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for Industrial System Applications
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Abstract—Higher-order neural units (HONUs) have proven to be comprehensible nonlinear polynomial models and computationally efficient for application as standalone process models or as a
nonlinear control loop where one recurrent HONU is a plant model and another HONU is as a nonlinear state feedback (neuro)controller (via MRAC scheme). Alternative approaches as the
widely used Lyapunov function, can be used for design of the control law or prove of stability for existing control laws in state space for a given equilibrium point and a given input. However, in
practical engineering applications such methods although proving stability about an equilibrium point may still result in bad performance or damage if they are also not proven to be bounded-
input-bounded-output/state (BIBO/BIBS) stable with respect to the control inputs.

The main contribution of this dissertation is the introduction of two novel real-time BIBO/BIBS based stability evaluation methods for HONUs and for their nonlinear closed control loops. The
proposed methods being derived from the core polynomial architectures of HONUs themselves, provides a straightforward and comprehensible framework for stability monitoring that can be
applied to other forms of recurrent polynomial neural networks. New results are presented from the rail automation field as well as several non-linear dynamics system examples. Further
directions are also highlighted for sliding mode design via HONUs and multi-layered HONU feedback control presented as a framework for low to moderately nonlinear systems.

Abbreviations
BIBO …  Bounded Input Bounded Output
BIBS …  Bounded Input Bounded State
DHS …  Discrete Time HONU Stability
DDHS…  Discrete Time Decomposed HONU stability

GD …  Gradient Descent
HONU…  Higher-Order Neural Unit
HONU MRAC…  Closed control loop with one HONU
model and one HONU as a feedback controller

ISS …  Input to State Stability
LM...   Levenberg-Marquardt Algorithm
LNU, QNU…  Linear, Quadratic Neural Unit
RLS … Recursive Least Squares Algorithm

Keywords—model reference adaptive control; discrete-time nonlinear dynamic systems; polynomial neural networks; point-wise state-space representation; stability
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HONU (QNU, CNU):

parameter adaptation:

k… discrete index of time; rq (or also denoted as p)… adaptive (opt. as a
feedback) controller gain
w; v… vector of all adaptable parameters ( nw × 1; nv × 1)
x;ξ … vector of inputs (and feedback variables) (x0; ξ0 =1)
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Discrete Time HONU Stability: DHS

This method transforms the classic nonlinear polynomial
representation of a HONU to a incremental linear approximation
via the following pointwise state-space form
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HONU MRAC as a standalone control loop. One HONU=Plant
model (optionally for identification of an existing control loop),
the Second as a Feedback Controller. [3], [9]

Fundamental Learning Algorithms

Gradient Descent(GD)

Levenberg-Marquardt (LM)

Recursive Least Squares
(RLS)
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HONU-MRAC control loop (QNU-QNU) via RLS(plant),
GD(cont.) on real barrier drive control board. Barrier 1 (above)
standard boom. Barrier 2 (below) with loaded boom. [10]
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Further, the coefficients maybe individually computed as
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Pointwise State-Space Representation of HONU Pointwise Decomposed State-Space Representation of HONU

Given the pointwise representation of a HONU, a HONU model
and further whole HONU-MRAC control loop is BIBO if the
following holds

( ) ( )A M( ) 1 or ( ) 1k kr r< <

Analogically for a HONU-MRAC control loop, where desired
behavior d and the extended matrix of dynamics is
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The decomposed method re-expresses the classical HONU into a
sub-polynomial representation as
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Then re-expressing the above sub-polynomials, the following state-
space representation yields, where the augmented input matrix is

where
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Decomposed Discrete Time HONU Stability: DDHS
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The decomposed HONU is BIBS if from an initial position in
time k0 the Input-to-State (ISS) stability relation is fulfilled

It may be further justified the BIBS of a HONU may be strictly
satisfied if the difference of function S(k) in real-time is ≤ 0.
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DHS method under randomly changed controller gain from
t>164[s] of adaptive QNU-QNU control loop on non-linear two-
funnel tank system. [1]-[2], [3] .

Analogically, the concept extended to a HONU-MRAC loop yields
where the input term is the desired behavior d and the extended
matrix of dynamics is               and the augmented input matrix is
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Comparative analysis of DDHS(Strict) with Lyapunov approach
[4]-[5], [7]. Earlier detection via DDHS(Strict) of progressively
unstable LNU-QNU control loop on conventional roller rig
mathematical model.
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CTU Roller Rig: Fully adaptive
QNU-LNU control loop

with real-time Strict(DDHS)
analysis

DDHS(Strict) confirms stability via monitoring on real-time re-
tuning of a fully adaptive QNU-LNU control loop for Real CTU
Roller Rig with new dynamic behavior due to changed stiffness
and damping properties. [4], [7]
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DDHS and DDHS(Strict) comparison on nonlinear
two-tank liquid level system proves LNU-QNU
becoming unstable from t>488s. [2], [6], [8]
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