the homogenised material model,
etc.) was not used due to the need to include all the potential phenomena
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in the simulations to have the numerical and experimental results directly
comparable in terms of the stress wave propagation, the resulting overall
stress-strain diagrams of the lattices, the strain-dependent Poisson’s ratio,
and the influence of the strain-rate on these quantities. Obviously, such an
approach effectively prevented the axisymmetric formulation of the problems
with the implications of the computational costs as the topology of the lattices
does not allow the dimensional reduction of the problem. The arrangement
of the virtual SHPB apparatus is depicted in Figure 4.2.

Figure 4.2: Principle of the virtual SHPB.

In the simulations, the initial conditions, in terms of the translational velocity
of the striker bar, were imposed with the velocity value measured in the
respective SHPB experiment. No body forces nor boundary conditions
reflecting the slide bearings carrying the bars of the SHPB apparatus were
considered. The geometry of the bars and the auxetic lattices was considered
to be ideal, without imperfections in plane-parallelism, surface roughness,
defects, or deviations from the geometry prescribed for the SLS testing. The
mechanical results from the numerical simulations were extracted by defining
the virtual strain gauges on the same location, where the measurement points
were established in the SHPB experiments. At the virtual strain-gauges, the
strain versus time data was acquired and used in the further post-processing
using the same mathematical methods utilised for the experimental evaluation.
The geometrical characteristics of the studied auxetic lattices were extracted
at the locations equivalent to the full-field DIC evaluation of the high-speed
camera data and from the nodal coordinates, the strain-dependent function
of Poisson’s ratio was established. The bars were represented by under-
integrated single-point constant-stress hexahedral elements (ELFORM 1). For
the auxetic lattices, 10-noded composite tetrahedral elements (ELFORM 17)
were selected.
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The FE representation of the bars was selected based on a parametric sen-
sitivity study, where the virtual void-test without a pulse-shaper (i.e., the
impact of the striker bar on the incident bar without any other components)
was used to reveal an optimal set of parameters representing the experimen-
tally observed stress wave propagation. In the sensitivity studies, the mesh
generating pre-processors and algorithms, element size, element formulation,
hourglass control algorithm, and time step size were varied. The stabil-
ity of the simulations together with the shape of strain waves propagating
through the incident bar were evaluated. Taking the computational costs
into account, the best performing set of parameters was achieved for the
ELFORM 1 element formulation with the element edge length of 5 mm in the
direction of the SHPB longitudinal axis. Further considerations on the bar
FE mesh development with respect to the meshing algorithms and frequency
characteristics are included in Section 4.3.2.

Analogously, a parametric sensitivity study was performed to identify the
most suitable representation of the auxetic lattices. In this case, the studies
were performed with the full virtual SHPB apparatus significantly increasing
the computational costs of the calculations. Because of the topology and
design of the strut joints, only tetrahedral meshes were considered due to
sharp angles present in the geometry of the lattices. Again, the element size,
element formulation, hourglass control algorithm, and time step size were
varied in the parametric study. From the acquired results, the 10-noded
composite tetrahedral element formulation was selected as the best option for
an accurate representation of the deformation response of the auxetic lattices.
Further information on the FE mesh formulation and influence of the mesh
density is included in Section 4.3.3.

For the hourglass mode stabilisation, all the solid control methods were
analysed. Since the deformation of the bars is purely elastic and a constant-
stress element formulation was used, no influence of the invoked hourglass
control algorithm on the results was identified. As a result, when a simple
type 1 hourglass stabilisation is sufficient thanks to the regular mesh and offers
advantages in terms of the computational costs as the type 1 hourglass viscosity
requires approximately 130 additions or multiplications per hexahedron,
compared to 620 and 680 for the algorithms of Flanagan-Belytschko and
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Wilkins. Since the fully integrated tetrahedral element formulation was used
for auxetic lattices, it was not necessary to treat the hourglass modes, which
arises from the definition of this effect. Still, every simulation was checked
for an energy balance and the hourglass energy was included in the global
energy balance due to possible volumetric locking of the elements on the
specimen-bar boundary in the densification region of the specimen response.

A sensitivity study on the influence of the numerical damping was performed
using simulated void tests. In the study, both the global and the interval
damping were evaluated showing that the global damping enables one to filter
out the high frequencies in the stress waves, while preserving the fundamental
characteristics of the modelled physical process, such as the speed of the
wave propagation, etc. However, it is difficult to transfer the results of the
sensitivity study to simulations of the auxetic lattices due to the inability to
primarily verify the frequency characteristics from the real experiments. For
this reason, the numerical damping was omitted in the simulations.

The automatic two-way surface-to-surface contact type was used for all the
interfaces between the SHPB components and the specimen, i.e., the striker-
incident bar, incident bar - specimen, and specimen-transmission bar contacts
were established. This approach was selected even though it is a rather
expensive contact-interface definition in terms of the computational costs, but
the reason for such a choice was the contact-interface damping performance
superior to other contact definitions (particularly the node-to-surface contact),
which proved to be crucial due to the oscillations in the rising-edge of the
incident stress wave occurring when no pulse-shaping is used. Due to the
relatively low mechanical impedance of the auxetic lattices, it was necessary
to use the ’soft’ option for the bar-specimen interfaces. In this formulation,
the contact stiffness is based on the stability considerations taking the time
step size into account, as the contact is similar in this formulation to a
group of spring-mass systems, each with a Courant time step matched to the
actual time step used in the simulation. A single-surface self contact was
defined for the auxetic lattices, which was required by the large compressive
deformations induced by the stress waves at all strain-rates. A friction-
less interface was defined on the striker-incident bar interface, whereas the
static coefficient of friction of 0.61 and sliding coefficient of friction of 0.8
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was used on the incident bar - specimen and specimen - transmission bar
interfaces according to the values reported for aluminium on steel frictional
characteristics. On a single-surface self-contact of the auxetic lattices, the
static coefficient of friction of 0.65 and the sliding coefficient of friction of
0.42 was used according to values reported for steel on steel friction [143],
which improved the simulated deformation behaviour of all the lattices in the
plateau-densification transition.

The material model MAT 1 - ELASTIC was selected for the bars of the
virtual SHPB based on a fundamental assumption that the bars have to
be subjected to elastic deformation only. Here, the MAT 1 not only fulfils
the physics of SHPB testing, but it is also the most efficient formulation.
The constants of the model were calibrated from the void-tests with the
SHPB apparatus yielding a mass density of 2.75 kg · cm−3 and a Young’s
modulus of 70 GPa. The Poisson’s ratio used in the simulations was 0.3. The
material model MAT 12 - ISOTROPIC_ELASTIC_PLASTIC was used for
the modelling of the auxetic lattices. The selection of this material model
was primarily motivated by the problems encountered with the SLS printing
of the powdered austenitic steel and the inability to properly evaluate its
characteristics either on a micro- or macroscopic level. Furthermore, this
material model is the most effective material model from the computational
point of view as only one history variable εP

eff is stored. The details regarding
the development of the 316L stainless steel material model are provided in
Section 4.3.4.

The simulations were performed using a high-performance workstation equipped
with a 16-thread CPU Xeon-W 2145 (Intel, USA). The typical CPU time
needed for simulation of the SHPB experiment with a duration of 1.5 ms
and the 3× 3 auxetic lattice was approximately 6.5 hours using 12 threads,
whereas the same simulation of the RVE sized lattice approximately required
20.5 hours of CPU time for the same number of threads. Regarding the
distribution of the CPU time, 40 % of the resources was used for the element
processing procedures, while 55 % used by the the contact algorithm, where
20 % was used by the striker-incident bar contact and incident bar to the speci-
men contact, while the remaining time was used by the specimen-transmission
bar contact.
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4.3.1 Explicit dynamics

The following paragraphs briefly review some important theoretical assump-
tions of the finite element explicit dynamics relevant for the FEA of the
auxetic lattices. The text is adopted primarily from the LS-DYNA manual
Vol. IV - Theory so that the specifics of the implementation are covered in
the provided theoretical fundamentals.

Governing equations - structural dynamics

The system of governing equations for a transient dynamic problem at time t
is generally written as

Mü (t) + Cu̇ (t) + fint (u, u̇, ε, σ, t, . . .) = fext (t) , (4.2)

where M is the mass matrix, C is the damping matrix , fint is the vector of
internal forces, fext is the vector of external forces, u are the displacements,
u̇ are the velocities, ü are the accelerations, and ε and σ are the strain and
stress fields.

For the linear problem, where fint = Ku (t), Equation (4.2) becomes

Mü (t) + Cu̇ (t) + Ku (t) = fext (t) , (4.3)

where K is the stiffness matrix. Even in the case of linear elasticity, i.e.,
if the relationship between the stress and strain tensor is linear, we obtain
in the strong form a system of partial differential equations that does not
have a general analytic solution except for the case of a very simple geometry
case and linear elasticity. Here, the difficulties primarily arise from the fact
that the solution must be as smooth as required by the strong form of the
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differential equations. For instance, if the investigated system arises from a
geometrical body with a low-order of continuity or the multi-material object
is considered, the discontinuous functions are substituted into the equations
of motion with the resulting problem of differentiability.

Instead, the original dynamic equation of motion may be reformulated and
solved by a numerical integration scheme in the so called weak (weighted-
integral) form. Here, the geometric discretisation of the problem is followed
by a time discretisation such that a finite difference approximation is used
to replace the time derivatives, i.e., the velocities and accelerations are
approximated by differences of displacements at particular instants of time.
Hence, for a time step ∆t = tk+1 − tk,

Müt+∆t + Cu̇t+∆t + Kut+∆t = fext,t+∆t, (4.4)

u (t0) = u0, (4.5)

u̇ (t0) = u̇0. (4.6)

Then, various direct integration methods, where the equations are solved in
their original form, may be used to solve the problem. Depending on the type
of variables on the right side of the discretised equations of motion, these
methods can be categorised as explicit or implicit. The implicit methods have
the form

ut+∆t = f (ut, u̇t+∆t, üt+∆t, . . .) (4.7)

and the computation of ut+∆t requires knowledge of its unknown time deriva-
tives. In contrast, the explicit methods have the form

ut+∆t = f (ut, u̇t, üt,ut,ut−∆t, . . .) (4.8)
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and the determination of ut+∆t can be performed solely on the basis of
the historical information comprising the displacements and derivatives of
displacements.

Typical direct integration methods are the Central Difference Method and
the Newmark method. Using the Central Difference Method, the velocities
and accelerations are approximated as

üt = 1
∆t2 (ut+∆t − 2ut + ut−∆t) , (4.9)

u̇t = 1
2∆t (ut+∆t − ut−∆t) . (4.10)

If we consider the the equation of motion at time t, i.e.,

Müt + Cu̇t + Kut = fext,t, (4.11)

the displacement solution for the time t + ∆t is obtained by substituting
Equations (4.9) and (4.10) yielding

[ 1
∆t2 M + 1

2∆tC
]

ut+∆t =

= Ft −
[
K− 2

∆t2 M
]

ut −
[ 1

∆t2 M− 1
2∆tC

]
ut−∆t, (4.12)

from which it is possible to solve for ut+∆t in an explicit time integration
procedure. The solution is, thus, based on the equilibrium conditions at time
t and such a integration scheme does not require a factorisation of the stiffness
matrix in the step-by-step solution.

Using the Newmark method with a time step ∆t = tk+1−tk, the discretisation
of Equations (4.4) - (4.6) is performed using interpolation equations
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u̇t+∆t = u̇t + ∆t [(1− γ) üt + γüt+∆t] , (4.13)

ut+∆t = ut + ∆tu̇t + ∆t2

2 [(1− 2β) üt + 2βüt+∆t] , (4.14)

where β and γ are the parameters of the time integration algorithm that act as
weights for calculating the acceleration approximation. It can be noted that
upon setting β = 0, the Newmark algorithm becomes explicit and equivalent
to the Central Difference Method.

Now, let us reformulate the problem in a different notation using the num-
bering of time steps such that the difference between the time steps k and
k + 1 is tk+1 − tk = t+ ∆t. For a linear problem, it is possible to formulate
the dynamic equilibrium at each time step k + 1 using the equation

Mük+1 + C
(

˙̃uk+1 + ük+1γ∆t
)

+ K
(
ũk+1 + ük+1β∆t2

)
= fext,k+1. (4.15)

The predictors ũk+1 and ˙̃uk+1 depend on the solutions in the previous time
step k

ũk+1 = uk + u̇k∆t+ ük

(1
2 − β

)
∆t2, (4.16)

˙̃uk+1 = u̇k + ük (1− γ) ∆t, (4.17)

while the solution in the current time step k + 1 is determined using the
correctors uk+1 and u̇k+1 as

uk+1 = ũk+1 + ük+1β∆t2, (4.18)

u̇k+1 = ˙̃uk+1 + ük+1γ∆t. (4.19)
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If the problem is nonlinear, then we can reformulate it in a general form using

Müt + r (ut, u̇t) = fext,t, (4.20)

u (t0) = u0, (4.21)

u̇ (t0) = u̇0, (4.22)

where r is the restoring force. Discretization using a time step ∆t = tk+1− tk
yields

Mük+1 + r (uk+1, u̇k+1) = fext,k+1, (4.23)

u (t0) = u0, (4.24)

u̇ (t0) = u̇0. (4.25)

A nonlinear problem is solved at each time step k + 1 from the equation

Mük+1 + r
(
ũk+1 + ük+1β∆t2, ˙̃uk+1 + ük+1γ∆t

)
= fext,k+1, (4.26)

with the predictors defined using Equations (4.16) - (4.17) and correctors
defined using Equations (4.18) - (4.19).

Implementation can be performed using the Newton-Raphson iteration method
(see the corresponding paragraph at the end of Section 4.3.1). After that, the
restoring force matrix itself is in the solution assembled in a loop over the
elements and the update step in each iteration becomes for the explicit time
integration

∆ük+1 ← (M + Cγ∆t)−1 ε, (4.27)
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where the term (M + Cγ∆t) is a matrix to be inverted. Since this matrix
remains constant during the iterations, its factorization can be performed
once and then followed only by backward substitutions. If we further consider
M to be lumped and C to be either lumped or zero, the solution of the
system is trivial, which is true for all the explicit time integration schemes.

To summarise the differences between the explicit and implicit time-integration,
the explicit scheme does not require inversion of a tangent stiffness matrix
at each time step, but the conditional stability limits the time stepping to
relatively small steps only. Thus, the explicit time-integration is a preferred
method for analysis of short-duration problems involving high-frequencies,
such as the wave propagation problems investigated in this work.

Newton-Raphson iterations. Newton-Raphson iterative approach, which
is one of the most widely used methods for root finding that can be easily
generalized to the problem of finding solutions of a system of non-linear
equations. To demonstrate its principle on a function of one variable, we
rewrite the function f (x) using a Taylor series expansion in (x− x0)

f (x) = f (x0) + f (x0) (x− x0) + 1
2f
′ (x0) (x− x0)2 + . . . = 0, (4.28)

where x0 is an initial value referred to as the initial guess for the root.
By truncating the series at the second term, we obtain the Newton-Raphson
iteration formula for getting an estimate of the true root as

x1 = x0 −
f (x0)
f ′ (x0) . (4.29)

Thus, the tangent to the function f (x) at x = x0 is found and then extrapo-
lated it to intersect the x axis to get x1. This point of intersection is taken
as the new approximation to the root and the procedure is repeated until a
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convergence condition is satisfied, i.e., given the value of x = xi at the end of
the i-th iteration, we obtain xi+1 from

xi+1 = xi −
f (xi)
f ′ (xi)

. (4.30)

State-space formulation. The order of the investigated mechanical system
with its second order equation of motion (4.3) can be reduced using a state-
space form of the problem by defining

ż (t) = A∗z (t) + B∗f (t) , ż (t) =

x
ẋ

 , (4.31)

where the matrices A∗ and B∗ are

A∗ =

 0 I
−M−1K −M−1C

 , B∗ =

 0
−M−1

 , (4.32)

ż (t) is the state vector and A∗ is the behaviour matrix of the state-space
formulation. For a nonlinear case, it is possible to write

Mẋ + R (x) = F (t) , (4.33)

ẋ = M−1 [F (t)−R (x)] = H (x, t) , (4.34)

where

M =


I 0 0
0 m 0
0 0 I

 , x =


u
u̇
s

 , R =


−u̇

r (u, u̇, s)
g (u, u̇, s)

 , F =


0

f (t)
0

 , (4.35)
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r is the nonlinear restoring force vector that depends on displacement u,
velocity u̇ and additional state variables s, while g is a nonlinear function
that determines the evolution of the additional state variables s. Thus, the
system of second order ordinary differential equations has been converted
to a first order system and an arbitrary integration method can be used to
obtain its approximate solution. If we assume

dx
dt

= H (x (t) , t) , x (t0) = 0, (4.36)

explicit expression

xk+1 = xk + H (xk, tk) ∆t (4.37)

can be obtained for the integration time step ∆t using the forward Euler
method from the truncated Taylor expansion of x (tk+∆t).

Governing equations - structural dynamics in FEA

For the following considerations, the general problem of structural dynamics
and weak formulation of equilibrium equation is recalled in order to introduce
mathematical background and notation of the FEA implementation relevant
for this thesis.

Let a point in b initially at Xα (α = 1, 2, 3) in a fixed rectangular Cartesian
coordinate system move to point xi (i = 1, 2, 3) in the same coordinate system.
If a Lagrangian formulation is considered, the deformation can be expressed
in terms of the convected coordinates Xα and time t as

xi = xi (Xα, t) (4.38)
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At time t = 0, the initial conditions are

xi (Xα, 0) = Xi, (4.39)

ẋi (Xα, 0) = Vi (X) , (4.40)

where V is the initial velocity.

The process of calculation comprises finding a solution for the momentum
equation

σij,j + ρfi = ρẍi (4.41)

satisfying the traction boundary conditions

σijnj = ti (t) (4.42)

on boundary ∂b1, the displacement boundary conditions

xi (Xα, t) = Di (t) (4.43)

on boundary ∂b2, and the contact discontinuity condition

(
σ+

ij − σ
−
ij

)
nj = 0 (4.44)

along an interior boundary ∂b3, when x+
i = x−i , while σ

+
ij and σ−ij denote the

Cauchy stress in the direction of the inward and outward pointing normal
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on the interior boundary. Here, ρ is the current density, f is the body force
density, and ẍ is the acceleration. The comma on σij,j denotes the covariant
differentiation, and nj is a unit outward normal to a boundary element on ∂b.

The mass conservation can be written as

ρJ = ρ0, (4.45)

where J is the the relative volume calculated as a determinant of the defor-
mation gradient matrix Fij,

Fij = ∂xi
∂Xj

(4.46)

and ρ0 is the reference density.

The energy equation

Ė = V sijε̇ij − (p+ q) V̇ (4.47)

is integrated in time and is used for evaluating the equations of state and
to track the global energy balance. Here, sij and p represent the deviatoric
stresses and pressure according to

sij = σij + (p+ q) δij, (4.48)

p = −1
3σijδij − q, (4.49)

where q is the bulk viscosity, δij is the Kronecker delta, and ε̇ij is the strain
rate tensor.
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It is possible to write

∫
υ

(ρẍi − σij,j − ρf) δxidυ+
∫
∂b1

(σijnj − ti) δxids+
∫
∂b3

(
σ+

ij − σ
−
ij

)
njδxids = 0

(4.50)

where the integrations are over the current geometry and δxi satisfies all the
boundary conditions on ∂b2. By applying the divergence theorem and noting
that

(σijδxi),j − σij,jδxi = σijδxi,j, (4.51)

weak form of the equilibrium equation can be obtained such that

δΠ =
∫
υ
ρẍiδxidυ +

∫
υ
σijδxi,jdυ −

∫
υ
ρfiδxidυ −

∫
∂b1

tiδxids = 0, (4.52)

which is the formulation of the principle of virtual work.

