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Title: Higher Order Neural Unit Adaptive Control and Stability
Analysis for Industrial System Applications

Abstract

Given the push in our modern digitalized industry for advanced, yet
comprehensible methods for process identification and control,
computational intelligence methods are readily ongoing in study. Higher-
order neural units (HONUSs) have proven to be such computationally efficient
and comprehensible nonlinear polynomial models for application as
standalone process models or as a nonlinear control loop where one recurrent
HONU is a plant model and another HONU is as a nonlinear state feedback
(neuro)controller (via MRAC scheme). Alternative approaches as the widely
used Lyapunov function, can be used for design of the control law or prove
of stability for existing control laws in state space for a given equilibrium and
a given input.

However, in practical engineering applications such methods although
proving stability about an equilibrium point may still result in bad
performance or damage if they are also not proven to be bounded-input-
bounded-output/state (BIBO/BIBS) stable with respect to the control inputs.
Therefore, the main contribution of this dissertation is to introduce two novel
real-time BIBO/BIBS based stability evaluation methods for HONUs and for
their closed control loops. The proposed methods being derived from the core
polynomial architectures of HONUs themselves provides a straightforward
and comprehensible framework for stability monitoring that can be applied to
other forms of recurrent polynomial neural networks. New results are
presented from the rail automation field as well as several non-linear
dynamics system examples. Further directions are also highlighted for sliding
mode design via HONUs and multi-layered HONU feedback control
presented as a framework for low to moderately nonlinear systems.

Keywords

model reference adaptive control; discrete-time nonlinear dynamic systems;
polynomial neural networks; point-wise state-space representation; stability



Nézev prace: Adaptivni fizeni s polynomidlnimi neuronovymi
architekturami a analyza stability pro primyslové aplikace

Anotace

Metody vypocetni inteligence pro identifikaci a fizeni procest jsou v této
praci studovany vzhledem k rozvoji moderniho digitalizovaného primyslu a
s ohledem na potiebu pokrocilych avsak pro praxi srozumitelnych algoritmu.
Neuronové jednotky vyssich stupnti (HONU) se ukazaly jako vypocetné
efektivni a pfitom srozumitelné nelinearni polynomialni modely pro fizeni
samotnych soustav nebo pro optimalizaci jiz existujicich regula¢nich smycek,
kde jedna jednotka HONU predstavuje na datech zalozeny model soustavy a
druhd HONU je implementovana jako nelinearni stavovy (neuro) regulator
(fizeni typu MRAC).

Mezi dnes Siroce rozsifené piistupy nelinearniho fizeni patii metody
pomoci Lyapunovovi funkce pro navrh regulatoru, ktery v principu garantuje
stabilitu ve stavovém prostoru pro dany rovnovazny bod a vstup systému,
avsak v principu nepfedepisuje pozadovanou dynamiku chovani (jako napf.
fizeni typu MRAC). V praktickych inzenyrskych aplikacich také mutize stale
dojit ke Spatnému fizeni a tudiz i poSkozeni, pokud se také neprokaze, ze
regulacni smycka je stabilni ve smyslu omezeny-vstup omezeny-vystup/stav
(BIBO / BIBS). Hlavnim pfinosem této disertacni prace je proto zavedeni
dvou novych metod vyhodnoceni stability nelinearnich adaptivnich smycek
s HONU zalozenych na BIBO / BIBS. Navrhované metody jsou odvozeny na
zakladé polynomialnich neuronovych architektur HONU a poskytuji pfimy a
komplexni ramec pro sledovani stability v realném case, ktery lze pouzit i na
jiné formy rekurentnich polynomialnich neuronovych siti (linearnich
v parametrech). Jsou prezentovany nové vysledky adaptivniho fizeni v oblasti
kolejovych vozidel a na nékolika dalSich pfikladech nelinearnich
dynamickych systémut.. Dal$i sméry jsou také naznaceny pro navrh fizeni
typu ,,sliding mode control“ s HONU a zpétnovazebniho fizeni se sitémi
HONU pro mirné az stfedné nelinedrni systémy, kde linearni zptsoby fizeni
nedosahuji pozadovanych vlastnosti.

