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Anotace

Táto diplomová práce je v formě odborného článku. Uvažuje se problém identifikace

mikromechanického parametru pomocí virtuálního testu, kde se jako metoda měření

celého pole používá digitální korelace obrazů (DIC). távající deterministický přístup k

identifikaci parametrů ve formě integrované digitální korelace obrazu (IDIC) se dříve

ukázal jako příliš citlivý na chyby hraničních dat. V této práci je navržen stochastický

přístup, který využívá metodu vzorkování Markov Chain Monte Carlo, Metropolisův-

Hastingsův algoritmus (MHA). Identifikované parametry spadají do dvou charakteri-

stických skupin: materiálové parametry a parametry okrajových podmínek. Nejprve se

uvede MHA, který identifikuje pouze materiálové parametry s fixovanými okrajovými

podmínkami, pro náhodné a systematické chyby v okrajových podmínkách je kvan-

tifikována a porovnána s IDIC. Poté, co jsou navrženy dva různé způsoby parametrizace

okrajových podmínek pro účely vzorkování, je metoda porovnána s novou metodou inte-

grované digitální korelace obrazů obohacené o hranici (Boundary Enriched Digital Image

Correlation). Všechny metody jsou testovány pomocí virtuálního experimentu, který

využívá Neo-Hookeův hyperelastický mikromechanický model, diskretizovaný metodou

konečných prvků. Je uvažováno o výhodách a úskalích všech studovaných algoritmů.

Klíčová slova

Digitální korelace obrazu, Identifikace parametrů, Virtuální experiment,

Mikromechanika, Inverzní metody, Metropolisův-Hastingsův algoritmus



Annotation

This master’s thesis is presented in the style of a scientific paper. The problem of mi-

cromechanical parameter identification in a heterogeneous material is considered, where

Digital Image Correlation (DIC) method is used as a full-field measurement technique.

The existing deterministic approach to parameter identification in the form of Integrated

DIC (IDIC) was shown to be overly sensitive to boundary data errors. In this work, the

stochastic approach is proposed, which employs a Markov Chain Monte Carlo sampling

method, i. e. Metropolis–Hastings algorithm (MHA). The identified parameters fall

into two distinctive groups: material parameters and boundary conditions parameters.

First, the MHA that only identifies the material parameters with fixed boundary condi-

tions is considered, and its sensitivity with respect to random and systematic errors in

the boundary conditions is quantified and compared to the IDIC. MHA’s parameter field

is then expanded with two different ways of approximating the boundary conditions,

and the method is compared to the Boundary Enriched IDIC. All methods are tested

with a virtual experiment that employs a Neo-Hookean hyperelastic micromechanical

model, discretised with the Finite Elements Method. Benefits and pitfalls of all studied

algorithms are discussed.
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Digital Image Correlation, Parameter identification, Virtual experiment,

Micromechanics, Inverse methods, Metropolis-Hastings algorithm
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1. Introduction

Often the only way we can correctly interpret the behaviour of real materials
with heterogeneous structure is by observing them on a microscopic level, so we can
account for strain localisation, plasticity, delamination and cracks. Thus the need in
non-intrusive, non-contact measurement methods that provide continuous data, as
opposed to local measurements, led to full-field measurement techniques becoming
a staple in experimental mechanics, even before the contemporary computer tech-
nology, e.g. X-ray radiography for strain measurements in the 1960s, False Relief
Stereophotogrammetry (FRS) for direct measurement of deformations and Moiré
Interferometry for strain analysis throughout 1970s and 1980s (Avril et al., 2008).
Nevertheless, digital imaging made possible a highly accurate method such as Digital
Image Correlation (DIC), which is essentially a mathematical tool for assessing the
spatial transformation between two digital images. In practice, DIC is implemented
as a computer program that allows regions of a photographed object to be tracked
automatically from one image to the next, from which displacements can be inferred.
Affordability and availability of the equipment and computer programs contributed
to this method’s popularity (Viggiani and Hall, 2008).

DIC technique is typically used as a measuring tool for identifying micromechan-
ical parameters, leading to methods such as the Integrated Digital Image Correlation
(IDIC) (Leclerc et al., 2009). The method relies on the minimisation of the differ-
ence between two images of a microstructure captured during an experiment i.e. in
a reference and a deformed configuration. Although scanning the whole specimen is
possible, it is time consuming and computationally expensive. That is why only a
subdomain of the specimen is typically considered, referred to as the Microstructural
Volume Element (MVE). This approach, however, typically leads to problems with
highly heterogeneous boundary conditions.

To capture the displacements associated with the micro-level processes, the size
of a digital pixel associated with DIC must often approach the order of nanometers.
While modern commercially available optical microscopes are able to provide the
needed resolution, the problem lies in the fact that magnification leaves the applied
load outside the camera’s Field of View (FOV). On the other hand, high accuracy
in boundary conditions prescribed to the MVE model is crucial (Rokoš et al., 2018),
as even small errors undermine the accuracy of the identified parameters.

The most accurate way to establish MVE boundary conditions, according to
Shakoor et al. (2017), is to employ Global DIC (GDIC). The displacements are identi-
fied on the whole specimen and are subsequently interpolated as boundary conditions
for IDIC. In general (G)DIC introduces: a) kinematic smoothing effect when large
elements or globally supported polynomials are used; b) random errors when rela-
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Figure 1: Scheme of the virtual experiment. A microscopic specimen is subjected to tensile or shear
load, and the displacements of the heterogeneous structure are observed with optical and scanning
electron microscopy.

tively small elements or locally supported interpolation functions are used. Because
boundary conditions of the microstructure are kept fixed during the IDIC parame-
ter identification procedure, the microstructure model compensates by adjusting the
material parameters, causing inaccurate identification of these parameters (Ruybalid
et al., 2017). The approach proposed by Rokoš et al. (2018), referred to as Boundary-
Enriched IDIC (BE-IDIC), incorporates all Degrees of Freedom (DOFs) associated
with boundary conditions in the IDIC procedure. The method significantly improves
the accuracy of the identified parameters while maintaining robustness with respect
to image noise. The improved accuracy, however, comes with a price of higher com-
putational and memory requirements.

The aforementioned techniques rely on deterministic optimisation methods, such
as the Gauss–Newton algorithm. This article proposes a stochastic method for the
parameter identification, namely the Metropolis–Hastings algorithm (MHA), for the
minimisation process, while using DIC as the measurement technique. The key dif-
ference from the described deterministic methods is that stochastic inversion allows
to infer probability distributions of the unknown model parameters instead of single
values, treating each iteration as an experimental measurement. Although compu-
tationally costly, the dimensionality of the problem does not have a big impact on
the calculation time.

In the next section the relevant background on DIC and deterministic methods
is given, followed by the description of the stochastic method in Section 3. Section
4 describes the underlying mechanical model and employed virtual experiments. In
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Section 5, the method’s sensitivity with respect to random and systematic errors in
the boundary conditions are quantified and compared to IDIC. The following section
introduces the parametrisation of applied boundary conditions, and the resulting
MHA with boundary DOFs is compared to BE-IDIC. In the penultimate section a
new way of incorporating boundary DOFs through noise parametrisation is proposed.
The takeaways from the numerical experiments are then summarised in the last
section with the outlook on further research.