A mesh of finite elements interconnected at the nodal points is superimposed
on the reference configuration and the particles are tracked through time,
which yields

xi (Xα, t) = xi (Xα (ξ, η, ξ) , t) =
k∑
j=1

Nj (ξ, η, ξ)xj
i (t) , (4.53)

where Nj are the shape functions in the natural coordinates (ξ, η, ξ), k is the
number of nodal points defining the element, and xj

i is the nodal coordinate
of the j-th node in the i-th direction.
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The condition δπ = 0 holds for all variations δxi and, in particular, holds for
variations along the shape functions. In each of the three Cartesian directions
upon setting the variation to one of the shape functions, the weak form
reduces to a necessary (but not sufficient) condition that must be satisfied by
any solution so that the number of equations = 3× number of nodes.

Since the body is discretised into n elements, it is possible to write the
integral (4.52) into n terms using the spatial additivity of integration

δπ =
n∑

m=1
δπm = 0. (4.54)

By defining the contribution from each element and assembling the element
contributions back into a system of equations leads to

n∑
m=1

{∫
υm
ρẍi (ei ⊗ νm) dυ +

∫
υm
σm

ij

(
ei ⊗ νm

,j

)
dυ

−
∫
υm
ρfi (ei ⊗ νm) dυ −

∫
∂b1
⋂
∂υm

ti (ei ⊗ νm) ds
}

= 0, (4.55)

in which

υm =
k∑
i=1

Nienm (i)′ , (4.56)

where nm (i) is the global node number. By applying the approximation
scheme of (4.53) to the dependent variables and substituting into (4.55)
yields
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n∑
m=1

{∫
υm
ρNT

mNmadυ +
∫
υm

BT
mσdυ −

∫
υm
ρNT

mbdυ −
∫
∂b1

NT
mtds

}
= 0,

(4.57)

where N is an interpolation matrix, σ is the stress vector, B is the strain-
displacement matrix, a is the nodal acceleration vector, b is the body force
load vector, and t is the applied traction load.

Time step calculation

For solid elements, a critical time step is given by

∆te = Le

Q2 + (Q2 + c2)1/2 ≈
Le
c
, (4.58)

where Le is the characteristic element edge length and Q is a function of the
bulk viscosity coefficients

Q =

C1c+ C0Le| ˙εkk| for ˙εkk ≤ 0

0 1 for ˙εkk > 0

The term c is the adiabatic speed of sound that can be derived from the
material properties according to

c =
[ 4G

3ρ0
+
(
∂p

∂ρ

)
s

]1/2
, (4.59)

where ρ is the specific mass density.
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If

(
∂p

∂ρ

)
s

=
(
∂p

∂ρ

)
U

+
(
∂p

∂U

)
ρ

(
∂U

∂ρ

)
s

(4.60)

and if along an isentrope the incremental energy U in the units of pressure is
the product of pressure p and the incremental relative volume dv

dU = −pdv, (4.61)

it is possible to obtain

c =
[( 4G

3ρ0

)
U

+ pv2

ρ0

(
∂p

∂U

)
ρ

]1/2

. (4.62)

For elastic materials with a constant bulk modulus, the adiabatic speed of
sound is given by

c =
√

E (1− ν)
(1 + ν) (1− 2ν) % =

√√√√√K + 4
3G

%
. (4.63)

As a result, it can be stated that the time step size ∆te is limited by a single
(smallest) element in the finite element mesh. To decrease the computational
costs of the simulations, a mixed time integration based on subcycling routines
is implemented in LS-DYNA. The elements are sorted based on their time step
size into groups, where the time step size is a multiple of the smallest element
time step size 2 (n− 1) ∆t for integer values of n ≥ 1. The routine is based
on the linear nodal interpolation partition-subcycling algorithm [144,145]. In
the implementation, the grouped elements are subjected to a vectorisation
process so that constant length vectors are preferably used even at the cost
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of updating the large elements incrementally with the small time step size as
this process has been proved overall less computationally expensive, while
the stability is preserved.

An aspect of the numerical simulations closely related to the time step size
is the Courant number arising from the Courant–Friedrichs–Lewy (CFL)
condition [146]. It is a necessary convergence condition for the numerical
solution of partial differential equations stating that the time step of the
simulations has to be equal or less than a certain value to yield correct
results. Effectively, the numerical domain of dependence of any point in
space and time (as determined by the initial conditions and the parameters
of the approximation scheme) must then include the analytical domain of
dependence (wherein the initial conditions have an effect on the exact value
of the solution at that point) to assure that the scheme can access the
information required to form the solution. As such, the CFL condition relates
the length of the time step to a function of the interval lengths of each spatial
coordinate and of the maximum speed that the information can travel in the
physical space. We can write, for the general n-dimensional case, that

C = ∆t
(

n∑
i=1

vxi

∆xi

)
≤ Cmax, (4.64)

where C is the dimensionless Courant number, vxi is the magnitude of the
velocity in the i-th direction, ∆t is the time step, and ∆xi is the length interval
in the i-th direction. The interval length ∆xi is allowed to be different for
each spatial variable ∆xi, i ∈ {1, . . . , n}. The value of Cmax then depends
on the method used to solve the discretised equations and particularly the
integration scheme, where Cmax = 1 is typically considered in the explicit
time integration.

Hourglass control

One of the aspects that has to be carefully treated in the explicit FEA is
the hourglass effect originating from the zero-energy modes of the elements.
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These undesirable hourglass modes tend to have periods typically significantly
shorter than the periods of the structural response and are often observed
to be oscillatory. However, hourglass modes that have periods comparable
to the structural response may be a stable kinematic component of the
global deformation modes and must be admissible. One way of resisting the
undesirable hourglass effect is with a viscous damping or small elastic stiffness
capable of stopping the formation of the anomalous modes, but having a
negligible effect on the stable global modes. Since the hourglass deformation
modes are orthogonal to the strain calculations, work done by the hourglass
resistance is neglected in the energy equation. Even though this may lead to
a small loss of energy, the invoked control of the hourglass should always be
used for the under integrated (i.e., one-point) solid elements. Simultaneously,
the energy dissipated by the hourglass forces reacting against the formations
of the hourglass modes has to be tracked and evaluated against the energy
balance in the simulations.

Several options based on different formulations or implementations are avail-
able in the LS-DYNA database. The type 1 hourglass control is based on an
equation defining the hourglass resisting force vectors

fk
iα = ahhiαΓαk, (4.65)

where hiα is the element velocity field, α denotes indices of the hourglass base
vectors of the possible zero-energy modes according to element type and

ah = QHGρv
dfrac23
e

c

4 , (4.66)

where ve is the element volume, c is the material speed of sound, and QHG is
a defined constant. Here, the resisting forces are not orthogonal to the linear
velocity field when the elements are not in the shape of parallelepipeds. As a
consequence, such elements can generate hourglass energy with a constant
strain field or rigid body rotation.
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To overcome this effect, an hourglass control that is orthogonal to all modes
except the zero energy hourglass modes was implemented [147]. Instead of
resisting the components of the bilinear velocity field that are orthogonal to
the strain calculation, the components of the velocity field that are not part
of a fully linear field are being resisted. In the hourglass velocity field, the
geometry-dependent hourglass shape vectors that are orthogonal to the fully
linear velocity field and the rigid body field are used to resist the hourglass
velocity deformations. Hourglass shape vectors can be defined with the use
of the base vectors as

γαk = Γαk − φk,i

8∑
n=1

xn
i Γαk (4.67)

yielding

fk
iα = ahgiαγαk, (4.68)

which is a formulation of the type 2 hourglass control, where giα =
∑8
n=1 ẋ

k
i γαk.

The type 3 hourglass control is identical to type 2, except that the shape
function derivatives are evaluated at the centroid of the element rather than at
the origin of the referential coordinate system and the exact element volume
is produced.

The remaining hourglass control types calculate the hourglass forces propor-
tional to total hourglass deformation rather than the hourglass viscosity. A
stiffness form of hourglass control allows the elements to spring back and will
absorb less energy than the viscous forms. Type 4 and 5 hourglass control
are similar to type 2 and 3, except that the hourglass stiffness is evaluated
rather than the viscosity. The hourglass rates are multiplied by the solution
time step to produce increments of the hourglass deformation. The hourglass
stiffness is scaled by the element maximum frequency so that stability can
be maintained as long as the hourglass scale factor ah is sufficiently small.
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The type 6 hourglass control improves the type 5 by scaling the stiffness so
that the hourglass forces match those generated by a fully integrated element
control by doing a closed-form integration over the element volume.

Prescribed velocity

To introduce the process of establishing the initial velocity condition (i.e.,
the initial condition prescribed to the striker bar in the simulations), it
is convenient to define the imposing displacement constraints. Here, the
translational and rotational boundary constraints are imposed either globally
or locally by setting the constrained acceleration components to zero. If
nodal single point constraints are employed, the constraints are imposed in
a local system. Let the local system be defined by specifying a vector u1

in the direction of the local x-axis x1 and a local in-plane vector v1. After
normalisation of u1, the local xl, yl, and zl axes are given by

xl = ul
‖ul‖

, (4.69)

zl = xl × vl
‖xl × vl‖

, (4.70)

yl = zl × vl. (4.71)

To transform the acceleration components into the local system, it is possible
to write a transformation matrix

q =


xT

l

yT
l

zT
l

 (4.72)

and the transformation of the nodal translational and rotational acceleration
vectors aI, ẇl for node I to the local system as
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aI1 = qaI, (4.73)

ẇl = qȧI. (4.74)

The constrained components are then zeroed. In the next step, the modified
vectors are transformed back to the global system such that

aI1 = qTaI1 , (4.75)

ẇl = qTȧI1 . (4.76)

Similarly, the prescribed nodal velocities are treated in a nearly identical
way. Here, the velocities are prescribed at time tn+1/2 after imposing the zero
displacement constraints. The acceleration against the time curve is integrated
or the displacement against the time curve is differentiated to generate the
velocity against the time curve. The prescribed nodal components are then
set. Similarly, any prescribed displacements or accelerations are imposed by
the transformation into velocity components.

Contacts

Among the established approaches for treating contact problems, the method
usually referred to as a kinematic constraint method is used in LS-DYNA
for tying interfaces. To define the interface in three dimensions, triangular
and quadrilateral segments comprising each side of the interface can be listed
(in arbitrary order). For future considerations, one side of the interface is
denoted as the master side and the other as the slave side, while the nodes
located on these surfaces are referred to as master and slave nodes. The slave
nodes are constrained to slide on the master surface after impact and must
remain on the master surface until a tensile force develops between the node
and the surface. In the automatic contact definition used in this work, the
slave and master surfaces are generated internally in the software routines.
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The kinematic constraint method uses the impact and release conditions
of Hughes et al [148], which is imposed to ensure momentum conservation,
while the release conditions are not currently implemented. The constraints
are imposed on the global equations by transforming the nodal displace-
ment components of the slave nodes along with the contact interface. This
transformation eliminates the normal degree of freedom of the nodes. To
preserve the efficiency of the explicit time integration, the mass is lumped
so that only the global degrees of freedom of each master node are coupled.
A known disadvantage of this approach is a state, when some master nodes
may penetrate through the slave surface without resistance and create a kink
in the slide line. This arises when the master surface zoning is finer than the
slave surface zoning. Provided that the interface pressures are high enough,
these kinks occur if one or more quadrature points are used in the element
integration.

Let us consider the time-dependent motion of two bodies occupying regions
B1 and B2 in their undeformed configuration at time t = 0. Assuming that
the intersection

B1 ∩B2 = ∅ (4.77)

is satisfied, ∂B1 and ∂B2 denote the boundaries of B1 and B2 and in a
given time t, these bodies occupy regions b1 and b2 bounded by ∂b1 and ∂b2.
Because the deformed configurations cannot penetrate,

(
b1 − ∂b1

)
∩ b2 = ∅, (4.78)

the equations of motion remain uncoupled as long as
(
∂b1 ∩ ∂b2

)
∩ b2 = ∅.

If
(
∂b1 ∩ ∂b2

)
∩ b2 ≤ ∅, the constraints are imposed to prevent the inter-

penetration of the discretised bodies. In these relations, the surfaces ∂b1 and
∂b2 of the bodies b1 and b2 denote the master and slave surfaces. Unless the
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symmetric penalty treatment is employed and the selection of master and
slave surfaces is arbitrary, the more coarsely meshed surface should be chosen
as the master surface. Additionally, for a large difference in mass densities,
the side corresponding to the material with the highest density should be
used as the master surface.

The slave search routine finds, for each slave node, its nearest point on the
master surface. Assuming that a master segment has been located for slave
node ns and that the slave node is not identified to be lying on the intersection
of two master segments, then the identification of the contact point nearest
to ns on the master segment is non-trivial. For each master surface segment
s1, the parametric representation is

r = f1 (ξ, η) i1 + f2 (ξ, η) i2 + f3 (ξ, η) i3, (4.79)

where

fi (ξ, η) =
4∑
j=1

φjx
j
i. (4.80)

Since r1 is at least once continuously differentiable and

∂r
∂ξ
× ∂r
∂η
≤ 0, (4.81)

r represents the master segment that has a unique normal with a direction
depending continuously on the points of s1.

Let p denote a position vector drawn to slave node ns. Considering that
the master surface segment s1 has been identified with ns, the contact point
coordinates (ξc, ηc) on s1 must satisfy the equations
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∂r
∂ξ

(ξc, ηc) · [p− r (ξc, ηc)] = 0, (4.82)

∂r
∂η

(ξc, ηc) · [p− r (ξc, ηc)] = 0. (4.83)

This system of equations is solved for ξc and ηc by solving Equation (4.82) for
ξc in terms of ηc, substituting the result into (4.83), which yields a numerically
solved cubic equation in ηc. Here, a problem in the solution may arise, when
two nodes of a bilinear quadrilateral are collapsed into a single node for
a triangle as the Jacobian of the minimisation problem is singular at the
collapsed node. To overcome this consequence, an analytical solution for
triangular segments is sought since the three points define a plane. For the
solution of the non-linear equations, the Newton-Raphson iterative approach
is used.

Viscous contact damping can be used in removing the high-frequency noise
in problems involving impact. The natural frequency of the slave node is
calculated from

ωn =
√
k (mmaster +mslave)

mmastermslave
,m = min {mmaster;mslave} . (4.84)

In this equation, ωn is the natural frequency, mi is the mass, and k is the
interface stiffness. The master node mass mmaster is interpolated from the
master nodes of the segment containing the slave node using the basis functions
evaluated at the contact point of the slave node. The viscous contact damping
is invoked in the simulations by setting a damping value as a percentage of
critical damping cc = 2mωn.

Friction on the contact interfaces is, in LS-DYNA, based on a Coulomb
formulation and the frictional algorithm uses the equivalent of an elastic-
plastic spring. An exponential interpolation function smooths the transition
between the static coefficient of friction µs and the dynamic coefficient of
friction µd according to
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µ = µd + (µs − µd) exp−c|v|, (4.85)

where the relative velocity between the master and the slave node is

v = ∆e
∆t′ . (4.86)

The term ∆t is the time step size, c is the decay constant, and

∆e = rn+1
(
ξn+1

c , ηn+1
c

)
− rn (ξnc , ηnc ) . (4.87)

The interface shear stress calculated from the Coulomb friction direction may
exceed the bearing capacity of the material and another limit is, therefore,
placed on the value of the calculated tangential force according to

fn+1 = min
(
fn+1

def , κAmaster
)
, (4.88)

where fn+1 is the frictional force at time step n+ 1, fn+1
def is the Coulomb’s

frictional force at time step n+ 1, Amaster is the area of the master segment,
and κ is the viscous coefficient.

The surface to surface constraint used in this work for all the contacts between
the bars and the specimen-bar contact is based on the algorithm developed
by Taylor and Flanagan [149]. The algorithm involves a two-pass symmetric
approach with a partitioning parameter β set between the negative and
positive unity corresponding to one-way treatments with the master surface
accumulating the mass and forces from the slave surface (β = 1) and vice
versa (β = −1). In this constraint approach, the accelerations, velocities, and
displacements are updated to a trial configuration without accounting for
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the interface interactions and the penetration force is computed for the slave
node as a function of the penetration distance ∆L after the update

fp = ms∆L
∆t2 n, (4.89)

where n is the normal vector to the master surface. For each slave node
in contact with the master surface and penetrating through it in its trial
configuration, the nodal mass and the penetration force is accumulated to
a global master surface mass and force vector. When Equation (4.89) is
solved for the acceleration vector, the acceleration correction for the slave
node is obtained and the process is repeated after reversing the master and
slave definitions. The averaged final correction to the acceleration vector is
found as

afinal
n = 1

2 (1− β) apass 1
n + 1

2 (1 + β) apass 2
n . (4.90)

Friction is included in the implementation by calculating the frictional force
resisting the relative tangential velocity of the slave node with respect to the
master surface. Its magnitude is limited by the magnitude of the product of
the Coulomb friction constant with the normal force. The modification to
the tangential acceleration component of the slave node is given by

at = min
(
µant · n,

|vs|
∆t

)
. (4.91)

The corrections to both the slave and master node acceleration components
are

ats = atnt, (4.92)

atk = −φtk
asms
ms

nt, (4.93)
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where nt = vt

υt
is the tangential vector parallel to the direction of the tangential

acceleration component and as is the slave node acceleration vector.

Again, the process is repeated after reversing the master and slave definitions
to obtain the averaged final correction to the acceleration vector

afinal
t = 1

2 (1− β) apass 1
t + 1

2 (1 + β) apass 2
t . (4.94)

The final acceleration at time n+ 1 is finally found according to

an+1 = atrial + afinal
n + afinal

t . (4.95)

Concerning the topic investigated in this work, the biggest advantage of the
constraint algorithm is that the interface nodes remain directly on or very
close to the surfaces they are supposed to be in contact. Moreover, the elastic
vibrations that can often occur in penalty formulations are insignificant with
the constraint technique, which is crucial for the investigation of the stress
wave propagation.

The single surface contact algorithm is an evolution of the surface to surface
contact algorithm and the post-contact searching follows the procedures
employed for the surface to surface contact by the introduction of a bucket
sorting procedure. Additionally, the normal nodal vector projection step is
superseded using the segment normal vector allowing for an arbitrary segment
numbering within the contact surface. At the segment intersections, where
nodes may approach undetected in certain cases, an additional logic that puts
a cylindrical cap at the segment intersections has been introduced.
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4.3.2 Mesh development - bars

In all the cases, including the final simulations with the auxetic lattices,
the ELFORM 1 hexahedral elements were used to represent the elastically
deforming bars. This element type is an under integrated single-point constant
stress element well suited for large deformations also. The characteristic
element edge length is given by Le = V/Amax. The direct mesh generation in
LS PrePost using the best quality approach algorithm was used to develop
the numerical models of the bars, which were then calibrated according to the
experimental data. Here, the irregularities are placed between the boundary
and the centre by using a 5 block part. Hence, there are 4 irregularities in the
mesh, located where only three elements are in contact. These irregularities
are not as severe for the mechanical simulations since the average angle at
these nodes is 120 ◦, which is only 33 % away from the ideal 90 degrees. A
series of simulated void tests, impacts of the striker bar on the incident
bar in direct contact with the transmission bar without a specimen, using
the virtual SHPB was performed and the experimentally measured signals
were compared with the signals from the FE model having a different mesh
density. According to the results, a sensitivity study on the element sizing was
performed since the non-physical behaviour of the stress signal was identified
in the selected models [10].

It is well known that FEM can produce very unreliable outputs particularly in
the analysis of the stress wave propagation using explicit numerical methods.
Here, the mesh acts effectively as a low-pass filter, where smaller elements let
the higher frequencies pass through the material in the model and this effect
has to be studied to guarantee reliable results. The striker and incident bars
with an average element size in the range 1 − 10 mm was then considered.
Also, it is a well-known fact that the ability of the mesh to transfer high
frequencies of the signal is proportional to the element size and this fact has
to be taken into account, when modelling the stress wave propagation events,
such as during the SHPB measurements. However, when the results are
interpreted with respect to the element size only, very misleading conclusions
can be made due to various phenomena, e.g., the non-physical amplitude
of spurious oscillations at the face of the propagating stress waves. Thus,
the sensitivity analysis in question is a multi-parametric problem and all the
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assessed data have to be analysed contextually in consideration of the other
properties of the FEA such as the numerical frequency damping, time step
sizing, computational costs, etc. The numerical results were compared against
the analytical assumptions from the wave propagation theory represented in
this case by ideal quadrature signals and aside from the comparison of the
stress waves, a frequency analysis was performed to evaluate the frequency
and amplitude characteristics in the simulations. Instead of the simulated void
tests, where the striker bar impacts the incident bar, a constant velocity was
prescribed to one face of the incident bar for a given time interval simulating
the analytical initial conditions.