Kli¢ova slova

adaptivni fizeni s referenénim modelem; diskrétni nelinearni dynamické
systémy; polynomidlni neuronové sité; bodova stavova reprezentace; stabilita
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1. INTRODUCTION

With respect to the last decade, many powerful and quite novel approaches in
the field of computational intelligence have brought to the fore in our
industry. In accordance to the Al Maturity Model by Gartner (Aug 2018) less
than 3% of the worlds large scale engineering companies are readily
employing computational intelligence for real-time process identification and
control. The more analyzable the computational algorithm, the higher
chance there is for its adoption by industry because a rigorous stability
analysis helps to guarantee and avoid the unexpected financial loss
resulting from interrupted production or damages. Also, advanced
algorithms require highly skilled and educated specialists to be available
within engineering teams to maintain the algorithms and to prevent the
algorithms from misuse and from causing problems (including getting
unstable). Then, employee fluctuation is another natural risk factor for
applying too complicated algorithms into practice.

Polynomial Neural Networks (PNN) and Higher Order Neural
Networks (HONN) represent a family of relatively well analyzable neural
architectures. These directions of polynomial neural computation
significantly originate from works [1]; furthermore, the usefulness of
HONNSs for adaptive control via Lyapunov function approach was
successfully demonstrated also in last decade, e.g. in [1], [2] (to mention
at least a few most significant out of much more). The comprehensibility
of the polynomial architectures relates to the fact that polynomials are
linear in parameters, while the quality of nonlinear approximation is
adjustable via the polynomial order. This also makes polynomial neural
architectures attractive for recently hot topics such as ridge regression and
extreme learning machines [3], or information theoretic learning
approaches [4].

In this dissertation, a focus on Higher Order Neural Units (HONUSs)
[5]-[7] that can be applied individually or as building units of more
complicated polynomial structures is considered. And generally, a focus
on discrete-time systems that involves recurrent HONUs as well as
feedforward ones (e.g., for prediction, novelty detection, and control
where dynamical models are obtained from data only). For stability
analysis of nonlinear dynamical systems including HONUs, we incline to
the area of recurrent neural networks (RNNs) as tremendous effort has
been carried out on stability in there. The algorithms for stability of
RNNs have been massively researched as reviewed in [8] and references
therein and further below. Nevertheless, review paper [8] naturally
concludes that we have no universally best stability evaluation algorithm



for RNNs as for nonlinear dynamical systems; a proper stability
evaluation is always case dependent considering different aspects of each
particular purpose. Earlier methods for stability analysis of RNNs utilized
linearization analysis and then Lyapunov function based techniques for
which the stability is related to control law design. A traditional approach
as exampled in [9] and [10] is to construct the adaptive control law via a
suitable Lyapunov function candidate, such to ensure a global rule to
constrain the process inputs. Another technique in [11] is the global
robust exponential stability of an equilibrium point for delayed neural
networks developed via homeomorphism and Lyapunov function based
techniques. In [12] via a delay partitioning technique, a novel stability
approach justified via the Lyapunov-Krasovskii criteria is investigated to
warrant the global stability of static neural networks with time delays.

In practical control applications, although stability of the equilibrium
point may be justified as exampled in [11], it is often necessary and more
practical to ensure boundedness of the resulting process states with
respect to bounded control inputs. As a result, a rather readily researched
field in the realm of nonlinear discrete-time systems is bounded-input-
bounded- state (BIBS) stability [13], [14] with a more universal definition
being the condition of input-to-state stability (ISS) [15]-[18]. Several
studies of ISS for RNNs with time-varying delays may include [19],
where two algebraic criteria backbone from a Lyapunov functional and
they are derived for the verification of ISS for a class of time-delayed
RNNGs.