Throughout this article, the weight and style of the font used to render a variable
indicates its type: scalar variables are denoted using an italic font, array variables
are denoted using a sans serif font, and vectors and tensors are rendered in a boldface
font.

2. Parameter Identification Using DIC

A mechanical test is considered, as outlined in Fig. 1. DIC is used to assess spatial
transformations before and after loading the specimen. A region of a photographed
domain is tracked between the images, which allows us to infer the displacement
field (Roux and Hild, 2006). A camera takes snapshots of a Region of Interest
(ROI), which lies within the MVE. The camera’s static FOV (Fig. 2) is chosen so
that the ROI remains inside it after deformation. The images are stored as integer-
valued matrices for both initial and deformed configuration, where each integer is
associated with a pixel and denotes its brightness.

The goal is to identify the set of material parameters used in the virtual test.
Then the problem is to find a vector λ ∈ R

nλ that minimises the difference between
the values in the reference image and in the corresponding material points in the
deformed image in the least squares sense based on a displacement field i.e.

λ ∈ argmin
λ̂∈Rnλ

RDIC(λ̂), (1)

where RDIC is a non-convex cost functional

RDIC(λ̂) =
1

2

∫

ΩROI

[
f(X)− g(X + u(X, λ̂))

]2
dX (2)

where u(X, λ̂) = [u1(X, λ̂), u2(X, λ̂)]T is an approximate displacement field, X =
[X1, X2]

T ∈ ΩMVE ⊂ R
2 stores the material coordinates in the reference configuration,

f(X) represents the initial image, g(X + u(X, λ̂)) is the deformed image mapped
onto the initial configuration. The hat (•̂) denotes variables with arbitrary admissible

values, whereas the absence of hats indicates minimisers. The variable λ̂ is a column
vector that can also store kinematic DOFs as well as material constants.
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2.1. Global Digital Image Correlation

GDIC is used to prescribe Dirichlet boundary conditions to a given MVE. The
displacement field is obtained through the minimisation of a functional over subspace
of functions ψ(X) (Neggers et al., 2014):

u(X) ≈ u(X, λ̂) =

nλ∑

i=1

ψi(X)λ̂i (3)

where ψi(X), i = 1, . . . , nλ are vector-valued interpolation (or basis) functions
(and thus also sensitivity fields), usually expressed in terms of globally- or locally-
supported polynomials.

2.2. Integrated Digital Image Correlation

Integrated Digital Image Correlation (IDIC) is a method proposed by Roux and
Hild (2006) to solve Eq. (1), where a standard Gauss–Newton algorithm can be used
to minimise Eq. (2) and is described in detail in Rokoš et al. (2018).

The displacement field u(X, λ̂) is then obtained by minimising the squared residual
(cost functional) with respect to λ:

λ̂ = argmin
λ̂

RDIC(λ̂), (4)

resulting in mechanical system for IDIC with a solution:

u(X, λ̂) ∈ argmin
û(X,λ)∈U(λ̂)

E(û(X, λ̂), λ̂), (5)

that is specified by its stored energy E and a proper function space U (Evans, 2010),

û(X, λ̂ is usually a solution discretised with the Finite Elements Method (FEM). U
and E depend on λ̂, because λ stores not only material constants, but also kinematic
variables such as prescribed boundary conditions.

2.3. Boundary Enriched IDIC

BE-IDIC (Rokoš et al., 2018) is an IDIC methodology that considers material pa-

rameters λ̂mat as well as the vector of displacements associated with all the boundary
displacements λ̂kin as unknowns, i.e.

λ̂ = [λ̂T

mat, λ̂
T

kin]
T, (6)
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where

λ̂mat = [G1, K1, . . . ]
T, (7)

λ̂kin = û(X), X ∈ ∂ΩMVE, (8)

and Gi, Ki are the constitutive equation parameters. The cost functional R(λ̂),
defined in Eq. (2), is then minimised following the standard IDIC procedure. The
assets and disadvantages of the BE-IDIC method are described in Rokoš et al. (2018).

3. Stochastic Approach to Parameter Identification

As was described above in Section 2.2, the deterministic approach in the form
of IDIC is a relatively computationally inexpensive method that provides a single
value for identified parameters. On the other hand, obtaining precise enough MVE
boundary conditions is a challenge on its own, and the GDIC-IDIC method is overly
sensitive to the accuracy of the boundary conditions, because the errors that occurred
during GDIC phase become fixed.

For successful identification process, one has to separate occurring uncertainties
into two basic groups (Oberkampf et al., 2002). First group, called epistemic uncer-
tainty, derives from lack of knowledge of the system or the environment. Material
parameters and boundary conditions fall into this category in our case. This type
of uncertainty is reducible by adding new information, i.e. by performing more tests
with parameters λ̂, one can obtain better estimates. The second group is called
aleatory uncertainty, or simply variability, and is irreducible. It represents an inher-
ent variation associated with the physical system or the environment under consid-
eration. It is important to distinguish both classes of uncertainties from errors —
modelling inaccuracies, identifiable or knowable a priori, stemming e.g. from FEM
discretisation, solution approximation or GDIC interpolation.

Bayesian probability has been used for epistemic uncertainty, and it takes a sub-
jective view of probability as a measure of degree of belief in a hypothesis. Bayesian
methods allow us to update the probabilities as we gather more data (Bayesian infer-
ence). The final answer to the parameter identification problem is then a posterior
distribution, as opposed to a single value obtained from the deterministic methods.
Additionally, working with prior parameter distribution could regularise the problem
and negate the sensitivity for errors. That is why employing a stochastic method to
this problem of parameter identification is potentially beneficial and has been already
used, in fact, for inverse problems in PDEs with heterogeneous materials (Blaheta
et al., 2018; Janouchová and Kučerová, 2018).
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3.1. Parameter Estimation in Bayesian Statistics

In the Bayesian statistics, parameter estimation is done by testing numerous hy-
potheses. To find the posterior probability density for a continuous set of possibilities
θ, we use this form of Bayes’ rule, see Stuart and Ord (1994):

p(θ|x) ∝ p(θ)p(x|θ), (9)

where p(θ|x) is the posterior probability, p(θ) is the prior probability, which describes
the distribution of θ before x is observed, and p(x|θ) is the likelihood function,
which is the probability of observing x, given θ. The data set x will then consist
of individual tests that result in observed images f(X) and g(X) provided by DIC.
Supposing that the brightness is conserved between two images and omitting the
interpolation error, we assume that

f(X) ∼= g(X + u(X, λ̂)).