In general, the smoothest mesh approaches the analytical solution with the
highest precision, while the slope of the wave increase is inversely proportional
to the mesh size. After the prescribed loading of the bar stops, considerations
regarding the residual behaviour of the mesh can be made on the frequency-
dependent damping of the mesh and the shape of the oscillations. Here,
the coarsening of the mesh leads to a slow-down in the damping of low
frequencies. The first extremum after initiation of the loading is proportional
to the element size, i.e., exceeds the analytical prediction, but the amplitudes
of the stress-oscillations may, in certain combinations of FEA parameters,
increase in the bar even after removal of the loading. However, a similar
behaviour of the first amplitude in the oscillations after the initiation of
loading can be observed also in the case of the smoothest mesh. This effect
was identified to be related with the time step value, where the default value
of a 0.9 multiple of the critical time step has to be lowered to a range of
approximately 0.5 multiple, where the FEA captures the real behaviour with
sufficient precision.

Unlike the experimental SHPB testing, where the frequency range of the
measurement is given by the hardware instrumentation, the FEA is only
limited by Nyquist-Shannon sampling theorem in dependence on the element
size, time step size and readout rate of the numerical results. The studies
showed that the considered element size has only a negligible influence on the
results up to approximately 125 kHz, which is still in the evaluated range in
the experiments. Thus, a simple comparison with the experimental data may
lead to the conclusion that the coarse mesh fits the experiments with the
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highest precision as the smooth mesh is able to capture MHz-range frequencies
not considered in the evaluation of experimental data. More specifically, the
smoothing of the mesh leads to its ability to precisely capture the frequencies
in the range of 125− 500 kHz with the resulting readout of the stress during
the numerical experiments yielding apparent spurious oscillations. These
oscillations are, however, not present in the experimental data, but the reason
is a combination of the numerical aspects of the simulations and the evaluated
frequency range in the experiments.

As the FE mesh acts as a low-pass frequency filter, its properties can be
quantified from the simulations by analyzing the amplitude and damping
characteristics. Here, the analysis of the element-size dependent amplitude
characteristics in the area close the applied initial conditions showed that a
significant decrease in the signal-amplitude can be observed in the range of
500 kHz (10 mm coarse mesh) and 2 MHz (1 mm smoothest mesh) supporting
the previous findings. However, significantly different results are obtained,
when the same analysis is performed near the opposite face of the bar. The
element size-dependent characteristics related to the stress wave propagation
after the removal of the initial conditions cause, in general, decrease in
the frequency range towards lower frequencies with a different shape of the
amplitude characteristics. What is more important than the pure transferable
frequency range, in this case, is the fact that with the coarsening of the mesh,
the higher frequencies may even be amplified as the amplitude characteristics
in the 0.6− 4 MHz are near the value of the 0.5 multiple of the intensity of
the driving signal.

As a result, the parameters listed in Table 4.1 were used to generate the FE-
mesh of the striker, incident, and the transmission bars as the resulting ratio
between the computational costs of the simulations and primarily frequency
characteristics of the mesh were optimal. The cross-section of such a generated
FE mesh of the bar is depicted in Figure 4.3.
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Parameter Value Unit

Element-edge length parallel to bar axis 5 mm
Element-edge length - radial direction ≈ 1.2 mm
Element-edge length - outer circle ≈ 2 mm
Element count in circumferential direction 32 -
Pass-band - transfer 0.4 MHz
Specific number of elements 512 elem · cm−1

Element count

Striker bar 25,600 -
Incident + Transmission bar 81,920 -

Table 4.1: Properties of the FE-mesh representing the SHPB bars in the
numerical simulations.

Figure 4.3: Meshed cross-section of the bar used in the FEA.
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4.3.3 Mesh development - auxetic lattices

Since the physical nature of the problems studied using FEA consisted of
the stress wave propagation through a porous solid, where the microinertia
and exact geometry have a critical influence on the comparability of the
experimental and numerical deformation modes, a solid modelling approach
was selected for the numerical representation of the auxetic lattices. In
contrast with the modelling of the bars, a tetrahedral FE representation
was selected due to the expected large deformation of the samples. This
allowed the modelling of the complex solid bodies by direct conversion from
the parametric models used for the additive manufacturing without any a
priori geometric simplification. Importantly, such an approach requires no
geometric, loading, and constitutive assumptions, and simultaneously, the
boundary conditions are treated more realistically compared to the beam
or shell discretisations. However, the clear disadvantage of solid modelling
in explicit dynamics is its high computational cost in all the tasks from the
mesh preparation to the post-processing, including the amount of disk space
required. Concerning the ability of the tetrahedral mesh to discretise the
whole geometry of the samples including all the details, particularly the
geometry of the strut joints, the process of remeshing/mesh refinement to
occasionally treat poorly shaped elements was computationally intensive. In
all the cases, a mesher integrated into the LS PrePost suite was used to
generate the FE mesh of the lattices.

From the database available in LS-DYNA, it is possible to use several different
formulations of the tetrahedral elements that have to be evaluated in a
parametric study for their suitability to represent the studied processes with
the required precision and reliability. However, it is rather difficult to even
define a quantitative criterion for such an evaluation as the parametric studies
have to be performed in this case with the whole virtual SHPB apparatus
including the studied lattice making the dimensionality of the task very high.
For this reason, a 3D re-entrant honeycomb lattice having 3 × 3 unit-cells
was selected due to its relatively simple geometry resulting in a conservative
number of elements and also due to the volumetric nature of the deformation
not limited to the in-plane strains observed in the other studied architectures.
The following ELFORM options were studied:
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. 10 - 1 point tetrahedron. 4 - S/R quadratic tetrahedron with nodal rotations. 16 - 5 point 10-noded tetrahedron. 17 - 10-noded composite tetrahedron

ELFORM 10. Type 10 tetrahedral element is a 1 point constant stress
element usually considered applicable for foams with zero Poisson’s ratio and
not recommended for general use in simulations except for the transitions in
meshes. Even though the limitations are known for this type of element, it
was used in the parametric study since the constant stress hexahedrons were
successfully used for the representation of the bars. No convergence problems
were encountered, but the overall deformation response of the auxetic lattice
did not reflect the experiments particularly due to the well-known effect of the
volumetric locking resulting in an apparently stiff behaviour and checkerboard
mode in certain circumstances. The characteristic element edge length is
given as Le = 0.85hmin, where hmin is the minimum height of the tetrahedron.

ELFORM 4. Type 4 is an element type derived from a 10-node tetrahedron
and defined as a 5-node tetrahedron with nodal rotations (i.e., 6 DOFs per
node) and selectively reduced integration with generally good accuracy for
small strains even though it also has a tendency to have a volumetric locking
behaviour. The results for this element formulation are not presented as the
convergence of the simulations was difficult due to large strains resulting from
the relatively high deformation energy events. The characteristic element
edge length is given as Le = hmin.

ELFORM 16 and 17. Type 16 and 17 are fully integrated 5-point tetrahedra
with good accuracy for a moderate strain encountered in metals. The type 17
formulation is a composite derivative of type 16, where each tetrahedron is, in
fact, an assembly of 12 linear sub-tetrahedra enabling for the correct external
force distribution. This is an important property for the stress wave transfer
from/to the bars at the impact and distal faces of the specimen and with
regards to the deformation behaviour captured only using a limited number
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of elements through the cross-section of the geometrical entity. An obvious
disadvantage of these element formulations is the high computational cost
arising from the CPU costs of the calculations and a high number of elements
needed to represent the solid body. The characteristic element edge length for
type 16 is given by Le = 0.3889hmin, while the characteristic element edge
length for type 17 is given by Le = V/Amax, where Amax is the maximum
area of the constituting triangle.

Before the optimisation of the material model, it was necessary to perform a
mesh-related sensitivity study to find an optimum combination of the param-
eters, so that the numerical experiment reflects the experimentally observed
behaviour of the auxetic lattices. Besides the selection of the element formula-
tion itself, the number of elements generated across the thinnest geometrical
element of the lattice was selected and identified to have the most signifi-
cant influence on the deformation response. To demonstrate the influence
of the element formulation and the number of elements used to represent
the cross-section of the structure, Figures 4.4 and 4.5 show a comparison of
the numerical strain waves captured at half of the transmission bar’s length
for the 3D re-entrant honeycomb lattice discretised using various parameters
and subjected to the same initial conditions used in the experiments with a
material model calibrated using the experiments with the bulk samples.

It can be clearly seen that the considered parameters are influencing the
simulated deformation response of the lattice. However, the sensitivity on
the individual parameters cannot be studied by the simple isolation of one
parameter at a time in a parametric study due to the synergistic effects
encountered in such complex scenarios. For this reason, the influence of
the selected factors was studied on the 3D re-entrant honeycomb having
3 × 3 unit-cells due to its more complex volumetric deformation response,
which includes stability problems of the compressed struts. To evaluate the
influence of the number of elements across the thinnest dimension of the
geometrical elements constituting the auxetic lattice, the geometrical model
was discretised with either 1, 2, or 3 elements through the cross-section of
the struts constituting the unit-cell. The mesh generation was controlled by
prescribing the characteristic element dimension as a fraction of the thickness
in the parametric model of the specimen. This task was performed for all the
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Figure 4.4: Strain plotted against time showing the numerical strain waves for
the different element formulations representing the auxetic lattice.

element formulation options exhibiting a successful convergence during the
whole duration of the simulated experiments, i.e., for ELFORM 10, 16, and 17.
The conformity of the simulated and experimental transmission waves was
analysed and according to the acquired results, all the 3×3 unit-cell structures
have then been discretised using the ELFORM 17 composite tetrahedra and
two elements across the thickness of the struts. Even though the sensitivity
study showed the best conformity with the experimental data of the mesh
with two elements in the cross-section of the struts, this approach could not
be currently used due to the excessive computational costs in the case of
the RVE sized lattices. Here, the difference in the CPU time between the 1
and 2 elements generated through the thickness of the struts was 10-fold not
only due to the number of elements, but also due to their lower characteristic
length arising from the lower thickness of the struts influencing the time step
size. As an example, this led to 290 hours of CPU time using 12 threads of
the high-performance workstation used in the simulations. Considering the
high required number of simulations to obtain the final results (i.e., hundreds
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Figure 4.5: Strain plotted against time showing the numerical strain waves for
the different number of elements within the cross-section of the microstructure.

for all the RVE sized lattices), it would not be feasible to perform all the
tasks in a realistic time-frame and a supercomputer will be used in the future
work instead. Table 4.2 summarises the number of elements and nodes in the
discretised lattices.

4.3.4 SS316L material model

The auxetic lattices were simulated using the MAT 12 isotropic elastic-plastic
material model for its computational efficiency, numerical stability, and the
possibility of an easy calibration. In the formulation of this material model,
the von Mises yield condition is given by
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Structure Elements across thickness Elements Nodes

3× 3 lattices

3D re-entrant honeycomb 1 39,614 80,467
3D re-entrant honeycomb 2 196.275 348,521
3D re-entrant honeycomb 3 556,253 906,919
2D re-entrant honeycomb 2 96,550 168,508
2D missing-rib 2 110,556 189,970

RVE sized lattices

3D re-entrant honeycomb 1 99,066 211,960
3D re-entrant honeycomb 2 372,740 680,701
2D re-entrant honeycomb 1 215,790 415,953
2D missing-rib 1 230,974 442,551

Table 4.2: Number of elements and nodes required for the numerical representa-
tion of the studied auxetic lattices.

φ = I2 −
σ2

y
3 , (4.96)

where the second stress invariant I2 is defined in terms of the deviatoric stress
components as

I2 = 1
2sijsij. (4.97)

The yield stress σy is a function of the effective plastic strain εp
eff and the

plastic hardening modulus Ep such that

σy = σ0 + Epε
p
eff . (4.98)

The effective plastic strain is defined as
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εp
eff =

∫ t

0
dεp

eff , (4.99)

where

dεp
eff =

√
2
3dε

p
ijdε

p
ij (4.100)

and the plastic tangent modulus is defined using the tangent modulus Et as

Ep = EEt
E − Et

. (4.101)

The pressure is given by

pn+1 = K

( 1
V n+1 − 1

)
, (4.102)

where K is the bulk modulus and the pressure is integrated in time from

ṗ = −Kε̇ii, (4.103)

where ε̇ii is the volumetric strain rate.

Before the optimisation of the material model using the parametric numerical
simulations, the values of the constants were determined using a combination
of data-sheet values from the manufacturer of the SLS device and using the
experimental testing of the bulk SLS printed samples [11]. For the properties
of the wrought SS316L steel, the company Renishaw provided the following
data:
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Parameter Horizontal direction Vertical direction Unit

Young’s modulus 197± 4 190± 10 GPa
Yield strength 547± 3 494± 14 MPa
Upper tensile strength 676± 2 624± 17 −

Table 4.3: Relevant mechanical properties of the components additively manu-
factured from SS316L-0407 provided by Renishaw.

Naturally, these values were derived from the quasi-static testing of the bulk
samples printed using the SLS technology according to ASTM mechanical
standards. Although several papers concentrated on the dynamic testing of
printed stainless steels are available (e.g., [150,151]), the approach based on
performing one’s own SHPB experiments was selected due to the nature of
the SLS additive manufacturing technology. Here, the resulting mechanical
properties of the objects are strongly dependent on the specific parameters
used during the manufacturing procedure as a result of the know-how of the
staff operating the printer and also on the orientation of the objects with
respect to the powder bed plane. Thus, no data taken from the literature can
be reliably used without verification. Besides the dynamic yield strength of the
printed material, the most important unknown parameter strongly influencing
the numerical simulations was the tangential modulus. For instance, this
property can be estimated from, e.g., the Ramberg-Osgood power-law relation
describing the non-linear stress-strain relationship. This model is particularly
suited to strain hardening metals showing a smooth elastic-plastic transition.
In the classical form, the model can be formulated such that

ε = σ

E
+
(
σ

H

)1/n
, (4.104)

σ = Hεnp , (4.105)

where
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n =
log

(
σm
σ0

)
log

(
εf

0.002

) , (4.106)

H = σ0
0.002n , (4.107)

σ0 is the yield strength, σm is the ultimate strength, εf is the failure strain, E
is the elastic modulus, εp is the plastic strain, and constants H and n describe
the hardening behaviour of the material considering the 0.002 yield offset.
However, the transition beyond the yield point is of too low a curvature when
the constants of the printed 316L steel are used in the calculation.

Thus, the strain-rate and printing direction dependency of the compressive
behaviour of the 3D printed material of the specimens was investigated. To
assess the strain-rate sensitivity as well as the effect of the printing direction
on the compressive behaviour of the investigated material, three different
sets of specimens, each with a different printing orientation, were tested at
various strain-rates using the SHPB apparatus and under the quasi-static
loading conditions. The specimens for the quasi-static experiments had a
cylindrical shape with a diameter of 5 mm and a height of 10 mm. Therefore,
the height to diameter ratio was 2. The specimens were printed with three
different orientations - vertically, at the angle of 0 degrees, horizontally, at
the angle of 90 degrees and tilted, at the angle of 45 degrees in every case
related to the powder bed plane (see Figure 4.6).

Figure 4.6: Orientation of the specimens during production: a) vertical, b)
horizontal, and c) tilted.

Dog-bone shaped specimens with overall dimensions of 18× 16 mm were used
for the dynamic experiments. The particular design of the specimens for the
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dynamic tests (see Figure 4.7) was selected due to the parameters of the used
SHPB apparatus. The contact faces of the specimens needed to have a wider
diameter to achieve a similar material impedance as has the material of the
bars. In this regard, the deformation wave is not reflected at the bar-specimen
interference, but is transmitted into the specimen without any significant loss.
However, the centre part of the specimen needed to be thinner to achieve
a sufficient deformation during the dynamic experiments. The specimens
were also 3D printed with the same three different orientations relative to
the powder bed plane (see Figure 4.8).

Figure 4.7: Dimensions of the dog bone shaped specimen used for the dynamic
experiments.

Figure 4.8: Orientation of the specimens during production: a) vertical, b)
horizontal, and c) tilted.

An Instron 3382 electro-mechanical loading device was used for the quasi-static
experiments. The loading procedure was displacement controlled with the
loading velocity of 1 mm ·min−1, resulting in a strain-rate of approximately
0.002 s−1. The dynamic experiments were conducted using the same SHPB
apparatus utilised for the measurement of the auxetic lattices. Depending on
the required strain-rate, two different striker bars were used in the experiments;
for a higher strain-rate (6000 s−1), a striker bar with the length of 500 mm
was used and a 650 mm long bar was used for a lower strain-rate (2000 s−1).
This enabled one to achieve the same deformation range at both the strain-
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rates. To reduce the wave dispersion effects, the pulse-shaping technique was
engaged using cylindrical soft copper shapers with a diameter of 7 mm and a
thickness of 1 mm.

Figures 4.9 and 4.10 depict the acquired stress-strain curves of the 45 degree
rotated specimens relevant for this work as all the auxetic specimens were
printed in such an inclined orientation to the powder bed plane due to heat
dissipation problems during the printing procedure.
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Figure 4.9: Quasi-static averaged stress-strain curves for the cylindrical and dog
bone specimens.

From the analysis of the stress-strain relations, the following constants were
used in the dynamic FEA before optimisation of the material model:

The mean density of the SLS printed material measured using the set of
cylindrical samples was 7.52± 0.17 g · cm−3 compared to the nominal density
of the wrought material of 7.99 g · cm−3. Hence, a 6 % porosity arising from
imperfect printing can be assumed. The elastic constants were calculated
from the average nominal values according to the established equations for
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Figure 4.10: Averaged results for the specimens printed at an angle of 45 degrees.

Parameter Value Unit

Mass density 7.52 g/cm3

Yield stress 520 MPa
Plastic hardening modulus 2.32 GPa
Bulk modulus 171.8 GPa
Shear modulus 79.3 GPa

Table 4.4: Constants of the MAT 12 material model of the SLS printed steel
used for the initial study of the dynamic FEA.

homogeneous isotropic linear elastic materials considering ν = 0.3 Poisson’s
ratio. The elastic constants were, from Young’s modulus and Poisson’s ratio,
calculated as
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K = E

3 (1− 2ν) , (4.108)

G = E

2 (1 + ν) . (4.109)

For each auxetic lattice and strain-rate, the constants of the material model
were optimised in an iterative parametric FE study, where the yield stress
σy and the plastic hardening modulus Et were consecutively varied. This
was enabled by the nature of the deformation response of the lattices, which
in every case reflects the compressive characteristics of the metal foams in
terms of the apparent yield point followed by the plateau stress region. Thus,
the yield stress set in the material model definition was determined so that
the resulting simulated response of a given lattice matches the respective
experimental data. Then, the value of the plastic hardening modulus was
updated until the conformity of the plateau stress and the shape of the
plateau stress curve was found. This, in the majority of cases, also guaranteed
the correct densification strain in the virtual experiments. In the remaining
cases, the values of the yield stress and plastic hardening modulus were varied
together to find the best possible compliance between the experimental and
numerical data in terms of the densification strain, the densification modulus,
and the ultimate stress induced by the propagation of the first stress wave.
Figure 4.11 depicts both the yield stress and plastic hardening modulus
plotted against the strain-rate for all the numerical simulations.