The previous work [7], has focused on the stability of the real-time
adaptation of HONUs. Newly, this dissertation focuses on a stability
framework for standalone HONU models or HONU-MRAC control loops
as whole, even applied as a constant parameter loop. Being motivated
with some analogies from linear and nonlinear concepts, two novel
(BIBO and BIBS based) stability analysis techniques (extended from
[20]) for discrete-time recurrent HONUSs are proposed. The first derived
technique is denoted as DHS (Dynamic HONU Stability), which is
BIBO-based approach that monitors eigenvalues of a linearized state-
space model to determine the local stability of state point neighborhood.
The second derived technique is denoted DDHS (Decomposed DHS), and
it is a BIBS-based (ISS-based) approach that results from a newly
introduced nonlinear state-space decomposition via polynomial
architecture of HONUs. DDHS is rather different from the ISS based
forms presented in [19], [21], [22], because it derives from the same
nonlinear architecture at a given state and for given inputs. DDHS then
monitors stability of every state transition from initial conditions; thus,
DDHS evaluates stability of polynomial time-variant systems for given
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inputs without being limited to specifically applied control laws or
training methods. Both DHS and DDHS stability evaluation techniques
are derived for single recurrent HONUs as well as for dynamical closed
loop with two HONUs. Sections 6 and 7 illustrate the performance of
both methods on several nonlinear system examples as well as real-time
rail automation examples to highlight its applicability in real industrial
process identification and control.

2. CURRENT STATUS OF RESEARCH

In this dissertation, three main areas of adaptive control were researched and
classified as follows:

1. Control input adjustment methods: Such approach relies on the justified
stability of the control law via consideration of the negative derivate in
each time point of the Lyapunov control function. Another popular form
is Model Predictive Control (MPC) [23]-[25]. Other advanced forms
include adaptive backstepping design [1] and a quite trending technique
of sliding mode control [26], [27]

2. Heuristic tuning based methods: A popular form of such control is
Adaptive Dynamic Programming (ADP) [28], [29] which may be
divided into the basic structures of heuristic dynamic programming
(HDP) as exampled in the works [30]-[31] and Dual heuristic
programming (DHP). In principle, the approach is focussed on
minimisation of an error measure over time. A penalisation or reward is
calculated to compute the output of the critic network which is an
estimate of the cost function.J .

3. Parameter adjustment-based control: More conventional forms include
control are adaptive PID controller tuning or Model Reference Adaptive
Control (MRAC). Till this day more emphasis is pushed towards
variations with use of computational intelligence methods as such
neural-networks and fuzzy based methods. Parameter adjustment forms
may also be combined with input adjustment forms, an example of such
approach is the Model-Reference Sliding Mode Control as reviewed in
[32].

Following comprehensive review of the fields 1)-3), the main motivation
of this dissertation is to advance field 3) in the realm of model reference
based higher order neural unit (HONU-MRAC) based control. Primarily, to
bridge an open gap till this date of practical application and theories of
stability analysis for such forms of adaptive nonlinear polynomial models
and their use for control.
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Reference Model
(pre-defined behavior that we wish to approach when
> the controller is applied)
faster, accurate, non-oscillating

HONU as the model of the plant 2
(or of already existing control loop) Yref

w - colx
y

HONU as the feedback

controller

Figure 1- Higher order neural unit model reference based control scheme (HONU-
MRAC), where one HONU is identified as a plant and one standalone HONU
controller is extended in feedback (possibility of multiple HONU controllers in
feedback also presented in [33]).

d—

The origin of HONUs derive from earlier works of M.Gupta [5] where
the Higher Order Neural Network (HONN) was presented and in I. Bukovsky
and N. Homma [34], where a quadratic neural unit (QNU) as a advancement
on the SONN by [35] was analysed as a powerful medium for plant
modelling and control. The most up to date architecture of a HONU-MRAC
control loop is illustrate in Figure 1 where one HONU is used for plant
identification and another single HONU in feedback as a adaptive controller.
Featuring training via fast real time algorithms as such Levenberg-Marquardt
and conjugate gradient decent algorithm [33] or earlier in [36] (I.Bukovsky,
S.Redlapalli) where HONUs are computationally faster in achieving adequate
convergence in square error whilst achieving desirable control performance
for both nonlinear unknown systems as well as linear systems of SISO
structure as compared to MLP based architectures. In the work [37] by L.
Smetana, the superiority of QNU architecture as compared to the
conventional PID controller was exhibited, which also highlights a use case
in control loop optimization with extension of a HONU in feedback. Though
HONUs have shown promising results in field of adaptive identification and
control. Study into the very stability of such HONUs as standalone models
and HONU-MRAC control loops is limited. In [10] though a stability
approach for stable gradient descent learning of HONUs themselves was
presented. Studies focussed on justifying both the online adaptive control law
itself is stable as well as dynamically the whole control loop including plant,
has not readily been presented. Nor the stability of offline tuned neural
weight parameters with online application on new data, especially for use in
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real industrial applications, and is hence the key problem that is addressed in
this dissertation work.