In practice, we work with the discretised version of f and g, which we denote respec-
tively as vectors f and g of Nb elements, representing individual pixels. Accounting
for the measurement error (i.e. image noise) we write:

f(X) + η(X) = g(X + u(X, λ̂)) + ζ(X + u(X, λ̂)), (10)

where η and ζ are the random field representing measurement errors, normally dis-
tributed with zero mean and variance σ2

η, i.e. η, ζ ∈ N (′, σ∈
η ) Conversely, Eq. (10)

can be written as

f(X) ∼= g(X + u(X, λ̂)) + ξ(X + u(X, λ̂)), ξ ∈ N (0, 2σ2
η) (11)

Let us denote the prior distribution of the parameters λ̂ = [λmat,1, . . . , λmat,nmat
,

λkin,1, . . . , λkin,nkin
]T as πm, m = 1, . . . , nλ = nmat + nkin, recall Eq. (6). Then, ac-

cording to Bayes’ theorem in Eq. (9), posterior distribution π(λ̂) can be obtained
as:

π(λ̂|f, g) ∝ πm(λ̂)π(f, g|λ̂) (12)

The likelihood π(f, g|λ̂) is then computed using the probability density function ϕ
of ξ as:

π(f, g|λ̂) ∝ ϕ(f(X)− g(X + u(X, λ̂))) (13)

=
1√

2πσ2Nb
η

exp

(
−||f(X)− g(X + u(X, λ̂))||22

2σ2
η

)
. (14)
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Considering that the measurement errors mostly stem from the image noise, we set
ση as 1% of the mean value of f . Now we can compute the approximate probability

π(λ̂|f, g) = C π1(λ̂1) · · · πnλ
(λ̂nλ

)π(f, g|λ̂), (15)

where C represents a normalisation constant.

3.2. Metropolis–Hastings Algorithm

Let us look at our problem in Eq. (1) as now having two distinctive sets of pa-
rameters: the material parameters λmat and boundary conditions λkin, recall Eq. (6)
and related discussion.

We are, of course, mainly interested in the estimation of the set λmat. While the
set λkin is important to determine the boundary conditions, we are not that interested
in its values, so we are going to treat it as a nuisance parameter. To get the marginal
posterior distribution π(λmat|f, g) and not the joint distribution π(λmat,λkin|f, g) we
are going to use the Markov Chain Monte Carlo (MCMC) sampling. The marginal-
isation can be done using the sum rule:

π(λmat|f, g) =
∫

λkin

π(λmat,λkin|f, g)dλkin. (16)

To evaluate this integral, the Metropolis–Hastings algorithm (MHA) will be used.
In MHA (Lee, 2012), we start with an initial sample λ̃i and set it as the current

state λ̂i = λ̃i. Then each new proposal λ̃i+1 is generated based on the proposal
distribution q which is symmetric in the sense that q(λ̂i|λ̃i+1) = q(λ̃i+1|λ̂i) for all

λ̂i, λ̃i+1 ∈ R
M=nmat+nkin . Usually q is Gaussian. In the numerical experiments, we

will assume that its mean is zero and its variance is chosen arbitrarily as σ2
q . The

newly proposed state λ̃i+1 is then accepted with the probability of min(1, p), where

p =
π(λ̃i+1|f, g)
π(λ̂i|f, g)

. (17)

This is usually implemented by generating a uniformly randomly distributed vari-
able κ ∈ U(0, 1). If κ < p, then λ̃i+1 is accepted i.e. λ̂i+1 = λ̃i+1, otherwise

λ̃i+1 is rejected, i.e. λ̂i+1 = λ̂i. Continuing this way, one obtains a sequence λ̂j,
j = 1, 2, . . . , N . After discarding the first N0 elements (the so called burn-in), one
can finally obtain approximation of marginal or joint posterior distributions of iden-
tified parameters λ as distributions of λ̂jm, j = N0 + 1, . . . , N , for m = 1, . . . , nλ.

Algorithm 1: Metropolis–Hastings algorithm to sample posterior distributions
in Eq. (16)
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1. Draw initial state λ̃1 ∈ R
M .

Set λ̂1 = λ̃1.
2. For i = 2, 3, . . . , N do:

(a) draw proposal λ̃i+1 ∼ N (λ̂i, σ2
q )

(b) set p = π(λ̃i+1|f, g)/π(λ̂i|f, g)
(c) draw κ ∼ U(0, 1)
(d) if κ < p set λ̂i+1 = λ̃i+1 (i.e. accept λ̃i+1), else set λ̂i+1 = λ̂i (i.e. reject

λ̃i+1)

3. Discard λ̂1, λ̂2, . . . , λ̂N0 (burn in).

4. Compute estimates of parameter characteristics from λ̂N0+1, . . . , λ̂N .

4. The Underlying Mechanical Model

4.1. Geometry

The adopted virtual experiment is performed on a specimen with prescribed ma-
terial parameters λmat,ref . The specimen in question is assumed on a domain ΩDNS,
having the size of a 20× 20 square, with a heterogeneous structure shown in Fig. 2.
The microstructure consists of spatially randomised non-intersecting stiff circular in-
clusions with a diameter d = 1, and a surrounding compliant matrix. Although all
geometric properties are dimensionless, they can be scaled to µm.
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Figure 2: Sketch of the specimen’s square domain ΩDNS, microstructural volume element ΩMVE and
the FOV. The domain consists of stiff circular fibres of diameter d = 1, embedded in a compliant
matrix.
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4.2. Constitutive Model

The material of the specimen is assumed to be nonlinearly elastic. In particu-
lar, a compressible Neo–Hookean hyperelastic material is adopted, specified by the
following elastic energy density

Wα(F ) =
1

2
Gα(I1(F )− 3) +

1

2
Kα(ln J(F ))2, (18)

where u(X) is a displacement field, F is the deformation gradient tensor, J(F ) =

detF , I1(F ) = J−
2

3 tr(C) is the first modified invariant of the right Cauchy–Green
deformation tensor C = F TF . Individual materials are distinguished by the sub-
script α, α = 1 corresponds to the matrix and α = 2 to the inclusions. The reference
value of the material parameter is presented in Tab. 1, expressed as a function of the
material contrast ratio ̺ > 1. Throughout all experiments in this work, the contrast
ratio is set for ̺ = 4. Because Dirichlet boundary conditions are applied on the en-
tire boundary of the MVE, ∂ΩMVE, only material parameter ratios can be obtained
with the IDIC procedure. That is why one needs to fix one of the parameters to an
arbitrary value (exact in our case of virtual experiments) for normalisation purpose,
and identify the remaining parameters relative to that reference value. The fixed
material parameter can be estimated by other means, i.e. a force-based mechanical
test or from reliable experimental sources.

Physical parameters Matrix Inclusions
(α = 1) (α = 2)

Shear modulus, Gα 1 ̺
Bulk modulus, Kα 3 3̺

Poisson’s ratio, να = 3Kα−2Gα

2(3Kα+Gα)
0.35 0.35

Table 1: Material parameters λref .

The total elastic stored energy of the entire system reads:

E =

∫

Ω

(1− χ(X))W1[I +∇u(X)] + χ(X)W2[I +∇u(X)]dX (19)

where χ(X) is an indicator function for the inclusions respectively, i.e. χ = 1 inside
all inclusions and χ = 0 inside the matrix.
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4.3. Applied Boundary Conditions

Let us denote each side of the boundary of ΩDNS, ∂ΩDNS = Γ, as Γi, i = 1, . . . , 4,
see Fig. 2. Two virtual mechanical tests are considered, one to introduce tension and
another to introduce shear. Both are referred to as Direct Numerical Simulations
(DNS), and are used to provide the reference for the mechanical behaviour of the
system. The displacements prescribed at the specimen’s boundary are

u(X) = (F − I)X, X ∈ Γ2 ∪ Γ4, (20)

F = I + 0.1e1 ⊗ e1, for tension, (21)

F = I + 0.1e2 ⊗ e1, for shear, (22)

where e1 = (1, 0)T and e2 = (0, 1)T, while Γ1, Γ3 are left as free edges.

