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Abstract

Given the push in our digitalized industry for advanced, yet comprehensible methods for

process identification and control, computational intelligence techniques are readily ongoing

in study. Higher-order neural units (HONUs) have proven to be such computationally

efficient and comprehensible nonlinear polynomial models for application as standalone

process models or as a nonlinear control loop where one recurrent HONU is a plant model

and another HONU is as a nonlinear state feedback (neuro)controller (via MRAC scheme).

An area which till now has not been so readily studied is their application for real industrial

systems whilst also monitoring and ensuring whole dynamical closed control loop stability

for HONU-MRAC control loop design, both as offline tuned and online adaptively tuned

control loop setups. Alternative approaches as the widely used Lyapunov function, can be

used for design of the control law or prove of stability for existing control laws about an

equilibrium or given point in state-space. However, in practical engineering applications

such methods although proving stability about an equilibrium point are not always fitting to

the design goal of achieving optimal tracking performance but rather stabilization.

Furthermore, if not also proven to be bounded-input-bounded-output/state (BIBO/BIBS)

stable with respect to the control inputs, such designs can even lead to poor performance and

damage. Therefore, the main contribution of this dissertation is to introduce two novel real-

time BIBO/BIBS based stability evaluation methods for HONUs and for their closed control

loops. The proposed methods being derived from the core polynomial architectures of

HONUs themselves provides a straightforward and comprehensible framework for stability

monitoring that can be applied to other forms of recurrent polynomial neural networks. Both

methods are comprehensively analysed and validated through various nonlinear system

examples as well as new results presented from the rail automation field for real time

industrial process control via HONU-MRAC design. Further directions are also highlighted

for sliding mode design via HONUs and multi-layered HONU feedback control presented as

a framework for low to moderately nonlinear systems.
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Nomenclature

ˆ( ); ( )A Ak k … matrix of dynamics for HONU model (for DHS and DDHS resp.)

ˆ,
i i

a a … ith coefficient of recurrent HONU matrix of dynamics (for DHS; DDHS resp.)

ˆ,
i i

a a … ith coefficient of recurrent HONU-MRAC matrix of dynamics (for DHS;
DDHS resp.)

ˆ( ); ( )B Bk k … matrix of inputs for HONU model of (for DHS and DDHS resp.)

ˆ,
i i

b b … ith coefficient of HONU input matrix, (for DHS; DDHS resp.)

ˆ
i

b … ith coefficient of HONU-MRAC input matrix for DDHS

.( )iC ..
.

sum of coefficients corresponding to state variable term ˆix  (DDHS)

;colx colξr r … long-column vector of up to rth or g th polynomial order terms. (x…plant
inputs; ξ…controller inputs)

ˆ( ); ( )M Mk k … matrix of dynamics for HONU-MRAC control loop (for DHS and DDHS
resp.)

ˆ( ); ( )N Nk k … matrix of inputs corresponding HONU-MRAC control loop (for DHS and
DDHS resp.)

;xn nx … length of neural input vector x and ξ respectively

;u yn n … lengths of step-delayed historyu or y in neural input vectors.

p … adaptive HONU controller output gain

;r g … order of standalone HONU model and HONU feedback controller resp.

;u d … process control input; desired value (set point)

;w v … long-vector representations of neural weights of HONU (w…plant;
v…controller)

;w vD D … neural weight updates of HONU (plant; controller)

x … affine control generalized state vector (for DHS)

x̂ … sub-polynomial decomposed state vector (DDHS)

y … real process output

y% … neural output from HONU (plant)
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List of Abbreviations

BIBO ...bounded-input-bounded-output

BIBS ...bounded-input-bounded-state

BIBS-RHS ...right-hand side

BPTT ...back-propagation through time

CNU ...cubic neural unit of third polynomial order (i.e. 3r = ...model,

3g = ...as a controller)

DDHS ...discrete-time decomposed HONU stability condition (method

developed by author)

DHS ...discrete-time HONU stability condition (method developed by

author)

GAS ...global asymptotic stability

GD ...gradient descent

HONU ...higher-order neural unit

HONU-

MRAC

…closed control loop where one HONU is a plant model and the

second HONU is a feedback controller

ISS ...input-to-state-stability

LM ...Levenberg-Marquardt algorithm

LMD ...local matrix of dynamics

LNU ...linear neural unit of first polynomial order (i.e. 1r = ...model,

1g = ...as a controller)

MRAC ...model reference adaptive control

NN ...neural network

QNU ...quadratic neural unit of second polynomial order (i.e.

2r = ...model, 2g = ...as a controller)

RLS ...recursive least squares algorithm

RR ...roller rig (experimental railway stand)

RTRL ...real-time recurrent learning
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1 Introduction

As our modern industry undergoes a push towards digitalization, optimisation and increased

efficiency is growing to not only become a desirable feature but a necessity within the

industry, largely due to factors associated with increased production rates, technological

changes and further demands for increase in flexibility [1]. With this the demand for

computationally advanced, yet comprehensible process identification and control methods

which the engineering personal at hand can maintain is growing. Though many advanced

methods have been proposed in the field of adaptive control their applicability for smaller

scale industrial processes can be quite over-engineered or too complex especially where a

majority of practical industrial processes are of linear or low to moderately non-linear

process dynamics. Therefore, one motive of this dissertation is to present such

computationally advanced and comprehensible package for process identification, control

and stability monitoring of real industrial systems, via higher-order-neural-unit model

reference based control (HONU-MRAC). As this dissertation is focussed on low to

moderately nonlinear process dynamics, the aim of this section is to summarize existing

state-of-the-art process identification and control approaches and setup the direction for

deeper study of computational intelligence based methods and adaptive polynomial neural

network based architectures as the main topic of this work.

Till date, the Czech Technical University in Prague (CTU) has published numerous works

which are focussed on more conventional, yet advanced approaches to nonlinear process

control. As a challenge with control of any nonlinear process lies often in the identification

of the process, in [2], [3] an approach to multiple-input-multiple-output (MIMO) process

modelling is presented via LOLIMOT method. The approach is based on generating

approximation of any function in parameters by locally linear functions and globally rational

functions which can be switched to provide continuous form of grid data approximation.

With regards to control, in the work [4] a input-shaping technique is investigated for non-

vibrational control of flexible mechatronic systems. There, an optimised precomputed control

curve in each control point is found at first, followed by application of an online input shaper

to transform an arbitrary input signal to a non-vibrational form. A further technique for

control of flexible mechatronic system is via wave-based technique. In [5] a wave model is

composed of the mechanical system, where via derivation of corresponding launch and

reflection transfer functions which are used to compose the respective wave-control. A

further innovation from the department of Mechanics, Biomechanics and Mechatronics is an
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extension on Linear Quadratic Regulators (LQR), a Nonlinear Quadratic Regulator (NQR) is

presented in the work [3], [6] for control of nonlinear multi-body systems. This method also

referred to as State-Dependant Riccati Equation (SDRE) strategy [7], serves as an effective

algorithm for capturing nonlinearities of the system dynamics via linear structure having

state dependant coefficient matrices (SDC). These SDCs are then used for solving algebraic

Riccatti equations online to give the control law.

Apart from the reviewed conventional forms of nonlinear process identification and control,

a large push in current date research is towards computational intelligence methods as such

that of fuzzy logic or neural network forms [8]–[12] and their collaboration as exampled in

[13] & [14]. Initially founded by P. V. Kokotovic et al. [15], till this day a large focus in

research is based on adaptive back-stepping design. Extensive studies have been published

regarding their applicability towards stabilisation of stochastic nonlinear systems [16], [17].

However due to the challenges of requiring precise description of the applied nonlinear

systems, an enhancement in adaptive back-stepping techniques may be found in the use of

fuzzy logic. Relevant examples include [18], [19] as well studies focused towards its

application with neural networks. Advanced control algorithms with neural networks feature

backstepping control [20], [21] which are quite competitive for non-linear dynamic

processes. However, from these works though the presented methods are advanced the key

driver for such forms is the transformation of higher order system description to a lower

order, or set of lower order problems especially useful for multiple-input-multiple-output

systems. As in the sense of backstepping control, a systematic approach can be found in

constructing a Lyapunov function based control law to ensure stability of the negative

derivative in every step. Though advantageous due to the cancellation of cross-coupling

terms, such methods have more emphasis on the stable control law as opposed to the ensured

of control performance itself. For practical industrial applications with moderate non-

linearity, an adequately advanced and comprehensible control form is Model Reference

Adaptive Control (MRAC). Extensive studies have been presented for MRAC control loop

design, focussing not only on new testing methods for controller parameter adjustment, but

also providing techniques for specialised engineering applications. An advantage is via a data

driven approach, to force unknown systems to track defined system dynamics [22]. The

works [23] & [24] for example present a model reference based form of adaptive control

utilising an adaptive update rule based on Lyapunov function based criterion for adjustment

of its respective controller parameters, which in lieu is used for either direct or indirect

controller parameter tuning. Due to recent orientation of research being aimed towards soft
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computing, the incorporation of fuzzy logic [25] & [26] and neural network based methods

[27], [28] & [29] for MRAC showcases their increased suitability for control of systems with

nonlinear properties. A different and promising area of adaptive control for nonlinear

systems is that of dynamic programming and optimal control based techniques used for

controller parameter adjustment, either in a direct or indirect manner. A neural network form

of adaptive control via dynamic programming techniques may be found in the works by D.

Liu and there in [30], [31].

A further discipline of adaptive control which is trending in studies in our modern digitalized

industry, is that of polynomial function based neural networks (PNNs) and as a further

subclass higher order neural networks (HONNs) for adaptive identification and control of

dynamic systems. Studies in higher order neural units (HONUs) control [32], [33] & [34]

have proven such advanced capability for identification and control of even moderately non-

linear process dynamics whilst being comparable in computational complexity to

conventional linear control forms. Earlier works [35] & [36] showcase the applicability of

PNN based architectures for dynamic system identification of HONUs which as presented in

[33] & [34] are a rather novel subclass of HONNs which are shown to deliver powerful

performance as an approximator in terms of rate of convergence to the desired behaviour of

linear systems along with computationally efficient training of unknown neural weights in

comparison to implemented MLP based neural network forms [33]. Due to the complexities

in model reference control design in building a stable control law, whilst ensuring

convergence to the reference model, an advantageous approach is the design of a standalone

HONU adaptive model with extended HONU in state-feedback. This form of adaptive

control loop design falling under the umbrella of MRAC design is termed more directly as a

HONU-MRAC closed control loop. Till now HONU-MRAC closed loop control has not

been so readily presented nor extensively published, especially for real-time process control

on physical industrial systems. And is hence, one of the key objectives behind this

dissertation work and the produced publications following. In contrast to conventional forms

of NN based adaptive control architectures [37], [38], their computationally efficient

structure due to in-parameter linearity and customizable nonlinear approximation strength via

the polynomial order of HONU, exhibit strong advantages for real-time application to

industrial process control, as seen further in section 5 of this dissertation.

With every innovation in adaptive control also comes the challenge of guaranteeing stability

of the proposed adaptive model as an approximator and further adaptive control loop as a
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whole. In [39], a recent study was presented for guaranteeing convergence of the gradient

descent based supervised learning algorithm as applied to HONU adaptive models. However,

due to HONU-MRAC control loop design not being so readily published, a rather uncovered

area of study for this control approach is the stability evaluation of a HONU adaptive model

following adaptive identification as applied to new process data and further, the guarantee of

whole HONU-MRAC closed control loop stability both in the sense of a constant parameter

controller and as an online adaptive control loop. Till now, several key methods as applied to

NN forms of reference model based adaptive control loops include [37] & [40] where a more

traditional approach of constructing the adaptive control law via a suitable Lyapunov

stability function is exampled. Further, relevant approaches are related to recurrent neural

networks (RNNs), a similar approach based on RNNs may be found in [41] focussed on

nonlinear systems with bounded nonlinearities. Another readily published method in the field

of RNN adaptive control, is the Linear Matrix Inequality (LMI) technique. In [42] & [43]

both constant and time-varying delayed neural networks are investigated via an LMI

approach in lieu with the Lyapunov-Krasovskii theory. However, with regards to practical

engineering applications it is often more advantageous to analyse boundedness of the process

states with respect to given bounded process inputs, as although proof of a stable equilibrium

point or specific state-point may be justified, bad performances or large damage can still

occur. Therefore another readily studied approach is that of BIBS and as a more universal

definition ISS stability [44], [45]. Examples of its application to RNNs include [46], where

two algebraic criterions for verification of ISS are developed for a class of time-varying

delay RNNs. Further, in [47] an exponential ISS verification is exampled for a class of

multiple time-varying delay RNNs. As the above mentioned works cover several key

stability analysis methods in the realm of RNNs, a key work to mention is [48] and

references there in. In their work, comprehensive review of the major approaches for stability

evaluation of RNNs is presented. Following comprehensive study, a natural conclusion was

drawn that there is not one universally best method for stability evaluation and that each

method features its strengths with regards to the adaptive control loop design at hand.

Following review of the above works, it can be stated that although advanced algorithms do

exist and are quite well theoretically proven for neural network based control, there is still a

gap in physical implementation within real industry. Moreover, the maintainability for

engineering personal at hand to comprehend and troubleshoot such algorithms during real

application. For this reason, polynomial neural network based approaches are trending for

practical use in our digitalized modern industry. An added advantage of the HONU-MRAC
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approach as exampled in chapter 8.5 is the ability to apply control design as a constant

parameter loop online which is often a requirement of safety-related industrial applications.

Furthermore, a comprehendible online stability monitoring of the whole applied control loop

which may be applicable for both adaptive and constant parameter polynomial architectures

remains to be a necessary yet open topic, especially for HONU-MRAC based design.

Therefore, this dissertation aims to advance the theories of HONU adaptive identification

and adaptive control for moderately non-linear single-input-single-output (SISO) engineering

processes. Several new remarks are proposed regarding the use of the recursive least squares

algorithm and a derivation of an adaptive feedback gain parameter for HONUs with their

nonlinear closed control loop. In chapter 10, future directions of research are proposed via

the introduction of a HONU sliding mode control architecture utilizing the derived HONU

decomposition introduced in this dissertation and extension of the decomposition approach to

similar polynomial neural based architectures.

Following this, the major contribution of this dissertation is to investigate HONU model and

HONU-MRAC closed control loop stability, which can also be extended to similar

polynomial neural network based control architectures. Due, to the property of HONU

models featuring a customable quality of nonlinear approximation via polynomial order

while their optimization is a linear problem due to their linearity in parameters derivation of

two novel stability evaluation methods are presented in this dissertation. The first (DHS)

(Section 5) backbones from the principles of nonlinear system linearization, for evaluation of

local BIBO stability in vicinity of the evaluated state points in state space form. The

functionality of this approach is then presented in section 8. The derived DHS approach also

serves as one form of validation for the second presented approach (DDHS). The DDHS

method, as also inspired from concepts of reduced order modelling as presented via

LOLIMOT technique and NQR (or SDRE approach) [2], [3] results in an intrinsic

decomposition of a nonlinear HONU structure into sub-polynomial state space form (Section

7). The approach ultimately yields a time-variant state-space form where extended with the

principles of input-to-state (ISS) stability, a BIBS conclusion of stability can be evaluated

across all samples in time for the monitoring whether the neural model and further whole

HONU-MRAC control loop maintains dynamical stability along its path in state space for

actual process inputs. Following the derivation of the DDHS theories, a stricter condition is

developed termed as DDHS(Strict) which more clearly pronounces an onset of unstable

process dynamics due to the applied HONU or HONU-MRAC control loop as compared

with the investigated Lyapunov function based approach in section 8.4. As the DDHS and



Peter Mark Beneš

Page 13 of 134

DDHS(Strict) are state transition based approached derived from the model dynamics itself,

it serves as a more comprehensible and advantageous approach to local stability criteria

which do not always account for neighbouring unstable dynamics in time. The newly

proposed approaches are investigated not only on several theoretical nonlinear dynamic

system examples, but also on real industrial systems from the rail automation field to justify

its use and applicability for real-time industrial process control.

2 Overview of the Methods and Problems in Adaptive Control

Though the field of adaptive control remains to be vast, we may categorise three key areas of

control objectives for which the reviewed forms fall underneath:

· Control input adjustment methods: A readily published form of such control is to derive a

Lyapunov control function based law for newly applied input signals to the dynamical

system. Such approach relies on the justified stability of the control law via consideration

of the negative derivate in each time point of the Lyapunov control function. Though

such methods are quite readily employed in control design, less emphasis is pushed on

maintaining a tracking (desired) signal and more focus is pushed towards stability of the

control law. Another popular form is Model Predictive Control (MPC) [49]–[51] where

the main objective is to calculate the future control signals in the scope of a prediction

horizon, such to optimise a performance criterion. This criterion usually contains the

control effort and is aimed to minimise the error between the predicted process outputs

based on an explicit use of a model and the reference behaviour. Other advanced forms

include adaptive backstepping design [20] and a quite trending technique of sliding mode

control [52], [53]

· Heuristic tuning based methods: A popular form of such control is Adaptive Dynamic

Programming (ADP) [54], [55] which may be divided into the basic structures of

heuristic dynamic programming (HDP) as exampled in the works [31] [30] and Dual

heuristic programming (DHP). HDP remains till now amongst the most popular form of

ADP where the main goal is to estimate a cost function J for a given policy. Often such

design incorporates an action and model network to map the process environment. Based

on minimisation of an error measure over time a penalisation or reward is calculated to

compute the output of the critic network which is an estimate of the cost function J . In

DHP rather than focussing on just the cost function estimation, it is the gradient of a cost

function that is estimated.
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· Parameter adjustment based control: More conventional forms of such control are

adaptive PID controller tuning or Model Reference Adaptive Control (MRAC), which

primarily is focussed on calculation of the most optimal controller parameters for

minimisation of the process error in relation to a reference model or set point value. Till

this day more emphasis is pushed towards variations with use of computational

intelligence methods as such neural-networks and fuzzy based methods. Parameter

adjustment forms may also be combined with input adjustment forms, an example of

such approach is the Model-Reference Sliding Mode Control as reviewed in [56].

2.1 Closed Loop Feedback Methods of Adaptive Control for SISO Processes

An active area of research in the field of adaptive control is that of Model Reference

Adaptive Control (MRAC). MRAC is a closed control loop method consisting of a reference

model and inner control loop consisting of the process itself and applied controller in an

outer feedback loop as a controller parameter adjustment mechanism to minimise the

difference between the applied reference model and plant output. In this current time, more

emphasis in research has been pushed towards utilising soft computing techniques such as

fuzzy and neural network based methods of MRAC adaptive control, however research in

MRAC design with variable structures and advanced controller adjustment technique,

whether they be direct or indirectly applied to the process are readily being extended to this

field. For the scope of this research, a primary focus will be into computational intelligence

forms of MRAC with mention to various state of the art variations of MRAC adaptive

control. A classical example can be seen in Figure 1 from [56].

Neuro-controller Plant

Neuro-emulator
TDL

TDL

Reference model +-

( 1)r k+

( 1)rm k+ ( )e k

( )u k

( 1)y k+%

( )S k

( )S k

( 1)y k+

Figure 1 – Structural scheme of Model Reference Adaptive Neurocontrol as presented in  [56]
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An initial work to mention may be found in H. Qiang [23]. There, an MRAC control loop is

presented where an adaptive control law construct via the previous controller output,

previous process input and furthermore, a control error as a difference between a defined

reference model and plant output is presented. This adaptive law serves to recalculate the

parameter coefficients for tuning of the applied controller on the engineering process. In this

form, the author’s design of the adaptive control law is dictated by a Lyapunov based

function, which under simulation of a linear time invariant system, yields a mean control

error peak of 0.1 with quite desirable adhesion of the system output to the desired behaviour

of the process. The control effect yields that the employed adaptive control law is still

adequate even when a significant change in process parameters occur. However, further

experimentation is still required to justify the presented adaptive control algorithm for

practical implementation on real engineering processes. A further example of such Lyapunov

based adaptive control law via MRAC can be found in T.H Liu et al. [24]. There a direct

method of adaptive control is employed, with the output of the adaptive control law being the

direct controller parameters for the applied controller to the system (linear motor),

manipulated via an inverter with a PC based control algorithm. The results in comparison

with a back-stepping based controller yields similar adhesion to the desired behaviour of

position and speed for the linear motor. Particularly on application to desired square wave set

and sinusoidal wave set responses. The authors of this publication compare their results via

an integration of the square of position error (in centimetres). Following tests of the

presented controller architectures under a square-wave set of desired behaviour the back-

stepping controller yields 0.003801[cm] whilst the MRAC achieved 0.004646[cm]. In the

sense of the sinusoidal wave set here the MRAC outperforms the back-stepping controller

via a deviation of 0.000906[cm]. Further testing on the presented square waves set under

different load disturbances applied to the linear motor yield that the MRAC based controller

performs with the best adhesion to the desired square wave set behaviour with a significantly

larger deviation in favour of the MRAC based controller.

H.D. Patino et. al. [28] (Figure 2) present a different mechanism behind the concept of model

reference adaptive control (MRAC) being that of the use of a neural network controller, in

which the neural network controller (neuro-controller), is adaptively updated via an error

calculation in the difference between the real plant output and output of the reference model

and Lyapunov theory in lieu with a sigma modification update rule. The presented neuro-

controller may be either implemented via a radial basis function network (RBF) or feed-

forward neural network. From this work two key results are exhibited, the first is via a case
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study on a nonlinear model of a ship steering system, here during the first 150 seconds of

simulation the mean square error of the employed algorithm is reduced to 0.05, implying

excellent adaptation of the controller parameters. On comparison with the desired output of

the process the curves representing the desired form of control and that of the actual

controlled plant seem to coincide justifying the low square error and suitability for control of

this system. In the second case study an RBF neural network architecture was used on a

theoretical nonlinear plant. Here over 50 seconds, the mean square error is significantly

reduced to 0.08, with the output of the controlled plant itself following closely to the desired

behaviour apart from the initial 3 seconds of the simulation, where various degrees of

overshooting can be seen. From these theoretical case studies, potentials in use of this format

for control of nonlinear systems is evident. However as underlined by the authors, further

study with regards to the robustness of the employed RBF neural network based method

along with experimentation on real engineering processes is necessary.
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Figure 2- Neural network-based model reference adaptive control system structure as presented in [28]

Another more recent example of MRAC adaptive control for application to a ship steering

system may be found in the work [57] by Y. Yang et al. In this work a fuzzy logic based

MRAC scheme is employed. An advantage of using fuzzy based methods is the conversion

of the control parameters from a more quantitatively based approach into that of a more

qualitatively based approach. Although the performance of such mechanism is dependent on

the construction of fuzzification and the defined rule basis along with appropriately chosen

defuzzification methods, many works have proven its worth for control applications,

particularly in the field of uncertain nonlinear systems as such in this concrete application.

Here a Mamdani type fuzzy logic based system is used to approximate unknown

nonlinearities associated with the dynamics of the ship steering mechanism. In this method

only one adaptive parameter is incorporated, its adaptation is achieved via a Lyapunov
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function based rule. On verification with a simulation mode of an ocean-going training ship,

the proposed algorithm ensures that the ship steering system is maintained to be

asymptotically stable, with the convergence of its tracking error able to converge within a

close neighbourhood of the origin. In W. K. Lee et al. [26], a model reference adaptive

control design is proposed using output tracking control to synchronise discrete-time chaotic

systems. Here the system comprises of two key components the master system for which the

respective reference model is based upon and a chaotic slave system, where a Takagi-Sugeno

(T-S) fuzzy model is employed to represent its dynamics. Via a gradient descent based

algorithm the ideal controller gains are adaptively tuned, such to stabilize the error criterion,

even when the two systems begin on varying initial conditions, the slave system under

MRAC control approaches synchronisation with the defined reference system. As

verification of the proposed adaptive algorithm for application to a T-S fuzzy based discrete-

time chaotic system, the synchronisation of two Henon models with different parameters and

initial conditions is demonstrated. From this example, the applicability of the proposed

method is justified.

In X. Wu et al. [58], a tracking control problem for a nonlinear parameterised system with

unknown input nonlinearities is presented. Here nonlinearities with regards to the varying

dead-zone and nonlinear characteristics of the control input itself are exhibited. In this

scheme, an adaptive feedback controller manipulates the applied actuator featuring control

input nonlinearities such to minimise the overall closed-loop tracking control error. The

feedback controller incorporates an adaptive back-stepping technique broken into several key

steps. In the first step, the initial values and design parameters for the adaptive control laws

are initiated, following this the simulation step times are defined and based on the initial

states, virtual control inputs and actual control inputs for the state of the system is

determined. The new adaptive parameters are then calculated via Lyapunov function based

criterion, followed by a newly calculated update of the control input to be sent to the actuator

of the control scheme. An advantage of the presented method in comparison to previous

studies regarding unknown input nonlinearities is that no prior information with regards to

actuator dead-zone characteristics or selection of characteristic design parameters describing

input nonlinearities is necessary. Following various simulations based on a classical mass-

spring mechanical system, comparisons with a conventional PID control algorithm yield

significant reduction in the error between the reference state signal and actual controlled

system state on application of the derived adaptive back-stepping controller.
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In A. N. Chernodub et al. [59], a neural network based form of MRAC is presented for the

adaptive identification and control of a nonlinear dynamic system. Here, a multilayered

perceptron (MLP) neural network is used to identify the dynamic system termed by the

authors as a neuro-emulator. This neuro-emulator is fed with dynamic inputs, with training of

its hidden layer and output neuron weights performed via a gradient decent based algorithm

and for comparison an extended Kalman filter training method. The extended feedback

neuro-controller is also a multilayered perceptron however featuring one hidden layer, with

back-propagation through previously trained neuro-emulator method used to update the

neuro-controller neural weights. On simulation with a theoretical nonlinear plant over

100250 samples, the neuro-controller’s neural weights were pre-trained during the first

100000 samples, with testing of the controller as a feedback controller with constant neural

weights carried out over the remaining 250 samples. From the produced results, four

reference model setups with variable time constants were chosen, here it was shown that

approximately similar control quality was achieved in terms of the resulting mean square

errors (MSE), between the gradient-descent based method of training and extended Kalman

filter method. From testing the neuro-emulator with added accuracy criterion, the produced

results showed an average mean square error improvement by up to one lower order for the

applied extended Kalman filter method. However as seen from this work, a limitation of this

case is the rather large iterations of the adaptive algorithm that are necessary to achieve the

desired tolerance of mean square error in this MLP based neuro-controller. A further

drawback that may also be drawn is in the experimental analysis of the convergence of mean

square error, where only a final value is noted and no monitoring is provided in terms of

convergence of the square error to its minimum, nor monitoring of convergence of the

adaptive neural weights of the neuro-controller during training which would imply the

stability of the training algorithm and a measure of robustness of the method, paramount for

application to real engineering processes.

