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Abstract

P°edloºená práce se zabývá Turingovým modelem, jedním z mechanism· popisující samovolné
prostorové uspo°ádání, a jeho robustností, tj. mírou závislosti výsledných vzor· na malých
zm¥nách vstupních parametr·. Jsou provedeny dv¥ studie zkoumající vliv 1) konstatní advekce
a 2) prostorové závislosti v kinetice. V prvním p°ípad¥ jsou uvaºovány dva systémy mimo Tur-
ing·v reºim dopln¥né o n¥kolik okrajových podmínek; pro analýzu stability je vyuºito Sturm-
Liouvilleovy teorie a podmínky pro vznik vzoru prost°ednictvím velikostí oblasti pohán¥né
nestability jsou odvozeny z explicitního výpo£tu vlastních £ísel. V druhém p°ípad¥ je analy-
zován reak£n¥-difuzní systém s parametrem lineárního £lenu kinetiky ve form¥ skokové funkce
a podmínky pro vznik vhodných vzor· jsou získány pomocí pe£livé kombinace analytických a
numerických p°ístup·. Je ukázáno, ºe i malá advekce m·ºe podstatn¥ zm¥nit chování systému,
a to v závislosti na volb¥ okrajových podmínek; a ºe p°ítomnost stability nebo nestability v
Turingových modelech je lokální vlastností pro po £ástech konstantní parametry kinetik, a tedy
ºe malá prostorová závislost tohoho tvaru významn¥ nem¥ní vznik Turingových vzor·.

The presented work deals with the Turing model, one of the possible mechanisms describing
the self-organisation, and its robustness, i.e. the amount of a dependence of the resulting
patterns on small changes in input parameters. Two studies examining the e�ect of 1) constant
advection and 2) spatial dependence in kinetics are performed. In the former case, two systems
outside Turing regime supplemented by various boundary conditions are considered, the Sturm-
Liouville theory is incorporated into stability analysis and the conditions for pattern emergence
via domain-size-driven instability are deduced from explicit calculation of eigenvalues. In the
latter case, the reaction-di�usion system with a step function as a parameter at linear kinetics
term is analysed and conditions for plausible pattern formation are obtained using a careful
combination of analytical and numerical approaches. It is shown that even a small advection
can substantially change a behaviour of the system depending on the choise of the boundary
conditions; and that the presence of stability or instability in Turing models is a local property
for piece-wise constant kinetic parameters and thus, small spatial dependency of such a form
does not signi�cantly change the emergence of Turing patterns.



Notation

R;R+ real numbers; positive real numbers
N;N0 natural numbers; natural numbers with zero
L2(Ω) the space of all quadratic integrable functions with support inside Ω
Ω an open connected bounded subset of Rn

∂(Ω) the boundary of Ω
L positive constant representing the scale of the domain
(̇) (time) derivative
()′; ()′′; ()(k) (spatial) derivative of the �rst; the second; the k-th order
∂i (spatial) partial derivative with respect to i-th of element
∇,∆ spatial gradient, Laplace operator
L linear spatial di�erential operator operates inside Ω
Lbc linear spatial di�erential operator operates on ∂(Ω)
LdV particular linear di�erential operator de�ned on the page 26
u, v real functions representing morphogen concentrations
d, d1, d2 non-negative constants representing di�usion rates
V non-negative constant representing advection rate
Pe Péclet number de�ned as Pe = lV/d
f, g real functions representing kinetics
A,B,J matrices
trB a trace of a matrix B
detB a determinant of a matrix B
Reλ the real part of the complex number λ
T1− T4 standard conditions for Turing pattern formation, see section 1.1.1
κk k-th eigenvalue of the Laplacian with Neumann's BC
Ck k-th hyperbola, see section 1.1.3
CE an envelope of Ck for all k ∈ N, see section 1.1.3
û prostorov¥ konstantní, stacionární °e²ení
ξ point from interval (0, L) representing the point of a step
Θξ(x);h(x) step functions at the point ξ with the step size 1; or s
T1L − T4L modi�ed Turing conditions belonging to interval (0, ξ)
T1R − T4R modi�ed Turing conditions belonging to interval (ξ, L)
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1 Introduction

This thesis deals with an analysis of the Turing system, one of the models describing self-
organizing pattern formation. Examples of such behaviour can be found in the thermal ex-
pansion of Rayleigh-Bénard convection cells [84], chemical reaction network dynamics as with
the Belousov-Zhabotinskii system [99], cell responses to chemotactic gradients [32], mechanical
stimuli of chemical reactions [37, 39, 36] and models of development [64, 101], the �eld of the
biggest author's personal interest, therefore many other references of these examples shall be
seen in the text below.

The fundamental model was proposed by Alan Turing in 1952 [101]. Based on his intuition
he considered two substances, which di�use and interact with themselves (so called morphogens)
and showed that a small �uctuation of their concentration about a steady state (a ground
state) together with di�usion can cause signi�cant di�erences in the concentrations along the
spatial axis, and hence spatially non-homogenous steady states can emerge, which we will call
patterns. Mathematically, this symmetry breaking mechanism was described as a di�usion-
driven instability (DDI) of the steady state in a reaction-di�usion system (RD system).

For many decades, one of the biggest issues for the plausibility of a Turing system in biolog-
ical development was the lack of identi�cation of morphogens and con�rmation the molecular
details matching those required for patterning. However, recent studies show extensive promise,
as observed in experiments with pigmentation of zebra�sh [42], formation of patterns on the
skin of the wild cats [56], digit patterning [79], hair follicle localization [35, 74] or a tumor
vascularization [9]. Furthermore, there is in addition the suggestion that the combination of
Wolpert's positional information hypothesis [109, 29] with the Turing mechanism may increase
the applicability of both [62, 17].

Many Turing systems have been proposed and analysed, both analytically and using numer-
ical experiments. The majority of these studies consider only two species. Exemplar models are
the Gierer-Meinhardt model [25] describing the growth of the hydra, the Schnakenberg model
[89] describing a chemical reaction exhibiting limit-cycle behaviour or the Thomas model [97]
describing chemical reaction of oxygen and uric acid in the presence of the enzyme uricase.
Although many properties of the Turing system (in which this study is concerned mostly) are
common independently on the choice of reaction kinetics, a particular choice determines the
characteristics of resulting pattern and can in�uence the evolution behaviour. For a review of
some models, see [64].

Since the Turing model is a very simple one, a more complex version should be taken into
account if real phenomena are wanted to be described. Among possible extensions which can be
incorporated are, for instance, a consideration of more substances, the e�ect of cross-di�usion,
spatial dependency in parameters or a reformulation of the problem in a stochastic manner.
Note that in many cases, the original idea of Turing patterns must be modi�ed due to the
change of settings. Usually, the correction is made following biological or chemical motivation,
for instance domain-growth-induced patterns used in [40]. A short list of examples of the Turing
model generalizations shall be seen in section 1.2.

In the context of the Turing model, the term "robustness" is associated with a dependency
of resulting pattern on the initial state (mathematically represented by initial conditions). The
robustness represents meeting the basal request from real situations that the qualitative char-
acteristics of the resulting patterns are the same independently on small �uctuations in initial
conditions, di�usion coe�cients or kinetics parameters [58]. To illustrate this, the o�spring of
a jaguar should have coat with spots and rosettes but not stripes as a tiger; or that the number
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of �ngers on man's hand should always be �ve. Historically, the lack of robustness belonged
among crucial failures of Turing models [2]. This type of robustness is also known as struc-
tural stability with an extreme but interesting example in ODEs being the universal di�erential
equation � an equation possesing a solution arbitrarily close to any reasonable function [5].

An immediate question is which extensions of the Turing model a�ect the robustness of
pattern formation. Examples of positive e�ects that have been studied include considering
Dirichlet boundary conditions [15], growing domains [10, 57] or the addition of time delays [21].
Note that all there phenomena seem to be naturally present in real world, we can hypothesise
that the observed lack of robustness of the Turing model can be linked to the simplicity of the
original model.

On the other hand, there might be (neglected) phenomena which diminish robustness. When
modelling the real world we try to include such processes which a�ect the described processes
the most. Regardless of the degree of complexity of the events we model, there will always be a
part of them that we neglect. The question then arises as whether these neglected phenomena
do not a�ect the behaviour of the mathematical model more than would be apparent from the
observations. That is, if the formulated model is su�ciently robust with respect to the choise
of neglected phenomena.

For instance, in a model with more equations than two, we would investigate whether the
results of a model with less number of equations do not di�er substantially, and thus if the results
of an analysis of the simpler model is suitable even for the original one. Or, if we consider a
chemical process and the motion of molecules be the same in all directions as opposed to a
situation where a small preference of one direction (represented by advection) is present; it
depends on the analysis of the in�uence of a small advection, whether the zero preference for
particle motion is realistic or not in the corresponding reaction networks.

The thesis consists of two main topics, one analysing the in�uence of small advection on
pattern formation (section 2) and one investigating the classical Turing system but with a
small spatial dependency in kinetics in the form of a step function (section 3). Since both
procedures are already published [41, 47], the main purpose of this text is to be a guide to
these articles. Besides giving an overview of the main results and conclusions, some interesting
features are emphasized and a few technical parts are elucidated in a more detail. Certainly, we
begin with introduction to the Turing system especially for readers who are not familiar with
its concept and a short list of model generalizations is outlined there (section 1). Moreover,
the alternative mechanism to the Turing's one, the domain-size-driven instability, is introduced
and the relevant features of the Sturm-Liouville theory are presented in the same section; both
suitable for general Turing systems as shown for the case of the system with advection in
section 2.

In section 2 we consider a reaction-di�usion system with advection and we explore the e�ect
of small advection on pattern formation. Since original Turing's di�usion-driven instability
is not suitable for this case, an alternative mechanism, the domain-size-driven instability, is
used instead. We will investigate whether patterning may occur for 1) two species with equal
transport (i.e. a di�usion and an advection rate) and 2) one immobile and one mobile species
with equal transport; both systems are supplemented by various boundary conditions and
outside classical Turing regime. The Sturm-Liouville theory is used for stability analysis. The
core of the procedure lies in the computation of eigenpairs of the appropriate systems and in
following evalution of instability conditions; therefore this part is outlined in more detail than
in the original article [41].
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The in�unce of a small spatial dependency in the form of a step function in the linear
term of kinetics on Turing pattern formation is investigated in section 3. The whole procedure
roughly follows the stability analysis of the classical Turing case, but with solving signi�cant
di�culties. The core of this section lies in the careful assembly of partilucar steps containing
mixture of analytic and numeric approaches into a valid procedure to obtain usable conditions
for formation of plausible patterns. Therefore, the concept of the whole procedure is presented
in slightly di�erent way than in the original article [47], the linear stability analysis is outlined
for the case of spatial dependency in all kinetics terms (necessary for the application to the
non-linear case) and a technical computation of the stationary solution to the linear problem
is added to appendix (although not all possible �nal forms are explicitely outlined due to their
high vastness).

The �nal section contains conlusions of obtained results separately for both examined cases,
following by the consequences of obtained results for the robustness of the Turing system. The
thesis is supplemented by already mentioned appendices and by a list of references.

1.1 Brief overview of Turing model

This subsection is designated for readers who are not familiar with the Turing system, since
the thesis often refers to the model's analysis and its basic features. Such presentation can be
found in many textbooks, theses or as introduction in many articles [64, 46, 111].

Turing's idea of reactable and di�usible chemicals can be mathematically described by
a system of semi-linear parabolic di�erential equations (reaction-di�usion system). Let us
consider the smallest system, where the di�usion-driven instability can be described, system
formed by two equations

∂tu = d1∆u+ f(u, v)

∂tv = d2∆v + g(u, v)
in (0,∞)× Ω, (1)

where u, v are morphogen concentrations, Ω is a bounded domain in RN with N ∈ N spatial
dimension, ∂t := ∂

∂t
denotes time partial derivative, ∆ designates the Laplace operator (a sum

of all N second spatial derivatives), f, g represents the reaction kinetics and d1, d2 are positive
constants representing di�usion coe�cients. This relation can be illustratively reformulated in
the manner that in every point of the domain a change in the amount of morphogen in very
small time interval (partial time derivative) corresponds to the sum of the amount of mor-
phogens produced (or destroyd) by a reaction (reaction kinetics) and the amount of incoming
or outcoming from the neighbourhood (the Laplace operator).

We asume that kinetics possesses a critical point (u∗, v∗), i.e. constansts ful�lling

f(u∗, v∗) = 0 and g(u∗, v∗) = 0, (2)

and thus (u∗, v∗) is a steady solution (steady state) of system (1) without di�usion (d1, d2 = 0).
This solution is an equilibrium, the original (ground) state from which we will initiate our
considerations. If there is more than one solution to (2), only one of them is taken into account.

The equations (1) are supplemented by the boundary conditions (BC), i.e. conditions for
morphogens on the boundary of Ω, most often by the homogeneous Neumann BC (zero-�ux)

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω (3)
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and �nally with initial conditions (IC) at time 0 describing the initial state of the system from
which the system initiates:

u(0) = u0, v(0) = v0 in Ω.

The most preferred BC are the mentioned one, homogeneous Neumann BC, i.e.

∂u

∂n
= a,

∂v

∂n
= b on ∂Ω

when taking a = 0 and b = 0. Not only they are suitable for various mathematical operations,
they also have a very nice physical interpretation � the �ow through the boundary is zero,
nothing can leave or enter the domain and therefore such systems are described as independent
of external phenomena.

Other frequently used BC conditions are Dirichlet BC

u = a, v = b on ∂Ω,

which correspond to a situation when the concentration of substances on the boundary is
prescribed to the speci�c value a, b. Particularly the choice a, b = 0, homogeneous Dirichlet BC,
describes the setup with a border completely inhospitable to the population and the population
dies out there. However, homogeneous Dirichlet BC are most often used in combination with
a system that already has the steady state shifted to zero, while the physical explanation for
such conditions is a homeostasis, when the system tries to keep the equilibrium (u∗, v∗) at the
boundary, somehow advantageous for the particular object. For more examples and discussion
of boundary conditions, see section 2.

The initial conditions are an important component of the whole process, since the solution of
the evolution system (1) directly depends on it. However, due to the assumption of robustness
stated in Introduction, the e�ect on the form of patterns should not be crucial, if the model
will be assembled properly. In the following text, if it is not stated otherwise, the initial
conditions (particularly functions u0, v0) describe small perturbation of concentrations about
the equilibrium state (u∗, v∗) (meaning a small random noise) and they will not be explicitly
mentioned.

Finally, at least a note about spaces of considered functions should be mentioned. Since we
take many motivations from biological and chemical environment, it is natural to use mostly
the "classical" formulation, i.e. we assume that all functions are smooth enough. The problem
can be formulated even in weak sense (in [46, 52]) and it will be used implicitly using strong
theorems (stability of PDE) or rarely explicitly, only if some special mathematical problem will
be discussed (discussion about orthonormal bases of L2 in section 2 or a linearization about a
step function in a weak sense in section 3).

1.1.1 Fundamental conditions of Turing instability

We assume the existence of a stationary, spatially homogenous solution (u∗, v∗)1 representing
the original steady state (ground state, no-pattern), which is stable with respect to reaction
kinetics (i.e. to the system without an e�ect of di�usion; d1 = 0, d2 = 0). And as Turing
proposed, if the di�usion is added to the system, its e�ect will destabilize the homogeneous
steady state and the consequent evolution will pass it to another steady state, mostly a spatially
inhomogeneous one, the pattern. Mathematically, the ground state (u∗, v∗) is unstable with

1i.e. the solution to system (2) ful�lling selected boundary conditions
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respect to system (1) with di�usion (ie. d1 > 0, d2 > 0). Alternatively, the whole idea can be
paraphrased that the steady state is stable with respect to spatially homogeneous perturbations,
but unstable with respect to spatially inhomogeneous ones.

Hence, for determination if DDI occurs, it is su�cient to analyse (linear) stability of the
steady state. To proceed, we consider a system describing perturbation about the steady state
obtained from (1) by substitution ū = u−u∗, v̄ = v−v∗ and Taylor expansion of kinetics about
(u∗, v∗):

∂tū = d1∆ū+ b11ū+ b12v̄ + n1(ū, v̄)

∂tv̄ = d2∆v̄ + b21ū+ b22v̄ + n2(ū, v̄)
in (0,∞)× Ω, (4)

where B = (bij)i,j=1,2 is Jacobian matrix of (f, g) and n1, n2 non-linear residues; supplemented
with Neumann boundary conditions. From now on, we analyse stability of steady state [0, 0]
with respect to system (4).

First, stability of the homogenous steady state of system (4) with d1 = 0, d2 = 0 is required.
Such system can be regarded as a continuum number of couples of ordinary di�erential equations
ODE, since there is no spatial connection among the couples, therefore the conditions for
(asymptotic) stability follow from standard theorem about linearized stability of ODEs, which
requires that all eigenvalues of the matrix B have negative real parts.

The eigenvalues of the matrix B can be computed as the roots of the equation

det (B− λI) = 0,

which yields

λ1,2 =
trB±

√
(trB)2 − 4(detB)

2
,

and requiring negativity of their real parts is equivalent to require both following conditions

trB = b11 + b22 < 0, (T1)

detB = b11b22 − b12b21 > 0. (T2)

To illustrate the meaning of these conditions see the example based on predator-prey model
from [45] (the part of cited text about a limit cycle is not useful for our problem, but it is
showed for completeness of the author's idea):

The condition b11 + b22 < 0 means that at least one of the substances u, v needs to be
self-inhibiting in the sense that its 'diagonal' partial derivative be negative; such a substance
has a stabilizing e�ect on itself near the equilibrium. This is self-evident in the predator-prey
context.

Let us consider a region with an even distribution of two species, a predator and its prey,
in an equilibrium state. If we, for simplicity, consider food to be the only factor a�ecting the
occurrence of either species, then an equilibrium state means that the number of the prey is just
su�cient to support the predators whose number, on the other hand, is just right to prevent a
growth in the prey numbers. Imagine now that we do not allow for di�usion-like phenomena
(a local increase in concentration in one place at the cost of a decline in its vicinity or vice
versa) due to migration, i.e. we only admit uniform distributions of the species. Then it seems
intuitive that the equilibrium state would be unstable if a slight (homogeneous) increase in the
number of either of the species stimulated further growth. For instance, if the food capacity
of the region for the prey was (hypothetically) in�nite, any increase in its number would also
enhance its reproduction; a greater number of the prey could in turn support more predators
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and this spiral could continue forever, resulting in an ever-growing number of both species.
That is certainly not what stability looks like. Note that nature has taken care of this in
its very principles since an increase (decrease) in the occurrence of predators at an equilibrium
state means more (less) competition, so the predator count will usually (but not always) be self-
inhibiting rather than self-activating in the vicinity of an equilibrium state. But let us ignore
this for a little while longer, for instance assuming that the sudden increase in prey concentration
was large enough to neutralize the e�ect of competition (for food, at least). One could still be
a little uneasy about the fact that we ignored the cross-dependence: the e�ect of predation.
It seems reasonable that if the predator reproduced faster than the prey, even an in�nite food
capacity would not mean a boundless growth of the prey concentration: the predator-to-prey
ratio would sooner or later increase beyond some threshold value, causing a reduction of the
prey. Insu�cient food supplies would then result in a drop in the predator numbers and one
could naively hope that the equilibrium state might be restored. However, this would lead to a
limit cycle rather than stability given that the non-linear terms do admit cyclic behaviour. We
can observe such dynamics even if the predator is indeed self-inhibiting. An example of such
dynamics is provided by the Lotka-Volterra model (see chapter 3.1 in [Murray2007]). Had we
wished to avoid this discussion, instead of a predator-prey model we could have considered a
parasite-host interaction or a chemical reaction, where two self-activating reactants intuitively
seem more inclined to a chain reaction (e.g. nuclear �ssion) than towards stability. Based on
all these examples, it (hopefully) appears intuitively clear that the self-inhibiting e�ects need
to prevail for two substances/species to establish a stable equilibrium, in accordance with the
�rst condition in (T1), (T2).

