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Abstract

The convergence of communication and computing in the mobile networks has led to

an introduction of the Multi-Access Edge Computing (MEC). The MEC combines com-

munication and computing resources at the edge of the mobile network and provides an

option to optimize the mobile network in real-time. This is possible due to close proxim-

ity of the computation resources in terms of communication delay, in comparison to the

Mobile Cloud Computing (MCC). The optimization of the mobile networks requires infor-

mation about the mobile network and User Equipment (UE). Such information, however,

consumes a significant amount of communication resources. The finite communication

resources along with the ever increasing number of the UEs and other devices, such as

sensors or vehicles pose an obstacle for collecting the required information. Therefore, it

is necessary to provide solutions to enable the collection of the required mobile network

information from the UEs for the purposes of the mobile network optimization.

In this thesis, a solution to enable communication of a large number of devices, exploit-

ing Device-to-Device (D2D) communication for data relaying, is proposed. To motivate

the UEs to relay data of other UEs, we propose a resource allocation algorithm that leads

to a natural cooperation of the UEs. To show, that the relaying is not only beneficial

from the perspective of an increased number of UEs, we provide an analysis of the en-

ergy consumed by the D2D communication. To further increase the number of the UEs

we exploit a recent concept of the flying base stations (FlyBSs), and we develop a joint

algorithm for a positioning of the FlyBS and an association of the UEs to increase the

UEs satisfaction with the provided data rates.

The MEC can be exploited not only for processing of the collected data to optimize

the mobile networks, but also by the mobile users. The mobile users can exploit the MEC

for the computation offloading, i.e., transferring the computation from their UEs to the

MEC. However, due to the inherent mobility of the UEs, it is necessary to determine com-

munication and computation resource allocation in order to satisfy the UEs requirements.

Therefore, we first propose a solution for a selection of the communication path between

the UEs and the MEC (communication resource allocation). Then, we also design an

algorithm for joint communication and computation resource allocation. The proposed

solution then leads to a reduction in the computation offloading delay by tens of percent.

Keywords: Mobile Networks, Multi-access Edge Computing, Offloading, Mobility

management, Resource allocation, Real-time
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Abstrakt

Konvergence komunikačńıch a výpočetńıch technologíı vedla k vzniku Multi-Access

Edge Computing (MEC). MEC poskytuje výpočetńı výkon na tzv. hraně mobilńıch śıt́ı

(základnové stanice, jádro mobilńı śıtě), který lze využ́ıt pro optimalizaci mobilńıch śıt́ı

v reálném čase. Optimalizace v reálném čase je umožněna d́ıky ńızkému komunikačńımu

zpožděńı např́ıklad v porovnáńı s Mobile Cloud Computing (MCC).

Pro optimalizaci mobilńıch śıt́ı je nutný sběr informaćı o mobilńı śıti od uživatelských

zař́ızeńıch. Sběr těchto informaćı nicméně využ́ıvá komunikačńı prostředky, které jsou

využ́ıvány i pro přenos uživatelských dat. Zvyšuj́ıćı se počet uživatelských zař́ızeńı, sen-

zor̊u a taktéž komunikace vozidel tvoř́ı překážku pro sběr informaćı o mobilńıch śıt́ıch z

d̊uvodu omezeného množstv́ı komunikačńıch prostředk̊u. Tud́ıž je nutné navrhnout řešeńı,

která umožńı sběr těchto informaćı pro potřeby optimalizace mobilńıch śıt́ı.

V této práci je navrženo řešeńı pro komunikaci vysokého počtu zař́ızeńıch, které

je postaveno na využit́ı př́ımé komunikace mezi zař́ızeńımi. Uživatelé jsou motivováni

k využit́ı přepośıláńı dat pomoćı př́ımé komunikace d́ıky přiděleńı v́ıce komunikačńıch

prostředk̊u, jenž vede na přirozenou spolupráci uživatel̊u. Dále, pro ukázáńı výhod př́ımé

komunikace mezi uživateli, je provedena analýza spotřeby energie př́ımé komunikace mezi

uživateli. Daľśı zvýšeńı počtu komunikuj́ıćıch zař́ızeńı je založeno na využit́ı mobilńıch

létaj́ıćıch základových stanic (FlyBS). Pro nasazeńı FlyBS je navržen algoritmus, který

hledá pozici FlyBS a asociuje uživatele k FlyBS pro zvýšeńı spokojenosti uživatel̊u s

poskytovanými datovými propustnostmi.

MEC lze využ́ıt nejen pro optimalizaci mobilńıch śıt́ı z pohledu mobilńıch operátor̊u,

ale taktéž uživateli mobilńıch śıt́ı. Tito uživatelé mohou využ́ıt MEC pro přenos výpočetně

náročných úloh z jejich mobilńıch zař́ızeńıch do MEC. Z d̊uvodu mobility uživatel je

nutné nalézt vhodné přiděleńı komunikačńıch a výpočetńıch prostředk̊u pro uspokojeńı

požadavk̊u uživatel̊u. Tud́ıž je navržen algoritmus pro výběr komunikačńı cesty mezi

uživatelem a MEC. Tento algoritmus je posléze rozš́ı̌ren o společné přidělováńı komu-

nikačńıch a výpočetńıch prostředk̊u. Toto navržené řešeńı následně vede ke sńıžeńı komu-

nikačńıho zpožděńı o deśıtky procent.

Kĺıčová slova: Mobilńı śıtě, Multi-access Edge Computing, Přesun výpočt̊u,

Správa mobility, Přidělováńı prostředk̊u, Reálný čas
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Glossary

3GPP ETSI 3rd Generation Partnership Project.

4G fourth generation.

5G fifth generation.

AM-AOMDV Adaptive Multi-metric Ad-Hoc On-Demand Multipath Distance Vector.

AOMDV-DPU Ad-hoc On-demand Multipath Distance Vector with Dynamic Path Up-
date.

ARIMA Autoregressive integrated moving average.

ARQ Automatic Repeat reQuest.

AWGN Additive White Gaussian Noise.

BBU Base Band Unit.

BER Bit Error Rate.

BLER Block Error Rate.

BS Base Station.

BSR Buffer Status Report.

C-RAN Cloud-Radio Access Network.

CDF Cumulative Distribution Function.

CLO Cross-layer Optimization.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

CSI Channel State Information.

CSMA Carrier Sensing multiple Access.

CTR Clear To Relay.

CTS Clear To Send.

D2D Device-to-Device.
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Glossary

DCCRA Dynamic Communication and Computing Resource Allocation.

DF Decode and Forward.

EAB Extended Access Barring.

eNB 4G base station.

EPA extended pedestrian A.

EPDCCH Enhanced Physical Downlink Control Channel.

FDD Frequency Division Duplex.

FlyBS Flying BS.

GA Genetic algorithm.

GBR Guaranteed Bit Rate.

GFDM Generalized Frequency Division Multiple Access.

gNB 5G base station.

GPU Graphical Processing Unit.

HARQ Hybrid Automatic Repeat reQuest.

HeNB Femto Cell eNB.

HMM Hidden Markov Model.

IoT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

KKT Karush-Kuhn-Tucker.

LOS Line Of Sight.

LTE Long Term Evolution.

LTE-M Long Term Evolution - Machine Type Communication.

LTE-A Long Term Evolution - Advanced.

MAC Medium Access Control.

MCC Mobile Cloud Computing.

MCS Modulation and Coding Scheme.

MDP Markov Devicision Process.
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Glossary

MEC Multi-Access Edge computing.

MEC host MEC host.

MEO Mobile Edge Orchestrator.

MIPS Millions Instructions Per Second.

MLE Maximum Likelihood Estimation.

MTC Machine Type Comunication.

NBS Nash Baragaining Solution.

NC No Compression.

NCL Neighbor Cell List.

O-RAN Open Radio Access Network.

OAI Open Air Interface.

ODSR Opportunistic Device Select Relaying.

OFDMA Orthogonal Frequency Division Multiple Access.

OR Overhead Reduction.

ORS Opportunistic Relay Selection.

OS Operating System.

PDCCH Physical Downlink Control Channel.

PDCP Packet Data Convergence Protocol.

PDF Probability Distribution Function.

PDMPRP Power and Delay-aware Multi-path Routing Protocol.

PDSCH Physical Downlink Shared Channel.

PRACH Physical Random Access Channel.

PSO Particle Swarm Optimization.

PSwH Path Selection with Handover.

QAM Quadrature Amplitude Modulation.

QoE Quality of Experience.

QoS Quality of Service.

QPSK Quadrature Phase Shift Keying.

RAM Random Access Memory.
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Glossary

RAP Random Access Procedure.

RB Resource Block.

RLC Radio Link Control.

ROHC Robust Overhead Compression.

ROHC SO ROHC Second Order.

ROHC FO ROHC First Order.

RSS Received Signal Strength.

RSSI Received Signal Strength Indicator.

RTR Request To Relaying.

RTS Request To Send.

RWS Roulette Wheel Selection.

SBS Static Base Station.

SC-FDMA Single Carrier - Frequency Division Multiple Access.

SCC Small Cell Cloud.

SCeNB Small Cell eNB.

SCgNB Small Cell gNB.

SINR Signal to Interference plus Noise Ratio.

SNR Signal to Noise Ratio.

SO Serving Only.

TB Transmission Block.

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol/Internet Protocol.

TDL-A Tapped Delay Line Type A.

TDMA Time Domain Multiple Access.

TPC Transmission Power Control.

TTI Transmission Time Interval.

TTL Time To Live.

UAV Unmanned Aerial Vehicles.

UE User Equipment.
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VM Virtual Machine.

VM-OAP VM Online Approximation Placement.

VoIP Voice over IP.

WiFi Wireless Fidelity.

WSN Wireless Sensor Networks.
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Chapter 1

Introduction

Mobile networks of the fifth generation (5G) are foreseen to enable communication of a

huge number of connected devices (e.g., smartphones, tablets, sensors, or machines). The

5G should enable communication of trillions of devices in 2020 [1]. The increase in the

number of devices is based on an introduction of Internet of Things (IoT) and Machine

Type Comunication (MTC), and on continuous increase in the number of conventional

user devices, such as smartphones or tablets. It is expected that a single base station will

serve between ten and hundred thousand MTC devices and thousands of conventional

User Equipments (UEs) [2]. Also, at the same time, the number of network parameters

to be configured, in order to optimize performance of the network, is expected to increase

from 1500 in fourth generation (4G) to 2000 in 5G [3]. This motivates self-optimization of

the mobile networks [4]. For an efficient self-optimization of the mobile networks, a huge

amount of information should be collected and further processed. Such information may

range from radio parameters, such as signal quality, to information related to positions

or mobility of the devices (mobile phones, tablets, sensors, etc.). A common indicator of

all expected information is relatively small volume of data collected from many devices

with a relatively high frequency. The communication of a large number of devices can be

tackled by exploiting Device-to-Device (D2D) for data relaying [5, 6]. However, the D2D

introduces several challenges, such as resource allocation [7, 8] or power allocation [9].

Another option is to deploy a base stations (BSs) on an Unmanned Aerial Vehicless

(UAVs) leading to an introduction of a FlyBS [10]. Nevertheless, the mobility of the FlyBS

introduces additional challenges, such as positioning of the FlyBSs [10] or an association

of the UEs to the FlyBSs [11].

Apart from enabling the communication of a huge number of devices, the 5G mobile

networks disrupt the current separation of the communication and computation resources

by converging them together [2]. This convergence leads to an introduction of Multi-

Access Edge computing (MEC) [12], where computing resources are distributed at the

edge of the mobile network, i.e., BSs. The MEC provides computation resources for

control and management of the mobile networks, and enables real-time network self-

optimization and cloud computing at the edge of mobile network. The computation

resources are generally provided either as Virtual Machines (VMs) [13] or containers [14].
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The VMs and containers enable management of the computation resources of multiple

users, separate their data and provide the computation power based on the user’s demand.

Compared to a conventional Mobile Cloud Computing (MCC) [15], the MEC signif-

icantly reduces communication delay for computing the tasks offloaded from the UEs to

the cloud and reduces communication load of the backhaul due to its location at the edge

of the mobile networks. The architecture of the MEC enables the MEC host (MEC host),

providing the computation resources, to be deployed at one of the possible places, based

on its location in relation to the mobile network [16]. One of the locations is ”bump in the

wire”, where the MEC host is placed on a BS, represented by either an eNB in case of 4G

or a gNB in case of 5G mobile networks. In the thesis, it is assumed that the MEC host

is deployed as a ”bump in the wire”, which is similar to a concept of Small Cell Cloud

(SCC) [17–19]. Furthermore, primary focus is given to offloading functionalities of the

MEC, enabling offloading of user’s applications from the UE, such as facial/object recog-

nition, video/speech processing, mobile gaming, augmented or virtual reality, etc. The

offloaded application processes data of the user’s application, denoted as the offloaded

task. The concept of the mobile network optimization is shown in Figure 1.1, where, on

the left side, information about the mobile network from the UEs is collected and, on

the right side, exploited for the mobile network optimization (resource allocation of the

BS and FlyBS deployment). Furthermore, to illustrate the computation offloading, the

mobile UE offloads its computation task to the BS on the left, and, after moving close to

the right BS, collects the processed task.
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MEC

BSBS

MEC
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UE network informationUE

UE

Collecting UE network information
UE movement

UE UE

UE

time

fr
eq

u
en

cy

VM migration
FlyBS deployment

BS resource allocation
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Figure 1.1. Resource allocation and FlyBS deployment based on collected UE network
information. On the left side, the mobile network information is collected from the UEs
at the MEC, where it is processed. The processed mobile network information is then
exploited for optimization of BS’s resource allocation and deployment of the FlyBS.

In the rest of this chapter, we provide the motivation for the research work carried
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1.1. MOTIVATION

out in the thesis and provide an outline of the thesis.

1.1 Motivation

The upcoming mobile networks improve the Quality of Service (QoS) for the mobile

users by increasing their capacity, decreasing communication delay and by providing novel

functionalities, such as MEC. However, this comes at a cost of an increased complexity

that should be tackled in order to maximize the efficiency of the mobile networks in terms

of communication parameters, such as the data rate or delay, and also the energy effi-

ciency, represented by the energy consumed by the UEs communication [3]. To maximize

the efficiency of the mobile networks while tackling the problem of the increased complex-

ity, the mobile networks should be able to optimize itself in a real-time. This leads to the

self optimizing networks, that collect the information about the mobile network and the

UEs, and optimize the communication parameters [4]. However, with the ever increas-

ing number of the UEs and machines (sensors, vehicles, etc.), it is necessary to provide

solutions to collect the mobile network information [1]. Moreover, the mobile network

information have to be collected at some element in the mobile network and processed

before any optimization of the mobile network can be carried out.

The collected data can be stored and processed in the cloud [15]. However, the problem

of the real-time optimization persists, as the cloud computing is generally located far away

from the BSs and the UEs that are served by these BSs. Thus, it is beneficial to exploit

the MEC that provides storage and computation capabilities at the edge of the mobile

network [12]. Based on the collected and processed mobile network information from the

UEs, the mobile network optimizes its parameters to improve the QoS for the UEs.