In A.S. Kumar et al. [25] a practical application of MRAC in the form of control of a DC

motor is presented. In this work, the presented form of MRAC incorporates a fuzzy based

adaptive controller used as the main adjustment mechanism of the input signal being sent to

the plant, which may also be deemed within the scope of so called direct method of adaptive

control. Here, a 3 HP, 240 V 1500 rpm DC motor was tested as a simulated model via

Matlab Simulink. From the produced results, a conventional MRAC is compared to that of

the presented MRAC with enhancement of a fuzzy controller as the adjustment mechanism,

also classified as (MRFAC). From these results the conventional MRAC was not able to
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adhere to the desired speed output for lower ranges of rpm as compared to that of the fuzzy

controller MRAC. Though on a settled state of the nominal speed, the MRAC achieved less

deviation with the desired speed output as compared with the MRFAC, its settling time was

proved to be significantly longer with a difference of 1 second. The overall settled output of

the MRFAC was within an adequate tolerance of the nominal motor speed, and hence overall

justified its applicability towards this concrete engineering application. However, due to the

design of the fuzzy adaptive controller IF-THEN rules based on the assumption of good

human operator information for the particular system, applicability of this method to a wider

sense of engineering processes is limited, furthermore its application to similar processes

may not yield as desirable and consistent performance in terms of rate of convergence and

adhesion to the desired behaviour of the controller output during adaptation. In C.W.

Anderson et al. a model identification based (MIAC) method is used for adaptive control of a

simulated heating coil [27]. The results of this study show that although a fixed feedback

control, in this case implemented via a PI controller delivers adequate control of the heating

coil output air temperature, indeed the combined NN controller in conjunction with a P

controller delivered the best results in terms of deviation from the desired set point behaviour

of the output air temperature. Here, the authors employ a multilayered NN featuring four

inputs, one hidden layer unit and one output layer neuron as the structure of the adaptive

controller. It was found that on this system, one hidden layer was adequate for minimising

the average square error to 4%. This architecture was concluded to have the best result,

amongst individual tests with a standalone PI controller and NN based controller

respectively. On analysis of the RMS error of the standalone PI controller compared with the

enhancement of the NN based control. The RMS error was reduced further than the PI

controller following 500 training epochs. However due to this experimental study being

based upon a simulation model of a real heating coil, reliability of the presented form of

control to the physical application is dependent on the accuracy of the derived model setup,

which as concluded by the authors requires additional experimentation to justify its

applicability to control of this heating coil process.

With the design of model reference based adaptive control (MRAC) techniques, stability is

key in ensuring convergence of the prescribed adaptive parameters as well as the process

output value to its desirable value. From the works [23], [28], [58] the presented MRAC

controller designs feature a Lyapunov function based criteria as part of their respective

adaptive control laws to ensure stability of convergence of the applied adaptive parameters.

Such methods can draw weaknesses with regards to the number of adaptive parameters
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necessary to employ the control algorithm, which can increase the complexity and overall

computational demand of such form for real time implementation. MRAC design with

regards to neural network based architectures and fuzzy logic methods are trending to a

wider scope of study and engineering applications. From the works [27] & [59] it can be

drawn that although an analysis of square error convergence along with desirable adhesion of

the system output to the respective desired set point can outline the success of the applied

method, these works lack analysis of the learning process stability for adaptation of their

respectively computed adaptive parameters. This being particularly evident in [59], where

although convergence of the square error is seen, the addition of monitoring the trajectories

of square error convergence and convergence of the identified neural weight parameters may

uncover certain instabilities in the employed gradient descent learning algorithm, which are

otherwise unnoticed. With the innovation of employing fuzzy based methods, their indeed

comes an advantage in conversion of the control parameters from a more quantitatively

based approach into that of a more qualitatively based approach, however such methods are

highly dependent on human expert knowledge for tuning of the employed rule base. This

also suffers the disadvantage of limited applicability and direct application of such methods

to similar structured engineering systems. Another point of critique is the lack of

experimentation on real engineering processes. The success of most reviewed methods as

seen in [25], [27], [57]  & [58], [59], are dependent on a well identified or defined models of

the applied system, which opens a degree of vulnerability in regards to addressing issues

associated with application on a real system, as such unidentified actuator nonlinearities and

sensor output disturbances.

2.2 Adaptive Back-stepping Control

A different sense of adaptive control, initially introduced by I. Kanelakopoulos et al. [15]

highlights a systematic design approach that progressively stabilises subsystem sets

describing the basis of a nonlinear system recursively in order to reach global stability of the

nonlinear system as a whole. This method is introduced as a back-stepping form of adaptive

control. I. Kanelakopoulos et al. present a nonlinear process as an initial subsystem, where its

stability may be described via a known Lyapunov stability function. Following this initial

setup, each derived outer shell subsystem acts to stabilise the previous subsystem layer, in a

strict-feedback form until the ultimate level of control, where all global stability properties

may be established. From this work, various extensions on application of adaptive back-

stepping control on a variety of nonlinear systems with strict-feedback structure may be
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exhibited. As such, we may recall the work [24] by T.H Liu et al. where a comparison was

already drawn in the performance of a presented adaptive back-stepping and adaptive MRAC

controller for application on a linear motor system. In the presented control scheme, a strict-

feedback scheme of sub-control systems is employed. The drive system stability is thus

dictated by uniform continuality of the position and speed error and furthermore, the zero

convergence of the position and speed error as the time of simulation approaches towards

infinity. From the authors presented results, although the linear motor under loaded

conditions with a desired square-wave set was not controlled more adequately with the

adaptive back-stepping controller, under comparative tests with a MRAC controller during

an unloaded state of the linear motor, the back-stepping controller output was more desirable.

The error measure as an integral of square position error, yielding 0.003801 as compared to

the tested MRAC controller with a result of 0.004646. Another example of adaptive back-

stepping control may be found in the work [16] by X.P. Liu et al. In their work, a strict-

feedback adaptive back-stepping controller design is presented for a general class of

stochastic nonlinear systems. Here the state feedback controller is designed regarding

constant Markovian switching where stability of the closed-loop is given by its unique

solution with an asymptotically stable equilibrium point. In lieu to this, an output feedback

controller is derived based on a quartic form of a Lyapunov function such to achieve an

asymptotically stable equilibrium point for the closed loop systems unique solution. From the

presented simulation result, the control goal was achieved via a convergence of the closed

loop system response to zero. Similarly, one may also refer to the work [17] by X. J. Xie et

al. a similar architecture of a state-feedback controller design via adaptive back-stepping

technique is employed for stabilisation of high-order stochastic systems. The conclusion

behind their derived results yields a unique solution with asymptotically stable equilibrium

points can be achieved for almost any initial value of the applied system. A drawback from

the above mentioned works is that both methods require rather precise description of the

applied nonlinear system, either with predefined dynamic models or models with unknown

parameters that may be derived through linearity with some known nonlinear functions. This

yields a rather large complication to practical application of such control schemes, where

certain nonlinear processes are unable to be precisely described.

An enhancement to this and a trending area of research for adaptive back-stepping

techniques is the collaboration with neural network and fuzzy logic based methods,

particularly for control of nonlinear systems with presence of unknown non-linear functions.



Peter Mark Beneš

Page 22 of 134

A recent work to mention is the application of backstepping design via higher order neural

networks (HONNs) [20] (Figure 3). In their work, a feedforward neuro-backstepping control

is used for control of an unknown MIMO plant. For efficient real-time training the extended

Kalman filter (EKF) is used to train the neural weights of a single HONN approximator,

which is used for approximating the desired virtual controls and ideal practical controls of a

block strict feedback form (BSFF) with incorporated backstepping technique, as in real

application the precise system model and accurate description of additional disturbances is

rather trivial to compose. The stability of the update rule and further control scheme are

further verified via Lyapunov control function analysis.
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Figure 3- Discrete-time HONN Backstepping Control Scheme as presented in [20]

B. Chen et al. [18] present an adaptive fuzzy tracking controller via back-stepping technique

capable of controlling a class of nonlinear SISO systems with uncertain nonlinearities to

within a close neighbourhood of the proposed desired signal. Here a Mamdani based fuzzy

logic system is used to directly approximate the desired and unknown control signal for the

nonlinear SISO process, contrary to methods as such the works of S.C. Tong et al. [60],

where unknown nonlinear functions and constants are used as a component of the control

law, which also shows the increased dimensionality in the amount of adaptive parameters

within the control scheme. A virtual control signal as a result is constructed which is used as

a parameter within the adaptive law for update of the real tracking control law of input u.

Simulation on a third order theoretical nonlinear system, yields that in comparison with an

implemented adaptive controller by Zhang, Ge et al. [61], both the adaptive neural and

adaptive fuzzy controllers deliver close adhesion of the desired output response. However,

the adaptive fuzzy controller exampled achieves quicker adaptation with only one run of the

adaptation rule, versus 15 runs of the neural controller rule, deeming it to be computationally

efficient. Furthermore, connotations to replacement of the fuzzy based control signal
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approximator with that of a neural network based form are noted as a possible enhancement

to the presented methodology.

Similar to the adaptive back-stepping controller structure presented in B. Chen et al. [18], Z.

Liu et al. [62] present an adaptive fuzzy output feedback based controller. Here too, a fuzzy

based system is used to approximate the unknown control signals as well as desired signals

and an adaptive back-stepping technique is used to design the adaptive controller. The

proposed design guarantees all signals of the closed loop system to be semi-globally bounded

and the control error converges to a close neighbourhood around a zero centred origin. The

difference in this method is the higher number of unknown adaptable parameters present

within the algorithm as opposed to one in the sense of [18]. On demonstration with a third-

order nonlinear system with un-modelled dynamics and dynamical disturbances, the

performance index of mean square error was evaluated for individual solutions to the system

of first order equations representing the third-order nonlinear system. On two tested sets of

chosen constant design parameters the largest mean square error was 0.1372, implying close

adhesion to the desired response of the controlled nonlinear system. A recent work by S.

Heidari et al. [19] presents another example of a fuzzy based system incorporated with back-

stepping technique as an adaptive control design. Here a fuzzy (Proportional-derivative) PD

based system is used to compensate system model uncertainties with a back-stepping

controller, in conjunction with Lyapunov based adaptive laws used to control a continuum

robot manipulator. In addition to this, the implemented back-stepping controller incorporates

an additional fuzzy logic based system to increase the robustness of the back-stepping

controller. The conclusions drawn from this study are that under an applied step response

with an online updateable gain, the fuzzy based back-stepping controller achieves 0.48

seconds rise time versus 0.6 seconds with the standalone back-stepping controller technique.

Further to this the proposed method shows better adhesion to the desired behaviour of the

robot manipulator under applied disturbance, as well as quick response time in achieving the

desired set point value, verifying suitability of the applied method. With regards to nonlinear

system control, adaptive back-stepping design and its application has proven itself applicable

to wide sense of nonlinear dynamic systems with particular successes in processes with

unknown nonlinear functions and input nonlinearities.

In works [16], [24], the successful application of adaptive back-steeping design for zero

convergence of the respective nonlinear system state variables was presented, with

application to high-order stochastic nonlinear systems exampled in [17]. A drawback from
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these methods is the necessity of rather precise description of existing nonlinear properties

which is difficult to provide in certain practical applications. Thus, adaptive fuzzy or neural

network based techniques have been used in conjunction with adaptive back-stepping design,

to model the unknown system nonlinearities due to their proven approximation capabilities.

Another consideration as exampled in [19] & [48] is the use of fuzzy logic for direct

approximation of the desired control input signal as opposed to approximation of unknown

system nonlinearities as in [60]. However, as exampled from [62] the necessity to estimate a

higher number of adaptive parameters in the employed algorithm indeed leads to higher

computational expense. These methods further neglect actuator faults which often can occur

on real system application and is thus a further negative with a majority of the reviewed

adaptive back-stepping design methods.

2.3 Optimal Control and Dynamic Programming Design for SISO Processes

O. Kovalenko et al. [63] (Figure 4) present a practical application of adaptive control in the

sense of an automotive fuel-injection system. Here the authors derive an adaptive critic

design (ACD) which principled upon approximate optimal control over time. As an initial, a

neural network (NN) based form of the process model was derived. Here time-lagged

recurrent neural networks (TLRNs) were used as a basis for the investigated engine

modelling. The dynamic modelling of the engine intake manifold features 4 input neurons, 7

hidden layer neurons and 2 output neurons with recurrent connections. Tests associated with

application to the manifold pressure and mass air flow rate as the system output, yields quite

successful dynamic modelling which serves as a good platform for an extension to control.

For this engineering process the main outputs for control lay in control of the engine torque

and air-fuel ratio. In this closed loop control setup, the adaptive critic controller design

utilises an error function (difference between desired and measured output) as a mechanism

for calculation of a local cost function. A sum of this local cost function (U ) and discount

factor g  (collectively J  which is minimised over time) is used to deliver the critic network

output Q  as an approximation of J . The optimal controller is thus obtained by training an

action network using the output signal which is provided by the critic network output. In this

study, the authors use a NN structured controller of 4 input neurons, 7 hidden layer neurons

and 3 output neurons. After 15 cycles of training or epochs, adequate control was achieved in

terms of both the engine torque control and air-fuel ratio control with a minimum tracking

error of 26 units after 15 cycles of training.
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Figure 4- A typical scheme of an action-dependent heuristic dynamic programming (ADHDP)as presented in [63]

In a more recent study by D. Liu et al. [30], a dynamic programming technique for optimal

control of unknown nonlinear systems is derived. In this presented control scheme, the

authors propose a three-layer feed-forward neural network based architecture, divided into

three consecutive blocks. The first element in this control scheme is the model network

which once trained via the gradient descent based adaptation rule serves as the identified

model of the nonlinear system. An action network with similar gradient descent based

adaptation techniques is used to control the model network, influenced by the third element

of the control scheme being the critic network. Here the role of the critic network is to

adaptively achieve convergence of the cost function to the optimal cost function *J with

optimal control law *u , via an adaptive dynamic programming based technique, parameters

of the ADP algorithm itself, further adapted via gradient descent based training of the critic

network neural weights. The newly calculated control law in each iteration is used as a key

parameter in the gradient descent based update rule for the weight adaptation of the action

neural network. This method may further be deemed as an indirect parameter update

mechanism for adjusting the controller parameters used for manipulation onto the applied

system. Simulation results on application to a theoretical nonlinear process yield after

identification of the model network via 1000 time increments using 100 samples of training

data, the critic and action networks are trained in 120 iterations over 2000 training steps

within each iteration, for desirable accuracy. The results of this setup yield rapid

convergence of the cost function and its derivative to the optimal cost function value along

with convergence of the respective state trajectories to the origin, validating its feasibility for

control of discrete time systems with unknown nonlinear dynamics.
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A further example of adaptive dynamic programming technique may be found in D. Liu’s

most recent works [31]. Here a three-layer feed-forward architecture is used, among two

neural network blocks. Contrary to the works [63] & [30], the intermediate model network is

omitted, with direct application of the action network to the plant being employed. The critic

network block in this proposed scheme utilises a gradient descent based weight update rule,

to adaptively tune the output function of the critic network. An enhancement in this method

is the derived policy iteration algorithm proposed by the authors, which is shown to reduce

computational expense of the critic network component within the control scheme. The

action network is thus updated further via a similar gradient descent based technique,

incorporating the critic networks output as a part of its weight update rule. Tests on both

linear and nonlinear systems show successful convergence of the monitored performance

index function to optimal values within a short period of applied iterations. Further to this,

tests on a concrete physical problem of a torsional pendulum system yield quite desirable

results. There, both the critic and action neural networks are trained for 400 samples

followed by iterative control over 100 further samples. The system states are stabilised

within the first 40 samples and convergence of the performance index function to its optimal

value is achieved within 30 iterations, justifying its suitability for stabilisation of such

exampled nonlinear systems and real-time control. On the other hand one may drawn several

points for discussion. In this work neural networks are used as a key mechanism behind the

employed control scheme. With this indeed comes the element of approximation error of the

critic network performance index function and iterative control law function approximated

by the action network where their exact values cannot be achieved. A further remark is in the

convergence property of the iterative performance index function and stability analysis of the

system during stages of the iterative control law, both of which lack justification in the

results of this work.

In S. Formentin et al. [64], a comparison is drawn between “model-based” and “data-based”

approaches for adaptive control. Here an indirect model based method is analysed where the

process model itself is derived based on measured data from the engineering process. The

applied controller parameters may be calculated as an extension of the previously determined

model, where the controller output is determined solely from the measured input and output

data of the engineering process. In this paper, the author’s main contributions are with

regards to the data-based approach via a derived optimal controller in lieu with a correlation

based approach. The tested process consists of a three mass torsionally flexible shaft, driven

by a servo motor. The authors present a resulting measure of variance between the measured
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output and reference model of 1.0915x10-3 for a model based tuned controller and 0.8486 x

10-3 in the sense of the data based approach. The results of this test along with that derived

on a theoretical discrete plant model is that the data-based approach achieves the least

measure of variance between the measured output and reference model. With the conclusion

that if the model-based approach features a model structure of substantially higher order, as

in the cases studied, the data based approach may statistically outperform the model-based

form in terms of control effort.

As another area of computational intelligence techniques for adaptive control design,

dynamic programming particularly used as a tool for optimal control problems indeed

exhibits strong potentials for nonlinear system control problems. With this said, one may also

note certain limitations regarding its implementation. One drawback that can be noted is in

the structure of the employed adaptive algorithms. This can often concern the so called curse

of dimensionality, convergence towards the optimal solution of which being in cases rather

computationally demanding. Further to this, an area necessary for deeper study that may be

recalled from the works [63] & [30] is the convergence and stability properties of the

employed adaptive dynamic programming techniques. This particularly raises an issue in

justifying the robustness and overall stability of the control scheme during real-time online

adaptive control of similar natured nonlinear dynamic systems and hence is an opening for

further study.

2.4 Closed Loop Feedback Methods of Adaptive Control for SISO Processes, via
Polynomial Function Based Control

Another field in adaptive control which has achieved substantial growth in recent times is

polynomial function based neural networks (PNNs) for adaptive identification and control.

An early example of the use of PNNs for dynamic system identification may be recalled in

the work [35] by G. P. Liu et. al. In this work an on-line identification scheme featuring

PNNs is used for nonlinear system identification. This method utilises previously defined

polynomial based functions comprising of previous inputs and outputs to the dynamic

system, as a part of vector ϕ along with its product with updatable neural weights vector W

and residual error e  to determine to real-time approximation of the dynamic nonlinear

system output. In order to update the neural vector weights, a recursive learning algorithm is

employed as a modification of the least square method learning algorithm, with

accompanying Lyapunov based convergence criterion for monitoring properties of the

adapted neural weights. On simulation of this method to theoretical nonlinear systems, even
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exampled with a nonlinear system output contaminated by white noise, the authors conclude

successful identification within limits of the desired error tolerances, indicating the suitability

of this method for online dynamic system identification.

Since this work, a more recent development to remark is M. Gupta et al. [65]. This

publication sets a modern overview behind various platforms and architectures of neural

networks for both adaptive identification and control of dynamic systems. Works from M.

Gupta (2002-2003) present higher-order-neural-networks (HONNs) comprised of higher-

order-neural-units (HONUs) that are able to capture not only linear correlation between

components of the applied system input patterns but also higher-order correlation between

the components of the input patterns. Further to this, from works as early 1993 (Taylor &

Commbes) [66] HONNs are proven to be computationally efficient, with excellent properties

in pattern recognition as well as being realisable on a hardware basis. These HONNs

presented as a class of PNNs feature updatable neural weights, trained via supervised

learning algorithms like the incremental gradient decent (GD) or Recursive Least Squares

(RLS) method or in the sense of batch training the  back propagation through time algorithm

[67] (BPTT)  realised via the Levenberg-Marquardt equation termed in this dissertation work

in short as the L-M algorithm.  Following the works of M. Gupta et al. [65] various

publications have highlighted the growing potentials of HONUs for dynamic system adaptive

identification and control. Following the publication I. Bukovsky and N. Homma [34], the

terminology of HONU evolved from the initial works of M.Gupta. The term Linear Neural

Unit (LNU) was introduced to denote first order higher order neural units which by

architecture are analogical to the well known ADALINE (adaptive linear element) as a single

layered neural network. For second order polynomial architectures, the term Quadratic

Neural Unit (QNU) was introduced, with further orders termed as the cubic (CNU) and

quartic neural unit for third and fourth order architectures respectfully.

In I. Bukovsky and N. Homma [34], a quadratic neural unit (QNU) is analysed as a powerful

medium for plant modelling and control. The authors summarise a classification of the QNU

(as a class of HONUs) into several key categories. Here such neural units having only

previously measured data of the real system being used as its input vector are noted as static

QNUs with those featuring previous neural model outputs as part of their input vector, being

termed as dynamic QNU or (DQNUs). Their implementations may be further broken into a

discrete time or continuous time form. Following various experimental observations, the

authors conclude several key properties regarding the performance of the QNU. This work
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concludes that QNU architectures have smaller variance of neural outputs when trained from

various initial conditions as compared to MLP NNs. Furthermore, that HONUs have

adequate performance regarding nonlinear approximation, where during their training the

problem of convergence to various local minima is absent contrary to other forms of

conventional neural networks. Connotations are drawn to the promising performance of

higher orders of neural network architectures, with regards to further reduction in sum of

square errors over a similar training period of the neural models respective neural weights.

The extension of this result is seen in a more recent study by M. Gupta et al. [36]. Here the

theories presented in [65] regarding dynamic modelling with such HONNs is reinforced. The

HONU of second order as a second-order-neural-unit (SONU), further termed as the

quadratic neural unit (I. Bukovsky and N. Homma [34]) undergoes deeper theoretical

analysis in terms of its pattern recognition and learning performance abilities compared with

that of a static MLP neural network. In this case study, a multiple input static function is

trained via the various architectures for system identification. What is seen from their results

is that the HONU is able to reach convergence to a minimum sum of square errors (SSE) in

just a few training epochs of the applied Levenberg-Marquardt algorithm. A comparison with

the tested MLP with 10 neurons in its hidden layer and a linear output neuron achieves a

similar order of its SSE in 3500 applied epochs of the applied training algorithm,

highlighting the computational efficiency of the investigated HONU. Furthermore, the higher

orders of the applied HONU that were employed deemed to have more rapid reduction in its

SSE over the same training data and training method, highlighting its superiority in

computational efficiency to calculate a more precise approximation of the applied training

data.

I. Bukovsky et al. [33] investigate the potentials of HONUs for fast state feedback control of

unknown nonlinear systems. Here the authors present the structural schematics of such form

of control. There as an initial, a HONU is used to model the dynamics of the investigated

system. Following adequate system identification another HONU is used in state feedback

form to manipulate the newly feed inputs of the investigated process. Their results show that

on investigation of a theoretical nonlinear plant, the unknown nonlinear plant under pulse

wise desired behaviour behaved with rather large oscillatory response to the fed system

inputs. However, the applied cubic-neural-unit (CNU) in state feedback with online tuned

neural parameters, still manages to adhere considerably well to the overall desired system

response. On further investigation with the presented nonlinear plant, now of variable
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parameters in terms of a variable damping factor, the plant undergoes instability after 150

seconds of simulation time. In spite of this, the applied CNU is still able to not only stabilise,

but further control the unstable nonlinear plant with adequate adhesion to the overall desired

system behaviour, highlighting the robustness of the controller. A further notion drawn from

this study is the application of such control scheme with HONU architecture to a linear plant.

The authors conclude that the higher order neural units, namely QNU and CNU deliver faster

performance in terms of desired convergence under a step response, as well as reduced

overshooting implying the suitability of such HONU architectures for control loop

optimisation purposes.

Figure 5- Higher order neural unit model reference based control scheme (HONU-MRAC), where one HONU is identified
as a plant and one standalone HONU controller is extended in feedback (possibility of multiple HONU controllers in
feedback also presented in [68]).

Figure 6- Higher order neural unit model reference based control (HONU-MRAC) for existing control loop optimisation, as
presented in [32].
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Following the above mentioned works on HONUs, a most up to date overview of the applied

theories of HONUs from the fundamental architectures and supervised learning algorithms

through to implementation may be found in (Figure 5 & Figure 6). In terms of recent real-

time adaptive control applications a modern example of HONU adaptive control on a SISO

process may be found in the work [32] by L. Smetana. In this work the presented setup

incorporates the use of the QNU (I. Bukovsky and N. Homma [34]) for both adaptive

identification of a Bathyscaphe system in CTU, as well as an adaptive real-time state

feedback controller for process optimisation. Here an offline tuned dynamic quadratic neural

unit (DQNU) was trained via the GD algorithm, for adequate identification of the full

dynamics of this process whilst achieving reasonable reduction in mean square error over

1500 epochs or runs of the training algorithm. Following offline tuning of the DQNU

representing the system model, an online QNU as a state feedback controller (Neuro-

controller) is applied. Here the state feedback controller is adapted online via the GD

algorithm, using the outputs of the DQNU system and deviation of the output from the

applied reference model and real system output, denoted shortly as .rege On real time

application on the Bathyscaphe system with pulse wise desired behaviour, the Neuro-

controller displays significant improvement in adhering to the desired setpoint as compared

to a conventional P controller. A comparative test of switching on the Neuro-controller after

150 seconds of only a P controlled plant, shows the remarkable improvement in reduction of

the control error rege peaking with a deviation of 40 mm only on the first several samples

following a change in the desired pulse signal, as compared to 60 mm previously. The

monitoring of the neural weights of the adaptive controller (Neuro-controller) in real time

also justifies the stability of the employed GD training algorithm with all weights of the

Neuro-controller settling to a steady value within 400 seconds of application on the system.

Following comparison of the Neuro-controller and its performance with a standalone P-

controlled Bathyscaphe system, another test was conducted using an applied PID controller

tuned adequately within the working range of the experimental setup. From the authors

experimental results, it was shown that the PID controller indeed improved the behaviour of

the Bathyscaphe system under the applied desired setpoints. However, in the initial samples

of a step wise change in the desired setpoint value, the PID controller proved to have large

degrees of overshooting, more so pronounced for a larger range of applied desired steps. On

a small scale range of applied steps the concluding result of this work was shown, where the

Neuro-controller applied to an adequately tuned PID controller delivered significant

performance in improved adhesion to the applied desired behaviour of the Bathyscaphe
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process. Here it was concluded that the use of a nonlinear QNU controller with real time

adaptive control algorithm via GD as extended to the Bathyscaphe system deemed to not

only have faster response time towards the settled desired behaviour of the system, but also

the property of reduced overshooting. This real time result is also a justification of the

exhibited properties of such nonlinear HONU controllers as mentioned in the works [33],

[34]. A more recent work featuring extended applications to a water levitation and two-tank

liquid level system control may be found in Section 5.1, which further highlights the

advantages of HONU feedback control algorithms as constant parameter controllers

implemented in real-time.