For exploring linearized stability of system (4) with di�usion, i.e. stability of system

∂tū = d1∆ū+ b11ū+ b12v̄

∂tv̄ = d2∆v̄ + b21ū+ b22v̄
in (0,∞)× Ω, (5)

we exploit the fact that the Laplace operator −∆ on a bounded (convex regular) domain
with Neumann BC (even with Dirichlet or Robin BC) is self-adjoint, non-negative and its
eigenvectors form an orthonormal basis of L2(Ω) (the space of all quadratic integrable functions
with support inside Ω). Particularly, denoting (κn, ϕn) the eigenpair for n ∈ N, the eigenvalues
can be ordered to in�nite (but countable) non-decreasing sequence

0 = κ0 < κ1 ≤ κ2 ≤ κ3 ≤ ...

Since system (5) is linear, it is convenient to look for solutions in the separated form

~u(x, t) = A(x)B(t).

Then �rst, for �xed x the function in the form B(t) = eλt for some λ will solve the system
with respect to t, and second, since we have orthonormal basis {ϕk}+∞k=0, the function can be
expanded into Fourier series and in summary, we are looking for solution of the form

~u(x, t) = eλt
∞∑
k=0

ckϕk(x). (6)

Note that this standard approach disregards any transition e�ects like transient growth, which
is not governed by spectral properties of the operator corresponding to system (5). The reason
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for this is that we do not view the whole problem as a single linear operator, which would be
typically non-normal and subsequently transition e�ects would be frequent. However, it can
be shown that for such behaviour to be signi�cant �ne parameter tuning is required [104](e.g.
signi�cant transient growth, which is captured by non-linearities and hence invalidates linear
stability based on the spectrum of the Laplacian). After substitution to system (5) we get

λϕk = Bϕk −Dκkϕk.

Since we are searching for a non-trivial solution of the later equation, we obtain the conditions
for that to occur, the so-called dispersion relation:

det (λI−B + Dκk) = 0, (7)

which can be rewritten into quadratic equation

0 = λ2 + (κkd1 + κkd2 − b11 − b22)λ+Hd(κk) (8)

with a denotation
Hd(κk) = (κkd1 − b11)(κkd2 − b22)− b12b21 (9)

and the resulting root λk2 is of the form

λ
(k)
1,2 =

b11 + b22 − (d1 + d2)κk ±
√

[b11 + b22 − (d1 + d2)κk]2 − 4Hd(κk)

2
, (10)

Due to the form (6) of ~u, there should exists at least one real part of λ in order to small
perturbations about ground state to grow fast enough to form a inhomogeneous steady state.3

Evidently, κk(d1 + d2) is positive and together with condition (T1) yields

b11 + b22 − (d1 + d2)κk < 0

and therefore λ(k)2 has negative real part for all k. Consequently, we need at least one k ∈ N
ful�lling Reλ

(k)
1 > 0, thus from (10) we need validity of

Hd(κk) = d1d2(κk)
2 − (b11d2 + b22d1)κk + b11b22 − b12b21 < 0. (11)

From the expression (11) the following necessary condition is clearly obtained

b11d2 + b22d1 > 0. (T3)

The fourth Turing condition, and the su�cient condition for (11), arises from the analysis of
Hd. Clearly, this function is convex, therefore we demand that the function at the point of its
minimum reaches below zero. Thus, step by step, we �nd a minimum:

0 =
∂Hd(κ)

∂κ
= 2κd1d2 − (b11d2 + b22d1),

2λk is for k ∈ N0 an eigenvalue of the operator corresponding to system (5). That can be shown straight-
forwardly using proper formulation in weak sense, for instance outlined in [46]. Both approaches are based on
theory of semigroups, the exponential solution here or the Theorem about stability in linear reaction-di�usion
system there.

3Or using Theorem about stability mentioned above, at least one eigenvalue λk should have positive real
part for the steady state be unstable.
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κmin =
b11d2 + b22d1

2d1d2
.

Note that κmin > 0 holds. The value of Hd at the minimum is

Hd(κmin) = −(b11d2 + b22d1)
2

4d1d2
+ b11b22 − b12b21.

Thus we get the last Turing condition

(b11d2 + b22d1)
2

4d1d2
> detB. (T4)

1.1.2 Corollaries of essential Turing conditions

Now we continue with some corollaries. Combining conditions (T1) and (T3) we obtain that
b11 and b22 have opposite signs and di�usion coe�cients d1, d2 are forced to be unequal. In
addition with (T2) we get that b12b21 is negative, therefore b12 and b21 are forced to have
opposite signs. In summary, the matrix B can be (except for relabelling of morphogens) only
one of two following forms (

+ −
+ −

)
,

(
+ +
− −

)
.

In the former case, u is denoted as an activator (its positive values cause an increase of both
morphogens) and v as in inhibitor (its positive values cause their decrease), whereas the latter
case is called positive feedback or substrate depletion. In both cases, from Turing conditions
follows d1 < d2. For illustration let us again mention some examples from [45]:

In the predator-prey context, as long as we still consider food to be the decisive element,
the latter scenario with gu > 0 means that u represents prey in a region su�ciently abundant
in vegetation ( fu > 0 ) whereas v stands for a predator competing for food (and/or, quite
commonly, territory; since gv < 0 ). In this case an inhomogeneous steady state thus requires
that the dispersion of the predator be faster than that of the prey. A local (random) increase
in prey density is autocatalytic but also stimulates local growth of predator numbers. Due
to faster dispersion, predators will then spread into neighbouring areas (before the prey does)
where increased predator density will cause a drop in both predator and prey count ( fv, gv < 0
) so the pattern we expect should display a correlation between high (and low) densities of both
the predator and its prey. Note that if it were the prey that dispersed faster, no such pattern
would be possible; instead we could expect to see a 'wave' of increased prey density spreading
from our 'source' area, stimulating a wave of predator abundance that would (possibly) restore
the equilibrium.

On the other hand, the former case with fv > 0 makes v count the prey while u counts
the predator. We can assume that an increase in the prey numbers results in food shortages
as gv < 0, whereas higher concentration of predators has a positive e�ect on their hunting
and/or reproductive e�ectiveness ( fu > 0 ). This time the prey needs to disperse faster for
anything 'interesting' to happen. Now a locally higher prey density will provoke a local rise
in predator numbers as well ( fv > 0 ), but will eventually drop naturally due to insu�cient
food supplies as well as predation ( gv, gu < 0 ). Given that these e�ects are strong enough
(note that the impact of cross-dependence has to 'prevail' since |fvgu| > |fugv| by (T1), (T2)),
it will drop well below the equilibrium level, inducing net in�ux of prey from the vicinity
of the 'outbreak'. If the �ow of the prey is fast enough, it will provide the higher number of
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predators with su�cient amount of food so that the latter can persist at their above-equilibrium
concentration. On the contrary, predator count will drop in the neighbouring areas due to the
out�ow of prey, which in turn enables the prey to achieve higher density there. The �ux of
the prey from this high density areas into low prey/high predator density territories takes care
of the self-inhibiting e�ect of increased prey numbers (e.g. local food shortages). Hence, we
expect that high predator density should correlate with low prey concentration and vice versa
should a permanent pattern be established. Note that in both cases the self-inhibiting species
had to di�use faster than the self-activating one. This is one of the well-known features of DDI
and is often referred to as short-range activation, long-range inhibition.

In the biological setting, di�usion could not be experimentally controlled as easily as it is
required in DDI and therefore, such process lacks a direct biological motivation. A following
observation is useful. Consider the domain of the form Ω = LΩ0 with positive L representing
a scaling of the initial domain Ω0. Using substitution x̃ = x/L in system (1) we obtain

∂tu =
d1
L2

∆̃u+ f(u, v)

∂tv =
d2
L2

∆̃v + g(u, v)

in (0,∞)× Ω0, (12)

where ∆̃ represents Laplace operator with respect to spatial variable x̃. Hence we can see that
the di�usion coe�cients scale as 1/L2 and therefore DDI can be interpreted as a self-organisative
process with the pattern emergence driven by the size of the domain.

Thus the analysis of the pattern emergence by di�usion can be expressed as a �nding a
critical size of the domain, starting from which the system can exhibit a pattern, while the
steady state remains homogeneous for smaller domains than the critical one. Such explanation
of the DDI can be more familiar to the biological applications, and alternatively, it gives us
a reformualtion not dependent on speci�ed movement of substances and hence, more suitable
for system with additions e�ect (f.e. with advection). Let us denote this procedure as domain-
size-driven instability, which will be discussed in more detail in section 1.2.2.

1.1.3 Turing space and areas of stability or instability

Now, we are concerned, for which parameters the problem (4) exhibits Turing patterns. The
set of such parameters is called the Turing space. A particular choice of the parameters can
be motivated by an application (for instance biologically motivated coe�cients of kinetics, as
a, b in section 3) or by a need for further analysis (di�usion coe�cients). Let us describe the
latter case in more detail and describe the set of di�usion coe�cients (d1, d2) for which system
(4) ful�ls Turing conditions. Notation follows [52, 46].

Following the derivation of Turing conditions involving the di�usion coe�cients it is clear
that the state-changing condition is a sign of Hd(κk) de�ned in (9). If we denote the set of
di�usion coe�cients vanishing the term Hd(κk) in following way

Ck =

{
[d1, d2] ∈ R2

+ : d2 =
1

κk

(
b12b21

d1κk − b11
+ b22

)}
and if we plot the set in a graph with d1, d2 on the axes (see �g. 1), we see that Ck are parts
of hyperbolas with asymptotes d1 = b11

κk
and d2 = b22

κk
. It can be shown that all hyperbolas have
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Figure 1: An illustration of hyperbolas Ck representing a critical di�usion coe�cients for which
the steady state (u∗, v∗) changes a stability with respect to full system (4) with appropriate
tangent lines. Furthemore, R2

+ is divided by the "envelope" CE into an area of stability (the
right-bottom section) and an area of instability (the left-top section).

one common tangent line [68]

d2 =
b11b22 + 2

√
−b12b21 detB

b211
d1.

Further characteristics follow from the properties of eigenvalues of Laplacian (eigenvalues κk
can be ordered into a countable in�nite non-decreasing sequence): from the form of Ck follows
that Ck tends to d1 = 0 for k → +∞. Moreover, if the eigenvalues of Laplacian are simple, i.e.
κk < κk+1 for every k ∈ N0 (for instance, this applies to Ω ⊂ R), then Cj 6= Ck for all unequal
j, k ∈ N. If, on the contrary, the eigenvalue κk has multiplicity jk ∈ N, then following holds

Ck−1 6= Ck = Ck+1 = · · · = Ck+jk−1 6= Ck+jk .

The beauty of hyperbolas Ck can be summarized into the following proposition: Assume
that conditions put on matrix B (T1), (T2), (T3) hold. Then for every λ(k)1 (λ(k)2 has negative
real part) ful�lling (7) holds:

Reλ
(k)
1 < 0 for (d1, d2) ∈ R2

+ lying to the right from Ck,

λ
(k)
1 = 0 for (d1, d2) ∈ R2

+ lying on Ck,
Reλ

(k)
1 > 0 for (d1, d2) ∈ R2

+ lying to the left from Ck.

Finally, if we denote the "envelope" of all hyperbolas as a set

CE =
{

[d1, d2] : d1 ∈ R+, d2 = min {z : [d1, z] ∈
⋃
k∈N

Ck}
}
, (13)

then CE separates the R2
+ into two parts, an area of stability, i.e. the set of (d1, d2) ∈ R2

+ for
which the steady state is stable; and an area of instability, the Turing space if (T1), (T2), (T3)
hold, the set of the pairs of di�usion coe�cients for which the steady state is unstable.
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From this point, an investigation which pairs of di�usion coe�cients there exists at least
one non-homogeneous stationary solution can start. Even unbounded connected sets of such
point can be found using Global Rabinowitz Theorem [78] or its generalized version [105]. For
instance, the existence of such set was shown in the area of instability for Thomas model [46]
or even generally in the area of stability [53]. Such results, together with appropriate a priori
estimates of steady solutions, are helpful for determining where the steady states of numerical
evolution experiments or the expectations of real applications could be located.

1.2 Generalizations of Turing system

Since the original Turing model is very simple, many investigations of the reaction-di�usion
system with various additional phenomena were made for the sake of achieving an exhibition
of wider class of resulting solutions or due to an increase of robustness of the whole problem.
First in this section, a few such investigations of some generalizations of the Turing system are
listed, with a particular emphasize on the main topics of this thesis � the in�uence of advection
and spatial dependency.

Secondly, an alternative mechanism to Turing's one, which we call domain-size-driven in-
stability, is introduced. Such mechanism follows more a�able description using domain growth
as a force to change a stability and can be used for some enhanced reaction-di�usion systems.
And �nally, to proceed with the stability analysis in some diverse model extensions, the use
of Sturm-Liouville theory can be adopted, therefore we brie�y present the relevant features of
Sturm-Liouville theory. This theory will be used to analyse domain-size-driven instability for
the system with advection in section 2.

1.2.1 Examples of generalized Turing systems

The author is aware of his abilities that he is not capable to cover such a topic in a full
comprehensive range. Rather than that, this list could serve as a stepping-stone for a study of
the particular �elds.

Growing domains. As was presented in section 1.1.2, the main biological interpretation
of di�usion-driven instability is a transformation of change in di�usion to change in a domain
size, and thus taking a domain size only as a bifurcation parameter [70, 10]. Such formulation
of the domain growth in�uence on the condition of the Turing instability neglects the system
non-autonomy. In spite of that, it was observed in [10] that exponential growth causes so-
called doubling e�ect � regular periodic doubling of the number of peaks with high and low
concentrations following the exponential domain growth. Such process decreases dependency
of the resulting pattern on the initial conditions and thus increasing robustness of the model.

The proper description was �rstly solved numerically, for instance the growth of teeth [50]
or stripe formation in juvenile �sh Pomacanthus [73] using exponential growth, lately it was
analysed explicitly considering domain growth dynamics [11, 57]. The various growth functions
(linear, logistic and exponential) are analysed with diverse e�ects on conditions on pattern
emergence, in some cases the patterns are called domain-growth-induced, since the growth
alone is the force to create such patters and it is shown that such patterns can be obtained
even for system of type activator-activator. In [40] the investigation of the e�ect of the domain
growth is more thorough considering the history of the evolution following the growth. Then,
the conditions to pattern formation are weakened even more, although their high complexity
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requires numerical evaluation. Note that on faster growing domains, there is a total breakdown
of the continuum description as modes of arbitrarily high wavenumber modes are excited,
leading to the growth of �uctuations on smaller scales than that of an individual and thus a
loss of self-consistency of the modelling assumptions.

Let us note here the opposite e�ort. Motivated by a regeneration of �atworm, authors in
[108] sought such an adjustment of the Turing system so that the pattern scales proportionally
to the size of the domain. Similar phenomenon can be seen observing the emergence of exactly
the same number of �ve �ngers independently of their distal growth [17].

Three and more equations. The motivation for utilization of more than two substances
are apparent and was mentioned even in Turing's original work [101]. In every biological
or chemical process, there is a vast of substances, from which only the most important are
necessary to take account. And certainly, if we consider more than two equations, the results
of the mathematical model will corresponds more to the reality. However, with regards to
analysis procedures, its di�culty increases with higher number of equations n, which coincides
most with the eigenvalue problem of n-dimensional Hurwitz matrix. Necessary and su�cient
conditions for the Turing instability for n equations were derived in [88].

It is clear that requirements on characteristics of substances are relaxed in the presence
of more than two substances. Even for the case of three equations, which is the case often
used in applications nowadays [79], it is not necessary that 1) all di�usion coe�cients have to
be non-zero (an immobile substance) [35, 43, 59] or 2) non-equal [60] or 3) steady states are
only solutions (travelling waves [18]). It follows that substances involved in the mechanism are
not only identi�ed as pure activators or pure inhibitors, however still, the substances can be
divided in two logical subsystems interacting like activator or inhibitor, respectively; thoroughly
analysed in [88] or in [60].

With the possibility of interactions of more substances, the system is applicable particularly
to situations where two main substances were not clearly determined as in the development of
cyanobacterial organism [14] or digit patterning [79].

A particular example of three considered equations is a realistic situatino of two interacting
substances, where one of them has two distinct stages, di�erent in di�usion or reaction rates �
for instance if the substance can bind to a substrate and hence has zero di�usion rate [43, 65].
From the point of view of the robustness issue it follows that not only mobile substances
(ones with nontrivial di�usion) should be taken account, but also the immobile ones since such
additional interaction can crucially change the behaviour of the system [35].

Equations with time delays. A possible biological motivation for introducing a time
delay in reaction di�usion systems is the situation when reaction delays are particularly im-
portant when dealing with the production of crucial proteins as a cascade of time-consuming
biological processes must occur in order for a single protein to be produced [111]. Delayed
equations are di�cult to analyse even in the case of ordinary equations, therefore numerical
simulations are mainly performed while being supported by an analysis of a speci�c system.
In [21, 93] it is illustrated that behaviour of linearized system does not coincide with the full
system, thus linearized stability does not re�ect the behaviour of the full model. Numerical
experiments indicate that except for a higher sensitivity to initial conditions, there is not much
to say generally about the behaviour of the full system as the behaviour di�ers according to
various kinetics. For instance, a prolongation of the evolution time is caused in the case of
Schnakenberg kinetics resulting in solutions without any oscillations [21], whilst in the cases
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of various versions of Gierer-Meinhardt kinetics the delay can cause oscillations or blow-ups,
depending on the exact combinations of kinetics and sub-cellular dynamics [93]. For these two
kinetics cases the conditions for di�erent mechanism of pattern formation are obtained [116]
and the in�uence of growing domains is studied [21, 91, 92] � the e�ect of growth is not so
signi�cant in comparison to undelayed models, the lack of robustness with respect to initial
conditions preserves and if, in addition, the growth contains the delay itself, the possibilities of
behaviour seems to be unbounded [92].

Cross-di�usion. Non-triviality of non-diagonal di�usion coe�cients Djk models a de-
pendence of a movement of the �rst substance on a concentration of the second one. This
phenomenon can be seen as a bacterial chemotaxis [100], development of vegetation patterns
[94], in plasma physics [13] or predator-prey models [103]. The analysis of Turing patterns
was carried out for constant Djk �rst [1, 44, 103], then for more relevant di�usion coe�cients
satisfying

Djk(u)→ 0 as uk → 0, k 6= j

since there can be no �ux of species k if concentration of such species falls to zero (i.e. uk ≡ 0)
[51]. The resulting solutions of the Turing instability are not only stationary solutions ([98] for
more general di�usion coe�cients), but even travelling fronts [23, 22].

Stochasticity. Original (deterministic) model assumes continuity of species concentration
(rather than a number of species), which decently approximate real situation with high number
of species representatives (e.g. molecules). But that is not the case in all real systems, some
populations have numbers in dozens, for instance the number of the lac repressor in Escherichia
coli, which is involved in the regulation of gene expression, is only in 10-30 [30, 113]. In such
a situation, the incorporation of stochastic processes is necessary. According to [113, 102] two
di�erent types of biological noise can be considered (and a proposed model should follow it) 1)
intrinsic, emanating from random �uctuations in the population interactions, and 2) extrinsic
(environmental), describing noise with source from outside. A great progress was achieved in the
latter case using approximations or simulations of appropriate stochastic di�erential equations
(see [24] for a review). As presented in [102], standard approach in the former case begins
with a transcription of the problem into a chemical master-equation formalism and follows by
a derivation of a Fokker-Planck equation, which is then analysed. Stochastic Turing patterns,
which is a designation of steady solutions of appropriate stochastic system and induced by
di�usion or noise, are studied e.g. in [6, 115, 4].

Stochasticity is such a result-changing phenomenon that large focus lies on its e�ect on
the generalized system presented above. Therefore we can �nd studies of interaction between
stochasticity and growing domains [112, 110], cross-di�usion [19], delays [114] or more equations
[14]. For clear and summarizing comparison of stochastic and deterministic Turing system, see
[90, 7].

