
Comparison of Methods for Tool Localization in
Biological Tissue from 3D Ultrasound Data
Martin Barva1,2, Jan Kybic1, Václav Hlaváč1
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Abstract— In medical applications, miniature surgical instru-
ments such as needles, or electrodes are introduced into human
body. The position of instrument in tissue can be estimated
using 3D ultrasound. In previous publications, we introduced
two novel algorithms for automatic electrode localization from
3D ultrasound images. The first method is based on the Paral-
lel Integral Projection (PIP) transform, a modification of the
Radon transform. We showed that the axis of the electrode
can be estimated from the maximum of PIP transformation. To
accelerate search for the maximum, a hierarchical mesh-grid
algorithm is implemented. In second method, the electrode axis
is described by a cubic polynomial. The distribution of voxel
intensities inside the electrode region is a priori estimated from
acquired data. The model parameters are robustly estimated
using the RANSAC estimator. In this paper, their performance
in terms of accuracy is compared. A series of tests on numerical
phantoms created with the FIELD II simulation program were
performed to quantitatively evaluate the localization accuracy.
We observed a decrease in accuracy when artificial noise was
added to the input data. The algorithms were also tested on
real ultrasound data of a cryogel phantom comprising metallic
electrode.

INTRODUCTION

It is often necessary to know the position of surgical tool in
real time. For example, in biopsy, tissue samples are extracted
from a particular region by means of a thin needle [1]. In
breast cancer therapy, radioactive substance is injected near
the tumor [2]. In the field of neurobiological research, there
are experiments, where the electrode activity of a small group
of neurons is recorded through a thin tungsten electrode
[3]. Precise navigation of surgical instruments is vital in
intracranial surgery, where there is a risk of damaging major
blood vessel.

The navigation of surgical tools is based on visual in-
formation provided by medical imaging modality such as
the ultrasound, magnetic resonance, or computed tomography.
The localization accuracy of a surgical tool inside tissue is
improved if the tool position is determined automatically.
Another application of automatic tool localization is in the
domain of visualization of acquired data. In intraoperative
procedures, 3D imaging modalities are often employed to
obtain complex 3D images of scanned region. Using the tool
position, we can easily determine a planar section comprising
the tool and display it on a computer screen.

Fig. 1. Example of a 3D ultrasound image of a PVA cryogel phantom
submerged in water. Inside the phantom there is a tungsten electrode.
Two planar sections (one of them passing through the electrode axis)
are shown in grayscale.

The ultrasound modality has several advantages over other
imaging modalities such as 3D near real-time imaging capa-
bilities, non-invasiveness, no ionizing radiation, compatibility
with metallic surgical instruments, portability, affordability.
Fig. 1 depicts an example of a 3D ultrasound image of
a polyvinyl alcohol (PVA) cryogel phantom [4] containing
an electrode in water. In publications [5], [6] we presented
two algorithms that permit to automatically determine the
electrode position from 3D ultrasound images. First method
is based on maximizing the parallel projection of input 3D
image. A thin electrode may bend slightly while introduced
into tissue. To localize electrode with a curvilinear axis, a
second approach based on model fitting was developed and
implemented. It describes the electrode with a model whose
parameters are estimated using the RANSAC algorithm. Here
we briefly review both methods and evaluate their performance
on simulated and real ultrasound data in term of accuracy and
robustness to image quality.



I. PROPOSED METHODS

The input to both algorithms is a 3D image that is described
by an image function

I : A → B (1)

where A ⊂ R
3 is a set of voxels coordinates and B ⊂ R

+
0 is

a set of non-negative voxel intensities.
We assume that first, the electrode shape is cylindrical with

the length much greater than its diameter. Second, we assume
that electrode voxel intensities are superior to the background
voxels intensities.

A. Method I – Maximizing Parallel Projection

The electrode axis is found by maximizing the Parallel Inte-
gral Projection transformation. The Parallel Integral Projection
is a transform that maps an image function I : A → B
to a function PI : R

4 → R describing its projections as a
function of the 2D displacements (u, v) and the projection
direction determined by two angles (α, β). Formally, the PIP
transformation PI of I is given by

PI(u, v, α, β) =
∫ ∞

−∞
I (

R(α, β) · (u, v, τ)T
)
dτ, (2)

where R(α, β) is the rotation matrix representing a rotation
around the x-axis by angle α, and around the y-axis by angle
β. The value PI(u, v, α, β) is equal to the integral of the
function I along a line of integration defined by R(α, β) ·
(u, v, τ)T ; τ ∈ R. The PIP transformation is periodical along
the parameters α, β with period π.