HONUs as class of PNN based methods, have proven themselves to be an adequate medium

for initial control of engineering systems with unknown nonlinearities or nonlinear systems

by natural structure, as well as a suitable tool for controller optimisation as applied to linear

SISO processes. From the works of Gupta et. al and I. Bukovsky [65] & [34], we may draw a

vast comparison between the use of conventional NNs as such that of MLP architecture and

the use of HONUs. A drawback that may be ascertained from using MLP architectures as a

means of system modelling or extension to control is their necessity to use rather complex

training algorithms in lieu with longer training runs to achieve adequate convergence to a

minimal square error. In contrast to this, the approximation strength of such conventional

NNs may be improved by adding more neurons or even additional layers, which can provide

better approximation for nonlinear systems. However as can be seen in the work [33]

(I.Bukovsky, S.Redlapalli) for efficient real time learning algorithms as such that of GD and

L-M batch training algorithms, HONUs are computationally faster in achieving adequate

convergence in square error whilst achieving desirable control performance for both

nonlinear unknown systems as well as linear systems of SISO structure. One may yield a

drawback of applying higher orders of HONUs is the dimensionality issue that arises in

processing such large weight update matrix particularly in the sense of real time adaptive

control algorithms, further for systems which require rather high sampling incorporated into

their respectively identified adaptive models. As a rather novel concept in MRAC control,

though HONUs have shown promising results as exhibited in [32] for real-time process

control. Another challenge which still exists in this field is the guarantee of stability of the

proposed nonlinear dynamical model or nonlinear control loop. Therefore, as a further

motive of this dissertation work the proceeding subsection aims to overview key works

associated with stability analysis of NN based adaptive control.
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2.5 Control Loop Stability Methods for Neural Network based Adaptive Control

Another topic which remains nowadays is in the guarantee of stability of the proposed

adaptive model or adaptive control loop. In a recent review of recurrent neural network based

methods for stability [48] a natural conclusion yields that we have no universally best

stability evaluation algorithm for NN as for nonlinear dynamical systems, and that proper

stability evaluation is always case dependent, for different aspects of the control loop design.

With regards to neural network (NN) forms of adaptive control numerous works have been

published with concern to stability of convergence during learning of a polynomial function

based approximator. Most recently [39] where the fundamental architecture and learning

algorithms of HONUs are overviewed accompanied by a spectral radius based learning

criteria for monitoring stability during the applied adaptive update law for identification of

the respective HONU model weights. However, though the approach guarantees stability in

real-time during application of the adaptive algorithm, it does not prove the stability of the

HONU model during application on new process data, which for certain engineering

processes may be advantageous for reapplication of existing controller parameters or

continued operation due to change of mechanical system parameters. Thus, a further area

which has received particular attention in recent times, is the assessment of global asymptotic

stability (GAS) of the adaptive control loop as a whole, with further intention led towards

minimising the amount of online computations during application of the controller algorithm.

Earlier methods for global stability analysis of neural networks have been focussed on

linearization analysis and Lyapunov function based techniques for a class of Hopfield neural

networks [69] & [70].  Some recent examples include the use of homeomorphism and

Lyapunov function based techniques by [71] where global robust exponential stability of the

equilibrium point for delayed neural networks is developed. In [72] problems concerning

stability for static neural networks with time delays are investigated, via a delay partitioning

technique a novel stability criteria justified via the Lyapunov-Krasovskii criteria is

investigated to warrant the global stability of the investigated static NNs. An earlier method

necessary to remark maybe found in the work [73] and his works there in. There, the

assessment of GAS of the respective equilibrium points for all non-decreasing neural

network activation functions is presented for a class of dynamic layered neural networks.

Should the neural model be defined in state matrix form, the negative of the positive diagonal

matrix T  serving as an interconnection matrix with respect to a nonlinear diagonal mapping

matrix g , if proven to be quasi-diagonally column-sum dominant the authors proof yields

existence and uniqueness of such equilibrium point along with justification of global
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asymptotic stability. With focus to recurrent neural networks (RNNs) methods, an example

advantageous for nonlinear systems with bounded nonlinearities may be found in [41].

However, till this date one of the most common and readily employed approaches for

assessing asymptotic stability of recurrent neural networks, is that of the Linear Matrix

Inequality (LMI), an example of such method maybe found in [42] and further [43] where

the Lyapunov-Krasovskii stability theory along with the linear matrix inequality approach

are used to determine stability of both constant and time-varying delayed neural networks.

In practical control applications however, although the stability of a system equilibrium point

may be justified, it is often necessary and more practical to ensure that the process states are

bounded with respect to bounded process inputs that are supplied to the engineering process.

As a result, studies focussed towards bounded-input-bounded-output (BIBO) and further

bounded-input-bounded-state (BIBS) stability has been readily published. In [74] a practical

condition is established termed as input-output stability which addresses that if the

engineering process input satisfies a given amplitude constraint, under what condition will

the process output satisfy the given amplitude constraint. Furthermore, under what condition

will the process output satisfy certain energy constraints for the given energy constrained

inputs, their results show a practical stability test method focussed on linear time-varying

systems. A more modern example of input-output form of stability may be found in [75]

where stability analysis of Markovian jump systems with time-varying delay is presented,

due to an innovation of transforming the conventional Markovian jump system with

additional time-varying delay to an input-output form, the stochastic stability of the closed

loop system may be guaranteed. Another consideration is with regards to stability of process

states given constrained process inputs, leading to the definition of input-to-state stability

(ISS). In [45] the fundamental concepts of input-to-state stability are defined which states a

condition for the process state vector in a given time point to be constrained less than a sum

of a respectively defined Lk  and k¥  class functions for the system, leading to an effective

stability analysis approach which holds for any input ( )u ×  given any initial condition 0x  over

all time point greater the zero. Further in his works, an extension of this method may be

found in [76] and for a more recent example of extended application of the bare principles of

ISS, in [77] where Lyapunov functions are employed to construct the input-to-state stable

control laws for design of model predictive control (MPC) aimed for discrete-time systems.

With regards to the conversion of continuous time frame ISS definition to that of a discrete

time frame, a clear platform may be found in the work [78]. Several recent examples with

focus to recurrent neural networks include [46] for ISS verification of a class of time-delayed
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RNNs and in [79] where the Lyapunov-Krasovskii functional method and LMI techniques

are used for ensuring exponentially stable ISS on multiple time-varying delay RNNs.

Backboned from ISS, a more precise definition is bounded-input-bounded-state stability

(BIBS). The definition of BIBS provides a more specific definition which relates the

evaluation of a process state transition matrix to define functions encompassing the

properties of a Lk  function which is in essence asymptotically stable through time and

ak¥ function which is always increasing as time is greater than zero. A simplification and

sufficient condition for BIBS for definition of bounded states with respect to bounded

process inputs about a given process region may be found in [44].

Following comprehensive review of state-of-the-art adaptive control approaches and further

a review of suitable stability analysis methods, this dissertation as outlined in the key

objectives (section 3) aims to build on the existing theories of HONU adaptive identification

and control, being one such trending platform for real industrial practice of nonconventional

control. To do so, the proceeding section recalls the latest theories in HONU architectures,

fundamental learning algorithms and its application to feedback control (HONU-MRAC).

3 Objectives and Contributions of this Dissertation Work

The scope of this dissertation is aimed at advancing the field of adaptive identification and

closed loop control via HONUs. As an initial component, deeper study into the design and

practical application of HONU-MRAC control for industrial systems is provided. Then, a

key contribution of this dissertation is the extension of a new framework for stability

assessment of HONUs and their respective closed loop stability. Following a comprehensive

review behind state-of-the art methods the following objectives of this dissertation may be

defined:

1) Recall and extend on theories of HONU adaptive control: Following review of state-

of-the-art approaches, this dissertation as a first objective recalls the latest theories of

HONUs and their fundamental learning algorithms in chapter 4. A further

contribution of this dissertation is to detail the derivation of an adaptive feedback

gain parameter and provide deeper experimental analysis and comparison of the

Recursive Least Squares (RLS) algorithm for HONU-MRAC control.

2) Propose new pointwise state-space representation of a HONU: Recalling the

fundamentals of HONUs and more classical theories of nonlinear discrete time
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system modelling (further methods as via LOLIMOT technique and NQR (or SDRE

approach) [2], [3]), this dissertation as a major contribution derives the

transformation of nonlinear HONU architectures to a linearly approximated state-

space model in discrete state points. Following this newly derived state-space form

the Discrete-time HONU Stability Condition (DHS) is developed as a local pointwise

state based evaluation of BIBO stability and further proven for justifying asymptotic

stability in neighbourhood of the evaluated state point via Lyapunov stability theory.

3) Propose a new pointwise state-space representation of a HONU via polynomial

decomposition: Due to an intrinsic relation of HONU architectures to discrete time

nonlinear state space models via their in-parameter factorization, another major

objective and contribution of this dissertation is to derive a new decomposition

approach for modelling HONU models and further their whole HONU-MRAC

control loop. Due to this intrinsic relation as extension of works [89]-[90] a

decomposition of the HONU polynomial equation to sub-polynomial state space form

is proposed.

4) Derive a new ISS based stability condition for BIBS stability assessment of HONU

polynomial architectures: From the results of 3), the concepts of ISS stability are

extended to the derived decomposed state space form and a method for justification

of BIBS stability, termed as Decomposed Discrete-time HONU Stability Condition

(DDHS) and further DDHS(Strict) condition is developed. An added advantage of

this decomposition approach is the preservation of dynamical accuracy for higher

order nonlinear polynomial structures (presented in this dissertation for up to 3rd order

as a HONU-MRAC control loop).

5) Experimental analysis to validate the proposed DHS and DDHS approaches: A final

objective and contribution of this dissertation work is to provide deep experimental

analysis and comparison of the derived DHS and DDHS approaches, where the DHS

method further serves as one means of validation of the DDHS approach. The

methods are also analysed with respect to Lyapunov control function stability

approach. All methods as an ultimate contribution of this dissertation work are

implemented on physical industrial systems with focus to rail automation applications

to validate the feasibility of use for our modern industry. Future directions via sliding

mode control approach with the presented HONU decomposition and multi-layered

HONU feedback control for low to moderately nonlinear systems are also discussed.
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4 Theoretical Background of Adaptive Identification and Control
with HONUs

In this section the most recent achievements for SISO dynamic system identification [100]-

[102] and control [80], [87], [91], [103]-[105] via HONUs are recalled. From these works,

HONUs have proven to be a very effective tool for both linear and low to moderately

nonlinear system identification and MRAC based adaptive control. Throughout this

dissertation, the term “low to moderately nonlinear” refers to dynamic systems that can be

approximated by a given order of polynomial nonlinearity i.e. .r  With the application of

HONUs, it is assumed that the applied dynamic system is stable either naturally, or via an

existing stabilization control loop in order to obtain valid training data for identification.

As a majority of industrial process applications fall within the class of linear or low to

moderately nonlinear dynamic systems, quite often linear or lower order HONUs are

sufficient for fast adaptation to real-time changes, with the application of linear neural units

(LNU) also applicable to weakly nonlinear systems with sample-by-sample adaptive

identification to learn temporal non-linear system dynamics. In general, selection of the

appropriate polynomial order is case dependent, where higher orders are chosen only in case

that linear or lower order neural units cannot met the requirements of fast response to a

change in system inputs, or cannot sufficiently identify non-linear or oscillatory dynamics of

a given engineering process. Therefore, this dissertation focusses on 1st to 3rd order HONUs

i.e. linear neural units LNU (HONU, 1r = ), quadratic neural units (HONU, 2r = ) and cubic

neural units (HONU, 3r = ). As may be recalled from the works [33] the classical notation of

a HONU is the summation of multiplication terms that is, for example for a QNU or CNU

i.e. HONU for 2r = and 3r = , represented as follows

, , ,
0 0

, ,
n n n n nx x x x x

i j i j i j i j
i j i i j i j

y x x y x x xk k
k= = = = =

= =åå åååW W% % (1)

where 0 1x =  is the augmented unit (neural bias) of the input vector, W  denotes a

corresponding multidimensional array of the HONU. The classical notations (1) recently

published in and most currently [39], proposed in a long-vector representations as
2 3( ), ( ),r ry col y col= == × = ×w x w x% % (2)

where w represents the long-vector of all neural weights. Therefore, an r  dimensional

weight matrix W flattens e.g. for a QNU to
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{ }0,0 0,1 , , ,
0 .

x x
xi j n n i j x

i nw w w w w j i n
=é ùé ù= =ë û ê ú=ë û

w KK K K (3)

Further, an augmented input vector of neural inputs x  yields a long-column vector

form ( )r icol = x . In the sense of a QNU its respective elements may be calculated as follows

2( ) { ; 0.. , .. }.r
i j x xcol x x i n j i n= = = =x (4)

Analogically, the elements corresponding to a CNU may be calculated as follows
3( ) { ; 0.. , .. , ... }.r

i j x x xcol x x x i n j i n j nk k= = = = =x (5)

The weight-update system of such HONU models is generally given then via following

relation

-1 -1; ( ).k k k+ D D = Dw( )=w( ) w w w w( ) (6)

In terms of the update rule of respective neural weights, Table 1 shows details of three

fundamental supervised learning algorithms, where J  is the Jacobian matrix and I  denotes

the identity matrix. Further, the variable e denotes the neural error that may be defined as

follows

( ) ( ) ( ).k k ke y y= - % (7)

On extension of a HONU feedback controller, similarly to equations (1) & (2) the output

value computed by the HONU feedback controller is given by a summation of multiplication

terms thus for a QNU (i.e. HONU for 2g = ), the HONU controller output may be denoted as

follows

2
,

0
( ),

n n

i j i j
i j i

q col
x x

gx x =

= =

= = ×ååV v ξ (8)

or for a CNU (i.e. HONU for 3r = ) we may denote the HONU controller output as

3
, ,

0
( ),

n n n

i j i j
i j i j

q col
x x x

g
k k

k
x x x =

= = =

= = ×ååå V v ξ (9)

where V  represents the g - dimensional array of neural weights corresponding to the HONU

feedback controller, v  is its corresponding long-vector representation and . ( )icolg =v ξ  is the

representative long-vector multiplication form. Here the variable ( )icolg = ξ  now comprises

of the variables ix , jx in the sense of a QNU or further kx  in the sense of a CNU. The

elements of which follow analogically from relations (3)-(4), comprising of step-delayed

process outputs y  or HONU model outputs y%  further, the desired behaviour of the process .d

For simplification throughout further text, the index of the polynomial order r i=  and further
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the use of parenthesis in the operators will be dropped. Therefore, the result of ( )r icol = x and

( )icolg = ξ will be respectively denoted as colx or xcol  to symbolise the respective HONU

input vector. With regards to the new inputs u that are fed back to the identified HONU

model, the following control law holds for a QNU feedback controller

2
,

0
( ),

n n

i j i j
i j i

u d p d p col
x x gx x =

= =
= - × = - × ×å å V v ξ (10)

In the sense of a CNU controller, the control law can be written as

3
, ,

0
(ξ),

n n n

i j i j
i j i j

u d p v d p col
x x x

g
k k

k
x x x =

= = =
= - × = - × ×ååå v (11)

where p denotes a feedback gain and d denoting the plant controllers desired set-point. As

presented in earlier works [87]-[88] for certain engineering applications it may be more

advantageous to due to scale of the static plant gain being of much higher order in

comparison to the supplied plant inputs, to apply p as a compensation at the control input as

opposed to in feedback, in such case the following control law yields e.g. for a QNU

( )2
,

0
V v (ξ) ,

n n

i j i j
i j i

u p d p d p col
x x

gx x =

= =

æ ö
ç ÷= × - = × - × ×
ç ÷
è ø

åå (12)

where for a CNU, the control law may be expressed as

( )3
, ,

0
v (ξ) ,

n n n

i j i j
i j i j

u p d v p d p col
x x x

g
k k

k
x x x =

= = =

æ ö
ç ÷= × - = × - × ×
ç ÷
è ø

ååå (13)

For a whole block scheme, refer to Figure 5.

TABLE 1

SUMMARY OF FUNDAMENTAL WEIGHT UPDATE LAWS FOR HONUS OF GENERAL
ORDER

Incremental Training Algorithms

Gradient Descent
(GD)

( ) TkemD = × ×w colx

Normalised
Gradient Descent

(NGD)
2

2

( )
1

Tkem
D = × ×

× +
w colx

colx
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Recursive Least
Squares (RLS)

1 1

1 1

1

1 1

1

1 1

1

1(0)

1( ) ( ( )

( ) ( ) ( ) ( ))
( ) ( ) ( )

( ) ( ) ( )

T

T

k k

k k k k

k k k

k k ke

d

m

m

- -

- -

-

- -

-

- -

-

= ×

= ×

× × ×
-

+ × ×

D = × ×

R I

R R

R colx colx R
colx R colx

w R colx

Batch Training Algorithms

Levenberg-
Marquardt

(L-M)

11( )

( ,:)

T T

Tk

m
-D = × + × × ×

=

w J J I J e

J colx

Resilient
Backpropagation ( )( )= DΔw Δw E"

Conjugate
Gradients ( ) ( ), , ( , )a bD = ×e ew r p J p r J

Regarding the parameter update rule of the HONU controller, the neural weight update rule

of the HONU feedback controller can be analogically derived as follows
2 ( ) [ ( ) ( )]

( ) ,
2

ref ref
ref

k
k

e y k y k
em m

¶ ¶ -
D =- × = × ×

¶ ¶
v

v v
%

(14)

where the reference error is defined in (20), thus

( )= - ( ) .ref
i

k
k

ye
v

m ¶
D × ×

¶
v

%
(15)

Considering equations (1)-(2) it generally results for a HONU feedback controller of

arbitrary polynomial order that

( ) ,ref kem ¶
D = × × ×

¶
colxv w

v
(16)

where for the example of QNU the long vector of partial derivatives yields to be as follows
=2

( ) ,
r

ref kem ¶
D = × × ×

¶
colxv w

v
(17)

2
; 0.. , .. .

r
ji

j i x x
xx x x i n j i n

= ¶ì ü¶¶
= + = =í ý¶ ¶ ¶î þ

colx
v v v

(18)

Analogically for a CNU (i.e. for 3r = )

3 ; .
0.. , .. ..,

i
jr i

j i j

x x x

xx xx x x x x x

i n j i n j n

k
k k

k

= é ù¶ì ü¶ ¶
¶ + +ï ïê ú= ¶ ¶ ¶í ýê ú¶ ï ïê ú= = =î þë û

colx
v v vv

(19)
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However, Dv may be updated over every batch of the experimental data. In this case, the L-

M algorithm according to Table 1 may be employed. Here refe denotes neural error that may

be defined as follows

( ) ( ) ( ) ( ) ( ).ref ref refk k k k ke y y y y= - @ - % (20)

On establishing the HONU feedback controller weight update mechanism, it is clear that

whether employing a sample-by-sample update rule or batch form of training the overall

weight update rule yields to be

-1 -1( ) = ( ) ; ( ( )),k k k+D D =Dv v v v v v (21)

where the parameter v  represents the HONU feedback controllers neural weights, the tuning

of which may be performed via either online or offline training as per the algorithms denoted

in Table 1. In certain engineering processes it may be advantageous to employ an adaptive

proportional gain of the HONU feedback controller e.g. in processes where the static gain at

different working ranges may vary causing increased steady state deviation. As an

enhancement to the recalled applied theory behind HONU architectures, this dissertation

additionally derives an adaptive feedback gain p in the control law relations (10)-(11),

published in the work [95]. From the principles of the GD algorithm we may define the

fundamental update rule of parameter p as follows

2( )1 ,
2

ref
p

e k
p

p
m

¶
D =- × ×

¶
(22)

where pm denotes a unique learning rate to that of the derived HONU feedback controller or

further, identified HONU process model. According to the definition (20) it yields that

[ ( ) ( )]1 ( ) .
2

ref
p ref

y k y k
p e k

p
m

¶ -
D =- × × ×

¶

%
(23)

However, the partial derivative of the reference model output with respect to the adaptive

proportional gain p is zero, thus from (1) the respective HONU model output is in fact a

conjunction of the neural weight vector w and the neural input vectorcolx , therefore the

incremental update law for the adaptive feedback gain p generally results for an arbitrary

polynomial order as

( ) .p refp e k
p

m ¶
D = × × ×

¶
colxw   (24)

Where in the example of a QNU, the resulting partial derivatives yield to be as follows
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Further, for a CNU the resulting partial derivatives are thus extended as follows

3
; 0.. , .. .. .

r
ji k

j k k i j x x, xi

xx x
x x x x x x i n j i n k j n

p p p p

= ¶ì ü¶ ¶¶ ï ï= + + = = =í ý
¶ ¶ ¶ ¶ï ïî þ

colx
 (27)

From this section the fundamental architectures of HONUs for adaptive identification and

MRAC based control were recalled. With addition of the rather novel application of the RLS

learning algorithm for application to HONU adaptive identification and control and further

the derivation of an adaptive proportional gain p for application to a HONU feedback

controller. In the proceeding section a practical case study of a two-tank liquid level system

with several configurations are presented in a bid to compare the various combinations of

applied learning algorithms in terms of their performance in rate of convergence. Further,

several real rail automation examples are analysed to highlight the advantages and

disadvantages of the overviewed HONU-MRAC design.

5 HONU-MRAC Control Loop Design for Real Industrial Applications

Following an overview of the key HONU architectures and respective learning algorithms

for real time adaptive identification and control, this section aims to study their application to

real industrial process control. As an initial a two-tank liquid system is studied, with focus on

investigating the various learning algorithms as in table 1. Then two comprehensive studies

of real rail automation systems are presented to highlight the applicability for low to

moderately nonlinear system control. A further main objective in chapter 8 is then presented

to analyse stability of the derived HONU-MRAC control loop designs via the proposed DHS

and DDHS approaches.

5.1 Two-tank Liquid Level System

Given the applied theories of HONU process identification and control as presented in

section 4, let us consider a Two-Tank Liquid Level system illustrated in Figure 7.
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Figure 7 – Schematic overview of the Two-Tank Liquid Level system.

The process dynamics of the upper tank may thus be described as follows

1
1 1 22 ( ).t db

dhA Q C s g h h
dt

× = - × × × × - (28)

Here, 3 1[ ]tQ m s-  denotes the inlet flow rate of the tank system. dbC  represents an orifice

discharge coefficient, A  denotes the cross-sectional area of the upper and lower tanks. 1s

denotes the cross-sectional area of the first tank exit orifice, with 1h  and 2h  resembling the

height of the water level for the tank 1 and 2 respectively. Then it follows that we may

similarly represent the dynamics of the second tank

2
1 1 2 2 22 ( ) 2 ,db dc

dhA C s g h h C s g h
dt

× = × × × × - - × × × × (29)

where 2s  resembles the cross-sectional area of the lower tank orifice and dcC  is the

discharge coefficient of the lower tank system.  Considering that the orifices are ideal, we

may see that an induced nonlinearity is present in the system via the square root law in the

flow balance equations (28)-(29).  For the proceeding study the following parameters are

considered. The tank cross-sectional area 20.002[ ],A m=  orifice cross-sectional areas

2
1 2 0.000785[ ],s s m= =  orifice discharge coefficients 0.60,db dcC C= =  the density of water

31000[ / ]kg mr =  and gravitational constant of acceleration 29.81[ ].g ms-= It follows from
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initial testing as per Figure 8, that the system features varying degree of static gain about

different operating points of the tank system.
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Figure 8-Standalone operation of real nonlinear two-tank water level system with varying degrees of static gain.
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Figure 9 - HONU plant identification of QNU trained via L-M supervised learning algorithm for 4yn = and 3un =  applied

to Two-Tank Liquid Level system. As presented in [91] and [92].

For levels of input pump voltage u , ranging between 1–5 [V] the systems natural output

response yields higher deviations of static gain on level greater than 2.5 [cm] as opposed to

lower water levels in the range of 1–2.5 [cm]. Following simulation of the mathematical

relations depicted in (28)-(29), several key architectures of HONU neural units were tested.

Following numerous tests, it was found that for adaptive identification of the Two-Tank

Liquid Level system experimental data, a QNU with L-M form of neural weight training

deemed to be the most suitable configuration to successfully identify the dynamics of the



Peter Mark Beneš

Page 45 of 134

tank system. Here 4 previous neural unit outputs along with 3 previous system inputs were

used for identification as depicted per Figure 9.

TABLE 2

HONU-MRAC CONTROL LOOP PARAMETER CONFIGURATIONS

HONU
Plant Model

HONU
Controller
Training

No.
HONU
Model

Outputs

No. of
Desired
Value
Inputs

Learning Rate
(without

normalization)

Epochs

QNU_LM GD 4 3 0.001 50
QNU_LM LM 4 3 0.001 50
QNU_LM RLS 4 3 0.001 10
QNU_RLS RLS 4 3 0.115 5

Following this table 2 summarises the parameter configurations for the various learning

algorithms used on a QNU (HONU, 2g = ), all HONUs are identified as standalone adaptive

feedback controllers as part of the HONU-MRAC closed control loop.
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Figure 10 – HONU-MRAC closed control loop performance for control of the lower tank water level 2h of the Two-Tank
Liquid Level system. As presented in [91] and [92] , results generated from [98].

Figure 10 and Figure 11 illustrate the performance of the various QNU (HONU, 2g = ),

adaptive controllers identified as per table 2. From these results, we may note that all forms

of learning algorithms were able to deliver desirable control performance in terms of

adhesion to the respective setpoints as well as reduction in sum of square errors (SSE). From

Figure 10, it is intriguing that a slightly lower steady state margin is achieved following

results of the RLS training algorithm in much fewer epochs as compared to the GD and L-M

training algorithms, where only 5 epochs as opposed to the GD and L-M algorithm with a
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respective 50 epochs of neural weight training were necessary to achieve a similar order of

SSE.
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Figure 11 – Detail of HONU-MRAC control loop performance in convergence of SSE between different supervised learning
algorithms for Two-Tank Liquid system control.GD and L-M algorithm reduced to a similar order of SSE after 50 epochs.
As presented in [91], [92], [97] & [107] , results generated from [98].

Figure 12 - Real-time HONU-MRAC control loop of constant parameters, trained with L-M for process identification
followed by RLS pre-training with further L-M training algorithm as a feedback controller for the Two-Tank Liquid Level
system with an existing P-control loop. As presented in [91], [92], [97] &  [107].

A further interesting notion from this result is the speed of convergence via application of the

RLS method for adaptive identification of the plant followed by adaptive control of an

applied HONU as a feedback controller. Here Figure 11 illustrates in detail the slightly more

optimal performance delivered by application of the RLS algorithm in both the adaptive

identification and control phase which is a promising direction for future study, especially in

the sense of real-time adaptive identification and control applications. Following analysis of

the results depicted in Figure 10 and Figure 11, a QNU (HONU, 2g = ) feedback controller
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with a L-M training algorithm for process identification, followed by a RLS pre-training of

the HONU feedback controller in lieu with 10 further training epochs via the L-M batch

training algorithm yields superior performance in controller optimisation on extension to a P-

control loop as depicted in Figure 12. From these results, all analysed supervised learning

algorithms serve as fast, computationally efficient learning algorithms for process control of

linear and further nonlinear engineering systems. From the Two-Tank Liquid Level system

application, the RLS algorithm in lieu with extended training via the L-M algorithm shows

promising potentials for fast, real-time adaptive control of practical engineering processes,

and hence is a further investigated in this dissertation work.