An advection �ux is readily motivated in eco-hydrological systems, such as river based
ecological systems [31, 96]. Additional examples include the impact of a bias in the random
motility underlying di�usion, which is relevant for systems where the species are at larger
scale than molecular; a further example at the cellular scale concerns the Turing systems in
synthetic biology, with interacting cells and signalling molecules together with a background
chemotactic �eld [16]. One can also consider the introduction of background �ows to chemical
Turing systems, such as the CIMA-starch reaction [69, 8], or even chemical systems that may
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not exhibit a Turing instability given the weaker self-organisation constraints. As a further
prospective biological example, we mention the proposed Turing instability hypothesised for
the interaction of tumour growth factors [9], which would also be subject to a weak advective
�ux due to interstitial �ows.

As a �nal example, if we subject Fick's law of di�usion to scrutiny, speci�cally if we derive
the evolution equations for reacting mixtures using the framework of non-equilibrium ther-
modynamics [34, 54, 38], we observe that advection can appear as a consequence of chemical
reactions among constituents. Particularly, from a careful formulation of mixture theory of
�uids it follows that chemical kinetics need not only be driven by chemical a�nity � as would
be the case with Fick's or Maxwell-Stefan law � but can also be driven by di�usive �ux [75].
This not only entails that it is consistent for di�usion to drive chemical reactions but that the
converse also applies and chemical reactions alone can consistently induce di�usion �ux, with
gradients of chemical reactions thus inducing advective terms. Hence introducing and studying
a new concept of self-orchestrated pattern formation in the presence of �ows, induced by gra-
dients of chemical reactions, is thermodynamically consistent and thus not unreasonable with
analogous remarks also applying for thermal gradients in chemical systems.

The idea of considering advection as a generalisation of the Turing instability dates back to
the work of Rovinsky and Menzinger who, inspired by the Belousov-Zhabotinsky reaction, pro-
posed the so-called di�erential-�ow-induced chemical instability (DIFICI) for self-organisation
[81, 82]. Here, advection is added to the Turing reaction di�usion system in the same manner
as in section 2; with DIFICI, there is a resulting non-steady chemical instability outside the
Turing regime, characterised by periodic travelling waves [83, 88, 86]. This mechanism was also
generalised by Satnoianu et. al. [88] to systems possessing both di�erential �ow and di�usive
transport, analogously to the need for di�erential di�usion in the Turing instability, which led
to the prospect of the so-called �ow-and-di�usion structures. Other studies on the stability of
reaction-di�usion and advection systems have also been conducted by Nekhamkina, Sheintuch
and Smagina [66, 67, 95].

Results in these previous studies are typically based on results for in�nite domains. However,
Reddy and Trefethen [80] have pointed out that spectral analysis on the real line may be of
limited value in the reaction-di�usion-advection problem since the similarity of the spectrum
on in�nite and �nite domains, and thus the similarity in stability behaviour, is dependent on
the magnitude of the Péclet number, Pe = LV/d, which we shall explicitly explore. Hence for
large domains there is not a continuous transition of spectral properties from in�nite domains
and thus we cannot rely on insight from the previous studies on in�nite domains, especially
given our interest in diverse choices of boundary conditions, as further con�rmed by studies of
Davies [12].

An addition of Spatial dependency into parameters of the Turing system could break
a high degree of periodicity of the resulting patterns and such system could be capable to
capture key features of many real systems, where the patterns signi�cantly change in space as
illustratively shown in [20]. The Gierer-Meinhardt model [25], for example, is originally based
on a source with a gradient; even Turing in his paper [101] discussed that �Most of an organism,
most of the time, is developing from one pattern into another, rather than from homogeneity
into a pattern�, suggesting signi�cant spatial dependency may be initially present before the
impact of the Turing instability.

There are many examples of spatial irregularity in patterns where wavelength variation is
manifested and such heterogeneous pattern modulation has a crucial impact on both the real
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product and self-organization process. For instance a distribution of mouse or cat whiskers [74],
alternating thin and thick stripes of Lion�sh [72], emergence of �ngers [17] or the heterogeneity
of the environment in landscape ecology [77]. Such ubiquitous examples emphasize the critical
importance of studying the impact of heterogeneity and its e�ects on the properties of self-
organizing systems.

However, the standard procedure of stability analysis is not easily extendable to the case
with spatially dependent coe�cients as, for example, a homogeneous steady state does not
exist in general given spatially dependent kinetics. Probably the most well understood e�ect of
heterogeneity comes from the shadow limit in Gierer-Meinhardt kinetics using spike solutions
[33, 107, 106] but note that this requires the applicability of the in�nite or arbitrarily large
di�usion coe�cient in one of the species. Further the case of spatially dependent di�usion
coe�cient was analysed in [3] with a step function representing the dependency. Heterogeneity
in the reaction kinetics was analysed numerically [72] and limited analytical progress in sta-
bility analysis has been established with spatial dependency in the kinetics. Examples include
asymptotically small, spatially dependent, linear gradients of morphogen source [26, 28, 27], a
cosine spatial dependence in a coe�cient of the kinetics [61] and a step function, independent
of morphogen concentration, added to the kinetics [71]. Finally, very recently a rather gen-
eral stability analysis with spatial heterogeneity in reaction kinetics was successfully proposed
including a transition from one pattern into another [49]. Essentially the only situation this ap-
proach using WKBJ asymptotics does not cover is when the spatial oscillations are rapid, which
is a fundamental feature induced by the jump discontinuity in the kinetics that we consider in
section 3.

1.2.2 Domain-size-driven instability

At the end of section 1.1.2 it was shown that the assessment of critical di�usion coe�cients,
with which system (1) exhibits Turing patterns, can be reformulated into a �nding of critical
domain sizes. Thus, instead of the principle based on a change of di�usion rates, the cause of
pattern formation can be described as a domain growth. This idea is discussed in more detail
in this section with the goal of a statement of an alternative mechanism to Turing's one, which
can be moreover used in more general settings.

Note that the Turing instability is typically highly constrained with demanding constraints
for its presence, as documented by Murray [64], and hence there are often only small regions
of parameter space where an instability may occur. As one example, for the standard model
based on di�usive transport, the system must be stable in the absence of di�usion, otherwise
the homogeneous steady state is destabilised by homogeneous perturbations on a small domain.
Given the common choice of zero di�usive �ux conditions, which do not preclude spatially
homogeneous perturbations, this becomes a stringent constraint on the kinetics.

However, consider a model generalisation, even a weak one, which entails that a homoge-
neous perturbation cannot be supported, for example due to incompatibility with the boundary
conditions. Then homogeneous perturbations are prevented from growing on small domains by
the boundary conditions without appeal to a stability constraint and hence there is stability on
small domains without the usual restrictions on the kinetics of the standard Turing instability.
In turn, the extent of the constraints on the model kinetics and transport that are required
for self-organisation can be substantially less stringent and yet the mechanism can still exhibit
domain size control, with a bifurcation to instability if the domain size becomes too large.

One example of such a model generalisation from a standard Turing model with zero di�usive
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�ux boundary conditions is the imposition of a Dirichlet boundary condition that is consistent
with the homogeneous steady state. In turn, this suggests that a simple change in the boundary
conditions may substantially weaken the constraints required for domain size controlled self-
organisation to occur. As a second example, consider the presence of advection, where the �ux
of a species u is −d∇u + Vu, and d is the di�usion coe�cient, with V the advective velocity
�eld. The �ux condition consistent with a homogeneous steady state value of u∗ is given by

n · (−d∇u+ Vu) = n ·Vu∗

and this does not support a homogeneous perturbation away from the steady state. Hence even
weak advection may substantively alter the conditions for system self-organisation.

Final constraint is that the most unstable mode(s) are of bounded wavenumber, so that
there is a well-de�ned spatial lengthscale of the patterns induced by the instability; if this is
violated then patterning occurs on arbitrarily small lengthscales, which results in the breakdown
of the continuum approximation [35].

Thus in summary, we propose that domain-size-driven instability can be characterised
by: one, the existence of a critical size below which the system is stable to small perturbations
and above which instability generally occurs (which particularly means that the stability of
homogeneous steady state with respect to homogeneous pertubrations is required if such per-
turbations can be supported); two, the existence of only a �nite number of unstable modes as
otherwise the continuum description would break down (and no structure in spatial organisation
would appear except salt-and-pepper pattern).

As was already discussed, such mechanism shows to be identical with Turing's idea in the
classical case with Neumann BC, but 1) in the case of Dirichlet BC they di�er, particularly the
former mechanism gives an enlargement of the Turing space; and 2) the proposed mechanism
can be suitable even for some generalizations of classical case where these two concept diverge,
for example with a presence of small advection, as presented in section 2.

1.2.3 Sturm-Liouville theory

Let us consider the following problem that is a generalisation of a reaction di�usion system
considered by Turing for morphogenesis. For simplicity we restrict the analysis to a 1D domain
Ω = [0, L] and consider

∂

∂t

(
r(x) u
r(x) v

)
=

(
d1 L(u)
d2 L(v)

)
+ r(x)

(
f(u, v)
g(u, v)

)
,

where r(x) is a non-zero function, Lu := ∂
∂x

(
p(x) ∂

∂x
u
)
is a linear operator with d1, d2 two

positive di�usion constants and u, v represent the concentrations of two morphogens.
First, note that stability analysis of a stationary solution that is spatially dependent is

beyond the scope of this paper. Hence, we restrict ourselves to the standard case when the
existence of a homogeneous stationary solution u∗, v∗ is required. Thus

0 =

(
f(u∗, v∗)
g(u∗, v∗)

)
.

With y representing u or v, and y∗ the homogeneous steady state value, we consider the
above equations subject to inhomogeneous Robin boundary conditions,

α1y(0) + α2y
′(0) = α1y

∗, β1y(L) + β2y
′(L) = β1y

∗,

αi ∈ R, βi ∈ R, |α1|+ |α2| > 0, |β1|+ |β2| > 0.
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The spatial operator L = ∂
∂x

(
p(x) ∂

∂x

)
with the homogeneous analogues of these boundary con-

ditions is a fully self-adjoint Sturm-Liouville operator. Hence, for the function space L2([0, L])
its set of its eigenfunctions form a complete basis set of orthonormal square-integrable functions.

To proceed in our consideration of Sturm Liouville theory, let γn solve

(Lγn)(x) =
∂

∂x

(
p(x)

∂

∂x
γn(x)

)
= −λnr(x)γn(x)

where n labels the eigenpair (λn, γn(x)) of the operator. With the expansion(
u
v

)
=

(
u∗

v∗

)
+

(
α
β

)
,

(
α
β

)
=
∑
n

wnγn, wn =

(
w1
n

w2
n

)
we take advantage of the fact that the set of γn form an othonormal basis of L2([0, L]). Lin-
earising about (u∗, v∗)T , and therefore assuming |α| � 1, |β| � 1, yields∑

n

r(x)γn(x)

(
ẇn +

(
d1λnw

1
n

d2λnw
2
n

)
− Jwn

)
= 0,

where J = (Jij)i,j∈{1,2} denotes the Jacobian of the reaction kinetics evaluated at the homoge-

neous steady state, (u∗, v∗), with the dot (̇) denoting a time derivative. As the eigenfunctions
γn form an orthonormal basis, we have that

ẇn = −
(
λn

(
d1 0
0 d2

)
− J

)
wn

and hence the dispersion relation is given by

det

(
σnI + λn

(
d1 0
0 d2

)
− J

)
= 0,

where its roots σn correspond to eigenvalues of the linearised system. These consequently
determine the linear stability of the homogeneous steady state. Potential di�culties in dealing
with this additional generality compared to textbook analyses [64] are, of course, subsumed in
the eigenvalue problem of the Sturm-Liouville operator L.

To illustrate the above ideas in a concrete setting, we consider an example with heteroge-
neous transport, with p(x) = e−x and r(x) = 1, as would be relevant for an e�ective theory of
interacting chemical species in a porous medium with an exponential spatial dependence in the
porosity. Then, in particular, we have

∂

∂t

(
u
v

)
=

(
d1

∂
∂x

(e−x ∂
∂x
u)

d2
∂
∂x

(
e−x ∂

∂x
v
))+

(
f(u, v)
g(u, v)

)
with ∂

∂x
u = ∂

∂x
v = 0 at x ∈ {0, L}. The corresponding eigenfunctions of the spatial operator

L = ∂
∂x

(
e−x ∂

∂x

)
with the zero-�ux boundary conditions are

γn(x) = ex/2
[
Y (0, 2

√
λn)J(1, 2

√
λne

x/2)− J(0, 2
√
λn)Y (1, 2

√
λne

x/2)
]
,

where J and Y denote Bessel functions of the �rst and second kind and its spectrum is equal
to the pure point spectrum, with the eigenvalue λn denoting the n-th root of the term in the
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square brackets. Algebraic conditions for the linear stability of the homogeneous steady state,
whether in the context of a Turing instability, or more generally a domain-size-driven instability,
directly follow from the general treatment above.

In this way, the use of Sturm-Liouville theory enables the analysis of problems that go
beyond the textbook theory of the Turing instability and these techniques could also be used
to study the impact of spatial variation in other contexts. One example is the impact of extra-
cellular matrix heterogeneity on the Turing instability given Lengyel and Epstein's e�ective
theory [55, 43]. A second example would be to examine the impact of a background, spatially
heterogeneous, chemotactic �eld c in�uencing a cell density n via the model

∂

∂t
u = d∇2u− χ∇c∇u+ f(u),

with ∇ denoting the spatial gradient. However, instead, below we will exploit this framework to
analyse di�erent boundary conditions and reaction-di�usion-advection problems, in particular
to assess whether there is a prospect of a domain-size-driven instability without the constraining
necessity of a stable homogeneous steady state.
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2 RD system with advection

2.1 Statement of the problem

We shall consider the more general concept of a domain-size-driven instability in the presence of
constant advection and other boundary conditions, to assess for instance whether this can relax
the requirement of short-range activation and long-range inhibition characterising the Turing
instability. As such, we focus on systems that are not associated with the Turing instability, to
see whether they nonetheless exhibit a domain-size-driven instability.

Thus two particular cases for the bulk behaviour of a two-species reaction-di�usion-advection
system will be considered in a one-dimensional domain Ω = [0, L], one case with equally
transporting species and the other case with an immobile species. Both systems are outside the
regime of a classical Turing mechanism in that if advection is neglected, and Neumann boundary
conditions enforced, the system still does not exhibit a Turing instability [64]. Furthermore,
the above Sturm-Liouville theory can be applied with r(x) = p(x) = e−xV/d for a constant
advection V , and also d = d1 = d2 when both species are mobile and d = d1, d2 = 0 when one
of the species is immobile.

Four types of boundary conditions are considered that are relevant for reaction-di�usion-
advection problems. Noting (u∗, v∗) de�nes the homogeneous steady state about which linear
stability is of interest, we explore the following conditions for V > 0:

Dirichlet BC u(x) = u∗ at x ∈ {0, L},

Fixed �ux BC −d1 ∂
∂x
u(x) + V u(x) = V u∗ at x ∈ {0, L},

Danckwert's BC −d1 ∂
∂x
u(0) + V u(0) = −d1 ∂

∂x
u∗ + V u∗ = V u∗ and ∂

∂x
u(L) = 0,

Periodic BC u(0) = u(L) and ∂
∂x
u(0) = ∂

∂x
u(L),

which are all consistent with the homogeneous steady state. The same boundary condition is
also imposed on both species if the v species is mobile.

The physical meaning of the �rst three boundary conditions is clear. The Danckwert's
boundary condition is commonly used in plug �ow reactors. The boundary condition at the
inlet, which is at x = 0 for V > 0, follows from the balance of mass at the boundary where the
in�ux is considered to be well-controlled and with a de�ned composition at the homogeneous
steady state, u∗. Hence di�usion in the inlet tube is considered to be negligible as there is
no spatial variation of concentration in the inlet tube. In the bulk of the reactor, mixing and
reactions of the chemicals takes place, with the possibility of pattern formation. Finally, the
second boundary condition assumes that the concentration is e�ectively constant at the point
where the �ow leaves the plug �ow reactor, x = L, with mass balance automatically satis�ed.
For more details we refer the reader to citation [76] for example. Please note here that as the
boundary conditions are asymmetric one has to specify the inlet and outlet unambiguously
by �xing the sign of V > 0, corresponding to transport along the x axis in our notation.
Considering V < 0 requires a swap in the boundary conditions and hence recalculating the
spectrum.

2.2 Stability analysis without BC speci�ed

In this subsection, we present steps of the procedure, which are common for all BCs, that
means: a statement of the problem and stability analysis for both, with and without di�erential
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transport; the �rst steps of computing eigenvalues λn. For ilustration of the presentation, we
use �xed-�ux BC.

2.2.1 The absence of di�erential transport

We consider a system of two interacting species u, v where both species are di�using and
advecting with the same transport rates, so that d = d1 = d2 with the same advection for both
species. Hence,

∂

∂t

(
u
v

)
=

(
d ∂2

∂x2
u− V ∂

∂x
u

d ∂2

∂x2
v − V ∂

∂x
v

)
+

(
f(u, v)
g(u, v)

)
(14)

def
= LdV

(
u
v

)
+

(
f(u, v)
g(u, v)

)
= d

1

r(x)

∂

∂x

(
p(x)

∂

∂x

)
︸ ︷︷ ︸

L

(
u
v

)
+

(
f(u, v)
g(u, v)

)

where the functions f, g describe the reaction kinetics and a linear operator with constant coef-
�cients LdV = d ∂2

∂x2
−V ∂

∂x
has been introduced for simplicity, whilst a connection to previously

discussed Sturm-Liouville theory is stated in the last equation with p(x) = r(x) = exp(−xV/d).
The bulk equations (14) are accompanied by the appropriate boundary conditions, f.e. use

�xed-�ux boundary conditions, for both species u, v, that is Lbcu := V u(x)− d ∂
∂x
u(x) = V u∗

and Lbcv = V v∗ for x ∈ {0, L}. Thus an initial condition with a small perturbation of the
homogeneous steady state, of the form

u(t = 0, x) = u∗ + u0(x), v(t = 0, x) = v∗ + v0(x),

with |u0| � u∗, |v0| � v∗, requires the zero �ux homogeneous boundary condition

V u0(x)− d ∂
∂x
u0(x) = 0

at each boundary for compatibility with the initial conditions, and similarly for species v.
Linearisation about the homogeneous steady state, (u∗, v∗), with (ū, v̄) = (u, v) − (u∗, v∗)

yields the bulk equations
∂

∂t

(
ū
v̄

)
− LdV

(
ū
v̄

)
= J

(
ū
v̄

)
, (15)

where the matrix of linearised kinetics, J, is evaluated at the homogeneous steady state (u∗, v∗)
and small perturbations have been assumed, thus allowing the neglect of higher order terms,
with a view to linear stability analysis below. The initial conditions are ū(t = 0, x) = u0(x),
v̄(t = 0, x) = v0(x) and are assumed to be compatible with the zero-�ux boundary conditions.

With γn and λn respectively denoting the nth eigenmode and eigenvalue, note that the
eigenvalue problem −LdV γn = λnγn, is the same as −dLγn = r(x)λnγn. Furthermore, when
supplemented with the homogeneous boundary conditions Lbcγn = 0, the latter is a fully self-
adjoint Sturm Liouville problem and thus possesses an orthonormal basis of eigenmodes in the
function space L2([0, L]), albeit with a weighting function of r(x) in the inner product and thus
the norm as well. Hence, we also have a orthonormal basis of eigenmodes of −LdV on (0, L) for
an appropriate choice of inner product.
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Note that for the case of periodic boundary conditions, Sturm-Liouville theory does not ap-
ply, since the operator lacks full self-adjointness due to the fact p(x) is not periodic. However for
the examples considered below, explicit calculation of the eigenfunctions for periodic boundary
conditions reveals that they are Fourier mode harmonics (see section 2.3.1) and hence consti-
tute a complete orthonormal basis of square integrable functions. Nonetheless the associated
eigenvalues are not required to be real as Sturm Liouville theory does not apply.