One of the recent issues to tackle, is an allocation of the communication and computa-

tion resources for the UEs exploiting the MEC [20]. The communication is carried out by

the mobile networks, but it is still necessary to lower the communication delay to provide

a seamless service. The handover, i.e., changing the serving BS, introduces a significant

communication delay, that affect the QoS, and should be considered in the communication

resource allocation. The computation resources are provided either in a form of VMs or

containers. For the static UEs a solution can be found and kept, i.e., VM or container

location is unchanged, until the UE stops exploiting the MEC [21]. However, in case

of the mobile UE the problem becomes complex to solve. Therefore, dynamic solutions

that optimize the mobile network in real-time are necessary. The dynamic solutions can

exploit either a migration of VM [22] or container to another BS or staring a new VM [23]

or container [14] at another BS. Nevertheless, moving the computation resources is a time

consuming process and leads to a degradation of the QoS. Thus, the moving of the com-

putation resources should be considered in allocation of the computation resources to the

mobile UEs.
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1.2. ORGANIZATION OF THE THESIS

1.2 Organization of the thesis

In this section, organization of the thesis is described.

Chapter 2 - State of the art provides a deep insight into the collection of the mobile

network information from the UEs and resource allocation in the MEC. Section 2.1

provides information about current limits of the mobile networks in terms of max-

imal number of connectedUEs, exploitation of the D2D for data relaying, and de-

ployment of the FlyBSs. Section 2.2 describes the MEC and existing solutions for

the communication and computation resource allocation.

Chapter 3 - Thesis objectives defines thesis objectives based on the state of the art

and the motivation.

Chapter 4 - Collecting user and network information consists of the proposed so-

lutions for increasing the number of communicating UEs to collect the network infor-

mation in Section 4.1. Then cooperative communication resource allocation based

on the Nash Baragaining Solution (NBS) is described in Section 4.2, followed by a

energy consumption analysis of the D2D relaying in Section 4.3. Section 4.4 deals

with a solution of for a deployment of the FlyBSs to improve the QoS of the UEs.

Chapter 5 - Resource allocation in the MEC focuses on exploitation of the MEC

for computation offloading of the UEs, and an allocation of the communication

and computation resources. First, in Section 5.1, the Markov Devicision Process

(MDP) and how it is exploited in the proposed resource allocation algorithms is

outlined. Then, in Section 5.2 the algorithm for a selection of the communication

path is described. In Section 5.3 and Section 5.4, the proposed joint communication

and computation resource allocation with fixed mobility prediction accuracy and

unknown mobility are described.

Chapter 6 - Conclusion provides a summary of all achieved results and outlines the

future research directions.
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Chapter 2

State of the art

In this section, we describe communication limits of the mobile networks in terms

of number of UEs communicating and collecting mobile network information from the

UEs. Then, the MEC architecture and challenges related to the management of the UEs’

mobility in the MEC are explained.

2.1 Mobile networks

Collection of the mobile network information from the UEs is one of the key require-

ments for self-optimization of the mobile network. However, in the 4G mobile networks

(e.g., LTE-A) it is not possible to collect the required information from the UEs, as its

amount is very large and consists of a small sized data. This is due to the design of cur-

rent 4G mobile networks, which are designed to support high speed data transmissions

of a large payload (e.g., video, file sharing, etc.). Nevertheless, when it is required to

serve a huge number of the UEs sending or receiving a relatively small volumes of data,

performance of the LTE-A mobile networks becomes significantly degraded [24, 25]. In

current mobile networks, the majority of traffic is being transmitted in downlink rather

than in uplink [26]. However, collection of data from the UEs can turn this situation over

and, as expected, increase uplink utilization.

Moreover, as the ETSI 3rd Generation Partnership Project (3GPP) mobile networks

should be able to self-optimize in real-time [4], the question is how to process the collected

mobile network information to optimize th mobile network in a real-time. The collected

mobile network information can be processed either centrally [15] or by distributed com-

puting resources deployed closer to the edge of the mobile networks (e.g., the MEC [12]).

For both centralized and distributed processing of the mobile network information, load of

the radio channels will increase significantly due to a need for gathering of small payloads

with significant overhead from a large number of UEs [27].

To improve the performance of the mobile networks a relayed communication based

on the D2D can be exploited. It provides an option to a UE to overcome low quality

communication channel to its serving BS by relaying its communication over neighboring

UEs. Moreover, it can be exploited for collecting of the mobile network information from
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2.1. MOBILE NETWORKS

the UEs. Another way how to improve the mobile network performance is to deploy the

UAVs acting as FlyBSs. The FlyBSs improve the channel quality of the UEs by increasing

the probability of Line Of Sight (LOS) communication that leads to an improved channel

quality [28].

In the following subsections, we describe limitations of collecting the mobile network

information from the UEs, followed by incorporation of the D2D communication and the

FlyBSs in the mobile networks.

2.1.1 Collecting mobile network information

Transmission of small payloads from a high number of densely spread devices (UEs,

sensors, vehicles, etc.) is currently an issue for the LTE-A based mobile networks as

the transmission protocol stack, as shown in Figure 2.1, is not prepared to handle it

[29]. Limitations are seen in maximal number of devices to be scheduled within a single

subframe [24] as well as due to the collisions of devices trying to connect to the mobile

network [25]. Also, an important problem comes from transmission of significant overhead

at all layers of the protocol stack, i.e., Physical layer, Control layers and Transmission

Control Protocol/Internet Protocol (TCP/IP) layer, as shown in Figure 2.1. The overhead

and limitations from each protocol stack layers are described in the following subsections.

Figure 2.1. LTE-A transmission protocol stack at the device.

Physical layer

The first limitation on the maximal number of served devices is implied by the physical

layer as it defines the amount of bits the devices can transmit within a time period. On

the radio, LTE-A defines a frame with a duration of 10ms. The frame is divided into

10 subframes (each with duration of 1ms). The minimum amount of bits allocated to

one device is defined by the minimal amount of resources per subframe allocated to the

device. Each subframe is composed of two RBs in time domain. In LTE-A, at least two

time consecutive RBs (i.e., subframe) must be allocated to the device [30]. Depending
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2.1. MOBILE NETWORKS

on used Modulation and Coding Scheme (MCS), the device can send between 32 and 616

bits per subframe in one Transmission Block (TB) using Quadrature Phase Shift Keying

(QPSK) and 64 Quadrature Amplitude Modulation (QAM), respectively (see [31] for

more details on relation between TB size, number of RBs, and MCS). The TB contains

the device’s payload and headers added by all layers as shown in Figure 2.1. If the device

is willing to send less bits than the amount, which can be transmitted in RBs allocated

to the device, the MCS for transmission can be lowered to reduce transmission error rate.

However, from spectral efficiency point of view, this approach is very inefficient and leads

to wasting of radio resources. To enable transmission of less than two RBs, Long Term

Evolution - Machine Type Communication (LTE-M) has been proposed. The LTE-M

aims on the MTC and reduces transmission bandwidth to enable use of single RB (i.e.,

a half of the subframe) [32, 33]. However, this requires to use Generalized Frequency

Division Multiple Access (GFDM) (see more details in [34]) for multiplexing instead of

Single Carrier - Frequency Division Multiple Access (SC-FDMA), which is defined for

uplink in LTE-A.

Next limit for the uplink transmission originates from the Random Access Procedure

(RAP), which serves for initial communication with the eNB. The procedure consists of

randomly selected preamble sent by a device to identify itself over the Physical Random

Access Channel (PRACH). As there is a limited number of preambles to distinguish each

device, collision may occur at the PRACH [25]. Collision probability can be reduced by

use of Extended Access Barring (EAB), which is barring communication of low-priority

devices. Results from analysis in [35] show that the EAB decreases collision probability

but at the cost of increased delivery delay. Different way to avoid the collisions is to reduce

the number of the RAP by buffering of several payloads from the device [36]. Instead

of starting the RAP each time the device has a payload to send, the RAP is used once

for transmission of multiple buffered payloads. Nevertheless, buffering must respect delay

constraints of each type of payload. Another way to overcome the PRACH limitation is

to dynamically allocate more resources to the PRACH [37]. On one hand, it enables more

devices to initiate communication via RAP. On the other hand, this consumes resources

commonly allocated to the device for communication. Consequently, a higher number

of the devices can be able to access radio resources, but these resources might not be

available to all of them in required quantity. Finally, the number of devices being able to

transmit required payload by single eNB might not be increased sufficiently.

Control layers

After successful RAP, the device has to be scheduled in order to transmit its payload.

In general, three options of scheduling are known: persistent, semi-persistent, or non-

persistent (or dynamic) [38]. The persistent scheduling allocates resources to the device for

a given period defined by the number of Transmission Time Interval (TTI). An advantage

is that the resources are allocated once for the period of multiple TTI, which leads to

transmission of less signaling overhead. However, if the device is not transmitting any data

in some TTIs, its RBs cannot be reallocated to another device and these RBs are wasted.
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In case of non-persistent scheduling, the number of devices scheduled in one TTI is limited

to 10 due to the limitations imposed by the Uplink grant (UL grant) information carried

inPhysical Downlink Control Channel (PDCCH) [24]. The limit of 10 devices is due to

the number of resources available for the UL grant. To overcome the limit of 10 devices

scheduled by the PDCCH, 3GPP Release 11 introduces Enhanced Physical Downlink

Control Channel (EPDCCH) [31,39]. The EPDCCH overcomes the limitation of PDCCH

by utilizing more resources from Physical Downlink Shared Channel (PDSCH) (used for

user data transmission in downlink) for the purposes of the UL grant transmission. The

last type of scheduling is semi-persistent. The semi-persistent scheduling periodically

allocates RBs for the device. This is used for Voice over IP (VoIP) as it has deterministic

payload size and regular periodicity of transmission [40]. Since the payloads in semi-

persistent scheduling are periodical and of defined size, we can utilize this scheduling to

overcome limitations of PRACH and PDCCH. However, this requires constant size of

data transmitted by the device. If data is not of constant size, a part of resources has to

be reserved for the dynamic scheduling to accommodate bits not fitting to the resources

allocated by semi-persistent scheduling. To schedule adequate number of resources to

each device, the eNB can exploit knowledge of the device’s buffer status (how many bytes

are ready to be sent by the device) obtained via Buffer Status Report (BSR) message [41].

The BSR is send by the device in Logical Channel ID field within Medium Access Control

(MAC) header. The BSR is send if: i) new data is in buffer of the device, ii) the eNB

requests BSR, or iii) there would be more padding bits in MAC header than the length

of the BSR itself. However, the BSR can report only specific ranges of payload sizes in

the buffer as specified by 3GPP [42]. If less than 10 bytes are in the buffer of the device,

the BSR informs the eNB that the device has between 1 and 10 bytes of payload in the

buffer. Consequently, 10 bytes are allocated to the device. However, 10 bytes allocated

to the device can be more than what the device actually requires. This, then, leads to

wasting of resources and less devices can be served.

TCP/IP layer

At the TCP/IP layer, the payload of device is encapsulated in the Transmission Con-

trol Protocol (TCP) and Internet Protocol (IP) to enable communication through the IP

based networks. The TCP header is typically of 20 bytes, whereas a size of the IP header

depends on version of the IP used for communication. For the Internet Protocol version

4 (IPv4) and Internet Protocol version 6 (IPv6) headers, 20 and 40 bytes are required,

respectively. The TCP/IP header can be compressed by the Robust Overhead Compres-

sion (ROHC) [43]. The ROHC avoids transmission of full TCP/IP headers if the device

sends multiple packets to the same destination. Note that the ROHC can be used only

for point-to-point connections. The ROHC sends only the dynamically changing parts of

the TCP/IP headers to reduce the overhead. The ROHC can work in three modes: Uni-

directional, Bidirectional Optimistic, and Reliable. In case of uplink connection without

the need of correct delivery acknowledgement, the ROHC works in Unidirectional mode.

Other modes utilize downlink for transmission of additional signaling (acknowledgement
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of ROHC signaling), thus, we focus on Unidirectional mode only. In this mode, the device

(after a given number of packets in a given state) switches periodically between one of the

three ROHC states [43]: the Initialization and Refresh, the First Order and the Second

Order. In each state, the ROHC sends different signaling with different size in order to

provide sufficient robustness. This periodic switching between the states causes problems

to scheduling as not all resources can be scheduled using semi-persistent scheduling. Part

of the resources has to be reserved for non-persistent scheduling to send the bits not fitting

to the resources allocated by semi-persistent scheduling.

This problem can be partly solved by ROHC [43], which reduces TCP/IP overhead.

Furthermore, the overhead can be reduced by buffering of several payloads to send them

at once [36]. Other possible solution is to cluster nearby users and send their payload

merged into a single packet with less overhead as expected in, for example, wireless sensor

networks [44].

With the introduction of the MTC and IoT, LTE-M has been proposed to solve the

problem with transmission of small payloads. The LTE-M aims on the MTC and reduces

transmission bandwidth to enable use of a single RB (i.e., smallest allocable radio re-

source unit) [32, 33]. However, this requires to use GFDM (see more details in [34]) for

multiplexing instead of SC-FDMA, which is defined for uplink in LTE-A. Thus making it

backward incompatible with the LTE-A due to use of GFDM.

2.1.2 Device-to-Device communication

In the upcoming mobile networks, BSs are expected to serve a mix of common human

traffic and MTC. The number of connected devices, generating both human as well as

MTC traffic, is exponentially increasing. This motivates development of efficient strategies

handling the traffic generated by these devices, such as exploitation of the D2D commu-

nication. The D2D communication enables direct communication between the devices,

either in an assisted mode, where the serving BS determines on which resources to commu-

nicate and what transmission power should be used, or in an unassisted mode, where the

devices have to determine communication parameters themselves. In [5,6], it is shown that

relaying of data using the D2D communication to the BS is a feasible solution enabling

communication of a massive amount of devices. At the same time, the D2D also reduces

energy consumption of the devices [45] but the relaying devices should be motivated [46],

as their energy is being consumed. Furthermore, the D2D relaying provides a solution

to deal with the channel fading, e.g., shadowing caused by the environment [47–53]. The

benefits of the D2D for the devices are further described in [45,46].

