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Abstract—We propose a robust method for localization of
elongated surgical tools in 3D ultrasound data based on shap
analysis. The tubular structures in input data are enhanced
by a line filter in the pre-processing phase. A new model of
a surgical tool appearance in 3D ultrasound image is proposk
which exploits its tubular shape. The tool axis is estimatedvith
robust model fitting using a randomized RANSAC procedure.
The tool model requires the voxels close to the axis to have agh
intensity, high tubularness, and the local principal diredions to
be consistent with the tool axis.

The visual contrast of the tool can be enhanced four-fold
using line filtering. We demonstrate that classification rae is
improved by 25-40% when adding the tubularness attribute. The
comparison to other state-of-the-art localization method shows
that the proposed method is the most robust for data with high
level of noise at the expense of additional time for pre-progssing
(less than 10 seconds for volume of size 531x260 voxels).

|I. INTRODUCTION

gral Projection (PIP) to localize a straight cylindricaljetts
in 3D images. This approach is based on the observation that
projection area of a tool is minimized when the projection is
performed along the tool axis. Multi-resolution PIP andyear
stopping can be used for speed-up [5].

The Hough Transform (HT) [6] is widely used for a straight
line detection in 2D images but it can be generalized to 3D.
Ding et al. use a more efficient Randomized HT (RHT) [7]
for straight needle segmentation in thresholded 3D ultrado
images. Quick RHT (QRHT) [8] reduces the computational
effort by doing RHT only in coarse resolution volumes and
subsequently refining the solution.

Uhercik et al. [9] use a model fitting using RANSAC for tool
localization in 3D US. The axis is modelled as a polynomial
curve (or a straight line) in thresholded data. The locatibn
the tool axis is estimated by the RANSAC [10] and refined
by local optimization. This approach is robust to backgbun

Minimally invasive surgical procedures (such as needi®ise and fast enough for a real-time application. In thiskywo

biopsy [1] or electrode insertion [2]) involve an insertiorwe further increase its robustness by applying a shape based
of a thin tubular microtool of diametet mm and less. tool model using line filtering (Section 11-B).
Precise navigation of such surgical instruments is esslenti
for reducing the damage of tissue caused by failed insextioB. Line filtering
When medical imaging techniques (e.g. MRI, CT) are com- previous methods assume the tool to appear as a high
bined with stereotactic frame, a sub-milimeter accuracyl®a jniensity cylinder in US data. We can use an additional
achieved [3]. Ultrasound (US) monitoring of the tool ing@mt  assymption that the tool is a one-dimensional (1D) straight
is clinically used because there is no-ionizing radiatitin, strycture to distinguish it better from background stroesu
provides images at real-time speed and has relatively I®6co \yhich are 2D (e.g. layers of fat tissue).

The observation of such a microtool in US image is The idea of line filtering comes from vessel enhancement
a difficult task. The lateral resolution of the ultrasound i8.g. in MR angiography [11]. The cylindrical tool in US im-

approximately the same as the diameter of tool. There dges can be enhanced using the same methods (Section II-A).
a strong speckle noise and other acoustic artifacts whidtema

the appearance of a metallic tool irregular. The doctors are

trained for visual localization of tools in 2D US images. Our _ _
first aim is to enhance the appearance of the tool to aid visuall "€ Pproposed method consists of two phases: a) pre-

localization. Second, we want to apply the new shape relaf®Pcessing by line filtering (Section II-A) for enhancement

description to improve our previously published automatid® tubular structures which likely belong to the tool, blto
localization method. The output of this method can be usé@falization by model fitting using the RANSAC procedure

Il. METHOD

for visualization, to select the 2D slice containing theltoo

A. Previous work

Variety of algorithms for object localization in ultrasalin

(Section II-B).

A. Line filtering
The line filtering pre-computes two attributes for each VYoxe

data has been proposed. Barva et. al [4] uses the Paralel In¢ € X: tubularness/(x) and local principal directiork(x).



Intensity variations are analyzed via second order deriva-
tives. The image function is approximated using a Taylor
expansion in the proximity of a point:

I(x+d) ~ I(x) + dTVI(x) + %dTH(x)d, L)

whered is a perturbation vector. The gradient vectof(x)
and the Hessian matrix

Loa(x)  Lay(x)  Lae(x)
H(x) = | Iya(x) Iyy(x) ILy:(x) (2)
La(x) Ly(x) L:(x)
are computed by the convolution of the image functionith
the derivatives of the symmetrical Gaussian [12]

Fig. 1. 3D volume of breast biopsy with needle. The left pdrthe slice
o2 contains the original data and the right part contains the filiered by method
Lap(x) = I(x) * WG(X’ s). (3)  of Frangi [12].