Figure 4.11 depicts the results for both the lattices with 3× 3 unit-cells and
the RVE sized lattices. This is the reason for the distortion of the trends in
the strain-rate dependent yield stress of the missing-rib structures and the
plastic hardening modulus of both the two-dimensional lattices. However,
when only the data for the RVE sized samples are evaluated (strain-rate
1500 s−1 and 3000 s−1), clear strain-rate dependencies can be identified in
the data. It can be seen that, to correctly reflect the strain-rate dependent
characteristics of the SLS printed specimens in the FEA, the yield stress had
to be increased in all the simulations by 33 % (missing-rib structure), 17 % (2D
re-entrant honeycomb), and 33 % (3D re-entrant honeycomb). Simultaneously,
a decreasing tendency in the plastic hardening modulus consisted of 57 %
(missing-rib structure), 0 % (2D re-entrant honeycomb), and 8 % (3D re-
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Figure 4.11: The yield stress (a) and the plastic hardening modulus (b) used in
the MAT 12 material model plotted against the strain-rate.

entrant honeycomb) can be quantified.
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4.4 Results

4.4.1 Experimental results

The employed SHPB setup was suitable to measure the dynamic response of
the auxetic structures. Foil strain gauges were successfully employed instead
of semiconductor strain gauges. The increased noise and lower sensitivity were
compensated for by the linearity of the foil gauge and its extensive working
range. The values of the measured strain in the incident bar were significantly
above the measurable limit of a semiconductor gauge type. A digitiser sample
rate of 20 MHz and a high-speed camera frame rate of 100 kfps were sufficient
to capture the deformation of the specimen. The stress-strain curves and
strain-dependent Poisson’s ratio were evaluated. The results for the RVE
sized lattices were obtained at two strain rates denoted in the following figures
as low-rate (1500 s−1) and high-rate (3000 s−1). Figures 4.12 and 4.13 depict
the microstructure of the specimens during the uniaxial compression.

Figure 4.12: Comparison of the 3 × 3 samples in an intact state, structures
collapsed in the quasi-static experiment, and structures collapsed in the SHPB
experiments, (a) 2D re-entrant honeycomb, (b) 3D re-entrant honeycomb, (c)
2D missing rib.
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Figure 4.13: Comparison of the RVE sized samples during the dynamic crushing
in the SHPB experiments, (a) 2D re-entrant honeycomb, (b) 3D re-entrant
honeycomb, (c) 2D missing rib.

Stress-strain response

The stress-strain diagrams of the auxetic lattices having 3 × 3 unit-cells
subjected to the dynamic loading are depicted in Figures 4.14 - 4.16 together
with the quasi-static curves for the comparison of the strain-rate effect on the
compressive response. The dynamic experiments of the 3× 3 lattices were
conducted with a lower quality compared to the RVE sized samples resulting
in a lower precision and repeatability of the results.

The dynamic response of such a 2D missing-rib lattice at the strain-rate of
2100 s−1 is very similar to the quasi-static test plateau-stress, the strain of
the densification related to the collapse of the first layer, and the slope of the
densification part of the response. A difference was identified in the strain
value, where the structure reached the plateau stress, which is connected to the
delay of the signal during the SHPB measurement and the development of the
strain rate in the sample. According to the parameters of the SHPB setup and
operation parameters selected for the measurement, the maximum achieved
compressive strain was 0.325 constraining the ability for the comparison with
the quasi-static results measured throughout the compressive response of the
structure. Still, the higher stress values in the dynamic experiments at a
strain over 0.28 indicate the strain-rate sensitivity of these samples at later
stages of the deformation response. The visual inspection of the high-speed
camera data and the samples after the experiment also showed the uni-axial
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Figure 4.14: Experimental stress-strain curves - 2D missing-rib lattice composed
of the 3× 3 unit-cells, the dynamic and quasi-static response.

character of the deformation without any significant lateral movement of the
upper and bottom layer of the unit-cells present in the quasi-static loading.

In the stress-strain diagrams of both the 2D and the 3D re-entrant honeycomb
lattices, it can be seen that their compressive behaviour is very similar to
the response of closed-cell metal foams even during dynamic compression.
In contrast with the missing-rib structure, however, the strain-rate effect is
clearly apparent and leads to a notable increase in the effective yield stress
of the structures together with the increase of the plateau stress and lower
densification strain.

In the case of the 2D re-entrant structure, the yield stress increased by 40 %
from 75 MPa to 105 MPa and the average plateau stress increased by 50 %
from 80 MPa to 120 MPa, while densification occurs at a 0.25 strain compared
to a 0.3 strain during the quasi-static loading. The observed decrease in
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Figure 4.15: Experimental stress-strain curves - 2D re-entrant honeycomb lattice
composed of the 3× 3 unit-cells, dynamic and the quasi-static response.

the stress at the plateau region caused by the temporary localisation of
deformation also occurs at a different point with the local minimum at a 0.05
higher compressive strain in the case of the dynamic tests.

Similar observations have been made in the case of the 3D re-entrant structures.
The apparent yield stress (partially hidden in the oscillations and evaluated
from the analysis of their amplitudes) increased in this case by 35 % from
42.5 MPa to 57.5 MPa and the densification strain decreased to 0.3 from the
quasi-static value of 0.325. Unlike the dynamic response, the quasi-static tests
showed one local stress maximum after the initial yielding of the structure,
which was not present in the dynamic results. Similarly to the 2D re-entrant
structure, the decrease in the plateau regions occurs during the dynamic
tests at a higher compressive strain (0.175 versus 0.07) and the gradient of
the decrease is significantly steeper. Compared to the quasi-static tests, the
acquired stress-strain diagrams of the 2D and 3D re-entrant structures show
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Figure 4.16: Experimental stress-strain curves - 3D re-entrant honeycomb lattice
composed of the 3× 3 unit-cells, the dynamic and quasi-static response.

a higher similarity in terms of the plateau stress region. Nevertheless, the 3D
re-entrant lattice remains weaker than the planar assembly of the re-entrant
unit-cells also in the dynamic compression.

Figures 4.17 - 4.19 depict the comparison of the stress-strain diagrams for
the auxetic lattices with an RVE number of unit-cells calculated from the
quasi-static and dynamic loading at both strain-rates.

In the plot of the stress-strain diagram for the 2D missing-rib structure,
the difference between the quasi-static and dynamic compression is clearly
apparent. The yield stress and plateau stress increased from 20 MPa to 30 MPa
and the level of stress remains at higher levels throughout the deformation
range of the experiments. The most significant difference between the quasi-
static and dynamic response at strains above 0.225, where the stress calculated
from the high strain-rate experiments increases steeply resulting in a 100 %
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Figure 4.17: Comparison of the experimental stress-strain curves - the RVE
sized 2D missing-rib lattice, the dynamic and quasi-static response.

difference at a 0.45 strain. From the visual inspection of the deforming
structures, this effect can be attributed to the different deformation mode of
the dynamically loaded lattices resulting in a uni-axial response without any
lateral movements of the layers induced by the orientation of the unit-cells.
The differences in the deformation response to the low and high-strain rate
loading resulted in a consistently higher and monotonic increase in the stress
for the higher strain-rate. However, due to the characteristics of the low
strain-rate experiment, the comparison can be made only up to 0.25 of the
compressive strain, and the remaining part of the densification region could
not be assessed.

Similarly, the strong strain-rate effect in terms of the difference between the
quasi-static and dynamic effect was assessed for the 2D re-entrant honey-
comb structure. Here, the yield strength increased by 50 % from 50 MPa to
75 MPa for both the dynamic strain-rates, while the stress level at 0.45 of the
compressive strain resulted in a 55 % increase between the high strain-rate
SHPB measurement and the quasi-static loading. In the dynamic response,
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Figure 4.18: Comparison of the experimental stress-strain curves - the RVE
sized 2D re-entrant honeycomb, the dynamic and quasi-static response.

the amplitude of the stress oscillations in the plateau region is significantly
pronounced (with the low-rate loading reaching a local minimum under the
corresponding level of the quasi-static test), but the number of oscillations is
reduced in comparison with the quasi-static loading. Interestingly, an increase
of strain-rate in the SHPB test leads to the identical apparent yield stress of
the structure and a decrease in the plateau stress at a higher strain suggesting
that micro-inertia effects are the driving force of the strain-rate dependence
in this case.

The strain-rate sensitivity of the deformation response of the 3D re-entrant
structure shows trends analogous to the planar assembly of the re-entrant
honeycomb unit-cells except for the oscillations at the plateau region. Ap-
proximately the same increase of the apparent yield stress and ultimate stress
at the end of the experiment (a compressive strain of 0.4) by a factor of 1.5
was assessed for the high strain-rate experiments, when compared to the
quasi-static loading. The apparent yield stress in this case is identical for
both the SHPB strain-rates, while no difference in the plateau region was
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Figure 4.19: Comparison of the experimental stress-strain curves - the RVE
sized 3D re-entrant honeycomb, the dynamic and quasi-static response.

reliably identified as the trends and absolute values are nearly identical up to
the maximum strain achieved during the low strain-rate loading.

Strain-dependent Poisson’s ratio

For every investigated microarchitecture, the DIC-based evaluation of the
function of Poisson’s ratio was performed and the resulting curves were com-
pared to reveal the strain-dependent characteristics of the microarchitectures.
Figures 4.20 - 4.22 depict Poisson’s ratio plotted against the compressive
strain of the lattices subjected to the quasi-static and dynamic loading.

By comparing the graphs for the function of Poisson’s ratio for the 2D
missing-rib structure, a significant strain-rate effect arising from the differing
deformation responses of the structure to the quasi-static and dynamic loading
is clearly apparent. Here, the quasi-static loading resulted in an NPR only in a
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Figure 4.20: Experimental function of Poisson’s ratio - 2D missing-rib lattice
composed of the 3× 3 unit-cells, the dynamic and quasi-static response.

narrow deformation range up to approximately 4 % of the compressive strain,
while the dynamic loading of the lattice resulted in an auxetic response
throughout the observed deformation range with the minimum value of
Poisson’s ratio of −0.2 with the function oscillating around the value of
−0.15. The plotted interval of the standard deviation also shows a reasonable
variability in the results, when a low number of unit-cells in the lattice is
taken into account, as the non-auxetic behaviour can be, in the variability of
results, observed only at two compressive deformation levels.

Similar trends have been revealed in the case of the strain-rate sensitivity
of the 2D re-entrant honeycomb structure. Again, the quasi-static response
yields an auxetic character of the lattice only in a limited range of deformation
at the beginning of the experiment followed by a non-auxetic character in
a wide range of deformation up to 32 % of the compressive strain, where
the values of Poisson’s ratio are lower than zero and remain negative up to
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Figure 4.21: Experimental function of Poisson’s ratio - 2D re-entrant honeycomb
lattice composed of the 3× 3 unit-cells, the dynamic and quasi-static response.

the end of the experiment. In contrast, an auxetic behaviour was identified
during the dynamic compression of these specimens with the minimum value
of −0.3 achieved at 0.275 of the compressive strain. The interval of the
standard deviations is also narrower showing negative values in all stages of
the experiments. The equivalent difference in the response of the structure
to the quasi-static and dynamic loading was revealed after inspection of
the high-speed camera data as the dynamic compression is purely uni-axial
without any lateral movement of the individual unit-cell layers.

The 3D re-entrant honeycomb subjected to dynamic compression exhibited
a consistently negative function of Poisson’s ratio over the whole range of
the compressive deformation. As the quasi-static response of this structure
also resulted in a purely auxetic behaviour, the strain-rate dependence here
pronounces the magnitude of auxetic behaviour as the dynamic Poisson’s ratio
reaches approximately a 45 % lower value at a compressive strain of 0.2. Due
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Figure 4.22: Experimental function of Poisson’s ratio - 3D re-entrant honeycomb
lattice composed of the 3× 3 unit-cells, the dynamic and quasi-static response.

to the three-dimensional assembly of the unit-cells, where the compression
causes loss of stability of the unit-cell struts in the cross-sectional plane
and the bifurcation effects follow the stochastic nature of the SLS printed
solids, larger standard deviations were calculated for the identified Poisson’s
ratio. From the plot of the comparison between the quasi-static and dynamic
response, it is evident that the quasi-static function of Poisson’s ratio lies
within the standard deviation of the dynamic measurements.

The DIC determined functions of Poisson’s ratio for the RVE sized specimens
are shown in Figures 4.23 - 4.25.

The most profound strain-rate dependence was revealed in the case of the
2D missing-rib structure. At both considered strain-rates, Poisson’s ratio
decreased to one local and a global minimum located between 2 % and 10 % of
the compressive strain. The global minimum was, in both cases, followed by
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Figure 4.23: Experimental function of Poisson’s ratio - 2D missing-rib lattice
composed of the 6× 6 unit-cells, the dynamic and quasi-static response.

a gradual increase to positive values while a zero Poisson’s ratio was reached
at 20 % of the compressive strain in the case of the low strain-rate and 30 %
in the case of the high strain-rate, respectively. Both strain-rates produced
insignificantly different values of the lowest achieved Poisson’s ratio of −0.28
during the lower strain-rate and −0.33 during the high strain-rate experiments.
Interestingly, this trend is inverse to the other dynamic experiments. A visual
inspection of the deforming structures also showed that the two observable
local extrema of the function of Poisson’s ratio can be accounted for the initial
collapse of the two layers of the microstructure. The comparison with the
quasi-static curve reveals that the SHPB experiments at the lower strain-rate
yield results converge to the same trend for compressive strains over 25 %.

From the comparison of the strain-dependent function of Poisson’s ratio of the
2D re-entrant honeycomb structure, it can be seen that the overall shape of
the curve is very similar for both the considered SHPB strain-rates. Poisson’s
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Figure 4.24: Experimental function of Poisson’s ratio - 2D re-entrant honeycomb
lattice composed of the 6× 7 unit-cells, the dynamic and quasi-static response.

ratio reaches its global minimum in the initial stages of the deformation and
then gradually increases up to positive values. The difference between the high
and the low strain-rate is the magnitude of the auxetic effect. The extremum
of Poisson’s ratio in the case of the lower strain-rate was also reached at
the lower compressive strain (5 % compared to 8 %). The overall trend of
the dynamic response is similar to the quasi-static response at compressive
strains over 10 % and represented by a monotonic increase in Poisson’s ratio
towards positive values.

Similar to the quasi-static results, the 3D re-entrant honeycomb structures
exhibited a significantly different response than the periodical assembly of
the two-dimensional re-entrant honeycombs. As can be seen, the results
from the dynamic testing at both strain-rates are very similar to each other
and the results of the quasi-static test. During the dynamic experiments,
Poisson’s ratio increased from the values of approximately −0.1 at very small
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Figure 4.25: Experimental function of Poisson’s ratio - 3D re-entrant honeycomb
lattice composed of the 6× 7 unit-cells, the dynamic and quasi-static response.

strains and then formed the plateau-like region similar to the specimens
subjected to the quasi-static loading. A comparison of the low and the high
strain-rate experiments shows that the values of Poisson’s ratio at the plateau
region increase with a higher strain-rate. At a lower strain-rate, Poisson’s
ratio remains constantly negative (approximately −0.02) beyond the 30 %
compressive strain. However, with an increase of the applied strain-rate, the
plateau region reaches positive values at 10 % of the compressive strain and
further increases at a 40 % strain.

4.4.2 Numerical results

The framework for the numerical simulations comprising the virtual SHPB
device utilised for the calibration and verification measurements was used
for the development of the simulations of the investigated auxetic lattices
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subjected to dynamic compressive loading. The virtual experiments were, in
all cases, performed with boundary and initial conditions (particularly the
striker bar velocity) identical to the SHPB experiments except the use of
pulse shapers in the real tests. Virtual strain-gauges were used to capture
the transmission of the strain waves in the simulated bars and the same
mathematical methods were used to derive the stress-strain diagrams of the
investigated lattices. From the geometrical coordinates of the finite element
nodes used for the discretisation of the lattices, the functions of Poisson’s
ratio were evaluated using the same methodology as during the experiments.
Figures 4.26 and 4.27 depict the microstructure of the specimens during
simulated compression using the virtual SHPB apparatus.

Figure 4.26: Comparison of the 3× 3 samples - visualisation of the FE results
using the resultant displacement showing the intact specimens (first row), the
plateau stress region (middle row), and the maximum achieved compression
(bottom row).

Stress-strain response

The numerical stress-strain diagrams of the auxetic lattices having 3 × 3
unit-cells subjected to dynamic loading using the virtual SHPB are depicted
in Figures 4.28 - 4.30 together with the experimental quasi-static and dy-
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Figure 4.27: Comparison of the RVE sized samples during high strain rate
loading - visualisation of the FE results using the resultant displacement showing
the intact specimens (first row), the plateau stress region (middle row), and the
maximum achieved compression (bottom row).

namic curves for the comparison of the FEA precision. Since the dynamic
experiments of the 3× 3 lattices were conducted with lower quality compared
to the RVE sized samples, the results exhibit lower precision and repeatability,
which complicated both the development and validation of the numerical
simulations.

It can be seen in Figure 4.28 that the numerical model captures the measured
behaviour of the sample in all parts of its deformation response. Notable
differences arise from the absence of the pulse shaping measures in the simu-
lated events apparent from the differences in the initial and terminal stages of
the numerical stress-strain diagrams common to all the performed numerical
simulations. In contrast to the SHPB experiments, the simulated response of
the lattice yield increase in the overall stress from zero compressive strain.
Then, the simulated plateau stress reaches the same value observed during
the quasi-static loading of the samples and matches the SHPB experimental
data at strains from 0.1. The numerically obtained densification strain and
the slope of the initial part of the densification region are also both very
similar. Differences can then be seen at a higher stress at the point of the
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Figure 4.28: Comparison of the numerical and experimental stress-strain curves
- 2D missing-rib lattice composed of the 3×3 unit-cells, dynamic and quasi-static
response.

slope change in the densification region, but the subsequent numerical and
experimental curves are approximately parallel. From the comparison of
the terminal parts of the curves, the apparent discrepancy in the maximum
achieved compression of the samples arising from the different conditions
during the simulations and experiments can be seen.

From the comparison of the numerical and experimental stress-strain curves
of the 2D re-entrant honeycomb shown in Figure 4.29, it can be seen that the
numerical simulations also predict the strain-rate sensitivity of the lattice in
terms of a stress-strain diagram. The apparent yield of the lattice predicted
by the numerical simulations occurred at approximately the same stress
and strain as calculated from the experiments. Then, the compression of
the lattice in the simulation leads to a plateau of constant stress, whereas
the SHPB experiments resulted in a gradual increase in the stress up to a
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Figure 4.29: Comparison of the numerical and experimental stress-strain curves
- 2D re-entrant honeycomb lattice composed of the 3× 3 unit-cells, the dynamic
and quasi-static response.

local maximum at a 0.175 strain followed by a drop in the stress due to the
deformation response of the microstructure. This leads to an approximately
16 % underestimation of the absorbed energy by the FEA. However, the local
maximum followed by the decrease in the stress was numerically predicted and
the point of the local minimum before the densification of the structure is also
very similar in terms of both the stress and strain. In the densification region
of the deformation response, the experimentally tested lattices exhibited
a higher slope of the stress-strain curve, while the maximum calculated
stress was 13 % lower together with insignificantly lower maximum achieved
compressive strain.

Better conformity between the numerical and experimental results was
achieved in the case of the 3D re-entrant honeycomb structure (see Fig-
ure 4.30). Even without the pulse-shaping measures in the simulations, the
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Figure 4.30: Comparison of the numerical and experimental stress-strain curves
- 3D re-entrant honeycomb lattice composed of the 3× 3 unit-cells, the dynamic
and quasi-static response.

oscillations in the region of the yield point and the plateau region are signifi-
cantly lower. The yield of the structure occurred at the same compressive
strain during the simulations and the plateau stress up to 15 % of the com-
pressive strain was well captured by the FEA. Both the numerically and
experimentally compressed lattices exhibit an apparent decrease in the stress
before the densification of the structure, where the simulations predict ap-
proximately a 15 % higher energy absorption. Nevertheless, the densification
part is captured with significantly higher precision as the shape, maximum
stress and maximum compressive strain are nearly identical.
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Figure 4.31: Comparison of the numerical and experimental stress-strain curves
for the RVE sized 2D missing-rib lattice: (a) low strain rate, (b) high strain rate,
(c) all the experiments and the FE results.

Figures 4.31 - 4.33 depict the numerical and experimental stress-strain dia-
grams for the auxetic lattices with the RVE number of unit-cells calculated
from the dynamic loading at both strain-rates and a comparison with the
quasi-static results.