In the D2D communication, most of existing works focus primarily on maximization

of data rates [54]. Nevertheless, an energy consumption of communication and relaying

is a crucial factor as it impacts the devices’ battery lifetime. An experimental analysis of

an out-band D2D relaying (communication on a frequency different from the frequency

the BS operates on) scheme is presented in [55] to integrate the D2D communications

in the mobile network. The authors in [56] derived a geometrical zone for an energy
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efficient D2D relaying. In [57], a network-assisted opportunistic D2D clustering has been

analyzed in terms of throughput, energy efficiency, and fairness under Rayleigh fading

channel models. Considering the D2D fading links as Rician distributed, power control

methods have been devised to optimize the power consumption and throughput of the

mobile networks [58–60]. A joint optimization of uplink subcarrier assignment and power

allocation in the D2D underlying mobile networks is investigated to minimize the energy

cost of all users [61]. Recently, the authors in [62] model an energy consumption for the

Wireless Fidelity (WiFi) direct which enables the D2D communications between devices in

proximity. The performance of the relay-assisted mobile networks under fading channels

has been studied for various parameters such as outage probability, throughput, Signal to

Noise Ratio (SNR), and Bit Error Rate (BER), but the issue of the energy consumption

has not been yet considered. Even for the conventional performance parameters, most of

the works ignore the large scale shadowing effect and focus on the short term fading. The

shadow fading is modeled using the lognormal distribution which is generally considered

harder for performance analysis comparing to the short term fading models. In [63], the

authors analyzed the average SNR performance of the opportunistic relaying techniques

under large scale channel effects.

The battery lifetime extension motivates cooperation of the devices. The cooperation

of devices exploiting D2D can be achieved via Game theory, as shown in [64] for resource

allocation, or in [65] for power allocation and channel reuse for D2D communication. A

natural solution based on Game theory for the problem of cooperation among devices is

the NBS. The NBS has been used to encourage cooperation in other setups of wireless

communications, for example, in problems of allocating spectrum over frequency selective

channels in Orthogonal Frequency Division Multiple Access (OFDMA) systems [7,8], for

device association to the BSs [66], or for power and bandwidth allocation to the devices

[9]. In [67] the authors propose a NBS to maximize data rates of devices via channel

assignment and power allocation. However, the authors do not consider communication

energy consumption. In [68] the authors consider the NBS for energy efficient resource

allocation for D2D relaying but only for two D2D pairs of devices, where each D2D pair

provides relaying for the other D2D pair. Thus, making it applicable only in a case of

mutual benefit of D2D pairs and impractical for an arbitrary number of D2D pairs acting

as relays. Furthermore, the authors do not provide a closed form bargaining solution, but

instead formulate the NBS and then solve numerically.

2.1.3 Beyond 5G communication

The increasing requirements of mobile users on wireless communication call for an

ultra-dense deployment of BSs [69]. However, the ultra-dense deployment is not always

reasonable from an economic point of view. An example of an uneconomical case is

an event in which people stay for a short period of time (a few hours) and then move

away. This situation occurs mostly during large social events, such as live concerts or

sport activities. In these cases, exploitation of a BS mounted on an UAV, also known
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as a FlyBS, is beneficial [10]. Nevertheless, a deployment of the FlyBSs brings many

challenges, such as finding an optimal position of each FlyBS, properly associating the

UEs to the FlyBSs [11], mitigating interference [70, 71], and deciding how many FlyBSs

should be deployed in a given area [28,72].

The current research addressing the problem of the FlyBS positioning can be divided

into works dealing with a single FlyBS or those concerning multiple FlyBSs. The posi-

tioning of a single FlyBS is considered in, e.g., [10, 73–76]. The objective of the authors

in [73] is to find the optimal position of the FlyBS to maximize the data rate of the UE.

The FlyBS is seen as a relay between the SBS and the UE. The goal is, then, achieved

by a designed algorithm, which finds a position of the FlyBS so that line of sight (LOS)

communication takes place on both BS-FlyBS and FlyBS-UE links. The optimal 3D

placement of the FlyBS to provide coverage to all UEs is proposed in [74]. The authors

derive an optimal position of the FlyBS based on a geometry and a path loss model for a

single FlyBS. Similarly, in [75], the authors propose an optimal 3D placement algorithm

for a single FlyBS. The algorithm performs an exhaustive search over a closed region to

find the 3D position of one FlyBS. The authors assume heterogeneous QoS requirements,

represented by the SNR. The positioning is investigated also in [10], where the authors

confirm improvement in channel quality, throughput, and energy efficiency by the FlyBS

positioned according to the UEs’ requirements in a scenario with the UEs moving in a

crowd. A joint optimization of the FlyBS’s position, bandwidth allocation, transmission

power, and transmission rate is proposed in [76]. The authors transform a non-convex

optimization problem into a monotonic optimization and solve the problem via the poly-

block algorithm [77]. A drawback of all above-mentioned works ( [10,73–76]) is that these

assume just one FlyBS, and their extension toward multiple FlyBSs is neither easy nor

straightforward.

The positioning of multiple FlyBSs is proposed, for example, in [78], where the objec-

tive is to provide SNR above a predefined threshold. The authors solve the positioning

via linear programming. The drawback of the proposed approach is that it does not take

interference into account. Thus, without managing the problem of interference (e.g., by

interference alignment technique [79]), such simplification leads to a general coverage op-

timization problem (as addressed in [80–85]). The interference among individual FlyBSs

is assumed in [86], where the authors propose an algorithm for optimization of the Fly-

BSs’ 3D positions. Thus, when compared to the previous papers, the positioning of the

FlyBSs is based on Signal to Interference plus Noise Ratio (SINR) of the UEs instead

of SNR. The authors focus on the stochastic geometry approach; however, actual data

requirements of the UEs are not considered.

Furthermore, evolutionary algorithms [87] can be exploited for the positioning of Fly-

BSs, as considered in [88–90]. To be more specific, the authors in [88] adopt PSO [91] for

the positioning. The PSO finds an optimal solution via an evolutionary process inspired

by nature, which acts similar to the flocking of birds or swarms of insects. The authors

in [88] propose an algorithm for the positioning of the FlyBSs to provide coverage to all

UEs, considering connection quality of the FlyBSs’ backhaul. The authors focus on pro-
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visioning of a certain level of SINR for the UEs, but they do not consider the allocation of

bandwidth to the UEs. The PSO is also exploited in [89], where the authors find an opti-

mal placement of the FlyBSs to satisfy the UEs’ required SINR with a minimum number

of the deployed FlyBSs. However, the authors do not tackle the problem of bandwidth

allocation, which is a critical factor to satisfy the data rates required by the UEs. Fur-

thermore, the authors define SINR requirements as the ratio of the area covered by two or

more FlyBSs to the sum of the FlyBSs’ coverage areas. Such definition leads to coverage

optimization instead of UE data rate satisfaction. Another evolutionary algorithm, the

Genetic algorithm (GA) [87], is used in [90] for an optimization of the trajectories of the

UAVs. The authors show that the proposed solution based on the GA is efficient and

can be run on a Graphical Processing Unit (GPU), exploiting parallel architecture of the

GPU. However, the paper does not consider communication of the UAVs with the UEs.

Regarding the problem of the UEs’ association to the FlyBSs, the authors in [92]

propose two algorithms to partition an area served by the FlyBSs via association of the

UEs to the FlyBSs. The objective of the first algorithm, based on optimal transport

theory, is to maximize a fairness of the UEs’ data rates under a hovering time constraint.

The purpose of the second iterative algorithm is to determine a minimal hovering time to

satisfy the UEs’ data rate requirements. Nevertheless, the positioning of the FlyBSs to

improve the UEs’ satisfaction is not addressed in [92].

The main disadvantage of all above-mentioned works is that these try to either solely

optimize positioning of the FlyBSs or association of the UEs. Nonetheless, the positioning

of the FlyBSs and the association of the UEs should be optimized jointly, as these two

challenges are closely related. The joint positioning of the FlyBSs and association of the

UEs is addressed in [93], where the problem is translated into a clustering problem. This

problem is solved by the k-means algorithm, which determines positions of the FlyBSs and

associations of the UEs, respectively. The k-means clusters the UEs and associates them to

the FlyBSs based on the Euclidean distance. However, the k-means does not incorporate

any information regarding the communication channel, which is of paramount importance

for the deployment of the FlyBSs.

2.2 Multi-Access Edge Computing

To satisfy high demands of the UEs on computation, the computing power can be

distributed over multiple MEC hosts to form computing clusters [19].

The processing of the UEs’ applications in the MEC exploits virtualized computing

resources in a form of either containers [14] or Virtual Machines (VMs) [13]. Both the

VMs and the containers exploit physical computing resources, such as computing time of

Central Processing Unit (CPU) or Random Access Memory (RAM), and virtualize them.

In the case of containers, the virtualized resources are provided by the containers sharing

host’s Operating System (OS)). In the case of VMs, the physical computing resources

are virtualized by a hypervisor running either on the host OS or directly on the host

hardware. Therefore, the VMs and the host OS are completely isolated from each other.
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This isolation provides a certain level of security, but the security comes at the cost of an

additional overhead [94]. The overhead affects a performance and a startup time of the

VMs and makes the VMs less efficient comparing to the containers [95,96].

An application to be processed in the MEC, denoted as the offloaded application in

this thesis, is run on the virtualized resources (VMs or containers). The UE sends data

to be processed (denoted as the offloaded task) to the offloaded application in the MEC.

For example, the offloaded task by an augmented reality application contains information

on the UE’s position, its cone of vision, etc. [97]. With focus on offloading of real-time

applications, the VM assigned to the UE should be ready when the computing task is

being offloaded [98]. Otherwise, delay due to creating and starting VM would make such

service unusable.

The offloading process is not always feasible or beneficial due to latency constraints,

computation complexity, energy consumption, or memory requirements [99]. Thus, the

offloading process is preceded by a decision whether to offload or not [17, 99,100]. If this

decision is positive, the whole offloading process goes through the following stages: i)

transmission of the offloaded task to the MEC server where the computing resources are

allocated (MEC host), ii) processing of the offloaded task by the offloaded application

running over the allocated computing resources, and iii) transmission of the computing

results back to the UE. Each stage introduces a delay contributing to the overall offloading

delay perceived by the UEs. Note that we assume that the MEC server is collocated with

the gNB as outlined in, e.g., [19, 101]. Apart from the offloading delay, also an energy

consumed at the UE for the offloading itself (in this thesis denoted as the offloading

energy) can be considered in the offloading decision [99].

To handle the mobility of the users and enable seamless task offloading two options

are possible, selection of communication path to deliver the offloaded task to the MEC

and collect the results back, and allocation of computation resources (VMs or containers).

2.2.1 Communication with the MEC

Problem of path selection for scenario considering common mobile cloud computing

is addressed in [102], where the authors propose to select the path using fuzzy logic.

This idea covers selection of target cloud offloading system based on the path parameters

such as delay, packet loss and benefits of offloading. However, this solution focuses only

on centralized cloud services while radio aspects or mobility of users and possibility of

handover are not reflected.

If we consider possible handover during transmission of data for computation, selection

of the most appropriate way for data delivery to the computing BSs becomes problem ana-

logical to routing in Wireless Sensor Networks (WSN). In this case, energy consumption

on the side of SCeNB (containing the computation power for the MEC) is not such lim-

iting factor as the SCeNBs are not powered by short life-time batteries. In WSN, plenty

of algorithms have been defined. Basic routing algorithms for the WSN do not consider

energy consumption of data delivery or dynamic path update [103]. In the MEC, the
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energy is limiting only for radio communication between the UE and the SCeNBs. Also,

dynamicity of the system is inherent feature of the mobile networks. Therefore, energy

as well as dynamicity must be taken into account. The dynamicity of scenario for the

WSN is addressed by Ad-hoc On-demand Multipath Distance Vector with Dynamic Path

Update (AOMDV-DPU) [104]. Additionally to hop count metric, the algorithm selects

paths based on Received Signal Strength Indicator (RSSI). However, even selection of

paths with good RSSI to avoid weak radio links does not guarantee minimal delay. In

addition, the AOMDV-DPU does not consider transmission energy, which is essential in

our case. Similar weakness prevents implementation of Adaptive Multi-metric Ad-Hoc

On-Demand Multipath Distance Vector (AM-AOMDV) [105] to the MEC since it routes

data based on RSSI, latency and node occupancy. Moreover, backhaul from the serving

BS to the operator’s core network is typically wired. In addition, if the serving BS se-

lection is based on RSSI, the same path to the core network would be selected all the

time disregarding the selected SCeNBs for computation and backhaul status. Hence, the

WSN-like approaches cannot be easily applied to our problem. Designed path selection

algorithm should take into account the UE’s limited energy resources, radio and back-

haul conditions, and the UE’s requirements on maximal possible delay for data delivery

to guarantee the QoS. In order to combine transmission delay and energy, Power and

Delay-aware Multi-path Routing Protocol (PDMPRP) is proposed in [106]. The PDM-

PRP chooses multi-paths in order to minimize energy consumption without increasing

delay. With respect to [103–107] where whole network is wireless, backhaul from the

serving BS to the operator’s core network is typically wired. In addition, if the serving

BS selection is based on RSSI, the same path to the core network would be selected all

the time disregarding the SCeNBs selected for computation and backhaul status.

In the MEC, the application is offloaded from the UE to the MEC hosts (represented by

the SCeNB) if it is profitable from energy consumption and/or delay perspective [21,108].

After selection of the SCeNBs, which take care of computation, data must be delivered

to these BSs. Typically, the SCeNBs are connected to network through a low quality

backhaul comparing to common backhaul of the macrocell eNBs. Hence, distribution

of data for computation from the BS providing radio access (denoted as serving BS) to

all computing BSs through the backhaul of limited capacity (e.g., DSL) can lead to a

significant delay. To that end, it is efficient to deliver data to the selected computing BSs

not only through the serving BS but also via neighboring BSs provided that those are in the

user’s radio communication range. In the mobile networks, switching radio communication

from the serving BS to another BS (labeled as target BS) in UE’s neighborhood is known

as handover. The purpose of handover in the mobile networks is to provide seamless

connection to moving users. The handover is usually initiated according to radio channel

quality offered by the serving and target BSs [109, 110], available capacity of backhaul

[111], or energy consumption of the UE [112].

Authors in [113] propose three clustering strategies, which select a set of computing

SCeNBs together with wired path (excluding radio) to computing cluster. The objective of

these clustering strategies is to minimize either cluster latency, cluster power consumption,
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or SCeNB power consumption. Contrary to [113], we focus on minimization of energy

consumed at the UE and possibility to change radio path (between the UE and the

SCeNB) for distribution of parallelized computation at several SCeNBs. In addition, our

approach considers jointly energy consumed by the UE and transmission delay.

To satisfy even high demands of the devices on computation, the computing power

distributed over nearby BSs. At each cluster, VM [13] or a container [14] can be run to

host the UE’s application. The VMs or container are deployed at the BSs with respect to

their communication and computation capabilities. Selection of the MEC host forming

the computing cluster and management of the computation according to the overall state

of the network (i.e., current radio, backhaul and VMs state) is done by a Mobile Edge

Orchestrator (MEO) [16, 19]. Apart from the MEO, an important element is a MEC

platform manager, that is in charge of functionalities related to user service delivery, such

as application running and scheduling. In existing approaches focusing on task offloading

into the MEC, the data to the computing BSs is always delivered through the static serving

BS [19, 21]. It means the UE is still attached to the same BS during delivery of whole

offloaded data. Then, the serving BS distributes data through operator’s core network to

the computing BSs. This approach can be efficient if both radio channel between the UE

and its serving BS as well as backhaul connection of the serving and all computing BSs

are of sufficient throughput. Otherwise, a limitation at any part of the communication

chain leads to a prolongation of the overall delay due to computation offloading.

