
DISCRETE CURVATURE CALCULATION FOR FAST LEVEL SET SEGMENTATION

Jan Kybic, Jakub Krátký

Center for Machine Perception,
Department of Cybernetics, Faculty of Electrical Engineering,

Czech Technical University, Prague, Czech Republic
kybic@fel.cvut.cz

ABSTRACT

Fast level set methods replace continuous PDEs by a discrete for-
mulation, improving the execution times. The regularization in fast
level set methods was so far handled indirectly via level set func-
tion smoothing. We propose to incorporate standard curvature based
regularization into fast level set methods and address the problem of
efficiently estimating local curvature of a discretized interface in 2D
or 3D based on local partial volume. We present two algorithms for
incremental partial volume evaluation: the first is recommended for
moderate neighborhood sizes, the second has an excellent asymp-
totic complexity and can be useful for very large neighborhoods. The
performance of the proposed methods is compared experimentally
with previous approaches.

Index Terms— Image segmentation, level sets, curvature esti-
mation.

1. INTRODUCTION

Level sets are widely used image segmentation methods [1, 2, 3].
They do not impose any parametric model, can handle topology
changes, their implementation is relatively simple and directly ex-
tends to higher dimensions. They are based on an iterative solution
of discretized partial differential equations (PDEs) and are compu-
tationally very expensive, typically too slow for real time 2D or in-
teractive 3D applications, even with acceleration techniques such as
narrow band methods [4].

Our work is based on a fast discrete level set segmentation
method (FLS) [5, 6], described in Section 2, which similarly to
other discrete level set methods [7, 8] replace the continuous PDE
formulation by a discrete one. In [5], discrete evolution steps are
alternated with convolution based smoothing. Besides a certain
inelegance, this choice has two drawbacks. First, the computational
complexity of the convolution is O(hd) per boundary point, where
h is the Gaussian filter size and d is the dimensionality of the space.
Second, the procedure is not stable, sometimes the smoothing steps
cancels or almost cancels the effect of the preceding evolution steps,
which makes the boundary to oscillate and prevents convergence.
In this contribution, we propose to reintroduce curvature based
regularization into the FLS method.

Curvature estimation methods are mostly based on local fitting
(of e.g. a conic) [9, 10, 11] using an iterative procedure or an eigen-
value system solution which is not only too slow for our purposes
but we also found that the estimation is unstable when the curvature
inside the neighborhood is high. While curvature regularization is

This work was sponsored by the Czech Ministry of Education, Project
MSM6840770012.

S

C

Nh(x)

x

F

0 h

y = f(x)

(a) (b)

Fig. 1. (a) We show the foreground area F (light gray) and its bound-
aryC with a point x ∈ C. The local curvature κ(x) can be estimated
from the area S of the intersection of F ∩Nh(x), whereN is a small
`2 neighborhood around x. (b) A detail around point x shifted to the
center of coordinates.

x

F
F

Y

W ([1 0])

Z(x)

Nh(x)

Nh(x + [1 0])

Fig. 2. Detail of the discretized boundaryC with the foreground area
F in gray and a neighborhood Nh for h = 3 (marked by bold lines)
centered around a point x (in red) and the set Y shown by black dots.
The difference W ([1 0]) between Nh(x) and shifted Nh(x + [1 0])
(in blue and dashed) is marked by additional brown circles and the
intersection points Z by green diagonal crosses.

equivalent to boundary length minimization, the discrete bound-
ary length does not approximate the Euclidean length well [12]
and the boundary, instead of getting smoother, develops polygonal
shapes [13].

We have chosen to estimate local curvature based on the propor-
tion of inner pixels (partial volume) in a neighborhood of radius d
around the current point [14], see Section 3. This method extends di-
rectly to 3D and the inherent averaging gracefully handles both high
curvature points and noisy data. We will also present two efficient in-
cremental methods for local inner pixel counting with computational
complexity O(hd−1) and O(hd−2), respectively, as compared with
O(hd) operations per boundary point for the naive approach.

2. LEVEL SET SEGMENTATION

In a continuous formulation, a level set function ϕ : Rd → R defines
a foreground area F =

˘
x ∈ Rd;ϕ(x) ≤ 0

¯
with a boundary

C = ∂F which typically evolves according to

dC

dt
(x) = v(x)n =

`
vext(x) + ακ(x) + λ

´
n (1)

where vext is a data dependent speed, κ is a local curvature, n an
outward pointing normal, and α and λ are weights for the curvature
and the ‘balloon force’, respectively. In the discrete case, we replace
Rd by a Cartesian grid Λ ⊂ Zd.

The fast level set method (FLS) [5] represents the boundary C
as two lists of inside and outside boundary points.