3.
1

2)

3)

4)

GOALS OF DISSERTATION

Propose pointwise state-space representation of a HONU: As a major
contribution, this dissertation investigates and derives the transformation
of nonlinear HONU architectures to a linearly approximated state-space
model in discrete state points. Following this newly derived state-space
form the Discrete-time HONU Stability Condition (DHS) is developed
as a pointwise state-space based evaluation of BIBO stability and further
proven for justifying asymptotic stability in neighbourhood of the
evaluated state point via Lyapunov stability theory.

Propose a pointwise state-space representation of a HONU via
polynomial decomposition: Due to an intrinsic relation of HONU
architectures to discrete time nonlinear state space models via their in-
parameter factorization, another major objective and contribution of this
dissertation is to derive a new decomposition approach for modelling
HONU models and further their whole HONU-MRAC control loop. Due
to this intrinsic relation as extension of works [20], [38] a decomposition
of the HONU polynomial equation to sub-polynomial state space form is
proposed.

Derive a new ISS based stability condition for BIBS stability assessment
of HONU polynomial architectures: As a result of 2), the concepts of ISS
stability are extended to the derived decomposed state space form and a
method for justification of BIBS stability, termed as Decomposed
Discrete-time HONU Stability Condition (DDHS) and the further
resulting DDHS(Strict) condition. An added advantage of this
decomposition approach is the preservation of dynamical accuracy for
higher order nonlinear polynomial structures (presented in this
dissertation for up to 3™ order as a HONU-MRAC control loop).
Experimental analysis to validate the proposed DHS and DDHS
approaches: A final objective and contribution is the deep experimental
analysis and comparison of the derived DHS and DDHS approaches. The
methods are also analysed with respect to Lyapunov control function
stability approach. Both methods are implemented on physical industrial
systems with focus to rail automation applications to validate the
feasibility of use for our modern industry. Future directions via sliding
mode control approach with the presented HONU decomposition and
multi-layered HONU feedback control for low to moderately nonlinear
systems are also discussed.

12



4. FUNDAMENTALS OF HIGHER ORDER NEURAL UNITS AND
THEIR ADAPTIVE CONTROL

Since recently e.g. [10], HONUs have been appearing in long-vector
notation, e.g. for QNU or CNU as follows

j=w-col"(x), j=w-col"(x), (1)

Further w is the long-vector of all neural weights (i.e. r-dimensional W
flattens to 1-D vector), for example of QNU it is as follows

{wu} Z—O Ny

which was the length of x that was the vector of neural

)

w= [woo Woy -

where n, =n, +n

u >

inputs (including step-delayed feedbacks 7 and control inputs « ) as

x(k)=[1 y(k—n,+1) ... (k) u(k—n,+1) ... u(k)]*. 3)

In [10] col(x) stands for transformation of x into the long-vector consisting of
all (not repeated) polynomial terms up to the order of HONU, so for QNU it
yields that

col':2(x):colx:{xi~x_/ ;i=0..n,, j=i.n.}, 4)
and for CNU

col’zzg(x):colx:{xi-xj~x,{ 3i=0..ny, j=i..n, K=j..n.}. (5)

In similar analogy, from (3) an additional recurrent HONU in the forward-
branch according to Figure 1 where § is the forward-branch HONU output

and u is the external (control) input. The feedback law is as follows
u(k)=d(k)—p(k)-q(k), (6)
where (k) is output of the feedback-branch HONU defined in (8), d(k) can

be desired value, and p(k) is an adaptable proportional gain. Optionally, in

order to reflect either too high or too small static gain of controlled plant. a
mutation of control law (6) can be

u(k)=p(k)-(d (k)= q(k)). (7
The feedback-branch HONU output ¢ is then defined as follows

(k) =v(k)-col” (&(k)), (8)
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where v is the long vector of weights, & is customizable input vector

involving step delays of jandu with augmenting unit &y =1, and 7 is
customable nonlinear polynomial order of the feedback-branch HONU. For a
list of fundamental weight update laws for general or of HONUs refer to the
appendix section, where the weight updates themselves are performed as
w(k)=w(k—1)+Aw.