2.2.2 Allocation of computing resources in MEC

The computing resources for the UE exploiting the MEC can be allocated at a BS that

is the UE’s serving BS [21]. However, as the UE moves, the distance and communication

delay to the MEC host with the allocated computing resources increases. Thus, reduction

of the communication delay can be done by migration of the computing resources closer

to the UE. This approach exploits the ability to migrate the VMs [13] or the containers

[14,114] from one BS with MEC host to another one. However, this approach can pose a

serious delay if not planned properly [95]. This is due to the delay of the VM migration

[22], which can make a service unusable, if the VM migration is started when the UE’s

offloaded task is being processed. Another option of the mobility support is, instead of

migrating the VMs to deploy an entirely new VM at the new BS and start the computing

over [23]. This approach is denoted as a VM deployment. A similar approach is possible

for the containers, which can exploit their advantage of a lower startup time compared to

the VMs [95]. For the containers, the process is denoted as a container deployment [14].

The deployment of the new VM or container at another BS, however, leads to a wasting of

energy and the computing resources of the MEC servers. Consequently, the performance

of such approach becomes limited in scenarios with a heavy computation load. Therefore,

with focus on offloading of real-time applications, the VM assigned to the UE should be

ready when the computing task is being offloaded.

A straightforward approach, lies in migrating the VM to a new serving BS when the
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UE changes its serving BS. In this case, the VM is migrated closer to the UE, leading to

reduction in communication delay. In [115] the authors investigate whether it is efficient

to migrate the VM from one BS to another during the movement of the UE.

The problem of joint computing and communication resource allocation for the MEC

services can be solved by an iterative algorithms as proposed in [116, 117]. An extension

of the iterative algorithm towards a distributed solution, which can be run on each BS

separately is presented in [118]. In [118], the authors show that the performance of the

distributed solution is close to the centralized one while collection of all information at the

central control node in the network is not required. The computing and communication

resource allocation with an interference management is proposed in [119]. The developed

offloading decision is followed by a resource allocation with interference management

exploiting graph coloring. In [120], the authors design two solutions for an optimal VM

placement, based on the integer linear programming, to minimize the number of pre-

allocated VMs and the degradation of the Quality of Experience (QoE). The energy

consumption of the UEs is considered in [121] and [122]. The authors of [122] formulate

the resource allocation problem as a convex optimization problem for a minimization

of the UEs’ energy consumption under a constraint on the computation latency and on

the fairness of resource allocation. Then, an optimal policy for the resource allocation

is derived. In [123], the authors propose a Q-learning-based algorithm for the resource

allocation. The algorithm learns how to allocate the resources, and allocates these resource

based on the actual state of the VM. Furthermore, in [124], the authors consider also a

content caching for the resource allocation in order to improve the performance of the

MEC. The caching is exploited to keep the content requested by the UE at the BS to

alleviate the BS’s backhaul. The authors formulate their optimization task as a convex

problem, which is then transformed into a distributed convex optimization problem.

All the above-mentioned papers [116, 118–124] focus on the static UEs or the UEs

with a very low mobility. However, a support for the mobility management of the UEs

during the offloading is a key feature required to ensure seamless exploitation of the MEC

services [125]. The solutions developed for the static UEs in [116, 118–122, 124] cannot

be easily extended to support the UEs’ mobility as the VM placement would have to be

determined every time the UEs’ positions change. Similar approach for determination of

an optimal VM placement every time the UEs’ positions change is considered in [126].

The authors exploit only the computing resources of the UEs. This is, however, not an

easy task (if not infeasible) for the moving UEs due to the computation complexity of

these algorithms and due to the fact that these papers do not consider an impact of the

UEs’ mobility on communication and computation.

To handle the UE’s mobility in the MEC, dynamic algorithms are required. The

dynamic algorithms based on the VM and considering the mobility of UEs are outlined,

e.g., in [127] and [128]. The VM is migrated to a new BS whenever the UE changes

its serving BS. This means that the VM is migrated to remain in a proximity of the

UE in order to reduce the communication delay. The authors in [115] use MDP along

with a threshold policy-based mechanism to optimize the VM migration. The proposed
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algorithm is designed for 1-D mobility model without consideration of energy consumption

and actual path selection. The algorithm from [115] is then extended to in [129], where

the proposed solution decides whether and where to migrate the VM. The authors still

consider Euclidean distance as the sole metric for decision on the VM migration. This work

is further enhanced by a mobility prediction with a fixed accuracy [130] and consideration

of the number of UEs utilizing the VM’s resources at a given BS as a metric for decision

on VM placement. Nevertheless, the algorithm for VM placement proposed in [130]

delivers offloaded task via serving BS selected according to radio channels. This work

is further enhanced in [130], where is assumed, and the computation load of the BS is

considered as the decision metric on the top of the Euclidean distance. Another approach

for the decision on the VM migration exploiting mobility prediction is presented in [131],

where the authors propose a Q-learning-based algorithm determining the time when the

VM migration should be started. The prediction of the UEs’ mobility is critical for the

VM migration, since the migration is both computation and communication resource

demanding. Therefore, the VM migration-based solutions, exploited in [127–131] impose

a significant delay (in order of seconds), which prevents their exploitation for the real-time

applications [98].
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Chapter 3

Thesis objectives

Based on the motivation, and state of the art, we specify objectives to satisfy the

requirements on the future mobile networks. The objectives are defined as:

Objective 1 The mobile network optimization exploits mobile network and user infor-

mation, that should be collected. Thus, a solution to enable the collection of the

UEs’ information from a large number of devices is defined as the first objective.

Objective 2 The collection of the UE’ information can rely on the data relaying tech-

nique, but the UEs should be motivated to provide the energy of their UEs for the

relaying purpose. Therefore, the objective is to design a cooperative communication

that motivates the UEs to cooperate in relaying and to show that the relaying leads

to a reduced energy consumption of the UEs.

Objective 3 The collected information is then exploited for an optimization of the mo-

bile network. One of the challenges is to satisfy the UEs’ data rate requirements.

Therefore, the objective is to design a solution improving the UEs satisfaction with

the QoS in terms of the data rate requirements.

Objective 4 In order to achieve real-time computation offloading for the UEs exploiting

the MEC a low delay communication is necessary. Thus, the objective is to design

the communication resource allocation algorithm that reduces the communication

delay.

Objective 5 In the computation offloading, the MEC exploits not only communication

resources, but also, computation resources. Thus, the last objective of this thesis is

to propose a solution for joint allocation of both communication and computation

resources to provide a seamless real-time offloading.
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Chapter 4

Collecting user and network

information

With the goal of self-optimized 3GPP mobile networks, a huge amount of data have

to be collected and processed. To enable collection of such a huge amount of data, several

changes to the current 4G mobile networks have to be done. Therefore, in this chapter,

we describe the changes necessary to enable communication of a large number of devices

to collect mobile network information from the UEs for the network optimization. The

content of this chapter is based on [132–135].

The communication in the 4G mobile networks is in general done via the UE trans-

mitting its data to its serving BS, and receiving data directed to the UE from the BS.

However, this is not always beneficial, when the amount of data transmitted from the UE

to its serving BS is small. Therefore, a different approach that provides a suitable option

for collecting data from the UEs is proposed in the Section 4.1. To show the benefits

of the proposed solution is compared to the existing approaches in performance evalua-

tion. The solution provided in the Section 4.1 exploits D2D, therefore, in the Section 4.2

a resource allocation based on the NBS is proposed to motivate the UEs to cooperate.

Then, in the Section 4.3 energy consumption analysis of the relayed communication via

the D2D is provided to show its benefits. In the Section 4.4 we propose algorithms for

joint positioning of the FlyBSs and UEs association that exploits the collected mobile

network information.

4.1 Cross-layer optimization of LTE-A signaling

One of the major obstacles in the collecting information from the UEs is the commu-

nication overhead, which impact increases with decreased size of the transmitted payload,

i.e., useful data. Thus, first objective is to reduce overhead and keep its amount constant

for each transmission in order to simplify scheduling of the communication resources.

Therefore, we target to use semi-persistent scheduling (i.e. each device communicates

over the same RBs periodically, but some changes can be made) without the need for
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additional resource allocation using non-persistent scheduling (each time device commu-

nicates, resources have to be allocated again). To enable semi-persistent scheduling, we

propose new signaling (described latter) that enables the device to inform the eNB about

the payload size in more precise way than the BSR [41]. Overhead is further reduced by

using buffering and enabling collection of payload from more devices. Buffering allows us

to send multiple payloads per single signaling message. However, as mentioned before;

we have to respect the Time To Live (TTL) of the payload [136].

To send more payloads at once, clustering concept is exploited. The clustering enables

to form clusters of nearby devices via D2D relaying communication. For each cluster, a

cluster head is selected out of all devices in the cluster. The cluster head collects payloads

from the devices within the cluster and transmits them to the eNB. The clustering is

further enhanced by buffering as shown in Figure 4.1. The cluster head (in Figure 4.1

denoted as cl head) buffers payloads from the devices within the cluster. The devices

inform the cluster head about TTL of their payloads in order to schedule transmission

of individual payloads properly. This information is delivered from the device to the

cluster head by means of D2D communication. To transmit buffered payloads to the

eNB, signaling message is added and sent by the cluster head. The scheme merging new

signaling, buffering, and clustering is labeled as Cross-layer Optimization (CLO).

Figure 4.1. Principle of buffering within cluster.

Both clustering and buffering reduce the number of transmissions from devices to the

eNB. Clustering reduces the number of transmitting devices in the space domain (devices

within a specific area transmit as one device to the eNB) while buffering in the time

domain (device transmits once per multiple TTL). Therefore, they can be considered

complimentary.

In Figure 4.2, we show high-level overview of the proposed approach for collection

of payloads from devices in the network. We assume a single eNB to which all devices

are connected, either directly or via the cluster head. In this proposal, we assume basic

clustering to show lower-bound of the gain introduced by our proposed scheme. Clustering

is, therefore, based on distance (cldist). It means that the cluster is formed as a set of

devices with mutual distance up to cldist. Advanced clustering approach can further

improve performance, but it is left for future research. In Figure 4.2, DEV denotes

device and represents common user’s device, such as smartphone or tablet, as well as a

sensor or a machine. The DEV4 and DEV8 are the cluster heads of Clusters 1 and 2,

respectively, as they are closest to the eNB. The DEV5 and DEV6 are not members of

any cluster as they are not in vicinity of other devices. These devices can be seen as

the cluster heads of their own clusters with only themselves in the cluster. If a new DEV

would require transmission of its payload within the proximity of DEV5 or DEV6, it could

join either DEV5 or DEV6 and form a new cluster together.
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Figure 4.2. Scenario of the proposed approach for collection of information from devices.

4.1.1 Management of the proposed scheme

In this subsection, we describe management procedure of the CLO as shown in Figure

4.3. This figure shows a procedure, followed by each device, which wants to start sending

its payloads. The procedure begins with checking whether there is a cluster head in

the proximity of the device willing to transmit data. Based on this checking, there are

three options for the device: a) the device becomes the cluster head if there is no cluster

head in the vicinity, b) the device joins existing cluster, or c) the device is selected as

the new cluster head for existing cluster. Communication between devices within the

cluster exploits D2D communication. Using D2D communication, the devices form and

manage clusters and transmit their payloads to the cluster head [137]. In case (a), where

no cluster exists in the device’s vicinity; the device buffers its payloads (respecting TTL

of the content) and then starts RAP to obtain radio resources. Afterwards, the control

message and payload are sent. Finally, semi-persistent scheduling is initiated and the

device sends buffered payloads. In case (b), the device joins existing cluster head and

starts transmission of the payloads to the cluster head using D2D communication. In the

case (c), when the device is selected as the new cluster head (the device is closer to the

eNB than the existing cluster head), all devices within the cluster are informed about

new cluster head. This information is issued by the former cluster head. After this, the

device, which becomes the cluster head starts receiving payloads from the devices within

the cluster and initiates RAP. Then, the cluster head sends control message and initiates

semi–persistent scheduling. Finally, the cluster head transmits collected payloads to the

eNB.

21



4.1. CROSS-LAYER OPTIMIZATION OF LTE-A SIGNALING

Figure 4.3. Procedure for the device beginning its transmission of payload in case of (a)
no cluster in proximity, (b) joining cluster in proximity, (c) becoming cluster head.

The CLO defines four types of signaling messages in order to replace ROHC. Two

types of control messages are intended for initial transmission of the stand-alone device

(option a in Figure 4.4) and cluster head (option b). The other two options (c and d in

Figure 4.4) are designed for transmission of the data from the stand-alone device (option

c) and cluster head (option d). Using the control messages, the eNB initiates a record

for the further transmissions of the device. This record is stored in a database at the

eNB to reconstruct the full TCP/IP header if the device’s payload designation is in the

Internet. The control message is always send as the first message. Then, data message is

send in the subsequent transmissions. The first field in the proposed signaling messages

is D/C. It specifies the type of the message in order to distinguish between data and

control messages. The second field, U/CL, denotes whether the device transmits data

to the eNB by itself or via the cluster head. These first two fields are the same for all

four types of messages. Following fields in the signaling messages are defined depending

on the type of message. Fields DEST and SRC denote destination and source address

for the payload, SEQ is the sequence number of the transmitted payload. Information

about the payload size is carried in Payloadsize field. The last field of each message is

Cyclic Redundancy Check (CRC), which ensures correct delivery of the signaling message.

For communication within the cluster, i identifies each device and ranges from 1 to the

number of devices within the cluster (N DEV ). The flag A/S is used to inform the eNB,

that payload of each device within the cluster is included, or if the payload from selected

devices is included. If payloads from not all devices are included, field Bitmap is included.

This field identifies devices, from which the payloads are being transmitted.
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Figure 4.4. Proposed signaling messages enabling cross-layer optimization of frequent
transmission of small payloads.

To assure correct order of transmitted packets and reception of every transmitted

packet if this is required by the service or application, we utilize Hybrid Automatic Repeat

reQuest (HARQ) and Automatic Repeat reQuest (ARQ) to check and repair received data.

This enables to send constant message size after the control transmission and simplifies

the semi-persistent scheduling. Thus, we determine resource allocation once and we do

not use non-persistent scheduling even if reliable delivery of data is required as the ROHC

does.

4.1.2 Evaluation of the proposal for collection of data from de-

vices

In this subsection, we analyze the number of devices that can be served in mobile

networks and ratio of the signaling overhead. We compare the proposed CLO with two

schemes: i) scheme without any overhead compression, i.e., sending full TCP/IP overhead

with a size of 40 bytes (labeled as No Compression (NC) in following figures); and ii) the

ROHC in the ROHC First Order (ROHC FO) state [43]. The ROHC FO is selected

instead of the ROHC Second Order (ROHC SO) as ROHC FO is send 5 times per every

100 packets [43]. The ROHC in the Initialization and Refresh (IR) state is not shown

as its signaling is larger than for the NC [43]. We further include also results for our

proposed signaling replacing of the ROHC but without buffering and clustering. This

scheme is denoted as Overhead Reduction (OR) in all following figures. The LTE-M is

not considered for performance comparison as it adopts different multiplexing and it is

not backward compatible with the 4G. Note that the overhead in our simulations contains

overhead introduced by all layers (TCP/IP, Packet Data Convergence Protocol (PDCP),

MAC, and Radio Link Control (RLC)).

