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ABSTRACT 1.1. Previous work

We address the problem of fast and accurate localization (ﬁvariety of algorithms fo_r _object localization in L.JS datajsa
miniature surgical instruments like needles or electrades een proposed. The position of an electrode axis can be deter

ing 3D ultrasound (US). An algorithm based on maximizingmmed ina 2D image using Principal Component Analysis [2]

a Parallel Integral Transform (PIP) can automatically lizea on athresholded variance image. Ding [3] proposes to find the
nes in 2D projections of a volume by a parallel projection.

line-shaped objects in 3D US images with accuracy on th . T
order of hundreds of micrometers. Here we propose to us arva [4, 5] shows that 3D Parallel Integral Projection can

a multi-resolution to accelerate the algorithm signifitant be used to find the eIe_ctrode axis. Novptny [6] Qecompose_s
: éhe volume to overlapping spheres and finds the instrument in

each subvolume. He uses a modified Radon Transform im-
plemented on a GPU. Barva [4, 7] uses a polynomial to de-
ribe a deformed electrode, whose parameters are esiimate
a RANSAC algorithm.

the high intensity voxels of a thin electrode. We integrate t
multi-resolution pyramid into a hierarchical mesh-gridisz
of PIP. The experiments with a tissue mimicking phantom an%c/
breast biopsy data show that proposed method works well o
real US images. The speed-up is threefold compared to orig-
inal PIP method with the same accuracy 0.4 mm. A further 2. PARALLEL INTEGRAL PROJECTION (PIP)
speed-up up to 16 times is reached by an early stopping of the ) o
optimization, at the expense of some loss of accuracy. Our method is based on a Parallel Integral Projection (RIiP) f
electrode localization [4, 5] which works in two steps: f)sa
Index Terms— 3D ultrasound, electrode, localization, |ocalization, and (ii) tip localization. We assume that éxés
parallel integral projection, multi-resolution is straight and the length is much greater than the diameter.
The PIP [4, 5] is a transform that maps an image function
7T : R3 — R representing volume data to a functiéh :
1. INTRODUCTION R* — R. Formally, the PIP transformation &{x) is:
Tool localization using medical imaging modalities such as Pz (u,v, a, 3) :/ 7 (R(a,B) - (u,v,7)7)dr, (1)
MRI, CT and US allows the physician to view anatomical in- —oo
formation of human body together with the location of surgi-where R (o, 3) is a rotation matrix representing a rotation
cal instruments during the intervention [1]. We focus on thearound thez-axis by angley, and around;-axis by angles.
3D US modality which is relatively affordable, non-invasiv. The PIP transform is similar to the Radon transform.
and involves no ionizing radiation. It offers real-time 3D To find the electrode axis we need to find the maximum of
images with sufficient resolution, but with large amount ofp;. We decompose the maximization Bf (u, v, o, 3) to an
speckle noise and acoustic artifacts. inner maximization with respect ta:, v) and an outer max-
Our task is to automatically localize an electrode or a thinmization with respect td«, 3), using a hierarchical mesh-
needle inserted into a biological tissue. Its diameter muab grid approach [8].
1 millimeter or smaller. The electrode is usually straighd a We find an electrode endpoint along the estimated axis
appears as high intensity voxels in a US image. One possib[é, 5] as point where intensity first decreases under a thresh
application is finding a plane passing through the electrodeld T}, estimated using probability density of intensities of
for visualization purposes, as physicians are used to exarnthe electrode”(el) and background’(bg). We skip breaks
ine 2D US images. Other applications include automatic tooshorter than a threshald, which is estimated as a 95% quan-
guidance or tracking neuronal recording sites. tile of the distribution of break lengths.
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Fig. 1. The 2D image of slice with needle selected from 3D volume, multiple downsampled images usingix andavg
functions. The original resolution was 53x71x262 voxeds gach coarser level the resolution has been divided byYaocan
see the electrode of radius 0.3 mm is blurred out in case afdhdunction in coarse resolutions, while for theazz function
the contrast between electrode and background stays/edyatgiood.