4.4. Discretisation and Solution

The solution of the mechanical problem in Eq. (5) is computed using the Total
Lagrangian formulation (Tadmor et al., 2012), and the weak form of equilibrium
equations in the underformed configurationX. The evolution of the system is solved
incrementally, using the standard Newton–Raphson algorithm. The displacement
field u(X, λ̂) is discretised with the Finite Element method (FEM), i.e.

û(X, λ̂) =

nu/2∑

i=1

Ni(X)ûi(λ̂), (23)

where û = [ûT1 , . . . , û
T

nu/2
]T ∈ R

nu , ûi = [ui1, u
i
2]

T ∈ R
2, stores horizontal and verti-

cal displacements of the i-th node associated with a FE mesh, whereas Ni(X) are
standard FE shape functions.

For the FE solution, both ΩDNS and ΩMVE domains are discretised with the
Gmsh mesh generator (Geuzaine and Remacle, 2009), using quadratic iso-parametric
triangular elements and the three-point Gaussian quadrature rule to approximate
the integrals appearing in the weak form. All calculations were programmed and
performed in MATLAB (MathWorks Inc., 2018), using an in-house FEM library for
hyperelastic materials, with computationally heavy parts implemented in external
C/C++ mex files for efficiency reasons. For the DNS, the fine mesh shown in Fig. 3a
is used, and a coarser MVE triangulation can be found in Fig. 3c. Because the
reference Poisson’s ratios for both materials are significantly smaller than 0.5, and
because deformations in the simulations are moderate, incompressibility issues do
not occur.
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(a) Full ΩDNS mesh.
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(b) ΩDNS mesh close-up inside ΩMVE
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(d) Speckle pattern.

Figure 3: (a) FEM meshes corresponding to the finely discretised full DNS system; (b) close-up on
the MVE domain; (c) coarse discretisation of the MVE model, (d) applied speckle pattern.

To track the deformation in a real life experiment, a speckle pattern is applied
on the specimen (Jones and Iadicola, 2018). The reference image f , representing
the applied speckle pattern, has been adopted from (Bornert et al., 2009) (”medium
pattern size”), shown in Fig. 3d. Its resolution is 512×512 pixels inside FOV, which
corresponds approximately to 340× 340 pixels inside ROI, when ROI is set equal to
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MVE. The DNS displacements obtained from all mechanical tests are interpolated
from the FE mesh to the regular image mesh, and the resulting displacement fields
are used to map the deformed image g into the initial image f . The deformed image
is then interpolated at the pixel positions using the bi-cubic polynomial interpolation.

5. Robustness of MHA and IDIC with Respect to Fixed Errors in Applied

Boundary Conditions

This section presents several experiments to quantify robustness and accuracy of
MHA in comparison with GDIC-IDIC method. The error in boundary conditions is
fixed to measure its effect on the material parameter identification. To this end, the
effect of systematic errors, like the smoothing of kinematic fields by GDIC, is studied
first, followed by the effect of uncorrelated random noise, typically observed in local
DIC, or global DIC with a very fine discretisation.

5.1. Sensitivity with Respect to Systematic Errors in Applied Boundary Conditions

The exact DNS displacement field is smoothed as:

ũDNS(X) =

∫

Ω

uDNS(Y )hε(Y −X)dY , (24)

where hε is a pillbox-shaped kernel with a dimension-less diameter ε ≥ 0 (normalised
by the inclusion’s diameter d = 1). The smoothing effect for the extreme kernel
ε can be observed in Fig. 5a. The smoothed data are then prescribed as nodal
displacements to the FEM model of MVE:

uMVE(X) = ũDNS(X), X ∈ ∂ΩMVE. (25)

In Eq. (25), ũDNS(X), X ∈ ∂ΩMVE, is a column of displacements of ũDNS evaluated
at the MVE boundary nodes. For easier implementation, the integral in Eq. (24) is
calculated at discrete pixel positions numerically, while the corresponding displace-
ments are interpolated using a linear interpolation scheme. The relative boundary
error due to the smoothing is shown in Fig. 6a. Fig. 4 shows obtained results for
both tension and shear, and compares them to the IDIC method.

The MHA with fixed boundary conditions performs almost identically to the
IDIC, and eliminating boundary fluctuations by smoothing has a considerable neg-
ative impact on the identification accuracy. Non-monotonicity of the identified pa-
rameters can be explained by the particular morphology of the microstructure.
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(a) Tensile test.
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Figure 4: Identified results for MHA compared against the IDIC method, mean values of the
posterior distributions. Boundary displacements are smoothed using the pillbox-shaped kernelwith
the parameter ε and fixed according to Eq. (24), for (a) tensile and (b) shear tests. Parameters
identified by MHA correspond to N = 4 000 steps, burn in N0 = 2 000 steps.

5.2. Sensitivity with Respect to Random Perturbations in Applied Boundary Condi-

tions

To quantify the effect of random noise in boundary conditions on the material pa-
rameter identification, the following test is performed. The Dirichlet boundary con-
ditions are obtained by interpolating the DNS displacements at the nodal positions
of the MVE boundary ∂ΩMVE. Then uncorrelated random noise is superimposed on
the boundary displacement, i.e.

uMVE(X) = uDNS(X) + σ max
Y ∈ΩMVE

(||uDNS(Y )||2)U, X ∈ ∂ΩMVE, (26)

where uMVE(X) is a column matrix storing nodal displacements of the nodes located
at the MVE boundary, uDNS(Y ) denotes their DNS counterparts, uDNS(X), X ∈
∂ΩMVE, is a DNS displacement field considered everywhere inside ΩMVE, U is the
corresponding column of Independent and Identically Distributed (iid) random vari-
ables with uniform distribution over [−0.5, 0.5], and σ is the standard deviation of
the random noise in the prescribed boundary conditions.
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(a) Exact boundary conditions obtained by DNS
smoothed using the pillbox-shaped kernel ε = 5, Sec-
tion 5.1.
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superimposed noise for σ = 0.1, Section 5.2.

Figure 5: Examples of substitutions for boundary conditions in different experiments: (a) smoothed
boundary conditions, (b) boundary conditions with superimposed noise.

The material parameters are identified for the tensile and shear tests with zero
image noise, σ ∈ [0, 0.1], and for 55 Monte Carlo (MC) realisations for each value
of σ with noise. An example of boundary data is shown in Fig. 5b. The number
of steps for the MHA was is set to 4000, prior parameter distributions reflect the
assumption that the initial guess is not too far from the actual value, and are set
to normal distributions with the mean values equal to 0.9λref,i, i = 1, . . . , 4. The
boundary conditions are fixed, so the dimension of the MHA sampling is reduced
only to the material parameter λmat, thus the sampling is performed in a three-
dimensional space. The typical relative error in the prescribed boundary conditions,
defined as

ǫBC
rel =

||uMVE(X)− uDNS(X)||2
||uDNS(X)||2

, X ∈ ∂ΩMVE, (27)

is shown in Fig. 6b.
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Figure 6: Relative displacement errors in the boundary conditions for the sensitivity tests, (a)
systematic error, (b) mean ± standard deviation of the random error.