5.2 Experimental Railway Stand (CTU Roller Rig) Active Wheelset Control

Another intriguing example in this dissertation work is the design of HONU-MRAC control

for the CTU experimental railway stand (CTU Roller Rig) situated in the Czech Technical

University in Prague. A current problem under investigation is the control of lateral skew of

an independently rotating wheelset (IRW), primarily to maintain an adequate margin of

deviation between the Roller Rig wheel flanges and rail heads in a bid to minimise the wheel

and rail wear along with reduction of the horizontal skewing forces. As the scope of this

work is in the design and stability analysis of a HONU–MRAC control loop for SISO

engineering processes, this section will be organised to first analysis the design and

dynamical behaviour of the CTU Roller Rig, followed by a detailed design for real-time

dynamic identification and control of its lateral skew problem. Since its initial conception

from the late 80’s the CTU Roller Rig has been an important tool for investigation of control

engineering problems with regards to active wheelset guidance of scaled railway wheelset

mechanisms. In its current state the CTU Roller Rig features two independently actuated

wheelsets situated on a bogie frame.

Figure 13 - Illustration of the CTU Roller Rig (2014). Featuring configurable 2 IRW or conventional wheelsets with central
servo motor drive for active yaw torque steering (Figure courtesy of the Dpt. of Automotive, Combustion Engine and
Railway Engineering, FME CTU).
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Figure 14-State-of-the-art CTU Roller Rig actuated wheelset steering mechanism (2015-2016) [81]–[83]. See control
results in Figure 24-Figure 26 and also stability analysis results in Figure 53 & Figure 54 (Figure courtesy of the Dpt. of
Automotive, Combustion Engine and Railway Engineering, FME CTU).

The respective design is a 1 to 3.5 scaled version of a real railway vehicle design. It features

a wheelbase 714 mm a track gauge of 410 mm and individual wheel diameters of 263 mm.

Each wheelset sits on a set of 700 mm diameter rollers driven via 2 asynchronous AC motors

to simulate the behaviour of the Roller Rig under both straight as well as curved track

profiles. Figure 13 illustrates a recent setup of the CTU Roller Rig dated to 2015, as depicted

in this figure, the front and rear wheelsets are manipulated via a central servo drive which via

mechanically coupled linkages are able to guide the respective wheelset in the required

direction. From this conception in latter 2015-2016, a redesign of the existing rig was

performed to improve behaviour under active wheelset guidance. Currently each respective

wheelset may be configured to either a conventional setup or for operation as an IRW. In this

design, illustrated in Figure 14, the CTU Roller Rig may be actuated via 2 separate servo

drives for each wheelset (Multiple-input-single-output (MISO)), with a new belt pulley drive

to control the respective Roller Rig wheelset via active yaw torque control to the coupled

steering linkages, or via a Single-input-single-output (SISO) configuration considering only

the leading wheelset, for actuation and measured lateral skew with respect to the central span

of the whole bogie frame. For the scope of this dissertation the Roller Rig control task is

minimised to a SISO configuration. The control objective is to ensure the lateral position of

the leading wheelset from the central axis given either a conventional wheelset or IRW

configuration. Furthermore, this dissertation will focus on control for the speed range of 50-

80 rpm.
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Figure 15-Simplified schematic of a railway vehicle bogie frame with two wheelsets for theoretical analysis in (30)-(35).

To understand the dynamical behaviour of the CTU Roller Rig as a standalone mechanism

without the means of lateral skew control, Figure 15 illustrates a simplified mathematical

model of a railway bogie with two wheelsets. Given the above schematic, we may introduce

the following model parameters adopted from the real roller rig system as per Table 3.

TABLE 3
PARAMETERS OF THE CTU ROLLER RIG

Variable Value Description
m 62.8 [kg] Mass of an individual wheelset

bm 150 [kg] Mass of the bogie frame

11f 1.35x105 [N] Longitudinal creep coefficient (= 0 for simple IRW wheelset)

12f 1.21x105 [N] Lateral creep coefficient

wI 2.9 [kgm2] Wheelset yaw inertia

bI 9.5 [kgm2] Bogie yaw inertia

l 0.214 [m] Half gauge

bl 0.5 [m] Half gauge between wheelsets

wK 4000[kN/m] Primary lateral stiffness per wheelset

wC 120[kN s/m] Primary lateral damping per wheelset

l 0.1 Conicity
r 0.1315 [m] Wheelset radius
V 2.77 [m/s] Speed
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Therefore, given the above parameterisation, we may proceed to construct the necessary

equations of motion of the above simplification of the roller rig setup, with the assumption of

neglecting the frictional forces in the bearing housings and bearing box of each wheelset

bogie, along with the small mechanical clearances in the steering mechanism.

The Leading Wheelset (Wheelset 1)

11
1 1 1 22 1 1 1 1 1

2 . 2 . . . . ,w w w w b b b b b b
fmy Cw y Kw y f Cw y Kw y Cwl Kw l

V
-é ù= - - + Y + + + Y + Yê úë û

&&& & & (30)

2
11 11

1 1 1 1
2 2 .w w w w

f l f lI y T
r V

l
Y

-
Y = - Y +&& & (31)

The Trailing Wheelset (Wheelset 2)

11
2 2 2 22 2 1 1 1 1

2 . 2 . . . . ,w w w w b b b b b b
fmy Cw y Kw y f Cw y Kw y Cwl Kwl

V
-é ù= - - + Y + + - Y - Yê úë û

&&& & & (32)

2
11 11

2 2 2 2
2 2 .w w w w

f l f lI y T
r V

l
Y

-
Y = - Y +&& & (33)

The Bogie Frame

1 1 1 2 2 1 1. . . 2 . 2 . ,b b w w w w b bm y Cw y Kw y Cwy Kw y Cw y Kw y= + + + - -&& & & & (34)

2 2
1 1 1 2 2 1 1. . . 2 . 2 . .b b b w b w b w b w b b b bI Cwl y Kw l y Cwl y Kw l y Cwl Kw lY = + - - - Y - Y&& && & (35)

From relation (30)-(35) it follows that we may further compose the respective state-space

representation of the CTU Roller Rig system, in the following form

,
x Ax Bu
y Cx
= +
=

&
(36)

where A  corresponds to the matrix of dynamics of the CTU Roller Rig system, B  denotes

the matrix of input coefficients with u  representing the control input values, which are in

fact the independent yaw torques for the leading and trailing wheelset respectively. Further,

the state variables vector denoted shortly as x .
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With relations (37)-(41), we may analyse the behaviour of our model in the Matlab Simulink

environment to understand the behaviour of the roller rig wheelsets lateral skew due to an

applied yaw torque as the input to each wheelset. For the scope of the work, as the focus of

the lateral skew control design will be aimed for a SISO configuration, the below simulation

results will be illustrated for manipulation of only the leading wheelset (wheelset 1). As can

be seen from the initial simulation under conventional wheelset behaviour, the lateral skew

of the leading railway wheelset undergoes rather undamped oscillations (Figure 16), whilst

the IRW shows a clear veering towards one track direction with regards to its lateral skew

(Figure 17).
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Figure 16-Simulation of the roller rig mathematical model (37)-(41) for a conventional wheelset configuration. Lateral
skew of wheelset 1(blue) and wheelset 2 (green) under an applied input torque to wheelset 1.
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Figure 17– Simulation of the roller rig mathematical model (37)-(41) for IRW wheelset configuration. Lateral skew of
wheelset 1(blue) and wheelset 2 (green) under an applied input torque to wheelset 1.

This behaviour would agree with our initial assumptions in the following way. As the wheel

profiles are conical, should the rig start at a non-zero initial conditions a conventional

wheelset would yield faster revolutions on one side of the wheelset as opposed to the other,

due to the difference of rolling diameter of each respective wheel. This ultimately thus

results in hunting motion resembling a harmonic output. Another interesting notion is the

increasing amplitude of the produced harmonic output. This implies to us that the rig is

already approaching its critical velocity to the brink of where the system is unstable at too

high speeds of motion. As for IRW wheelsets, each wheel is allowed to run at a different

rotational velocity, whereby lateral creeping is almost negligible, thus resulting in an almost

constant behaviour from initial conditions. If an applied torque is given to such IRW

wheelset, a clear veering can be seen leading away from the central axis of the bogie frame.

Ultimately this veering is limited by a contact in the wheel flanges with respective rail heads

and would thus introduce an element of nonlinearity.
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5.2.1 HONU-MRAC Control Loop Design for Conventional Wheelsets

Following the proposed control loop design via HONU-MRAC, the proceeding section

details its application to real-time active control as an IRW configuration on the CTU Roller

Rig. To initiate investigation of the lateral skew control for the CTU roller rig, let us consider

the state-space model from (37)-(41). In this example let us consider conventional wheelsets

for a SISO system configuration, where only the process input 1TY and corresponding process

output 1wy are considered. Thus, we may consider application of state feedback design via the

following modification of relation (36) as

( )
,

x A BK x Br
y Cx
= - +
=

&
(42)

where now

.u r K x= - × (43)

Here the variable r denotes the desired value and K is the state feedback gain vector. Then

computation of the state feedback gain vector may be obtained as follows

,T R W= × (44)

where R is the controllability matrix. The shape matrix W  is further given as

1 1
1 1
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(45)

From (44), it yields that the controllability matrix R can be obtained as
1[ ].n nR B A B A B-= K (46)

Following from the transformed state space relation

1

1 .

A T AT

B T B

-

-

=

=
(47)

The resulting state feedback gain vector yields to be
1

1 1 1 1[ , , , ]. ,n n n nK a a a Ta a a -
- -= - - -K (48)

where, ia  denotes coefficients of the characteristic polynomial for the matrix of dynamics A

from (42). Further, ia  are coefficients corresponding to the nth order polynomial equation
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resulting from the desired pole placement. As a further, a HONU-MRAC is designed on the

standalone mathematical model of the roller rig from relations (30)-(35). An LNU plant

trained via RLS algorithm over 2000 epochs where the neural input vector

features 7yn = previous model outputs and 5un =  previous process inputs, with extension of a

QNU feedback controller of the same parameter configuration. Given relations (42)-(48),

Figure 18 illustrates a comparison of the resulting SFC design
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Figure 18– Step responses of the controlled bogie frame (30)-(35) with conventional wheelsets show superiority of LNU-
QNU control loop (RLS 7,yn = 5un = ) over the achievable performance of  SFC (in state feedback controller). Stability
analysis via DHS and DDHS presented in Figure 52.

It is evident that the dynamic response of the HONU control loop is substantially faster than

the SFC with similar capability to reduce the hunting motion of the leading wheelset. In the

proceeding section, a further investigation into an independently rotating wheelset (IRW)

configuration is presented.

5.2.2 IRW Active Wheelset Control via HONU-MRAC Configuration

Following the derived HONU-MRAC closed control loop as in Figure 18 a further topic is

the investigation of an IRW wheelset configuration for active wheelset control. As can be

seen in Figure 17 from a non-zero initial position, under an applied constant roller velocity or

given a small constant input signal the IRW configuration veers the whole bogie frame in

one direction which leads to the challenge of stabilizing the bogie system before enhancing

control. From the presented HONU-MRAC closed loop in Figure 18, two control tasks are

presented in this section. The first is to present the derived HONU-MRAC design for control
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about a desired lateral skew setpoint. As a further, this dissertation introduces an effective

approach to sliding mode control for stabilization of an IRW active wheelset, using the latter

presented HONU decomposition. As the focus on this dissertation is primarily to investigate

HONU-MRAC control design and HONU stability, this dissertation only introduces the

sliding mode control concept via HONUs with remarks for future study.

Therefore, to initiate this study a numerical 3-D computer model via SIMPACK software

with an extension pack to MATLAB Simulink is analysed via SISO configuration, where the

control objective is to achieve a desired setpoint value of lateral skew on the leading IRW

wheelset. The plant model in the MATLAB Simulink environment is initialized with a

sampling period of 0.001[s] and considers the avoidance of wheel flange contact.

Figure 19 – 3D mechanical model of CTU Roller Rig used as plant for MATLAB Simulink HONU-MRAC closed control
loop study, sampling rate=0.001[s] (Figure courtesy of the Dpt. of Automotive, Combustion Engine and Railway
Engineering, FME CTU).

From the work [88], initial investigation via a linear state feedback controller (derived in

analogy to the relations (42)-(48)) with additional cascade PID control showed that

application on the linearized numerical model of the roller rig as in Figure 19 was only

possible for continuous control loop stability with a sampling interval of < 1E-6. Thus,

motivation further for an alternative approach of active control for IRW configuration. Given

the above, a HONU- MRAC closed control loop is investigated.
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Figure 20 – Adaptive control of the 3-D mechanical model in MATLAB Simulink. LNU model trained via NGD with
extension of LNU feedback controller trained via NGD where 3yn = , 3un =  (as samples of error between the HONU

output and setpoint) re-sampling = 5, epochs 200.  As presented in [88], results generated from [98].

Figure 21 - Adaptive control of the 3-D mechanical model in MATLAB Simulink. QNU model trained via NGD with
extension of QNU feedback controller trained via LM where 3yn = , 3un =  (as samples of error between the HONU output

and setpoint) re-sampling = 5, epochs 5. As presented in [88], results generated from [98].

A stable set of training data was derived with the standalone 3-D SIMPACK model (at mid-

range speed) for various operating points in 0.001 sampling interval over 10 seconds. Given
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adaptive identification via a QNU model featuring 3yn =  step-delayed model outputs (lateral

skew of the roller rig plant) and 5un =  step-delayed process inputs (yaw torque) with NGD

learning, Figure 20 & Figure 21 show the performance of a derived HONU feedback control

loop i.e. HONU MRAC closed control loop.

In this analysis Figure 20 illustrates a dynamic LNU model trained via the NGD supervised

learning algorithm. A HONU feedback control of LNU architecture is then extended in

feedback trained over 200 epochs of the NGD algorithm. The configuration chosen features

3yn =  step-delayed model outputs (representing the lateral skew of the roller rig plant) and

3un =  step-delayed process inputs as samples of error between the HONU output and

setpoint value. It is evident in the upper plot of Figure 20 where the black-dashed line depicts

the setpoint value, that the HONU-MRAC closed control loop as a standalone features a

desirable control performance in adhesion to the desired behaviour of the lateral skew. As

depicted in Figure 21 only 5 epochs of the supervised learning algorithm are necessary to

reduce the SSE to an order of 10-4. Using the same configuration parameters in the QNU

feedback controller of 3yn =  step-delayed model outputs and 3un =  step-delayed process

inputs as samples of error between the HONU output and setpoint value, the plot of errors

highlight the superior performance of the QNU-QNU closed control loop configuration.

Therefore, from this experimental study on a 3-D mechanical model, the proceeding section

presents implementation of such HONU-MRAC control loop design on the real CTU Roller

Rig system. Due to the nature of the control problem, a further appropriate study is the

application of a sliding mode based HONU control, as deep study of such approach is out of

the scope of this dissertation only preliminary results and discussion are presented in section

10.2 for IRW active wheelset control.

5.2.3 HONU-MRAC Design on Real Roller Rig with IRW Configuration

Following the observation in Figure 17 for an IRW wheelset configuration given no further

control action, once the leading wheelset beings to steer towards a given side of the running

track the rig veers to the point of wheel flange contact which in the real system is 6[ ]mm±

from the central axis. Therefore instead of an adequately quick change of the yaw torque as

applied in Figure 20 & Figure 21, as an initial investigation, a conventional P-controller is

introduced in extension to the existing system as a means of initial control. Figure 22 (blue
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line) illustrates the response of the roller rig under a tuned P-control loop. In this study, the

roller rig is set to have a constant speed of 60 rpm. From this result we may observe the clear

steady state error deviation that the control loop exhibits from the standalone P-control loop.
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Figure 22 – IRW wheelset of the Roller Rig at 60 rpm with HONU-MRAC adaptive control loop via LNU model with QNU
feedback controller based on GD learning algorithm. 4yn = , 5un = and adapted feedback gain =1.11 as constant

parameter control loop. As presented in [95] and concepts in [88].

Further, to this a clear oscillatory wise behaviour may be exhibited when the roller rig

reaches a steady setpoint values, from the remarks of Figure 16 & Figure 17 this is described

as hunting motion, where due to the opposing side wheels for one wheelset being on different

conical diameters the roller rig has a rotational tendency to veer about the mean axis of the

desired setpoint value. Therefore, from Figure 22 it is apparent that although a large degree

of steady-state error is evident in with use of the standalone P-closed control loop, as an

initial foundation the control problem may be shaped to investigate controller optimisation.

Thus, the design objective may be to further minimise steady state error and reduce hunting

motion of the roller rig under active steering control. Figure 22 therefore illustrates the first

proposal of a HONU-MRAC design. Here, a first-order HONU (LNU) is used to adaptively

identify the dynamic response of the roller rig under proportional feedback control. In lieu a

QNU feedback controller is added in extension with a respective plant reference model. In

this configuration both the HONU model and respective feedback controller feature 4

previous samples of the process output ( 4yn = ) and 5 previous samples of the process input,

in this case being the desired value of the roller rig ( 5un = ), trained via GD algorithm over

200 epochs. Figure 23 depicts a second-order HONU (QNU) model with extended QNU
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feedback controller. In this configuration, 4 previous samples of the process output ( 4yn = )

and 5 previous samples of the desired value of the roller rig ( 5un = ) are used. Furthermore, a

batch form of training (LM algorithm) under the same model parameter settings reveals

greater reduction in square error in comparison to the previous LNU architecture which

corresponds with smoother transition in the HONU-MRAC response about each step-wise

change of desired value.

Figure 24 & Figure 25 show the resulting online implementation of a HONU–MRAC control

loop based on both an LNU and QNU model with QNU controller for both the GD and LM

based algorithms respectively. Here both executions are applied as a feedback controller of

constant parameters directly implemented from the tuned results in Figure 22 & Figure 23. It

is intriguing from these results that although the LM algorithm delivered better performance

following offline tuning, during online application it is in fact the GD trained LNU model

with QNU controller that yields the overall best performance amongst all investigated

configurations. Comparison of the mean absolute error (MAE) in Table 8 shows minimal

deviation in steady state error via GD learning in comparison to the LM based controller. A

reason for this may be due to the GD algorithm being better in mapping the contemporary

dynamics of the engineering process, as during its respective model training by nature of the

GD algorithm incorporates more of the roller rig hunting motion behaviour.
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Figure 23 - Theoretically tuned HONU-MRAC adaptive control loop via QNU model with QNU feedback controller based
on LM learning algorithm. 4yn = , 5un = and adapted feedback gain =1.022 as constant parameter control loop. As

presented in [95] and concepts in [88].
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Figure 24 – Real-time HONU-MRAC adaptive control loop via LNU model with QNU controller based on GD and LM
learning algorithm. 4yn = , 5un = ,  as constant parameter control loop.  As presented in [95] and concepts in [88].

Stability analysis via DHS presented in Figure 53 & via QNU-LNU configuration, DDHS analysis in Figure 54.
.
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Figure 25  - Real-time HONU-MRAC adaptive control loop via QNU model with QNU feedback controller based on GD
and LM learning algorithm. 4yn = , 5un =  as constant parameter control loop. As presented in [95] and concepts in

[88].
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TABLE 4
PARAMETERS OF HONU-MRAC CONSTANT PARAMETER CONTROL LOOP

CONFIGURATIONS
HONU

Plant Model
HONU

Controller
Training

No. HONU
Model

Outputs

No. of Desired
Value Inputs

MAE

LNU_QNU GD 4 5 0.090656501581
LNU_QNU LM 4 5 0.172675627428
QNU_QNU GD 4 5 0.215209570572
QNU_QNU LM 4 5 0.242736610099

Following the preceding analysis of HONU-MRAC performance for different configurations

as a constant parameters control loop, during the latter part of 2016 changes to the bogie

frame design on the Roller Rig, influencing the bogie frame stiffness and damping properties

have caused significant deterioration in the previously designed control loop performance.

Thus, a further goal from this section is to analyse the ability of the HONU-MRAC adaptive

control to adjust the derived controller parameters for optimisation under such mechanical

property changes in the engineering system. Figure 26 illustrates the performance of a fully

adaptive HONU-MRAC closed control loop.
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Figure 26- Fully adaptive HONU-MRAC control loop via an adaptive LNU model trained via RLS with adaptive QNU
feedback controller trained via the NGD learning algorithm, with GD pre-training as identified in Figure 22 ( 4yn = ,

5un = ). Concepts presented in [95]and [88].

In this setup, both the LNU model and QNU feedback controller are adaptively tuned in real-

time. The original GD trained HONU-MRAC control parameters are used as initial

conditions for the online adaptive update rules. The LNU HONU model is trained via the

RLS learning algorithm where the adaptive QNU feedback controller is tuned via the NGD

algorithm. Following this approach, Figure 26 depicts in the first 150[s] of application that

the HONU-MRAC control loop indeed achieves desirable control performance immediately
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adhering in just the initial samples of application to the required process setpoint.

Additionally, the real time adaptive algorithm is able to further minimise the deviations in

error caused by hunting motion after 3 epochs of process data (seen from 250[s] in Figure

26). In Figure 54 a) the previously derived QNU model is applied on the new bogie frame

with changes stiffness and damping properties. In this example an adaptive NGD training

algorithm is used, where the LNU feedback controller is trained via an adaptive RLS

algorithm. As illustrated, after 4 epochs of the process data the HONU-MRAC closed control

loop is able to minimise the steady state error substantially which exhibits the capability of

such QNU-LNU control loop for fast real-time adaptive tuning for control loop optimisation.

5.3 HONU-MRAC Design for Barrier Drive Control

Another application in the field of rail automation concerns motor drive control for a

redesigned barrier drive system. The ultimate aim of this presented case study is to analyse

the existing drive control and propose an enhanced design which could be applied as

firmware to the drive control board for control of a level crossing barrier arm system. Due to

sensitivity of unpublished terms and details of the presented application, the terminology

used in this chapter of this dissertation work has been generalized in accordance to the

presented work [96].

The existing drive control board communicates with a main industrial controller via

standardized Ethernet protocols to communicate and read status data from the drive unit. A

key requirement for operation in SIL4 safety level crossing systems is that transition time (of

either 6 or 10 seconds) and prescribed voltage and current limiting values of the design are

maintained. From initial tests factors such as the span of the barrier boom arm, furthermore

dynamical changes with respect to the wear of the respective motor bearings, tensioning of

the barrier belt. In addition, environmental factors like build-up of snow during the winter

months, or unforeseen loading of the barrier boom due to human influence can cause an

exceed of this required time limit as well as an undesirable motor speed characteristic. As a

result, the necessity for design of a control loop, capable of maintaining the raising and

lowering time tolerances whilst, ensuring the motor current and voltage limits in accordance

to the system requirements are maintained, is presented. Due to validation of the existing

prototype, an extension to the existing control loop design is the most sought-after approach.

Due to such influencing factors presented, adaptive control yields to be a rather advantageous

method for solution of this barrier drive control problem.
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Figure 27 – Barrier arm system drive with prototype supporting structure and barrier drive control board. As presented in
[96]. See the control results in Figure 32 & Figure 33 and stability analysis via DHS in Figure 55 and DDHS in Figure 57.

Thus, in this dissertation work, an investigation into the application of a HONU-MRAC

control loop will be studied. Recent applications of the control board firmware, feature an

existing cascade PID control loop, applied with constant parameterisation of the respective

controller parameters, due to this such mechanical changes or deviations in the barrier boom

load yield a limited degree of application for the derived controller parameters.

Figure 28 – Existing cascade P with PI closed control loop implemented on prototype BRU for SIM 6/13 barrier motor
control.

Figure 28, illustrates the existing implementation a cascade P control loop with PI controller

as applied to the barrier drive. The motor itself is a GROSCHOPP PM6 114-70 DC brushed

motor, which may be controlled via a H-bridge and pulse width modulation (PWM) in order

to regulate the voltage supplied the motors armature. An included saturation is incorporated

in order to limit the current of the motor within range of ±8000[mA]. Figure 29 shows the

respective output measurements taken from one open/close cycle of the barrier arm. From
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these measurements a rather intriguing characteristic may be found in the measured current

curves. In the initial stages of application, the barrier drive holding magnets are released

where an internal holding spring at the end positions of the barrier arm momentarily

propagates the arm forward. This is translated in the motor as an opposing sign of current

flow hence acting as a generator. Following these initial samples, the current across the

motor armature rises to a constant until the braking phase of the barrier drive is initiated. In

this braking phase, the barrier arm reaches the opposite end position and now the end

position spring acts to retard the arm, further pronounced by the physical property of reduced

motion at each end of the linear motion screw coupled to the barrier motor which is reflective

in the current characteristic as a further increase. This characteristic is thus too translated into

the respective armature voltage curves. In addition, from the measured data a large spike in

the motor current is evident in vicinity of transitions at activation and deactivation of the

barrier. A reason for this is largely due to the instantaneous switching of the motor H-bridge

and is thus independent of the dynamics of the barrier motor itself.
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Figure 29 – Current and voltage measurements of barrier drive 1 for one opening and closing cycle, used for deriving the
process output value of barrier motor via the relation (49).

From the measurements depicted in Figure 29, it is the speed of rotation of the barrier motor

drive in which we are interested to control which may be derived via the following relation

1 [ ],c MOT MOT a MOTk v V I R
j

F = - (49)

where here ck is the motor load constant, MOTF  is the magnetic flux constant [Wb], v  is the

overall speed of the motor [rpm], MOTV  [mV] is the voltage across the barrier motor

armature, aI [mA] is the measured armature current and MOTR [ohms] denotes the internal
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motor resistance and the variablej serves as a conversion constant with respect to the unit of

measure. From this relation, Figure 30 depicts the corresponding speed of the barrier motor

during one open/close cycle for two respective barrier drive systems. The barrier drives used

are identical in construction as well as the tuned cascade PI controller parameters via their

loaded firmware; however, barrier drive 2 is mounted with a loaded 4[m] arm on the motor

output shaft. Another interesting characteristic important to note is the behaviour of speed at

the barrier end positions. From both the speed profile of the barrier arm during a raising and

lowering phase, in the initial moments of application an overspeed is shown. As is reflective

in the motor current curves, this is due to the internal spring at the end positions of the barrier

arm release pushing the arm forward with a rapid force due to release of the barrier holding

magnets. Following these initial samples, as voltage is supplied to the motor armature the

speed of the motor plateaus to a constant speed before the deceleration phase is initiated

encroaching the desired end position of the barrier arm. Here too the opposite side end

position spring acts to retard the motion of the barrier arm and hence causes a reduction in

speed before the motor is braked via a sudden deceleration to a powered off state.