Th(ﬂj scales of GaussianG(x, s) corresponds to the_ appareng, Tool localization
radius of the tool and can be learned from a training set of _ L . .
images with ground-truth The input of a tool localization algorithm consists of mul-
The eigenanalysis of the Hessian maffix) characterizes tiple attributes for each vpx_et: inte.nsity.I(x), tubularness
the second order local structure of voxels centered at the tumeasure](x) and IOC"?" _pr|nC|paI orientatiok(x).
Let [\i| < || < |\s] be its eigenvalues and;, es, e; We use the model fitting method based on RANSAC [9] for
correspoering eiﬁenvectors. For voxels in tubular stmectu robust estimation of the tool location. This method works in
one eigenvalue\; is small and the other twds, A3 big: several steps:
1. Pre-segmentation — the set of all voxélsis reduced
(0~ [A1]) and (JM] < [A2]) and (A2~ As) () to the group of tentative tool candidatés. A novel
The local principal direction is returned pre-segmentation, which uses two attribufés), J(x)
o is proposed in Section |I-B.
k(x) = e1/[lex] ©) 2. Axis localization — an approximate position of the tool
Varioustubularne_ssnea_suresf(x)_have been proposed fO_r axis is estimated by a randomized procedure RANSAC.
tool enhancement in 3D image (Fig. 1). We assume a bright |t also produces a set of consistent poiats, C X}, also

cylinder on dark background, so the voxels wih > 0 or known asinliers (Section 1I-C).
A2 > 0 can be discarded and(x) set to0. 3. Local optimization — a more accurate solution is found
1) Li's method: The simple formula has been proposed by  using local optimization of curve parameters on the set
Li et al. [13]: of inliers X,1.
[Az] 4. Tip localization — the endpoint of the tool is identified as
i (%) = s (A2 = [Ad]) 6) a significant drop in the intensity along the axis by the

2) Frangi’'s method: more advanced filtering has been method of Barva [4].
proposed by Frangi et al. [12]. He introduces three quastiti The axis is represented by a spatial parametric polynomial
for different propertiesRz for quantification of the relative curvea(t;R) : R — R? of ordern — 1 [9]:
amplitude of|{A;|, R 4 for discrimination of tubular structures

from planar structures, ani for quantification of the strength 1 Tin ¢

of all second order features: at;R)=| ro1 -+ 7op ) ; teR (10)
| A1 | Az T3l ot T3 :
Rp=—F—=, Ra=17 (7) " n—1
\/ |/\2/\3| |/\3| R t

remain straight andh = 3 otherwise. The curve paremeters

R can be determined by control pointsp; € R3,i =1...n

H‘lrough which it is required to pass [9].
Pre-segmentation:The tentative tool voxelst; C X

- . . are selected accor(_jing to the attribu#as(x) = [I(x) J(x).]_
Jipea) (%) = (1 _e;;%> (eg%> (1 _ef,f?) (9) pre—c_omputed_ by line fll_terlng (Seqlon II-A)_. The dec!snon

function is defined as a linear classifier [6] using the attels
Frangi et al. [12] recommends to setdo= § = 0.5 and the mi(x):
parameter is set experimentally. X ={xeX|(w- -mi(x)>wo}, (11)

S=|H|p= | Z A3 (8) m = 2 is used for thick electrodes which are expected to
7=1,2,3

The two quantitiesR 4, S should be maximizedR 4 up to
1) and Rz should be low or close to 0. They are combine
into a single tubularness measure [12]:



ROC curves

wherew is weight vector andy, is a bias. The parameters

w and wy are learned from the training data with ground 08}

truth as the Fisher’s linear discriminant (FLD) [6] whichdm

the best separating hyperplane. Pre-segmentation usiog tw 067

attributes gives better results (in terms of ratio of trusifpes g

and true negatives) than doing simple thresholding likedin [ a 041 , X FLD on 2 attribs
(Section I11-B). It is possible to use other classifiers, S§M ozl L
or AdaBoost [6]. - - = ROC for 1 attrib