In the plots of the stress-strain diagrams for the 2D missing-rib structure at
the different strain-rates (Figure 4.31), the effect of the strain-rate on the
stress-strain curve captured by the FEA is clearly apparent. At both strain-
rates, the FE simulations showed very high precision in terms of the prediction
of the yield characteristics of the lattices, the behaviour of the microstructures
in the plateau region, and in the majority of the densification region. In
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Figure 4.32: Comparison of the numerical and experimental stress-strain curves
for the RVE sized 2D re-entrant honeycomb: (a) low strain rate, (b) high strain
rate, (c) all the experiments and the FE results.

the case of the low-strain rate loading, the main difference is the later start
in the densification occurring at a 4 % higher compressive strain, while the
slope of the numerical densification part is significantly higher together with
the maximum calculated strain at 135 MPa compared to the experimental
value of 105 MPa. Except for the delayed beginning of the densification,
the simulation also yielded a higher stress level than the values from the
quasi-static loading. The high-strain rate simulations resulted in the highly
precise prediction of the yield point, the plateau region, and the initial part of
the densification. Due to the absent pulse shaping measures and presumably
due to mesh density reasons, the maximum numerical stress deviated by 60 %
forming a sharp peak in the stress at the end of the experiment.
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A significantly lower precision of the FEA was achieved in the case of the
simulations of the 2D re-entrant honeycomb structures (Figure 4.32). At both
strain rates, sufficient conformity between the numerical and experimental
stress-strain curves was obtained for compressive strains up to 10 %, i.e.,
for the yield point and initial part of the plateau region. In both cases,
the most notable difference between the experiments and FEA arose from
consistently higher numerically predicted stress in the plateau region (up to
the densification of the structure at a higher strain-rate) exaggerating the
predicted strain-rate sensitivity of such a lattice. The simulations at the lower
strain-rate resulted in a similar mode of deformation of the lattice leading to
repeated increases and decreases of the stress in the plateau region at strains
similar to the experiments, but with the calculated stresses up to 50 % higher.
The numerically compressed 2D re-entrant lattice exhibited an approximately
monotonic increase in the stress in the plateau region, whereas a 33 % decrease
between 0.12 and 0.32 of the compressive strain was observed in the SHPB
experiments. However, the results from the numerical simulations showed
very high similarity in the densification region, except the highest calculated
compressive stress.

The 3D re-entrant lattice simulated at the low strain-rate showed very good
conformity between the numerical and experimental results in terms of the
yield point and the evolution of the stress in the plateau region up to 10 %
of the compressive strain (Figure 4.33). At higher strains, the obtained
dependency was anti-symmetric to the results of the 2D re-entrant honeycomb
as the numerically predicted one was not monotonically increasing in the
plateau region and during the local decrease between 12 % and 17 % of the
compressive strain, the FEA calculated stress reached the stress-strain curve
from the quasi-static experiments seemingly indicating a negligible strain-
rate dependency of the structure. Simultaneously, the SHPB experimental
results were monotonically increasing with a constant offset to the quasi-static
experiments. An apparently higher precision was achieved in the simulations
of the high strain-rate experiments, where an almost identical stress-strain
diagram was predicted. Here, the numerical simulations resulted in the start
of the densification at the compressive strain higher by 0.05 and higher than
both the maximum compressive strain (10 % higher) and compressive stress
(20 % higher).
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Figure 4.33: Comparison of the numerical and experimental stress-strain curves
for the RVE sized 3D re-entrant honeycomb: (a) low strain rate, (b) high strain
rate, (c) all the experiments and the FE results.

Strain-dependent Poisson’s ratio

For every investigated microarchitecture, the evaluation of the function of
Poisson’s ratio based on the DIC-data postprocessing of the experimental
measurements was performed. Instead of the DIC method for the analysis of
the displacements and strains on the deforming lattices, the time-dependent
characteristics of the FE mesh (i.e., the location of the selected nodes) were
extracted from the databases and subjected to analysis. The acquired curves
were compared to the experimental results to evaluate the ability of FEA to
predict Poisson’s ratio of the dynamically loaded auxetic lattices in question.
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Figures 4.34 - 4.36 depict the numerically and experimentally assessed Pois-
son’s ratio plotted against the compressive strain of the lattices subjected to
the quasi-static and dynamic loading.
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Figure 4.34: Numerical and experimental function of Poisson’s ratio - 2D
missing-rib lattice composed of the 3× 3 unit-cells, the dynamic and quasi-static
response.

Interestingly, the highest agreement between the FEA and experimentally
evaluated function of Poisson’s ratio was obtained for the missing-rib structure
having 3 × 3 unit-cells in the assembly (Figure 4.34). Here, the numerical
values of Poisson’s ratio not only lie within the standard deviation intervals
of the experimental curve, but, starting at the compressive strain of 0.05,
the FEA results almost precisely follow the experimental results up to a
compressive strain of 0.35.

In the case of the 2D re-entrant honeycomb (Figure 4.35), the numerical
simulations predict a consistently lower Poisson’s ratio throughout the de-
formation range used in the experiments. The values of the numerical curve
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Figure 4.35: Numerical and experimental function of Poisson’s ratio - 2D re-
entrant honeycomb lattice composed of the 3 × 3 unit-cells, the dynamic and
quasi-static response.

are outside the standard deviation envelope of the SHPB experiments except
for the compressive strain range of 0.05− 0.1 reaching a global minimum of
−0.65 at a 0.3 compressive strain. The discrepancy between the experimental
and numerical extremum, thus, amounts to 100 %. It can be seen that simi-
larly to the experiments, the numerical Poisson’s ratio decreases up to a 0.3
compressive strain, but the slope of the curve increases between the 0.2 and
0.3 compressive strain, which does not reflect the theoretical assumptions for
the response of re-entrant honeycomb auxetic lattices.

The numerical deformation response of the 3D re-entrant lattice also shows
significant discrepancies between the experiments and the simulations (Fig-
ure 4.36), although in this case, the overall shape of the curves is similarly
convex during the majority of the compression. The calculated minimum of
Poisson’s ratio in the simulations was −0.38, whereas the minimum value
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Figure 4.36: Numerical and experimental function of Poisson’s ratio - 3D re-
entrant honeycomb lattice composed of the 3 × 3 unit-cells, the dynamic and
quasi-static response.

in the simulations was −0.12. The numerical Poisson’s ratio evaluated from
the two perpendicular faces of the lattice was identical up to approximately
20 % of the compressive strain. At higher strains, the face denoted yz yielded
approximately 10 % higher values of Poisson’s ratio. For Poisson’s ratio cal-
culated from both the faces, a trend similar to the 2D re-entrant honeycomb
consisting in the decrease of Poisson’s ratio beyond a 0.3 compressive strain
can be observed, which also does not correspond to the theory of re-entrant
honeycomb NPR lattices.
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Figure 4.37: Comparison of the numerical and experimental function of Poisson’s
ratio for the RVE sized 2D missing-rib lattice: (a) low strain rate, (b) high strain
rate, (c) all the experiments and the FE results.

The numerically and experimentally determined functions of Poisson’s ratio
for the RVE sized specimens are shown in Figures 4.37 - 4.39.

From the plots of the strain-dependent Poisson’s ratio, it can be seen that the
precision of the numerical simulation is proportional to the strain-rate in the
case of the missing-rib structure (Figure 4.37). In the low strain-rate loading,
the results of the numerical simulations show an increase in Poisson’s ratio
from −0.33 to −0.18 within 1 % and 7 % of the compressive strain followed
by a gradual increase to −0.125 at 25 % of the compressive strain, where
the gradient of Poisson’s ratio increases significantly. In the interval of the
compressive strain between 1 % and 17 %, the numerical Poisson’s ratio lies
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within the standard deviation band of the SHPB experiments. Although
the overall shape of the numerical and experimental curves is different, the
two curves are approximately parallel at strains over 20 %. The numerically
determined Poisson’s ratio at the high-strain rate then exhibits a similar
shape to the low strain-rate loading, except for the gradient increase at a
25 % strain that is not present at the high strain-rate loading. Unlike the
SHPB data, the numerical Poisson’s ratio is constant at a value of −0.15
in a wide range of deformation throughout the experiment, while the DIC
determined behaviour of the samples shows an approximately linear increase
in Poisson’s ratio from the global minimum of −0.33 at 9 % strain up to a zero
value. However, the numerical simulations predict an inverse proportionality
of the strain-dependent Poisson’s ratio to the strain-rate than the SHPB
experiments as the auxetic behaviour of the lattice was decreasing with the
strain-rate. Nevertheless, it is difficult to draw conclusions on the reliability
and precision of the simulations in this case as the standard deviations in the
SHPB experiments were very high resulting in an overlap of the statistically
evaluated Poisson’s ratios at a high and low strain rate.

The simulations of the 2D re-entrant honeycomb (Figure 4.38) resulted in ap-
proximately a 75 % lower predicted minimum of Poisson’s ratio, while closely
maintaining a similar shape during the whole range of deformation. The com-
parison of the low-strain rate experiments and the simulations shows, besides
the different absolute values, that the global minimum of Poisson’s ratio was
obtained at a 0.025 strain in the simulations and 0.05 in the experiments.
On the contrary, the high strain-rate loading yields the global minimum
identically at a 0.05 strain. Interestingly, the strain-rate effect during the
SHPB experiments showed a higher Poisson’s ratio at a higher strain-rate up
to a 0.08 strain and the inverse behaviour at higher strains, which was also
captured in the numerical simulations including the compressive strain of the
intersection point between the curves of the two strain-rates.

The numerical Poisson’s ratio was, in the case of the 3D re-entrant honey-
comb lattice, evaluated from two perpendicular faces (Figure 4.39), while
only one direction was observed by the high-speed camera during the SHPB
experiments and thus subjected to the DIC-based analysis. From the experi-
mental curves, it can be seen that the strain-rate dependence of this lattice
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Figure 4.38: Comparison of the numerical and experimental function of Poisson’s
ratio for the RVE sized 2D re-entrant honeycomb: (a) low strain rate, (b) high
strain rate, (c) all the experiments and the FE results.

is represented by an inverse proportionality as the magnitude of the auxetic
behaviour decreases with the considered strain-rate towards positive Poisson’s
ratio and closely resembles a compressive response typical for closed-cell
metal foams. In the numerical simulations at both strain-rates, interesting
results were acquired in terms of the difference in Poisson’s ratio derived
from the two perpendicular faces. It can be seen that the results calculated
from the face denoted yz are both within the standard deviation interval of
the SHPB experiments although the predicted strain-rate effect is negligible.
Simultaneously, Poisson’s ratio calculated from faces denoted xz predict the
same strain-rate dependence as evaluated from the SHPB experiments, but
the auxetic behaviour increases with the compressive strain and the curves
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Figure 4.39: Comparison of the numerical and experimental function of Poisson’s
ratio for the RVE sized 3D re-entrant honeycomb: (a) low strain rate, (b) high
strain rate, (c) all the experiments and the FE results.

lie outside the standard deviations of the experiments at a strain higher than
0.1.
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4.5 Discussion

Experimental part

The employed SHPB experimental setup and its instrumentation were suitable
for the measurement of the SLS printed auxetic structures with a different
number of unit-cells in the lattice under all strain rates. The setup calibration,
pulse shaping techniques, and data correction methods were used for the
evaluation of the dynamic material characteristics. Dynamic equilibrium was
achieved shortly after the arrival of the incident wave to the impact face of the
specimen. The evaluated stress-strain curves were valid and were successfully
used for the analysis of the effect of the number of unit-cells in the structure
and strain-rate on the stress-strain response of the structures and the function
of Poisson’s ratio. Furthermore, the results of the SHPB experiments were
used for the calibration and verification of the FE simulations.

The identified strain rate sensitivity of the sintered structures was comparable
to the results summarised in the literature, where additively manufactured
bulk specimens from sintered material were studied using SHPB [152,153].
The quasi-static compression tests showed a similar deformation behaviour of
the auxetic lattices, as can be seen in the quasi-static compression study con-
cerning sintered metallic re-entrant lattices of a similar geometry. Significant
buckling effects and a loss of stability of single layers in quasi-static compres-
sion were observed during the loading of all the investigated lattices resulting
in significant lateral displacements affecting the calculated Poisson’s ratio.
These effects were reduced significantly in dynamic compression in SHPB,
where the lateral distortion was minimised and the structures exhibited a
homogeneous deformation. The densification of the structures occurred at
lower strains in dynamic compression as well.

DIC was successfully used for the evaluation of the displacement and strain
fields to be used as a basis for the calculation of the function of Poisson’s ratio.
The important finding is that the auxetic behaviour of the structures under
quasi-static loading is not very strong, but it is very profound under dynamic
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loading. From the DIC, it was found out that the nearly homogeneous
compression in the loading direction was maintained for all the samples. For
all the experiments, it was possible to compute the strain fields from the
recorded images and derive the function of Poisson’s ratio for a compressive
strain of at least 30 %. For comparison purposes between the studied lattices,
a relatively simple procedure based on the described two-stage DIC algorithm
with sub-pixel precision for the evaluation of the displacement was used.
Since the strain values in the longitudinal and lateral directions are used to
mutually compare the behaviour of the structures and compare Poisson’s ratio
of the studied lattices, the simplified procedure enables an easy comparison.
Improvement of the evaluation of the displacement and strain fields of such
experiments using DIC would require taking the incremental strain theory
into account or perform a global DIC procedure, where adjusting the shape-
function-controlling parameters during minimisation routines affects the
displacement field globally. It would be necessary to account for additional
effects, e.g., out-of-plane deformation, Lagrangian mesh tracking to follow
the strain localisation, and checking for a distorted mesh occurrence. To take
these effects into account, it would be necessary to use a two-camera system
with a higher frame-rate at a higher resolution together with the appropriate
DIC and post-processing algorithms.

Poisson’s ratio

The missing-rib microstructure exhibited NPR behaviour in all the dynamic
loading cases. Due to the chiral nature of the unit-cells and the lateral
movements of all the layers during the compression, the standard deviations
of Poisson’s ratio curves in the dynamic compression were higher than in the
experiments of the other structures. Nevertheless, the missing-rib structure
exhibited a proportional strain-rate sensitivity of the function of Poisson’s
ratio to the strain rate. With an increasing strain-rate, the structure also
exhibited an auxetic behaviour up to higher compressive strains. The 2D
re-entrant honeycomb auxetic structure exhibited an NPR response under all
dynamic loading conditions and a strain-rate sensitivity of Poisson’s ratio.
In the dynamic compression of the RVE sized lattices, the global minimum
Poisson’s ratio did not reach the magnitude observed in the quasi-static
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compression, but the microstructure remained auxetic up to significantly
higher compressive strains. The 3D re-entrant honeycomb auxetic structure
exhibited an NPR effect also in the quasi-static loading of the 3× 3 lattice.
During the dynamic loading scenarios, the structure exhibited a Poisson’s
ratio close to zero and the magnitude of the auxetic behaviour was inversely
proportional to the strain rate as the higher strain rate loading resulted in
approximately a zero average Poisson’s ratio. It was not possible to clearly
identify the strain-rate sensitivity of the structure due to the high standard
deviations of the evaluated Poisson’s ratio curves in all the loading cases. The
results correspond to the behaviour observed during the visual inspection of
the experiments. Such an architecture exhibits not only the highest porosity,
but the assembly is based on slender individual struts prone to a loss of
stability and with a significantly lower loading capacity than in the case of the
structural elements of the other analysed microarchitectures. As a result, the
compressive response of such a structure is very similar to the compression
of an open-cell or a closed-cell metal foam. In the experiments with the
2D missing-rib structure and the 2D re-entrant honeycomb, Poisson’s ratio
did not adhere to the theoretical assumptions concerning these lattices as
the minimum of Poisson’s ratio at very small strains was not followed by
its gradual increase towards zero or positive values. This behaviour can be,
however, attributed to the low quality of the SLS printing (see Discussion
- X-ray micro-CT inspection), which may have substantially changed the
deformation response of the lattices.

Strain-rate dependence

The discussed effects of the strain-rate on the observed deformation properties
are caused by non-linearities at several levels of the hierarchical structure of
the material, i.e., from the strain-rate dependence of the printed steel on a
microscale to the micro-inertia effects and shock wave propagation on a macro-
scale. As a result, the mode of deformation of the individual struts and their
joints varies in quasi-static and dynamic loading regime. For example, it can
be seen in the quasi-static experiments that every layer of the unit-cells moves
laterally after its collapse leading to a very high lateral difference in the final
position of the lowest and the highest layers. In the dynamic experiments,
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however, the mentioned effects are not as significant and exhibit a more
uniaxial response of the microstructure, where the pronounced Poisson’s ratio
effects cause a more uniform compression. As the boundary conditions can be
different during the quasi-static experiments and dynamic compression using
Hopkinson bar, which can affect the measured data, all the contact faces of
the specimens as well as the faces of the loading devices in the contact with
the specimens were precisely polished and lubricated with a small amount
of grease. Thus, the boundary conditions of the experiments were very
similar. Moreover, the bending of the incident and transmission bars (the off
axis-movement that can negatively affect the results) was investigated by a
high-speed camera. No significant bending of the bars was observed during
the impact up to the densification of all types of structures. Considering this
analysis, it can be concluded that any changes in the deformation behaviour
can be addressed solely with the strain-rate. Friction and shock effects on the
specimen’s boundaries during the dynamic experiments can be considered
consistent and are therefore a part of the specimen’s response to the impact
loading. The design of the specimen is a trade-off between the specimen’s
suitability for the high strain-rate dynamic measurements, the actual limits
of the manufacturing technology (resolution, printing technique, mechanical
properties of the printed specimen), and the representative volume element
of the cellular structure. Moreover, a valid SHPB experiment has to be
conducted in dynamic equilibrium and attention has to be paid to the friction
and inertia effects. The mechanical impedance of the specimen and the wave
propagation phenomena are key factors for the relevant results of the test.
Thus, the dimensions of the specimens were selected to minimise the friction
and inertia effects. Also, the specimen was equipped with the necessary
supporting platens on the contact faces to provide good contact with the
propagating stress wave on the contact faces. Otherwise, the ramp-in effect of
the propagating stress wave would cause a non-ideal contact of the bar with
the specimen’s struts resulting in the limited wave transfer, long times to
reach the dynamic equilibrium, very non-uniform wave propagation through
the specimen, or even the sudden collapse of the struts during the initial ramp-
in phase. On the other hand, the supporting platens change the boundary
conditions of the neighbouring cells [154]. Using the selected geometry of
the specimens with the RVE number of unit-cells, it was possible to have at
least 3× 3 unit-cells in the core surrounded by the other cells. The core of
the specimen was of main interest as the behaviour in this region should be
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the most representative for the investigated structures. It can be concluded,
that the specimens exhibit stress concentrations in the central part (the core
of the specimen) and the resulting properties of the auxetic structure itself
would be dependent on the array configuration.

Numerical part

Finite element simulations of the auxetic lattices subjected to dynamic com-
pression using the virtual SHPB apparatus were developed to create a frame-
work for the prediction of their mechanical and microstructural characteristics,
as well as the estimation of the parameters of the SHPB experiments. Here,
the experimental results obtained during the dynamic compression of the
lattices were used as a basis for the calibration and verification of the nu-
merical simulations. During the development of the simulation framework,
sensitivity studies covering several aspects of the FEA were performed to find
an optimal, computationally feasible approach for the accurate and reliable
numerical estimation of the compressive characteristics of the considered
auxetic lattices. The parameters identified in the sensitivity studies were used
in the parametric simulations for optimisation of the material model for the
SLS printed auxetic lattices by comparing the numerically and experimentally
obtained strain histories captured at the incident and transmission bar. The
strain versus time data captured at the virtual incident and transmission
strain-gauges were then subjected to the same SHPB evaluation methods
used in the experiments. For all the considered auxetic lattices and initial
conditions, generally, a very good agreement between the experimental and
numerical results was found in terms of the apparent yield strength, the
plateau region behaviour, and the densification stage of the deformation
response. Since the numerical pulse shaping measures were omitted in the
simulations due to the additional complexity of the task, the differences of
the FEA from the experimental results, the achieved compressive strain and
the maximum stress, are primarily a result of the different slope of the strain
waves and the resulting development of the strain-rate in the specimen.