Hence, the stability of the homogeneous steady state, (u∗, v∗), can be assessed from whether
there is growth or decay for the amplitudes of these eigenmodes on substituting the expansion

ū =
∑
n

wun(t)γn(x), v̄ =
∑
n

wvn(t)γn(x)

into equation (15). With this substitution we thus have∑
n

[(
ẇun
ẇbn

)
+ (λnI− J)

(
wun
wvn

)]
γn = 0.

and the homogeneous steady state is stable if all roots σ± of the dispersion relation

det (−σ±I− (λnI− J)) = 0 (16)

have negative real parts; conversely it is unstable if at least one of the roots has a positive real
part.

Except for parameter �ne-tuning, which would be hard to justify due to the requirement of
robustness, we have there exists an invertible matrix U such that matrix J can be characterised
by its eigenvalues µ±

J = U−1
(
µ+ 0
0 µ−

)
U

and hence the dispersion relation (16) can be rewritten as

det

[
U−1

(
−σ±I +

(
µ+ − λn 0

0 µ− − λn

))
U

]
= 0,

with roots σ± = µ± − λn. Under such circumstances, we may conclude that the homogeneous
steady state (u∗, v∗) is linearly stable if and only if

Re(σ±) = Re(µ± − λn) > 0, (17)

where λn are eigenvalues of the spatial operator −LdV , subject to the boundary conditions
Lbcγn = 0 at x ∈ {0, L} and µ± are two eigenvalues of the linearised kinetics Jacobian matrix J.
Furthermore it can be easily shown that the conclusion also holds when J is not diagonalisable
via the use of Jordan normal forms. On the other hand, if the matrix J is diagonalisable, by
rotation of u, v into eigenvectors of J one arrives at two uncoupled one species problem with
the same boundary conditions and linear kinetics with coe�cients equal to the eigenvalues µ±.
Therefore all the results below for pattern formation without di�erential transport hold for
a single species system provided J is diagonalisable (almost always is in the sense of natural
measure on 2D matrices) further strengthening the signi�cance of these results.

To conclude the stability analysis it su�ces to identify eigenvalues of the spatial operator
−LdV and thus solve the eigenvalue problem,

− LdV γn = −
(
d
∂2

∂x2
− V ∂

∂x

)
γn = λnγn (18)

subject to particular boundary conditions.
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2.2.2 Di�erential transport

In this subsection we once more consider a system of two interacting species u, v but now with
one species transporting via di�usion and advection, while the other species is bound to a �xed
substrate. Hence we have

∂

∂t

(
u
v

)
=

(
d ∂2

∂x2
u− V ∂

∂x
u

0

)
+

(
f(u, v)
g(u, v)

)
, (19)

where functions f, g describe the reaction kinetics. Hence, the appropriate boundary conditions
(�xex �ux BC in our case) apply just for species u, with Lbcu = V u∗ and a small perturbation
of the homogeneous steady state is considered as an initial condition, that is

u(t = 0, x) = u∗ + u0(x), |u0| � u∗.

The compatibility constraints for the consistency of the boundary and initial conditions of
species u are the same as in the previous case.

Using ū = u− u∗, v̄ = v − v∗, we once more linearise the equations to �nd

∂

∂t

(
ū
v̄

)
− LdV

(
ū
0

)
= J

(
ū
v̄

)
, (20)

with ū satisfying homogeneous boundary conditions.
Before proceeding, we demonstrate that apart from a degenerate case requiring mathemat-

ical precision in the reaction rate constants, the bulk equations and boundary conditions of
the linearised problem guarantee that even the perturbation v̄ can be spanned by the Sturm-
Liouville eigenfunctions. In particular, working in the L2 function space, albeit inheriting the
inner product and corresponding norm associated with Sturm-Liouville eigenfunctions, we de-
compose v̄ = vγ +vγ⊥, where v̄γ is in the sub-space of L2([0, L]) spanned by the Sturm-Liouville
eigenfunctions, and vγ⊥ is perpendicular to this subspace. Then with the expansions

ū =
∑
n

wun(t)γn(x), v̄γ =
∑
n

wvn(t)γn(x),

equation eq. (20) becomes∑
n

[(
ẇun
ẇvn

)
+

((
λn 0
0 0

)
− J

)(
wun
wvn

)]
γn +

(
−J12vγ⊥

v̇γ⊥ − J22vγ⊥

)
= 0.

We neglect the degenerate case when the upper o�-diagonal Jacobian coe�cient at the
homogeneous steady state J12 is zero, since this requires mathematical precision and we focus
on systems that are robust to small parameter variations. Hence, we have vγ⊥ = 0 as this
is, by construction, orthogonal to the span of the Sturm-Liouville eigenfunctions and thus
cannot be balanced by Sturm-Liouville functions in the upper row of the above equation, giving
Lbcv̄|0,L = 0. Note that although species v is not directly transported, spatial variations will
develop as a consequence of the interactions with species a mediated by kinetics J.

Insisting on continuous solutions also requires consistency between the initial and boundary
conditions, such that

Lbcv(t = 0)|0,L = Lbcv̄(t = 0)|0,L + Lbcv∗ = V v∗,
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after which the species concentration v satis�es the same identity for all later times from the
dynamics of the system enforcing the constraint

Lbcv̄|0,L = 0.

Henceforth, we proceed with
v̄ = vγ,

and thus ∑
n

[(
ẇun
ẇvn

)
+

((
λn 0
0 0

)
− J

)(
wun
wvn

)]
γn = 0.

Consequently, linear stability is guaranteed if the matrix

−
((

λn 0
0 0

)
− J

)
has eigenvalues σ±

σ± =
trJ− λn

2

(
1±

√
1− 4

detJ− J22λn
(trJ− λn)2

)
(21)

with negative real parts ∀n ∈ {1, 2, 3 . . .}, where the eigenvalues of −LdV , denoted λn, are
inherited from the previous example.

2.2.3 Computing of the eigenvalues

Both previous subsections ended with the requirement of computing the eigenpairs (λn, γn) of
the problem (18), i.e. of the linear di�usion-advection operator

− LdV =

(
V
∂

∂x
− d ∂

2

∂x2

)
, (22)

with various boundary conditions mentioned in the introduction of section 2. In this subsection
we outline the common beginning of the computation. The following procedure is straightfor-
ward, although not technically trivial.

Since we will operate in one dimensional space, we rewrite system (22) in the standard
notation for that case. Thus we solve a system of equations

− LdV γn ≡ −dγ′′n + V γ′n = λnγn, (23)

where [λn, γn] denotes an eigenpair for each n ∈ N0 to the problem (22) with boundary con-
ditions, since we know that spectra of operators belonging to all the considered boundary
conditions are countable.

First, a standard substitution γn = e
V
2d
xψn, n ∈ N0, is used to transform the equations (23)

to the normal form

−dψ′′n =

(
V 2

4d
− λn

)
ψn

and using designation νn := λ
d
− V 2

4d2
we obtain the following equivalent problem

− ψ′′n = νnψn (24)

with boundary conditions
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Dirichlet BC ψn(x) = 0 at x ∈ {0, L},

Fixed �ux BC ψ′n(x) = V
2d
ψn(x) = 0 at x ∈ {0, L},

Danckwert's BC ψ′n(0) = V
2d
ψn(0) and ψ′n(L) = − V

2d
ψn(L),

Periodic BC ψ
(k)
n (0) = e

V
2d
Lψ

(k)
n (L) for k ∈ {0, 1}.

In the �rst three cases the eigensystem is real, thus the solutions of the following form will
be assumed

νn = 0 : ψn(x) = Ax+B,

νn > 0 : ψn(x) = A sin
√
νx+B cos

√
νx,

νn < 0 : ψn(x) = Ae
√
−νx +Be−

√
−νx

with A,B ∈ R; whereas the eigenvalues of the system with periodic (the last mentioned)
boundary conditions are generally complex, therefore we will be looking for the solutions in the
form

ψn(x) = Aei
√
νnx +Be−i

√
νnx (25)

with A,B ∈ C.
The procedure will continue separately for each boundary condition in following subsection.

2.3 Results for particular BC

2.3.1 Fixed �ux BC

Let start with the case of zero �ux BC.

νn = 0 : The �rst case leads only to a trivial solution, since system

0 = −dA+
V

2
(AL+B),

0 = −dA+
V

2
B

has only (A,B) = (0, 0) as a solution.

νn > 0 : The substitution yields a system

0 = −dA
√
ν +B

V

2
,

0 =
(
A
V

2
+ dB

√
ν
)

sin
√
νL+

(
− dA

√
ν +B

V

2

)
cos
√
νL.

Inserting latter equation into the former we get an equation(
V

2
+

2d2

V
νn

)
A sin

√
νL = 0

and since d, V, νn are strictly positive real numbers, the only solution arises from the
second term of the equation and it is of the form νn =

(
nπ
L

)2 for n ∈ N.
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νn < 0 : The last case yields one more solution. After substitution we obtain a system

0 =
(V

2
− d
√
−ν
)
A+

(
d
√
−ν +

V

2

)
B,

0 =
(V

2
− d
√
−ν
)
Ae
√
−νL +

(
d
√
−ν +

V

2

)
Be−

√
−νL.

Adding −e−
√
−νL-multiple of the second equation to the �rst equation we get an equation(V

2
− d
√
−ν
)
A
(

e2
√
−νL − 1

)
e−
√
−νL = 0,

which holds only if νn = −
(
V
2d

)2.
In summary, in the case of the �xed-�ux boundary conditions the eigensystem consists of

λ0 = 0, λn =
d

L2

(
(nπ)2 +

1

4
Pe2
)
,

γ0(x) = ePe
x
L , γn(x) = e

Pe
2
x
L

(
sin
(
nπ

x

L

)
+

2nπ

Pe
cos
(
nπ

x

L

))
.

The domain-size-driven instability requires

lim
L→0

Re(σ±) < 0 while ∃L∗ > 0, Re(σ+(L∗)) > 0 (26)

but as λ0 = 0 does not scale with the domain size L, limL→0 Re(σ±) = Re(µ±), we observe
that stability of the kinetics is required as in the classical Turing instability although not being
linked to a homogeneous perturbation. Further no instability can appear as

Re(σ±) = Re(µ±)︸ ︷︷ ︸
≤0

− λn︸︷︷︸
≤0

.

Hence, the domain-size-driven instability is equivalent to a Turing instability with or without
the presence of advection in a two species system with equal transport and �xed �ux boundary
conditions. In particular, no self-emergent pattern can be expected despite the fact that homo-
geneous perturbation is not permitted by the boundary conditions in a system with advection.

In the case with di�erential transport, we may conclude that for a prospective Turing
instability, where stability of the homogeneous steady state is required so that trJ < 0, detJ >
0, the subsequently required linear instability with respect to inhomogeneous perturbations
requires

(−J22λn + detJ) < 0.

As λn > 0 and increases with n, instability �rstly requires J22 > 0. However, once this holds,
the number of unstable modes is unbounded, with the concomitant prediction of salt and pepper
patterning, and ultimately a breakdown of the continuum approximation, rather than a Turing
instability, in accordance with our previous �ndings about large wave-number behaviour [35].
Hence a Turing instability cannot be supported by this system. Further note that using calculus
one can show that unless J12J21 = 0 the dependence of σ±(λn) is monotonous once J22 < 0 as
required by the �nite number of unstable modes.

As the �xed-�ux boundary condition allows for a zero eigenvalue (although not correspond-
ing to a constant homogeneous steady state solution), inspection of (21) reveals that again
the stability of the zero eigenvalue state is required and thus the DSDI coincides with the
TI, and hence there is no prospect of self-emergent pattern formation neither for Turing nor
domain-size-driven instability.
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2.3.2 Dirichlet BC

The case of Dirichlet BC is truly straightforward, the conclusions are obtained immediately
after substitutions.

νn = 0 : From obtained system B = 0 and AL+B = 0 is clear that there is no solution for
this case.

νn > 0 : From B = 0 and 0 = A sin
√
νnL a solution νn =

(
nπ
L

)2 arises for all n ∈ N.

νn < 0 : There is no non-trivial solution for this case, since system A+B = 0 and Ae
√
−νL +

Be−
√
−νL = 0 has solution if and only if equation e2

√
−νL = 1 has solution.

Using backward substitution we obtain the resulting eigenpairs with n ∈ N

λn = d
(nπ
L

)2
+

1

4

V 2

d
=

d

L2

(
(nπ)2 +

1

4
Pe2
)
,

γn(x) = e
V
2d
x sin

(nπ
L
x
)

= e
Pe
2
x
L sin

(
nπ

x

L

)
.

Note that the eigenvalues of the Dirichlet case are the same as those for Neumann boundary
conditions but with the crucial exception of the zero eigenvalue. As a result, the stability of the
homogeneous steady state is no longer required and thus the conditions for a domain-size-driven
instability are much less restrictive and when such an instability occurs, it is accompanied by
an exponential modulation of the eigenmodes when the advection is non-zero.

Particularly, for a su�ciently small domain, one always has

Re(σ±) = Re(µ±)− λn(L) < 0

as limL→0 λn(L) = +∞ and the system is always stable. As the domain increases, λn drops. If
v is not too large and the kinetics are inherently unstable, that is Re(µ+) > 0, one can have a
bifurcation to instability with larger domains, inducing self-organisation, but not via a Turing
instability which requires Re(µ±) < 0. We numerically verify this �nding in �g. 2.

For di�erential transport as considered above, again the stability of the homogeneous steady
state is not required, as in the example with equal transport or explicitly by the inspection of
(21). Then, if J22 < 0, there is only a �nite number of unstable modes that can manifest as
λn > 0, with λn growing with increasing n and subsequently Re(σ±) < 0 for large enough
n. The prospect for instability of the �rst few modes follows from the possibility of satisfying
trJ − λn > 0 or detJ − J22λn < 0 and this applies for arbitrarily small advection V for the
same reasons as above in the case without di�erential transport.

In summary, the standard Turing mechanism requires both species are motile, with di�eren-
tial transport. However, this is not the case for a domain driven instability, with the emergence
of self-organisation for su�ciently large domains, and patterning can occur even with a bound,
immobile species or in a two species system with equal transport when the Dirichlet boundary
condition is appropriate (and which for diagonalisable J reduces to a single RDA problem).
Note that this is in line with the observation that a bifurcation from the steady state can occur
for a single reacting di�using species with Dirichlet boundary conditions [64], and the intro-
duction of DSDI puts this result in a more general context. In particular, only an instability of
the homogeneous steady state is required, which is much simpler and less constraining than the
demands of the Turing instability with its concomitant requirement of short-range activation
and long-range inhibition.
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Figure 2: Illustration of the domain-size-driven instability for a single species reaction-
di�usion-advection system, with linear unstable kinetics f(u) = u and Dirichlet boundary
conditions. A typical example was considered with: d = 1, V = 0.2. The analysis predicts that
the critical domain length is Lcr = π

√
d/(µ− V 2/(4d)) = 3.16, above which instability should

appear. An initial condition has been chosen such that it is a random perturbation with peak
amplitude 0.01 and stretched to the changing domain size L. Figure A) plots the L2 norm with
the weighting function r(x) = e−xV/d of the solution at time t = 10 as a function of domain
size L while the red dashed line denotes the weighted L2 norm of the initial condition; B) A
plot of the analytical values for Re(σ+) versus domain size, highlighting the critical domain
size Lcr. The slight mismatch between the analytical prediction and numerical solution, �gs.
A) and B), is likely because Lcr is determined from a condition where only the �rst eigenmode
does not decay but all the others do; hence when starting from a random initial condition, the
remaining eigenmodes have to decay and therefore reduce the norm.

2.3.3 Danckwert's BC

νn = 0 : We clearly obtain a system

A = − V
2d

(AL+B),

A =
V

2d
B.

After summing both equations we get 0 = A(V L
4d

+ 1), which cannot be ful�lled if all
parameters are positive, thus there is no permissible solution.

νn < 0 : We get a system

A
(√
−νn −

V

2d

)
= B

(√
−νn +

V

2d

)
,

Ae
√
−νnL

(√
−νn +

V

2d

)
= Be−

√
−νnL

(√
−νn −

V

2d

)
.

Expressing B from the former equation and inserting into the latter we obtain an equation

e
√
−νnL =

(
√
−νn − V

2d
)2

(
√
−νn + V

2d
)2

e−
√
−νnL.

Using a notation of Péclet number Pe = LV/d and a designation
√
ζ̃n =

√
−νnL we get
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another form of the previous equation

e2ζ̃n =

(
2ζ̃n − Pe

2ζ̃n + Pe

)2

. (27)

Since ζ̃n is strictly positive, the left-hand side of the equation is greater than 1 and the
argument of the quadratic function is strictly less than 1, therefore there is no positive
root of the equation (27) and thus there is no additional solution to the equation (24) in
this case.

νn > 0 : We get a system

0 = −A
√
ν +B

V

2d
,(

A
V

2d
−B
√
ν
)

sin (
√
νnL) =

(
− A
√
ν −B V

2d

)
cos (
√
νnL).

After substituting the former equation to the latter we get( V
2d
− 2d

V
|νn|
)

sin (
√
νnL) = −2

√
νn cos (

√
νnL).

The case V 2 = 4d2νn leads to the equation cos V
2d
L = 0 from which it follows that

νn =
(
V
2d

)2
is a solution if

(
V
2πd
L+ 1

2

)
is an integer. In the case V 2 6= 4d2νn, using a

notation of Péclet number and a designation
√
ζn =

√
νnL, the equation passes to the

form

tan
√
ζn =

√
ζn

ζn
Pe
− Pe

4

.

Since ζn are not explicitly expressible, this algebraic equation is used to at least estimate
the eigenvalues.

From Sturm-Liouville theory we have that the eigenvalues λ = dζ + V 2

4d
of the operator

−LdV are real for Danckwert's boundary conditions; this is therefore inherited by the
roots ζ. The above algebraic equation can be rewritten in a more compact form

tan(κPe) =
κ

κ2 − 1/4

with κ := Pe−1
√
ζ. Hence we can restrict ourselves to the cases where κ is either real or

pure imaginary, focusing on the latter �rst so that we introduce κ̃ =
√
−ζd/V = iκ, with

ζ < 0. Then the above algebraic relation transforms into

tanh(κ̃Pe) =
−κ̃

κ̃2 + 1/4

which does not posses a solution as Pe = LV/d > 0 and the hyperbolic tangent functions
is positive for positive κ̃, while the fraction on the right-hand side is always negative in
this range with the exception of κ̃ = 0, as covered elsewhere in the real case.
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We now consider the case with ζ ≥ 0. Clearly there is a solution with ζ = 0 = κ but it is
not associated with a non-zero eigenfunction and hence it is not an eigenvalue. Further,
for large positive ζ, we may approximate

tan(κPe) =
κ

κ2 − 1/4
∼ 1

κ
.

Therefore |κPe− nπ| � 1 and

tan(κPe) ∼ (κPe− nπ) ∼ 1

κ
.

Taking just the larger root, which is consistent with the requirement of large κ, we have
that

κ ∼ nπ

Pe
+O(1/n)

and one can con�rm this is an excellent approximation for the 5th and higher roots. In
turn, as λn =

(
dζn + 1

4
V 2

d

)
, we �nd

λn ∼ d
(nπ
L

)2
+

1

4

V 2

d
. (28)

Hence, beyond the �rst few modes, the eigenvalues essentially coincide with those for
�xed-�ux boundary conditions in the presence of advection, and analogous comments
apply to the eigenmodes.