In Fig. 7, the mean values (thick lines) of all parameters with ± corresponding
standard deviations (dashed lines) computed over all MC realisations are shown.
This graphical representation is used throughout this work, unless explicitly stated
otherwise.
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(b) Shear test.

Figure 7: Identified results in the case of random noise in boundary conditions according to Eq. (26),
mean (solid) ± standard deviation (dashed), for increasing σ ∈ [0, 0.1], N = 4 000 steps of MHA,
fixed boundary conditions, tensile (a) and shear (b) tests.

As shown in Figs. 8 and 9, MHA (colour lines) again delivers almost identical
results to those of IDIC (black lines). The slight deviation for the values of σ >
0.8 can be explained by the insufficient convergence of the MHA for the higher
noise. MHA with fixed boundary error generally has the same robustness as IDIC,
meaning that the error in boundary conditions has a significant effect on the identified
material parameters’ value, especially in the shear test. It should be noted that MHA
converges on a very narrow high-probability region with the acceptance rate steadily
dropping close to 0% after reaching the point of convergence. Therefore the results
are very similar to those of IDIC, even though for the deterministic method the mean
and standard deviation are calculated over single values obtained by MC iterations,
while MHA provides a dataset of 2 000 values after burn-in for each MC iteration.
MHA is also considerably more computationally expensive compared to IDIC, as the
solution of the mechanical system must be calculated for each new sample.
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Figure 8: Comparison of the identified (a) matrix shear modulus G1, (b) fibre shear modulus G2,
and (c) fibre bulk modulus K2 obtained from the tensile test under fixed boundary conditions
with IDIC (black) and MHA (color) methods. The means are plotted with solid lines and are
complimented with ± standard deviations (dashed lines). N = 4 000 steps of MHA, increasing
σ ∈ [0, 0.1].
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Figure 9: Comparison of the identified (a) matrix shear modulus G1, (b) fibre shear modulus
G2, and (c) fibre bulk modulus K2 obtained from the shear test under fixed boundary conditions
with IDIC (black) and MHA (color) methods. The means are plotted with solid lines and are
complimented with ± standard deviations (dashed lines). N = 4 000 steps of MHA, increasing
σ ∈ [0, 0.1].

6. Parametrisation of Applied Kinematic Boundary Conditions

One of the benefits to the Bayesian method is that the number of sampled pa-
rameters can be increased to include boundary conditions with no additional com-
putational effort. Probably the most straightforward way to implement this would
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be setting the boundary conditions parameter λkin as displacements in the FE nodes
along ∂ΩMVE. For the configuration described in Section 4, this would mean adding
extra 2 × 244 parameters, considering that each node stores displacements along
X = [X1, X2]. While possible, this approach is generally expected to introduce
the so-called “curse of dimensionality” (Au and Beck, 2001; Katafygiotis and Zuev,
2008). In practice, it can materialise as a low acceptance rate with repeated samples.
The other caveat is that, even though calculating the solution of the mechanical sys-
tem for each new sample takes almost the same computational effort no matter the
number of employed parameters, one might require significantly more samples before
the algorithm finds the high probability region with the additional parameters. One
way to address this problem is to reduce the MHA sampling to manageable dimen-
sions by approximating boundary conditions with basis functions, although the effect
of that on the robustness of the algorithm must be considered first.

6.1. Finite Element Basis

A possible approach in reducing parameters’ dimension is to substitute the ex-
isting FE mesh on the boundary ∂ΩMVE with a coarser one, using only some of the
existing nodes. The initial MVE boundary mesh was constructed by assigning nodes
at equal intervals with displacements interpolated from DNS, and every n-th node is
then used for the boundary approximation, e.g. in Fig. 10a. For the clarity in visual
presentation, the coordinates X ∈ ∂ΩMVE, X1, X2 ∈ [−2.5, 2.5] were transformed
to ξ(X) ∈ R, ξ ∈ [0, 20]. For the approximation in the least squares sense, the
displacement error of the boundary condition is:

ǫBC
rel =

||utMVE(X)− uDNS(X)||2
||uDNS(X)||2

, X ∈ ∂ΩMVE, (28)

where utMVE(X) is the boundary approximation with 2 × t DOFs, uDNS(X) is the
exact boundary displacement obtained by the DNS. The error can be examined in
Fig. 10b.
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Figure 10: (a) substitution with coarse mesh; (b) relative error of the boundary condition depending
on the total number of employed degrees of freedom, FE basis.

To measure the effect of the approximation error, the material parameters are
identified by the MHA with the fixed boundary conditions parameter λkin, where
the exact boundary displacements were replaced with the approximation. As can be
seen in Fig 11, the tensile test is generally more robust than the shear test in terms
of the boundary error, as the results stop significantly deviating from the exact value
for the number of employed nodes as little as 20% of the total, while in the shear
test the material parameter K2 continues to fluctuate for increasing t.
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(b) Shear test.

Figure 11: Identified results (means of the posterior distributions) for tensile (a) and shear (b) tests
depending on the number of employed DOFs; boundary displacements are approximated with FE
basis functions by the least squares method and fixed.

Now the boundary conditions parameter λkin can be added to MHA sampling.
In Figs. 12 and 14 the experiment results are presented for tensile and shear test
respectively. The number of total employed boundary DOFs was 2× 61 (25%) and
2 × 244 (100%). To examine MHA’s robustness in regards to the starting point of
sampling, the first step of the algorithm was assumed with increasing σ of noise in the
now sampled parameter λkin. For the test with the 244 nodes, the starting point for
the material parameter λmat was in one experiment assumed as 0.9λref,i, i = 1, . . . , 4
and in the other as the last accepted MHA sample from the experiment in Section
5.2. It should be noted that the first case was calculated only for σ ∈ [0, 0.05] as
the high kinematic fluctuations drastically increase computation time of the solvers.
The walker’s step size in the boundary conditions parameter’s dimensions σq,kin is
scaled proportionally to σ max

Y ∈ΩMVE

(||uDNS(Y )||2).
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Figure 12: Identified parameters for different number of employed DOFs, mean (solid) ± standard
deviation (dashed), increasing σ ∈ [0, 0.1], N = 16 000 steps of MHA, tensile test, (⋆) denotes the
experiment with the starting point as the last accepted sample of each MC iteration for a given σ

from the MHA with fixed boundary experiment in Section 5.2.