As can be seen from t=18 [s] onwards in Figure 30 b) the corresponding speed of the barrier

drive 2 is lower than that of barrier drive 1 in  Figure 30 a) resulting in a longer time of travel

for the barrier to fully lower or raise within the prescribed time of transition transt . This

behaviour is predominantly a problem with introducing larger span barrier arms with

substantially higher loading on the barrier motor. Further factors like deviating mechanical

properties due to wear may also cause such significant deviations. With regards to the barrier

drive 2 response, a problem is presented as the design of the barrier control must withhold a

prescribed time of motion so called “motor protection time” in order claim safe securing of

the level crossing. As a result, this defines the underlying problem of the current control

setup, where the cascade PI controller parameters are not universally applicable for any type

of barrier drive and must be re-tuned due to mechanical property deviations or use of

different boom arm lengths. Following analysis of the data in Figure 30, the action of the end

position springs in tie with the linear motion screw behaviour of the barrier arm on its end

positions, results in a nonlinear characteristic which motivates the use of a nonlinear HONU

model. Given this, a QNU is chosen and derived for control optimisation of the given barrier

drive process data in Figure 30 in a bid to provide a more universally applicable controller

for the applied barrier drive motor.
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Figure 30– Cascade P with PI closed control loop response of barrier motor for one closing and opening cycle derived
from (49) for two different barrier drives. a) Barrier Drive 1: ttrans 6[s] b) Barrier Drive 2 (with loaded 4m boom arm):
ttrans 7.1[s] with same controller parameter settings.

As an initial a QNU featuring 3 previous outputs of the HONU model yn  and 5 previous

inputs un  is used, trained via the RLS algorithm over 50 epochs for plant identification of the

barrier motor during one cycle for both respective drives. Following this, the GD algorithm is

used for training a QNU feedback controller over 80 epochs, incorporating the same length

of step-delayed outputs as the identified HONU model. With regards to the desired process

dynamics during deceleration of the barrier motion, as the end position springs indeed cannot

be freely controlled nor omitted from the barrier arm construction the chosen reference

model is configured such to incorporate this deceleration component in contrast to the

constant setpoint used in the initial cascade PI control loop design.
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Figure 31 – Offline tuned HONU-MRAC control loop, trained for both barrier drives a) Barrier drive 2 b) Barrier drive 1.
Here a QNU trained via RLS algorithm ( 3yn = , 5un = ) for plant identification is used with QNU trained via GD as a

HONU feedback controller ( 3yn = , 5un = ).

In Figure 30 a), the barrier motion in one direction is configured for an overall duration of 6

seconds with the existing cascade closed control loop operating at a sampling interval of

0.004 [s]. For the derived HONU-MRAC control loop the sampling interval of 0.04 [s] is

used serving as an adequate compromise between optimal adaptive identification of the

HONU-MRAC control loop and application on the real drive control board. Figure 31 thus

illustrates the performance of the derived HONU-MRAC control loop following the

respective parameters and applied training algorithms. In Figure 31, after 80 epochs the sum

of square errors (SSE) reaches a minimum with the simulated controller output adhering to

the desired setpoint across both operational states of the barrier motion quite successfully.

Furthermore, the offline tuned HONU-MRAC control loop response yields similar

performance for the rather less optimal cascade PI control loop data corresponding to barrier
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drive 2 Figure 31 a) as compare with the more adequately performing response on

application for barrier drive 1 Figure 31 b). From these results, Figure 32 therefore illustrates

the application of the derived HONU-MRAC control loop on the real barrier drive system

with Figure 33 illustrating the real-time control loop application derived in Figure 31 b).
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Figure 32 – Barrier drive 2 (loaded 4m barrier arm): Real-time HONU-MRAC control of barrier drive motor for one
opening and closing cycle. QNU-QNU ( 3yn = , 5un = ) identified via RLS as a plant followed by GD learning for the

HONU feedback controller. Superior performance is achieved in comparison to standalone cascade control loop Figure 30.
Stability analysis via DHS and DDHS respectively presented in Figure 55 & Figure 57.
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Figure 33– Barrier drive 1: Real-time HONU-MRAC control of barrier drive motor for one opening and closing cycle.
QNU-QNU ( 3yn = , 5un = ) identified via RLS as a plant followed by GD learning for the HONU feedback controller.

HONU-MRAC control loop performs more optimally in comparison to standalone cascade control loop for both respective
drives.
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As may be compared the resulting output of the closed cascade control loop with extension

of the HONU-MRAC adaptively tuned control loop yields very similar results in terms of its

control performance with respect to the desired setpoint of the barrier motor speed during

both in an opening and closing phase. On comparison of this result with Figure 30, the

resulting steady state error under application of the HONU-MRAC is substantially reduced

with respect to the standalone closed cascade control loop, whilst maintaining the required

motor protection time span for motion of the barrier boom. What yields to be further

intriguing is the performance of the derived HONU-MRAC closed control loop on real-time

application to barrier drive 1. From Figure 33, a slightly more optimal response is achieved

on application of the HONU-MRAC control loop, primarily in vicinity of the initial

overshooting and deceleration phase. Therefore, it may be concluded that the derived

HONU-MRAC control loop applied as a constant parameter feedback control loop design in

real-time yields more optimal performance than the standalone cascade PI control loop. What

may be concluded from this application, is the strength of nonlinear HONU architectures for

adapting to variable behaviour of the barrier drive action under different loading conditions

to provide a universal set of controller parameterisation. Although, this dissertation studied

two loading cases this principle may be extended for more loading cases of expected barrier

arm lengths and tested for correct identification and control as a constant parameter

controller, or as an adaptive solution for re-tuning during an official maintenance procedure.

Throughout this section, the advantages of HONU-MRAC control loop design were

highlighted as seen, with low to moderately nonlinearities such as variable static plant gain,

or linear oscillatory systems. The HONU-MRAC was able to not only provide desirable

steady state performance, but also optimisation in dynamic response of convergence for the

presented system examples. As with any control loop design, another challenge is to justify

the derived approach is stable especially with an already existing control law not derived

from stability theories e.g. Lyapunov function criteria. Therefore, the main contribution of

this dissertation is presented in the proceeding sections to derive two novel approaches for

pointwise state-space based representation of HONU architectures and further their BIBO

and BIBS stability evaluation as a standalone and as a MRAC based control loop.

6 DHS: Discrete-Time Higher Order Neural Unit Stability

Following overview of HONU architectures and their fundamental supervised learning

algorithms along with several presented examples of their real implementation, this section
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covers a natural first step in finding a core relation between HONU architectures and

classical non-linear discrete time state space models. This section derives a novel linearized

pointwise state-space representation for HONU models and their closed MRAC based

control loop which ultimately leads to a BIBO based stability condition termed as DHS

(Discrete-Time HONU stability). Due to the approached being centred around a locally

derived, pointwise linearized state-space model the approach is presented for lower order

polynomial architectures and where the proceeding section then looks at a novel

decomposition approach for representation of higher order polynomial models that also

accounts for the time-variance of process dynamics. Throughout experimental analysis, DHS

method is also used to justify functionality of the proposed DDHS method and highlight their

respective advantageous on the applied engineering applications.

6.1 Pointwise State-Space Representation of Dynamic Nonlinear Neural Unit
Models

As exhibited in the preceding section, for certain engineering applications it is advantageous

to utilise a nonlinear HONU model due to its superiority in mapping nonlinear input output

relations as well as faster learning response with supervised learning algorithms as such that

of GD, RLS or L-M training algorithm. As was presented in [90] the underlying polynomial

structure of a HONU draws an intrinsic analogy to discrete-time dynamic state space models,

therefore this section investigates the transformation of a quadratic HONU (QNU) model

into state-space representation from known nonlinear system state-space model theory [44],

[84].

To develop this approach, consider the general expansion of a QNU where an arbitrary

length of previous model outputs yn , further previous process inputs un  are considered and

for simplification ,x y un n n= +
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On observation of (50) if we wish to construct such quadratic, nonlinear polynomial model

into state-space representation in terms of its parameters we may select the following

formulation of state variables corresponding to the state variable vector x
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( ) ( ).

y

y

ny

x k y k n

x k y k n

x k y k

= - +

= - +

=

%

%

M
%

(51)

Given (51) we may express the above state variables over the next sample as follows

1 2

2 3

1

1

( ) ( )
( ) ( )
k k

k k

x x
x x

+

+

=

=
(52)

0,0 0,1 0,2 1 0, 1 0,

1,1 1,2 1 ,

1 1

1 1

( ) ( ) ( ) ( ) .. ( )

( ) ( ) ( ) ( ) ... ( ) ( ).
y y y y x

y y y y x x

n n n n n u

n n n n n n u u

k k k k k

k k k k k k

x w w x w x w u w u n

w x x w x x w u n u n
- +

-

+ - +

- + - +

= + + + + +

+ + + +
(53)

From the relation (53) due to the introduced nonlinear input term, an affine-control

formulation of the input states can be applied via introduction of the state-variable term ( )ku

and replacement with the additional integrator input term ( )ku  as follows

1 1( ) ( ),
yn uk kx u n+ - += (54)

from (54), we may restructure the state equations of (52)-(53) to then be

1 21( ) ( )k kx x+ = (55)

2 31( ) ( )k kx x+ =

M
(56)

0,0 0,1 0,2 1 0, 1 1 1,1

1,2 1 , 1 1

1( ) ( ) ( ) ( ) ( )

( ) ( ) ... .
y y y y y y y

y y x x x x

n n n n n n n

n n n n n n

k k k k k

k k

x w w x w x w x w x x

w x x w x x
- + +

- - -

+ = + + + +

+ + +
(57)

1( ) ( ).xn k kx u+ = (58)

From relations (55)-(58), the respective state equations may then be expressed into state-

space representation in the following manner,

2
1

3
2

0,0 0,1 0,2 1 0, 1 1 1,1

1,2 1 , 1 1

1

1

1

1

( )
( ) 0( )
( ) 0

0( ) ( ) ( ) ( )
( ) 0

( ) ( ) ...

( )( )
0

n n n n n ny y y y y y
ny

n n n n n ny y x x x x

nx

k
k

k
k

k k k k
k

k k

kk

x
x x
x

w w x w x w x w x x
x

w x x w x x

ux

- + +

- - -

+

+

+

+

é ù
é ù ê ú éê ú ê ú
ê ú ê ú
ê ú ê ú+ + + +ê ú = +ê ú
ê ú ê ú+ + +ê ú ê ú
ê ú ê ú
ê ú ê ú ëë û ê úë û

M
M

MM
M

,

ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

û

(59)
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( ) ( ).nyk ky x= (60)

Thus, from relations (59)-(60), a general form for the nonlinear state-space representation of

a recurrent HONU of second order yields, in vector form with respect to the state variable x

1( ) ( ( )) ( )
( ) ( ).

yn

k k k

ky k x
+ = +
=

x f x u
% (61)

For development of the DHS method, let us express the respective incremental linear

approximation via derivation of the Jacobian matrix of partial derivatives to the nonlinear

state-space representation in (59) which yields the following

1 1 1

1 2

1 2 1

1

1 1 1

1 1 1 1

1 1

( ) ( ) ( )
0 1 0 0( ) ( ) ( )
0 0 1 0

( ) ( ) ( ) ( )
..J

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

x

y y y y

x x

x x

x

n

n n n n
m

n n

n n

n

k k k

k k k

k k k k

k k k k

k k

k k

x x x
x x x

x x x x

x x x x

x x
x x

-

+ + +

+ + + +

+ +

¶ ¶ ¶é ù
ê ú¶ ¶ ¶ê ú
ê ú
ê ú
¶ ¶ ¶ ¶ê ú

= =ê ú
¶ ¶ ¶ ¶ê ú

ê ú
ê ú
ê ú¶ ¶
ê ú

¶ ¶ê úë û

K K K

M M O M
M M M M M

M O O M M

K K K

,1 ,2 ,3 , .

0 0 0 0
0 0 0 0
0 0 0 0 0

y y y y xn n n n na a a a

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

K

O
K

(62)

Similarly, the Jacobian with respect to the input vector yields to be

[ ]1 2 11 1 ( )( ) ( )J 0 0 1 .
( ) ( ) ( )

T
Tnx

n
kk k

k k k

xx x
u u u

++ + ¶é ù¶ ¶
= =ê ú¶ ¶ ¶ë û

K K K K (63)

Therefore, the previous state-space representation of (61) for the nonlinear HONU model of

second order may be re-expressed in terms of the derived Jacobian matrices under similar

notation to a linear HONU state-space model i.e.

1( ) ( ) ( ) ( ),k k k k+D = ×D + Dx A x u (64)

where ( )kDx  and ( )kDu  are apparent from (59) and ( )kA is the Jacobian matrix Jm of the

recurrent HONU, indicated in (62), which maybe more explicitly stated as
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,1 ,2 , ,

0 1 0 0 0
: ... 1 0 0f ... ...( ) { } ,

x( ) 0 0 ... 1 0 1... ;
0 0 ... 0 0 1...

y y y xn n n n i j
x

x

k
k

a a a a
i n
j n

é ù
ê ú¶ ê ú é ù= = = ë ûê ú¶ =ê ú
ë û =

A (65)

where the matrix ( )A k  represents a x xn n´  dimension matrix. For an arbitrary r order of

HONU it yields that the matrix coefficients ( )A k  may be expressed as

( ),
1

1 for 2,3,..., ; 1

( ( )) [ ] ( ) for 1,2,...,

0 else ,

ψ x
y

x y
r

j n x yi j j
k

i n i n j i

col w p x k j n i na x
+

= = Ù ¹ = +ì
ï ¶ï= = + = Ù ==í ¶
ï
ï =î

(66)

where 1 1( ( )) ( )x xr k kcol + +=  in the sense of a QNU, denotes the original neural weight

vector x defined in (4) for one sample ahead. The term w[n] denotes nth element of w from

the corresponding ( )jx k  in vector 1( ).x k +  Therefore, the newly introduced weight vector

ψ for a QNU may be explicitly computed term-by-term as

1

,
0

, , , ,

(

1 & 2.
x

n

l n
l

j n

n s n s n s n n
s n

w

f

w where s na a a

-

=

=

ì
ï
ï

= í
ï = " ¹ =ï
î

å

å
ψ w)= (67)

For a practical example, refer to appendix section 13.1.

6.2 Pointwise State-Space Representation of Dynamic Neural Unit Models with
Extension of HONU Feedback Control

Recalling the HONU structures in (8)-(9), its extension onto a HONU adaptive model yields

a newly shaped neural model input vector where the variable u from equation (10) now acts

as newly fed inputs to the engineering system. From this substitution, it can be seen that the

vector of input variables u features previous output values of the engineering process or

previous HONU model outputs in the sense of a dynamic HONU y% , which must be re-

expressed in terms of the respective HONU model state variables under the HONU matrix of

dynamics ( )kA . According to (10) the plant input with extension of a HONU feedback
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controller now features a difference of the desired process set point value d and HONU

feedback controller output .q  Given this, the construction of state variable coefficients ,i ja of

the matrix ( )kA starting with the first order LNU plant model with extended LNU feedback

controller will be detailed.

6.2.1 Dynamic Linear Neural Models in Nonlinear Control Loop

If we consider a LNU model featuring an arbitrary length of previous model outputs yn , and

previous process inputs un , with the replacement of the control input according to (10) &

(11), we may yield the following extended form

0 1 2
0

1

1 2

1 1

( ) ( ) ( ) ... ( )

[ ( ) ( )] ... [ ( ) ( )].

x

y

y y u

n

i i n y
i

n n n u u

k

k

y k w x w w y w y k w y k n

w d k p q w d k n p q k n
=

+ +

- - -

- - - -

= = + + + + +

- × + + - ×

å% % % %
(68)

From (68) it is evident that to obtain the complete expansion of this HONU model, we must

further express the previous HONU feedback controller outputs ,q  where as in the example

of an LNU we may obtain

0
1
.

( ) ( )

1, 2,..,

i i
i

u

n
q k m v v k m

for m n

x
x

=
- = + × -å

=

(69)

Thus following from expansion of relation (69) for 1,2,.., um n= extending the definition of

state variables with affine-control formulation of the input states, would yield the following

state vector for arbitrary HONU feedback controllers

11 5), , ), 2 ), , )],( ) [ ( ), ( ... ( ( ... (y yk k n k k k n kx y y y d d+- - - -= % % % (70)

where the respective state variables ( )ix k , 1,2,..,( 2 )y u u xi n n n n= + + =  correspond to the

step-delayed previous outputs of the HONU model with extension of a HONU feedback

controller y% , further step-delayed process inputs, now being the desired set point value d .

Thus, the corresponding state equations yield to be as follows
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1

1 2

2 3

1

0 1 2 1 3 2

1 1 2 2

2

1

1

1

1

1

1

2

1

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

y u y u

y u y u y u y u

y x y y x y

y u x y u

y u

n n n n

n n n n n n n n

n n n n n n

n n n n n

n n

k k

k k

k k

k k k k

k k k k

k k

k

x x
x x

x x

x w w x w x w x

w x w p q w x w p q

w x w p q

x

-

+ - +

+ + + - + -

+ + + +

+ - +

+ +

+

+

+

+

-

-

+

=
=

=

= + + + +

- × + - × +

- ×

=

M

2

1 1

1 ),

( )

( ) ( )

( ) (

y u

x x

x

n n

n n

n

k

k k

k k

x

x x

x d

+ +

- +

+

=

=

M

(71)

where ( ) ( ( )).q k f x k=  Thus from the state equations represented in (71), a similar analogy

maybe drawn to (64) for composition of the linear approximation of a LNU model with

extension of a HONU feedback controller. The matrix ( )kM is now introduced, denoting the

Jacobian matrix with feedback controller. ( )kM  is now of x xn n´ dimension where

2nx y u un n n= + +  for an arbitrary length of LNU model

,1 ,2 , ,

0 1 0 0 0
: ... 1 0 0

... ...( ) { } .
( ) 0 0 ... 1 0 1... ;

0 0 ... 0 0 1...

y u y u y u xn n n n n n n i j
x

x

k
k i n

j n

a a a a+ + +

é ù
ê ú¶ ê ú é ù= = = ë ûê ú¶ =ê ú
ë û =

gM
x

(72)

Remark 1: We may state the following generalizations for an arbitrary length LNU model

with extension of a HONU controller. The general vector of state variable may be defined as

11( ) ( ) ... ( ) ( ) ... ( )

( 1) ... ( ) ( 1) ... ( ) .

y y x

T
n n n

T
y u

k x k x k x k x k

y k n y k d k n d k

+
é ù=
ë û

é ù= - + - +ë û

x

% %
(73)

Thus, with respect to definition of the new state variables as in (73), the following non-linear

state space form may be defined for extension of the LNU with HONU feedback controller

( )( 1) ( ) ( ) ; ( ) ( ).
ynk k k y k x k+ = + =x g x d % (74)

Thus, in similar analogy to (64) the linear approximation of the LNU model with extension

of a HONU feedback controller may be defined as
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1( ) ( ) ( ) ( ),k k k k+D = ×D + Dx M x d (75)

where the Jacobian matrix ( )M k  with the feedback controller is defined by (72)

,1 ,2 , ,

0 1 0 0 0
: ... 1 0 0

... ...( ) { } .
( ) 0 0 ... 1 0 1... ;

0 0 ... 0 0 1...

y u y u y u xn n n n n n n i j
x

x

k
k i n

j n

a a a a+ + +

é ù
ê ú¶ ê ú é ù= = = ë ûê ú¶ =ê ú
ë û =

gM
x

(76)

From the expanded forms (186)-(187)  (appendix section 13.2.) it is thus apparent that the

general form for an arbitrary length of LNU model with yn previous output terms and

un previous step-delayed process inputs it yields to be

( ),
1

1 for 2,3,..., ; 1

( ) [ ] [ ] for 1,2,...,

0 else .

u

y u

x y u
n

n n ny l x y ui j
j l

i n i n n j i

x k w n w p v n j n i n n
xa + +

=

= = Ù ¹ + = +ì
ï ¶ï = = - × × = Ù = +=í ¶ï
ï =î

å (77)

The term w[n] denotes nth element of w from the corresponding ( )jx k  in vector 1( ).x k +

Analogically the nth element of ξ is denoted by v[n]. If we consider the feedback controller

to be a HONU of second order i.e. QNU then the explicit form for an arbitrary length is

given by

( ),
1

1 for 2,3,..., ; 1

( ) [ ] [ ] ( [ ]) for 1,2,...,

0 else ,

u

y u

x y u
n

r
n n ny l x y ui j

j l

i n i n n j i

x k w n w p v n col n j n i n n
x

xa + +
=

= = Ù ¹ + = +ì
ï ¶ï= = - × × × = Ù = +=í ¶ï
ï =î

å (78)

1

,
0

, , , ,

[ ]

1 & 2,

=

n

l n
l

n

n s n s n s n n
s n

v

v n

v where s n
x
a a a

-

=

=

ì
ï
ï
í
ï

= " ¹ =ï
î

å

å
(79)

where w[n] denotes nth element of w from the corresponding ( )jx k  in vector 1( ).x k +

similarly ( [ ])rcol nx corresponds to the nth element from 1( ( ))r k lcol x - + multiplied by
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( ).jx k  For rigorous computation of the partial derivatives with respect to the state variable

equations from (72)  refer to the appendix section 13.2.

6.2.2 Dynamic Nonlinear Neural Models in Nonlinear Control Loop

In certain engineering processes, it can be more advantageous to apply nonlinear neural

models for process identification. Typical cases maybe when batch training is required e.g.

for process data influenced by noise on a nonlinear process or, use of a linear neural model

may not be sufficient for identifying the nonlinear process characteristics as exampled in

section 5, where a QNU was employed, further recent works include [33], [87] & [92]. To

develop this method, let us consider restating a QNU via the following relation

0,0 0, ,
1 1

( ) ,
x x xn n n

i i i j i j
i i j i

y k w w x w x x
= = =

= + × + × ×å åå% (80)

where on substitution of the control law (10), the relation extends to

0,0 0, 0, , ,
1 1 1 1

,
1

( )

.

y y y yu u

y y

u u

y

n n n nn n

i i n i i i j i j i n j i j
i i i j i i j i

n n

ny i n j i j
i j i

y k w w x w u w x x w x u

w u u

+ +
= = = = = =

+ +
= =

= + × + × + × × + × ×

+ × ×

å å åå åå

åå

%

(81)

The step delayed HONU controller outputs in the sense of a QNU for the control law may be

restated as

0,0 0, ,
1 1

( ) ( ) ( ) ( )

1, 2,3,

n n n

i i i j i j
i i j i

k mq k m v v v k m k m

for m

x x x
x x x

= = =
-- = + × + × - × -

=

å åå (82)

where m denotes the step-delayed samples of the HONU feedback controller outputs.

Therefore in analogy, the matrix form (76) is also applicable. With this, the resulting general

form for an arbitrary length of QNU model with yn previous output terms and un previous

step-delayed process inputs it yields to be

1,
1

1 for 2,3,..., ; 1

[ ] ( ( )) [ ] ( 1 ) ( 1 )
.

for 1,2,...,

0 else .

u u
x y u

n n
r

j
j l li j

x y u

k

i n i n n j i

w n col w l u k l u k
x

j n i n n
k

k
a = =

+

= = Ù ¹ + = +ì
ï æ ö¶ï ç ÷= + + × + - × + -ï ç ÷¶=í è ø
ï = Ù = +ï
ï =î

ååψ x
(83)



Peter Mark Beneš

Page 78 of 134

The general form for a QNU may be more explicitly defined as

( 1)

( 1)

, 1 ,
0 0 1

,

2
,

0

1

1 for 2,3,..., ; 1
[ ] ( ( ))

( ( 1)[ ] ) ( ( 1)[ ]

( 1)[ ]) ( )

ψ x

ξ ξ

ξ

y q q

y ny
y

q q

l n y y ly

x y u
r

j

n n nn

l n l j
j jl l n l

i j n n

n l n
jl l

k

i n i n n j i
w n col

w k l p w k l
x x

k p w
x

s sx

k k

s s

k

k
k k

k
k

s s

a

s k s s

- +

- +

+ +
= = = + =

+ +
= =

+

= = Ù ¹ + = +
= + +

æ
¶ ¶

+ + × +
¶ ¶

=

¶
+ + +

¶

åå å å

åå

,

for 1,2,...,

0 else ,
x y uj n i n n

ì
ï
ï
ï öïç ÷ïç ÷ïç ÷íç ÷ïç ÷ïç ÷ïè øï

= Ù = +ï
ï =î

(84)

where s denotes a vector of previous outputs as defined in (82) for one sample ahead, of the

HONU feedback controller thus,

11[ ( ), ( ),.., ( )].uk k k nq q qs +- -= (85)

Further, the general form for a CNU (HONU, r=3) then be defined as

1,
1

1 for 2,3,..., ; 1

[ ] ( ( )) [ ] ( 1 ) ( 1 ) ( 1 )
.

for 1,2,...,

0 else .

u u u
x y u

n n n
r

j
j l m l mi j

x y u

k

i n i n n j i

w n col w l u k l u k m u k
x

j n i n n
k

k
a = = =

+

= = Ù ¹ + = +ì
ï æ ö¶ï ç ÷= + + × + - × + - × + -ï ç ÷¶=í è ø
ï = Ù = +ï
ï =î

åå åψ x
(86)

From this section, a novel transformation of a HONU was derived to yield a state-space form

of a classical HONU polynomial model and further, its extension with an additional HONU

feedback controller for the composition of a HONU-MRAC control loop. Following the

representations depicted in relations (65) and (76), motivation arises for utilizing the above

representations as a means for analysing the stability of a HONU model and further its

extensions with a HONU feedback controller, the next section thus aims to develop such

condition.

6.3 BIBO Stability of Discrete-Time Pointwise State-Space HONU
Representations (DHS)

From the previous section a novel representation of a HONU polynomial model into state-

space representation was presented, with further extension as a HONU-MRAC closed control
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loop. Based on the forms (65) and (76), in analogy to discrete time nonlinear model theory,

several notions may be stated:

Definition 1: The evaluation of distance of (65) and (76) from their original HONU

polynomial descriptions (1)-(3), may be evaluated via the following error margin ratio,

wheree represents a small regularisation constant for zero value terms

( ) ( )( ) ( )
( ) ,

z y k z y k
k ed =

- %
(87)

where ( )y k  is the linearized output and ( )y k%  is the original nonlinear output and (.)z is the

z-score of the argument. Therefore, from relation (87), it is desirable that ( ) 1kd B for high

validity of BIBO stability conditions determined in (88), as the outputs of the HONU model

or nonlinear control loop are closely resembled by the linearized approximation dynamics.

Theorem 1 (DHS): For LNUs the Jacobian matrices in (65) and (76) are time variant only

when learning is on, while for higher orders the dynamics is variant already due to the

variant Jacobian matrices in space. It may be stated that the HONU is BIBO stable and

further asymptotically stable at a given state and actual input at sample k if

( ( )) 1; ( ( )) 1,k kr r< <A M (88)

where (.)r denotes the spectral radius of matrices ( )A k and ( )M k respectively. With the

increasing order of HONU plant and further feedback controller , 1,r g > the respective

Jacobian matrices are in fact time-variant without real time neural weight training.