It is crucial to understand the spectrum for su�ciently small domains, and hence small
Pe. Hence, we need to estimate the lowest root κ1 of the eigenvalue problem

tan(κPe) =
κ

κ2 − 1/4

as Pe→ 0. From the signs of both sides we can see that κ1 > 1/2 while 0 < κ1 < π/(2Pe)
as otherwise the Péclet number would have to be large. For su�ciently small Pe, the �rst
root for small Péclet number can be approximated via

κ1Pe ∼ tan(κ1Pe) =
κ1

κ21 − 1/4
∼ 1

κ1

yielding
κ1 ∼ Pe−1/2

and hence the spectrum has the following lower bound

λn ≥ λ1 ∼
V 2

d

(
Pe−1/2 +

1

4

)
∼ d

L2
Pe3/2 =

V 2

d
Pe−1/2.

In summary, Danckwert's BC yields with n ∈ N

λn =
d

L2

(
ζn +

1

4
Pe2
)
,

γn(x) = e
Pe
2
x
L

(
sin
(√

ζn
x

L

)
+

2

Pe

√
ζn cos

(√
ζn
x

L

))
,
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with ζn being the roots of

tan(
√
ζn) =

√
ζn

Pe−1ζn − Pe/4
,

and where the index n is used to denote the discrete nature of spectrum, and labels the above
roots. Note that ζn > 0 as ζ = 0 does not correspond to an eigenvalue, since this would require
γ = 0. Crucially we showed that for a su�ciently small domain, so that Pe � 1, one has the
following bound on eigenvalues

λn ≥ λ1 ∼
V 2

d

(
Pe−1/2 +

1

4

)
=

d

L2

(
Pe−1/2 +

1

4

)
Pe2 (29)

and one additional eigenpair

λ =
d

2L2
Pe2, γ(x) = e

Pe
2L
x

(
cos
(Pe

2L
x
)

+ sin
(Pe

2L
x
))

,

if Pe/(2π) − 1/2 is an integer. Since its existence requires mathematical precision in the pa-
rameter values and thus it is not biologically relevant, we will neglect this eigenpair.

By inspection of estimate (29) we can observe that for a su�ciently small domain size, the
eigenvalues tend to in�nity guaranteeing stability for a small enough domain. At the same
time, for a �xed, small, Péclet number one has

Re(σ±) = Re(µ±)− λ1 > 0

and the system is linearly unstable if reaction kinetics is unstable and the domain is su�ciently
large; we thus have a domain-size-driven instability.

In summary, the spectrum of −LdV is such that it is separated from zero, in that λ = 0
is not an eigenvalue, and hence stability of the homogeneous steady state is not required.
In particular we have a lower bound λn = dζn + 1

4
V 2

d
≥ V 2

d
Pe−1/2 = λ1. Stability follows

then from Re(σ±) = Re(µ±) − λn ≤ Re(µ±) − λ1 where µ± are eigenvalues characterising the
kinetics. However, instability can manifest at larger domain sizes and hence a domain-size-
driven instability can occur.

For di�erential transport one again requires J22 < 0 to have �nite number of unstable
modes (stability for large enough n) and the prospect of instability appears via satisfying either
tr J − λn > 0 or det J − J22λn < 0 for the �rst few eigenvalues, see equation (21). The fact
that instability appears always only through the �rst few eigenmodes (following from the noted
monotonicity of σ± on λn) entails that the system is stable for a small enough domain (owing
to the asymptotic expression for λ1 ≤ λn when Péclet number is small enough). Similarly, for
a su�ciently large domain size either tr J − λ1 > 0 or det J − J22λ1 < 0 can be satis�ed and
hence the instability and the prospect to pattern would appear.

Hence there is a fundamental di�erence in the pattern forming and stability properties of
reaction di�usion systems with even very small advection if Danckwert's boundary conditions
are the physically relevant ones, on noting that Danckwert's boundary conditions are an ap-
proximation to zero-�ux boundary conditions as V → 0. In particular, this is regardless of
the fact that beyond the �rst few eigenmodes the modes are essentially the same as those as-
sociated with �xed �ux and Dirichlet boundary conditions, as can be observed from eq. (28),
and crucially the stability of homogeneous steady state is not required. This also implies that
there is at most a �nite number of unstable modes so that salt and pepper patterning, with its
ensuing breakdown of the continuum approximation, does not occur.
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2.3.4 Periodic BC

Substituting the expected form of the solution (25) into the transformed periodic boundary
conditions we obtain a system

A+B = e
V
2d
L
(
Aei
√
νnL +Be−i

√
νnL
)
, (30)

A−B = e
V
2d
L
(
Aei
√
νnL −Be−i

√
νnL
)
. (31)

Summing both equations we obtain an equation

A = Ae
V
2d
Lei
√
νnL.

Assume �rst that A 6= 0. Then applying Euler's identity eiπ + 1 = 0 in the previous equation
we get

√
νn =

2nπ

L
+ i

V

2d
(32)

and thus the solution is of the form

νn =
4n2π2

L2
+ 2i

nπV

dL
− V 2

4d2
.

Substituting (32) back into the equation (30) we obtain B = 0 and thus �nal form of the
solution.

Assume A = 0 for the second case. Inserting that into equation (30) we get

1 = e
V
2d
L−i√νnL,

whose solution is
√
νn = −2nπ

L
− i V

2d
.

This form is up to the sign equal to (32) and since arguments of the functions in (25) di�er
from each other in the sign, the form of the resulting eigenfunction will be same as in the case
A 6= 0.

In summary, in the case of periodic boundary conditions the eigensystem consists of pairs
of the form

λn =
d

L2

(
(2nπ)2 + i2nπPe

)
,

γn(x) = ei2nπ
L
x

for n ∈ Z.

In the case of periodic boundary conditions, all the eigenvalues are complex, λn ∈ C \ R,
except for the trivial eigenvalue λ0 = 0 that corresponds to a constant eigenfunction. As the
homogeneous steady state is also an eigenfunction, both the conditions for the Turing instability
and the domain size controlled instability overlap and thus we are only considering di�erences
in the details of the instability conditions.

In the case without di�erential transport, the system is always stable, as is the case with
the Turing mechanism. When considering the di�erential transport situation where one species
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Figure 3: A qualitative illustration of the e�ect of constant advection for the stability of
the reaction-di�usion-advection system with periodic boundary conditions when one species
is di�using and advecting while the other is �xed to a substrate. The region of instability, with
an asymptote at dn̄2 = d

(
2nπ
L

)2
= J11, is presented in grey. For su�ciently small advection,

there is negligible impact on the presence of an instability and the existence of a critical domain
size below which stability of the system is always guaranteed, as follows from equation (33) and
the explanation thereafter. Similarly, the cut-o� for high wavenumbers is demonstrated in the
�gure, resulting in at most a �nite number of unstable modes.

is immobile, the real part of σ± responsible for stability is, in the case of complex λn, given by
the following

Re(σ±) =
1

4

[
2(trJ− dn̄2)±

√
2

√
c+

√
4n̄2(J22 − J11 + dn̄2)2V 2 + c2

]
,

as can be deduced from Eq (21), with n̄ := 2nπ
L

and

c := −4 detJ + d2n̄4 + 2dn̄2(J22 − J11) + (trJ)2 − n̄2V 2.

Again, the requirement of a �nite number of unstable modes or alternatively the requirement
that there is a critical domain length below which a system is always stable yields J22 < 0,
with the equivalence of these two distinct requirements in this case arising from the fact that
n appears always via the fraction n/L.

For su�ciently small advection we have

Re(σ±) ∼

{
1
2
(−dn̄2 + trJ±

√
c+ n̄2V 2), c+ n̄2V 2 > 0

1
2
(−dn̄2 + trJ), otherwise

. (33)

Hence, these conditions for an instability with reaction-di�usion-advection systems are contin-
uously transformed into instability conditions for reaction di�usion systems as v tends to zero.
One can identify a critical instability from the condition Re(σ−) < Re(σ+) = 0 and observe
that there exists a critical velocity Vcr that has to be surpassed in order for an instability to
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appear. Further such a threshold exists only for a small enough wave number, namely n < LJ11
d2π

.
Above this threshold there is a cut-o� and advection no longer contributes to the instability,
as clearly depicted in �g. 3 for a qualitative picture of the role of advection on instability for
the di�erential transport scenario. Similar results, but perhaps with less detail, can be also be
found in Rovinsky and Menziger [81].

2.3.5 Summary

Let us conclude this section with a brief summary of the obtained results. First we outline the
computed eigenpairs for all considered BCs. Then, the summary of conclusions for particular
BC can be found in table 1 where the comparison of the domain-size-driven instability with
the Turing instability is provided for clarity together with the in�uence of advection on the
systems behaviour.

Homogeneous Dirichlet : γ(x = 0) = 0 = γ(x = L) yields eigenpairs with n ∈ N

λn = d
(nπ
L

)2
+

1

4

V 2

d
=

d

L2

(
(nπ)2 +

1

4
Pe2
)
,

γn(x) = e
V
2d
x sin

(nπ
L
x
)

= e
Pe
2
x
L sin

(
nπ

x

L

)
.

Zero �ux : −V γ(x) + d ∂
∂x
γ(x)|x=0,L = 0 yields eigenpairs with n ∈ N

λ0 = 0, λn =
d

L2

(
(nπ)2 +

1

4
Pe2
)
,

γ0(x) = ePe
x
L , γn(x) = e

Pe
2
x
L

(
sin
(
nπ

x

L

)
+

2nπ

Pe
cos
(
nπ

x

L

))
.

Periodic : γ(0) = γ(L), ∂
∂x
γ(0) = ∂

∂x
γ(L) yields eigenpairs with n ∈ Z

λn =
d

L2

(
(2nπ)2 + i2nπPe

)
,

γn(x) = ei2nπ
L
x .

Danckwert's : −V γ(0) + d ∂
∂x
γ(0) = 0, ∂

∂x
γ(L) = 0 yields eigenpairs with n ∈ N

λn =
d

L2

(
ζn +

1

4
Pe2
)
,

γn(x) = e
Pe
2
x
L

(
sin
(√

ζn
x

L

)
+

2

Pe

√
ζn cos

(√
ζn
x

L

))
,

with ζn being the roots of

tan(
√
ζn) =

√
ζn

Pe−1ζn − Pe/4
,

and where the index n is used to denote the discrete nature of spectrum, and labels the
above roots. Note that ζn > 0 as ζ = 0 does not correspond to an eigenvalue, since this
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would require γ = 0. Crucially we showed that for a su�ciently small domain, so that
Pe� 1, one has the following bound on eigenvalues

λn ≥ λ1 ∼
V 2

d

(
Pe−1/2 +

1

4

)
=

d

L2

(
Pe−1/2 +

1

4

)
Pe2

and one additional eigenpair

λ =
d

2L2
Pe2, γ(x) = e

Pe
2L
x

(
cos
(Pe

2L
x
)

+ sin
(Pe

2L
x
))

,

if Pe/(2π)− 1/2 is an integer. Since its existence requires mathematical precision in the
parameter values and thus it is not biologically relevant, we will neglect this eigenpair.
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3 RD system with spatial dependency in kinetics

3.1 Statement of the problem

This section consists of the outline of the original author's article [47] examining an impact of
a piecewise kinetic modulation on a pattern formation in a Turing system.

We consider the following RD-system

∂tu = d1∂xxu+ f1(u, v) + h(x)u,

∂tv = d2∂xxv + f2(u, v),
x ∈ (0, L) (34)

with Neumann boundary conditions

∂u

∂n
= 0, at x = 0, L

∂v

∂n
= 0, at x = 0, L,

(35)

where h(x) is a step function de�ned as

h(x) =

{
0 x ∈ [0, ξ),

s x ∈ [ξ, L].
(36)

First for reasons that shall become evident, we need to assess what will be denoted as a
pattern since the standard de�nition is not su�cient because inhomogeneity is always present
due to the forced jump s at location ξ. We illustrate the e�ect of the step function via numerical
simulations, considering system (34) with Schnakenberg kinetics

f(u, v) = a− u+ u2v,

g(u, v) = b− u2v,
(37)

where a, b are positive parameters. Let the step, with a size s = 0.5, be located in the
middle of the domain ξ = L/2 and consider the remaining parameters d1, d2, a, b to be outside
(b ∈ {0.01, 0.25}) or inside (b ∈ {1, 2}) the Turing space for s = 0.

As we can see in �g. 4 (blue wavy line), a spatial inhomogeneity occurs in each of the
solutions. Note i) the di�erent amplitudes of the pattern in the two parts of the domain (as
already observed, e.g., in [71]) and ii) the di�erent periods (see �g. 4C). Characterising such
patterning behaviour in �g. 4C, within the context of emergent Turing self-organisation from
a linearised system with spatial heterogeneity in the form of a step function premultiplying a
linear term, constitutes the overarching aim of this study.

As mentioned above, not all the inhomogeneous solutions displayed in �g. 4 correspond to
a pattern however. To represent genuine self-organisation, rather than being passively slave to
the step function, such stationary solutions should have spatial oscillations extending to the
domain edge on at least one side of the step even as the domain size is increased, for su�ciently
large domain sizes. This requirement follows from an observation that a Turing pattern is
characterised by a �nite number of frequencies that appear in the pattern. Thus an increase
in the domain size should result in pattern repetition over the whole domain once a critical
domain size is surpassed. Therefore we plot stationary solutions to the system with the same
parameters except a larger domain size, L = 1000, in �g. 5. By comparison, we can deduce

42



Figure 4: Plot of the long-time (close to steady state) activator concentration u(x) from
simulations of system (34) with Schnakenberg kinetics (37), on the domain [0, 100] with zero-
�ux boundary conditions, and parameters: d1 = 1, d2 = 100, s = 0.5, a = 0.1 and A) b = 0.01,
B) b = 0.25 (both outside the Turing space for s = 0), C) b = 1, D) b = 2 (both inside the
Turing space for s = 0). These have been solved by Mathematica (for more details see below).
Note the di�erent vertical scales in the above plots.
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Figure 5: Plot of the long-time (close to steady state) activator concentration u(x) from
simulations of system (34) with the same values as in �g. 4 apart from L = 1000. The vertical
axis is chosen equal for all plots. This �gure illustrates the e�ect of larger L which is key for
discussion of what a �pattern� should mean in systems with heterogeneous kinetics.

that the case A is not a pattern as the inhomogeneity is localised only around the point of the
step ξ while being of the order of the step s. Hence we disregard such cases in the context of
pattern. On the contrary, in the other examples the inhomogeneity perseveres on the whole
domain; thus such cases are denoted as a pattern.

Hence our detailed objectives are: (i) to determine if a pattern emerges or not; (ii) to
undertake a more speci�c pattern classi�cation examining the parameter spaces for when the
system will exhibit each prototype of a stationary solution represented by the plots in �g. 4 �
A) no-pattern, B) right-sided pattern, C) global pattern, D) left-sided pattern4.

Let us further make the following interesting observation. We consider step functions
ū(x), v̄(x) de�ned as

ū(x) =

{
ūL x ∈ (0, ξ)

ūR x ∈ (ξ, L)
, v̄(x) =

{
v̄L x ∈ (0, ξ)

v̄R x ∈ (ξ, L)
, (38)

where
f(ūL, v̄L) = 0 = g(ūL, v̄L),

f(ūR, v̄R) + sūR = 0 = g(ūR, v̄R).

4Note the discrepancy between plots in �g. 4B and �g. 5B: the former case is denoted as a right-sided
pattern whereas the latter patterns globally. The only change is in the value of parameter L and it seems,
roughly speaking, L should be large enough and cases where pattern cannot form solely because of domain
are generally classi�ed as patterning systems nonetheless. Please note that this is analogous to the classical
Turing approach where a pattern appears only once a certain minimal domain size is reached so that the �rst
eigenmode �ts within the domain and can be excited.
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Note that in Turing-like problems the existence of a homogeneous steady state is assumed,
guaranteeing existence of the step functions (38). The long-time solution for the variable, u,
seems to be either approaching ū(x) in the case without pattern, or oscillating around ū(x) in
the case of pattern. This leads us to a hypothesis that the behaviour of the long-time solution
could be deduced from attracting properties of the system around ū(x) and therefore the system
characterisations could be similar to the conditions of di�usion-driven instability evaluated for
the system (with a constant coe�cient) considered separately on intervals (0, ξ) and (ξ, L). In
particular, such prospects will be considered more precisely and systematically below.

The procedure is outlined in the following section. After that, the spectral part of the fol-
lowing approach is complemented by a boundary layer analysis which further suggests that
conditions for one-sided pattern are related to Turing conditions considered separately on
each subinterval. In addition, this boundary layer analysis indicates that spatial frequency
of emerging pattern is determined independently in the two subintervals while the boundary
layer highlights how the patterns match in the interval around the step at x = ξ of the step
functions.

3.2 Brief summary of procedure

Let us follow the classical approach for a Turing model, which was reminded in section 1.1.1,
and summarize it in the following paragraph with highlighted essential steps, which will coincide
with the structure of this section.

Let us consider nonlinear RD system (1), we �nd 1) a ground (homogeneous) steady-state,
the existence of which we assume due to the essence of the problem. Consider 2) a system with
linear kinetics having the same qualitative behaviour to the non-linear one, which results from
Taylor expansion about the ground steady-state. We perform 3) a stability analysis of that
steady state with respect to the linear system and then we obtain 4) conditions for di�usion-
driven instability for the linear system. At the end, as a summary of the procedure, we obtain
5) an approximate knowledge of the behaviour of a system with non-linear kinetics.

3.2.1 Steady state

As has been noted above, since the kinetics contains a non-trivial spatial dependency, a constant
function cannot be a solution to system (34). Instead of the homogenous steady state, we take a
heterogeneous steady state of the no-pattern type as a ground steady state. Nevertheless, such
solution is di�cult to �nd since this problem is governed by a system of two elliptic equations.
Moreover, even if we managed to express the ground state, for instance in the case of very
particular choice of kinetics, the coe�cient of linearization about this steady state would be
strongly spatially dependent, and thus such linear system would be practically analytically
unusable.

Nevertheless, similarly to the classical Turing assumptions, we suppose the existence of
the ground steady state of the no-pattern type and we will estimate a tool to recognize the
conditions under which the Turing e�ect occurs.

3.2.2 Linear system

From the previous subsection follows that linearization using Taylor expansion of the kinetics
about the ground state is not usable for analysis, thus a clear method to obtain a representative
linear system is missing. We deal with this by adding an intermediate step, a system with similar
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behaviour as the non-linear one, but with approximated kinetics more suitable for analytical
methods of stability analysis. According to the reason that our task is to capture the behaviour
of the system around the no-pattern, we also want to approximate the kinetics with simpler
functions in such way that they exhibit the same behaviour as the nonlinear system around the
no-pattern as narrowly as possible. Due to the designation of the term no-pattern we assume
that this neighbourhood overlaps the neighbourhood of the step function ū, v̄ de�ned in (38),
and therefore we will approximate the kinetics with respect to the latter neighbourhood.

In conclusion, take approximations of reaction kinetics as Taylor expansions evaluated sep-
arately on both intervals (ũ = u− ū):

L : f(u, v) = f(ūL, v̄L) + JL11ũ+ JL12ṽ + . . . g(u, v) = g(ūL, v̄L) + JL21ũ+ JL22ṽ + . . .

R : f(u, v) + su = f(ūR, v̄R) + sūR + JR11ũ+ JR12ṽ + . . . g(u, v) = g(ūR, v̄R) + JR21ũ+ JR22ṽ + . . .
,

where JLij (resp. J
R
ij ) denote the elements of Jacobian matrix of the map (f, g) at (ūL, v̄L) (resp.