3. MULTI-RESOLUTION PARALLEL INTEGRAL

PROJECTION (MR PIP) Input: 3D imageZ,,,, with electrode, constants

Ainitv Afinal; Finit; Ffinal; Kinit; Kfinal
As the original PIP method [4, 5] is rather slow, we want| Result electrode axis(cmaz; Bmas; Umaz, Vmas)
to improve its speed. We propose to use downsampled 3D:1 Create multiple resolutioris, ...Z,,;

images for electrode localization. We will show that using| > k «— Kj,.;;, A <« Ajnic, T < Tinit, R < 90°;

a maximum function we obtain reliable results on downsam- , 4 __ (0°,A, 2, ..., 180°) x (0°, A, 24, ..., 180°);

gizdr;rgii%es better than with standard downsampling based N while A > A finat OFT > T finat Ok > K panat O

A discrete functiorf,,,, : N* — R represents an image | ° (Omaz; fmaz; Umaz; Umaz) < ArgMAX,s MAXy,y
7 at the pixel grid. We define the downsampled im@gg, Pz, (u, v, a, 3) where(a, §) € A and(u, v)
of imageZ;,,,, by a factorM,,, M,, N, € N: € (ur,u1 + T, ..., u2) X (v, + T, ..., v2);

6 k — max(k -1, Kfinal);

Zc{own(xvyaz) = f{zsmp(]“]\/[l‘ +Z‘ayﬂly+ja ZZ\JZ—"]C)}? 7 A <—max(A/2,Afmal);
where0 < i < M,, 0<j < M,, 0 <k < M.. Weuse |° [ = max(l'/2, L pinar), B — R/
a functionf : R* — R to filter the set of neighboring vox- | © | 4 < (¥maz = R, Qmaz — R+ A, .., tmag + R)
els, yielding a pixel value at the coarser resolutigrshould L X (Bmae — R, Braz — R+ A, ..., Braz + R);
preserve well the differences between the electrode and the Algorithm 1 : Hierarchical mesh-grid search of MR PIP.
background. Agf, we will useavy for average andhax for Constantsi;, ug, v1, vz are boundaries of the projected
maximum of a set of values. We s&f, = M, = M. = volume, A contains the set of angles for evaluation of
2. A multi-resolution pyramid was constructed by repeated P, | R is the size of the current interval of angles.
downsampling (Figure 1): Ainity A finat @NAT 040, T pina are initial and final dis-

cretization steps foA andT’ respectively. K;,,;; and

j— — max _ max
T = ZLsmp, To = (Z1);---In = Zn—1)- K tina is initial and final level of resolution.

down down

3.1. Algorithm decreases the accuracy. We call this method Fast Multi-
We use a hierarchical mesh-grid search [4, 5, 8] for findieg th resolution Parallel Integral Projection (Fast MR PIP).
maximum (maz s Bmazs Umazs Vmaz) Of the PIP transform Let us analyze the time complexity of MR PIP. Num-

with respect taarg max, g max,, , Pz(u, v, a, 3). We mod-  ber of iterations of while loop in Algorithm 1 is at most
ify this maximization using multi-resolution (Algorithm)1 N = maxz{N1, N2, N3} whereN; = [log, 32, N =
The discretization stefs for («, 3) and the discretization step [1og,, 2qu andNs = Kipit — K finai + 1. Number of eval-

[ for (u,v) is iteratively decreased as the resolution lefiel jations ofP, in each iteration is dependent on maximization

is refined. Thls makes th_e methoq faster than PIP. term in line 5. There aré, — (iso ) evaluations of outer
By stopping the iterative algorithm early we further accel- . q Tfinal [ sizer2

erate the algorithm. We stop on a coarse resolufign,, , riart max|m|2|ng ovel(q, B) an .TQ - Ei:rmt.(T) -

and set larger discretization stepS;,,; and I finq. This V3 - (25 )2 evaluations of inner part maximizing over

usually amounts to using a smaller number of iterations bufu,v). The total number of evaluations @z (u,v, «, 3)
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Fig. 2. Results from MR PIP on simulated data with an electrode. drfggnal resolution of the data was 531x 307 voxels.
Original PIP algorithm is equivalent to resolution levelThe success rate considers good results with axis accuettey than
10 mm. The charts show means as points and standard desgiasorertical bars.