In Figure 4.5a, we show how many devices can be served by one eNB. With increasing

payload size, the number of served devices decreases because more resources are required

for the transmission of all devices. The NC enables eNB to serve the lowest amount of

devices (1537 devices for 10 bits payloads) comparing to other schemes. The ROHC FO

roughly doubles the number of served devices against the NC (gain up to 110.5%). The

proposed OR, which is based only on optimization of overhead of ROHC without consid-

ering clustering and buffering, improves the number of served devices by additional up to
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(a) (b)

Figure 4.5. The number of served devices transmitting frequently small payloads (a) com-
parison of the proposal and competitive schemes, (b) impact of clustering and buffering.

40% comparing to the ROHC FO. Far the best performance is achieved by the proposed

CLO. The gain is more significant for small payloads as the payloads from more devices

can be buffered together and sent within one transmission. The CLO enables to serve

more than 65 000 devices transmitting 10 bits payloads. It corresponds to improvement

in the number of served devices up to 22.8 times and 16.3 times compared to the ROHC

FO and the OR, respectively. This gain is a result of sending more payloads from nearby

devices in one message, which is achieved by the combination of clustering and buffering.

Moreover, by clustering, only the devices closest to the eNB (using higher MCS) transmit

and, thus, less resources are required for the transmission. From the results, we see that

existing solutions NC and ROHC FO are not suitable for the 5G as the number of devices

served if these approaches are adopted is lower than the expected number of devices con-

nected to one eNB in 5G (10 000 to 100 000 devices, see [2]). However, our solution with

only basic, not optimized, clustering enables to serve the required number of devices even

for 10 MHz bandwidth, which is much lower that the bandwidth expected for 5G. Further

increase in the number of served devices by our proposed approach can be reached by

simple extension of bandwidth. This also shows that we can serve the required amount

of devices with lower density of eNBs. Hence, the overall cost of the network deployment

required for IoT or MTC can be lowered.

In Figure 4.5b, we show the impact of the number of buffered payloads and cluster

radius on the number of the served devices. Increase in the payload size leads to decrease in

the number of served devices as more resources are required for the transmission. Impact

of increasing number of buffered payloads and increasing cluster radius on the number of

served devices is negligible as the difference is less than 7.2%. This 7.2% improvement

represents further increase in gain with respect to ROHC FO in the number of served

devices so that the proposed CLO increases the number of served devices by up to 24.4

times for the most efficient buffering and clustering combination (cldist=50m, 3 payloads).

Impact of clustering is limited by cluster size (number of devices within the cluster) as a

large cluster leads to the same problem as large number of devices. Impact of buffering
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(a) (b)

Figure 4.6. Overhead ratio (a) by the proposal and competitive schemes, (b) impact of
clustering and buffering.

is, on the other hand, limited by a need to respect TTL of the transmitted data.

In Figure 4.6a, we compare overhead ratio, i.e., the ratio between the overhead and

the payload. As expected, the overhead ratio decreases with increasing payload size.

The ROHC FO decreases overhead ratio by 66% comparing to the NC. Further decrease

in the overhead ratio is introduced by the OR. The OR reduces the overhead ratio by

48.5% comparing to the ROHC FO. However, still, the OR leads to significant ratio of the

overhead to the payload (660% for 10 bits payload). Significant improvement is reached

by the CLO, which reduces the overhead ratio to less than 10.5%. It corresponds to up

to 68 times reduction comparing to the OR, up to 132 times comparing to the ROHC FO

and up to 390 times comparing to the NC.

In Figure 4.6b, we show the impact of parameters of the CLO (number of buffered

payloads and cluster size) on the overhead ratio. Difference in the overhead ratios between

configurations of parameters is minimal like for the number of devices. Improvement by

using various cluster sizes or numbers of buffered payloads is less than 0.3

In Figure 4.7, we show the impact of different duty cycle time (interval between two

consequent payloads generated by one device) on the number of the served devices for

payload of 100 bits. The number of served devices increases linearly with duty cycle as

the devices generate payload less often.
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Figure 4.7. Impact of clustering and buffering on overhead ratio.

More details about the proposed solution can be found in [132].

4.1.3 Conclusion

In this chapter, we have proposed a cross-layer solution to increase the number of

devices that can be served by one eNB. The solution combines reduction of the TCP/IP

overhead with buffering and clustering concepts in order to maximize efficiency of the

transmission of small payloads by a high number of devices such as sensors, machines, or

conventional user devices. The proposal enables to serve more than up to 65 000 devices

by one eNB in case of a 10 MHz bandwidth. This represents 24.4 times increased number

of devices with respect to the state of the art solutions. Even if the proposed solution is

compatible with existing 4G networks, it enables to serve the number of devices expected

to be connected in 5G networks only with 10 MHz bandwidth. Therefore, the proposed

solution enables collection of the information required for real-time optimization of the

mobile networks.

4.2 Cooperative resource allocation

in a relayed communication

In the previous section, we have proposed a solution to increasing number of devices

(UEs, vehicles, sensors, etc.) that exploits transmission relaying via the D2D communi-

cation. However, the device that provides communication relaying should be motivated,

as the relaying consumes additional energy, on top of the energy consumed by its own

transmissions. Therefore, in this section, we derive a NBS for allocation of communication

resources such that all devices in the network benefit from the relaying. Unlike related

works, our NBS is based on energy consumption of the communication and is solved for

N devices. Moreover, we solve the NBS for a general relaying strategy, and thus, the

described solution is independent of actual relaying strategies considered by the devices.
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Figure 4.8. System model with device i relaying its data through device j.

In contrast to [9] the proposed solution is in closed form and does not require an itera-

tive approach or auctions to reach the optimal solution. Thus, the NBS is applicable to

wireless communications even with rapidly time-varying radio channels and high number

of devices due to low complexity and high scalability.

4.2.1 System Model

Consider a single BS, which serves N devices (mobile phones, sensors, etc.). Each

device transmits packets with M bits of data to the BS in the uplink direction. We focus

on a case where the devices can act as relays through which other devices transmit their

data to the BS as shown in Figure 4.8. The relays exploit Decode and Forward (DF)

relaying scheme. Our system model is based on the system model exploited for example

in [138].

In the considered scenario the devices share radio resources by means of Time Domain

Multiple Access (TDMA). The devices compete for a part of a frame with a duration of

TF . Each device transmits for a portion of TF defined as TTI Ti = αiTF , where αi ∈ (0, 1)

and
∑N

i=1 αi = 1. Note that the proposed solution for TDMA can be extended towards

OFDMA, but we leave this extension for the future due to limited space.

Communication between a source device (i.e., the device, which is willing to transmit

the data) and the BS is done either by a direct communication or by a relaying via another

device. For the direct communication, the data is transmitted by the i-th device (source)

to the BS and the BS receives data with SINR γi. In case of the relaying, the i-th device

(source) transmits data to a selected j-th device (relay) over a D2D channel. The j-th

device receives the data with SINR γi,j. Then, the relay forwards the data of the source

device to the BS over its direct channel and SINR at the BS is γj.

The data rate of the i-th device communicating directly to the BS is rdi = Blog2(1+γi),

where B is the bandwidth allocated for the direct communication with the BS. The data

rate between the source and the relaying devices is defined as rD2D
i,j = BD2Dlog2(1 + γi,j).

The data rate rD2D
i,j of the i-th device to the j-th device can be higher than the data rate

achievable by the j-th relay at its direct channel to the BS (rdj ). Thus, we adapt the data
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rate at the relay channel to match data rate at the direct channel of the relay, i.e., the

data rate at relay channel is r̄D2D
i,j = min(rdj , r

D2D
i,j ).

The energy consumed by the direct transmission of a packet is expressed as:

Ed
i =

(P tx
i + P c

i )Mi

rdi
(4.1)

where P tx
i is the power consumed for the transmission, P c

i is the power consumed by the

circuitry of the i-th device, and Mi is the amount of bits to be transmitted by the i-th

device.

The energy consumed by the D2D transmission of the packet from the i-th device

(source) to the j-th device (relay) is then expressed in similar way, i.e.:

ED2D
i,j =

(
P tx,D2D
i + P c

i

)
Mi

r̄D2D
i,j

(4.2)

where P tx,D2D
i is the power consumed by the D2D transmission of the i-th device. The i-th

device can transmit its data directly or via j-th relay by exploiting the relaying strategy

si from a set of possible strategies s, given as:

si =

j if transmitting via j-th device

0 otherwise (direct trasnmission to the BS)
(4.3)

If the device decides not to follow the relaying strategy (i.e., si = j), it follows a

disagreement strategy d (i.e., si = 0). Under the disagreement strategy d, the device does

not cooperate with others and transmits data directly to the BS, disregarding strategies

of other devices.

Based on the strategy selected by the device, we define the energy consumed for

transmission of the i-th device following the strategy si as:

Etx
i (si) =

ED2D
i,j if si 6= 0

Ed
i otherwise

(4.4)

Note that the energy consumed by the relaying devices for reception is omitted in the

model as it leads to different solution, which is more complex and does not fit to the page

limit. We assume that each device has initial energy Einit
i . Then, the total number of

packets transmitted by the device following si before the battery depletion is defined as:

Ni(si) =
Einit
i

Etx
i (si)

(4.5)

The coordination of resource allocation is done in a central way by a BS, as described

in, e.g., [139]. The only information needed to be collected by the BS is either energy

consumption or channel quality, which is anyway reported to control the communication
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in the mobile networks even with D2D relaying.

4.2.2 Problem Formulation

Our objective is to allocate TTIs to the devices under cooperation via Nash Bargaining

solution. The Nash Bargaining solution is a class of a cooperative games where each player

follows strategy, which reaches a mutual agreement among the players and has a higher

utility than a non-cooperative strategy.

Let N = {1, 2, . . . , N} be a set of players, in our case represented by the devices

willing to transmit data. Let Q be a closed and convex subset of IRN representing the

set of feasible payoff allocations that the players can get by cooperation. Then, let A =

{α1, α2, . . . , αN} be a set of feasible allocations of TTIs to the devices. Let N̄i(d) = Ni(d)
N

be the minimal payoff required by the i-th player, otherwise, the i-th player does not

cooperate. Suppose
{
αiNi(si) ∈ Q|αiNi(si) ≥ N̄i(d),∀i ∈ N

}
is a nonempty bounded set.

We define N̄(d) =
(
N̄1(d), . . . , N̄N(d)

)
, then the pair

(
Q, N̄(d)

)
is called the N -person

bargaining problem.

The objective is to find the NBS of the TTIs allocation A∗, which maximizes the

product (benefit) of the number of transmitted packets gained by the cooperation. This

objective is formulated as:

A ? = arg max
A

N∏
i=1

(
αiNi(si)− N̄i(d)

)
(4.6)

subject to α ?
i Ni(si) ≥ αiNi(si),∀i ∈ N (4.7)

0 < αi < 1 (4.8)

N∑
i=1

αi = 1 (4.9)

The constraint (4.7) motivates devices to cooperation as it specifies that the number of

transmitted packets for each device following α∗i must be higher than if the device would

follow any other αi. The constraint (4.8) limits αi to allocate each device a portion of

TTIs while the constraint (4.9) guarantees that the resources allocated to all devices fit

to a single frame.

4.2.3 Nash Bargaining Solution

In this section, we first derive the NBS for two devices. Then, we generalize the

solution towards N devices. Since the objective function (4.6) is convex, we explore the

Karush-Kuhn-Tucker (KKT) conditions for two as well as for N devices.

NBS for two devices

In this subsection we consider two devices i.e., N = 2, in line with model in Figure 4.8.

In this case, a device which provides relaying, i.e., Device 2 (j), is allocated with a fraction
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α2 of the frame and a device exploiting relaying, i.e., Device 1 (i) gets α1 = 1− α2 of the

frame by Pareto optimality. To derive the NBS, we formulate the Nash product in terms

of α2 (where the constraints are already incorporated by the choice of α1 and α2:

L =

[
(1− α2)N1(s1)− N1(d)

2

](
α2 −

1

2

)
N2(s2) (4.10)

Then, the derivative of L with respect to α2 is set equal to zero:

∂L

∂α2

=
N2(s2) [N1(s1) (3− 4α2)−N1(d)]

2
= 0 (4.11)

By solving the linear equation in (4.11) for α2 and substituting α1 = 1 − α2 we obtain

the NBS for TTI allocation for both devices where

α1 =
1

4
+
Etx

2 (s2)

4Etx
2 (d)

α2 =
3

4
− N2(d)

4N2(s2)
(4.12)

The numerical analysis of the number of transmitted packets is done in a scenario

with parameters from [45], i.e., P tx
i = P tx,D2D

i = 200 mW, P c
i = 800 mW, B = BD2D =

200 kHz, M = 100 B, Einit
i = 100 J, and TF = 10 ms. The derived NBS is compared with

Equal TTI allocation when each device is allocated with 1
N

of TF , MaxMin TTI allocation,

where the minimal number of transmitted packets per a device is maximized [54], and to

Direct transmission scheme without relaying, where each device is allocated with 1
N

of TF .

The derived NBS works independently of relaying strategy. Nevertheless, for comparison

with other allocations, we select a commonly exploited Opportunistic Relay Selection

(ORS) [47]. This strategy considers quality of both the direct channel (γi) and the D2D

channel between source and relay devices (γi,j) for selection of the relaying device, i.e.,

the strategy si for the OR is defined as:

si = arg max
j∈N

min (γj, γi,j) (4.13)

In Figure 4.9, the number of transmitted packets is shown for the Device 1 (N1) and

Device 2 (N2) as a function of γ1,2. The Device 2 acts as the relay for the Device 1.

Note that the packets from Device 1 relayed by Device 2 are not included in the number

of packets transmitted by the Device 2 (i.e., in N2). For all three relaying algorithms,

N1 increases with γ1,2 due to improvement in the relaying channel quality. The MaxMin

algorithm results in the highest N1, but the lowest N2 out of all relaying algorithms,

because the MaxMin targets to provide fairness among the devices (N1 = N2 and lines for

the Device 1 and the Device 2 overlap in Figure 4.9). As a result of fairness, the Device

2 does not cooperate since it looses with respect to the direct transmission. The Equal

algorithm improves Ni for the Device 1 with respect to the direct transmission, however,

the performance of the relaying Device 2 is the same as for the direct transmission.