By having full access to the location of the FE mesh features in the numerical
simulations, the nodes in the locations consistent with the markers generated
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in the DIC evaluation of the experiments were used to derive the numerical
strain-dependent Poisson’s ratio. A significantly lower agreement between the
numerical and experimental results was observed particularly in case of the
structures having 3×3 unit-cells in the lattice. Here, the problem consists of a
combination of several factors influencing the tested and simulated mechanical
response of the lattices including insufficient number of unit-cells with respect
to the RVE dimensions. This fact, in connection with the generally poor
quality of the SLS printing resulting in the localised porosity and anisotropic
geometrical changes due to the heat dissipation, which renders the evaluation
of FEA precision and reliability particularly difficult. A further factor that
has to be taken into account is the sub-RVE size of the lattices. This is
one probable factor causing the non-physical strain-dependent behaviour
of Poisson’s ratio, where the asymptotic decrease towards zero or positive
values was not achieved in the case of both the 2D and 3D re-entrant lattices.
Furthermore, the Poisson’s ratio was evaluated from nodal displacements of
the joints of only one row of unit-cells that were, moreover, located near the
faces of the lattice. Thus, the both the microstructural and numerical size
effect influence the reliability of the simulations in this case. In contrast, the
simulations of the RVE sized lattices showed better accuracy, as the numerical
and experimental trends were similar and, in certain cases, such as the 3D re-
entrant honeycomb, the numerical curves were within the standard deviation
bands of the experimental results. Furthermore, an interesting phenomenon
was observed in the case of the RVE sized 3D re-entrant honeycomb, where
Poisson’s ratio calculated from one side of the specimen was almost precisely
corresponding to the experimental results, while the perpendicular face showed
a different behaviour. This leads to the conclusion that the accuracy of
the FEA can not be evaluated without the use of the DIC on both the
perpendicular faces of experimentally tested specimens, or using an additional
set of experiments with the other face observed by a high-speed camera.
Moreover, non-linear out of plane displacements have been observed in the
numerical simulations, which is a phenomenon requiring a 3D DIC algorithm
being implemented in the experimental evaluation procedures.
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FEA calibration

Based on the results of the sensitivity studies, it is important to primarily
discuss the mesh density and material model selection problems. Even without
considering the constitutive material of the SLS printed lattices, the most
important problems in the calibration of the FE simulations arise from the
multi-variable nature of the investigated compressive response, where it is
not possible to isolate and calibrate the individual parameters. Moreover, it
is difficult to define the objective function for the calibration procedures, and
in this work, the qualitative evaluation of the transmission waves was used
as a most suitable approach. When computational costs are also taken into
account, the follow-on analyses including additional sensitivity studies will be
performed on a supercomputer instead of the high-performance workstation,
which will also be necessary for simulations of the RVE sized lattices with a
higher mesh density.

For the representation of the SLS printed powdered austenitic stainless steel,
the relatively simple MAT 12 isotropic elastic-plastic material model was used.
It is a common practice in the explicit dynamic simulations of metals that
particularly a certain formulation of the Johnson-Cook material model for the
simulation of events comprising temperature-sensitive plasticity, where the
strain rates vary over a large range and adiabatic temperature increases due
to plastic work-induced heating cause material softening. Here, the complete
formulation of MAT 15, or the simplified formulation of MAT 98 can be
selected in the LS-DYNA database. The simplification of MAT 98 model
is due to the ignored thermal effects (and damage) so that the maximum
stress is directly limited since the thermal softening, which is very significant
in reducing the yield stress under adiabatic loading, is not available. To
compensate for the lack of thermal softening, limiting stress values are used
to keep the stresses within reasonable limits and the linear bulk modulus is
used to determine the pressure in the elements. Regarding the computational
costs, MAT 15 also requires an equation of state and MAT 98 is comparatively
50 % less computationally intensive due to the simplifications related to the
thermal softening and damage. By analysing the material model database,
other suitable material models can be selected, for instance, MAT 19 strain-
rate dependent plasticity or MAT 24 piecewise linear plasticity. However, the
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same disadvantages apply for all four constitutive material models regarding
the ability of the experimental calibration because of the available methods
and instrumentation.

Influence of AM quality

In the author’s experience, the actual properties of the SLS printed constructs
unfortunately strongly depends on the know-how of every supplier, i.e., the
resulting microstructural and macroscopic characteristics are always unique
to a certain extent and may also vary from batch to batch of the specimens.
This is given by the fact that the printing procedure is defined by hundreds
of individual arbitrary parameters, where the values almost entirely depend
on the operator’s experience. This is comprised of several aspects including
the rotation of the printed specimen with respect to the bedplate, where it is
necessary to define supporting pillars in the reference geometric models to
guarantee the stability of the porous construct and proper heat dissipation
during printing. The pillars have to be carefully removed by machining after
the printing though, because fragments or damage to the construct may have
a significant influence on the dynamic properties. Simultaneously, the printing
has to produce a homogeneous material at the grain-size level, ideally without
voids. It has been shown here that the SLS/SLM AM process induces many
imperfections influencing the mechanical properties, such as porosity, cracks,
or entrapped gas bubbles as reported in, e.g., [155] for Ti-6Al-4V and [150]
for the 316L stainless steel considered in this work. The greatest influence
is from the pores or regions of non-processed powder, which primarily form
between layers. Many other processes are influencing the quality of the result,
such as the thermal/fluid aspects inherent to SLS which are essential for
optimizing the printing process and ensuring defect-free, high-quality results.
The inherent attribute of the SLS/SLM relevant to this work leading to the
degradation of the specimen quality is the porosity. Pores inside the SLM
parts drastically influence the deformation behaviour and, therefore, reducing
the porosity produced by SLS/SLM and research on the windows of the
parameters required to produce high-density parts is essential [151]. Some
analyses were performed using purposely produced SLS samples made from a
Ti-6Al-4V powder with defects by varying the process parameters from the
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factory default settings (see, e.g., [156]). It was concluded that the energy
characteristics have a significant effect on defect generation and high energy
density causes over-melting of the powder bed leading to a significant defect
generation.

X-ray micro-CT inspection

As a result, to get, at least, rudimentary information about the investigated
constructs, the samples with the RVE number of unit-cells were subjected to
metrology and X-ray microtomographic measurements. From the geometrical
characterisation, it was surprisingly found out that the strut thickness in
the lattices may vary up to 30 % from the prescribed dimensions, but more
importantly, the overall dimensions of the constructs were shrunk in all three
spatial directions by approximately 10 %. For this reason, the corresponding
geometrical models of the constructs had to be reversely engineered according
to the actual dimensions of the samples. Despite the strong photon scattering
in the reconstructed 3D images of the constructs, caused by the high atomic
number of the Ferrum element in the alloy not compensated by sufficient
filtering, voids stochastically distributed in the printed solid were identified,
while certain inclusions had an effective diameter as high as half of the
strut thickness. Figure 4.40 shows slices in the reconstructed volume of the
tomographically scanned sample having the 3D re-entrant geometry printed
using SLS.

It can be seen, despite the strong beam hardening and photon scatter artefacts,
that the printed geometry conforms reasonably to the prescribed model in
one plane (upper part of Figure 4.40) except for the surface of the struts on
one side (see the middle part of Figure 4.40 and compare with the position
of the slice in the bottom part of the same Figure). Here, the SLS printing
procedure resulted in a large amount of improperly sintered material, which
significantly changed the cross-sectional characteristics of the struts. The
lower part of Figure 4.40 also shows a typical region with increasing occurrence
of voids in the struts together with the apparent bent-shape of the struts or
noncompliance of the printed lattice with the prescribed vertical orientation of
struts. Assuming these facts, the material of the construct can be considered
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Figure 4.40: Slices in the reconstructed 3D image of the SLS printed 3D re-
entrant lattice: front view in the axis of symmetry of the struts (top), front view
showing the unsintered surface of the struts (middle), and side view showing the
porosity within the struts (bottom).

a porous solid with at least an orthotropic nature rather than a homogeneous
isotropic metal. All these factors lead to the motivation to use the simple
MAT 12 elastic-plastic material model as it is not possible to reasonably
substantiate the use of the Johnson-Cook constants from the literature due
to the uniqueness of the printing procedure. The MAT 19 material model
requires a definition of yield stress, Young’s modulus, and tangential modulus
as a function of the strain rate. Similarly, the MAT 24 material model requires
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data for the effective stress versus the effective plastic strain for the given
strain rate range and strain rate scaling effect on the yield stress together with
the strain rate parameters for the constitutive equations. The microstructural
characterisation together with the dynamic testing showed that the behaviour
of the SLS printed bulk samples represents the characteristics of the specimens
only to a limited extent due to differences in the orientation during printing
and the different size of the struts in the auxetic lattices. For this reason,
the MAT 12 material model was selected as it enables the easy calibration,
computational efficiency, and numerical stability. The follow on parametric
studies utilizing the supercomputer capabilities will be then concentrated not
only on the mesh properties, but also on the alternative constitutive material
model selection including the stress hardening properties, thermal softening
and possible orthotropicity [157], which is currently followed direction of the
research.

Temperature dependent properties

An experimental investigation into the thermal effects during the SHPB
compression of the investigated RVE sized samples has been performed. It
is commonly published (see, e.g., [158]) that the strength of the 316L steel
decreases rapidly over 400 ◦C, while the tensile strength and elongation at
break remain approximately constant up to 100 ◦C. For this reason, high-
speed thermography during the SHPB testing of the 2D re-entrant auxetic
lattices has been performed to evaluate the maximum temperature of the
struts in the central part of the lattices, when subjected to loading at two
different strain-rates [13]. The same SHPB setup utilised in this work was used
also in the thermal experiments, albeit with updated optical instrumentation
composed of two high-speed Fastcam SA-Z (Photron, Japan) cameras and two
high-performance MULTILED QT (GS Vitec, Germany) LED light sources
for the lighting of the scene. One camera was used to record the in-plane
auxetic deformation of the specimen at a resolution of 256 × 168 px and
approximately 252 kfps. Images of this camera were used for the DIC analysis
to calculate the displacement and strain fields. A speckle pattern was applied
on both ends of bars for the DIC of their movement during the experiment.
The second camera provided a general overview of the experiment and served
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as a means for the inspection of the behaviour of the experimental apparatus
at the moment of impact. Its resolution was set to 512× 424 px resulting in
80 kfps. Simultaneously, the impacts were observed by the thermal imaging
camera to evaluate the thermal effects induced by the rapid compression
of the samples. The SC 7600 (FLIR, USA) high-speed thermal imaging
camera equipped with an actively cooled focal plane array (FPA) with a
full-frame resolution of 640× 512 px and pixel pitch 15µm was attached to a
50 mm f/2 lens with anti-reflection coated silicon glass optics. The camera
uses a photon counting Indium Antimonide (InSb) detector operating in a
1.5− 5µm spectral range (SWIR to MWIR band). The lens-camera assembly
was calibrated for the temperature range from −20 ◦C to 300 ◦C, where the
thermal response of the samples to the loading was anticipated. To achieve
the maximum possible frame-rate at a reasonable resolution, FPA windowing
to 96× 44 px was used to perform imaging at approximately 2 kfps for the
room and elevated temperature experiments, while the cooled samples were
observed at approximately 1.9 kfps given by the integration time necessary for
imaging the samples at such low temperatures. During all the experiments, an
MgF2 infrared-transparent protective window was used to guarantee the safety
of the thermal imaging optics. For verification of the cooling procedure and
the sensitivity of the high-speed thermal-imaging camera, a microbolometric
LWIR thermal imager i7 (FLIR, USA) was used.

At strain-rates of 1150 s−1 and 2300 s−1, the specimens were tested at three
temperature levels distinguished by different initial temperatures at the
moment of the start of the measurement. According to the capabilities of the
in-house developed heating/cooling setups (see [13] for details), particularly
the achievable speed of the temperature changes, and the thermal conductivity
of the samples, the low temperature of −5 ◦C, the room temperature of 25 ◦C,
and the elevated temperature of 120 ◦C were selected for the measurement.
In total, five specimens were tested at a given strain-rate and temperature.

Stress-strain curves for the individual temperatures and strain rates were eval-
uated from the strain-gauge signals according to the standard one-dimensional
wave propagation theory valid for SHPB. For all the temperatures, the stresses
in dynamic compression were considerably higher than in the case of the
quasi-static tests (approximately 30 % higher at the room temperature). The
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stresses in the experiments with the low temperature were higher than the
stresses during the experiments conducted at room temperature. The same
trend was observed in the experiments at the elevated temperature, where the
stresses were significantly lower than during the room temperature testing and
even approached the values of the quasi-static room temperature curve. With
the increasing strain rate, the densification of the structure occurred at the
lower strain. To quantify the strain rate and temperature-related sensitivity
of the lattice structure, the average plateau stress was calculated from the
stress-strain diagram in a strain range of 0.05− 0.25. This range was selected
as the strain rate in this interval remained approximately constant and was
not affected by the initial ramp-in phase of the strain pulse or rapid strain
rate decrease during the densification. Here, the coupled thermo-mechanical
behaviour of the lattice structure was very profound as, at the low and room
temperature, the average plateau stress was increasing with the strain rate.
The rate of its increase was marginally higher for the low temperature. The
inverse behaviour was observed in the experiments conducted at the high
temperature, where the average plateau stress decreased with the strain rate
revealing the thermal related softening of the lattice structure.

A qualitative analysis of the deformation processes was performed by studying
the distribution of heat in the acquired thermograms. The data show that
the initial temperature of the sample not only trivially influences the highest
observable temperature of the deforming microstructure, but, more impor-
tantly, affects the difference between the initial and the highest measured
temperature during the given experiment. As such, the highest temperature
difference was calculated for the room temperature samples, while the lowest
difference was assessed for the elevated-temperature samples loaded at a
lower strain-rate. Furthermore, the thermograms can be used as a means for
the inspection of the concentration of the deformation within the specimen
microstructure. Here, it is possible to reveal, e.g., the localised heating in
the joints of struts and the overall distribution of the deformation over the
microstructure including the possible localisation of deformation to certain
layers of the unit-cells.
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4.6 Summary - dynamic regime

In the dynamic part, SHPB experiments with all the SLS printed steel
samples (having a different number of unit-cells in the lattice) were performed
to obtain their strain-rate dependent stress-strain response and the strain-
dependent Poisson’s ratio characteristics under dynamic loading conditions. A
virtual SHPB apparatus was developed in LS-DYNA and precise geometrical
models of the investigated structures were used in the numerical modelling
to assess their simulated deformation characteristics with. The stress-strain
response is of the virtual experiments is obtained from the strain versus
time histories captured at the virtual strain-gauges that are subjected to the
same mathematical evaluation procedures used in the experiments. Using the
full access to the nodal displacements in the FEA, the function of Poisson’s
ratio is derived at the same locations used in the DIC-based evaluation of
the experiments. Several aspects of the numerical modelling were addressed,
including the constitutive model development, the mesh development of
the SHPB bars, and the mesh development of the auxetic lattices. The
ability of the numerical simulations to capture the dynamic deformation
of the investigated lattices is shown on comparison of the experimental
and numerical results in terms of stress-strain diagrams and the function
of Poisson’s ratio. The influence of the printing quality on the agreement
between the experimental and numerical results is commented in the discussion
together with the temperature dependent characteristics assessed using the
SHPB apparatus equipped with a high-speed thermal imaging camera.
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Summary

In the experimental campaign, three types of auxetic lattices were subjected
to uni-axial quasi-static and compressive impact loading in the SHPB. The 2D
re-entrant honeycomb, the 3D re-entrant honeycomb, and the 2D missing-rib
structures were printed from PMMA using multi-jet modelling technology
and sintered from powdered 316L austenitic steel. Furthermore, two different
types of SLS printed steel samples with a different number of unit-cells in the
lattice were developed and the samples having an RVE number of unit-cells
were subjected to dynamic compression at two strain-rates. In all cases, the
quasi-static compression was observed using a CCD camera, whereas the
dynamic experiments were recorded using a high-speed camera for processing
the acquired images of the deforming structures using the DIC technique.
The longitudinal and lateral strain fields were calculated and the strain-
dependent Poisson’s ratio was evaluated for each of the lattices. The derived
functions of Poisson’s ratio were analysed and the changes in the deformation
behaviour induced by the different compressive strain-rates were identified.
The 2D re-entrant honeycomb and the 2D missing-rib structures exhibited
a significant strain-rate dependency of the auxetic behaviour. The 3D re-
entrant structure exhibited auxetic behaviour only in the region of a limited
number of the unit-cells close to its centroid and only during the quasi-static
compression. Overall, the dynamic experiments with this lattice having an
RVE number of unit-cells in the structures yielded a Poisson’s ratio close to
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zero rendering the deformation response of this microarchitecture very similar
to metal foams. The resulting magnitude of the auxetic behaviour remained
low, although negative over the whole range of the deformation, while the
standard deviation of the experiments reached positive values of Poisson’s
ratio. Aside from the experiments with the lattice structures, quasi-static
and dynamic experiments with bulk samples printed from 316L stainless steel
in different orientations were performed during the development of the FE
material model. The dependency of the strain-rate sensitivity and the printing
direction of the material was clearly apparent from the stress-strain diagrams.
The specimens with a horizontal printing orientation exhibited, on average, a
28 % variation between the stresses achieved during the quasi-static and the
dynamic loading, while the smallest difference of 14 % was observed as noted
for the tilted printing orientation. The average difference of the stress values
evaluated from the quasi-static and dynamic testing of the vertically printed
specimens was 21 %. It was found out that the values of the yield stress in
dynamic compression are lower than the nominal quasi-static data, which
can be attributed to the poor surface quality of the specimens and the overall
brittle-fracture tendency of the bulk samples. As a part of the experimental
campaign, the selected auxetic lattice was also subjected to a micro-CT
measurement to inspect its internal structure, which showed a relatively large
localised porosity corresponding to the difference in the nominal and measured
mass density of the samples. Also, it has to be stated that the quality of the
steel AM procedure was questionable with an utmost probability significantly
influencing the mechanical and microstructural response of the samples due
to the non-compliance of the printed samples with the given geometry in
terms of both the overall dimensions and the surface quality.

Based on the testing of the PMMA samples in the quasi-static regime, the
corresponding FE simulations were developed in ANSYS using beam-analogy
discretisation to investigate the possibilities of the parametrisation of the
structures including the influence of the numerical aspects of the simulations.
At first, displacement controlled simulations were used to obtain the numerical
stress-strain curve of each lattice up to the yield of the structure and the
results were compared with the experiments. Then, parametric simulations
were performed to reveal the influence of the relative density on the stiffness
and Poisson’s ratio at the given compression of the structures, while different
material models and strain formulations were studied to characterise the
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numerical aspects of the simulations. Dynamic FE simulations comprising
explicit time integration in LS-DYNA and the exact geometry of the SLS
printed lattices were performed to be able to predict the deformation response
of the lattices and estimate the SHPB parameters for the measurements of
such constructs. For this reason, a virtual SHPB apparatus was developed
and calibrated by performing multi-parametric optimisation of the FE mesh
of the bars, material models, and numerical properties of the simulations.
Experimentally verified void tests were used for the development of the virtual
SHPB setup. The simulations concerning the dynamic loading of the auxetic
lattices were performed using the same initial conditions as the experiments
to assess the reliability of the simulations. Here, the overall compressive
response of the lattices and the acquired strain-dependent Poisson’s ratio
were evaluated and compared against the experimental data. It has been
found out that such an approach consisting of the precise modelling of both the
experimental apparatus and the geometry of the samples can be successfully
employed even if a relatively simple material model of the lattice is considered.
Due to the uncertainties caused by the low quality of the printing, it can be
reasonably assumed that even a more accurate material model, incorporating
thermal effects and damage, could not describe the deformation response of
the lattices with higher precision. As a result, the very good precision of the
FE simulations was achieved in the case of the predicted stress-strain response
of the structures. However, a significantly lower reliability was achieved for
the Poisson’s ratio, where, in the majority of cases, only a general trend of
experimental curves was captured except for the 3D re-entrant honeycomb
with an RVE number of unit-cells. Here, the numerical Poisson’s ratio was
calculated from the deformation of two perpendicular faces yielding function
values within the standard deviation of the experiments from one face only.
A better evaluation was not possible in this case because only one face was
observed by the high-speed camera during experiments.