+ T
+ 0
25 + #*fka +
& 20 AN
2 100+ N +
g is o o
o
? 10 © o,
= o© *
5 3
0 @ L * * o
1 2 4 5 g w %

3
Resolution levels

+  Simple PIP
Means of MR PIP

Fig. 3. Comparison of SNR of simulated data on different
resolution levels fornax andavy filtering function.
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Fig. 4. The charts show the dependence of time and accuracy
4. RESULTS on final discretizatiod’ ;,,; for Fast MR PIP and simple PIP
without any multi-resolution on simulated data.
We will show that the MR PIP method is as accurate as the
original PIP method while being faster. The method was im- o cvels—
plemented in MATLAB. We did all tests on a Gentoo Linux Afinat = 1% Linip = 0.4 - plevet mm, Lfing = 0.4 mm
computer with a 64-bit Intel Core 2 processor at 2400 MHz, Wherelevels is number of resolutions.

Two measures are used to quantify the accuracy [4, 5]. We compared thenaxz andavg function for downsam-
The first measure;;, = ||T — TH evaluates the tip local- pllng The SNR values of simulated data are in Figure 3.
ization accuracy, wher€ is the true electrode tif’ an esti- Downsampling using anax function seems to preserve the
mated tip and - || is the Euclidean distance. Axis localization €léctrode shape better and also the SNR is better. Figure 2a
accuracy is given by.eis = max {|[E — Qi |, |T — Qs|},  Shows the success rate for the MR PIP on synthetic data. The
whereF is the intercept pointQ; andQ- are the orthogonal SUCCesSs ratg is steadily close to 100%' forsther function,
projections ofE andT on the estimated axis with respect to @nd decreasing to 0% for theg. We decided to use theax
the true axis. function for downsampling in the rest of experiments.

For evaluation of image quality we define the signal-to-  We varied the number of resolution levels from 1 to 5 and
noise ratio:SNR — 1010g% [dB] Wherexel are Voxe|s measured the t|me (Figure 2b) As eXpeCted, the t|me haS

with distance from the axis Iers than an electrode radius ar%een significantly reduced from the 123 seconds mean time

o . the original single resolution PIP method (Table 1, row
the remaining voxels are considered as backgraypd r ; ) ’
g graup 1). Best mean time was 46 seconds for resolution 3 (Table 1,

) ) row 2) with the accuracy 0.4 mm which is satisfactory (Fig-
4.1. Evaluation of parameters influence ure 2¢,2d).

The experiments were done on 28 simulated datasets of size We have also evaluated the tradeoff between speed and ac-
53x71x307 voxels with varying electrode translation and ro curacy for the Fast MR PIP method. The results for different
tation. Simulated data were generated using the US simulatealues of the final discretization step are shown in Figure 4.
FIELD Il [9], set to imitate the US scanner Voluson 530D. We reached the mean time 7.8 seconds with axis accuracy
The discretization parameters were fixedAg,;; = 32°,  around 2 mm fol¢;,,; = 1.6 mm (Table 1, row 3).



data / method|

time [sec] |

axis ac. [mm] | tip ac. [nm] |

on an early stopping of the hierarchical search algorithm.

Table 1. Results on various data: simulated data (28 datasets),

simulated /1 | 123+ 5.8 | 0.327+0.180 | 1.732+ 5.132 Rewriting the method in a compiled language or implement-
simulated /2 | 46.14 15 | 0.371+£0.178 | 0.4224 0.268 ing the method on a GPU will also accelerate it substantially
simulated /3 | 7.8+ 2.6 | 2.143+1.369 | 13.89+ 6.67 We propose downsampling with theax function which
phantom /2 | 62.54+26 | 0.443+ 0.206 | 0.508+ 0.175 preserves electrode voxels better than averaging. Thibean
phantom/3 | 7.3+2.1 | 1.421+ 0.429 | 9.335+ 7.747 used also for other applications requiring fast detectfdhia

br. biopsy / 2 61 0.108 0.569 lines, e.g. vessel segmentation in a 3D image.

br. biopsy /3 55 3.270 3.302
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We have presented a multi-resolution PIP method for elec-
trode axis localization in 3D US data which is much faster,
than the original PIP and yet has the same accuracy. Th[%o]
makes PIP method final practical for real applications. Fur-
ther speed-up is achieved by Fast multi-resolution PIPdase