(f + su, g) at (ūR, v̄R)). Using notation (38) together with

sij = JRij − JLij , Jij(x) =

{
JLij x ∈ (0, ξ)

JRij x ∈ (ξ, L),

we can write down the intermediate system, an a�ne system describing evolution near (ū(x), v̄(x))
while approximating the original system with non-linear kinetics, as

∂tu = d1∂xxu+ J11(x)u+ J12(x)v + c1(x)

∂tv = d2∂xxv + J21(x)u+ J22(x)v + c2(x)
on (0, L) (39)

with the step functions

c1(x) = −J11(x)ū(x)− J12(x)v̄(x), c2(x) = −J21(x)ū(x)− J22(x)v̄(x)

and with Neumann boundary conditions (35).
The advantage of system with a�ne kinetics (39) lies in the fact that the steady state

is explicitly calculable, let us denote it as (û, v̂). Its calculation can be seen in appendix
A.2, where a process familiarly called "diagonalization" is used (this approach is presented in
appendix A.1) on behalf of [71]. Since the �nal explicit form of the analytic solution is quite
complicated and the knowledge of its explicit form is not bene�cial for us, it is su�cient to note
an interesting issue that the resulting form of the solution to each subsystem depends on the sign
of two particular conditions remarkably similar to those for the classical Turing di�usion-driven
instability evaluated on both subsystems separately. This observation supports our hypothesis
at the end of section 3.1 about the relation between di�usion-driven instability in the studied
case and DDI conditions for patterns on (0, ξ) and (ξ, L).

Note that the same qualitative behaviour (with the same long-time behaviour) is obtained
when studying a perturbation of the piece-wise constant solution (38) in a generalised function
sense, see appendix A.3.

Now, the linear system can be obtained from the one with a�ne kinetics straightforwardly
using classical approach.
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3.2.3 Linear stability

With the steady state (û, v̂) of system (39), we can analyse its stability. We focus only on
the long-time behaviour of the system, which can be obtained from spectral analysis, assuming
that the transient behaviour is not essential as shown for the classical Turing instability [104].

With a rede�nition of ũ, ṽ to the time dependent perturbed solution, ũ = u− û, ṽ = v − v̂
let us expand the evolution equations about the steady state to �nd

∂tũ = d1∂xxũ+ J11(x)ũ+ J12(x)ṽ

∂tṽ = d2∂xxṽ + J21(x)ũ+ J22(x)ṽ.
(40)

Since we consider Neumann boundary conditions, we have a complete orthogonal basis yn(x),
n ∈ N0 of L2(0, L) and eigenvalues κn = (nπ/L)2 for the negative Laplacian (which satisfy
−∆yn = κnyn). Now we rewrite functions ũ and ṽ in terms of the series

ũ(t, x) =
∞∑
n=0

An(t)yn(x), ṽ(t, x) =
∞∑
n=0

Bn(t)yn(x). (41)

Thus system (40) can be rewritten into the form
∞∑
n=0

(
∂tAn
∂tBn

)
yn(x) + D

(
An
Bn

)
κnyn(x)− J(x)

(
An
Bn

)
yn(x) = 0, (42)

where we have introduced the standard notation

D =

(
d1 0
0 d2

)
, J(x) =

(
J11(x) J12(x)
J21(x) J22(x)

)
. (43)

The di�erence from the standard Turing system analysis for a homogeneous system emerges
from the spatial dependence of J(x) preventing the decoupling of individual eigenmodes and
hence preventing a straightforward solution. However, we can take the advantage of the fact that
J(x) contains only constants and step functions, all satisfying Neumann boundary conditions
and hence within the span of the eigenfunctions {yk}

J(x) =
∞∑
k=0

(
J
(k)
11 J

(k)
12

J
(k)
21 J

(k)
22

)
︸ ︷︷ ︸

J(k)

yk(x). (44)

The system can be rewritten as

∞∑
n=0


(
∂tAn
∂tBn

)
yn(x) + D

(
An
Bn

)
κnyn(x)−

∞∑
k=0

(
J
(k)
11 J

(k)
12

J
(k)
21 J

(k)
22

)(
An
Bn

)
︸ ︷︷ ︸

=:Ck,n

yk(x)yn(x)

 = 0. (45)

The eigenfunctions of the negative Laplacian on a one-dimensional interval are of the well-known
form yn(x) = cos (nπx/L) and hence we have

yk(x)yn(x) =
1

2

(
cos

(n+ k)πx

L
+ cos

(n− k)πx

L

)
=

1

2

(
cos

(n+ k)πx

L
+ cos

|n− k|πx
L

)
=

=
yn+k(x) + y|n−k|(x)

2
,

(46)
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which are again functions from the orthogonal basis. To obtain the dispersion relation we need
to reorder the second sum to be able to factor out the function yn(x) and then invoke orthog-
onality of the orthogonal basis to transform the problem into an in�nite system of ordinary
di�erential equations. Denoting the coe�cients in the internal sum by Ck,n ∈ R2 we obtain the
following form of the system:

∞∑
m=0

(
∂tAm
∂tBm

)
ym(x) + D

(
Am
Bm

)
κmym(x) =

=
1

2

∞∑
m=0

(
m∑
n=0

Cm−n,n +
∞∑
n=m

Cn−m,n

)
ym(x) +

1

2

∞∑
m=1

∞∑
n=0

Cn+m,nym(x).

(47)

The coupled evolution equations for the eigenmodes are then of the form:

0 =

(
∂tAm
∂tBm

)
+ D

(
Am
Bm

)
κm −

1

2

∞∑
n=0

C|m−n|,n −
1

2

∞∑
n=0

Cm+n,n −
1

2
C0,m, for m ≥ 1,

0 =

(
∂tA0

∂tB0

)
+ D

(
A0

B0

)
κ0 −

1

2

∞∑
n=0

Cn,n −
1

2
C0,0.

(48)

In our case, the elements of matrices J(k) can be computed as:

J
(k)
ij =

〈sijΘξ(x), yk(x)〉
‖yk(x)‖2

=
2

L

∫ L

ξ

sij cos
kπx

L
x. = −2sij

kπ
sin

kπξ

L
,

J
(0)
ij =

〈Jij(x), y0(x)〉
‖y0(x)‖2

= JLij +
sij(L− ξ)

L
.

(49)

While in the case of spatial homogeneity, the spectrum and dispersion relation for the system
rate of growth in terms of wavenumber is given by the solvability condition for the eigenmodes,
the analogous information is not analytically accessible in this framework for spatially hetero-
geneous functions.

Nevertheless, system (48) is linear and hence the solution can be written in terms of an
exponential of a linear operator. Since we are not able to calculate the spectrum of the in�nite
matrix (for more illustrative form see appendix A.3 in [47], the case of only one parameter
J11(x) as a step function)

J
(0)
11 − d1κ0 J

(0)
12

J
(1)
11

2

J
(1)
12

2
. . .

J
(0)
21 J

(0)
22 − d2κ0

J
(1)
21

2

J
(1)
22

2
. . .

J
(1)
11 J

(1)
12 J

(0)
11 +

J
(2)
11

2
− d1κ1 J

(0)
12 +

J
(2)
12

2
. . .

J
(1)
21 J

(1)
22 J

(0)
21 +

J
(2)
21

2
J
(0)
22 +

J
(2)
22

2
− d2κ1 . . .

J
(2)
11 J

(2)
12

J
(1)
11 +J

(3)
11

2

J
(1)
12 +J

(3)
12

2
. . .

J
(2)
21 J

(2)
22

J
(1)
21 +J

(3)
21

2

J
(1)
22 +J

(3)
22

2
. . .

J
(3)
11 J

(3)
12

J
(2)
11 +J

(4)
11

2

J
(2)
12 +J

(4)
12

2
. . .

J
(3)
21 J

(3)
22

J
(2)
21 +J

(4)
21

2

J
(2)
22 +J

(4)
22

2
. . .

...
...

...
... . . .



(50)
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we will use MATLAB to estimate it by calculating spectrum of its truncated principal submatrix
Mn ∈ C2n,2n. First let us explore some properties of the in�nite matrix. It can be rewritten
via the following synoptic sum of two matrices

0 J(1)

2
J(2)

2
J(3)

2
J(4)

2
. . .

J(1) J(2)

2
J(1)+J(3)

2
J(2)+J(4)

2
J(3)+J(5)

2
. . .

J(2) J(1)+J(3)

2
J(4)

2
J(1)+J(5)

2
J(2)+J(6)

2
. . .

J(3) J(2)+J(4)

2
J(1)+J(5)

2
J(6)

2
J(1)+J(7)

2
. . .

J(4) J(3)+J(5)

2
J(2)+J(6)

2
J(1)+J(7)

2
J(8)

2
. . .

...
...

...
...

... . . .


+
∞⊕
k=0

(
J
(0)
11 − d1κk J

(0)
12

J
(0)
21 J

(0)
22 − d2κk

)
(51)

where ⊗ stands for the Kronecker product and ⊕ denotes a direct sum.
Since J (k)

ij denotes a Fourier coe�cient and its norm vanishes for k → ∞, the �rst matrix
is bounded, compact and has a high degree of symmetry and therefore can be intuitively
understood as a small perturbation of the second matrix which is unbounded since κk grows
to in�nity as k → ∞. We will not be able to show that the spectrum of the in�nite matrix is
a limit of the spectrum of the truncated matrices but we shall show that the stability of the
truncated linear system is determined by spectrum of a matrix of a relatively small dimension.
Further we may justify truncating the matrix due to the continuum approximation, which is
behind the formulation of the model itself.

At the end of this subsection, we shall show that with σ(MN+1) denoting the spectrum of
the truncated matrix MN+1

0 J(1)

2
J(2)

2
. . . J(N)

2

J(1) J(2)

2
J(1)+J(3)

2
. . . J(N−1)+J(N+1)

2

J(2) J(1)+J(3)

2
J(4)

2
. . . J(N−2)+J(N+2)

2

J(3) J(2)+J(4)

2
J(1)+J(5)

2
. . . J(N−3)+J(N+3)

2
...

...
... . . . ...

J(N) J(N−1)+J(N+1)

2
J(N−2)+J(N+2)

2
. . . J(2N)

2


+

N⊕
k=0

(
J
(0)
11 − d1κk J

(0)
12

J
(0)
21 J

(0)
22 − d2κk

)

it holds that σ(MN+1) ≈ σ(MN) ∪ {−d1κN +O(1),−d2κN +O(1)} as N →∞.
In particular, we shall show that with N large enough, two eigenvalues are of the order κN

(which grows to in�nity as N →∞). With λ = µκN , µ = O(1) as N →∞ we have that

det(MN+1 − λI) = κ2N

{[
det(MN − λI)

(
1

κN
(J

(0)
11 + J

(2N)
11 /2)− d1 − µ

)
+O(κN)2N−1

]

×

(
2J

(0)
22 + J

(2N)
22

2κN
− d2 − µ

)
+

(2J
(0)
12 + J

(2N)
12 )(2J

(0)
21 + J

(2N)
21 )

4κN
O(κN)2N

}
=

= det(MN − λI)

(
J
(0)
22 +

J
(2N)
22

2
− κN(d2 + µ)

)(
J
(0)
11 +

J
(2N)
11

2
− κN(d1 + µ)

)
+O(κN)2N+1,

where we note that the det(MN) is a polynomial of 2N -th order. Therefore two eigenvalues
are indeed of the order κN , in particular λ1 = −d1κN + O(1) and λ2 = −d2κN + O(1), while
the remaining 2N eigenvalues are (in the leading order) the eigenvalues of MN . Hence the
information about the stability associated with an arbitrarily large truncated matrix can be
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deduced from a smaller matrix MN (in practice the choice of N = 50 seems to be good enough).
In addition, we anticipate that this characteristic of the spectrum will translate even into case
with the arbitrarily large N and which seems to be con�rmed by the numerical calculations.

3.2.4 Formulation and numerical veri�cation of DDI conditions for linear case

Spectral theory as detailed in the previous subsection yields a plausible approach to stability
analysis but its practical use seems to be limited as the algebraic complexity even after trunca-
tion requires a numerical approach and provides neither information about one-sided patterns
nor the e�ect of spatial heterogeneity on the spatial frequency variation in the resulting pat-
tern. The asymptotes, on the other hand, can be used to estimate conditions for Turing pattern
emergence and its classi�cation.

As a summary of all the above partial results suggests that the conjectured conditions are
of the form of conditions for Turing's di�usively driven instability evaluated for the system
with constant coe�cients considered separately on intervals (0, ξ) and (ξ, L). Therefore, let us
denote the following conditions for the latter interval:

T1R := JL11 + s11 + JL22 + s22 < 0,

T2R := (JL11 + s11)(J
L
22 + s22)− (JL12 + s12)(J

L
21 + s21) > 0,

T3R := (JL11 + s11)d2 + (JL22 + s22)d1 > 0,

T4R := ((JL11 + s11)d2 + (JL22 + s22)d1)
2 − 4d1d2((J

L
11 + s11)(J

L
22 + s22)−

− (JL12 + s12)(J
L
21 + s21)) > 0,

(52)

and analogously for the former interval T1L-T4L (particularly noting that TiL ≡ TiR, i ∈
{1, . . . , 4} with all sij = 0).

Now, we have eight conditions (52) and hence 256 combinations to be analysed. Such
number is too large to be analysed one by one, therefore we deduce some additional assumptions.
Since we are interested in a phenomenon similar to Turing's self-organisation, we disregard the
case when the kinetics themselves induce instability. In classical Turing patterning two of the
DDI conditions are equivalent to a requirement of a stable homogeneous steady state in the
absence of di�usion [41]. Therefore, in our case we assume that T1L ∧ T2L ∧ T1R ∧ T2R holds
(corresponding to a stable homogeneous steady state on both parts of (0, L)) and we focus on
the remaining 16 combinations.

The sets corresponding to each combination are denoted by distinct regions, see table 2.
For all parameters in each region we want to know if a pattern can emerge or not (that means
particularly in the case of linear kinetics: whether a small perturbation exponentially increases
or decays in time). This crucially includes an assessment of whether one can assign this property
of pattern existence to every point in each region, independent of further details. As it was
noted in the previous analysis of linear system stability, we use two tools: (i) calculating the
largest real part of eigenvalues of the truncated matrix (50), using MATLAB and (ii) solving
the evolution problem (39) using Mathematica (for more details on computational approaches
see appendix A.4).

In both approaches we take large sets of parameter values sampling each region. Other
parameters are �xed for every numerical experiment if it is not stated otherwise. The step
location is at ξ = 120, with L = 400, where the latter has been chosen to be su�ciently large
so as not to prevent a possible pattern due to insu�cient room in the domain (as checked by
con�rming the results are unchanged with ξ = 300, L = 1000 and ξ = 30, L = 100 for example,
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T1L ∧ T1R ∧ T2L ∧ T2R

T3L ∧ T3R ¬T3L ∧ T3R T3L ∧ ¬T3R ¬T3L ∧ ¬T3R

T4L ∧ T4R (U,+) (U,+) (U,+) (0,-)
¬T4L ∧ T4R (U,+) (U,+) (0,-) (0,-)
T4L ∧ ¬T4R (U,+) (0,-) (U,+) (0,-)
¬T4L ∧ ¬T4R (0,-) (0,-) (0,-) (0,-)

¬(T1L ∧ T1R ∧ T2L ∧ T2R)
(U,+)

Table 2: The table summarising the results for the regions, i.e. the sets of the parameters
satisfying combinations of the conditions (52) in the explored parameter space. All parameters
in each region exhibit the same behaviour. We impose the following designation: U and 0
denote unbounded and zero long-time solutions of the evolution problem, + and − denote
signs of the largest real part of eigenvalues of the matrix (50).

not shown). Further, to reduce the seven (not considering L) dimensional parameter space we
�x di�usion coe�cients with a su�ciently large ratio d1 = 1, d2 = 100 and also �x s ∈ (−1, 1).
The remaining parametric space was discretized and the comparison between the identi�ed
conditions and computations was examined in 2D slices of this parameter space and the slices
with varying JL11, J

L
12 have been presented in �g. 6.

Before we present the relation between conditions (52) and pattern formation, we compare
the numerical and spectral approaches based on computational results. First, the results from
the spectral approach concur with those from solving the evolution problem. In particular,
with the possible exception of the very near vicinity of the parameter space boundaries between
di�ering stability behaviours, the largest real part of eigenvalues is negative if and only if the
supremum norm of the solution to the evolution problem is smaller than the initial norm. Due
to the conformity of the results from both methods while being very di�erent conceptually the
conclusions from either approximation are inferred to be generally accurate.

Second, the character of pattern emergence is indeed the same within each region from
table 2. Particularly, if two regions express an opposite behaviour, the change is located exactly
on the border of the regions (with negligible imperfection due to numerical imprecision). Hence,
these observations entail a justi�cation of the chosen conditions (52).

The results are outlined in table 2 and �g. 6 which can be summarised as: a Turing pattern
will emerge for a large enough min(ξ, L−ξ) with unstable eigenmodes that satisfy the boundary
conditions if and only if(

T1L ∧ T2L ∧ T1R ∧ T2R
)
∧
((
T3L ∧ T4L

)
∨
(
T3R ∧ T4R

))
(53)

holds.

3.2.5 Speci�cation and numerical veri�cation of DDI conditions for nonlinear case

From the spectral analysis and numerical veri�cation we obtained condition (53) for determining
whether the non-linear system exhibits Turing pattern or not. Nevertheless, it does not give
us a direct answer to our second task to distinguish among all the one-sided pattern and both-
sided pattern in the case of non-linear kinetics, which is clearly beyond the scope of the spectral
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Figure 6: An illustration of the match between the identi�ed Turing instability conditions for
a�ne kinetics, Eqn. (53), and the results from the evolution of system (40) with c1(x) = 1,
c2(x) = 3, J21(x) = −3, J22(x) = −2, s12 = 0, L = 100, ξ = 30, d1 = 1, d2 = 100 and: A) s11 =
0.25, B) s11 = −0.25. The remaining two parameters, JL11, J

L
12, are considered as parameters for

exploring stability properties and are on the x and y axes. In the background the conditions
(53) are plotted in the grayscale, which, in increasing grayscale intensity, highlight regions with
an unbounded solution indicating the existence of pattern (white), decaying solution indicating
no-pattern and the region where T1L∧T2L∧T1R ∧T2R does not hold (the darkest grey). The
spots denote the resulting pattern type based on numerical solution to the evolution problem:
an unbounded solution indicating a pattern (a red disk) and decaying solutions corresponding
to no-pattern (a blue cross).
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analysis in the previous section. However, from the current approach we can observe a strong
indication for the hypothesis, in what form such tool should be composed from conditions (52).

In particular assuming T1L∧T2L∧T1R∧T2R it could be expected that a pattern on the left
will emerge only if T3L ∧T4L holds and the pattern on the right will emerge only if T3R ∧T4R

holds. Therefore we propose and will subsequently numerically verify the following conditions:

T1L ∧ T2L ∧ T1R ∧ T2R ∧ (T3L ∧ T4L) ∧ (T3R ∧ T4R) pattern on both sides,

T1L ∧ T2L ∧ T1R ∧ T2R ∧ (T3L ∧ T4L) ∧ ¬(T3R ∧ T4R) pattern on the left side,

T1L ∧ T2L ∧ T1R ∧ T2R ∧ ¬(T3L ∧ T4L) ∧ (T3R ∧ T4R) pattern on the right side,

T1L ∧ T2L ∧ T1R ∧ T2R ∧ ¬(T3L ∧ T4L) ∧ ¬(T3R ∧ T4R) no-pattern.

(54)

and we shall use both the spectral approach and numerical solution of the full system to verify
these conditions. The former can be used just for the assessment of (in)stability while the latter
will be employed to check these conditions for the existence of one-sided pattern.

black!25 We proceed to test this, considering Schnakenberg kinetics

f(u, v) = a− u+ u2v, g(u, v) = b− u2v, (55)

and Gierer-Meinhardt kinetics

f(u, v) = a− bu+
u2

v
, g(u, v) = u2 − v, (56)

with a,b positive constants as two exemplars for reaction kinetics in Turing models.
Numerical experiments have been implemented using Wolfram Mathematica as in the linear

case (see appendix A.4). The terminal time is τ = 103. This choice was su�cient to distinguish
the non-existence of pattern from its presence, where in the latter case the convergence of a
norm was clearly observed suggesting a convergence of the long-time solutions to stationary
patterns. The initial condition was set to be small random noise around the stationary solution
(ū(x), v̄(x)). For both choices of kinetics we take L = 400, ξ = 120, d1 = 1, d2 = 100; this
parameter selection follows the reasoning from the linear case. Large sets of the remaining
parameters a, b, s are considered to capture the rich behaviour su�ciently to illustrate the
legitimacy of the instability conditions (54).

