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Abstract—We propose a robust method for localization of
elongated surgical tools in 3D ultrasound data based on shape
analysis. The tubular structures in input data are enhanced
by a line filter in the pre-processing phase. A new model of
a surgical tool appearance in 3D ultrasound image is proposed
which exploits its tubular shape. The tool axis is estimatedwith
robust model fitting using a randomized RANSAC procedure.
The tool model requires the voxels close to the axis to have a high
intensity, high tubularness, and the local principal directions to
be consistent with the tool axis.

The visual contrast of the tool can be enhanced four-fold
using line filtering. We demonstrate that classification rate is
improved by 25-40% when adding the tubularness attribute. The
comparison to other state-of-the-art localization methods shows
that the proposed method is the most robust for data with high
level of noise at the expense of additional time for pre-processing
(less than 10 seconds for volume of size 53×71×260 voxels).

I. I NTRODUCTION

Minimally invasive surgical procedures (such as needle
biopsy [1] or electrode insertion [2]) involve an insertion
of a thin tubular microtool of diameter1 mm and less.
Precise navigation of such surgical instruments is essential
for reducing the damage of tissue caused by failed insertions.
When medical imaging techniques (e.g. MRI, CT) are com-
bined with stereotactic frame, a sub-milimeter accuracy can be
achieved [3]. Ultrasound (US) monitoring of the tool insertion
is clinically used because there is no-ionizing radiation,it
provides images at real-time speed and has relatively low costs.

The observation of such a microtool in US image is
a difficult task. The lateral resolution of the ultrasound is
approximately the same as the diameter of tool. There is
a strong speckle noise and other acoustic artifacts which make
the appearance of a metallic tool irregular. The doctors are
trained for visual localization of tools in 2D US images. Our
first aim is to enhance the appearance of the tool to aid visual
localization. Second, we want to apply the new shape related
description to improve our previously published automatic
localization method. The output of this method can be used
for visualization, to select the 2D slice containing the tool.

A. Previous work

Variety of algorithms for object localization in ultrasound
data has been proposed. Barva et. al [4] uses the Parallel Inte-

gral Projection (PIP) to localize a straight cylindrical objects
in 3D images. This approach is based on the observation that
projection area of a tool is minimized when the projection is
performed along the tool axis. Multi-resolution PIP and early
stopping can be used for speed-up [5].

The Hough Transform (HT) [6] is widely used for a straight
line detection in 2D images but it can be generalized to 3D.
Ding et al. use a more efficient Randomized HT (RHT) [7]
for straight needle segmentation in thresholded 3D ultrasound
images. Quick RHT (QRHT) [8] reduces the computational
effort by doing RHT only in coarse resolution volumes and
subsequently refining the solution.

Uherčı́k et al. [9] use a model fitting using RANSAC for tool
localization in 3D US. The axis is modelled as a polynomial
curve (or a straight line) in thresholded data. The locationof
the tool axis is estimated by the RANSAC [10] and refined
by local optimization. This approach is robust to background
noise and fast enough for a real-time application. In this work,
we further increase its robustness by applying a shape based
tool model using line filtering (Section II-B).

B. Line filtering

Previous methods assume the tool to appear as a high
intensity cylinder in US data. We can use an additional
assumption that the tool is a one-dimensional (1D) straight
structure to distinguish it better from background structures
which are 2D (e.g. layers of fat tissue).

The idea of line filtering comes from vessel enhancement
e.g. in MR angiography [11]. The cylindrical tool in US im-
ages can be enhanced using the same methods (Section II-A).

II. M ETHOD

The proposed method consists of two phases: a) pre-
processing by line filtering (Section II-A) for enhancementof
the tubular structures which likely belong to the tool, b) tool
localization by model fitting using the RANSAC procedure
(Section II-B).

A. Line filtering

The line filtering pre-computes two attributes for each voxel
x ∈ X : tubularnessJ(x) and local principal directionk(x).



Intensity variations are analyzed via second order deriva-
tives. The image function is approximated using a Taylor
expansion in the proximity of a pointx:

I(x + d) ≈ I(x) + dT
▽I(x) +
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2
dTH(x)d, (1)

whered is a perturbation vector. The gradient vector▽I(x)
and the Hessian matrix
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are computed by the convolution of the image functionI with
the derivatives of the symmetrical Gaussian [12]

Iαβ(x) = I(x) ∗
∂2

∂α∂β
G(x, s). (3)

The scales of GaussianG(x, s) corresponds to the apparent
radius of the tool and can be learned from a training set of
images with ground-truth.