Using the evaluated results, the following conclusions can be drawn:..1. The SHPB is a suitable method for the investigation of the deformation
behaviour of laser-sintered auxetic structures. Dynamic equilibrium
was achieved in the experiments and the specimens were compressed at
approximately a constant strain rate.
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5. Summary ............................................2. The material used for sintering was identified as strain rate sensitive,
which added to the strain rate dependency induced by the micro-inertia
(to the studied lattices). All the structures exhibited approximately a
40− 70 % higher plateau stress in dynamic compression...3. A different deformation behaviour of the specimens was observed during
the quasi-static and dynamic experiments. The structures in quasi-
static compression exhibited a lateral deformation during compression,
in particular the 2D missing rib. The dynamically compressed specimens
exhibited a homogeneous deformation without any lateral distortion.
Densification of the structures occurred at the lower strain in dynamic
compression compared to the quasi-static tests...4. Poisson’s ratio was evaluated in both the quasi-static and dynamic
experiments using the DIC. Deformation with a negative Poisson’s ratio
was identified in all the structures having an RVE number of unit-cells
in the lattice in both the quasi-static and dynamic compression. The
structures with the reduced number of unit-cells were influenced by this
factor in terms of the strain-dependent Poisson’s ratio, which resulted in
the discrepancy between the dynamic and quasi-static response, including
a positive Poisson’s ratio...5. The evaluation of both faces is necessary in the case of the 3D auxetic
lattices. In the numerical simulations, the discrepancy of the functions
of the strain-dependent Poisson’s ratio was assessed, but due to the
instrumentation consisting of only one camera observing the deforming
structure, the evaluation of the numerical results against the experimental
data was not possible...6. A very high-quality of the SLS printing has to be pursued as the localised
voids together with the poor surface quality are the likely cause of
discrepancies between the explicit FE simulations and the experiments,
particularly in case of Poisson’s ratio. Certain aspects of the printing
quality, such as the porosity and surface roughness, can only be barely
incorporated in the numerical simulations on the level of the constitutive
model. Furthermore, the evaluation of these effects is also possible from
a statistical point of view...7. The clear disadvantage of the presented approach to the numerical
simulations (i.e., a full-scale model of the SHPB apparatus, the precise
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geometry of the samples) is the computational cost that would be further
manifested with a higher-order material model of the sintered steel and
denser mesh of the RVE sized lattices. As a result, a supercomputer with
a high number of CPUs (threads) would be needed to achieve reasonable
calculation times, particularly in the case of parametric simulations...8. The time-history of the strain rate in the virtual SHPB experiments is a
source of errors in the numerical simulations causing the discrepancies
in the initial and final stages of the dynamic compression of the samples.
This is caused by the numerical oscillations in the incident strain waves
and different slope of both the rising and falling edges, which is in the
experiments, influenced by the pulse shaper. For this reason, it is also
advisable to include the numerical pulse shaping measures to achieve a
higher agreement in the initial conditions [93].

Further work will be focused on the enhancement of the current modelling
schemes to include a higher-order material model of the SLS printed austenitic
steel, a higher mesh density of the auxetic lattices with an RVE number
of unit-cells, and the use of numerical incident pulse shaping measures.
This will enable one to achieve a higher precision in the prediction of the
deformation response of the samples to enable the numerical estimation of
the SHPB parameters for the testing of the particular lattice as well as the
optimisation of the design towards the precise tuning of the energy absorption
capabilities. Furthermore, it will also be possible to verify the numerical
results for the structures utilizing innovative concepts, such as structures with
enhanced strut-joint properties (e.g., a joint formed by a special structural
element - a hollow sphere similar to the enhanced re-entrant honeycomb
model, where the void inside the sphere enables the joint-like rotation of
connected beams) and structures with a tunable micro-inertia influencing their
strain-rate dependent response (e.g., structures with a purposefully added
mass to tailor the micro-inertia effect). The calibrated SHPB apparatus,
or more precisely its components, can also be used in the related dynamic
problems, such as the dynamic crushing of porous solids, and to study the
phenomena connected with the strain wave propagation in the continuum
with the necessary measures being developed for the evaluation of the SHPB
measurements including wave separation techniques. Furthermore, with the
use of a calibrated framework based on the LS-DYNA code, it will be possible

171



5. Summary ..........................................
to support the development of innovative solvers for explicit FEM applied to
contact-impact problems, where open doors still exist for primary research on
the numerical methods to answer, e.g., the following questions: Is it possible
to integrate with an explicit FEM with a larger timestep? How to avoid the
sensitivity of the stiffness penalty parameter in penalty methods for enforcing
contact constraints? Is it possible to eliminate spurious stress and contact
force oscillations? How to efficiently compute self-contact problems? How
to use modern computer networks and clouds in impact problems based on
the explicit time integration with minimal transfer of data among processors?
Is it possible to use tools of artificial intelligence in explicit FEM based on
High-Performance Computing for contact-impact problems?

172



Appendix A

Bibliography

[1] O. Jiroušek, I. Jandejsek, and D. Vavřík. Evaluation of strain field in
microstructures using micro-CT and digital volume correlation. Journal
of Instrumentation, 6(01):C01039–C01039, 2011.

[2] P. Koudelka, P. Zlamal, D. Kytyr, T. Doktor, T. Fila, and O. Jirousek.
On the modeling of the compressive behaviour of metal foams: A com-
parison of discretization schemes. In Proceedings of the Fourteenth
International Conference on Civil, Structural and Environmental Engi-
neering Computing. Civil-Comp Press, 2013.

[3] P. Koudelka, T. Doktor, J. Valach, D. Kytýř, and O. Jiroušek. Effective
elastic moduli of closed-cell aluminium foams - homogenization method.
UPB Scientific Bulletin, Series D: Mechanical Engineering, 75(1), 2013.

[4] T. Doktor, P. Zlámal, T. Fíla, P. Koudelka, D. Kytýř, and O. Jiroušek.
Properties of polymer-filled aluminium foams under moderate strain-
rate loading conditions. Materiali in Tehnologije, 49(4):597–600, 2015.

[5] A. Jung, M. Larcher, O. Jirousek, P. Koudelka, and G. Solomos. Strain-
rate dependence for Ni/Al hybrid foams. EPJ Web of Conferences,
94:04030, 2015.

173



A. Bibliography.........................................
[6] P. Koudelka, M. Neuhauserova, T. Fíla, and D. Kytýř. Deformation

mechanisms of auxetic microstructures for energy absorption applica-
tions. Applied Mechanics and Materials, 821:428–434, 2016.

[7] P. Koudelka, O. Jiroušek, T. Fíla, and T. Doktor. Compressive proper-
ties of auxetic structures produced with direct 3D printing. Materiali
in Tehnologije, 50(3):311–317, 2016.

[8] T. Fíla, P. Zlámal, O. Jiroušek, J. Falta, P. Koudelka, D. Kytýř,
T. Doktor, and J. Valach. Impact testing of polymer-filled auxetics
using split hopkinson pressure bar. Advanced Engineering Materials,
19(10), 2017.

[9] T. Doktor, T. Fíla, P. Koudelka, D. Kytýř, and O. Jiroušek. Compressive
properties of auxetic structures with controlled stiffness of strut joints.
Acta Polytechnica CTU Proceedings, 25:17–20, 2019.

[10] R. Dvořák, P. Koudelka, and T. Fíla. Numerical modelling of wave
shapes during SHPB measurement. Acta Polytechnica CTU Proceedings,
25:25–31, 2019.

[11] M. Neuhäuserová, P. Koudelka, J. Falta, M. Adorna, T. Fíla, and
P. Zlámal. Strain-rate and printing direction dependency of compressive
behaviour of 3D printed stainless steel 316L. pages 68–72, 2019.

[12] T. Fíla, P. Koudelka, P. Zlámal, J. Falta, M. Adorna, M. Neuhäuserová,
J. Luksch, and O. Jiroušek. Strain dependency of poisson’s ratio of
SLS printed auxetic lattices subjected to quasi-static and dynamic
compressive loading. Advanced Engineering Materials, 21(8):1900204,
2019.

[13] P. Koudelka, T. Fíla, J. Falta, J. Šleichrt, P. Zlámal, A. Mauko,
M. Adorna, M. Neuhäuserová, and O. Jiroušek. Temperature dependent
compressive characteristics of additively manufactured stainless-steel
auxetic lattices at high strain-rate. In Temperature dependence of ma-
terial behaviour at high strain-rate, Stresa, 2019. Politecnico di Torino.

[14] Faculty of Transportation Sciences Czech Technical University in Prague.
Dynlab, 2020.

[15] L. J. Gibson and M. F. Ashby. Cellular Solids. Cambridge University
Press, 1997.

174



......................................... A. Bibliography

[16] L. J. Gibson. Mechanical behavior of metallic foams. Annual Review
of Materials Science, 30(1):191–227, 2000.

[17] Y. Sugimura, J. Meyer, M. Y. He, H. Bart-Smith, J. Grenstedt, and
A. G. Evans. On the mechanical performance of closed cell Al alloy
foams. Acta Materialia, 45(12):5245 – 5259, 1997.

[18] Y. Boonyongmaneerat, C. Schuh, and D. Dunand. Mechanical properties
of reticulated aluminum foams with electrodeposited Ni-W coatings.
Scripta Materialia, 59(3):336–339, August 2008.

[19] A. Jung, H. Natter, R. Hempelmann, S. Diebels, M. R. Koblischka,
U. Hartmann, and E. Lach. Electrodeposition of nanocrystalline metals
on open cell metal foams: Improved mechanical properties. volume 25,
pages 165–172, 2010.

[20] A. Jung, H. Natter, S. Diebels, E. Lach, and R. Hempelmann. Nanon-
ickel coated aluminum foam for enhanced impact energy absorption.
Advanced Engineering Materials, 13:23 – 28, 02 2011.

[21] A. Jung, M. Koblischka, E. Lach, S. Diebels, and H. Natter. Hy-
brid metal foams: Mechanical testing and determination of mass flow
limitations during electroplating. Int. J. Mater. Sci., 2:97–107, 01 2012.

[22] G. Xiao-lu, Y. Liu, S. Y. He, and J. Lu. Manufacturing and low-velocity
impact response of a new composite material: Metal porous polymer
composite (MPPC). Journal of Materials Science and Technology,
20:65–68, 12 2004.

[23] Y. Liu and X-L. Gong. Compressive behavior and energy absorption
of metal porous polymer composite with interpenetrating network
structure. Transactions of Nonferrous Metals Society of China, 16:439 –
443, 2006.

[24] N. Dukhan, N. Rayess, and J. Hadley. Characterization of aluminum
foam-polypropylene interpenetrating phase composites: Flexural test
results. Mechanics of Materials, 42:134–141, 02 2010.

[25] Y. Su, Z. Li, X. Gong, Q. Ouyang, Q. Guo, C. Guo, J. Zhang, and
D. Zhang. Structural modeling and mechanical behavior of metal-
porous-polymer-composites (MPPCs) with different polymer volume
fractions. Composite Structures, 153, 06 2016.

175



A. Bibliography.........................................
[26] R. Jhaver and H. Tippur. Processing, compression response and finite

element modeling of syntactic foam based interpenetrating phase com-
posite (IPC). Materials Science and Engineering: A, 499:507–517, 01
2009.

[27] S. V. N. T. Kuchibhatla, A. S. Karakoti, D. Bera, and S. Seal. One
dimensional nanostructured materials. Progress in Materials Science,
52(5):699 – 913, 2007.

[28] J. S. Moya, S. Lopez-Esteban, and C. Pecharromán. The challenge
of ceramic/metal microcomposites and nanocomposites. Progress in
Materials Science, 52(7):1017 – 1090, 2007.

[29] S. M. Thompson, B. Bian, N. Shamsaei, and A. Yadollahi. An overview
of direct laser deposition for additive manufacturing part i: Transport
phenomena, modeling and diagnostics. Additive Manufacturing, 8:36–62,
2015.

[30] T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer,
J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang.
Additive manufacturing of metallic components - process, structure and
properties. Progress in Materials Science, 92:112 – 224, 2018.

[31] J. Zukas. High velocity impact dynamics. Wiley, New York, 1990.

[32] W. Chen and B. Song. Split Hopkinson (Kolsky) Bar. Springer US,
2011.

[33] H. Zhao, G. Gary, and J. R. Klepaczko. On the use of a viscoelastic split
hopkinson pressure bar. International Journal of Impact Engineering,
19(4):319 – 330, 1997.

[34] M. Meyers. Dynamic behavior of materials. Wiley, New York, 1994.

[35] G. I. Taylor. The use of flat-ended projectiles for determining dynamic
yield stress i. theoretical considerations. Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences, 194(1038):289–
299, 1948.

[36] B. A. Remington, P. Allen, E. M. Bringa, J. Hawreliak, D. Ho, K. T.
Lorenz, H. Lorenzana, J. M. McNaney, M. A. Meyers, S. W. Pollaine,
K. Rosolankova, B. Sadik, M. S. Schneider, D. Swift, J. Wark, and

176



......................................... A. Bibliography

B. Yaakobi. Material dynamics under extreme conditions of pressure
and strain rate. Materials Science and Technology, 22(4):474–488, 2006.

[37] J. L. Chaboche. A review of some plasticity and viscoplasticity consti-
tutive theories. International Journal of Plasticity, 24(10):1642 – 1693,
2008. Special Issue in Honor of Jean-Louis Chaboche.

[38] Y. C. Lin and X-M. Chen. A critical review of experimental results and
constitutive descriptions for metals and alloys in hot working. Materials
& Design, 32(4):1733–1759, 2011.

[39] G. R. Johnson and W. H. Cook. Fracture characteristics of three metals
subjected to various strains, strain rates, temperatures and pressures.
Engineering Fracture Mechanics, 21(1):31 – 48, 1985.

[40] A. S. Khan and S. Huang. Experimental and theoretical study of me-
chanical behavior of 1100 aluminum. International Journal of Plasticity,
8(4):397 – 424, 1992.

[41] A. S. Khan, Y. S. Suh, and R. Kazmi. Quasi-static and dynamic loading
responses and constitutive modeling of titanium alloys. International
Journal of Plasticity, 20(12):2233–2248, 2004.

[42] J. H. Sung, J. H. Kim, and R. H. Wagoner. A plastic constitutive equa-
tion incorporating strain, strain-rate, and temperature. International
Journal of Plasticity, 26(12):1746 – 1771, 2010.

[43] W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, and F. Berto. Mechanical
design and multifunctional applications of chiral mechanical metamate-
rials: A review. Materials & Design, 180:107950, 2019.

[44] A. du Plessis, I. Yadroitsava, and I. Yadroitsev. Effects of defects
on mechanical properties in metal additive manufacturing: A review
focusing on X-ray tomography insights. Materials & Design, 187:108385,
2020.

[45] X. Yu, J. Zhou, H. Liang, Z. Jiang, and L. Wu. Mechanical metama-
terials associated with stiffness, rigidity and compressibility: A brief
review. Progress in Materials Science, 94:114 – 173, 2018.

[46] C. S. Lee, S. G. Kim, H. J. Kim, and S. H. Ahn. Measurement of
anisotropic compressive strength of rapid prototyping parts. Journal

177



A. Bibliography.........................................
of Materials Processing Technology, 187-188:627 – 630, 2007. 3rd
International Conference on Advanced Forming and Die Manufacturing
Technology.

[47] I. Gajdos and J. Slota. Influence of printing conditions on structure in
fdm prototypes. Technical Gazette, 20:231–236, 05 2013.

[48] J. Torres, J. Cotelo, J. Karl, and A. P. Gordon. Mechanical property
optimization of FDM PLA in shear with multiple objectives. JOM,
67(5):1183–1193, 2015.

[49] A. Tsouknidas, M. Pantazopoulos, I. Katsoulis, D. Fasnakis, S. Maropou-
los, and N. Michailidis. Impact absorption capacity of 3D-printed com-
ponents fabricated by fused deposition modelling. Materials & Design,
102:41 – 44, 2016.

[50] S. R. G. Bates, I. R. Farrow, and R. S. Trask. 3D printed polyurethane
honeycombs for repeated tailored energy absorption. Materials &
Design, 112:172 – 183, 2016.

[51] H. B. Rebelo, D. Lecompte, C. Cismasiu, A. Jonet, B. Belkassem, and
A. Maazoun. Experimental and numerical investigation on 3D printed
PLA sacrificial honeycomb cladding. International Journal of Impact
Engineering, 131:162–173, 2019.

[52] M. Kristoffersen, M. Costas, T. Koenis, V. Brøtan, C. O. Paulsen,
and T. Børvik. On the ballistic perforation resistance of additive
manufactured AlSi10Mg aluminium plates. International Journal of
Impact Engineering, 137:103476, 2020.

[53] Y. Duan, B. Du, X. Shi, B. Hou, and Y. Li. Quasi-static and dynamic
compressive properties and deformation mechanisms of 3D printed
polymeric cellular structures with kelvin cells. International Journal of
Impact Engineering, 132:103303, 2019.

[54] B. Song, E. Nishida, B. Sanborn, M. Maguire, D. Adams, J. Carroll,
J. Wise, B. Reedlunn, J. Bishop, and T. Palmer. Compressive and
tensile stress–strain responses of additively manufactured (AM) 304l
stainless steel at high strain rates. Journal of Dynamic Behavior of
Materials, 3(3):412–425, 2017.

178



......................................... A. Bibliography

[55] G. Mirone, R. Barbagallo, D. Corallo, and S. Di Bella. Static and
dynamic response of titanium alloy produced by electron beam melting.
Procedia Structural Integrity, 2:2355 – 2366, 2016. 21st European
Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy.

[56] B. Nurel, M. Nahmany, N. Frage, A. Stern, and O. Sadot. Split
hopkinson pressure bar tests for investigating dynamic properties of
additively manufactured AlSi10Mg alloy by selective laser melting.
Additive Manufacturing, 22:823–833, 2018.

[57] E. Zaretsky, A. Stern, and N. Frage. Dynamic response of AlSi10Mg
alloy fabricated by selective laser melting. Materials Science and
Engineering: A, 688:364 – 370, 2017.

[58] T. Tancogne-Dejean, A. B. Spierings, and D. Mohr. Additively-
manufactured metallic micro-lattice materials for high specific energy
absorption under static and dynamic loading. Acta Materialia, 116:14–
28, 2016.

[59] T. Tancogne-Dejean, X. Li, M. Diamantopoulou, C. C. Roth, and
D. Mohr. High strain rate response of additively-manufactured plate-
lattices: Experiments and modeling. Journal of Dynamic Behavior of
Materials, 5(3):361–375, 2019.

[60] P-H. Li, W-G. Guo, W-D. Huang, Y. Su, X. Lin, and K-B. Yuan.
Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over
a wide range of strain rates and temperatures. Materials Science and
Engineering: A, 647:34 – 42, 2015.

[61] T-C. Lim. Auxetic Materials and Structures. Springer Singapore, 2015.

[62] R. Lakes. Foam structures with a negative poisson’s ratio. Science,
235(4792):1038–1040, 1987.

[63] D. Luong, D. Pinisetty, and N. Gupta. Compressive properties of closed-
cell polyvinyl chloride foams at low and high strain rates: Experimental
investigation and critical review of state of the art. Composites Part B:
Engineering, 44:403–416, 2013.

[64] H. Zhao. Testing of polymeric foams at high and medium strain rates.
Polymer Testing, 16(5):507 – 516, 1997.

179



A. Bibliography.........................................
[65] M. Saha, H. Mahfuz, U. Chakravarty, M. Uddin, and S. Jeelani. Effect

of density, microstructure, and strain rate on compression behavior
of polymeric foams. Materials Science and Engineering A-structural
Materials Properties Microstructure and Processing - MATER SCI
ENG A-STRUCT MATER, 406:328–336, 2005.

[66] G. Subhash and Q. Liu. Quasistatic and dynamic crushability of
polymeric foams in rigid confinement. International Journal of Impact
Engineering - INT J IMPACT ENG, 36:1303–1311, 2009.

[67] U. Chakravarty. An investigation on the dynamic response of polymeric,
metallic, and biomaterial foams. Composite Structures - COMPOS
STRUCT, 92:2339–2344, 2010.

[68] X. Pang and H. Du. Dynamic characteristics of aluminium foams under
impact crushing. Composites Part B: Engineering, 112:265 – 277, 2017.