Proof:

The statement (88) as applied to the pointwise state-space form (65) and (76), may be

theoretically supported via means of the Lyapunov matrix condition. Let us select the

following Lyapunov function candidate

( ( )) ( ) ( ).TV k k kD =D Dx x P x (89)

The Lyapunov function (89) is thus a positive definite function where for the state point

( ( )) 0,V kD =x further, for a non-zero equilibrium ( ) ekD ¹Dx x about each fixed state we may

state that the function ( ( ))V k cD =x  holds as a lower bound for decrease of the function via

an applied perturbation and ( ( ))V k cD >x for all other values .ex¹ Therefore, in order to

assess the asymptotic stability of (89) we may assess the Lyapunov function derivative where
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( ( )) ( ( )) ( ( 1)) 0, ( )
( ( )) .
V k V k V k k

V k
D D = D - D - < "D Î
D ®¥

x x x x
x

¡%
(90)

Then, two following statements are thus equally justified for asymptotic stability [85].

1. The time-invariant HONU matrix ( )A k  is asymptotically stable if and only if the

relation (88) holds.

2. Given any matrix 0Q QT= >  there exists a positive definite matrix P PT= such that

satisfies the proceeding relation

( ) ( ) .Tk k - =-A PA P Q (91)

Therefore, we may consider the linearized switched discrete time representation of the

HONU as

1

1 2

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),
k k k

k k k

k
k

-

- -

D = D +D

D = D +D

x A x u
x A x u

(92)

where ( )u kD is considered as a positive, constant input within neighbourhood eDx . From

(92), it yields that

1 11 2( ) ( ) ( ) ( ) ( ).k k k kk- -- -D - D =DA x A u x (93)

Substituting the above Lyapunov function candidate into the expression (90) yields the

following

1 1 1( ( )) ( ( )) ( ) ( ) ( ) ( ).T Tk k k k k kV V - - -\ D - D =D D -D Dx x x P x x P x (94)

Therefore, the following expression may be obtained

1 1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ).

T T T

T T

k k k k k k

k k k k

- - - -

- -

D D -D D

=D - D

x A PA x x P x

x A PA P x
(95)

However according to Lyapunov’s matrix equation in (91), the final sequence may be

obtained

1

0
1 1 1 1( ) ( ( ) ( ) ) ( ) ( ) ( )

.

N
T T T

k
k k k k k k

where N

-

=
- - - -D - D Þ- D D

®¥

åx A PA P x x Q x
(96)

Which is in fact strictly decreasing as Q  is a positive matrix, where 0.T >Q = Q  Therefore,

for any values ( ) ekD ¹Dx x in neighbourhood of the given state, the Lyapunov function can

only decrease. However, as the Lyapunov function is bounded from below by ( ( ))V k cD =x it
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must stop decreasing at the lower bound, which directly means the local asymptotic stability

of the system defined in (92). Furthermore, that if (92) is asymptotically stable it is only

possible given that (88) holds in each given state point.

Remark 2: As (92) is a the linearized switched discrete time system of a HONU model or

closed control loop a more global condition can be stated for the set of matrices i.e.

0 0 1( ), ( ),.. ( )},m k k k k k- - +A ={A A A (97)

where the spectral radii (.)r computed for the set (97) yields the joint spectral radii of the

linearized switched discrete time system (65) and further (76). Thus, the global asymptotic

stability & BIBO stability across the set Am  (97) is justified if

0

1
( ) ( ).. ( ) 1; ( ) 1.km mk k kr r r-

æ ö
é ù= ç ÷< <ë ûç ÷
è ø

A A A M (98)

The closed loop variation of (92) and (98) where, the matrix ( )kM and input term ( )kDd are

used may be analogically justified.

7 DDHS: Decomposed Discrete-Time Higher Order Neural Unit
Stability

In the preceding chapter of this dissertation, a transformation was derived to restructure a

HONU in the form of relations (1)-(2) to a linearized switched discrete time form denoted in

relations (65) and (76). Given, this the DHS condition was composed as a practical means of

assessing the BIBO further, asymptotical stability of linearized representation of HONU

models and their extension as a closed HONU-MRAC control loop.

Although a great discipline of industrial systems can be identified and controlled with

; 2r g £ polynomial order, the use of higher order control loops as exampled in [87] may be

limited due to the high error margin ratio about the localized operating state point due to

linearization. Therefore, an enhancement can be found in the very fundamental structure of

HONUs. This section thus presents the decomposed discrete time higher order neural unit

(DDHS) approach and stronger ISS stability condition for justification of BIBS stability of

HONUs and their nonlinear control loop.
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7.1 Decomposed Pointwise State-Space Representation of Dynamic Nonlinear
Neural Unit Models

To develop this approach, let us consider the expanded form of a QNU i.e. HONU, 2r =  for

the input vector (4), where an arbitrary length of previous model outputs yn and previous

process inputs un are considered. Then, on observation of the expanded form (50) we may

restate the QNU with respect to the principle input vector 1( )x k - as

0,0 0, , 0, ,
0 1 1

( ) ,,
x x x

y

n n nn n ny x x
i i j i i j j

i j i i j i i n j i
y k w x x w x w w x x w w xi j i j i j i

= = = = = + =

æ ö æ ö
ç ÷ ç ÷= × × = + × + × + × + ×
ç ÷ ç ÷
è ø è ø

åå å å å å% (99)

where .x y un n n= + Then, similarly to the definition (4) we may redefine a new set of vectors

as

ˆ ( 1) [ ( ) ( 1) .. ( 1)] ,x y y
Tk y k n y k n y k- = - - + -% % % (100)

[ ]ˆ ( 1) ( ) ( 1) ... ( 1) .u u u
Tk u k n u k n u k- = - - + - (101)

Thus the definition (2) maybe restated as

( )
1

ˆ( ) ( ) ( -1) ; ( 1) ( 1) .
ˆ ( 1)

ry k k col k k k
k

é ù
= × - = -ê ú

-ê úë û
w x x x

u
% (102)

Further, the form (99) when considering the relations (100)-(102) may be summarized as

0,0
1 1

ˆˆ ˆ ˆ ˆ( ) ( 1) ( 1) ,
y

y

n nu
n i i i

i i
x k w x k a u k bi

= =
= + - × + - ×å å (103)

where the coefficients ˆia and îb maybe respectively defined in sub polynomial form as in the

sense of a QNU as

( ) 0, ,ˆ ˆ ˆ ˆ( 1), ( 1), ( 1),x u w
nx

i i i i j j
j i

a a k k w w x k×
=

= - - = + -å (104)

( ) 0, ,
ˆ ˆ ˆ ( 1), ( 1) ; .u w

nx
i i i i j j y

j i
b b k w w x k i n×

=
= - = + - >å (105)

For the fully derived forms of (104)-(105) refer to the appendix section 13.3. For the explicit

forms for further orders, refer to the Table 5. Thus, given the state variable vector definition
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as per (100), the original HONU polynomial form may be re-expressed in canonical state-

space form as

0

0,0

ˆ ˆˆ ˆ ˆ ˆ( ) ( -1) ( 1) ( 1) ( 1) ( -1)

ˆ ˆ ˆ( ) ( ) ; 0 0 ,0

k k k k k k
Ty k k w

= × - + - × - +

é ù= × = ë û

x A x B u w

C x w% K
(106)

where the matrix of dynamics ˆ ( -1)kA and input matrix ˆ ( 1)k -B respectively may be defined

as

1 11 2 1

0 1 0 0 0 0 00 0 1
ˆ ˆ0 0 0 , .0 0 00 0 0 1 ˆ ˆ ˆˆ ˆ ˆ ˆ u uy y

n nn n
b b ba a a a --

é ù é ùê ú ê ú= =ê ú ê úê ú ê úë ûê úë û

A B

L LL M M M O MO O LO LL
(107)

Further, the output matrix [ ]ˆ 0 0 1 .TC= L  However, we may further simplify this

expression on considering the neural weight bias as an additional input vector

( ).0,0 0,0 kw w= Therefore, the augmented input matrix and input vector may be defined as

ˆ ˆˆˆ ˆ ˆ ˆ( ) ( -1) ( 1) ( 1) ; ( ) ( 1),a ax A x B u C xk k k k y k k= × - + × - = × -% (108)

where

0,0

0
ˆ ˆ ˆ ˆ, ( 1) ( 1) ( 1) .0

1

Tk - k - w k -
é ù
ê ú é ù= = ë ûê ú
ê úë û

a aB B u uM (109)

Â  results in a time-variant matrix of dynamics for polynomial orders r>1 and it is also

further due to applied learning; thus, the matrix Â  will further be referenced here on as the

Local Matrix of Dynamics (LMD).

TABLE 5

EXPLICIT FORMS OF MATRIX COEFFICIENTS FOR HONU MODELS

Index
Range i General form of ˆia , and îb coefficients

QNU (HONU, r=2)

1 ynK 0, , ,
1

ˆ ( ) ( )
n ny u

i i j i j ni yj i j
a w w y k j w u k j+

= =
= + - + -å å%

1 unK 0, ,
ˆ ( )

nu
n i n i n ji y y yj i

b w w u k j+ + +
=

= + -å
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CNU (HONU, r=3)

1 ynK
0,0, 0, , 0, ,

1 1

, , , ,

ˆ ( ) ( )

( ) ( ( ))

n ny u
i i l i l ni yl l

nn nyx x
j i j l i j l y

j i l j l j

a w w y k l w u k l

x w y k l w u k l n

+
= =

= = =

é ù
= + - + -ê úå å

ê úë û
é ù

+ - + - -ê úå å å
ê úë û

%

%

1 unK
0,0, 0, ,

1

, ,
1

ˆ ( )

( ) ( )

nu
n i n i n li y y yl

n nu u
n i n j n ly y yj l j

b w w u k l

u k j w u k l

+ + +
=

+ + +
= =

= + - +å

- × -å å

7.2 Decomposed Pointwise State-Space Representation of Dynamic Neural Unit
Models with Extension of HONU Feedback Control

Recalling the HONU structures denoted in (1)-(2) with respect to the adaptive HONU

feedback controller, its extension onto a previously identified HONU adaptive model yields a

newly shaped neural model input vector where the control law u from equation (10)-(11)

now acts as newly fed inputs to the engineering system. From this substitution, it can also be

seen that the vector of input variables û (101) yield previous output values of the dynamic

HONU model y% , which must be re-expressed in terms of the respective HONU model state

variables under the LMD Â .This section aims to derive the decomposition of HONU models

with extension of their control loop as a canonical state-space form for ; 1r g > polynomial

order.

7.2.1 Dynamic Linear Neural Models as Nonlinear Control Loop

LNUs have proven their advantages as computationally efficient and effective

approximators, further optimizers of linear and low to moderately non-linear dynamic

systems, this section aims to present a novel state-space representation of such architecture

which was most recently presented in the work [89]. To develop this approach let us

consider, the expanded form of a LNU from (1) with the control law (10)-(11) as follows

20 1

1

( ) ( 1) ( 2) .. ( )

[ ( 1) ( 1)] .. [ ( ) ( )],

n yy

n u uy n ny u

y k w w y k w y k w y k n

w d k p q k w d k n p q k n
+ +

= + - + - + + - +

- - × - + + - - × -

% % % %
(110)
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upon expansion of the terms in (110) we may restate that

0
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , ( ), ( )),
n n ny u u

i j n n jy yj i j j
y k w w x k j w u k j p w q x k j u k j+ +

= = =
= + - + - - × × - -å å å v% (111)

Due to the extension of a HONU feedback controller, we may introduce the extended vector

of state variables as

ˆ ( 1) [ ( ( )) .. ( -2) ( 1)] .y u
Tk - y k n n y k y k -= - +x % % % (112)

Further, the input vector for the whole non-linear control loop may be defined as

ˆ ( 1) [ ( ( )) .. ( -2) ( 1)] .u u
Tk - d k n n d k d k -= - +u (113)

Then, due to the final term in (111) containing previous step delayed output terms

1( )k -y% from the previous sample vector 1ˆ ( )k -x  in (112), further previous step-delayed input

terms from the previous sample vector 1ˆ ( )k -u in (113) the form (111) may be re-expressed as

follows

0
1 1

ˆˆˆ ˆ( ) ( ) ( ) + ( ).
n n n ny u u u

ii i i ii i
y k x k i u k i Ca b

+ +

= =
= - × + -å å w% (114)

For simplification, the operator (.)iC is now introduced to denote the sum of constant neural

bias weight terms. Then the local characteristic coefficients for an LNU with extension of a

HONU feedback controller of arbitrary length may be expressed as

1

1

( ( )) 1, 2, 3, ..,
ˆ

( ( )) 1,.., ,

nu
i n j i yyj

i nu
n j i y y uyj

w p w C q k j for i n

p w C q k j for i n n n
a

+
=

+
=

ì
- × × - =åï

ï= í
ï- × × - = + +åï
î

(115)

where (.)iC  here denotes the sum of coefficients for the ˆ ( 1)ix k - element. Further, for the

coefficients concerning the input vector it yields that

1

1

( ( )) 1,..,
ˆ

( ( )) 1, .., .

nu
n i n j i uy yj

i nu
n j i u u uyj

w p w C q k j for i n

p w C q k j for i n n n
b

+ +
=

+
=

ì
- × × - =åï

ï= í
ï- × × - = + +åï
î

(116)

As a practical example, section 13.4 details the derivation for a LNU with extension of a

QNU feedback controller for 4yn = and 3un = step-delayed samples of the principle input
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vector x . Given the definitions (115)-(116), then for a closed loop LNU with nonlinear

control loop it leads to the following canonical state-space form

ˆˆ ˆˆ ˆ ˆ ˆ( ) ( -1) ( 1) ( 1) ; ( ) ( ),k k k k y k k= × - + × - = ×a ax M x N u C x% (117)

where

( ) 1 11 2 1

0 1 0 0 0 0 00 0 1
ˆ ˆ0 0 0 , .0 0 00 0 0 1 ˆ ˆ ˆˆ ˆ ˆ ˆ u u u uy u y u

n n n nn n n n b b ba a a a
+ +

+ + --

é ù é ùê ú ê ú= =ê ú ê úê ú ê úë ûê úë û

M N

L LL M M M O MO O LO LL
(118)

Further, that augmented input matrix and input vector may be defined as

[ ]0

0
ˆ ˆ ˆ ˆ, ( 1) ( 1) ( ) .0

1
i

Tk - k - C
é ù
ê ú= =ê ú
ê úë û

a a wN N u uM (119)

The matrix M̂ represents a ˆ ˆx xn n´  matrix where ˆ .x y un n n= + The row index corresponding

to the position x̂n yields a set of coefficients ˆ
i

a  Similarly, the matrix N̂ yields to be of a

dimension ˆ 2 uxn n´ representing the state input matrix corresponding to the state variables of

HONU vectors x  andξ.

7.2.2 Dynamic Nonlinear Neural Models as Nonlinear Control Loop

As recent works [33], [87] & [92] have shown, nonlinear HONU models and their closed

control loop are advantageous for application to nonlinear dynamic processes or linear

oscillating systems, as well as optimization of controller convergence for linear systems. Due

to the complexity in analytical description, let us consider at first a purely state feedback

controller, i.e. let’s define the controller input vector as

0 2
1( ) [ 1 .. ] .ˆ ( )

T
ny

k kx x x é ù= = = ê úë û
ξ x (120)

On considering the control law (10)-(11) with the controller input vector (120), the expanded

form of a QNU with HONU feedback controller yields
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[ ]

[ ]

0,0 0, 0, ,
1 1 1

, ,
1 1

ˆ( )

ˆ ˆ ˆ .

y y yu

y

y u u u

y y

n n nn

i i n i i i i i j i j
i i i j i

n n n n

i n j i j j j ny i n j i i i j j j
i j i i j i

y k w w x w d p v x w x x

w x d p v x w d p v x d p v x

+
= = = =

+ + +
= = = =

= + × + × - × × + × × +

é ù é ù× × - × × + × - × × × - × ×ë û ë û

å å åå

åå åå

%

(121)

Then, as terms x̂ are purely step-delayed we may express the canonical state-space form for a

QNU, with CNU controller for the controller input (120) as

ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( 1) ( 1) ; ( ) ( ),k k k y k ké ù= - × × - + × - = ×ë û a ax A B Q x N u C x% (122)

where considering the adaptive feedback gain and controller weights are adaptive, it yields

2
0,0,1 1, , 0,0,2 2, , 0,0, , ,

1 2

2
0,0,1 1, , 0,0,2 2, , 0,0, , ,

1 2

( )

ˆ
( 2)

y y y y

y y y y y

y y y y

y y y y y

n n n n

y j j k j j k n n n n n
j j j j

n n n n

j j k j j k n n n n n
j j j j

p k n v v x x v v x x v v x

p k v v x x v v x x v v x

k k
k k

k k
k k

= = = =

= = = =

é ù
ê ú- × + × × + × × + ×
ê úë û

=
- × + × × + × × + ×

åå åå

åå åå
Q

L

M M M M

L

2
0,0,1 1, , 0,0,2 2, , 0,0, , ,

1 2

.

( 1)
y y y y

y y y y y

n n n n

j j k j j k n n n n n
j j j j

p k v v x x v v x x v v xk k
k k= = = =

é ù
ê ú
ê ú
ê ú
ê ú
ê ú

é ùê ú
ê úê ú
ê úê úë ûê ú
é ùê ú
ê úê ú- × + × × + × × + ×
ê úê úë ûë û

åå åå L

(123)

Further, the augmented input matrix ˆ aN and augmented input vector ˆ au  for the closed loop

may be defined as follows

0,0,0

0,0,0
0,0,0

0,0

( ) ( ) ( )
0

ˆ ( 2) ( 2) ( 2)ˆ, ,0 ( 1) ( 1) ( 1)1

y y yd k n p k n v k n

d k p k v k
d k p k v k

w

- - - × -é ù
é ù ê ú
ê ú ê ú- - - × -= =ê ú ê ú- - - × -ê ú ê úë û

ê úë û

a aN I u
MM (124)

where ˆ aN is a ˆ ˆ( 1)x xn n´ +  matrix, I is ˆ ˆx xn n´  identity matrix, and neural bias weights of a

controller, i.e. 0,0,0v  are considered as time-varying inputs for this nonlinear state space

decomposition.

Remark 3: HONU with Extension of Feedback controller with Inputs

In practical applications, it can be necessary to further incorporate previous step-delayed

inputs i.e. the desired value d in the sense of the closed HONU-MRAC control loop. In such
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case, the definitions (117)-(119) are also valid. The explicit numerical forms for computation

of the local characteristic coefficients ˆ
i

a and ˆ
i

b  for HONU models with extension of

HONU controllers i.e. ; 2r g ³ are therefore defined in the Table 6.

TABLE 6
EXPLICIT FORMS OF MATRIX COEFFICIENTS FOR HONU-MRAC LOOP

Index
Range i

General form of ˆ
i

a and ˆ
i

b  coefficients

QNU (Plant) +HONU (Feedback Controller)

( )1 y un n+K

0, , ,
1

0, ,
1 1

ˆ ( ) [ ( ) ( )]

( ( )) ([ ( ) ( )]

[ ( ) ( )])

n ny u
i i j i j ni yj i j

n n nu u u
n j i n l n j my y yj l j l

w w y k j w d k j p q k j

w C p q k j w C d k l p q k l

d k j p q k j

a +
= =

+ + +
= = =

= + - + - - × -å å

+ × - × - + - - × - ×å å å

- - × -

%

1 2 unK
[0, ,

1
2

ˆ ( ( )) ( ( ))

( ( ) ( )) ( ( ) ( ))]

n nu u
n i n l n j i ii y y yl j l

i i

w w C d k j C p q k j

C p q k l d k j C p q k l q k j

b + + +
= =

= + - + - × -å å

+ - × - - + × - - ×

CNU (Plant) +HONU (Feedback Controller)

( )1 y un n+K

0,0, 0, , 0, ,
1

, , , ,

0,0,
1

0, ,

ˆ ( ) [ ( ) ( )]

( ) [ ( ( )) ( ( ))]

([ ( ) ( )])

([ (

n ny u
i i l i l ii l i l

nn nyx x
j i j l i j l y y

j i l i l j

nu
l i

l

n l j iy

w w y k l w d k l p q k l

x w y k l w d k l n p q k l n

w C d k l p q k l

w C d k l

a +
= =

= = =

=

+

é ù
= + - + - - × -ê úå å

ê úë û
é ù

+ - + - - - × - - +ê úå å å
ê úë û

× - - × - +å

-

%

%

]

1

, ,
1

) ( )] [ ( ) ( )])

([ ( ) ( )] [ ( ) ( )]

[ ( ) ( )])

n nu u

l j l

n n nu u u
n m n j n l iy y ym j m l j

p q k l d k j p q k j

w C d k m p q k m d k j p q k j

d k l p q k l

= =

+ + +
= = =

é ù
- × - × - - × -å åê ú

ê úë û
é

+ - - × - × - - × -å å åê
êë

× - - × -
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1 2 unK

[

]

0,0, ,
1

2

, ,
1

ˆ ( ( )) ( ( ))

( ( ) ( )) ( ( ) ( ))]

([ ( ) ( )] [ ( ) ( )]

[ ( ) ( )])

n nu u
n i n l n j i ii y y yl j l

i i
n n nu u u

n m n j n l iy y ym j m l j

w w C d k j C p q k j

C p q k l d k j C p q k l q k j

w C d k m p q k m d k j p q k j

d k l p q k l

b + + +
= =

+ + +
= = =

= + - + - × -å å

+ - × - - + × - - +

é
- - × - × - - × -å å åê

êë
× - - × -

7.3 An ISS Approach to BIBS Stability of Decomposed Pointwise State-Space
HONU Representations (DDHS)

From the previous subsections, an approach via re-expression of a HONU model with

extension of a HONU feedback controller, into a decomposition of sub polynomials was

derived. To conclude this chapter, the main result of this dissertation is the DDHS method

for stability evaluation & monitoring of the discrete time adaptive control loop in real time.

From the principles of input-to-state stability (ISS)  [45], [76] and definitions of BIBO and

BIBS stability [48], [85] the following may be stated:

Definition 2: From [45] the decomposed state-space representation (108) is ISS stable

provided that

0( ) ( ( ) ) ( ( ) ),k k kub g ¥£ +x x (125)

where ( )b × represents a function of class Lk which is asymptotically stable such that the

function converges to a minimum for .k ®¥  Moreover, for a zero equilibrium that

( ) 0.b × ®  Further, ( )g × represents a classk¥ function which is unbounded and strictly

increasing such that about an initial zero state that 0g = and for , .k g®¥ ®¥ For

derivation of the DDHS method, let us firstly consider the general solution of a discrete time

nonlinear state space system and its expression in state space as

0

1 11

0
0

( ) ( ) ( ) ( ) ( ) ( ),
k kk

kk i
k k i

kk k
k k k

- --

== =
= + ×åÕ Õx A x A B u (126)

where,

0

1 11

0
0

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
k kk

kk i
k k k i k k

kk k
k k k

- --

== =

é ù
ê ú+ = + × +
ê ú
ë û

åÕ Õx A A x A B u B u (127)
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Then considering the definition 2, we can take the norm of both sides of (126) which yields

0

0

1 11

0
0

1 11

0
0

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) .

k kk

kk i

k kk

kk i

k k i

k k i

kk k

kk k

k k k

k k k

- --

== =

- --

== =

£ + ×

£ × + ×

åÕ Õ

åÕ Õ

x A x A B u

x A x A B u

(128)

Then, considering the solution as a summation of homogenous and particular solutions, we

may via the adoption of the BIBS discrete-time variant systems theory of [85]

setting ˆ ( ) 0k =au  then for all 0k k" ¹ if the following holds

0

1

0 0( ) ( ) ( ) ( ) ,
k

k
A

k
k k M k

k
k

-

=
£ × £Õx A x x (129)

where sup{ ( -1) }AM k= A , then since due to the normalization of terms in ( -1)kA  if 1AM < ,

as 0( ) ( )k k for k® ®¥x x  about the point 0( )kx  the system (108) is locally asymptotically

stable. With respect to Definition 2, the term
0

1

0( ) ( )
k

k
k

k
k

-

=
×Õ A x  qualifies as a Lk class

function. Moreover, via setting 0( ) 0k =x we may analysis the conditions of the particular

solution yielding a classk¥ function, where the following inequality should be satisfied

further for BIBS

11 1

0 0

( ) ( ) ( ) ( ) ( ) ,
kk k

k
B A

k ki
k i M M k

k kk
k k k

-- -
-

= ==
£ × £å åÕx A B u u (130)

where sup{ }BM = <¥B . Therefore, if 0( 1) ( )uk L k k- £ <¥ ³u  then

1

0

( ) ( ) . ,
1

k
k B

B A
Ak

Mk M M
M

k

k
k

-
-

=
£ =

-åx u (131)

where the ratio /(1 )B A xM M L- =  for any ( 1) uk L- £u , ( ) .xk L£ <¥x  Therefore according to

[44], [85] the nonlinear discrete time state space system is BIBS stable. We may therefore

recall that the above stability proof further applies to the proposed decomposed state space

system (108), thus the following theorems can be stated
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Theorem 3 (DDHS): The time-variant LMD of a HONU model or its extension as a

nonlinear control loop i.e. ; 2r g ³ , in accordance to the representations (106) and (117)-(119)

is locally BIBO stable, further locally asymptotically stable at the given state at sample k if

ˆ ˆ( ( 1)) 1; ( ( 1)) 1,k kr r- < - <A M (132)

Theorem 4 (DDHS): The decomposed state-space representation (108) is BIBS stable for a

single recurrent HONU, from initial sample time 0k until k provided that

0

1 11
( )0

0

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0,
k kk

kk i
S k k i k

kk k
k k

- --

== =
-= - × × × £åÕ Õ aax A x A B u (133)

where multiplications of local matrix of dynamics ˆ (.)A  leads to the corresponding state

transition matrices and 0k  is the initial stability evaluation sample time index. Then

considering the control loop decomposed state space representation in (117)-(119), the BIBS

stability of an MRAC-HONU control loop, from initial sample time 0k until k , is justified if

0

1 11
( )0

0

ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0,
k kk

kk i
S k k i k

kk k
k k

- --

== =
= - × - × × £åÕ Õ aax M x M N u (134)

where the state transition matrix correspondingly utilizes the local matrix of

dynamics ˆ (.)M ((122)-(123)).