The eigenanalysis of the Hessian matrixH(x) characterizes
the second order local structure of voxels centered at the tube.
Let |λ1| ≤ |λ2| ≤ |λ3| be its eigenvalues ande1, e2, e3

corresponding eigenvectors. For voxels in tubular structure,
one eigenvalueλ1 is small and the other twoλ2, λ3 big:

(0 ≈ |λ1|) and (|λ1| ≪ |λ2|) and (λ2 ≈ λ3) (4)

The local principal direction is returned

k(x) = e1/‖e1‖. (5)

VarioustubularnessmeasuresJ(x) have been proposed for
tool enhancement in 3D image (Fig. 1). We assume a bright
cylinder on dark background, so the voxels withλ3 ≥ 0 or
λ2 ≥ 0 can be discarded andJ(x) set to0.

1) Li’s method:The simple formula has been proposed by
Li et al. [13]:

J[Li](x) =
|λ2|

|λ3|
(|λ2| − |λ1|) (6)

2) Frangi’s method: more advanced filtering has been
proposed by Frangi et al. [12]. He introduces three quantities
for different properties:RB for quantification of the relative
amplitude of|λ1|, RA for discrimination of tubular structures
from planar structures, andS for quantification of the strength
of all second order features:

RB =
|λ1|

√

|λ2λ3|
, RA =

|λ2|

|λ3|
, (7)

S = ‖ H ‖F =

√
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λ2
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The two quantitiesRA, S should be maximized (RA up to
1) andRB should be low or close to 0. They are combined
into a single tubularness measure [12]:
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Frangi et al. [12] recommends to set toα = β = 0.5 and the
parameterc is set experimentally.

Fig. 1. 3D volume of breast biopsy with needle. The left part of the slice
contains the original data and the right part contains the data filtered by method
of Frangi [12].

B. Tool localization

The input of a tool localization algorithm consists of mul-
tiple attributes for each voxelx: intensity I(x), tubularness
measureJ(x) and local principal orientationk(x).

We use the model fitting method based on RANSAC [9] for
robust estimation of the tool location. This method works in
several steps:

1. Pre-segmentation – the set of all voxelsX is reduced
to the group of tentative tool candidatesXt. A novel
pre-segmentation, which uses two attributesI(x), J(x)
is proposed in Section II-B.

2. Axis localization – an approximate position of the tool
axis is estimated by a randomized procedure RANSAC.
It also produces a set of consistent pointsXinl ⊆ Xt, also
known asinliers (Section II-C).

3. Local optimization – a more accurate solution is found
using local optimization of curve parameters on the set
of inliers Xinl.

4. Tip localization – the endpoint of the tool is identified as
a significant drop in the intensity along the axis by the
method of Barva [4].

The axis is represented by a spatial parametric polynomial
curvea(t;R) : R → R

3 of ordern − 1 [9]:
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n = 2 is used for thick electrodes which are expected to
remain straight andn = 3 otherwise. The curve paremeters
R can be determined byn control pointspi ∈ R

3, i = 1 . . . n
through which it is required to pass [9].

Pre-segmentation:The tentative tool voxelsXt ⊆ X
are selected according to the attributesm1(x) = [I(x) J(x)]
pre-computed by line filtering (Section II-A). The decision
function is defined as a linear classifier [6] using the attributes
m1(x):

Xt = {x ∈ X | (w · m1(x) ≥ w0} , (11)



wherew is weight vector andw0 is a bias. The parameters
w and w0 are learned from the training data with ground
truth as the Fisher’s linear discriminant (FLD) [6] which finds
the best separating hyperplane. Pre-segmentation using two
attributes gives better results (in terms of ratio of true positives
and true negatives) than doing simple thresholding like in [9]
(Section III-B). It is possible to use other classifiers, e.g. SVM
or AdaBoost [6].

C. Tool model

We propose a new model of the tool appearance in 3D US
images using the pre-processed volume data (Section II-A).
The model is used by the tool localization algorithm (Sec-
tion II-B). It consists of a functionq(x,R) classifying voxel
x as either a tool (q = 1) or a background (q = 0); and
a cost functionC(Xinl;R) quantifying how well the model
parametersR fit the set of observationsXinl consistent with
the model. The tool shape, i.e. curve parametersR, are first
estimated roughly by maximizing the number of tool voxels
(inliers setXinl) as determined byq via RANSAC, and then
refined by minimization of the cost functionC(Xinl,R) [9].

The model (both functionsq(x,R) andC(Xinl,R)) needs
to compute for each voxelx the distance to the curvea(t,R).
We compute the approximative distance

d(x;R) = ‖x− a(t0;R)‖, (12)

where the parametert0 is chosen to minimize the distance
by a fast approximative procedure based on projectingx onto
a straight line [9]. Then, we compute the normalized local
derivative ofa(t0,R).

at(x,R) = ct

∂a(t,R)(t0)

∂t
, (13)

wherect is a normalization constant such that‖at(x,R)‖ = 1.
Finally, the dot product is computed to measure the consis-
tency ofk(x,R) andat(x,R):

b(x;R) = |k(x) · at(x,R)| . (14)

1) Classification functionq(x,R): The classification func-
tion q(x,R) uses four attributes for each voxelx ∈ Xt:

m2(x) = [I(x) J(x) d(x,R) b(x,R)] (15)

and it is defined as a linear classifier [6]

q(x,R) =

{
1, if (w ·m2(x) ≥ w0) ,
0, if (w ·m2(x) < w0) ,

(16)

where w = [w1 w2 w3 w4] is a weight vector andw0 is
a bias. These parameters are learned from the training data
with ground truth as the FLD [6].