If a 3D image contains a negligibly thin electrode,
the PIP transformation PI has maximum when the line
of integration coincides with the electrode axis [5]. Let
(umax, vmax, αmax, βmax) be the point, where PI reaches the
maximum. Then the analytic equation of the electrode axis l(t)
is given by

l(t) = R(αmax, βmax) ·

 umax

vmax

t


 ; ∀t ∈ R. (3)

The maximum of PI is sought on a discrete grid. In order to
accelerate the search, the discretization along the dimensions
α, β is done using the hierarchical mesh-grid method [7].
It is controlled through parameters ∆1

α,∆1
β , resp. ∆N

α ,∆N
β

which are the initial, resp. final discretization steps of α, β.
The discretization steps ∆u, ∆v along the dimensions u, v
are kept constant, since the spatial density of integration lines
must be inferior to electrode diameter.

B. Method II – Model fitting with RANSAC

The method starts by pre-segmentation of voxels from
the set A in two disjoined sets Ae and Ab. This is done
by thresholding with a threshold set to such a value that
Ae consists of 10% of voxels with the highest intensities.
This operation roughly distinguishes between the electrode
voxels and background voxels and accelerates the algorithm
since only the voxels from Ae are processed in consecutive
computations.

1) Electrode model: The electrode axis is modeled by a
cubic polynomial lΘ(t) given by

lΘ(t) : x(t) = a0 + a1t + a2t
2 + a3t

3

y(t) = b0 + b1t + b2t
2 + b3t

3 (4)

z(t) = c0 + c1t + c2t
2 + c3t

3, t ∈ R,

where Θ = (a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3) is the
parameter vector determining the curve position and shape.

The second part of the model describes the electrode voxel
intensities with respect to the distance from the axis. We a
priori estimated a joint probability density function p(v, d)
between voxel intensity v and the voxel-to-axis distance d.
The expected value of the intensity at distance ? is

h(d) = E[v|d] =
∫ ∞

−∞
vp(v, d)dv. (5)

2) Estimating parameter vector Θ: The parameter vector
Θ̂ such that

Θ̂ = arg min
Θ

C(Θ) (6)

where C(Θ) is a model quality evaluating cost function (7),
is estimated by the RANSAC algorithm [8]. In each iteration
i, a random subset Di of four points is selected from all
electrode voxels Ae. A parameter vector Θi is calculated to
fit the cubic polynomial to the subset Di. The quality of the
model is determined using a cost function given by

C(Θi) =
∑
x∈Ae

[I (x) − h(d(lΘi
(t),x))]2 (7)

where d(lΘi
(t),x) is the distance of the point x from the

curve lΘi
(t), I(x) is the true intensity and h(d(lΘi

(t),x)) is
expected voxel intensity. The best model in the sense of C(Θ)
over all iterations is selected. The number of iterations is set
to such a value that the probability of the event “better-than-
currently-best estimated model is missed” is inferior to some
predetermined constant η.

II. EXPERIMENTS

Two types of 3D ultrasound images were used to test the
methods: (i) simulated phantoms to evaluate the algorithm
accuracy, (ii) real ultrasound data of PVA cryogel phantom
containing an electrode were used to test its performance in
realistic conditions.

A. Accuracy assessment

In following text the localization accuracy is quantified by a
measure εaxis given by

εaxis = max {‖E1 − Q1‖ , ‖E2 − Q2‖} (8)

where E1, E2 are the ground-truth coordinates of electrode
endpoints and Q1, Q2 are the intersections of estimated axis
l(t) with normals to the electrode axis through E1, E2.

B. Method parameter settings

In the experiments described in this section, we used fol-
lowing algorithm parameter settings.



1) Method I: ∆1
α = ∆1

β = 32◦, ∆N
α = ∆N

β = 1◦ and
∆v = ∆v = 1 mm. These parameters were deduced from a
priori known diameter and length of sought electrode [5].

2) Method II: The number of iterations in RANSAC esti-
mator was set to 500, which corresponds to η of 0.05.

C. Numerical phantom

Numerical phantoms were generated using the ultrasound
simulator FIELD II [9]. A set of MATLAB functions permit
to simulate realistic 3D ultrasound images.