5. MAIN PRINCIPLES OF STABILITY ANALYSIS FOR NON-
LINEAR SYSTEMS

Considering the general class of discrete-time nonlinear dynamic system
defined as
x(k+1)=A(k)-x(k)+B(k)-u(k)
${)=Cox(k) ik >0, )

where, both A(k)and B(k)are both continuous in x and bounded with
respect to k. The following definitions may be stated.

Definition 1: For a discrete-time state-space model, two equally justified

statements ensure the respective model is asymptotically stable about its

equilibrium point [17], [42]:

1) The time-invariant HONU matrix A(k) is asymptotically stable if and
only if the relation (10) holds.

2) Given any matrix Q:QT >0 there exists a positive definite matrix

P=P7 such that satisfies the proceeding relation
A(k) "PA(k)—-P=—Q. (10)

Definition 2 [21, Chapter 2.9]: The time-variant state-space representation of
the form (9) is ISS stable provided that

k)< (xR )+ (u®]), (1)
where () represents a L -class function which is asymptotically stable such
that the function converges to a minimum for k—oo and for a zero
equilibrium that 3(-)— 0 ; further, 7(-) represents a K, class function which
is unbounded and strictly increasing from a zero initial state (i.e. y=0and

for k> k, thatk— oo,y —00).

14



Definition 3 (General BIBS for a Discrete Time System): the general solution
of a discrete time nonlinear state-space system is defined as

k—1 k—1 k-1
= [T Ate)x(ko)+ %HA(Z')'B(H)'“(H), (12)
k=ky rk=kyi=kK

where via taking we take the norms of both sides and via triangular inequality
it yields that

k-1 k=1 k=1
[x(e)|<| TT AGoxko)|+| > TTAG)B
o R (13)
IIA xR+ 32| TTAGDBx)u(r)),
r=ky :ko =K

where, it can be proven for bounded-input-bounded-state (BIBS) stability of
the general non-linear dynamic system in (9), (13) must hold.

6. DISCRETE TIME HIGHER ORDER NEURAL UNIT STABILITY
METHOD (DHS)

In line with definition 1, the DHS method solves the local bounded-
input-bounded-output (BIBO) stability of the pointwise state-space
representation of HONUS. In this dissertation, a general form was introduced
for in vector form with respect to the state variable X as

X(k+1)=F(X(k))+u(k)
§k) =7, (k).
The DHS method, inspired from classical theories re-expresses the form (14)
into an incremental linear approximation via derivation of the Jacobian

matrix of partial derivatives to the nonlinear state-space representation yields
the simplified pointwise general state-space form

AX(k+1)=A(k)-AX(k)+Au(k), (15)
where K(k) is the Jacobian matrix J,, of the recurrent HONU, indicated in

(16) and the respective difference of the state variable vector is denoted as
AX(k) and state input vector as Au(k) then,

(14)
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0O 1 00 O
= =y 1 Ay 9 eee e Ay oy | = Q; ; 5
(k) ox(k) |0 67T T i
0O 0 ..0 O

where the matrix K(k) represents a ngz xXnz dimension matrix. For an
arbitrary r order of HONU it yields that the matrix coefficients K(k) may be
expressed as

=1 for i=23,...,n, ANi=n,; j=i+1

, 0 /_ . .
T, = =y col (x(kJrl)):w[p]Jra—Ej(xn” (k)) forj=12,...nz Ni=mn, (17)

=0 else |

where col” (x(k+1))=x(k+1) in the sense of a QNU, denotes the original
neural weight vector x defined in (4) for one sample ahead. The term w[n]
denotes n" element of w from the corresponding 7;(k) in vector x(k+1).
Therefore the newly introduced weight vector yfor a QNU may be
explicitly computed term-by-term as

n—1
D iy
=0

n.I?
g a, sw, s where o, =1 Vs=n & a,, =2.

s5=n

v, =f(w)= (18)

Thus, in similar analogy to (15) the linear approximation of the HONU
model with extension of a HONU feedback controller may be defined as

AX(k4+1)=M(k)-AX(k)+Ad(k), (19)

where M(k) is the Jacobian matrix for extension of a feedback controller.