[69] B. Song, W. Chen, S. Dou, N. Winfree, and J. Kang. Strain-rate
effects on elastic and early cell-collapse responses of a polystyrene foam.
International Journal of Impact Engineering - INT J IMPACT ENG,
31:509–521, 2005.

[70] S. Wu. Introduction to the explicit finite element method for nonlinear
transient dynamics. Wiley, Hoboken, N.J, 2012.

[71] T. Belytschko. Nonlinear finite elements for continua and structures.
Hoboken, New Jersey Wiley, Chichester, West Sussex, UK, 2014.

[72] R. Kolman, J. Plešek, J. Červ, M. Okrouhlík, and P. Pařík. Temporal-
spatial dispersion and stability analysis of finite element method in
explicit elastodynamics. International Journal for Numerical Methods
in Engineering, 106(2):113–128, 2016.

[73] J. Kopačka, A. Tkachuk, D. Gabriel, R. Kolman, M. Bischoff, and
J. Plešek. On stability and reflection-transmission analysis of the
bipenalty method in contact-impact problems: A one-dimensional,
homogeneous case study. International Journal for Numerical Methods
in Engineering, 113(10):1607–1629, 2018.

[74] R. Kolman, S. S. Cho, and K. C. Park. Efficient implementation of an
explicit partitioned shear and longitudinal wave propagation algorithm.

180



......................................... A. Bibliography

International Journal for Numerical Methods in Engineering, 107(7):543–
579, 2016.

[75] S. S. Cho, R. Kolman, J. A. González, and K. C. Park. Explicit multistep
time integration for discontinuous elastic stress wave propagation in
heterogeneous solids. International Journal for Numerical Methods in
Engineering, 118(5):276–302, 2019.

[76] K. Peng, K. Gao, J. Liu, Y. Liu, Z. Zhang, X. Fan, X. Yin, Y. Zhang,
and G. Huang. Experimental and numerical evaluation of rock dynamic
test with split-hopkinson pressure bar. Advances in Materials Science
and Engineering, 2017:1–12, 2017.

[77] Z. Xu, H. Hao, and H.N. Li. Mesoscale modelling of fibre reinforced
concrete material under compressive impact loading. Construction and
Building Materials, 26(1):274 – 288, 2012.

[78] Q.M. Li and H. Meng. About the dynamic strength enhancement of
concrete-like materials in a split hopkinson pressure bar test. Interna-
tional Journal of Solids and Structures, 40(2):343 – 360, 2003.

[79] J. K. Dong, K. Sirijaroonchai, S. El-Tawil, and A. E. Naaman. Numer-
ical simulation of the split hopkinson pressure bar test technique for
concrete under compression. International Journal of Impact Engineer-
ing, 37(2):141 – 149, 2010.

[80] Z. Ozdemir, A. Tyas, R. Goodall, and H. Askes. Energy absorption in
lattice structures in dynamics: Nonlinear FE simulations. International
Journal of Impact Engineering, 102:1 – 15, 2017.

[81] N. Novak, M. Vesenjak, L. Krstulović-Opara, and Z. Ren. Mechani-
cal characterisation of auxetic cellular structures built from inverted
tetrapods. Composite Structures, 196:96 – 107, 2018.

[82] N. Novak, K. Hokamoto, M. Vesenjak, and Z. Ren. Mechanical be-
haviour of auxetic cellular structures built from inverted tetrapods at
high strain rates. International Journal of Impact Engineering, 122:83 –
90, 2018.

[83] J. X. Qiao and C. Q. Chen. Impact resistance of uniform and functionally
graded auxetic double arrowhead honeycombs. International Journal
of Impact Engineering, 83:47 – 58, 2015.

181



A. Bibliography.........................................
[84] S. Hou, T. Li, Z. Jia, and L. Wang. Mechanical properties of sandwich

composites with 3D-printed auxetic and non-auxetic lattice cores under
low velocity impact. Materials & Design, 160:1305 – 1321, 2018.

[85] L. Xiao, W. Song, C. Wang, H. Tang, Q. Fan, N Liu, and J. Wang.
Mechanical properties of open-cell rhombic dodecahedron titanium
alloy lattice structure manufactured using electron beam melting under
dynamic loading. International Journal of Impact Engineering, 100:75 –
89, 2017.

[86] M. S. Chaudhry and A. Czekanski. FE analysis of critical testing
parameters in kolsky bar experiments for elastomers at high strain rate.
Materials, 12(23), 2019.

[87] S. T. Marais, R. B. Tait, T. J. Cloete, and G. N. Nurick. Material
testing at high strain rate using the split hopkinson pressure bar. Latin
American Journal of Solids and Structures, 1(3):219–339, 2004.

[88] M. Kucewicz, P. Baranowski, M. Stankiewicz, M. Konarzewski,
P. Płatek, and J. Małachowski. Modelling and testing of 3D printed cel-
lular structures under quasi-static and dynamic conditions. Thin-Walled
Structures, 145:106385, 2019.

[89] J. Liu, B. Zheng, K. Zhang, B. Yang, and X. Yu. Ballistic performance
and energy absorption characteristics of thin nickel-based alloy plates
at elevated temperatures. International Journal of Impact Engineering,
126:160 – 171, 2019.

[90] Z. Song, L. Hou, D. Whisler, and G. Gao. Mesoscopic numerical
investigation of dynamic mechanical properties of ice with entrapped air
bubbles based on a stochastic sparse distribution mechanism. Composite
Structures, 236:111834, 2020.

[91] C. Shou. Numerical simulation of split-hopkinson pressure bar test on
high-density polyethylene. Chemical Engineering Transactions, 66:271–
276, 2018.

[92] Imbalzano G., S. Linforth, T. D. Ngo, P. V. S. Lee, and P. Tran. Blast
resistance of auxetic and honeycomb sandwich panels: Comparisons
and parametric designs. Composite Structures, 183:242 – 261, 2018. In
honor of Prof. Y. Narita.

182



......................................... A. Bibliography

[93] R. Dvořák. Numerické modelování tvaru napěťových pulzů při SHPB
měření. Master’s thesis, Czech Technical University in Prague, Faculty
of Transportation Sciences, 2018.

[94] A. G. Kolpakov. Determination of the average characteristics of elastic
frameworks. Journal of Applied Mathematics and Mechanics, 49(6):739
– 745, 1985.

[95] K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers.
Molecular network design. Nature, 353(6340):124–124, September 1991.

[96] K. E. Evans. Auxetic polymers: a new range of materials. Endeavour,
15(4):170 – 174, 1991.

[97] D. Prall and R. S. Lakes. Properties of a chiral honeycomb with a
poisson’s ratio of -1. International Journal of Mechanical Sciences,
39(3):305 – 314, 1997.

[98] C. W. Smith, J. N. Grima, and K. E. Evans. A novel mechanism for
generating auxetic behaviour in reticulated foams: missing rib foam
model. Acta Materialia, 48(17):4349 – 4356, 2000.

[99] H. M. A. Kolken and A. A. Zadpoor. Auxetic mechanical metamaterials.
RSC Adv., 7:5111–5129, 2017.

[100] N. Novak, M. Vesenjak, and Z. Ren. Auxetic cellular materials - a review.
Strojniški vestnik – Journal of Mechanical Engineering, 62(9):485–493,
September 2016.

[101] X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie. Auxetic meta-
materials and structures: a review. Smart Materials and Structures,
27(2):023001, 2018.

[102] K. Günaydın, Z. Eren, Z. Kazancı, F. Scarpa, A. M. Grande, and
H. S. Türkmen. In-plane compression behavior of anti-tetrachiral and
re-entrant lattices. Smart Materials and Structures, 28(11):115028, oct
2019.

[103] W. Wu, X. Song, J. Liang, R. Xia, G. Qian, and D. Fang. Mechanical
properties of anti-tetrachiral auxetic stents. Composite Structures,
185:381 – 392, 2018.

183



A. Bibliography.........................................
[104] Y. Jiang and Y. Li. 3D printed chiral cellular solids with amplified

auxetic effects due to elevated internal rotation. Advanced Engineering
Materials, 19(2):1600609, 2017.

[105] Y. Jiang and Y. Li. Novel 3D-printed hybrid auxetic mechanical
metamaterial with chirality-induced sequential cell opening mechanisms.
Advanced Engineering Materials, 20(2):1700744, 2018.

[106] T. Li, Y. Chen, X. Hu, Y. Li, and L. Wang. Exploiting negative pois-
son’s ratio to design 3D-printed composites with enhanced mechanical
properties. Materials & Design, 142:247 – 258, 2018.

[107] T. Li, X. Hu, Y. Chen, and L. Wang. Harnessing out-of-plane defor-
mation to design 3D architected lattice metamaterials with tunable
poisson’s ratio. Scientific Reports, 7(1), August 2017.

[108] T. Li and L. Wang. Bending behavior of sandwich composite structures
with tunable 3D-Printed core materials. Composite Structures, 175, 05
2017.

[109] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito,
and M. Sasaki. Self-deployable origami stent grafts as a biomedical
application of ni-rich tini shape memory alloy foil. Materials Science
and Engineering: A, 419(1):131 – 137, 2006.

[110] M. N. Ali and I. U. Rehman. An auxetic structure configured as
oesophageal stent with potential to be used for palliative treatment
of oesophageal cancer: development and in vitro mechanical analysis.
Journal of Materials Science: Materials in Medicine, 22(11):2573–2581,
September 2011.

[111] L. Jiang and H. Hu. Low-velocity impact response of multilayer orthog-
onal structural composite with auxetic effect. Composite Structures,
169:62 – 68, 2017. In Honor of Prof. Leissa.

[112] G. Imbalzano, P. Tran, T. D. Ngo, and P. V. S. Lee. Three-dimensional
modelling of auxetic sandwich panels for localised impact resistance.
Journal of Sandwich Structures & Materials, 19(3):291–316, 2017.

[113] M. I. Khan, J. Akram, M. Umair, S. T. A. Hamdani, K. Shaker,
Y. Nawab, and M. Zeeshan. Development of composites, reinforced by

184



......................................... A. Bibliography

novel 3D woven orthogonal fabrics with enhanced auxeticity. Journal
of Industrial Textiles, 49(5):676–690, 2019.

[114] I. Gibson, D. Rosen, and B. Stucker. Additive Manufacturing Technolo-
gies. Springer New York, 2015.

[115] L. Foster, P. Peketi, T. Allen, T. Senior, O. Duncan, and A. Alderson.
Application of auxetic foam in sports helmets. Applied Sciences, 8(3),
2018.

[116] L. Yang, O. Harrysson, H. West, and D. Cormier. Mechanical properties
of 3D re-entrant honeycomb auxetic structures realized via additive
manufacturing. International Journal of Solids and Structures, 69-
70:475 – 490, 2015.

[117] K. K. Saxena, R. Das, and E. P. Calius. Three decades of auxetics
research - materials with negative poisson’s ratio: A review. Advanced
Engineering Materials, 18(11):1847–1870, 2016.

[118] A. Beharic, R. R. Egui, and L. Yang. Drop-weight impact characteristics
of additively manufactured sandwich structures with different cellular
designs. Materials & Design, 145:122 – 134, 2018.

[119] K. E. Evans and A. Alderson. Auxetic materials: Functional materials
and structures from lateral thinking! Advanced Materials, 12(9):617–
628, 2000.

[120] Y. Prawoto. Seeing auxetic materials from the mechanics point of view:
A structural review on the negative poisson’s ratio. Computational
Materials Science, 58:140–153, 2012.

[121] I. I. Argatov, R. Guinovart-Díaz, and F. J. Sabina. On local inden-
tation and impact compliance of isotropic auxetic materials from the
continuum mechanics viewpoint. International Journal of Engineering
Science, 54:42–57, 2012.

[122] V. L. Coenen and K. L. Alderson. Mechanisms of failure in the static
indentation resistance of auxetic carbon fibre laminates. physica status
solidi (b), 248(1):66–72, 2011.

[123] Q. Liu. Literature review: Materials with negative poisson’s ratios and
potential applications to aerospace and defence. Aust. Gov. Dep. Def.,
2006.

185



A. Bibliography.........................................
[124] R. Critchley, I. Corni, J. A. Wharton, F. C. Walsh, R. J. K. Wood,

and K. R. Stokes. A review of the manufacture, mechanical properties
and potential applications of auxetic foams. physica status solidi (b),
250(10):1963–1982, 2013.

[125] W. Yang, Z-M. Li, W. Shi, B-H. Xie, and M-B. Yang. Review on auxetic
materials. Journal of Materials Science, 39(10):3269–3279, 2004.

[126] S. Xinchun and R. S. Lakes. Stability of elastic material with neg-
ative stiffness and negative poisson’s ratio. physica status solidi (b),
244(3):1008–1026, 2007.

[127] J. B. Choi and R. S. Lakes. Fracture toughness of re-entrant foam
materials with a negative poisson’s ratio: experiment and analysis.
International Journal of Fracture, 80(1):73–83, 1996.

[128] A. Bezazi, W. Boukharouba, and F. Scarpa. Mechanical properties of
auxetic carbon/epoxy composites: static and cyclic fatigue behaviour.
physica status solidi (b), 246(9):2102–2110, 2009.

[129] J. B. Choi and R. S. Lakes. Non-linear properties of metallic cellular
materials with a negative poisson’s ratio. Journal of Materials Science,
27(19):5375–5381, 1992.

[130] S. K. Maiti, M. F. Ashby, and L. J. Gibson. Fracture toughness of
brittle cellular solids. Scripta Metallurgica, 18(3):213 – 217, 1984.

[131] I. G. Masters and K. E. Evans. Models for the elastic deformation of
honeycombs. Composite Structures, 35(4):403 – 422, 1996.

[132] P. Zlámal, O. Jiroušek, and D. Vavřík. A novel compression/tension
device for investigation of trabecular bone failure using real-time micro-
CT imaging. page 91, 2008.

[133] V. Rada, T. Fíla, P. Zlámal, D. Kytýř, and P. Koudelka. Multi-channel
control system for in-situ laboratory loading devices. In 16th Youth
Symposium On Experimental Solid Mechanics, volume 18, Prague, CZ,
2018. Česká technika - nakladatelství ČVUT, ČVUT v Praze.

[134] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision (IJCAI). volume 81, 1981.

186



......................................... A. Bibliography

[135] D. Fila. Mechanical Behavior of Materials under High Strain-rates
Investigated by SHPB. PhD thesis, Czech Technical University in
Prague, Faculty of Transportation Sciences, 2020.

[136] C. Bacon. An experimental method for considering dispersion and
attenuation in a viscoelastic hopkinson bar. Experimental Mechanics,
38(4):242–249, 1998.

[137] J. Janizsewski, W. Buzantowicz, and P. Baranowski. Correction pro-
cedure of wave signals for a viscoelastic split hopkinson pressure bar.
Problems of Mechatronics - Armament, Aviation, Safety Engineering,
23(7):17–30, 2016.

[138] J. Schwerdtfeger, F. Schury, M. Stingl, F. Wein, R. F. Singer, and
C. Körner. Mechanical characterisation of a periodic auxetic structure
produced by SEBM. physica status solidi (b), 249(7):1347–1352, 2012.

[139] S. Montabone. Beginning Digital Image Processing. Apress, 2009.

[140] H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters. Digital
image correlation using newton-raphson method of partial differential
correction. Experimental Mechanics, 29(3):261–267, 1989.

[141] P. Zhou. Subpixel displacement and deformation gradient measurement
using digital image/speckle correlation (DISC). Optical Engineering,
40(8):1613, 2001.

[142] W. Tong. An evaluation of digital image correlation criteria for strain
mapping applications. Strain, 41(4):167–175, 2005.

[143] Engineering ToolBox. Friction and friction coefficients, 2004.

[144] T. Belytschko, H-J. Yen, and R. Mullen. Mixed methods for time
integration. Computer Methods in Applied Mechanics and Engineering,
17-18:259 – 275, 1979.

[145] T. Belytschko. Partitioned and adaptive algorithms for explicit time
integration. In Nonlinear Finite Element Analysis in Structural Me-
chanics, pages 572–584. Springer Berlin Heidelberg, 1981.

[146] R. Courant, K. Friedrichs, and H. Lewy. Uber die partiellen differen-
zengleichungen der mathematischen physik. Mathematische Annalen,
100(1):32–74, 1928.

187



A. Bibliography.........................................
[147] D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and

quadrilateral with orthogonal hourglass control. International Journal
for Numerical Methods in Engineering, 17(5):679–706, 1981.

[148] T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and
W. Kanoknukulchai. A finite element method for a class of contact-
impact problems. Computer Methods in Applied Mechanics and Engi-
neering, 8(3):249 – 276, 1976.

[149] L. M. Taylor and D. P. Flanagan. Pronto 3D: A three-dimensional
transient solid dynamics program. 1989.

[150] J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown,
and J. Sienz. Investigation into the effect of process parameters on
microstructural and physical properties of 316L stainless steel parts
by selective laser melting. The International Journal of Advanced
Manufacturing Technology, 76(5-8):869–879, 2014.

[151] J. Kluczyński, L. Śnieżek, K. Grzelak, J. Janiszewski, P. Płatek,
J. Torzewski, I. Szachogłuchowicz, and K. Gocman. Influence of selective
laser melting technological parameters on the mechanical properties of
additively manufactured elements using 316L austenitic steel. Materials,
13(6):1449, 2020.

[152] R. Fadida, D. Rittel, and A. Shirizly. Dynamic mechanical behavior
of additively manufactured Ti6Al4V with controlled voids. Journal of
Applied Mechanics, 82(4), 2015. 041004.

[153] W-S. Lee and J-K. Chou. The effect of strain rate on the impact
behaviour of Fe-2 mass% Ni sintered alloy. MATERIALS TRANSAC-
TIONS, 46(4):805–811, 2005.

[154] Y. Liu, Z. Dong, J. Liang, and J. Ge. Determination of the strength
of a multilayer BCC lattice structure with face sheets. International
Journal of Mechanical Sciences, 152:568 – 575, 2019.

[155] T. Vilaro, C. Colin, and J. D. Bartout. As-fabricated and heat-treated
microstructures of the Ti-6Al-4V alloy processed by selective laser
melting. Metallurgical and Materials Transactions A, 42(10):3190–3199,
2011.

188



......................................... A. Bibliography

[156] Z. Li, X-J. Tian, H-B. Tang, and H-M. Wang. Low cycle fatigue
behavior of laser melting deposited TC18 titanium alloy. Transactions
of Nonferrous Metals Society of China, 23(9):2591 – 2597, 2013.

[157] P. Sedlák, H. Seiner, J. Zídek, M. Janovská, and M. Landa. Determina-
tion of all 21 independent elastic coefficients of generally anisotropic
solids by resonant ultrasound spectroscopy: Benchmark examples. Ex-
perimental Mechanics, 54:1073–1085, 2014.

[158] North American Stainless. Flat product stainless steel grade sheet 316,
316L, 2020.

189



190



Appendix B

SEM microcraphs - steel constructs

Figure B.1: Microstructure at the printed surface.
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B. SEM microcraphs - steel constructs...............................

Figure B.2: Microstructure at the printed surface of the strut joint.
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............................... B. SEM microcraphs - steel constructs

Figure B.3: Microstructure at the printed surface in the strut joint area.
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B. SEM microcraphs - steel constructs...............................

Figure B.4: Microstructure at the printed surface of the strut joint.
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............................... B. SEM microcraphs - steel constructs

Figure B.5: Polished surface of the 6× 7 2D re-entrant honeycomb.
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B. SEM microcraphs - steel constructs...............................

Figure B.6: Polished surface of the 6× 7 2D re-entrant honeycomb - detail of
the strut joints.
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............................... B. SEM microcraphs - steel constructs

Figure B.7: Polished surface of the 6× 7 2D re-entrant honeycomb.
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B. SEM microcraphs - steel constructs...............................

Figure B.8: Polished surface of the 6× 7 2D re-entrant honeycomb - detail of
the strut joints.
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............................... B. SEM microcraphs - steel constructs

Figure B.9: Polished surface of the 3× 3 3D re-entrant honeycomb.
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B. SEM microcraphs - steel constructs...............................

Figure B.10: Polished surface of the 3× 3 3D re-entrant honeycomb - detail of
the strut joints.
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