In the tensile test with 2× 244 DOFs, the robustness was increased significantly
for σ ∈ [0, 0.5] compared to IDIC and MHA with fixed boundary, especially when the
starting point was assumed from the last sample of the fixed boundary experiment
(Fig. 12). Essentially, we can look at this experiment as if the MHA walker started
with fixed boundary conditions and then after reaching the high probability region
λkin was relaxed. In the experiment with reduced number of degrees of freedom,
while the robustness was increased for small σ, the error-causing effect of kinematic
smoothing is obvious, particularly for λK2.
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Figure 13: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2×244 (100%), single MC iteration, increasing σ ∈ [0, 0.04], N = 16 000 steps
of MHA, tensile test.

Some of the MHA walks for one of the MC realisations is shown in Fig. 13.
From there on, the burned in samples are shown in pale colours. The walks show
a strong linear relationship between λG1 a λG2, from which the contrast constant ̺
can be deduced. The resulting posterior probability functions can be inspected in
the Appendix in Figs. 28, 30. The high probability regions were also significantly
expanded compared to the fixed boundary experiment (shown as σ = 0, red).

The shear test experiment is shown in Fig. 14. From the walks for the 2 × 244
DOFs experiment in Fig. 15, it seems like the error in the inclusion shear modulus λG2

is causing radical direction change along the bulk modulus λK2, somewhat similar,but
less dramatic effect was also present in the tensile test. While in the shear test with
the reduced number of nodes identified values are seemingly closer to the reference
value, the algorithm has not yet converged in the high probability region (see Fig. 32
in the Appendix).
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Figure 14: Identified parameters for different number of employed DOFs, mean (solid) ± standard
deviation (dashed), increasing σ ∈ [0, 0.1], N = 16 000 steps of MHA, shear test, (⋆) denotes the
experiment with the starting point is the last accepted sample of each MC iteration for a given σ

from the MHA with fixed boundary experiment in Section 5.2.

Figure 15: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2×244 (100%), single MC iteration, increasing σ ∈ [0, 0.04], N = 16 000 steps
of MHA, shear test.
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The progress of the relative boundary condition error during MHA sampling for
different starting noise σ = [0, 0.1] is shown in Fig. 16. In both shear and tensile test
the error decreases throughout MHA run for the value of σ up to 0.08, which suggests
the possibility of the algorithm converging in the high-probability region close to the
reference value after many more additional iterations. On the other hand, for high
values of σ, the error is steadily increasing.

(a) Tensile test. (b) Shear test.

Figure 16: Average error in the boundary conditions for σ ∈ [0, 0.1], MHA sampling t = 2 × 244
(100%), FE basis, 55 MC iterations, the starting point of MHA is the last accepted sample of each
MC iteration for a given σ from the MHA with fixed boundary experiment in Subsection 5.2.

6.2. Comparison of MHA to BE-IDIC

One would be interested, of course, in how MHA with relaxed boundary com-
pares to the existing BE-IDIC algorithm that also incorporates boundary conditions
parameters. The robustness test in regards to the boundary noise was conducted for
BE-IDIC, where the identified parameter λkin was the same as in Section 6.1. The
results are shown in Fig. 17.
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Figure 17: Robustness test for BE-IDIC algorithm analogous to MHA experiment in Section 5.2,
increasing noise σ = [0, 0.1] in initial boundary conditions, material parameter identification for
tensile (a) and shear (b) tests, mean (solid) ± standard deviation (dashed).

The BE-IDIC algorithm converges to the same value, regardless of the starting
point. The variation in the tensile test is due rounding errors. Even though the
end result is very close to the reference value, the method does not provide much
information beyond that.

As was shown in the previous sections, MHA algorithm is not very effective in
reaching the supposed high-probability region when the starting point is not suffi-
ciently close to the reference value of the parameter. Nevertheless, the MHA algo-
rithm can be used to enrich the identification data after a deterministic algorithm
(like BE-IDIC) converged in the high-probability region.

Let us consider the following experiment: MHA is run with the starting point
provided by BE-IDIC, normalisation parameter λK1 is relaxed in addition to all
available boundary conditions DOFs employed (FE basis). The N = 32 000 step
sampling and resulting posterior probability distributions are shown in Figs. 18-
23. The strongest linear relation is suggested between the individual parameters of
matrix shear modulus G1 and fibre shear modulus G2 in both tensile and shear test
(Figs. 19, 22). The possible reason behind lesser robustness of the shear test might
be the inability to establish a correct ratio between the parameters other than G1

and G2.
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Figure 18: 2D projections of MHA sampling in material parameter dimensions, matrix shear mod-
ulus G1 and matrix bulk modulus K1 (left), fibre shear modulus G2 and fibre bulk modulus K2

(right); number of DOFs t = 2 × 244 (100%), N = 32 000 steps of MHA, starting point provided
by BE-IDIC, tensile test.

0.996 0.998 1 1.002 1.004

G1
/

G1,ref

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

G
2
/

G
2

,r
e

f

0.996 0.998 1 1.002 1.004 1.006

K1
/

K1,ref

0.996

0.998

1

1.002

1.004

1.006

K
2
/

K
2

,r
e

f

Figure 19: 2D projections of MHA sampling in material parameter dimensions, matrix shear mod-
ulus G1 and fibre shear modulus G2 (left), matrix bulk modulus K1 and fibre bulk modulus K2

(right); number of DOFs t = 2 × 244 (100%), N = 32 000 steps of MHA, starting point provided
by BE-IDIC, tensile test.
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Figure 20: Histograms and approximated posterior PDFs for individual material parameters, N =
32 000 steps of MHA, number of DOFs t = 2 × 244 (100%), starting point provided by BE-IDIC,
tensile test.
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Figure 21: 2D projections of MHA sampling in material parameter dimensions, matrix shear mod-
ulus G1 and matrix bulk modulus K1 (left), fibre shear modulus G2 and fibre bulk modulus K2

(right); number of DOFs t = 2 × 244 (100%), N = 32 000 steps of MHA, starting point provided
by BE-IDIC, shear test.
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(right); number of DOFs t = 2 × 244 (100%), N = 32 000 steps of MHA, starting point provided
by BE-IDIC, shear test.
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Figure 23: Histograms and approximated posterior PDFs for individual material parameters, N =
32 000 steps of MHA, number of DOFs t = 2 × 244 (100%), starting point provided by BE-IDIC,
shear test.

Note also the two distinct clusters in the matrix bulk modulus K1 (see Fig. 23),
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the parameter that was previously fixed. As the Dirichlet boundary conditions due
to the reasons discussed before only allow the parameter ratios to be established, so a
certain “drift” is expected. Curiously, its effects are stronger for the fibre parameters
in the shear test compared to the tensile test. Overall, the shift is happening toward
the higher values, so the material is identified to be somewhat stiffer that in reality.

The results for both tensile and shear test are presented in Tab. 2, where the
value obtained by the BE-IDIC is compared to the mean ± standard deviation and
the 2.5%–97.5% quantile of the posterior distribution provided by MHA.