Lin = {x ∈ Λ;ϕ(x) < 0 ∧ ∃y ∈ N1(x), ϕ(y) > 0}
Lout = {x ∈ Λ;ϕ(x) > 0 ∧ ∃y ∈ N1(x), ϕ(y) < 0} (2)

where N1(x) =
˘
y ∈ Λ; ‖x − y‖`1 = 1

¯
is an `1 neighborhood.

FLS further restricts the values of ϕ to−3 (for points in F\Lin),−1
(for points in Lin), 1 (for points in Lout), and 3 (for all other points).

Only the external speed vext is used. The segmentation alternates
evolution and smoothing phases. In each evolution phase, we first go
over all points x fromLout. If a point x is found such that vext(x) > 0
and there is a neighbor y ∈ N1(x) from Lin with vext(y) > 0, then
point x is moved from Lout to Lin, updating ϕ accordingly. This
makes the boundaryC move outward. Then an equivalent procedure
is applied to Lin, making C move inward at points where vext(x) <
0.

In the smoothing phase, a convolution ϕ̄ = Gσ ∗ ϕ is evaluated
for all points in Lin and Lout. Where the signs of ϕ̄ and ϕ differ, the
points are switched between Lin and Lout as appropriate.

We propose to omit the smoothing from the FLS algorithm and
to use the complete speed v instead of vext when deciding whether
a point should be switched between Lin and Lout. This way, not only
the sign (as in FLS) but also the value of vext is taken into account,
leading to a better trade-off between the regularity and data terms.
We shall call the new methods FLSC. Before each evolution phase,
we calculate the local mean curvature κ(x) at each point from Lin

and Lout as follows.

3. CURVATURE ESTIMATION FROM PARTIAL VOLUME

Consider a point x on the boundary C of F in 2D (Fig. 1a) and de-
scribe the curve C around x as y = f(x), shifting and turning the
coordinate system such that x is at the origin and f ′(0) = 0, obtain-
ing a situation in (Fig. 1b). If the neighborhood size h is sufficiently
small, we can approximate f as y = ax2, which corresponds to a lo-
cal curvature κ = f ′′(0) = 2a. Then the area of the gray segments
in Fig. 1b is Z h

−h
ax2 dx =

2ah3

3
=
κh3

3

If the curvature is sufficiently small (κh � 1), the light gray
wedge-shaped areas in Fig. 1b can be neglected. Consequently, the
curvature can be estimated as

κ =
3π

h

„
S

S0
− 1

2

«
(3)

where S0 = πh2 is the area of Nh. It turns out that the approxima-
tion is quite accurate, for example if C is a circle and κh = 0.5, the
error is only 1.2 % [14].

Algorithm 1: Given V (x0) and a neighbor x1, return V (x1)

V ← V (x0)
foreach w ∈W (x0 − x1) do

if x1 + w ∈ F then V ← V + 1

foreach w ∈W (x1 − x0) do
if x0 + w ∈ F then V ← V − 1

return V

In 3D, the derivation is completely analogous (yet more in-
volved), yielding an estimator of the mean curvature:

κ =
16

3h

„
V

V0
− 1

2

«
(4)

where V and V0 are the volumes of F ∩N and N , respectively. We
refer an interested reader to reference [14] for a complete derivation
including error analysis.

In the discrete case, we define an `2 neighborhood Nh(x) as

Nh(x) =
˘
y ∈ Λ; ‖x− y‖`2 ≤ h

¯
(5)

and V (x) = |Nh(x) ∩ F | and V0 = |Nh(x)| will be the number of
pixels in Nh(x)∩F and Nh(x), respectively. Note that V0 does not
depend on x and can be precalculated.

3.1. Partial volume calculation

We need to evaluate V (x) for all x from Lin ∪ Lout. A trivial al-
gorithm (to be called Algorithm 0) has a computational complexity
O(hd) per boundary point going over all points in all neighborhoods.

A better algorithm uses the result V (x0) when calculating
V (x1) for its neighbor x1. From the definition of V (x) we can
derive the following update formula:

V (x1)− V (x0) = |
`
Nh(x1)\Nh(x0)

´
∩ F |−

|
`
Nh(x0)\Nh(x1)

´
∩ F | (6)

The essential idea is to consider only the points which enter and
leave the neighborhoodNh as we shift it from x0 to x1. The relative
coordinates of the entering or leaving points

W (∆x) =
˘
y ∈ Zd; y ∈ Nh(∆x) ∧ y /∈ Nh(0)

¯
(7)

can be precalculated, leading to an Algorithm 1 with complexity
O(hd−1) per boundary point. The points in Lin and Lout are ex-
amined in a depth first manner without backtracking (Algorithm 2),
in order to have a long chain of neighboring points.

3.2. Advanced partial volume calculation

The set Y =
S
W (∆x) corresponds to the boundary ofNh (Fig. 2).