The parameters of the simulator were set to imitate the
ultrasound scanner Kretz Voluson 530D (Kretztechnik AG,
Austria). We used a multi-element transducer to produce a
2D sector scan plane, which was tilted to scan a 3D region.
The sector scan plane of angle 40◦ was composed of 71 beams
and 53 scan planes were acquired with a tilt angle of 40◦.

Fig. 2. Simulated 3D ultrasound image using the FIELD II simulator.
The red line segment marks axis found with Method I.

We simulated a series of numerical phantoms representing
a cuboid region of biological tissue comprising a highly
reflecting inclusion such a metallic electrode. The dimensions
of the tissue region were 50x50x30 mm and its axial distance
from the probe was set to 35 mm. To approximate the speckle
pattern of biological tissue, the tissue diffuser spatial density
was 3 per mm3. Their reflection coefficients had normal
distribution with zero mean and variance 1. The electrode
inside tissue was represented by a cylindrical region of 0.3
mm in diameter containing diffusers with spatial density 125
per mm3. Their reflection coefficients were constant and equal
to 5. Fig. 2 depicts an example of a 3D numerical phantom
simulated in FIELD II.

1) Varying background noise: In real applications, the in-
tensity of electrode and background voxels vary. To investigate
the influence of background noise, we simulated numerical
phantoms with fixed electrode position while increasing the
variance of background voxels, e.g. the noise. Given the mean
of electrode voxel intensity µel and the mean of background
voxel intensity µbg , we define a parameter SNR given by

SNR =
µel

µbg
(9)

to quantify the ratio of electrode intensity to background noise.
Fig. 3 shows achieved localization accuracy for Method

I and II as a function of SNR. For high SNR, Method I
outperforms Method II. However, as the background noise
increases (SNR ≤ 3.75), Method II localizes electrode axis
with higher accuracy compared to Method I.
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Fig. 3. Axis localization accuracy as a function of signal-to-noise
ratio of voxel intensities.

2) Varying electrode orientation: Nine simulated phantoms
comprising an electrode in different positions and orientations
were simulated. The electrode angle with respect to the probe
axis was varied from 0◦ to 160◦. Localization accuracy for
both methods as a function of this angle is depicted in Fig. 4.
Notice that in both cases, the localization is the most accurate
when the electrode is perpendicular to the probe axis. This is
due to different spatial resolution in axial, lateral and azimuthal
direction of a ultrasound scanning system. When the electrode
is perpendicular to the probe axis, its contours are more
clearly defined than for other orientations permitting better
localization.
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Fig. 4. localization accuracy as a function of the angle between the
electrode and probe axis.

D. Polyvinyl cryogel phantom

The proposed method was also tested on real 3D ultrasound
data. To simulate biological tissue with a highly reflecting



inclusion, a PVA cryogel phantom of the size 50x50x50 mm
was employed. Inside the phantom there was a thin tungsten
electrode of 150 µm in diameter and length 30 mm. The
phantom was scanned with a 3D ultrasound scanner Voluson
530D equipped with a mechanically tilted transducer operating
at central frequency 7.5 MHz. Total scanning (volume) angle
was set to 40◦ at interval 0.75◦. Angle of acquired B-
mode sector images was 40◦ with the angular step 0.5◦. The
scanning depth was 6 cm. Acquired data were transfered to
a computer where a 3D image of the size 1000x1000x1500
voxels was reconstructed (Fig. 5).

Fig. 5. Example of a PVA cryogel phantom comprising a tungsten
electrode. Axis found with Method I is marked in red.

To evaluate the accuracy εaxis according to (8), the coordi-
nates of electrode endpoints E1, E2 were manually determined
in each dataset and considered as ground-truth. Fig. 6 shows
the localization accuracy for both methods. The average εaxis

for Method I was 0.15 mm and 0.35 mm for Method II.
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Fig. 6. Axis localization accuracy for a set of acquired 3D ultrasound
images of a PVA phantom.

III. CONCLUSION

The ultrasound imaging modality is commonly used in
intraoperative imaging for the guidance of surgical tools. To

facilitate this task, we developed two methods for automatic
localization of metallic electrode from 3D ultrasound images.
The experiments performed on simulated and real ultrasound
images show that the localization accuracy of both methods
is on order of hundreds µm regardless the electrode position
and orientation. The method based on maximizing the parallel
projection outperforms in accuracy the model fitting algorithm.
However, for images with poor signal-to-noise ratio the model
fitting approach is more accurate and its low computational
time permits real-time performance.
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