This means the Device 2 is still not motivated to cooperate and help the Device 1. In

contract to this, the derived NBS results in a gain for both devices with respect to the
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Figure 4.9. Number of transmitted packets (Ni(si)) with γ1 = 0 dB and γ2 = 30 dB,
(dashed line - Device 1 (source), solid line - Device 2 (relay).

direct communication. Consequently, the Device 2 is motivated to cooperate with the

Device 1, because the Device 2 receives an incentive in terms of additional resources for

communication as a reward for its cooperation. Assuming rationality of players (devices),

only the derived NBS leads to natural cooperation of devices.

NBS for N devices

In this subsection, we generalize the solution obtained for two devices towards N

devices. First, we replace product in (4.6) by the sum of logarithms:

A ? = arg max
N∑
i=1

log
(
αiNi(si)− N̄i(d)

)
(4.14)

Then the Lagrangian of (4.14) is derived considering conditions (4.7), (4.8), and (4.9):

L =
N∑
i=1

log

(
αiNi(si)−

Ni(d)

N

)
+ µ

(
N∑
i=1

αi − 1

)
(4.15)

Taking the derivatives of the Lagrangian with respect to αi and µ, and by setting the

derivative equal to zero, we get:

∂L

∂αi
=

Ni(si)

αiNi(si)− Ni(d)
N

+ µN = 0 (4.16)

∂L

∂µ
=

N∑
i=1

αi − 1 = 0 (4.17)

From (4.16) we obtain

αi =
Ni(d)

Ni(si)N
− 1

Nµ
(4.18)
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where µ is determined from (4.17) and (4.18) as:

µ =
1

1−
∑N

i=1
Ni(d)
Ni(si)N

(4.19)

Next, by substituting (4.19) to (4.18), we obtain the NBS of TTI allocation in a closed

form as:

αi =
Ni(d)

Ni(si)N
+

1−
∑N

i=1
Ni(d)
Ni(si)N

N
(4.20)

To obtain the allocations of TTIs to the devices in the terms of the transmission energies,

we substitute the number of transmitted packets from (4.5) into (4.20):

αi =
Etx
i (si)

Etx
i (d)N

−

∑N
i=1

Etxi (si)

Etxi (d)N
− 1

N
(4.21)

The derived allocation (4.21) is in closed form, which makes it suitable for wireless

communications with a frequently varying quality radio channel. The complexity of (4.21)

is O(N), thus the solution is suitable even for scenarios with a high number of devices,

as envisioned in 5G mobile networks).

4.2.4 Simulation Results and Analysis

In this section, we present numerical results obtained by simulations following param-

eters defined in Section 4.2.3 in line with [45]. The results for the NBS are compared with

all three allocation schemes (MinMax, Equal, Direct) described also in Section 4.2.3. The

devices are uniformly distributed in a simulation area with diameter of 500 m around a

single BS. The direct channel is modeled as Urban Macro with Log-normal shadowing

with variance of 4 dB and the D2D channel follows Winner II model. Each device has

the initial energy generated from exponential distribution with λ = 1 and maximal value

of 100 J.

The average energy consumed per transmission Etx
i (si) is shown in Figure 4.10a. This

figure, shows that energy efficiency is improved via relaying with respect to the direct

transmission, disregarding whether the cooperation is natural (for the NBS) or must be

externally enforced (for MaxMin and Equal).

Figure 4.10b shows the total number of transmitted packets over the number of de-

vices deployed in the area, i.e.,
∑
Ni(si). For the Direct transmission, the number of

transmitted packets is almost constant disregarding the number of devices, because each

device transmits data directly to the BS. For the MaxMin allocation, the total number

of transmitted packets decreases with an increasing number of devices, as the MaxMin

targets a fairness in Ni. For the Equal allocation and for the NBS, the total number of

transmitted packets is increasing with the number of devices, because a higher number

of possible relays can appear in proximity of the source device due to a higher number of

devices in the area.
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Figure 4.10. Average energy consumed per transmission (Etx
i (si)) (a) and total number

of transmitted packets (
∑
Ni) (b).
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Figure 4.11. Jain’s fairness index of number of transmitted packets gained by cooperation
(a) and CDF of the gain (b).

In the Figure 4.11a, we show fairness in gained number of transmitted packets via

Jain’s fairness index. The fairness in gain is highest for the NBS, as the NBS motivates

devices to cooperate via fair sharing of benefits by all devices. A lower fairness in the

distribution of the gain among the devices for the MaxMin is a result of the fact that

the algorithm targets fairness in Ni, but disregards gain in the number of transmissions

by individual devices. The Equal allocation splits the time fairly, but disregards channel

quality and provides the worst fairness in gain out of all the compared schemes.

Figure 4.11b shows that the NBS distributes the gain in the number of transmitted

packets more fairly among the devices comparing to the Equal allocation for 100 and 200

devices.
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Figure 4.12. D2D relaying in the uplink communication of a single cell network. Devices
are inside a shopping mall/university building/ offices and the BS is far away separated
by walls. The devices have single antenna while the BS has multiple antennas.

4.2.5 Conclusion

In this chapter, we have derived energy consumption-based Nash Bargaining solution

for allocation of communication resources maximizing the number of transmitted packets.

The derived NBS motivates the devices to cooperation and provides a solution to the

device clustering bases solution, proposed in Section 4.1. The NBS is in closed form,

thus, it is applicable even to wireless communication with frequently varying channel.

Due to a very low complexity, the derived NBS is scalable and suitable for scenarios with

very high number of devices, as envisioned in 5G mobile networks. Furthermore, the

derived NBS works independently on the relay selection algorithm.

4.3 Energy Consumption of Opportunistic D2D Re-

laying Under Lognormal Shadowing

The proposed clustering based solution with allocation of the communication resources

via the derived NBS provide a suitable option for increasing number of communicating de-

vices while considering the communication energy. However, the relay selection algorithm

that not only increases amount of the collected information for the mobile network, but

also maximizes the battery life time is necessary. Therefore, in this section, we provide a

mathematical analysis of a distributed opportunistic relay selection to show its benefits

for the collection of the mobile network information from the UEs.

4.3.1 System Model

For the analysis, we consider a single-cell network with a BS (equipped with M ≥ 1

antennas) and N single-antenna devices for uplink data transmissions. The devices are

uniformly distributed in the network. We focus on a two-hop transmission model, where

a source device can either transmit data directly to the BS or relay the data to a nearby

device, which forwards the data to the BS, as depicted in Figure 4.12.
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In a direct transmission, the received signal vector at the BS from the i-th device is

given as:

yBS =
√
Phxi + w (4.22)

where yBS = {y1, y2, · · · yM}T is the M×1 received signal vector, P is the transmit power,

xi is the transmitted signal with unit power E[|xi|2] = 1, w ∼ CN (0, N0) is the zero-mean

Additive White Gaussian Noise (AWGN) with variance N0, and h = {h1i, h2i, · · ·hMi}T

is the M × 1 channel vector between the i-th device and M antennas at the BS. Here hMi

denotes the channel coefficient between i-th device and the M -th antenna of the BS, and

has a uniform phase. We model the amplitude power of channel |hji|2 for j = {1, 2, · · ·M}
as:

|hji|2 = Fji ·GR−αi · 10
Si
10 , i = {1, 2, · · ·N} (4.23)

where Fji models the short-term Rayleigh fading channel between the i-th device and the

j-th antenna, Ri is the distance from the i-th device to the BS, α is the path loss coefficient,

and the term G is the normalizing factor for the path loss. The term Si ∼ N (0, σ2) is

normal such that 10
Si
10 is log-normally distributed and models shadowing behavior. The

parameter σ is known as the dB spread or the shadowing factor.

Since the long term path loss dominates the short term fading, and over longer time

scales Rayleigh fading is averaged out, we can represent (4.23) as normally distributed by

taking the logarithm of (4.23):

10 log10 |hji|2 s.t. Xi ∼ N (10 log10R
−α
i Fi + 10 log10G, σ

2) (4.24)

Indeed, a generalized distribution of |hji|2 can be obtained by considering the combined

distribution of Si,Fji, and Ri, which may become intractable for performance analysis.

If the direct transmission is not energy-efficient (e.g. due to shadowing effect between

devices and the BS), the single-antenna source device sends data to a single-antenna relay

device using the D2D communication. The received signal at the n-th relay device is

given as

y(d)
n =

√
Ph

(d)
i xi + v (4.25)

where h
(d)
i is the fading channel between the i-th source device and the selected relay

device n, and v is the AWGN with power N0. Since the quality of signal received at

the neighboring relay can be high, a DF protocol can be used at the relay to transmit

the data from the source device to the BS. It is noted that all devices use different RBs

separated in time and frequency, and thus, there is no interference even if a single relay

device receives signal from multiple source devices as these are sent at different RBs.

For D2D links, we ignore the shadowing effect, similar to [58], [59] [60]. This assump-

tion is justified since the two devices communicate with each other under close proximity
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Figure 4.13. ODSR for three devices with transmission energy E1 < E2 < Es (a) function
f(E) (b) timing diagram and resource block allocation.

as per the Long Term Evolution (LTE) standard [140]. We assume that the short-term

fading amplitude |h(d)
i | between the i-th source device and the relay device is Rayleigh

distributed such that

|h(d)
i |2 = r−α

(d)

i F
(d)
i (4.26)

where F
(d)
i follows the exponential distribution, ri is the distance from the i-th source

device to the selected relay device, and α(d) is the path loss exponent between them.

Since devices are close each other in D2D communication, the probability that relay

devices receive signal at a very high SNR is high, and thus, consume negligible energy

compared with the direct transmission.

4.3.2 ODSR Relaying Scheme

In this section, we describe the ODSR, which minimizes energy consumption for data

transmission and its distributed implementation based on the timer-based protocol [47].

Criteria of Relaying Device Selection

We consider transmissions of packets with a fixed length of L bits by the source device

to the BS in each transmission slot. We assume that all devices transmit with equal power

P , and denote the circuit power by P ckt
i for the i-th device. Since the power dissipated

in the transmitter and receiver circuits is different for different devices, we consider that

the circuit power transmission of the devices is uniformly distributed between P ckt
min and

P ckt
max. Using (4.22), the energy consumed by the i-th source device to transmit its data

directly to the BS is:

Ei = (P + P ckt
i ) · L

B log2(1 + γi)
=

η1

10 log10(1 + γi)
+

η2P
ckt
i

10 log10(1 + γi)
(4.27)
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where B is the transmission channel bandwidth, η1 = 10 log10(2)PL/B, η2 = η1/P , and

γi =
∑M
j=1 |hji|2P
N0

is the received SNR at the BS due to the linear combination of M signals

when the signal is transmitted from the i-th device.

Using (4.25), the energy consumed by the D2D communication to relay a data of L

bits is:

E
(d)
i =

η
(d)
1

log(1 + γ
(d)
i )

+
η

(d)
2 P ckt

i

log(1 + γ
(d)
i )

(4.28)

where η
(d)
1 = log(2)P (d)L/B, η

(d)
2 = η

(d)
1 /P (d), and γ

(d)
i =

|h(d)
i |

2P (d)

N
(d)
0

is the SNR at the relay

device when the signal is transmitted at a power P (d) from the i-th source device.

The relay selection criteria for the ODSR is based on the minimum consumed energy

for transmission of packet data to the BS as:

n = argmin
1≤i≤N

{Ei}. (4.29)

It is noted that ODSR relay selection requires only the channel information from devices

to the BS. It should be noted that the component of the relaying energy E
(d)
i is ignored

in the relay selection since this may require the Channel State Information (CSI) between

the source to relaying devices. In general, the energy consumption of the D2D relaying

(due to the close proximity) is lower than the energy consumed in forwarding the data to

the BS (which can be affected by the shadow fading) in the second hop, and thus may

not affect the relay selection process. It is good to note that we have included E
(d)
i while

deriving bounds on the energy consumption performance of the ODSR.

There is no advantage of considering circuit power transmission for relay selection

if it is assumed equal for all devices (i.e, P ckt
i = P ckt,∀i). However, in practice, the

circuit transmission power for all devices may not be equal due to different types and

specifications of devices in a network. This will lead to a randomness in the circuit power

transmissions and the second term in (4.27) will become the ratio of random variables.

Under this condition, the relay selection will depend on the circuit transmission power

of devices, and analyzing the average energy consumption will be challenging due to an

additional term of the ratio of random variables.

4.3.3 Distributed Implementation of ODSR

Distributed implementation of the protocol is desired since the centralized relay selec-

tion requires the global information of the CSI. Further, the centralized implementation

consumes a large energy overhead due to control signaling. In [47]the authors describe a

timer-based distributed protocol for relay selection (controlled by the BS with Request

To Send (RTS) and Clear To Send (CTS) signals using instantaneous channel informa-

tion of both hops. This technique has been found to be useful in many relaying based

networks [141,142]. The authors in [141] have used the protocol of [47] for relay selection

using power control at each relays for an energy-efficient transmission.
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The distributed implementation of the ODSR is based on the back-off principle of the

Carrier Sensing multiple Access (CSMA) in the MAC layer supported with the trans-

mission energy from the physical layer. We define an increasing function f(E) designed

judiciously (see Figure 4.13a) such that back-off time τi = f(Ei), i = 1, · · · , N of the

devices has distinct energy index Ei, i = 1, · · · , N . Thus, the considered implementation

is based on the criteria of consumed energy with proper adaptations for uplink data trans-

missions in a wireless network using D2D relaying, as described in the following steps (see

Figure 4.13b):

Request To Relaying (RTR)

First, the i-th source device sets its back-off time to τi = f(Ei) and broadcasts an

Request To Relaying (RTR) message (with fields such as user ID) to be received by the

devices in close proximity. All the devices are capable of decoding the RTR message

with the CSI estimated using the RTR message. The CSI is available if devices are

already in the discovery mode compliant with the proximity services of LTE [140]. The

RTR transmission costs an energy consumption ERTR
tx to the source device. The energy

overhead in decoding the RTR per device is ERTR
rx .

The source device waits for a reply from a potential relay for a duration of τi+τc, where

τc is an additional delay to compensate for the propagation delays in D2D communication.

This delay corresponds to relay selection overhead, as depicted in Figure 4.13b. If the

device does not receive a reply from any device for relaying in the time limit of τi + τc, it

directly transmits to the BS (step 4), otherwise the data is transmitted through a relay.

Note that an increase in the transmission delay is compensated by the use of relay with

the best channel which reduces time to transmit the data to the BS.

Distributed Relay Selection

Upon the receipt of a RTR message from the source, each device sets its back-off time

to τj = f(Ej), j · · ·N − 1. In the opportunistic relaying scheme, the n-th device selected

using the criteria in (4.29) has the lowest back-off time, and hence occupies the channel

first by responding to the source with a Clear To Relay (CTR) message after a waiting

period τn < τj, n 6= j. It should be noted that the probability that two users have equal

back-off time is zero [47]. Once the selected device transmits the CTR message to the

source, all other devices overhear the CTR message (or just a busy tone), and quit the

process of relay selection for the given request from the i-th source device. The overhead

energies for a response from the relay device are: transmission of CTR message ECTR
tx and

reception of CTR message ECTR
tx .