In particular, the types of pattern resulting from simulations agree well with the predictions
given by conditions (54) as depicted in �g. 7. The degree of correspondence seems to be very
high at least in the tested scenarios (kinetics and parameters selection) giving merit to the
approach and the resulting conditions, despite the absence of rigour.

3.3 Boundary layer analysis

To proceed with the analysis for general kinetics and to facilitate a boundary layer analysis we
regularise the Heaviside replacing h(x) with

hδ(x) =
s

2

[
1 + g

(
x− ξ
δ

)]
, with g ∈ C∞(R), lim

x→±∞
g(x) = ±1, g′ ≥ 0

where one can think of, for example,

hδ(x) =
s

2

[
1 + tanh

(
x− ξ
δ

)]
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Figure 7: An illustration of the match between the identi�ed Turing instability conditions,
Eqn. (54), and the results from the evolution of system (34) with Schnakenberg kinetics: A)
s = 0.25, B) s = 0.75, C) s = −0.25; and Gierer-Meinhardt kinetics: D) s = 0.5. In the
background the conditions (54) are plotted in the grayscale, which, in increasing grayscale
intensity, highlight regions with a both-sided pattern (white), a right-sided pattern, left-sided
pattern, no-pattern and the region where T1L ∧ T2L ∧ T1R ∧ T2R does not hold (the darkest
grey). The spots denote the resulting pattern type based on numerical solution to the evolution
problem: a both-sided pattern (a red disk), a left-sided pattern (a green square), a right-sided
pattern (an orange circle) and no-pattern (a blue cross).

54



and consider small values of δ > 0. Then the steady state (assuming it exists), (us, vs), satis�es

0 = d1∂xxus + f(us, vs) + hδ(x)us

0 = d2∂xxvs + g(us, vs)
on (0, L). (57)

Expanding about the steady state that is not designated to be a pattern, as described earlier,
we have

u = us + ũ, v = vs + ṽ,

with
ũt = d1∂xxũ+ J11(us, vs)ũ+ J12(us, vs)ṽ + hδ(x)ũ

ṽt = d2∂xxṽ + J21(us, vs)ũ+ J22(us, vs)ṽ
on (0, L), (58)

where J(us, vs) is the Jacobian of the kinetics about the steady solution (us, vs).
We proceed with a boundary layer analysis. Based on the continuity of solution on data

we argue that for small enough jump s the steady state solution that does not correspond to
a pattern will be approximately (ūL, v̄L) su�ciently to the left of x = ξ and approximately
(ūR, v̄R) su�ciently to the right, where

f(ūL, v̄L) = 0 = g(ūL, v̄L)

f(ūR, v̄R) + sūR = 0 = g(ūR, v̄R).

Hence for x < ξ, |x− ξ| � δ we anticipate the approximation

ũt = d1∂xxũ+ J11(ū
L, v̄L)ũ+ J12(ū

L, v̄L)ṽ, ṽt = d2∂xxṽ + J21(ū
L, v̄L)ũ+ J22(ū

L, v̄L)ṽ (59)

and similarly

ũt = d1∂xxũ+ J11(ū
R, v̄R)ũ+ J12(ū

R, v̄R)ṽ + sũ, ṽt = d2∂xxṽ + J21(ū
R, v̄R)ũ+ J22(ū

R, v̄R)ṽ
(60)

for x > ξ, |x − ξ| � δ. These can be considered as the outer problems for a leading order
boundary layer approximation.

We proceed to consider the prospects of an internal boundary layer near x ≈ ξ. Indeed
noting the form of hδ(x), which drives hetergeneous behaviour near x = ξ, one can rescale the
spatial component via

X = (x− ξ)/δ.

This will lead to the absence of a dominant balance for an inner expansion with ũ ∼ uin(X, t)+
o(1), which instead yields d1∂XXuin = 0 at leading order, with an analogous observation for
ṽ ∼ vin(X, t) + o(1). The resulting linear solution behaviour is divergent as |X| → ∞ unless
uin and vin are constant, indicating no boundary layer, but instead a matching of the left and
right outer solutions, via a nominal but constant inner layer solution. Given the kinetics are
assumed to be order unity as δ is decreased, a dominant balance at leading order, and thus
more complex dynamics, is only conceivable with the concomitant temporal rescaling, T = t/δ2.
Then, at leading order

∂Tuin = d1∂XXuin, ∂Tvin = d2∂XXvin,

with the kinetics subdued by a factor of δ2. The resulting dynamics is very fast and, more
importantly, pure di�usion. Thus it will not drive patterning within the inner region but

55



instead instigate di�usion on a very fast timescale, acting to homogenise across the inner region,
whereby for T � 1, i.e. t � δ2, one will expect an inner solution which is approximately
constant after transients have relaxed even if the initial conditions are highly varying in the
vicinity of x ≈ ξ.

Hence, considering the impact of δ � 1, with the limit of zero δ corresponding to the Heav-
iside function of interest in the kinetics, the evidence is that the inner solution of a boundary
layer analysis does not induce patterning but has a rather trivial dynamics. Instead, the be-
haviour of the outer solutions, i.e. Eqns. (59), (60), is indicated as governing the propensity of
system patterning. Proceeding, this allows one to infer that if both outer solutions are unstable,
then instability on both sides of x = ξ is expected. In contrast, if one outer solution is unsta-
ble and the other stable, we expect an instability on one side of x = ξ. Analogous reasoning
suggests stability if the outer solution dynamics either side of x = ξ is stable. Finally, due to
this local nature of the result we expect that the spatial frequency of the emerging patterns is
also related locally to the Turing conditions and hence with the prospect of a change in spatial
frequency of patterning across the domain.
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4 Conclusion

This thesis dealt with the robustness of the Turing system, one of the possible mechanism of
pattern formation. At �rst, this mechanism with its stability analysis was reminded and some
di�culties of such simple model were mentioned. Then, in section 1.2 it was indicated by the list
of possible generalizations of the original Turing system that this mechanism is widely used for
a description of large amount of phenomena in various �elds. The main focus of this work was
the investigation of two such generalizations � to explore the Turing's pattern formation in the
system with small advection in section 2 and the system with a small spatial dependency in the
linear term of kinetics in section 3. In both cases, slightly modi�ed mechanisms of the Turing's
original one were employed and the in�uence of small added phenomena was emphasised to
obtain conclusions on the question, whether these added phenomena change the behaviour of
the appropriate system decisively and hence, if the Turing system is robust with respect to
them. The discussion of these results follows separately for both cases with the �nal conclusion
about the robustness of the Turing system at the end of this section.

RD system with advection In section 2 we have explored alternative mechanisms for
domain-size-driven instabilities, considering the presence of advection and a number of asso-
ciated boundary conditions. In particular, the need for stability of the homogeneous steady
state is generally relaxed, resulting in less stringent constraints for domain-size-driven self-
organisation. Additionally, Sturm-Liouville theory has been utilised in section 1.2.3 to provide
a general theoretical framework that is applicable to systems on bounded domains and has
allowed a more extensive study than previously presented, as illustrated for example with the
further details on stability conditions for systems with di�erential transport and periodic bound-
ary conditions. Furthermore, the di�erences in spectral analysis on �nite and in�nite domains
[80] are anticipated to be responsible for di�erences in the presented results here and those asso-
ciated with classical stability studies of reaction di�usion advection systems on in�nite domains
[81, 82, 83, 87, 88, 86, 66, 67, 95]. Finally note that a recent study about a domain-dependent
driven instability [85] also generalises the idea of instability occurrence outside of the Turing
mechanism.

A summary of the presented results can be found in table 1, details can be found in the
corresponding subsections of section 2.3. In particular, we have found that domain-size-driven
instabilities, distinct from the Turing mechanism and without the requirements of stability to
homogeneous perturbations, can exist (i) in reaction di�usion systems with Dirichlet boundary
conditions and (ii) in the presence of advection with Dirichlet, periodica and Danckwert's with
no mass externally added for any of the species.

Patterning resulting from domain-size-driven instabilities in these cases has been shown to
occur for both equal transport coe�cients and when one species is immobile. Provided the ma-
trix of linearised kinetics J is diagonalisable, the former case of equal transport coe�cients can
be rewritten into a single reaction-di�usion-advection problem and hence reveals the prospect
of self-organisation due to domain size even for a single species. In addition, with equal trans-
port of the species, no further constraints are required to ensure the absence of salt-and-pepper
patterning, that is self-organisation at arbitrarily small wavelengths, which in turn induces a
breakdown of the continuum approximation. In presence of one immobile species there is, in
contrast, an additional requirement on the kinetics, summarised by J22 < 0, so that the immo-
bile species is required to inhibit its own production. However this simple constraint is su�cient
to entail that the observed Edar receptor dynamics in hair follicle formation is also inconsistent
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with the instability mechanisms presented here [63, 35]. Note that the above analysis reveals
that in both cases only the �rst few eigenmodes are unstable and that the �rst eigenmode has
the largest real part of eigenvalue, and hence is the fastest growing mode. Further for large
Péclet number, Pe� 2nπ from eq. (61), the �rst few eigenvalues are similar in size and hence
the emergent pattern can be expected to depend on initial data.

We have also shown that with Danckwert's boundary conditions, the system's stability
is dependent on domain size, demonstrating a singular dependence on advection whenever
Danckwert's boundary conditions are physically appropriate. This is due to the behaviour
of the �rst mode, λ1, and thus applies despite the fact that beyond the �rst few modes the
Danckwert's modes are essentially the same as those due to �xed �ux boundary conditions for
instance. These observations emphasise the physical importance of the boundary conditions
in self-organisation and highlight the prospect that extreme sensitivity to even weak advection
can exist for reaction-di�usion-advection patterning dynamics.

A second objective has also been to consider the possibility of a distinguishing signature
of domain-size-driven instabilities. This is enabled by the identi�cation of explicit forms for
eigenfunctions of the spatial transport operator −LdV when there is a domain driven instability,
that is for Dirichlet, Danckwert's, periodic and �xed �ux boundary conditions. In particular
these eigenmodes are not simply harmonics in the presence of advection, which entails that one
possible signature is the spatial modulation of pattern amplitude across the domain without
the need for complex feedbacks. This is even more likely in the case of spatially varying
advection, though we have not considered examples of the latter in detail. However with
Dirichlet boundary conditions in the absence of advection, which also exhibits a domain-size-
driven instability, there is in contrast no clear distinction of the pattern from that of a standard
Turing mechanism, emphasising that the observation of patterning is not su�cient in isolation
to conclude that a Turing mechanism is present.

In summary, the proposed domain-size-driven instabilities induced by advection or bound-
ary conditions introduce an alternative, less constrained, mechanism for self-organisation that
still induces patterning as a domain size increases beyond a critical value. Such a patterning
mechanism is not slave to the concept of short-range activation and long-range inhibition intrin-
sic in the Turing instability and, in the case of advection, there is a ready distinction from the
Turing instability via a spatial modulation of the pattern without complex feedback. Finally,
the fact domain-size-driven instability is contingent on the boundary conditions emphasises the
need to consider edge e�ects very carefully in relating modelling to experiment and additionally
highlights how the local regulation on domain boundaries can have a fundamental in�uence over
a very long-range.

RD system with spatial dependency in kinetics In section 3 we considered a reaction
di�usion system with a spatial dependence via a linear kinetic term with a coe�cient in the
form of a spatial step function and we analysed the resulting impact on conditions for pattern
formation. First we de�ned a pattern as a steady solution with an inhomogeneity persevering
throughout a large enough domain. Using an analytical-numerical approach we examined a
case of a�ne kinetics and deduced conditions for pattern emergence in a very simple form,
Eqn. (52). For the case of non-linear kinetics we took conditions inherited from a suitable
linearisation, generalising the previous conditions to those stated in (54), with a veri�cation
for two choices of kinetics and a range of parameter values. Further note that conditions (54)
and their agreement with numerics also match the intuition of at least some experimentalists
in the �eld, e.g. [20], and suggests further analytical progress may be feasible at least for step
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function behaviours in the kinetics.
If we compare our results with the previously studied system with an additive spatial step

function independent of the morphogen concentrations [71], the patterns in our case have not
only di�erent amplitudes on the two sides of the step but also di�erent frequencies. This
highlights that patterning with sharp changes in spatial frequency may be a signature of kinetic
heterogeneity characterised by rapid transitions in kinetics.

One interesting point is whether there is any restriction on the size of the step s. Although
the �nal conditions (54) are well de�ned for any value of s, a restriction arises from our de�ni-
tion of a pattern in section 3.1. We need that the eventual pattern should be more signi�cant
in comparison to the inhomogeneity localised around ξ, which is expected to be true for su�-
ciently small s, by appeal to continuity with respect to parameters. For larger s the localised
inhomogeneity will also be larger, which can be easily seen even in the linear case due to the
larger gap between ū(x) (resp. v̄(x)) at the point ξ and thus has every potential to invalidate
our �ndings for su�ciently large s.

The conditions (54) are necessary di�usion-driven instability (DDI) conditions and depend
directly on the di�usion coe�cients, kinetics and the size of the step. As well as in the classical
Turing system, if DDI conditions hold, a large enough domain is necessary for pattern to
emerge; thus the intervals (0, ξ) and (ξ, L) are also required to be su�ciently large. Moreover,
su�ciently large intervals are necessary for a pattern to be correctly identi�able, as seen in the
comparison of �g. 4B and �g. 5B where both systems are predicted to exhibit patterning on the
left of the step, but only the latter does, since the subdomain [0, ξ) is smaller than the emergent
pattern period in �g. 4B. Finally, note that di�erences in spatial frequencies are observed to be
independent of both interval lengths and hence independent of both ξ and L. However, as the
boundary layer analysis suggests, the spatial frequency can be di�erent in the two parts of the
domain as it is evaluated independently on the two subintervals.

Section 3 is concerned with a special case of heterogeneity in the kinetics though this can
be easily generalised to a certain extent. Firstly, it is easy to see that the particular choice of
a spatially dependent linear term in the kinetics is not important for the analysis even in the
case of non-linear kinetics. Further, the same approach as well as the results, will be valid for a
step function h(x) with �nitely many steps. A limitation arises, however, due to the note from
the previous paragraphs � the sizes of the steps should be small enough in comparison to the
surrounding intervals so that the localised inhomogeneity due to the step does not exceed the
emerging pattern in magnitude/amplitude. Further, the discreteness of eigenmodes results in
a lower bound on the size of the supporting intervals of each step.

The question of a generalisation to a spatial dependency is expected for slowly varying
function h(x). In such a case we can take an approximation of h(x) using a simple function
and take the advantage of conclusions of this approximative system. In the case of a more
general dependency it may be di�cult to show similar conclusions. Actually, as a recent study
shows [48] even shallow gradients coupled to non-linear kinetics may lead to an unexpected and
complex behaviour but �nding a clear cut distinction between these cases is beyond the scope
of this paper. Furthermore, how and where the present intuitive analysis fails also remains to
be explored as do higher dimensional domains and curved geometries, which may allow ready
generalisation.

We could also consider a higher-dimensional space. The presented approach is easily ex-
tendable to domains in the form of higher-dimensional rectangles. For example, one might
readily �nd conditions yielding the emergence of a pattern with spots on one part and stripes
on the other part of a higher dimensional domain.
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Finally, let us �nish with a summary of the identi�ed hypothetical DDI conditions: (in)stability
in the Turing model analysed here appears to be a local property and can be analysed as such,
with the local assessment of whether parameters are within the Turing space providing a strong
indication for an unstable eigenmode excitation, at least on a su�ciently large domain with
concomitant spatial frequency heterogeneity.

Contribution to the robustness problem The robustness of the pattern formation is
connected to an in�uence of an arbitrarily small advection, or spatial dependency respectively,
to the original Turing system, i.e. system without the e�ect of these phenomena. These
conclusions can be already obtained from the results of main parts of this thesis.

In the case of the system with advection, let us recapitulate the results summarized in sec-
tion 2.3.5 comparing the systems with zero advection and with arbitrarily small, characterized
by Pe� 1.

The zero �ux Robin boundary conditions for small advection 0 < Pe� 1 become Neumann
for V = 0. The eigenvalues are

λ0 = 0, λn =
d

L2

(
(nπ)2 +

1

4
Pe2
)
, n ∈ N (61)

with the corresponding eigefunctions

γ0 = ePe
x
L , γn = c(V, L, d, n)e

Pe
2
x
L

(
Pe

2nπ
sin
(nπ
L
x
)

+ cos
(nπ
L
x
))

.

Therefore we may conclude that the spectrum for V = 0 is close to that of 0 < Pe� 1, whilst
the eigenfunctions are continuously transformed into the eigenfunctions of a reaction di�usion
system as the Péclet number vanishes.

Similarly for Dirichlet boundary condition, which are independent of Pe, one has that the
distance between the spectra is proportional to Pe2 while the di�erence in the eigenfunctions is
also on the scale of Pe. For the periodic boundary condition (being again identical in both cases)
the spectra consist of a countable set of points located on a line parallel to real axis, with its
distance to the spectrum of the associated reaction di�usion problem proportional to i2nπPe.
As the distance depends on the wavenumber, n, the spectra are always di�erent with signi�cant
di�erences appearing for large wavenumbers not a�ecting the stability properties of the system
due to the above mentioned cut-o�. Finally, Danckwert's boundary conditions, which collapse
to a zero-�ux reaction di�usion system for V = 0, have a very di�erent spectrum as it is
always separated from zero. For 0 < Pe � 1, the �rst few eigenvalues determine the system's
behaviour as λ1 ∼ d

L2 Pe3/2 which can be arbitrarily large for su�ciently small L. In contrast for
V = 0 one always has stability, as follows from standard Turing analysis [64, 35, 104]. To have
similar spectra one would have to require Pe� 1 but still the e�ects on stability properties for
arbitrarily small but non-zero Péclet number are profound.

Finally note that for constant advection we may denote by τ the time required for a species to
be advected from one boundary to the other. Then Pe = LV/d = τL2/d, while in developmental
and cell biology applications one typically considers d ∼ 10−9m2s−1 with L ∼ 10−3m, which
suggests in this situation that Pe ≤ 1 requires V ≤ 10−6m s−1. Hence the Péclet number may
have a signi�cant e�ect on systems behaviour as discussed above, even for the small scales of
advective velocity in cellular physiology.
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For the case of spatial dependency, the conclusions follow directly from obtained results.
From its form (52) folows that the conditions (54) are contionuous in s for s around zero and
therefore the emergence of Turing patterns occurs for s = 0 and s � 1 in the same cases.
Moreover, this continuity of the system behaviour with respect to s preserves in the whole
problem � the homogeneous steady state is smoothly transformed into steady state of the
type no-pattern; from numerical experiments we can deduced that the period in patterns (in
the sence of section 3) changes according to changes in s; and �nally the whole procedure of
stability analysis outlined in section 3.2 become standard if we suppose special choice s = 0.
As a summary of these observations, we can conclude that the standard the Turing system, if
its main idea is expanded in same way as it is presented in section 3.1, is robust with respect
to small e�ects of such spatial dependency in kinetics.
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A Appendix

A.1 Diagonalization

This section outlines a method, which we call diagonalization, to easily compute an analytical
solution of the system composed of two elliptic equations with linear kinetics. This procedure
will be used in appendix A.2 to compute analytic solution to system (39), i.e. the system with
a�ne kinetics and step functions as coe�cients. This procedure follows [71].

We consider a linear elliptic system with the trivial solution

−∆u = a11u+ a12v,

−∆v = a21u+ a22v
(62)

on some interval. The boundary conditions are not speci�ed, yet. Our purpose is to obtain a
particular solution via a diagonalization principle.

Adding the �rst equation to the r-th multiple of the second one and supposing r 6= −a11/a21
gives

−(∆u+ r∆v) = (a11 + ra21)

(
u+

a12 + ra22
a11 + ra21

v

)
.