Remark 4: From the theorems 3 & 4, in order that the DDHS method is valid in accordance

to the theorem of ISS based stability in (125) the following restrictions yield:

i) The function defined as
0

1

0 0
ˆ ˆ( ( ) ) ( ) ( )

k

k
k k

k
b k

-

=
= ×Õx A x  for 0k k" < <¥  must be

asymptotically stable to remain as a Lk class function.

ii) The asymptotic stability of 0( ( ) )kb x in i) can be justified if

0

1

0
ˆ ( ) 1, .

k

k
k k

k
r k

-

=

æ ö
ç ÷< " < <¥
ç ÷
è ø
ÕA

Theorem 5 (Strict DDHS): Provided that the conditions (133) & (134) for BIBS stability hold

then from an initial time 0k  the BIBS stability is more strictly guaranteed if

( ) ( 1) 0S k S k k£ - " < <¥  i.e.
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( ) ( ) ( 1) 0 0 ,=S k S k S k kD - - £ " < <¥ (135)

where considering setting of 0 3k k k> = -  in the expression (133), the strict DDHS condition

may be obtain as

1 2
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3 3
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The condition is analogical for the closed loop system represented in (122)-(123). As can be

seen the DDHS condition incorporates neighbouring process dynamics for given bounded

process inputs, without being fixed to a given learning algorithm which is advantageous for

practical application.

8 Experimental Analysis: Stability for HONU Adaptive Models and
their Extension as a HONU-MRAC Control Loop

Following the theoretical background of HONUs and further the newly derived DHS and

DDHS method, in this section a practical view into the use and properties of various HONUs

(namely QNU and CNU, , ,r ig =  where 2,3.i = respectively) for adaptive identification and

control is provided. As an extension of the work [90], this section demonstrates the validity

and effectiveness of the DHS method based from the presented theories of BIBO, BIBS and

Lyapunov stability criteria and further compares its results within defined limits of the DHS

method to validate the DDHS method. Several practical applications are implemented on

real-time engineering processes in the proceeding chapter, to justify its use for real industrial

applications.

8.1 Nonlinear Position Feedback System Stability Analysis

To illustrate the performance of HONU adaptive identification and control to practical

nonlinear system applications, further validation of the DHS and DDHS methods for

application to HONU architectures. Let us consider a position feedback system as a

modification of [84] described by the following relation
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An intriguing property of this system lies within the dependence of the conditional gain a  in

the state variable equation 2x& . On selecting a suitable Lyapunov function describing a

resulting energy function as follows

2
2

0
( ) ,

2

ETV x f d= + ¶ ¶ò (138)

where the time constant 1T =  and u  described as a ( )f E  as the system input, with an

incorporated input saturation in range 0.5± . Here, if 2 0E x= =  the condition 0V = is

satisfied from the function(138). From this it follows that
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2 2
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(139)

Thus, the resulting condition of the derivative of the Lyapunov function yields that if

20 .[ 1]/x u a a³ ³ -  that the system is within a region of stability about the zero-equilibrium

point. In this example a QNU is chosen featuring four previous output values of the

identified neural model 4yn =  and three previous input values of the process 3un = , trained

via the GD learning algorithm where 0.2a =  for identification under stable system

dynamics. As an initial, two separate models are derived. As seen in Figure 34, a well

identified QNU trained via the GD algorithm (t < 140[s], 0.004m = ) is compared with

perturbed neural weights (via multiplication of the well derived neural weight by the factor

1.22), introduced from t >140[s] on the process data, incorporating the same model

configuration. From Figure 34, it is evident that the HONU model with perturbed neural

weights encompasses unstable behaviour upon reapplication on newly fed input data from

t>140 [s].



Peter Mark Beneš

Page 94 of 134

20 40 60 80 100 120 140 160
t [s]

-1

0

1

2

3

4
y 

[-]
d

y_Plant
y_HONU_Model

Figure 34 – HONU model performance of a well identified (stable, 0.004m = ) QNU plant model in region t < 140[s] and
perturbed neural weights (unstable, 1.22 w× ) in region of t >140[s] of the nonlinear position feedback system. For stability
analysis refer to Figure 35-Figure 37.

As hypothesised Figure 35 a) illustrates the corresponding eigenvalues of A for the unstable

HONU model, compared with b) illustrating the eigenvalues A corresponding to the well

identified HONU model. From this diagram it is evident that the stable HONU model

features all eigenvalues within the unit circle, contrary to the unstable HONU model where a

clear positioning of the eigenvalues beyond the region of stability is evident. Given this

result, the first remark of the DHS condition (88) yields that for the HONU model applied in

time t<140[s] the BIBO stability of the model is satisfied for states in vicinity of the upper

steady-state value.
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Figure 35 – DHS: Dispersion of respective HONU model eigenvalues for a Position Feedback System (Figure 34) a)
Unstable HONU Model t>140[s] b) Stable HONU model t<140[s], derived about the upper steady state region. Concept
presented in [90] and [107].
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Figure 36 – Dispersion through time of respective HONU model LMD eigenvalues for a Position Feedback System (Figure
34) a) Unstable HONU model t=130-150[s] b) Stable HONU model. Concept presented in [90] and [107].

In accordance with the DDHS method, an evaluation of the local matrix of dynamics (LMD)

of the HONU model ˆ ( )A k eigenvalues about each respective state point throughout the set of

process operational points in time region t<140 [s], all eigenvalues are within the unit circle,

contrary to that of the unstable HONU model applied from t>140 [s]. Thus, in accordance

with the remarks of the DDHS method, the respective HONU model in region t<140[s] is

justified to be locally BIBO stable for states within region of the upper steady-state point.

From analysis of the BIBS inequality condition (133).
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Figure 37- DDHS: Evaluation through time of BIBS condition (133), for Figure 34 a) stable and b) unstable HONU model
from t>130[s] in Figure 34. The right-hand-side (BIBS-RHS) of  (133) is less than the normalised state vector norm as
t>140[s], hence violating the condition of BIBS stability. Concept presented in [90] and [107].
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Figure 37 a), the HONU normalised state vector norms are evidently less than the

corresponding state transition matrix conditions at time sample k  across the applied region

of t >130 [s], for the derived stable HONU model parameters. However, in Figure 37 b) the

respective normalised state vector norms ( )ˆ kx  at each time sample k yield values greater

than the rate corresponding to the state transition matrices for t >140 [s], thus, a clear

violation of the BIBS stability is seen. Figure 38 illustrates the performance of a tuned LNU

model with extension of a LNU and QNU feedback controller separately (of the same

parameters and RLS learning algorithm) where both the plant and controller feature

4yn = and previous HONU model output values and 3un = previous process inputs. From

Figure 38 b) it is intriguing that although a recurrent (dynamical) LNU is used as a single

controller in feedback on a non-linear process. Due to the rather weak non-linearity of

variable constant 0.2a = , under incremental training via RLS through time, the LNU-LNU

control loop model performs very well in comparison to a more appropriate non-linear

(LNU-QNU) control loop variant.

Following analysis of the performance of a HONU model under both a stable and unstable

set of HONU model neural weights, as a further study we may analyse the performance of

the DHS and DDHS method on extension of a HONU-MRAC closed control loop. Figure 38

thus depicts the performance of a well identified HONU model with extension of a HONU

feedback controller where 0.9998m =  (i.e. HONU-MRAC closed control loop), with

exception of the time interval t=70-85 [s] where a second set of poorly identified HONU-

MRAC controller weights are applied, identified with a rapid increase of learning rate

0.9821m = . From Figure 38 under stable control, the derived HONU-MRAC control loop

exhibits excellent control performance in adhesion to the desired reference model of the

position feedback system whilst featuring optimised speed in the process convergence to the

setpoint value. In contrast, it is clear that the poorly identified HONU Model with extension

of HONU feedback control exhibits an unstable response as applied from a zero-state region.

Given this, our natural hypothesis is with regards to the position of the HONU-MRAC

control loop eigenvalues corresponding to violation of local BIBO stability can be seen via

analysis of the LMD eigenvalues of M  in Figure 38 c) and d) respectively.
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Figure 38 - a) LNU-QNU control loop trained both via RLS and introduced instability t=70-85 [s]. b) LNU and QNU
controller comparison c) LMD eigenvalues at t=0-85 [s] (with poorly identified neural weights) d) t=85-200 LMD
eigenvalues (with well identified neural weights). Presented in [89].

-1.0 -0.5 0.0 0.5 1.0
Re[-]

-1.0

-0.5

0.0

0.5

1.0

Im
[-]

a)

-1.0 -0.5 0.0 0.5 1.0
Re[-]

-1.0

-0.5

0.0

0.5

1.0

b)

Figure 39- DHS: Dispersion of respective HONU model eigenvalues for a Position Feedback System (Figure 38) a)
Unstable HONU model with HONU feedback controller (t=70-85 [s]) b) Stable HONU model with HONU feedback
controller, evaluated about the initial state. Concept presented in [90] and [107].
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For validation of local BIBO stability Figure 39 a) and b) illustrate the corresponding

eigenvalues of the matrix of dynamics M about the initial zero value region. Here, it is

evident that on analysis of the time-invariant matrix of dynamics from t=70-85 [s] a violation

of the BIBO stability is seen, which corresponds similarly to the results of the LMD ˆ .M

Figure 40 a)-b) illustrates a sufficient simplification of the BIBS condition from (134) for

repeated application of the bounded process or further, control inputs the given operating

region as exampled in Figure 34. If the norm of the state transition matrix calculated across

the defined operating region is converging to the threshold defined by the value 1B i.e.

0

1
.1

ˆ ( )M
k

k
B

k
k

-

=
£Õ  Further, that the sum of norms of the STM as a product with the input

matrix i.e.
11

2
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ˆ ˆ( ) ( )aM B
kk
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i B

k k
k

--

= =
£×å Õ holds, BIBS stability is sufficiently reasoned as the

HONU-MRAC control loop response must be bounded (the values summarized in Table 7).
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Figure 40- Evaluation through time of BIBS state transition matrix conditions from (134) to unstable HONU model with
HONU feedback controller (t=70-85 [s]) (Figure 38). The respective matrix norms breach convergence of the derived
boundaries for the given process region in Table 8. Concept presented in [90] and [107].
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TABLE 7
STATE TRANSITION MATRIX (STM) NORM ANALYSIS OF DDHS

Time Region
t=65-75[s]

0

1
ˆ ( )M

k

kk
k

-

=
Õ

11

0

ˆ ˆ( ) ( )aM B
kk

k i
i

k k
k

--

= =
×å Õ

Stable HONU 2.44948 3.34162

Unstable HONU 3.44954 12.8635

In Figure 41, confirmation of these results can be seen where the BIBS condition (134) is

evaluated separately as a rate of state transition matrices (RHS) in comparison with the

normalized state variable vector ˆ ( ) .kx
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Figure 41-DDHS: Evaluation through time of BIBS condition (134), for stable and unstable HONU-MRAC control loop
(Figure 38). Due to unstable HONU model with HONU feedback controller (t=70-85 [s]). S function evaluated without
state variable vector norm of  (134) is less than the normalised state vector norm as t>70[s], hence violating BIBS stability.
Concept presented in [90] and [107].

However due to the relation (134) accounting for the previous samples of HONU-MRAC

state transitions, it justifies the trajectory in state space for the given control input is

becoming unstable as opposed to the local dynamics in vicinity of the discrete state point. In

such case, though the LMD eigenvalues may locally recover i.e. (.) 1r £ in the sense of an

adaptive control loop, however in a global sense the HONU-MRAC response may be

dynamically unstable with respect to transition from neighbouring states. Thus, from the

above analysis we may conclude that the DDHS method is indeed a functional means for

verification of BIBS stability of a HONU model and its application as a non-linear control
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loop. This was verified by analysis of the DHS in the same operating regions and as a further

this dissertation analyses investigates its validity on several non-linear liquid tank systems as

presented in the proceeding section.

8.2 Nonlinear Two-Funnel Tank System Stability Analysis

As a further example a nonlinear two-funnel tank system is considered. Studied from the

work [86], the system may be described via the following balancing equations of motion

2
1

1 1 1 22 2
1
2

2
2 1 1 2 2 22 2

2

4

4 ,

f

f

dh H q k h h
dt D h

dh H q k h h k h
dt D h

p

p

é ù= - -ë û

é ù= - - -ë û

(140)

where 2.5m,  1.5mH D= =  valve constant 3
1 0.316m / mink = , and 3

2 0.296m / mink = .

With regards to the system inputs, the variable 2 fq corresponds to the inlet flow rate of the

second funnel tank where the inlet flow rate into the first tank 1 fq  is considered constant at

0.1999 m3/min, with the system output being the second tank height 2h . As an initial the

stability of the system about the zero-equilibrium state may be analysed on selection of a

suitable Lyapunov function candidate
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where we may satisfy that about the states 1 2 0,h h= = 1 2( , ) 0V h h = .  Further for 1 2( , ) 0V h h <& ,
it yields that
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where from (143), given valve constants 1k and 2k are always positive, it is evident that the

condition 1 2( , ) 0V h h <&  is satisfied across any positive inputs. Given this analysis, the

example is focussed rather on the HONU-MRAC closed loop stability analysis with further

insight to the influence on adaptive gain parameter p  on the overall control loop stability.

As an initial, Figure 42 depicts adaptive identification on the standalone nonlinear two-

funnel tank system. Here, a disproportional rate of convergence to steady state for the various

process inputs can be seen with various degrees of static gain with respect to the ratio of

process inputs to outputs, which is dictated via the square relation of tank height 2h .
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Figure 42 – Adaptive identification of standalone nonlinear two funnel tank system with QNU (HONU, r=2) trained via L-
M algorithm 6yn = , 8un = .

Two respective HONU-MRAC control loops are identified, the configuration parameters of

which are summarized in table 8. To illustrate the performance of each derived HONU-

MRAC control loop, a comparison is shown in Figure 43 with a conventional PID controller

with the proportional gain setting of 0.2 1.8.or = -

TABLE 8
HONU-MRAC CONTROL LOOP PARAMETERS

Type HONU Setup Pre-training

LNU Plant + QNU Controller

Plant Recurrent
LNU (r=1)

4yn = 5un = L-M (batch), 3000 epochs

Controller Feedback QNU (r=2) 4yn = 5un = NGD (sample-by-sample),
100 epochs
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QNU Plant + QNU Controller

Plant Recurrent
QNU (r=2)

4yn = 5un = L-M (batch), 1000 epochs

Controller Feedback QNU (r=2) 4yn = 5un = NGD (sample-by-sample),
100 epochs

0 5 10 15 20 25 30 35 40
t [s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1.6

1.8

y 
[m

]

a)
d=0.85
d=1.3
y_PID,ro=0.75
y_PID,ro=1.8
y_LNU_QNU
y_QNU_QNU

60 80 100 120 140 160 180
t [s]

0.5

0.6

0.7

0.8

0.9

1.0

y 
[m

]

b)
d

y_HONU

Figure 43 – Comparison of conventional PID controller with variable proportional gain and performance of the derived
HONU-MRAC control loop. HONU-MRAC features fast dynamic response and better adhesion across the range of desired
system operating points of the nonlinear two funnel tank system. Concept presented in [90] and [107].

Although the PID controller is able to adequately perform with minimal overshoot at lower

liquid levels, a controller of the same parameter settings is unable to adequately achieve the

desired speed of convergence and minimal steady state error for the whole range of identified

process operating points. However, the derived QNU-LNU closed control loop derived is

indeed able to achieve fast speed of convergence and minimised steady state error about all

trained operating points, even as a standalone closed control loop of constant parameters,

whilst also maintaining a similar computational efficiency due to its polynomial structure as

compared with the conventional PID control algorithm. It is also intriguing that an LNU

plant model trained via batch learning algorithms further applied with incremental training as

a real-time control loop performs sufficiently well, in comparison to the faster QNU-QNU

control loop configuration.
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Figure 44- DHS: a) Randomly changed controller gain ( )p t in adaptive QNU-QNU control loop (instability onset
( 164.6) 1.18p t = =- ). b) Control loop output and the reference (desired) output. c) ( )tr computed via DHS. Concept

presented in [90] and [107].

Following the design of the respective HONU-MRAC control loop, for the next stages of

analysis let us consider the QNU-QNU closed control loop summarized in Table 6. To

analyse validation of BIBS stability via the DDHS method, and further influence of the

adaptive gain parameter p the HONU-MRAC control loop is initially applied with NGD

training on the previously identified plant model dynamics from Table 6, using the pre-

trained HONU feedback controller weights as an applied constant parameter control from

t=0-150. The adaptive gain parameter 0.01p=- is constantly applied until t=150[s]. In the

same data set (epoch) from t>150[s] the HONU-MRAC is applied as an adaptive parameter

control loop where the gain parameter p is manually updated sample-by-sample in

accordance to Figure 44 from t=164[s]. A corresponding analysis of the spectral

radii ( ( ))M kr , corresponding to the local BIBO stability via DHS method is further

illustrated in Figure 44 b).

Figure 45 analyses the performance of the DDHS method via BIBS stability analysis. The

HONU-HONU control loop (the same as in Figure 44) corresponding to ( 164) 0.985p t < =-

and ( 164) 2.25p t ³ =- are simulated. From this analysis, 0.985p=- provides the optimal

performance, reducing the steady state error within several samples; however, an unstable
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response develops after introducing 2.25p=-  (Figure 45 a)), where the BIBS stability

condition (134) shows the stability violation after ( 164.6) 1.18.p t = =-
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Figure 45 - DDHS: a) QNU-QNU control loop (as in Figure 44) responses with feedback controller gain
( 164) 0.985p t > =- (stable) and ( 164) 2.25p t > =- (unstable). b) BIBS stability condition via DDHS is violated

for ( 164) 2.25.p t > =- Concept presented in [90] and [107].

8.3 Two-Tank Liquid Level System Stability Analysis

As a continuation of the HONU-MRAC control loop study presented in section 5.1, let us

recall the two-tank water level system, defined via the following mathematical relations

1
1 1 2

2
1 1 2 2 2

2 ( )

2 ( ) 2 .

t db

db dc

dhA Q C s g h h
dt
dhA C s g h h C s g h
dt

× = - × × × × -

× = × × × × - - × × × ×
(144)

Let us further consider the same design parameters where the tank cross-sectional area
2[ ],0.002 mA= the respective cross-sectional area of the orifices 2

1 2 0.000785[ ],s s m= =

orifice discharge coefficients 0.60.db dcC C= = Further, let us consider the fluid medium to be
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water with density 31000[ / ]kg mr =  and the gravitational constant of

acceleration 29.81[ ]g ms-= .

As the focus of this section is to analysis the stability of the presented HONU-MRAC control

loop design presented in 5.1, let us consider the design of a HONU-MRAC control loop on a

simulated version of the plant (144). In this case an LNU-QNU closed control loop is

identified via RLS training with 5 previous model output values. 4 previous process inputs

are further incorporated into the input vector. The HONU feedback controller consists of a

single HONU feedback controller with the same input vector length i.e. 5yn = and 4,un =

the feedback gain 0.01p =  and sampling period 0.4 [s] (a comparison of the HONU-MRAC

loop as an offline tuned and real-time constant parameter loop is shown in  Figure 46 ).
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Figure 46-Real-time online HONU adaptive feedback control of two-tank water level system, compared with the offline
tuned HONU-MRAC control loop response. As presented in [97], [107], [92] and further studied in [91].

To provide a preliminary assessment into stability, after 200 epochs of training, in the last

training epoch a large increase in the learning rate is introduced to 0.9998m = at time

t>488[s] on the simulated plant. From Figure 47 c) and d) it is evident that from t>490[s] the

condition (134) switches from a monotonic decrease to 0SD >  and hence signifies the onset

of instability where the BIBS condition is violated for t>492[s]. This is reflected in the

Figure 47 b) via the violation of BIBO stability corresponding to spectral radii

(.) 1r > however due to the relation (134) accounting for previous samples of HONU-MRAC

state transitions, the strict DDHS condition (135) yields a stronger condition that clearly

pronounces that onset of instability. It further justifies the trajectory in state space for the
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given control input is becoming unstable as opposed to the local dynamics in vicinity of the

discrete state point.
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Figure 47 -a) Adaptive (RLS) LNU-QNU control loop becomes unstable soon after learning rate ( 488) 0.9998tm > = .b)
Spectral radii through time of LNU-QNU closed loop LMD  c) BIBS condition (134) through time. d) Strict DDHS reveals
onset of instability soon after learning rate becomes changed for t>488. Presented in [97] & [107].

Following stability assessment on the simulated plant, following from Figure 46, we may

also validate the whole LNU-QNU closed loop stability via the DHS and DDHS conditions.

An intriguing result from the applied real-time implementation in Figure 46 is that for

varying operating levels, such nonlinear HONU-MRAC control loop is capable to operate

with similar performance where the natural static gains of the system differ, even as a

constant parameter control loop. Following analysis of the simulated two-tank control loop

stability, Figure 48 shows the computation of eigenvalues in region of each steady-state

operating point (0, 1.5, 2.5 and 3.5 [cm]) for the real-time implementation of the HONU-

MRAC control loop. Indeed, the BIBO stability for the linearized approximation of the

LNU-QNU closed control loop is verified in accordance to the DHS condition.
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Figure 48- DHS: Dispersion of HONU model eigenvalues with extended HONU feedback control for real two-tank water
level system (Figure 46), evaluated about  a) 0 [cm], b) 1.5 [cm] c) 2.5 [cm] d) 3.5 [cm]. Concept presented in [90] and
[107].
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Figure 49 - Moduli of HONU model LMD eigenvalues with extended HONU feedback control for real two-tank water level
system control (Figure 46). Concept presented in [90] and [107].
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The results of Figure 49 further illustrate the local BIBO stability are satisfied

via (.) 1r < across all operating points in each sample of ( )ˆ .M k  Figure 50 a) and b) analyse a

comparison of the normalised state vector norms with the sum of state transition matrix

norms from the BIBS condition (134) in time regions t=0-250 and t=255-500 respectively,

where 0k is selected at each change of the desired setpoint.
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Figure 50- DDHS: Evaluation through time of BIBS condition(134) from Figure 46. a) Evaluation of BIBS condition (134)
for t=0-250 and t=255-500  of HONU-MRAC closed control loop b) Detail of state vector norms. The sum of state
transition matrix norms of  (134) is greater than the state vector norm across both operating regions, respecting the
condition of BIBS stability. Concept presented in [90] and [107].
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Figure 51- DDHS: Evaluation through time of BIBS condition (134) from Figure 46. a) Evaluation of BIBS condition (134)
for t=505-750[s] and t=755-1000[s] of HONU-MRAC closed control loop b) Detail of state vector norms. The sum state
transition matrix norms of  (134) is greater than the state vector norm across both operating regions, respecting the
condition of BIBS stability. Concept presented in [90] and [107].
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From Figure 51, a similar conclusion yields with respect to evaluation over time regions

t=505-750 and t=755-1000. From analysis across all state points of the normalised state

vector norms in comparison to the sum state transition matrix norms of the BIBS condition

(134), both respective time regions conclude BIBS stability is satisfied on application of the

real-time constant parameter LNU-QNU control loop applied to the two-tank liquid level

system.

8.4 Experimental Railway Stand (CTU Roller Rig) Stability Analysis

Following the study of HONU-MRAC adaptive control as applied to the CTU roller rig in

section 5.2, this section provides a continuation via comprehensive stability analysis with the

proposed DHS and DDHS methods for the main control results presented in section 5.2. As

an additional means of validation, a Lyapunov inequality condition is derived and applied to

compare the presented results following from the BIBS based condition derived in section

6.3.

8.4.1 HONU-MRAC Stability Analysis for Conventional Wheelsets

As this section aims to analyse the stability of the derived HONU-MRAC control loop as

applied to a conventional wheelset configuration, let us consider the mathematical model of

the roller rig as described in relations (30)-(35). Then, as a means of validation and

comparison behind the newly proposed DDHS approach, let us derive a Lyapunov function

based rule for assessing the adaptive control algorithm of the whole HONU-MRAC loop.

Taking a modification of the Lyapunov function candidate presented in [20] we may define

the following
2( ) ( ) ( ) ( )TV k e k k k= +D Dv v , (145)

given the relation (145), it is apparent that for Lyapunov function based stability the

following difference should be evaluated

2

2

( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( 1) ( 1) .

T

T

V k V k V k e k k k

e k k k

D = - - = +D D

- - -D - D -

v v

v v
(146)

From (145) via RLS algorithm the following weight update rule may be defined

1( ) ( 1) ( ) ( ) ( )Tk k e k k kx -= - + × ×v v col R . (147)

Then it yields that,
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2 1

1 2

1

1

( ) ( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( 1)

( 2) ( 1) ( 1) ( 1)

( 2) ( 1) ( 1) ( 1) .

T

TT

T

TT

V k e k k e k k k

k e k k k e k

k e k k k

k e k k k

x

x

x

x

-

-

-

-

é ùD = + - + × ×ë û

é ù× - + × × - -ë û
é ù- - + - × - × -ë û

é ù× - + - × - × -ë û

v col R

v col R

v col R

v col R

(148)

From the definition of Lyapunov stability, provided that ( ) 0V kD < , and given the update rule (147)

for ( 2)k -v it yields that for asymptotic stability

2 1

1

1 1

2

( ) ( 1) ( ) ( ) ( )

[ ( ) ( ) ( )] ( 1)

[ ( ) ( ) ( )] [ ( ) ( ) ( )]

( 1) 0.

TT

T T

T T T

e k k e k k k

e k k k k

e k k k e k k k

e k

x

x

x x

-

-

- -

é ù+ - × × × +ë û

× × - +

× × × × ×

- - <

v col R

col R v

col R col R
(149)

Thus, the relation (149) may be reduced to the following inequality

1

1

1 1

2 2

( 1) ( ) ( ) ( )

[ ( ) ( ) ( )] ( 1)

[ ( ) ( ) ( )] [ ( ) ( ) ( )]

( 1) ( ) ,

TT

T T

T T T

k e k k k

e k k k k

e k k k e k k k

e k e k

x

x

x x

-

-

- -

é ù- × × × +ë û

× × - +

× × × × ×

< - -

v col R

col R v

col R col R
(150)

then given each term is a scalar, taking the norm of both sides yields following generalized

condition for asymptotic stability about a given state point

2 2

( 1) ( ) ( ) ( 1) ( ) ( )

( 1) ( ) .

T T Tk k k k k k

e k e k

- ×D +D × - +D ×D <

- -

v v v v v v
(151)

Following derivation of the Lyapunov stability condition (145)-(151), the LNU-QNU control

loop (as shown in Figure 18) is applied in real-time with RLS training. From Figure 52 a) at

t=280 an increase in the learning rate is induced such to cause unstable set of derived neural

weight in the feedback controller. Further during adaptation, the controller gain 0.65p= is

set constant. In Figure 52 a comparison with the derived Lyapunov stability condition (145)-

(151) and strict DHS condition (135) validates the proposal of SD  for monitoring of

approaching instability of the whole control loop, before the control loop is highly unstable

from t>319.
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On comparison with (151) the condition 0VD < is again achieved in t=312[s] where the

condition SD continually increases. This is also the advantage for practical application to

monitor state transition based criteria which more globally encompasses the whole system

dynamics with respect to neighbouring states as opposed to local state point stability as in the

sense of the Lyapunov condition (151). Further, on monitoring real control loop stability via

DDHS in Figure 54 b) it is clear that as long as the HONU-MRAC control loop is stable

during adaptation, even with initially poorly tuned neural weights the BIBS condition

monotonically decreases while control performance adaptively improves.
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Figure 52:  a) LNU-QNU control loop with RLS pre-training and adaptive GD in last epoch becomes unstable soon after
learning rate ( 280) 0.01tm > = .b) Analysis of spectral radii through time (BIBO stability) via DHS c) Validation and
comparison with Lyapunov condition (151) and strict DDHS (135) which reveals clearer condition for ongoing instability of
whole LNU-QNU loop. Concept presented in [90], [107] and [106].