Source to Relay Transmission

Upon the successful decoding of the CTR message, the source device sends the data

packet to the selected relay device with a transmit energy cost Ed
i as computed in (4.28).

Using the DF protocol, the selected relay device decodes the data from the source device,
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encodes it, and transmits to the BS. The DF protocol requires the CSI at the relay device.

This can be estimated using the RTR message from the source device after the decision

on relay selection. The energy overhead at this stage is: CSI estimation energy ECSI,

transmit energy cost Ed
i , decoding energy EDEC, and encoding energy EENC.

Data Transmission

Finally, transmission of data is accomplished by direct transmission from the source

or the relay device. The energy consumption in this phase is Ei as computed in (4.27).

Note that if a single device happens to act as the source for its data and as the relay

for other sources, the data transmission can be done simultaneously using full-duplexing

mode.

In the following sections, we analyze the performance of the opportunistic relaying by

deriving bounds on the average energy consumption by the devices for data transmission.

4.3.4 Performance Bounds of ODSR

Given the steps of distributed relaying described in the subsection 4.3.3, the total

consumed energy by the ODSR is:

ETOTAL = p(ERELAY
ov + ED2D + ERELAY) + (1− p)(EDT + EDT

ov ) (4.30)

where p is the probability of the relay-assisted data transmission i.e., p = Pr(ERELAY +

ED2D < EDT). We denote ERELAY as the energy consumed by the selected relay to

transmit the data packet to the BS and ED2D as the transmission energy by the source

device to the selected relay. Further, ERELAY
ov = ERTR

tx + (N − 1)ERTR
rx + ECTR

tx + ECTR
rx +

ECSI + EDEC + EENC is the overhead energy required for relay selection in the case of

D2D communication, EDT denotes the energy consumed for data transmission directly to

the BS when the direct transmission is found to be more energy-efficient than the relay-

assisted transmission, and EDT
ov = ERTR

tx + (N − 1)ERTR
rx is overhead energy for the relay

selection.

It is noted that the direct transmission (i.e., without relaying protocol) does not incur

any overhead energies. However, the overhead energy ERELAY
ov of the ODSR is also low

(see Table 4.1 signaling involved is very short and the signaling messages are sent to other

local devices with very low power. This is illustrated through simulations in realistic

scenarios of a wireless network in Section 4.3.5.

Average Energy Consumption of D2D Transmission: ĒD2D

In this subsection, we analyze the overhead energy of the ODSR due to the D2D

transmission. Under the Rayleigh fading for the D2D channel, the SNR γ(d) as given

in (4.28) (we drop the index i)) is exponential distributed with probability distribution

function Probability Distribution Function (PDF) f(γ(d)) = 1
γ̄(d) e

−γ(d)/γ̄(d)
where γ̄(d) =
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E[γ(d)] =
∫∞

0
γ(d)f(γ(d))dγ(d) is the average SNR. Using (4.28), the average consumed

energy for the D2D relaying:

ĒD2D =
(
η

(d)
1 + η

(d)
2 E[P ckt]

)
× 1

γ̄(d)

∫ ∞
γ

(d)
th

1

log(1 + x)
e−x/γ̄

(d)

dx (4.31)

where γ
(d)
th is the threshold SNR (in linear scale) for the D2D communication. Using

the series expansion of exponential function in (4.31), we get an exact expression of the

expected energy consumption for the D2D relaying:

ĒD2D =

1

γ̄(d)
(ηd

1 + 0.5η
(d)
2 (P ckt

max + P ckt
min))×

∞∑
k=0

(−1)k

k!

1

(γ̄(d))k
[Ei(γmax + kγmax)− Ei(γ(d)

th + kγ
(d)
th )].

(4.32)

Further, we provide simple bounds on (4.31) in the following Theorem:

Theorem 1. If P ckt
min and P ckt

max are minimum and maximum circuit transmit power of

all devices, respectively, γth is the threshold SNR, and η
(d)
1 = 10 log(2)P (d)L/B, η

(d)
2 =

η
(d)
1 /P (d), then the expected energy consumption for D2D under Rayleigh fading channel

with average SNR γ̄(d) is bounded as:

(η
(d)
1 + 0.5η

(d)
2 (P ckt

max + P ckt
min))×

( 1

γ̄(d)
loge(1 +

γ̄(d)

γ
(d)
th

)− 1

(γ̄(d))2
log(1 +

γ̄(d)

γ
(d)
th

)
)
≤ ĒD2D

≤ (η
(d)
1 + 0.5η

(d)
2 (P ckt

max + P ckt
min))×

( γ̄(d)

γ̄(d) + γ
(d)
th

+
1

γ̄(d) + γ
(d)
th

log(1 +
γ̄(d)

γ
(d)
th

)
)

(4.33)

Proof. Using the expectation of uniform random variable and applying logarithm inequal-

ity x
x+1
≤ log(1 + x) ≤ x [143], the integral in (4.31) for expected energy in D2D relaying

can be represented in terms of exponential integral:

(η
(d)
1 + 0.5η

(d)
2 (P ckt

max + P ckt
min))

1

γ̄d
E1(

γ
(d)
th

γ̄d
) ≤ ĒD2D ≤

(η
(d)
1 + 0.5η

(d)
2 (P ckt

max + P ckt
min))

(
exp(−γ

(d)
th

γd
) +

1

γ̄(d)
E1(

γ
(d)
th

γ̄(d)
)
) (4.34)

Further, we use the inequality on exponential integral 0.5 exp(−x) log(1 + 2/x) <

E1(x) < exp(−x) log(1 + 1/x) and exp(x) > 1 + x to get (4.33) of Theorem 1.

From (4.32) and (4.33), it can be seen that the expected energy decreases with an

increase in the average SNR at the relaying device. Since the relay devices have a higher

average SNR due to proximity with the source device in the D2D communication, the
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energy overhead of the relaying among devices is negligible as compared with the trans-

mission of data to the BS.

Average Energy Consumption without Relaying: ĒDT

We derive an expression on the expected consumed energy without D2D relaying (i.e.,

direct transmission). Each device transmits its data to the BS, if ERELAY +ED2D ≥ EDT.

Using a simple inequality, 10 log10(z) ≤ 10 log10(1 + z) ≤ 1 + 10 log10(z), z 6= 0 in (4.27),

we get bounds on the energy consumption of a device (we drop the index i) for the direct

transmission as

η1 + η2P
ckt

1 +X
≤ EDT ≤ η1 + η2P

ckt

X
(4.35)

where X = 10 log10(γ). The term
∑M

j=1 |hji|2 in γi =
∑M
j=1 |hji|2P
N0

can be approximated as

lognormal distributed since |hji|2 is lognormal (see (4.24)) and sum of log-normal random

variables can also be approximated as log-normal [144]. Moreover, each antenna gets the

same shadowing effect as is typical in wireless channel models [145]. Thus γ is log-normal

distributed with a spreading parameter σ2 in dB, X ∼ N (γ̄, σ2) with

γ̄ = 10 log10M + 10 log10 F + 10 log10R
−α + 10 log10G+ 10 log10 P/N0

Considering different specifications of user devices in a network, the devices can have

A different circuit power consumption models. Thus, we model the circuit power to be

uniformly distributed between P ckt
min and P ckt

max representing minimum and maximum circuit

transmit powers, respectively.

Taking expectation in (4.35) and noting the independence between the numerator and

denominator terms, we get an upper bound on the expected energy consumption with

direct transmission as:

ĒDT ≤ E[η1 + η2P
ckt]E[

1

X
] =

(
η1 + η2E[P ckt]

) 1√
2πσ

∫ ∞
γth

1

x
e−

(x−γ̄)2

2σ2 dx (4.36)

where γth in dB is a SNR threshold. The threshold SNR is selected to achieve a minimum

data rate requirement below which communication is possible. The expectation has been

taken over SNR γ. A lower bound can be similarly obtained by replacing γ̄ with γ̄ + 1.

Theorem 2. If P ckt
min and P ckt

max are minimum and maximum circuit transmit power of

all devices, respectively, γth is the threshold SNR in dB, and η1 = 10 log10(2)PL/B,

η2 = η1/P , then the expected energy with the direct transmission in a log-normal fading

channel with average SNR γ̄ and variation σ (in dB) is bounded as:

(η1 + 0.5η2(P ckt
max + P ckt

min))

(γ̄ + 1)
exp (

σ2

2(γ̄ + 1)2
)×Q(

σ

(γ̄ + 1)
+

(γth − γ̄ − 1)

σ
) ≤ ĒDT

≤ (η1 + 0.5η2(P ckt
max + P ckt

min))[IDT
1 (γ̄, σ) + IDT

2 (γ̄, σ)]
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where

IDT
1 (γ̄, σ) =

σ√
2π(2σ2 + γ̄2)

[
2
√

2σ log

(
γ̄

γth

)
× log

(
1 +

(
γ̄ − γth√

2σ

)2
)

+ arctan

(
γ̄ − γth√

2σ

)2]
(4.37)

I γ̄,DT
2 (σ) =

exp[−γ̄2/2σ2]

4
√

2πσ

[
2πerfi

(
γ̄√
2σ

)
− 2E1

(
γ̄2

2σ2

)
+ log

(
γ̄2

2σ2

)
+4 log

(√
2σ

γ̄

)
− log

(
σ2

γ̄

)]
(4.38)

Proof. The integral in (4.36) can be represented as a sum of two integrals:

Iub =
1√
π

[∫ γ̄−γth
σ
√

2

0

1

γ̄ −
√

2tσ
e−t

2

dt+

∫ ∞
0

1

γ̄ +
√

2tσ
e−t

2

dt

]

We use the standard mathematical procedure on the second integral in (4.39) to get an

exact solution IDT
2 (γ̄, σ) as given in (4.38). Using exp[−x2] ≤ 1

1+x2 and applying the

partial fraction method, an upper bound of the first integral is given as IDT
1 (γ̄, σ). This

has been presented in (4.38). Using these, and the average of uniform random variable,

we get the upper bound (4.37) of Theorem 2. For the lower bound, we use (4.35) and

1 + z ≤ ez to get the first integral of (4.39) as

Ilb =
1√

2π(γ̄ + 1)

∫ ∞
(γth−γ̄−1)

σ

e−
x2

2
− σ
γ̄+1

xdx (4.39)

Completing the expression in the exponential function in a square form and representing

the integral into Gaussian Q-function with a simple substitution, we get the lower bound

(4.37) of Theorem 2.

The derived bounds in (4.37) are presented in terms of simple mathematical functions.

It can be seen that a lower average SNR increases the energy consumption for the direct

transmission, thus necessitating the use of relaying.

Average Energy Consumption with Relaying: ĒRELAY

Now, we derive an expression for the average energy consumed ĒRELAY by the device

to the BS in log-normal fading with the selection criteria defined in (4.29). To simplify

the model, we assume that the relaying devices are in the vicinity of the source, so that

the path loss of all possible relays are similar [146], but spread enough to experience

independent shadowing. We also assume the circuit power is the same for each device i.e.,

P ckt
min = P ckt

max = P ckt. Using the selection criteria in (4.29) for the log-normal shadowing
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in (4.35), we get:

ERELAY ≤ η1 + η2P
ckt

X(n)

(4.40)

where X(n) = max(X1, X2, X3, · · · , XN) with Xi = 10 log10(γi), 1 ≤ i ≤ N . It follows

from order statistics that the CDF of X(n) is given as FX(n)
(x) = [FX(x)]N , where FX(x) =

[1/2 + 1/2erf( x−γ̄√
2σ2

)] is the CDF of normal distribution. The PDF of X(n) is fX(n)
(x) =

N [FX(x)]N−1[fX(x)] where fX(x) = 1√
2πσ2

e−
(x−γ̄)2

2σ2 is the PDF of normal distribution.

Thus, the average consumed energy ĒRELAY = E[ERELAY] can be expressed as:

ĒRELAY ≤ E[η1 + η2P
ckt]

∫ ∞
γth

N

x
[FX(x)]N−1[fX(x)]dx (4.41)

Using the integration by parts and FX(x) = Q( γ̄−γth

σ
), we can represent (4.41) as:

ĒRELAY ≤ E[η1 + η2P
ckt]×

(
IRELAY

1 (N, σ) + IRELAY
2 (N, σ)− 1

γth

QN(
γ̄ − γth

σ
)
)

where

IRELAY
1 (N, σ) =

∫ 0

γth−µ
σ

1

(xσ + γ̄)2
(1−Q(x))Ndx

IRELAY
2 (N, σ) =

∫ ∞
0

1

(xσ + γ̄)2
(1−Q(x))Ndx

(4.42)

Theorem 3. If P ckt is the circuit transmit power of each device, γth is the threshold SNR

in dB, and η1 = 10 log10(2)PL/B, η2 = η1/P , then the average energy consumption with

relaying from N devices in a log-normal fading channel with average SNR γ̄ and variation

σ (in dB) is bounded as:

ĒRELAY ≤ (η1 + η2P
ckt)×

(
IRELAY

1 (N, σ) + I2
RELAY(N, σ)− 1

γth

QN(
γ̄ − γth

σ
)
)

(4.43)

where IRELAY
1 (N, σ) and IRELAY

2 (N, σ) are given in (4.44) and (4.44) (see next page),

respectively.

IRELAY
1 (N, σ) ≤ σ

(2)N(2σ2 +Nγ̄2)2

[
2σ2

(
2σ2 +Nγ̄2

)( 1

γth

− 1

γ̄

)
+

+ 4Nσ2γ̄ log

(
γth

γ̄

)
+ +2Nσµ log

(
1 +

N

2

(
γ̄ − γth

σ

))
+

+
√

2N
(
Nγ̄2 − 2σ2

)
arctan

(√
N

2

(
γ̄ − γth

σ

))]
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IRELAY
2 (N, σ) ≤ σ

N∑
r=0

(
N
2

2r

)
1

4r
Ψ(r, σ, γ̄)−

N∑
r=0

(
N
2

2r + 1

)
[f(κ)]2r+1Ψ((2r + 1)κ, σ, γ̄),

(4.44)

where f(κ) = exp((π(κ−1)+2)−1)
2κ

√
1
π
(κ− 1)(π(κ− 1) + 2), κ ≥ 1, and function Ψ(r, σ, γ̄) :

Ψ(N, a, b) =

∫ ∞
0

exp[−Nx2]

(ax+ b)2
dx =

1

2a3b
e−

nb2

a2

(
2πb2Nerfi

(
b
√
N

a

)
− 2b2NEi

(
b2N

a2

)
+

+ 2a2e
b2N
a2 − 2

√
πab
√
Ne

b2N
a2 − b2N log

(
a2

b2N

)
+ b2N log

(
b2N

a2

)
+

+ 4b2N log
(a
b

)
− 2b2N log(N)

)
, N > 0, a > 0, b > 0

(4.45)

Proof. An upper bound on IRELAY
1 (N, σ) in (4.42) can be obtained using Q(t) = 1−Q(−t)

with Chernoff bound Q(t) ≤ 1
2

exp[−t2/2], and exp[−z] < 1
1+z

to express IRELAY
1 (N, σ) as

a polynomial function:

IRELAY
1 (N, σ) ≤ 1

(2)N

∫ γ̄−γth
σ

0

1

(γ̄ − tσ)2(1 + N
2
t2)

dt (4.46)

We use the partial fraction to solve the integral in (4.46) which is given in (4.44). To

analyze IRELAY
2 (N, σ), we use the binomial expansion of (1−Q(x))N and interchange the

summation and the integration to get

IRELAY
2 (N, σ) =

N∑
k=0

(
N

k

)
(−1)k

∫ ∞
0

[Q(x)]k

(xσ + γ̄)2
dx

=
N∑
r=0

(
N/2

2r

)∫ ∞
0

[Q(x)]2r

(xσ + γ̄)2
dx−

N∑
r=0

(
N/2

2r + 1

)∫ ∞
0

[Q(x)]2r+1

(xσ + γ̄)2
dx

Then, we use Chernoff bounds f(κ) exp[−κx2/2] ≤ Q(x) ≤ 1
2

exp[−x2/2], where f(κ) =
exp((π(κ−1)+2)−1)

2κ

√
1
π
(κ− 1)(π(κ− 1) + 2), κ ≥ 1 [147] appropriately in (4.47) to represent

the integral terms in the form
∫∞

0
exp[−Nx2]

(ax+b)2 dx = Ψ(N, a, b). Using standard mathematical

procedures, closed-form expression of Ψ(N, a, b) is given in (4.45), and thus we get (4.44).