To obtain an equation only in the variable w = u+ rv, it su�ces to hold

a12 + ra22
a11 + ra21

= r. (63)

The roots of the quadratic equation are of the form

r1,2 =
a22 − a11 ±

√
D

2a21
, D = tr2A− 4 detA. (64)

Several possibilities can occur governed by the sign of the discriminant D:

Positive discriminant

Since D is positive, there exists a pair of distinct real roots. Using designation λi = a11 +
ria21, system (62) can be rewritten into a system containing two independent equations:

−∆wi = λiwi, i = 1, 2 (65)

Moreover, it is an easy computation that for i = 1, 2 the number λi is an eigenvalue of the
matrix A and (−r3−i, 1)> is the corresponding eigenvector. The solution to system (65) are of
the form

wi = ci1 cos (
√
λix) + ci2 sin (

√
λix), (66)

where C ∈ R2×2 will be determined by boundary conditions, and hence we have the original
variables

u =
r1c21 cos (

√
λ2x) + r1c22 sin (

√
λ2x)− r2c11 cos (

√
λ1x)− r2c12 sin (

√
λ1x)

r1 − r2
,

v =
c11 cos (

√
λ1x) + c12 sin (

√
λ1x)− c21 cos (

√
λ2x)− c22 sin (

√
λ2x)

r1 − r2
.

(67)
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Negative discriminant

In the case of negative D, the roots r1,2 are complex conjugate, the diagonalized system is
again of the form (65), however λi and wi are also complex. Thus we take real and complex
parts of the equations, we denote the real parts by the lower index R and the complex parts
by the lower index C and from the obtained four equations we get a system consisting of two
independent equations:

−∆wR = λRwR − λCwC ,
−∆wC = λCwR + λRwC .

(68)

The system is not in a diagonalized form, however it is easilly solvable if the system is rewritten
into a system of four linear di�erential equation of the �rst order. Then the solutions to the
problem are of the form

wR = c2e
η1x cos η2x− c1eη1x sin η2x− c4e−η1x cos η2x+ c3e

−η1x sin η2x,

wC = c1e
η1x cos η2x+ c2e

η1x sin η2x+ c3e
−η1x cos η2x+ c4e

−η1x sin η2x,
(69)

where ci are real constants and η1, η2 denote the real and the complex part of the square root
of −λR + iλC , i.e.

η1 = |Re
√
−λR + iλC | =

√
−λR +

√
(λR)2 + (λC)2

2
,

η2 = |=
√
−λR + iλC | =

√
λR +

√
(λR)2 + (λC)2

2
.

Note that the following holds

|λ| = η21 + η22, λR = η22 − η21, λC = 2η1η2,

thus (69) can be expressed only by x, ηi and ci. The solution in the original variables is of the
form

u = wR − i
r1 + r2
r1 − r2

wC = wR +
a11 − λR
λC

wC = wR +
a11 − η21 + η22

2η1η2
wC ,

v =
2i

r1 − r2
wC =

a21
λC

wC =
a21

2η1η2
wC

(70)

and �nally(
u
v

)
=

(
c2 +

a11−η21+η22
2η1η2

c1 −c1 +
a11−η21+η22

2η1η2
c2 −c4 +

a11−η21+η22
2η1η2

c3 c3 +
a11−η21+η22

2η1η2
c4

c1a21
2η1η2

c2a21
2η1η2

c3a21
2η1η2

c4a21
2η1η2

)
FS, (71)

where FS denotes fundamental system in the vector form, ie.

FS =
(
eη1x cos η2x, eη1x sin η2x, e−η1x cos η2x, c4e

−η1x sin η2x
)T
.

Trivial discriminant

Since D = 0 we have only one real solution r = (a22− a11)/2a21 and thus we cannot expect
a diagonalised system. However, we can take the obtained equation in the variable w = u+ rv
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and add one equation from the original system (62). Then we obtain a system

−∆w =
a11 + a22

2
w,

−∆v =
a11 + a22

2
v + a21w,

which is easily solvable:

w = c1e

√
a11+a22

2
x + c2e

−
√
a11+a22

2
x

v =

(
c3 −

√
2a21c1√
a11 + a22

x

)
e

√
a11+a22

2
x +

(
c4 +

√
2a21c2√
a11 + a22

x

)
e−

√
a11+a22

2
x,

(72)

even in the original variables:

u =

(
c1 −

a22 − a11
2a21

c3 +
a22 − a11√
2(a11 + a22)

c1x

)
e

√
a11+a22

2
x+

+

(
c2 −

a22 − a11
2a21

c4 −
a22 − a11√
2(a11 + a22)

c2x

)
e−

√
a11+a22

2
x

v =

(
c3 −

√
2a21c1√
a11 + a22

x

)
e

√
a11+a22

2
x +

(
c4 +

√
2a21c2√
a11 + a22

x

)
e−

√
a11+a22

2
x,

(73)

where ci are constants.

It remains to discuss the case r = −a11/a21 =: r1. Since r1 is one of the roots of equation
(63), from the above we know that there has to be the second distinct real root r2. Adding the
�rst equation of system (62) to the ri-multiple of the second equation for i = 1, 2 we obtain a
system

−(∆u− a11
a21

∆v) =

(
a12 −

a11
a21

)
v,

−(∆u+ r2∆v) = (a11 + r2a21)

(
u+

a12 + r2a22
a11 + r2a21

v

)
.

(74)

To rewrite it into an easily solvable system we need 0 6= a12 + r2a22 to hold. If it would not be
true, then the quadratic equation for these roots r1 and r2 would have to be of the form

0 = (r − r1)(r − r2) = r2 +

(
a11
a21

+
a12
a22

)
r +

a11a12
a21a22

,

which contradicts to the form of the quadratic equation (63). Thus taking w2 = u + r2v and
λ2 = a11 + r2a21 we get the following reformulation of system (74)

−
(

∆w2 −
(
a11
a21

+ r2

)
∆v

)
=

(
a12 −

a11
a21

)
v,

−∆w2 = λ2w2

(75)

and solution to this problem in the original variables is of the form

u =
λ2 − r2a21

λ2

(
c1e
√
λ2x + c2e

−
√
λ2x
)
− r2c3e

√
a12a21−a11

λ2
x − r2c4e

−
√
a12a21−a11

λ2
x
,

v =
a21
λ2

(
c1e
√
λ2x + c2e

−
√
λ2x
)

+ c3e

√
a12a21−a11

λ2
x

+ c4e
−
√
a12a21−a11

λ2
x
.

(76)
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A.2 Analytic solution to the stationary problem

The task of this section is to �nd a stationary solution to system (39), i.e. the system with
a�ne kinetics and step functions as coe�cients. We will use the method called diagonalization
outlined in appendix A.1. For clarity of the presentation, we will consider a step function only
in one coe�cient of the a�ne kinetics.

We consider a following reaction-di�usion system with a�ne kinetics and with step function
h(x) de�ned above (36)

0 = d1∂xxu+ b10 + (b11 + h(x))u+ b12v

0 = d2∂xxv + b20 + b21u+ b22v
on (0, L), (77)

with Neumann boundary conditions (35). Our task is to �nd a stationary solution to the system
explicitly. Let [u0(x), v0(x)]> be a solution to the equation

b10 + (b11 + h(x))u+ b12v = 0 = b20 + b21u+ b22v.

Since h(x) is a step function in ξ, it is easier to consider system (77) contracted to the inter-
val (0, ξ) and (ξ, L) separately and to use an appropriate connecting conditions in ξ. From now,
the upper index L will denote correspondence to system contracted to (0, ξ), R to (ξ, L) respec-
tively. Thus system (77) can be rewritten using ũL = uL − uL0 , ṽL = vL − vL0 , ũR = uR − uR0 ,
ṽR = vR − vR0 (the tilde will be omitted) into the form

0 = d1∂xxu
L + b11u

L + b12v
L,

0 = d2∂xxv
L + b21u

L + b22v
L,

in (0, ξ),

0 = d1∂xxu
R + (b11 + s)uR + b12v

R,

0 = d2∂xxv
R + b21u

R + b22v
R,

in (ξ, L),

(78)

with the following boundary and connecting conditions

∂uL

∂n
(0) =

∂vL

∂n
(0) = 0,

∂uR

∂n
(L) =

∂vR

∂n
(L) = 0,

∂uL

∂n
(ξ) =

∂uR

∂n
(ξ),

∂vL

∂n
(ξ) =

∂vR

∂n
(ξ),

uR(ξ)− uL(ξ) = uL0 − uR0 , vR(ξ)− vL(ξ) = vL0 − vR0 .

(79)

Now we can solve the system via applying transformation into the diagonalized system on both
subsystems separately, as it was presented in appendix A.1, and �nish calculation by employing
the connecting conditions.

Let us brie�y present the outcome of appendix A.1. The solutions of a linear reaction
di�usion system with constant coe�cient

0 = ∂xxu+ a11u+ a12v,

0 = ∂xxv + a21u+ a22v,
(80)

with Neumann boundary condition in 0 (if condition is required in L, substitution x 7→ L −
x is su�cient) and meantime with unspeci�ed second boundary condition (regarding to the
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connection condition) are of the form

u =
r1c2 cos (

√
λ2x)− r2c1 cos (

√
λ1x)

r1 − r2
,

v =
c1 cos (

√
λ1x)− c2 cos (

√
λ2x)

r1 − r2

(81)

if tr2A− 4 detA > 0 and

u =
c1a11 + 2c2η1η2 + c1(η

2
2 − η21)

2η1η2
(eη1x + e−η1x) cos η2x

+
c2a11 − 2c1η1η2 + c2(η

2
2 − η21)

2η1η2
(eη1x − e−η1x) sin η2x,

v =
c1a21
2η1η2

(eη1x + e−η1x) cos η2x+
c2a21
2η1η2

(eη1x − e−η1x) sin η2x

(82)

if tr2A− 4 detA < 0.

Applying on our two systems (78), we see that the form of the solutions depends on the
sign of D on each sides de�ned in (64), i.e. on signs of the following two expressions

DL := (d2b11 + d1b22)
2 − 4d1d2 detB,

DR := (d2(b11 + s) + d1b22)
2 − 4d1d2(detB + sb22).

(83)

Thus several options can occur � for illustration, two of them are presented below; others
are ommitted due to the straightforwardness of the computing and the largeness of the resulting
forms.

Both discriminants are positive

For this case we obtain the system

0 = ∂xx(u
L + rLi v

L) + λLi (uL + rLi v
L) in (0, ξ),

0 = ∂xx(u
R + rRi v

R) + λRi (uR + rRi v
R) in (ξ, L)

(84)

for i = 1, 2, where

rLi =
d2b11 − d1b22 ±

√
DL

2d1b21
,

rRi =
d2(b11 + s)− d1b22 ±

√
DR

2d1b21
,

λLi =

(
b11
d1

+ rLi
b21
d2

)
,

λRi =

(
b11 + s

d1
+ rRi

b21
d2

)
.

(85)

The solution to system (84) is easily computable:

uL + rLi v
L = cLi cos

√
λLi x+ c̃Li sin

√
λLi x,

uR + rRi v
R = cRi cos

√
λRi (L− x) + c̃Ri sin

√
(λRi (L− x)

(86)
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with cki , c̃
k
i real constants. Since the solution (86) satis�es Neumann boundary conditions at

the outer points 0 and L, the constants c̃ki have to be zero. After this simpli�cation we express
the solution in the original variables

u(x) =


rL2 c

L
1 cos (
√
λL1 x)−rL1 cL2 cos (

√
λL2 x)

rL2 −rL1
x ∈ (0, ξ]

rR2 c
R
1 cos (
√
λR1 (L−x))−rR1 cR2 cos (

√
λR2 (L−x))

rR2 −rR1
x ∈ (ξ, L)

,

v(x) =


cL1 cos (

√
λL1 x)−cL2 cos (

√
λL2 x)

rL2 −rL1
x ∈ (0, ξ]

cR1 cos (
√
λR1 (L−x))−cR2 cos (

√
λR2 (L−x))

rR2 −rR1
x ∈ (ξ, L)

with cki real constants determined by the connecting conditions at point ξ, which means
that cki have to be the solution to the following linear system



rL2 cos (
√
λL1 ξ)

rL2 −rL1

−rL1 cos (
√
λL2 ξ)

rL2 −rL1

−rR2 cos (
√
λR1 (L−ξ))

rR2 −rR1

rR1 cos (
√
λR2 (L−ξ))

rR2 −rR1
cos (
√
λL1 ξ)

rL2 −rL1

− cos (
√
λL2 ξ)

rL2 −rL1

− cos (
√
λR1 (L−ξ))

rR2 −rR1

cos (
√
λR2 (L−ξ))

rR2 −rR1
rL2

√
λL1 sin (

√
λL1 ξ)

rL2 −rL1

−rL1
√
λL2 sin (

√
λL2 ξ)

rL2 −rL1

rR2

√
λR1 sin (

√
λR1 (L−ξ))

rR2 −rR1

−rR1
√
λR2 sin (

√
λR2 (L−ξ))

rR2 −rR1√
λL1 sin (

√
λL1 ξ)

rL2 −rL1

−
√
λL2 sin (

√
λL2 ξ)

rL2 −rL1

√
λR1 sin (

√
λR1 (L−ξ))

rR2 −rR1

−
√
λR2 sin (

√
λR2 (L−ξ))

rR2 −rR1



cL1
cL2
cR1
cR2

 =


s1
s2
0
0



Both discriminants are negative

We will again use the results of appendix A.1, so we deal with the system

0 = ∂xx(u
L + rLRv

L) + λLR(uL + rLRv
L)− λLC(rLCv

L)

0 = ∂xx(r
L
Cv

L) + λLC(uL + rLRv
L) + λLR(rLCv

L)
in (0, ξ),

0 = ∂xx(u
R + rRRv

R) + λRR(uR + rRRv
R)− λRC(rRCv

R)

0 = ∂xx(r
R
Cv

R) + λRC(uR + rRRv
R) + λRR(rRCv

R)
in (ξ, L)

(87)

where the upper index designates correspondence to the system on the left or on the right part
of the interval [0, L], the lower index designates the real or the complex part of variables u, v
and symbols de�ned (85). According to (71) we designate following

ηL1 =
1

4

√
−λLR +

√
(λLR)2 + (λLC)2, ηR1 =

1

4

√
−λRR +

√
(λRR)2 + (λRC)2,

ηL2 =
1

4

√
λLR +

√
(λLR)2 + (λLC)2, ηR2 =

1

4

√
λRR +

√
(λRR)2 + (λRC)2

and hence the solution is of the form

uL = pL1 e
ηL1 x sin ηL2 x+ pL2 e

ηL1 x cos ηL2 x+ pL3 e
−ηL1 x sin ηL2 x+ pL4 e

−ηL1 x cos ηL2 x,

vL = pL5 e
ηL1 x sin ηL2 x+ pL6 e

ηL1 x cos ηL2 x+ pL7 e
−ηL1 x sin ηL2 x+ pL8 e

−ηL1 x cos ηL2 x,

uR = pR1 e
ηR1 x sin ηR2 x+ pR2 e

ηR1 x cos ηR2 x+ pR3 e
−ηR1 x sin ηR2 x+ pR4 e

−ηR1 x cos ηR2 x,

vR = pR5 e
ηR1 x sin ηR2 x+ pR6 e

ηR1 x cos ηR2 x+ pR7 e
−ηR1 x sin ηR2 x+ pR8 e

−ηR1 x cos ηR2 x,
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Figure 8: Plot of the stationary solution to the activator concentration u(x) (blue) and semi-
solution (orange), of system (77) on the domain (0, 1) with Neumann boundary conditions, and
parameters: d1 = 1, d2 = 1, s = 3, ξ = 0.25, b10 = 1, b12 = 20, b20 = 3, b21 = −3, b22 = −2
and A) b11 = −5, B) b11 = 10. Case A) corresponds to decay of initial perturbations, and B)
to exponential growth of perturbations suggesting the possibility of pattern formation.

where the functions pji are rational in η1, η2, linear in constants cji and depend even on b11,
b21 and s. Half of the constants cji can be obtained from homogenous Neumann boundary
conditions at 0 and L, the second half is determined by the conditions at ξ. The explicit
formula is too cumbersome, we will illustrate the solutions in �gures, only. See �g. 8.

A.3 Linearisation about a piecewise constant steady state

This is an alternative approach to analyze a stability of the RD system (39) � to linearise
around step functions (ū, v̄). If we try to proceed, we will obtain a linear system, but with
terms containing a derivative of the Dirac delta function, which results from the non-trivial
step in (ū, v̄). Therefore, we are not able to obtain the linearised system following the standard
approach above.

However, it is instructive to proceed further as an expansion (in generalised functions) of
the delta function in the eigenfunctions {yk} is available and hence we can rewrite the linearised
system yet again in terms of a system of equations for particular modes.

Linearisation of system (34) around step functions (ū(x), v̄(x)) (de�ned in (38)) is well
de�ned in the distributional sense and is of the form

∂tũ = d1∂xxũ+ b11ũ+ b12ṽ + s1d1δ
′(x− ξ)

∂tṽ = d2∂xxṽ + b21ũ+ b22ṽ + s2d2δ
′(x− ξ)

in (0, L), (88)

where (s1, s2) denotes the sizes of the step of (ū(x), v̄(x)) at ξ, δ(x) denotes Dirac delta function
and u(x) = ũ(x)− ū(x), v(x) = ṽ(x)− v̄(x).

Since Neumann boundary conditions are considered, we expand (ũ, ṽ) using orthonormal
basis {yn}n∈{0,1,..} =

{
1
L
, 2
L

cos
(
nπ
L
x
)}∞

n=1
as the series

ũ =
∞∑
n=0

Anyn, ṽ =
∞∑
n=0

Bnyn (89)

and rewrite system (88) in the form of a system of equations for each eigenmode. The Dirac
delta function can be expanded in terms of any eigenfunctions of the Laplacian on any interval.
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Hence we use the following expansion of Dirac delta function on (0, L)

δ(x− ξ) =
2

L

∞∑
n=1

sin

(
nπξ

L

)
sin
(nπx
L

)
.

Therefore the linearised problem has the following eigenmode expansion

∞∑
n=1

yn


(
Ȧn
Ḃn

)
+

[(
d1 0
0 d2

)
κn − J(x)

](
An
Bn

)
− nπ

L
sin

(
nπξ

L

)(
d1s1 0

0 d2s2

)(
An
Bn

)
︸ ︷︷ ︸

forcing

 = 0,

(90)
where κn =

(
nπ
L

)2 and the matrix of linearised kinetics J(x) is evaluated at the piece-wise
constant function (ū(x), v̄(x)). As the δ′(x − ξ) contribution translates only into a (constant)
forcing, it does not a�ect the (in)stability result. Thence the generalised function approach
yields exactly the same problem as previously derived in eqn. (42).

A.4 Computational approaches

The spectrum of the truncated matrix (50) is computed using the Matlab inbuilt function
eig(). When denoting N as a constant representing the size of matrix ((2N+2)× (2N+2)) our
numerical results show that for N > 50 the value of the largest real part of the eigenvalues does
not signi�cantly change; larger matrices contribute to the spectrum by eigenvalues with larger
negative part as we discussed above. We choose N = 1000. With constant M representing the
truncation in eigenmode expansion of h(x), i.e. we approximate

h(x) ≈
M∑
k=0

Zkyk(x), where|Zk| / s

k
.

However, the length of numerical calculation does not signi�cantly increase with larger M , so
we set M = N .

The solutions of the evolution system (40) are computed by Wolfram Mathematica 10 using
NDSolve() (via the method of lines for the temporal discretisation and �nite di�erences for
space) up to time τ = 103 or until the supremum norm of the solution exceeds 107. The initial
condition is random noise, uniformly distributed between (10−2, 102).

Both approaches to assess stability should yield the same result as they describe the same
process. However, both methods are approximate and hence small di�erences might occur
especially close to the border of the parameter regions due to di�erent accuracy of the approxi-
mation (truncation of the matrix versus numerical discretisation when computing the evolution
problem).
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