Theorem 1 (DHS): Recurrent HONUs via the representation (15) or the
HONU closed feedback loops via representation (19), are BIBO stable at a
given state with actual input at the sample time k if

p(A(k))<1 or p(M(k))<1, (20)

where p(.) denotes the spectral radius, and A(k) or M(k) are the Jacobians

of standalone recurrent HONUs or of the whole closed loops with HONUSs
respectively. For linear neural units (LNUs, i.e. HONUs of /=1) and for the

16



closed loops composed of LNUs, the Jacobian matrices A(k) and M(k) are
time variant only when real-time adaptation is applied. Or similarly
v(k)=v(k—1)4av(k) is on, while for higher nonlinear orders the dynamics is
variant because the Jacobians varies in state-space. Figures 2-4 illustrate
several experimental analysis results from both simulation and real-time
application on a non-linear two-funnel tank and CTU roller rig respectfully.

a
15 ) T

A\ —

=)
™~
A

160 162 164 166 168 170 172 174 176

1.15 ©)
1.10 e o DHS

Toe PO AT T I IO

160 162 164 166 168 170 172 174 176
t[s]

Figure 2- DHS: a) Randomly changed controller gain p(t) in adaptive ONU-QNU control loop

of non-linear two-funnel tank (instability onset p(t =164.6)=—1.18 ). b) Control loop output

and the reference (desired) output. ¢) p(t) computed via DHS.
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Figure 3 — Real-time HONU-MRAC adaptive control loop via LNU model with QNU controller
of constant parameters on CTU roller rig.
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Figure 4 — DHS: Dispersion of GD tuned LNU-QNU closed control loop eigenvalues for real-
time control of the roller rig system (Figure 3), evaluated about a) t=120-150 [s] (0 [mm]), b)
t=150-180 [s] (2 [mm]) c) t=180-210 [s] (3 [mm]) respectfully.

7. DECOMPOSED DISCRETE-TIME HIGHER ORDER NEURAL
UNIT STABILITY METHOD (DDHS)

To develop this approach, let us consider the expanded form of a QNU
i.e. HONU,r=2 for the input vector (1), where an arbitrary length of

previous model outputsn, and previous process inputs n,are considered.

Then, on observation of the expanded form (21) we may restate the QNU
with respect to the principle input vector x(k—1) as

ZZ
1=0 j=1i ) ] (21)

:wo,UJFZIZ-' wo.ﬂriwu S+ Z z; w07+2
=1 =

i=n,+1
where n, =n, +n,. Then, the definition (21) maybe restated as

1
g(k)=w(k)-col” (x(k-1));x(k—1)=|x(k—1)|. 22
F4) = Wik col”(x(k- D)tk =| k1) )
Thus, we may summarize the form (21) as follows
iy, (K)= w0+, (k—1)-d,+ a,(k—1)b,, (23)

i=1 i=1
where the coefficients a; and li;maybe respectively defined in sub

polynomial form as in the sense of a QNU as

d; =a; (X(k—1),0(k—1),w)= w01+2w1] - (24)
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J=i

Thus, given the state variable vector definition as the set of step-delayed

feedbacks ¢, the original HONU polynomial form may be re-expressed in

canonical state-space form as
X(k)=A(k-1)-x(k—1)+B(k—1)-t(k—1)+ W (k-1)

. T (26)
(k) =C-X(k); Wy =[0...0wpp]

where the matrix of dynamics A(k-1) and input matrix B(k—1) respectively

may be defined as

1 [e o

B=10 0

A:

—o- O

27)

[esNerlanNan)
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~ 0.
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n

bu

n

by ™

ISH
S

a
. T
Further, the output matrix C =[O -0 1} . However, we may further simplify

this expression on considering the neural weight bias as an additional input
vector wy =wy (k). Therefore, the augmented input matrix and input vector

may be defined as

K(k)=A(k-1)-%(k—1)+B, ‘i, (k—1); (k) =C-x(k—1), (28)
where
0
B, =[B . ity (k- 1)=[i(k-1) wyy (k-1 (29)
1

A results in a time-variant matrix of dynamics for polynomial orders 7>1

and it is also further due to applied learning; thus, the matrix A is also
termed as the Local Matrix of Dynamics (LMD). For a closed loop LNU with
nonlinear control loop it leads to the following canonical state-space form

with matrix of dynamics M(k-1) and augmented input matrix N, (k-1)
K(k) =M (k-1)-%(k—1)+N, -, (k—1) ; p(k)=C-x(k). (30)