C. Tool model ‘ ‘ ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1

We propose a hew model of the tool appearance in 3D US FP rate

images using the pre-processed volume data (Section II-AP. , o _
The model is used bv the tool localization alaorithm (Se Flg. 2. ROC curves for pre-segmentation classifier trained @ two
y 9 %ttributes[(x) and J(x), b) single attributel(x). The classifier found by

tion 1I-B). It consists of a functiony(x, R) classifying voxel FLD (Section II-B) is shown by color mark.

x as either a tool = 1) or a background¢ = 0); and

a cost functionC(Xin; R) quantifying how well the model

parameterdR fit the set of observationg’,; consistent with I1l. RESULTS

the model. The tool shape, i.e. curve parameRersare first

estimated roughly by maximizing the number of tool voxels Experiments have been done on a PVA cryogel phan-

(inliers setX;,) as determined by via RANSAC, and then tom [14] with electrode of diametef.3 mm. Eight 3D

refined by minimization of the cost functiofi(X;,, R) [9].  ultrasound images of siz&3 x 71 x 260 voxels have been
The model (both functions(x, R) and C(X;.;, R)) needs acquired using the probe with central frequefigyMHz from

to compute for each voxel the distance to the curvez, R). different positions.

We compute the approximative distance The proposed method and other localization methods were

implemented in MATLAB and tested on a PC with Intel

Core 4 processor at 2.83 GHz. The Hessian matrices were

omputed using a code by Almar Klefn

d(x;R) = [lx — a(to; R, (12)

where the parametey is chosen to minimize the distance®
by a fast approximative procedure based on projectirmmto
a straight line [9]. Then, we compute the normalized loc#l. Tool enhancement evaluation

derivative ofa(t .
a(to, R) The contrast enhancement of tool voxéls,,; compared

da(t,R)(to) to background voxelst,, (both sets are ground-truth) was

a(x,R) = ¢ ot ’ (13)  evaluated using Weber contrast as:
wherec; is a normalization constant such thiat;(x, R)|| = 1. @) — T
Finally, the dot product is computed to measure the consis- W(I) = tool) — by , (18)
tency ofk(x, R) anda,(x, R): I(Xyg)

b(x;R) = |k(x) - a;(x,R)]|. (14) whereI denotes the mean. The same Weber contrast can be

computed on enhanced imagié(J).

The mean factor of improvement (J)/W (I) was 2.3x
by the method of Li and..2x by the method of Frangi. The
my(x) = [I(x) J(x) d(x,R) b(x,R)] (15) processing time was — 10 seconds for the whole volume.

1) Classification functiog(x, R): The classification func-
tion ¢(x, R) uses four attributes for each voxele A;:

and it is defined as a linear classifier [6] B. ROC curve analysis of the pre-segmentation

q(x,R) _{ (1)’ g EXEQEQ i Zjog’ (16) We evaluated the quality of the pre-segmentation (Sec-
’ 2 0 tion 1I-B) using reciever operating characteristics (ROC)
where w = [w; wywswy] is a weight vector andug is curve [6]. We want to reduce number of FPs in pre-
a bias. These parameters are learned from the training deggmentation, therefore we plot ROC curve (Fig. 2) only for
with ground truth as the FLD [6]. FP rate less than 10%. We observed that pre-segmentation

2) Cost functionC(X;,;, R): The model cost function using two attributes, the number of TPs is increased by 25%
C(Xu1, R) is defined using the discriminant function of thdor the 4% FP rate, and the number of TPs is increased by
linear classifier from the previous definition (16) 40% for 1% FP rate than using only a single intensity attebut

C(Xm,R) = Z (W my(x) —wo) - 17) 1The MathWorks, Natick, MA
XEXin1 2http://www.mathworks.com/matlabcentral/fileexchan§é06



Localization Axis acc. | Falls | Time In the future work, the pre-processing time can be sig-
Algorithm [mm] %] | [sec] nificantly reduced by employing a cascade classifier, doin
RANSACTAxShp || 042 £0.22 | 61% | 1.00 o y | yl ph.yh 9 i S lg
RANSACHntDstr 044 £0.18 | 53% | 3.86 litering only on voxels which will have passed an Initia
RANSAC+LineEier 1 0.78 £0.35 | 15% | 5.33 thresholding step. It would be also interresting to combine
TABLE | intensity distribution model [9] with line filtering in ordeo
AXIS ACCURACY, PERCENTAGE OF FAILURES AND TIME WITHOUT obtain even more robust tool localization.
PREPROCESSING FOR DIFFERENT LOCALIZATION ALGORITHMS
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