2) Cost functionC(Xinl,R): The model cost function
C(Xinl,R) is defined using the discriminant function of the
linear classifier from the previous definition (16)

C(Xinl,R) =
∑

x∈Xinl

(w ·m2(x) − w0) . (17)
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Fig. 2. ROC curves for pre-segmentation classifier trained on: a) two
attributesI(x) and J(x), b) single attributeI(x). The classifier found by
FLD (Section II-B) is shown by color mark▽.

III. R ESULTS

Experiments have been done on a PVA cryogel phan-
tom [14] with electrode of diameter0.3 mm. Eight 3D
ultrasound images of size53 × 71 × 260 voxels have been
acquired using the probe with central frequency7.5 MHz from
different positions.

The proposed method and other localization methods were
implemented in MATLAB1 and tested on a PC with Intel
Core 4 processor at 2.83 GHz. The Hessian matrices were
computed using a code by Almar Klein2.

A. Tool enhancement evaluation

The contrast enhancement of tool voxelsXtool compared
to background voxelsXbg (both sets are ground-truth) was
evaluated using Weber contrast as:

W (I) =
I(Xtool) − I(Xbg)

I(Xbg)
, (18)

whereI denotes the mean. The same Weber contrast can be
computed on enhanced imageW (J).

The mean factor of improvementW (J)/W (I) was 2.3×
by the method of Li and4.2× by the method of Frangi. The
processing time was8 − 10 seconds for the whole volume.

B. ROC curve analysis of the pre-segmentation

We evaluated the quality of the pre-segmentation (Sec-
tion II-B) using reciever operating characteristics (ROC)
curve [6]. We want to reduce number of FPs in pre-
segmentation, therefore we plot ROC curve (Fig. 2) only for
FP rate less than 10%. We observed that pre-segmentation
using two attributes, the number of TPs is increased by 25%
for the 4% FP rate, and the number of TPs is increased by
40% for 1% FP rate than using only a single intensity attribute.

1The MathWorks, Natick, MA
2http://www.mathworks.com/matlabcentral/fileexchange/19696



Localization Axis acc. Fails Time
Algorithm [mm] [%] [sec]
RANSAC+AxShp 0.42 ± 0.22 61% 1.90

RANSAC+IntDstr 0.44 ± 0.18 53% 3.86

RANSAC+LineFilter 0.78 ± 0.35 15% 5.33

TABLE I
AXIS ACCURACY, PERCENTAGE OF FAILURES AND TIME WITHOUT

PRE-PROCESSING FOR DIFFERENT LOCALIZATION ALGORITHMS.
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Fig. 3. The illustration of robustness evaluation of localization algorithms
for varying SNR: measured number of failures (in percent).

C. Tool localization evaluation

The axis accuracyǫaxis measures the deviation from true
axis location inmm [9]. The result is considered a failure
whenǫaxis > 3 mm. The failures are reported separately.

The proposed method is compared to other localization
methods based on model fitting using RANSAC with models
AxShp and IntDstr [9]. Table I shows that the proposed
model has the least failures on real data of PVA phantom.
The line filtering was useful in this case for filtering-out 2D
structures.

We also evaluate the robustness (number of failures) of
localization on simulated data (mimicking the needle in breast
tissue) with varying intensity of the tool with respect to the
background. The signal to noise ratio (SNR) quantifies the
quality of dataSNR = I(Xtool)/I(Xbg). For each SNR level,
the datasets were split into 19 testing and 9 training datasets.
The model fitting algorithm was run 15 times with different
random seed on each dataset. The comparison of robustness
(Fig. 3) show that the proposed model with line filtering is the
most robust among the tested group.

IV. CONCLUSIONS

We proposed method for tool localization in US which
exploits its 1D shape. The tool contrast can be enhanced by
line filtering methods based on eigen-analysis of the Hessian
matrix for each voxel. The model fitting localization algorithm
was improved using line filtered data and the number of
failures has been reduced at the expense of additional pre-
processing time. Note that no manual selection of region
of interrest (ROI) was done. The local optimization using 4
attributes does not give as accurate results as previous models
which needs to be further investigated.

In the future work, the pre-processing time can be sig-
nificantly reduced by employing a cascade classifier, doing
filtering only on voxels which will have passed an initial
thresholding step. It would be also interresting to combine
intensity distribution model [9] with line filtering in order to
obtain even more robust tool localization.
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