Ref. BE-IDIC (t) MHA (t) BE-IDIC (s) MHA (s)

G1 1 0.9984 1.0014± 0.0015 0.9974 1.0021± 0.002
95% ∈ [0.9981, 1.004] 95% ∈ [0.9986, 1.0059]

K1 3 3 (fixed) 3.0067± 0.0044 3 (fixed) 3.0126± 0.0086
95% ∈ [2.9967, 3.0143] 95% ∈ [3.0005, 3.0320]

G2 4 3.9984 4.0013± 0.0058 3.9868 4.0052± 0.0082
95% ∈ [3.9883, 4.0112] 95% ∈ [3.9910, 4.0219]

K2 12 11.9808 11.9998± 0.0173 11.9148 12.0090± 0.0159
95% ∈ [11.9549, 12.0245] 95% ∈ [11.9705, 12.0343]

̺ 4 3.9992 3.9933± 0.0022 3.9844 3.9915± 0.0071
95% ∈ [3.9894, 3.9977] 95% ∈ [3.9756, 4.0007]

Table 2: Comparison of the parameter identification results for MHA and BE-IDIC, (t) stands for
tensile test, (s) stands for shear test.

6.3. Parametrisation of the Noise Present in Applied Kinematic Boundary Condi-

tions

As shown in the previous subsections, kinematic field smoothing has a negative
effect on the material parameter identification, so one would be interested in re-
ducing the number of sampled parameters without losing the heterogeneity of the
boundary. As the boundary ∂ΩMVE burdened with random noise can be looked at
as an unknown parameter field, we can try to parametrise it based on the random
field theory (Havelka et al., 2019). We assume a random field a(X), X ∈ ∂ΩMVE, a
stochastic process in space. Then we can state the parametrisation problem as fol-
lows (Xiu, 2010): let (Yt, t ∈ T ) be a stochastic process of the random inputs, where
the index t belongs to an index set T , and find a suitable transformation function
R such that Yt ≈ R(Z), where Z = (Z1, . . . , Zd), d ≥ 1, are mutually independent
random variables. As the index set T is infinite-dimensional domain and d is a finite
integer, the transformation is only approximate. To consider the finite-dimensional
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version of Yt we first discretise the index domain T into a set of finite indices and
then study the process

(Yt1 , . . . , Ytn), t1, . . . , tn ∈ T,

which is now a finite-dimensional random vector. To reduce the dimensionality of
the random process we introduce a parameter vector into the model by applying the
truncated Karhunen–Loève expansion (KLE). Let µY (t) be the mean of the input
process Yt(ω) = a(X), X = X(t) is a parametrisation of the boundary ∂ΩMVE,
where t ∈ T ⊂ R, T is an interval. Let C(t, s) = cov(Yt, Ys) be its covariance
function. The Karhunen–Loève expansion of Yt is given by:

Yt(ω) ≈ µY (t) +
d∑

i=1

√
λiψi(t)Yi(ω), d ≥ 1, (29)

where ψi are the orthogonal eigenfunctions and λi are the corresponding eigenvalues
of the eigenvalue problem

∫

T

C(t, s)ψi(s)ds = λiψi(t), t, s ∈ T (30)

and Yi(ω) are mutually uncorrelated random variables satisfying

E[Yi] = 0, E[YiYj] = δij

where δij is Kronecker’s delta and defined by

Yi(ω) =
1√
λi

∫

T

(Yt(ω)− µY (t))ψi(t)dt, i = 1, . . . , d.

For our particular problem, to set the covariance functions C1(t, s) and C2(t, s)
for displacements in X1 and X2, one can use the boundary data obtained by DNS:

C1(t, s) =
u1(X(t)) · u1(X(s))

||u1||2
, t, s ∈ T, (31)

C2(t, s) =
u2(X(t)) · u2(X(s))

||u2||2
, t, s ∈ T, (32)

where u1 = [u11, . . . , u
1
nu/2

]T ∈ R
nu , u2 = [u21, . . . , u

2
nu/2

]T ∈ R
nu are nodal displace-

ments on the boundary ∂ΩMVE in X1 and X2 directions. Some of the resulting basis
functions are illustrated in Fig. 24.
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Figure 24: Some KLE eigenvectors (basis functions).

Let us suppose that we have obtained boundary conditions data burdened with
noise, cf. Eq. (26). Even though describing boundary conditions with perfect ac-
curacy is not our main concern, “purifying” the data will lead to more accurate
identification of material parameters. A way to do that would be fitting the noise in
the boundary conditions in the least square sense with a number of basis functions
obtained by the KLE from Eq. (29). The relative error of the resulting boundary is
then:

ǫBC
rel =

||uMVE(X(t))−Ψncn − uDNS(X(t))||
||uMVE(X(t))− uDNS(X(t))|| , t ∈ T, (33)

where Ψn is the n×NMVE matrix of eigenvectors ψi in Eq. (29), NMVE is the num-
ber of data points along ∂ΩMVE, cn = [c1, . . . , cn]T is the coefficients obtained by
approximating the superimposed noise with the least squares method.

As we can see in Fig. 25, the relationship between the number of basis functions
(chosen in the ascending order of the respective eigenvalues) used and the relative
error is not linear, e.g. to reduce the error by 50%, approximately 75% of the total
number of available KLE basis functions must be used. To quantify the effect of
the noise smoothing in the boundary conditions in the fixed boundary test, the KLE
approximation of noise is subtracted from the boundary conditions (Figs. 34, 35 in
the Appendix). The tests were performed for N = 4 000 MHA steps. For the number
of employed KLE functions equal to 2 × 61 (out of total 2 × 244) and σ = 0.1, the
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reduction in the error in the mean was about 50% for the parameters G1 and G2,
and 80% for the K2, while the standard deviation was reduced by nearly 50% for G1

and G2 and more than 66% for K2. The L2 error of the boundary conditions was
reduced by only about 10%. The error is also reduced considerably for the shear test
with the exception of the K2 parameter. As was mentioned before, the results above
are hypothetical, because the boundary conditions noise is unknown and random,
but they should represent the end result after many MHA iterations, assuming, of
course, that the algorithm cannot converge to a ”better” minimum of RMHA, hence
a different fit to the noise from the fit in a least squares sense.
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Figure 25: Relative displacement error at ∂ΩMVE according to Eq. (33), depending on the number
of employed KLE basis functions.

Let us now move on to adding degrees of freedom to the MHA algorithm, so that
the boundary conditions can be written in the form:

uMVE(X, ζ̂t) = uDNS(X) + σ max
Y ∈ΩMVE

(||uDNS(Y )||2)U−Ψtζ̂t, X ∈ ∂ΩMVE, (34)

where noise parameter ζ̂t ∈ R
t is now substituting λkin as the boundary conditions

parameter. As it proved a somewhat more effective strategy before, the last accepted
sample of each MC iteration for a given σ from the fixed boundary experiment is
assumed as the starting point of the MHA algorithm. The results for the number of
the employed KL functions equal to 2× 61 (25%) and 2× 244 (100%), N = 16 000
steps and burn-in N0 = 0.75N are shown in Figs. 26, 27.
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(a) t = 2× 61 KLE basis functions (25% total).

0 0.02 0.04 0.06 0.08 0.1

0.9

0.95

1

1.05

1.1

1.15

1.2

/
re

f

G
1

G
2

K
2

(b) t = 2× 244 KLE basis functions (100% total).