8.4.2 HONU-MRAC Stability Analysis on Real Roller Rig with IRW Configuration

With concern to any real-time adaptive control algorithm stability yields to be a key topic to

ensure the derived control loop either, applied as a constant parameter configuration or,

online adaptive form as in Figure 54 a) maintains dynamical stability along its trajectory in

state space for the required operating points. As an initial, the time-invariant matrix of
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dynamics M eigenvalues are evaluated over the steady state regions of a) t=120-150[s], b)

t=150-180[s] and c) 180-210[s].
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Figure 53 – DHS: Dispersion of GD tuned LNU-QNU closed control loop eigenvalues for real-time control of the roller rig
system (Figure 24), evaluated about a) t=120-150 [s] (0 [mm]), b) t=150-180 [s] (2 [mm]) c) t=180-210 [s] (3 [mm])
respectfully. Concept presented in [90] and [107].
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Figure 54 – a) Fully adaptive HONU-MRAC control loop via QNU plant trained via NGD and LNU feedback controller
trained via RLS learning algorithm. 4yn = , 5un = . QNU-LNU configuration optimises within 4 epochs, from changed

bogie frame stiffness and damping dynamic properties. b) DDHS stability condition (for 0 0k = ). c) Strict DDHS confirms
stability of the control loops Concepts presented in [88], [95] and [107].
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In Figure 53 it is evident that all eigenvalues of the matrix of dynamics M  evaluated from

the response Figure 26 respect local BIBO stability from (88). On analysing the HONU-

MRAC closed control loop stability via the DDHS in Figure 54 b) –c), it is clear that as long

as the HONU-MRAC control loop is stable during adaptation, even with initially poorly

tuned neural weights, the BIBS condition monotonically decreases while control

performance adaptively improves.

In this section the design and application of a HONU-MRAC closed control loop was

investigated and successfully verified as a means of effective real-time control of the lateral

skew of an experimental railway stand with IRW wheelset configuration for low to mid-

range speed. Along with verification of the HONU-MRAC whole closed control loop

stability both as a constant parameter closed control loop and via real-time controller

parameter tuning. The evaluation via DHS justifies the results of local BIBO stability via

DDHS evaluation. Furthermore, both the theoretical study of an unstable adaptive control

loop applied to a convention wheelset configuration and further real-time adaptive control

loop on a IRW configuration, verified the capabilities of the DDHS approach to detect an

oncoming set of instability as well as validating real-time BIBS stability of the applied

HONU-MRAC adaptive control loop. As a further to the results presented in this

dissertation, an extension of this work for future research could be to analyse application

under higher speed ranges as well as MISO or moreover, MIMO process configuration.

8.5 HONU-MRAC Design for Barrier Drive Control Stability Analysis

Following design of the HONU-MRAC closed control loop as presented in section 5.3, an

analysis into the application of the DHS and further DDHS conditions may be used to justify

the designed HONU-MRAC closed control loop stability during application about critical

operating points of the barrier drive motion. For the scope of this section, the real-time

results of Figure 32 corresponding to the HONU-MRAC closed control loop response of

barrier drive 2 are considered. Figure 55 thus illustrates evaluation of the HONU-MRAC

matrix of dynamics M  evaluated about the upper and lower speed limits of the barrier

motor, for opening and closing of the barrier boom respectively.
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Figure 55 - DHS: Dispersion of HONU model eigenvalues with extended HONU feedback control for real SIM 6/13 Barrier
drive control (Figure 32), evaluated for a) Opening b) Closing in region of the upper speed limit. Concept presented in
[90], [107] and [96].

From Figure 55 a) and b) representing the eigenvalues of the HONU model with extension of

a HONU feedback controller as a closed HONU-MRAC control loop, all eigenvalue

positions for control during both opening and closing phases lie with the unit circle and

hence, conclude the local BIBO stability of the applied constant parameter HONU-MRAC

control loop.
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Figure 56: Spectral radii through time rho(M) of HONU model LMD eigenvalues with extended HONU feedback control
(Figure 32) on newly tested samples for HONU-MRAC closed control loop. For real control application see section 5.3.
Concept presented in [90], [107] and [96].
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Figure 57- DDHS: Evaluation through time of BIBS condition (134), for Figure 32. a) Barrier upward motion and b)
Barrier downward motion in  under application of HONU-MRAC control loop with newly tested samples. The right-hand-
side (RHS) of (134) is greater than the normalised state vector norm and hence satisfying the condition of BIBS stability.
Concept presented in [90], [107] and [96].

Figure 56 illustrates the dispersion of spectral radii for the HONU LMD M̂ in respective

operational regions for opening and closing of the barrier drive motion. From the time 17 [s]

during opening of the barrier, all spectral radii are positioned well within the unit value,

further justified from the local BIBO analysis via DHS. This result is similarly reflected from

the time region 29 [s] during the closing phase of the barrier boom arm. From these results,

an analysis of the BIBS stability condition in (134) shows the normalised state vector norm is

less than the sum of STM matrix norms of the BIBS stability condition (134) (Figure 57),

which concludes the HONU-MRAC control loop is also BIBS stable along its trajectory

across all state points in the opening and closing regions.

As the applied operation of the barrier drive is fixed for opening and closing regime, a

simplification of the BIBS condition (134) can be evaluated for such repeated application.

If the norm of the state transition matrix calculated across the defined operating region is

converging to the threshold defined by the value 1B i.e.
0

1

1
ˆ ( )

k

k
B

k
k

-

=
£Õ M  (defined in Table 9).

Further, that the sum of norms of the STM as a product with the input matrix

i.e.
11

2
0

ˆ ˆ( ) ( )aM B
kk

k i
i B

k k
k

--

= =
£×å Õ converges to the threshold 2B , sufficient constraints are proven
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for the HONU-MRAC closed control loop to maintain BIBS stability along its trajectory,

with given bounded control inputs.
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Figure 58 - Evaluation through time of forced and unforced BIBS condition in (134) for Figure 32. a) Barrier upward
motion and b) Barrier downward motion in. The respective matrix norms indicate boundary values for convergence of the
HONU-MRAC control loop with the respective operating region for upward and downward barrier control. Concept
presented in [90], [107] and [96].

TABLE 9

STATE TRANSITION MATRIX (STM) NORM ANALYSIS OF DDHS

Motion Phase

0

1
.1

ˆ ( )M
k

k
B

k
k

-

=
£Õ

11
2

0

ˆ ˆ( ) ( )aM B
kk

k i
i B

k k
k

--

= =
£×å Õ

Opening 2.645751 468.4652

Closing 2.645753 504.5006

Following design of a HONU-MRAC closed control loop for the barrier drive control board,

the presented results indeed yield superior performance in optimising the existing closed

cascade control loop applied previously on the barrier drive system, such to maintain the

prescribed motor protection time for overall barrier motion whilst ensuring the desired

barrier motor speed is kept maintaining the tolerances of motor speed and current. The

derived HONU-MRAC control loop yields to be justified in terms of BIBS stability during

application across its respective operational points verified via the DHS method in vicinity of

the upper speed limit regions of the barrier drive motion and further complementing the

results of the DDHS for monitoring the stability of the applied control loop during transition

across respective operational state points. As illustrated in the results of Figure 32 and Figure
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33, the real implementation of the HONU-MRAC closed control loop, yields a more

universally function control design which can be identified for further loading cases of the

barrier arm and further the possibility to extend the problem as a multiple input system with

the loading being a further variables to the HONU model parameters. Also the possibilities

of online re-tuning during maintenance are highlighted in situations where mechanical

differences due to prolonged operation may alter the performance of the tested control

output. This result also serves as a promising direction for implementation of a standalone

HONU-MRAC control loop for on the up-coming redesign of the barrier drive control board

which is planned onwards from the year 2019.

9 Discussion

The first main objective of this dissertation was to extend on the till now developed

approaches of HONUs architectures for feedback adaptive control, namely as a new subclass

of MRAC control loop design. The extension of the RLS algorithm in this work and deeper

experimental and practical analysis of its application to real-time dynamic system control has

proven its effectiveness as an incremental supervised leaning algorithm for HONU adaptive

identification and further control. Further, as was seen in Figure 38 the application of less

appropriate linear (LNU) architecture for identification of the non-linear position feedback

system however, using incremental training was still capable to sufficiently identify the

contemporary non-linear dynamics when applied in real time. Therefore, in contrast to the

GD and L-M algorithm rather than being driven by a minimisation of square error, the RLS

algorithm minimizes a weighted cost function with relating to the input signals. Though

featuring substantially faster convergence, the algorithm is computationally more complex

and should be respected for systems which require rather high sampling intervals. However,

in general the presented HONU-MRAC closed control loop approach is strong rather for

linear systems with complexities such as oscillatory behaviour and low to moderately non-

linear systems (i.e. systems which can be approximated via a recurrent order HONU of 3r £ ,

unlike the torsional pendulum example in [97] which featured strong sinusoidal non-

linearity), which motivate study for alternative control forms like in section 10.2. A key

property that lies within the design of any form of conventional or non-conventional form of

control is to ensure the stability of the derived and applied control set up for application to

the given engineering process. From the reviewed works more traditional approaches feature

construction of an adaptive control law which is based on a proven stability condition for any

control input. The most readily used being a Lyapunov functional based law; with a further
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motive prove the stability about a global system equilibrium point. Following a recent review

article of RNN stability methods [48] a natural conclusion was derived that no one method

may be universally applicable and that certain methods each have their own advantages for

the given control loop design.

Thus, in this dissertation two novel methods were presented. The DHS was derived and

mathematically proven via means of Lyapunov matrix inequality relation (96) to justify

BIBO stability in neighbourhood of the applied state (operational) point. For practical control

problems with varying input the evaluation of local spectral radii (88) can be applied

however as seen in Figure 47, due to the relation (135) accounting for previous samples of

HONU-MRAC state transitions, DDHS(Strict) yields a stronger condition that clearly

pronounces an onset of instability. It further justifies the trajectory in state space for the

given control input is becoming unstable as opposed to the local dynamics in vicinity of the

discrete state point. However, via analysis of the influence of adaptive gain parameter p as in

Figure 44 the evaluation of (.)r in (88) can further be used as a tool for correct setting of the

magnitude of the feedback gain parameter, for stable process dynamics of the whole HONU-

MRAC closed control loop. The DHS method is however limited by polynomial orders due

to linearization for a localised state point. Thus, the DDHS was derived and developed as

another key contribution of this dissertation work for evaluating the HONU-MRAC closed

control loop maintains dynamical stability along its trajectory in state-space. An advantage of

this approach is the avoidance of approximation due to building the BIBS stability condition

(133) from the fundamental polynomial structure of HONUs themselves as presented in [90]

and most recently for HONU-MRAC closed control loops [89] & [97] which makes its

application suitable for further polynomial orders.

10 Next Research Directions

10.1 Extension to Other Polynomial Neural Network Based Architectures

A final remark to be stated is the extension of the presented DDHS approach to similar PNN

based architectures of standalone polynomial neural based models or whole closed control

loops. In certain engineering applications it can also serve purpose to apply the control law

(12), or perhaps as further presented in [68], [97], [107] & [99] the extension of multiple

HONU feedback controller was further defined as
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where qn  in fact denotes the number of single HONU feedback controllers. With this notion,

let us consider the derived expressions of the local characteristic coefficients ˆ
i

a  for an LNU-

QNU closed control loop. Then, on considering the control law (152) in the sense of a

dynamic HONU model it yields that
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However, although the scope of this dissertation was focussed to dynamical (recurrent)

HONUs, in certain engineering applications we may also consider the need for online

adaptive identification via a static HONU, with extension of a dynamical HONU as a

feedback controller. In taking regard that the model is a standalone static HONU, then the

relation (153) results to be
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where the corresponding coefficient terms ˆ
i

b  for the input vector 1ˆ ( )k -u may then be

computed as
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where the resulting expressions for computation of the canonical state-space form as in (118)

then yield to be analogical.

10.2 IRW Active Wheelset Control: A Sliding Mode Control Approach with HONUs

Due to the nature of IRW configuration, another appropriate form of control is to stabilize

the lateral skew of the bogie frame to a zero position under applied velocity of the rollers via

sliding mode design. Several works in field of discrete-time neural network sliding mode

control include [47], [52], [53]. Being inspired from their works, another approach is
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proposed here falling from the pointwise HONU representation presented in section 6.1. To

develop the approach, let us for comprehensibility consider a one-step ahead QNU predictor,

which in this example is investigated as dynamic. However, for highly nonlinear systems can

also be considered in static form provided a sufficiently small error margin. From (59), it

yields that

0,0 0, ,
1 1

( 1) ( ) ( ),
x x x

y

n n n

n j i j
j i j i

x k w w x k w x kj i
= = =
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where w holding the same indexing maybe be derived (3) and ix  may be further represented

generally in long vector form as

( ) ( 1) .. ( ) ( 1) .. ( ) ,y u
Tk y k n y k u k n u ké ù= - + - +ë ûx % % (157)

where in analogy to (59), applying the affine control formulation with additional integrator

input term ( )ku , yields the following set of state equations
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Then, to design the sliding mode control let us propose the following switching function

1
( ) ( ) ... ( ); (0,11 1 2 2

1
( ) ( )
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i i n n ix x

i
s x k s x k s x k s x k ss

-
× × + × + + × Î

=
= =åx , (159)

where the variables is  denote arbitrarily chosen switching weights. Then from (159) we

define the sliding mode surface where ( ) 0.s =x From this, the control objective is for the

trajectories in state space to converge to zero, which can be achieved if the system states are

forced to push along the sliding surface i.e. ( ) 0.s =x&  To find a suitable control law, let us

consider the following positive-definite Lyapunov function

1( ( )) ( ) ( )
2

TV s s s=x x x . (160)

Then, for asymptotic stability about the origin the Lyapunov function (160)

( ( )) ( ) ( ) 0,TV s s s= <x x x& & (161)
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where from the condition (161)
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In order to maintain the Lyapunov condition then the control law must be chosen so that

0s <&  if 0s > and 0s >&  if 0.s < Thus, on selecting the switching function and its derivative

as
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it yields
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Then to maintain (161), we may obtain that if the switching function 0s > then
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analogically the condition for 0s >& is then apparent. Then, on defining the following upper

limit, which we assume to be a known constant kU
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applying the rule of triangular inequality from relation (166), and considering the constant

0,1e Î< > , then a possible stabilizing input for the system presented in Figure 60 as

expressed in the form (158) may be given as
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Figure 59 – Block schematic of pointwise state-space HONU approach from (59) to sliding mode control (156)-(167)
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Figure 60 – Sliding mode control via HONU decomposition for IRW wheelset stabilisation of Roller Rig mathematical
model (37)-(41). Dynamic QNU model trained in real time via RLS algorithm, where 3yn = , 2un =  .a) Plant with HONU

sliding mode control (167) with roller velocity 50rpm from -2.5mm initial condition b) Plant with HONU sliding mode
control (167) with roller velocity 50rpm from 5mm initial condition.

Figure 60 illustrates the performance of the derived sliding mode control law via QNU

decomposition. A dynamic QNU featuring 3 previous process outputs yn  and 2 previous

inputs trained in real time via the RLS learning algorithm with 0.05[s] of sampling. The

results from Figure 60 shows the capability of such HONU architecture to rapidly identify

the system dynamics even with nonlinear capabilities and stabilise the IRW configuration of
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the mathematical roller rig model from both extremes of initial conditions (5[mm] and -

2.5[mm]) and converge to zero within 6[s] of control.

From these initial results in sliding mode control via HONUs, motivation arises for

investigation of the HONU decomposition form (108) as an alternative approach. Further,

experimentation at increased roller speeds of IRW configuration which remains a challenge

for the HONU-MRAC control design. Therefore, for IRW wheelset control a sliding mode

design can be a more appropriate as the control objective is focussed more so on system

stabilization and is thus a new direction for research of active wheelset control.

11 Conclusion

In this dissertation work, a preliminary objective was to further investigate the applied theory

behind HONUs as a rather novel field of MRAC adaptive control. From this work, further

investigation behind the advantages of various HONU architectures and their respective

supervised learning algorithms was presented in both theoretical as well as real industrial

engineering examples. From their respective results, this work may conclude the

effectiveness of the approach as a means of optimisation of existing conventional control

loops of both linear and nonlinear system dynamics as presented in Figure 24 & Figure 32.

Further, an effective form of standalone HONU-MRAC closed loop control as seen in the

sense of the two-tank experiment in section 5.1. In addition, a major component of this

dissertation work was to provide an extension to the applied theory of HONU adaptive

identification and control in the form a newly derived and developed stability analysis

approach. From this dissertation two novel methodologies were derived and tested namely

the DHS method which proved to be an effective method for concluding BIBO stability of a

HONU model or further HONU-MRAC closed control loop for an applied operating region

in close neighbourhood or local BIBO of an evaluated state point. As a further means of

validation, the DHS method was used to validate the DDHS, inspired from an intrinsic

relation of a HONU polynomial equation to that of a reorganised subset of HONU

polynomials. From this the sample-by-sample decomposition of the DDHS method proves

effective as a means of evaluating the local BIBO stability or further BIBS stability of a

HONU-MRAC closed control loop along its dynamical trajectory in state-space, which is

further applicable for higher orders of HONU architectures. Following from the proposed

relation (134), a further method was derived DDHS(Strict) (135)-(136) which clearly
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illustrates an onset of unstable process dynamics due to the fundamental canonical state-

space form of a HONU-MRAC control loop as defined in (117)-(118).

Following from the reviewed concepts of discrete-time model and state-of-the-art neural

networks stability theories, the DHS and DHS method serves as a practical approach in

comparison to other stability approaches in the field of recurrent neural networks which are

centred around rather comprehensive mathematical descriptions of all process functions or

further their application towards computational demanding control algorithms. Thus, this

dissertation provides a foundation into practical stability analysis which can be readily

applied for HONU architectures of general orders. Further directions of research were also

highlighted via an introduction of sliding mode control via the decomposed HONU method

presented in 5.2.2 and extension of the DHS and DDHS approached to other polynomial

based neural architectures, like a multi-layered HONU feedback control form as presented in

the recent work. As a further outcome of this dissertation the ASPI Kit v 1.3 software [93]-

[94] & [98] was released as well as a stability analysis library in the programming language

Python software to help engineers and practitioners investigate the potentials of HONU

adaptive identification and control for their respective engineering applications.
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13 Appendix

13.1 Example - Pointwise State-Space Representation: Dynamic Nonlinear Neural
Unit Model

QNU Nonlinear Model, 3yn =  and 2un = , state equations

1 21( ) ( )k kx x+ = (168)

2 31( ) ( )k kx x+ = (169)
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4 1( ) ( )k kx u+ = (171)

5 1( ) ( ).k kx u+ = (172)

From relations (168)-(172), the respective state equations may be reformulated to a state-

space representation in the following manner
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3( ) ( ).k ky x= (174)

The coefficients ,i ja in this example are precisely derived as

3,1 0,3 1,3 3 2,3 2 3,3 1 3,4 5 3,5 4 )( ) ( ) 2 ( ) ( ) (k k k k ka w w x w x w x w x w x= + + + + + (175)

3,2 0,2 1,2 3 2,2 2 2,3 1 2,4 5 2,5 4 )( ) 2 ( ) ( ) ( ) (k k k k ka w w x w x w x w x w x= + + + + + (176)
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3,3 0,1 1,1 3 1,2 2 1,3 1 1,4 5 1,5 4 )2 ( ) ( ) ( ) ( ) (k k k k ka w w x w x w x w x w x= + + + + + (177)

3,4 0,5 1,5 3 2,5 2 3,5 1 4,5 5 5,5 4 )( ) ( ) ( ) ( ) 2 (k k k k ka w w x w x w x w x w x= + + + + + (178)

3,5 0,4 1,4 3 2,4 2 3,4 1 4,4 5 4,5 4 ).( ) ( ) ( ) 2 ( ) (k k k k ka w w x w x w x w x w x= + + + + + (179)

13.2 Example - Pointwise State-Space Representation: Dynamic LNU with HONU
Feedback Control

LNU with LNU Feedback controller, 4yn =  and 3un =

,1 7 4y un n w p va + = - × × (180)

,2 6 4 7 3[ ]
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,11 7 5 6 6 5[ ]
y un n w p w v w va + = - × × + × (190)

,12 5 5 6y un n w p v wa + = - × × + (191)

,13 5.
y un n wa + = (192)
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LNU with QNU Feedback controller, 4yn =  and 3un =
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,13 5.
y un n wa + = (205)

13.3 Example: Decomposition of Dynamic Quadratic Neural Unit Models for
DDHS

QNU Model, 4yn =  and 3un =
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2,6 2,7

2 3 4 1

2 3

ˆ ( ) ( ) ( ) ( )

( ) ( )

k k k k

k k

a w w y w y w y w u

w u w u

- - - -

- -

= + + + +

+ +

% % %
(207)

3 0,3 3,3 3,4 3,5 3,6

3,7

3 4 1 2

3

ˆ ( ) ( ) ( ) ( )

( )

k k k k

k

a w w y w y w u w u

w u

- - - -

-

= + + + +

+

% %
(208)

4 0,4 4,4 4,5 4,6

4,7

4 1 2

3

ˆ ( ) ( ) ( )

( ).

k k k

k

a w w y w u w u

w u

- - -

-

= + + +

+

%
(209)

Further, for coefficients with respect to input terms of the principle input vector x

1 0,5 5,5 5,6 5,71 2 3ˆ ( ) ( ) ( )k k kb w w u w u w u- - -= + + + (210)

2 0,6 6,6 6,72 3ˆ ( ) ( )k kb w w u w u- -= + + (211)

3 0,7 7,7 3ˆ ( ).kb w w u -= + (212)
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13.4 Example: Decomposition of Dynamic Linear Neural Unit Models as
Nonlinear Control Loop for DDHS

LNU with QNU Feedback controller, 4yn =  and 3un =

1 1â w= (213)

2 2 5 0,1 1,1 1,2 1,3

1,4 1,5 1,6 1,7

2 3 4

5 2 3 4

ˆ [ ( ) ( ) ( )

( ) ( ) ( ) ( )]

k k k

k k k k

a w w p v v y v y v y

v y v d v d v d

- - -

- - - -

= - × × + + + +

+ + +

% % %

%
(214)

3 3 5 0,2 2,2 2,3 2,4 2,5

2,6 2,7 6 0,1 1,1 1,2 1,3

1,4 1,5 1,6 1,7

3 4 5 2

3 4 3 4 5

6 3 4 5

ˆ [ ( ) ( ) ( ) ( )

( ) ( )] [ ( ) ( ) ( )

( ) ( ) ( ) ( )]

k k k k

k k k k k

k k k k

a w w p v v y v y v y v d

v d v d w p v v y v y v y

v y v d v d v d

- - - -

- - - - -

- - - -

= - × × + + + +

+ + - × × + + +

+ + + +

% % %

% % %
%

(215)

4 4 5 0,3 3,3 3,4 3,5 3,6

3,7 6 0,2 2,2 2,3 2,4 2,5

2,6 2,7 7 0,1 1,1 1,2 1,3

4 5 2 3

4 4 5 6 3

4 5 4 5

ˆ [ ( ) ( ) ( ) ( )

( )] [ ( ) ( ) ( ) ( )

( ) ( )] [ ( ) ( ) (

k k k k

k k k k k

k k k k k

a w w p v v y v y v d v d

v d w p v v y v y v y v d

v d v d w p v v y v y v y

- - - -

- - - - -

- - - -

= - × × + + + +

+ - × × + + + +

+ + - × × + + +

% %

% % %
% % %

1,4 1,5 1,6 1,7

6

7 4 5 6

)

( ) ( ) ( ) ( )]k k k kv y v d v d v d

-

- - - -

+

+ + +%

(216)

5 5 0,4 4,4 4,5 4,6

4,7 6 0,3 3,3 3,4 3,5

3,6 3,7 7 0,2 2,2 2,3

2,4 2,5 2,6 2

5 2 3

4 5 6 3

4 5 5 6

7 4 5

ˆ [ ( ) ( ) ( )

( ) [ ( ) ( ) ( )

( ) ( ) [ ( ) ( )

( ) ( ) ( )

k k k

k k k k

k k k k

k k k

a w p v v y v d v d

v d w p v v y v y v d

v d v d w p v v y v y

v y v d v d v

- - -

- - - -

- - - -

- - -

= - × × + + +

+ - × × + + + +

+ - × × + + +

+ + +

%

% %
% %

% ,7 6( )]kd -

(217)

6 6 0,4 4,4 4,5 4,6

4,7 7 0,3 3,3 3,4 3,5

3,6 3,7

6 3 4

5 6 7 4

5 6

ˆ [ ( ) ( ) ( )

( )] [ ( ) ( ) ( )

( ) ( )]

k k k

k k k k

k k

a w p v v y v d v d

v d w p v v y v y v d

v d v d

- - -

- - - -

- -

= - × × + + +

+ - × × + + +

+ +

%

% % (218)

7 7 0,4 4,4 4,5 4,6 4,77 4 5 6ˆ [ ( ) ( ) ( ) ( )].k k k ka w p v v y v d v d v d- - - -= - × × + + + +% (219)

Further, for coefficients with respect to input terms of the principle input vector x

1 5b̂ w= (220)

2 6 5 0,5 5,5 5,6 5,72 3 4ˆ [ ( ) ( ) ( )]k k kb w w p v v d v d v d- - -= - × × + + + (221)

3 7 5 0,6 6,6 6,7 6 0,5 5,5

5,6 5,7

3 4 3

4 5

ˆ [ ( ) ( )] [ ( )

( ) ( )]

k k k

k k

b w w p v v d v d w p v v d

v d v d

- - -

- -

= - × × + + - × × +

+ +
(222)
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4 5 0,7 7,7 6 0,6 5,6 6,7

7 0,5 5,5 5,6 5,6

4 4 5

4 5 6

ˆ [ ( )] [ ( ) ( )]

[ ( ) ( ) ( )]

k k k

k k k

b w p v v d w p v v d v d

w p v v d v d v d

- - -

- - -

= - × × + - × × + +

- × × + + +
(223)

5 6 0,7 7,7 7 0,6 6,6 6,75 6ˆ [ ] [ ( ) ( )]k kb w p v v w p v v d v d- -= - × × + - × × + + (224)

6 7 0,7 7,7 6ˆ [ ( )].kb w p v v d -= - × × + (225)
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