Let us maintain the set M(x) =
˘
y ∈ Y ; x + y ∈ F

¯
of inner

pixels on Y along the boundary C. The difference between M(x0)
and M(x1) for neighboring x0 and x1 will be localized around the
intersection ofC with Y (x), the rest ofM remains unchanged. This
observation leads directly to Algorithm 3, which can update V (x) in
time O(hd−2) per boundary point, i.e. in constant time in 2D and
in time O(h) in 3D. Besides M(x), the algorithm needs to maintain
and incrementally update the partial sums

Q(x; ∆x) =
˛̨̨˘

y ∈W (∆x); x + y ∈ F
¯˛̨̨

Algorithm 2: Given a list of points L, calculate V (x) in such
an order so that subsequent points are neighbors, if possible.

foreach x ∈ L do
if x is unseen then

evaluate V (x) by direct counting
call do point(x)

function do point(x):
if exists y ∈ N∞(x) ∩ F then

evaluate V (y) using V (x)
call do point(y)

else return from all nested calls of do point

and the set of boundary intersection points

Z(x) =
˘
y ∈ Y ; x + y ∈ F ∧ ∃z ∈ N∞(x + y), z /∈ F

¯
where N∞ is an `∞ neighborhood of radius 1.

The update algorithm starts with the points in Z and explores
the pixels in Y in a breadth first manner. Each pixel in Y contains
links to its neighbors within Y . The breadth first search stops when
the `∞ neighborhood of the point being considered is homogeneous,
i.e. all pixels are either from F or Λ\F . This strategy can fail to
find all changed pixels in M if there are two independent boundary
segments in Nh(x). In this case we argue that ignoring the compo-
nent not connected with x is actually a desired behavior, leading to
a curvature estimate only for the current boundary segment.

Remarks: (1) Instead of precalculatingW for all 3d−1 moves
in the `∞ sense, we can consider only the 2d moves in the `1 sense
and to replace each l∞ move by up to d `1 moves. (2) We extend
the original four values of ϕ (see Section 2) with two more classes
L′in and L′out, representing points which are part of the inner or outer
boundary in the `∞ sense. This allows for more efficient breadth
first search and updating of Z. (3) The coordinates of each point
can be represented as a single 32-bit integer, reducing the relevant
operation count d times. (4) The image is extended by h pixels in
each direction, filled with sentinel values to avoid bounds checking.

Algorithm 3: Given V (x0), Q(x0; ·), M(x0) and Z(x0),
update the values for x1 ∈ N1(x0).

create queue S from Z(x0)
Z(x1)← ∅
M(x1)←M(x0)
Q(x1; ·)← Q(x0; ·)
while S not empty do

pop x from S
foreach y ∈ Y neighbor of x, not yet visited do

if Jy ∈M(x0)K 6= Jy ∈M(x1)K then
update M(x1) by adding or removing y
foreach ∆x such that y ∈W (∆x) do

if y ∈M(x1) then
Q(x1; ∆x)← Q(x1; ∆x) + 1

else Q(x1; ∆x)← Q(x1; ∆x)− 1

if y + x1 not homogeneous then add y to S
if y + x1 ∈ Lin ∪ L′in then add y + x1 to Z(x1)

(a)

1 2 5 10 20 50 100 200 500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

neighborhood size h

tim
e

[s
] p

er
 it

er
at

io
n

FLS smooth
Algorithm 0
Algorithm 1+2
Algorithm 3+2

(b)

Fig. 3. (a) Segmentation results for a 2D X-ray image. FLSC method
results are shown by a wide green line, FLS method by a thinner red
line, the cyan rectangle is the initial contour. (b) Time for one itera-
tion of FLS smoothing and FLSC curvature and speed field evalua-
tion with respect to the neighborhood size h.

4. EXPERIMENTS

In the first experiment we have segmented a 2D X-ray image of size
813 × 897 (Fig 3a) using the FLS method [5] and the proposed
FLSC method using Algorithm 1+2. We have used a speed field
vext based on the Chan-Vese criterion [15] scaled to interval [−1, 1],
curvature weight α = 0.5 and no balloon force (λ = 0). We have set
h = 5 = 2.5σ so that both methods consider the same neighborhood
size. The FLS method alternated ne = 20 evolution and ng = 5
smoothing steps, each method performed 1000 evolution steps in to-
tal. The segmentation results are almost identical. Taking the FLSC
result, we have measured the time needed for the FLS smoothing
(Section 2) and compared it with the time needed to evaluate the
total speed field v using Algorithms 0, 1+2, and 3+2. The results
(Fig. 3b) confirm that the time complexity for Algorithm 3 does not
depend on h. However, for moderate h, Algorithm 1 is the fastest.
For h smaller than about 5, the trivial Algorithm 0 is even faster. The
FLS smoothing is slower than Algorithm 0 as floating point opera-

(a)