Figure 26: Identified parameters for different number of employed KLE basis functions, mean (solid)
± standard deviation (dashed), increasing σ ∈ [0, 0.1], N = 16 000 steps of MHA, tensile test, the
starting point of MHA is the last accepted sample of each MC iteration for a given σ from the
MHA with fixed boundary experiment in Section 5.2.
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(a) t = 2× 61 KLE basis functions (100% total).

0 0.02 0.04 0.06 0.08 0.1

0.2

0.4

0.6

0.8

1

1.2

1.4

/
re

f

G
1

G
2

K
2

(b) t = 2× 244 KLE basis functions (25% total).

Figure 27: Identified parameters for different number of employed KLE basis functions, mean (solid)
± standard deviation (dashed), increasing σ ∈ [0, 0.1], N = 16 000 steps of MHA, shear test, the
starting point of MHA is the last accepted sample of each MC iteration for a given σ from the
MHA with fixed boundary experiment in Section 5.2.

The sampling step size σq,kin was again adjusted relative to σ of noise. We can
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see that in the tensile test for σ ≤ 0.03, the algorithm converged very close to the
precise values of λ and then starts deviating with a slight improvement over the
fixed boundary conditions. The effect, however, was not observed for either number
of functions in the shear test.

7. Summary and Conclusions

In this contribution, a study comparing the robustness of Metropolis-Hastings
algorithm (MHA) to deterministic Integrated Digital Image Correlation (IDIC) and
Boundary Enriched Integrated Digital Image Correlation (BE-IDIC) has been pre-
sented. To this end, heterogeneous specimen with a random microstructure have
been subjected to two virtual mechanical tests under plane strain conditions, one
to primarily introduce tension, the other to introduce shear. The experiments have
shown a similar behaviour of MHA with fixed boundary conditions to IDIC for both
the systematic error and random error in the boundary conditions.
Two possible ways of reducing the dimension of the boundary conditions parameter
were suggested: a) substituting the employed discretisation mesh on the boundary
with a coarser one; b) approximating the random boundary error as an unknown
parameter field by truncated Karhunen–Loève expansion. The robustness test for
random error in the boundary conditions did not suggest any benefit in reducing di-
mensionality in the employed configuration. Both a) and b) methods performed well
for small noise, for higher values either has converged to the probability region more
akin to the fixed boundary test, suggesting that the boundary conditions parameter
λkin does not converge fast enough for the material parameter λmat to stop compen-
sating the error. The a) method also caused ill-conditioned mechanical systems for
high starting noise more often than b) method.
In total, MHA with relaxed boundary conditions proved to be less efficient and more
computationally costly than BE-IDIC in finding the high probability region. Its
benefits, however, are:

• adding degrees of freedom does not increase computational cost and memory
requirements;

• it provides more statistical data;

• one can use the results of the deterministic methods to improve upon;

• it does not require a normalisation parameter to be fixed at the exact reference
value.
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It is important to note that the virtual test employed an exact constitutive model
that is not likely reproducible in real experiments, and that also other significant
sources of errors exist and must be accounted for. Thus, stochastic approach might
be applicable to fine-tuning the sensitivity analyses to various other sources of errors
and tests on real experiments. Suitability for ill-posed problems should be further
investigated.
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F., Lemosse, D., Pagano, S., Pagnacco, E., Pierron, F., 2008. Overview of identi-
fication methods of mechanical parameters based on full-field measurements. Ex-
perimental Mechanics 48. doi:10.1007/s11340-008-9148-y.
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8. Appendix

This section provides extended results of the experiments described in the main
body.
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Figure 28: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 13.

Figure 29: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2×61 (25%), FE basis, single MC iteration, increasing σ ∈ [0, 0.04], N = 16 000
steps of MHA, starting point 0.9λi,mat, tensile test.
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Figure 30: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 29.

1 1.05 1.1

G1
/

G1,ref

0

100

200

300

400

500

1 1.05 1.1

G2
/

G2,ref

0

200

400

600

=0.01

=0.02

=0.03

=0.04

0.7 0.8 0.9

K2
/

K2,ref

0

50

100

150

200

Figure 31: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 15.
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Figure 32: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2×61 (25%), FE basis, single MC iteration, increasing σ ∈ [0, 0.04], N = 16 000
steps of MHA, starting point 0.9λi,mat, shear test.
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Figure 33: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 32.

56



0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

/
e

x

t/N
MVE

=0

G
1

G
2

K
2

(a) Total number of basis functions t = 0.

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

/
e

x

t/N
MVE

=0.25

G
1

G
2

K
2

(b) Total number of basis functions t = 2× 61.
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(c) Total number of basis functions t = 2× 122.
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(d) Total number of basis functions t = 2× 183.

Figure 34: Identified parameters for the different number of KLE basis functions, mean (solid) ±
standard deviation (dashed), increasing σ ∈ [0, 0.1], N = 4 000 steps of MHA, KLE approximation
of noise by least squares method is subtracted from the boundary conditions with noise, fixed
boundary conditions, tensile test.
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Figure 35: Identified parameters for the different number of KLE basis functions, mean (solid) ±
standard deviation (dashed), increasing σ ∈ [0, 0.1], N = 4 000 steps of MHA, KLE approximation
of noise by least squares method is subtracted from the boundary conditions with noise, fixed
boundary conditions, shear test.
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Figure 36: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2 × 244 (100%), KLE basis, single MC iteration, increasing σ ∈ [0, 0.04],
N = 16 000 steps of MHA, the starting point of MHA is the last accepted sample of each MC
iteration for a given σ from the MHA with fixed boundary experiment in Section 5.2, tensile test.

0.99 0.995 1 1.005

G1
/

G1,ref

0

200

400

600

800

1000

1200

0.99 0.995 1 1.005

G2
/

G2,ref

0

200

400

600

800

1000

1200
=0.00

=0.01

=0.02

=0.03

=0.04

0.99 0.995 1 1.005

K2
/

K2,ref

0

200

400

600

800

1000

1200

Figure 37: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 36.
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Figure 38: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2 × 244 (100%), KLE basis, single MC iteration, increasing σ ∈ [0, 0.04],
N = 16 000 steps of MHA, the starting point of MHA is the last accepted sample of each MC
iteration for a given σ from the MHA with fixed boundary experiment in Section 5.2, shear test.
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Figure 39: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 38.
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Figure 40: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2 × 61 (25%), KLE basis, single MC iteration, increasing σ ∈ [0, 0.04],
N = 16 000 steps of MHA, the starting point of MHA is the last accepted sample of each MC
iteration for a given σ from the MHA with fixed boundary experiment in Section 5.2, tensile test.
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Figure 41: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 40.
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Figure 42: 2D projection of MHA sampling in material parameter dimensions, fibre shear modulus
G2 and bulk modulus K2 (left), matrix shear modulus G1 and fibre shear modulus G2 (right);
number of DOFs t = 2 × 61 (25%), KLE basis, single MC iteration, increasing σ ∈ [0, 0.04],
N = 16 000 steps of MHA, the starting point of MHA is the last accepted sample of each MC
iteration for a given σ from the MHA with fixed boundary experiment in Section 5.2, shear test.
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Figure 43: Approximated posterior PDFs of individual material parameters for the MHA sampling
in Fig. 42.
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