Theorem 2: (DDHS) The discrete-time recurrent HONUs, via their
decomposed state-space representation (26), are BIBS stable leading from

definition 2 & 3 from an initial sample in time k, until & provided
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u, (k)] <0. (1)

sl TT Aol |- 3 [TTAw 3

K=k h=01n

Theorem 3: (DDHS) The discrete-time polynomial loops of HONUs via
their decomposed state-space representation (30) are BIBS stable from initial

sample time k; until & provided
H M ()|
Theorem 4 (Strict DDHS): Provided the discrete-time recurrent HONUS (or

their loops) are BIBS stable according to Theorem 2 (or Theorem 3) at time
ky , then the BIBS stability will be strictly maintained for HONU models if

k—1

HM i)-N, (k)|

=K

k—1

ko= 2
r=ky

.(8)|<0. (32)

S=gek)-

AS(k)=S (k)= (k—=1)=[[&(k)|—| k()| —|[Ba (k1)1 (k=)

. (33)
B, (h—2)i, (k—2)[<0 for Vk>k.

(| AG-D|-1)}(| A2y xk-2])+]

Analogically, extended for a HONU-MRAC control loop. Figures 5-7
illustrate performance of the DDHS method on a non-linear two funnel tank
and CTU roller rig as a real-time implementation respectfully.
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Figure 5 — DDHS (Left): ONU-QNU control loop responses with feedback controller gain on
non-linear two funnel tank p(t >164)=—0.985 (stable) and p(t >164)=—2.25 (unstable).

DDHS analysis. (Right): Comparison of DDHS and DDHS(Strict) on non-linear two-tank liquid
level system proving unstable LNU-QNU control loop from t>488]s].
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Figure 6: a) LNU-QNU control loop with RLS pre-training and adaptive GD in last epoch for
single wheelset active control. b) Analysis of spectral radii through time (BIBO stability) via
DHS after learning rate p(t >280)=0.01. ¢) Validation and comparison with Lyapunov

condition [1] and strict DDHS (33) which reveals clearer condition for ongoing instability of

whole LNU-QNU loop.
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Figure 7 — a) Fully adaptive HONU-MRAC control loop via ONU plant trained via NGD and
LNU feedback controller trained via RLS learning algorithm optimises following changed bogie

frame stiffness and damping dynamic properties. b) DDHS stability condition (for ko=0). ¢)
Strict DDHS (33) confirms stability of the control loop
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8. CONCLUSION

Following from review of the studied computational intelligence based
forms of adaptive identification and control, this dissertation has highlighted
the comprehensibility and efficient performance of HONUs for real industrial
applications. In this dissertation, further fundamentals of HONU-MRAC
control were derived, namely an adaptive controller parameter gain and
further use of the recursive least squares (RLS) algorithm were presented
with successful results on real nonlinear system and rail automation
examples. As a major contribution, a new stability framework (DHS/DDHS)
was proposed for BIBO/BIBS based stability analysis of nonlinear
polynomial neural unit based architectures i.e. HONU and also for a whole
HONU-MRAC control loop which can be extended for other polynomial
based neural architectures as presented in this dissertation. In Figure 6, a
comparison with the presented Lyapunov based criteria in [1] showed
superior results, whilst unlike the compared, the DDHS can be applied for
constant parameter model and further derived control loop. As a further
outcome the ASPI Kit v 1.3 software was released as well as a stability
analysis library in the programming language Python software to help
engineers and practitioners investigate the potentials of HONU adaptive
identification and control for their respective engineering applications.
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Appendix

Sample-by-sample Adaptation

Gradient Descent (GD) Aw = p-e(k)-colx”

_ H T
Normalised GD (NGD) AW—" : "2H~6(k’)~colx
COIX
2

Recursive Least Squares Aw=e(k)-colx(k)” R (k)

(RLS)
Batch Adaptation

1

LM (Leven. Marq.) Aw=I"-J+=1)".J" e
!

Resilient - Aw — Aw( A(VE))

Backpropagation

Conjugate Gradients Aw=a(r,,p.J)-p(8(x,.))

Table 1 — Fundamental Learning Algorithms of HONUS of General Order. Application of RLS
and adaptive controller feedback gain for HONU-MRAC as additional results of this
dissertation.
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