1 2 5 10 20 50
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

neighborhood size h

tim
e

[s
] p

er
 it

er
at

io
n

FLS smooth
Algorithm 0
Algorithm 1+2
Algorithm 3+2

(b)

Fig. 4. (a) A transverse and coronal slices through a 3D MRI volume
with FLS segmentation results in red and FLSC results in green, the
initial contour is shown in cyan. (b) Time for one iteration of FLS
smoothing and FLSC curvature and speed field evaluation with re-
spect to the neighborhood size h.

tions are involved. However, since in the FLS method smoothing is
not applied every iteration, for small h and small amount of smooth-
ing FLS is in fact about twice as fast as our current implementation
of FLSC. However, our implementation is not yet fully optimized
and is written in a high-level language Ocaml, so we expect that fur-
ther acceleration is possible.

3D segmentation results are demonstrated on an MRI brain im-
age of size 181 × 217 × 181 (Fig. 4a), using h = 5, α = 0.7,
ne = 20, ng = 3 and 200 evolution steps in total for each method.
In this case, some difference between the FLS and FLSC results re-
main, even after parameter tuning. The FLSC result was chosen
as the basis for the subsequent speed comparison. The asymptotic
trends are clearly visible in the speed comparison in Fig 4b, with
Algorithm 3+2 being the fastest asymptotically and Algorithm 1+2
being the fastest in absolute terms for most practical values of h.

5. CONCLUSIONS

We have described two algorithms for local curvature estimation for
2D and 3D binary objects discretized on a Cartesian grid, which
should be applicable in many other areas besides fast level set seg-
mentation.

We have introduced curvature-based regularization into the fast
level set method [5], bringing it closer to a standard level set formu-

lations and avoiding its idiosyncrasies while retaining its potential
for very fast execution times.

References
[1] S. Osher and J. A. Sethian, “Fronts propagation with curvature-

dependent speed: algorithms based on Hamilton-Jacobi formu-
lations,” Journal of computational physics, vol. 79, pp. 12–49,
1988.

[2] S. Osher and R. P. Fedkiw, “Level set methods: An overview
and some recent results,” Journal of Computational Physics, vol.
169, no. 2, pp. 463–502, 2001.

[3] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho,
J. C. Gee, and G. Gerig, “User-guided 3D active contour segmen-
tation of anatomical structures: significantly improved efficiency
and reliability.,” Neuroimage, vol. 31, no. 3, pp. 1116–1128, July
2006.

[4] D. Adalsteinsson and J. A. Sethian, “A fast level set method for
propagating interfaces,” Journal of computational physics, vol.
118, pp. 269–277, 1995.

[5] Y. Shi and W. C. Karl, “A fast level set method without solving
PDEs,” IEEE International Conference on Acoustics, Speech,
and Signal Processing, pp. 97–100, 2005.

[6] Yonggang Shi and W. Clem Karl, “Real-time tracking using level
sets,” Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, vol. 2, pp. 34–41, 2005.

[7] Alberto De Santis and Daniela Iacoviello, “A discrete level set
approach to image segmentation.,” Signal, Image and Video Pro-
cessing, vol. 1, no. 4, pp. 303–320, 2007.

[8] Cristina Darolti, Alfred Mertins, and Ulrich G. Hofmann, “A fast
level-set method for accurate tracking of articulated objects with
an edge-based binary speed term,” in ACIVS, Jacques Blanc-
Talon, Wilfried Philips, Dan C. Popescu, and Paul Scheunders,
Eds. 2007, vol. 4678 of Lecture Notes in Computer Science, pp.
828–839, Springer.

[9] Zhang Zhengyou, “Parameter estimation techniques: a tutorial
with application to conic fitting,” Image and Vision Computing,
vol. 15, no. 1, pp. 59–76, Jan. 1997.

[10] M. Worring and A.W.M. Smeulders, “Digital curvature estima-
tion,” CVGIP: Image Understanding, vol. 58, no. 3, pp. 366–382,
1993.

[11] Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher,
“Direct least square fitting of ellipses,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp.
476–480, 1999.

[12] S.R. Kulkarni, S.K. Mitter, R.J. Richardson, and J.N. Tsitsik-
lis, “Local versus nonlocal computation of length of digitized
curves,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 7, pp. 711–718, 1994.

[13] L. Yu, Q. Wang, L. Wu, and J. Xie, “A Mumford-Shah model on
lattice,” Image and Vision Computing, , no. 26, pp. 1663–1669,
2008.

[14] J. W. Bullard, E. J. Garboczi, W. C. Carter, and E. R. Fuller Jr.,
“Numerical methods for computing interfacial mean curvature,”
Computational Materials Science, vol. 4, pp. 103–116, 1995.

[15] T. F Chan and L. A. Vese, “Active contours without edges,”
IEEE Trans on Image Processing, vol. 10, no. 2, pp. 266–277,
2001.