This concludes the proof of Theorem.

While deriving (4.44), we have used Chernoff type of bounds of the Q-function in

(4.47). We further simplify the expression IRELAY
2 (N, σ) in (4.47) by applying an approxi-

mation Q(x) ≈ exp(q1x
2+q2x+q3), where q1 = −0.4920, q2 = −0.2287, q3 = −1.1893 [148]

to get an approximate expression on IRELAY
2 (N, σ), as presented in Appendix B.
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Thus, using results of Theorem 1, Theorem 2, and Theorem 3 in (4.30), we can ex-

press the energy consumption performance of the ODSR in terms of known mathematical

functions. In what follows, we provide a scaling law on the average energy consumption

of the relaying to the number of devices in a network for better insight on the network

performance.

Theorem 4. If P ckt is the circuit transmit power of devices and η1 = 10 log10(2)PL/B,

η2 = η1/P , then the average consumed energy with a single relay selection from N devices

in a log-normal shadow fading channel with average SNR γ̄ and variation σ (in dB) is

upper bounded as:

ĒRELAY ≤

(
η1 + η2P

ckt
)
×
( 1

2N
1

γth

+
1

σ

( 1

γ̄ + σ
√
cI log(N)

+
I−1∑
i=1

(
1

1 + κ2N (1−ci)

)(
1

γ̄ + σ
√
ci−1 log(N)

)) (4.47)

where I is a positive integer, κ2 = 0.3885 is a constant, and 0 ≤ ci ≤ 1, c0 = 0,

i = 1, 2, · · · I. Further, energy consumption scales as

ĒRELAY = O

(
η1 + η2P

ckt

γ̄ + σ
√
cI log(N)

)
(4.48)

where 0 ≤ cI ≤ 1.

Proof. The proof is presented in Appendix C.

From the scaling law in (4.48), it can be seen that energy consumption reduces log-

arithmic with the number of devices. Hence, near-optimal performance can be achieved

with only a few nearby devices selected for D2D relaying. This reduces latency and energy

overhead in large scale networks.

4.3.5 Simulation and Numerical Analysis

This section demonstrates the energy consumption performance of the ODSR through

numerical analysis and simulations using MATLAB software. We compare the ODSR

performance with the optimal and no-relaying (denoted by ”direct”) schemes. The optimal

criteria is based on the relay selection considering energy consumed in both the hops. We

use the energy model presented in [149] to compute the energy consumption by the devices

for data transmission. We have considered channel models from 3GPP and 5G channels

for our simulations [150,151].

Direct Transmission versus Relaying

First, we demonstrate the energy consumption performance of relaying by considering

various path loss configurations and multi-path fading from 3GPP 5G wireless channel
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Figure 4.14. Energy consumption performance of opportunistic relaying compared to
direct transmission over wireless fading channels for various network scenarios. Different
acronyms are UMa: Urban macro, UMi: Urban micro, SC: Street Canyon, NLOS: non-line
of sight.

models, as shown Figure 4.14. The log-normal spreading factor ranges from 2 dB to 7.8

dB. We consider short term fading using the Tapped Delay Line Type A (TDL-A) model

with delay spread 100 ns [151]. The channel bandwidth is 720 KHz, and the carrier center

frequency is 6 GHz. The background noise for each device and the BS is taken as −174

dBm/HZ with a noise figure of 5 dB. It can be seen from Figure 4.14 that the relaying

achieves significant improvement compared to the direct transmission for various wireless

channels when the shadowing effect is dominant. However, when the the shadowing is

minimal (i.e. σ = 2 dB), the relaying performs very similar to the direct transmission.

This motivates us to use relaying based techniques for data transmissions over strong

shadow fading channels. The simulation results also show a near-optimal performance of

the proposed relaying scheme.

ODSR Performance

In order to demonstrate the ODSR performance, we emulate a wireless network using

the 3GPP WINNER II wireless fading model and simulation parameters in line with

3GPP recommendations [150]. This simulation environment enables us to include the

overhead energy consumed by the control signaling for a fair comparison with the no-

relaying and optimal schemes. For each transmission, a data packet length of L = 1024

bytes is considered, and the size of D2D request/reply data is L(d) = 10 bytes.
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Table 4.1. Average energy consumption (in µJ) of various overheads obtained using
simulation under 3GPP model.

ĒRTR
tx ĒRTR

rx ĒCTR
tx ĒCTR

rx ĒD2D
tx ĒD2D

rx

11.60 4.50 3.35 1.30 350.5 135.4

The channel model considers all three losses: path-loss, short-term fading, and long-

term shadowing. The fading channel between the device and the BS is urban macro

log-normal shadowing (spreading factor σ = 4 dB) while the channel between devices

is modeled as Rayleigh fading generated by the extended pedestrian A (EPA) with 9

random taps [152]. The devices are assumed to be moving at a speed of 3 km/h. We

consider a single-cell network with up to 150 devices distributed uniformly in a radius of

50m to 500 m with a BS in the center. The background noise for each device and the BS

is taken as −174 dBm/HZ. We consider 20 dB of interference at the BS due to inter-cell

interference coming from base stations of adjacent cells. We assume transmission power

23 dBm, transmission bandwidth 200 KHz, and initial energy 0.72mWh for all devices.

We assume that the communication range for the D2D relaying is within 50 m.

In Table 4.1, we present the components of average consumed energy for various

overheads. This can be considered negligible by comparing the energy required for data

transmission.

In Figure 4.15, we analyze the performance of ODSR in terms of average energy

consumption, network energy efficiency, and the lifetime of the network. The energy

efficiency (bits per Joule) of the network is computed as the ratio of channel capacity

of all the nodes to the total power consumption (including the circuit power) of the

network. We define the lifetime of the network by the average number of transmissions

before the battery of the first device of the network is depleted. The figures show that

the relaying provides significant performance improvement comparing to the no-relaying

scheme. Further, the ODSR achieves the near-optimal performance with only a few

relaying devices i.e., within N = 25. This happens because the log-normal shadowing of

the second hop provides sufficient diversity to achieve the near-optimal performance with

a few relaying devices. However, there is a loss in the average number of transmissions

by the ODSR compared to the optimal, as shown in Figure 4.15c. This is due to the fact

that an incremental decrease in the consumed energy results in a higher cumulative gain

in the average number of transmissions.

Scaling Law

Finally, we verify the analytical bounds and the scaling law derived in this section by

considering a transmission model without overhead energies, as depicted in Figure 4.15a.

We consider a network of 10 to 105 devices situated uniformly at 300 m from the BS,

situated in the center. For each transmission, a packet length of L = 2 MB is considered

for a faster simulation in a large network. We consider channel between devices to the

47



4.3. ENERGY CONSUMPTION OF OPPORTUNISTIC D2D RELAYING UNDER
LOGNORMAL SHADOWING

10 20 30 40 50 60 70 80

Network size (N)

5

10

15

20

25

30

A
ve

ra
ge

 c
on

su
m

ed
 e

ne
rg

y 
[m

J]

Direct
ODSR
Optimal

16 16.05 16.1
6.76

6.77

6.78

6.79

(a)

10 20 30 40 50 60 70 80
Network size (N)

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 n
et

w
or

k 
en

er
gy

 e
ffi

ci
en

cy
 [M

bi
ts

/J
]

Direct
ODSR
Optimal

16 16.05 16.1
1.206

1.207

1.208

1.209

1.21

(b)

10 20 30 40 50 60 70 80

Network size (N)

1400

1600

1800

2000

2200

2400

2600

2800

A
ve

ra
ge

 n
um

be
r 

of
 tr

an
sm

is
si

on
s Optimal

ODSR
Direct

(c)

Figure 4.15. Performance of ODSR comparing with the optimal and no-relaying schemes
under 3GPP WINNER II fading channels.

BS to be log-normal distributed with a spreading factor of 4 dB and a path loss exponent

α = 4. The channel between devices is assumed to be Rayleigh fading with a path loss

exponent α = 3. The transmit power for each device is set to 23 dBm. For scaling law

verification, we consider M = 4, cM = 0.99, δM = ln(N), δ1 = δM/4, δ2 = δM/2 and

δ3 = 3δM/4 based on Theorem 4.

It can be seen from Figure 4.16a that the short-term fading has a negligible impact

on the energy consumption compared to the long-term shadowing effect. Moreover, the

figure verifies the analytical bounds and the scaling law on the average consumed energy.

It can also be seen that the energy consumption reduces logarithmically with the number

of devices. We have also validated bounds of average energy consumption for the direct

transmission (Theorem 2) and relayed transmission (as given in Theorem 3 and Theorem

4) with the simulation results.

To verify the effect of randomness of the circuit power transmissions on the relay se-

lection, we assume two probability distribution functions: uniformly distributed between

0.5P ckt and 1.5P ckt and Gaussian distribution N ∼ (P ckt, 0.03P ckt). Figure 4.16b shows
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Figure 4.16. Validation of derived analytical bounds and effect of circuit transmission
power on the relaying performance.

that the relay selection depends on the distribution of circuit transmission power of de-

vices. Moreover, the average energy consumption impact is more pronounced when the

randomness in the circuit transmission power is high.

4.3.6 Conclusion

In this section we have analyzed the energy consumption performance of a D2D based

opportunistic relaying scheme for uplink data transmissions in a mobile network. Further-

more, we have derived closed-form expressions and analytical bounds of the considered

ODSR scheme under log-normal shadowing. The analytical expressions show that the

ODSR achieves significant performance gain when the devices are in heavy shadowing

area with respect to the BS while the devices enjoy high quality channel for inter-user

D2D communication with negligible energy overhead. Moreover, the derived scaling law

on the consumed energy shows that a near-optimal performance can be achieved in log-

normal shadowing with a few devices. This reduces the latency and overhead energy

consumed by the devices in the selection of the relays. By considering several realistic

mobile network environments, we have shown that the ODSR achieves a near-optimal per-

formance using only few devices in the network. This can be useful to reduce latency and

overhead energy consumption in a large scale network. As such, the ODSR achieves an

approximately 300% decrease in energy consumption using only 16 relaying devices com-

pared to the direct transmissions. This significant reduction in energy consumption will

increase the life time of the network for ubiquitous communications under fading chan-

nels. This section completes a solution for collecting of the mobile network information

from the mobile devices, represented by the UEs, sensors, vehicles, etc.
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4.4 Increasing number of communicating users be-

yond 5G

The collected information about the UEs provides necessary data to optimize the

mobile networks. One of the ways to improve the performance of the mobile networks

in terms of the UEs satisfaction with the provided data rates is to deploy the FlyBSs.

For the deployment of the FlyBSs it is necessary to have the mobile network information

from the UEs, as described in the previous sections. The deployment of the FlyBSs leads

to an improved UE channel quality, i.e., higher SINR, due to lower distance between the

UE and the FlyBS and higher LOS probability [28]. However, in case, when the FlyBSs

operate on the same frequency as the deployed BSs (scenario where the spectral efficiency

is the highest), the benefit of the FlyBS deployment is limited by the interference. Thus,

it is necessary to position the FlyBS to maximize the SINR of the UEs served by the

FlyBS, while interference to the BSs and other FlyBSs is minimized.

Therefore, in this section, we present a joint solution for the positioning of the FlyBSs

and the association of the UEs, exploiting information related to the communication

channel. We propose two novel algorithms for the joint positioning and association,

considering the UEs’ requirements on data rates. The first developed algorithm for the

joint positioning and association is based on the PSO, while the second exploits the GA.

Unlike other works, our objective is to maximize the UEs’ satisfaction with the provided

data rates. We show that the proposed joint positioning and association based on both

PSO and GA notably outperforms a competitive state-of-the-art algorithm if the same

amount of FlyBSs is deployed. We also discuss trade-offs between the PSO-based and

GA-based solutions and assess their pros and cons.

This section is organized as follows. We start by defining system model and problem

formulation.Then, the proposed algorithms for the association and the positioning are

described, and implementation aspects are discussed. Followed by simulation scenario, a

description of the competitive algorithm, and the performance evaluation.

4.4.1 System Model and Problem Formulation

In this section, we first define the system model for the positioning of the FlyBSs and

for the association of the UEs. Then, we formulate the objective of this section.

System Model

We consider a setNNN of N UEs, where n ∈NNN is a specific UE, a setKKKS of KS represent-

ing conventional SBSs, and a set KKKF of KF corresponding to the FlyBSs. Furthermore,

we define a set of all BSs as KKK = KKKS ∪KKKFwith K = KS + KF representing the total

number of BSs. Note that the label ”BS” represents both the SBSs and the FlyBSs in

this section. The positions of the BSs are defined as VVV = {vvv1, vvv2, . . . , vvvK}, where vvvk ∈ R3,

k ∈ KKK represents a position of the k-th BS. In the same way, we define a set of the
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UEs’ positions UUU = {uuu1,uuu2, . . . ,uuuN} with the position of the n-th UE denoted as uuun ∈ R3,

n ∈NNN . An activity status of the BS is indicated by a binary parameter, ρρρ = {ρ1, . . . , ρK}.
Setting ρk = 1 and ρk = 0 means that the k-th BS is being turned on and off, respectively.

The n-th UE and the k-th BS communicate over a radio channel, with SINR defined

as:

γn,k =
ρkP

tx
k |hn,k (uuun, vvvk) |2

βn,kσ2 +
∑

l∈KKK,l 6=k ρlP
tx
l |hn,l (uuun, vvvl) |2

, (4.49)

where P tx
k is the transmission power of the k-th BS, hn,k(uuun, vvvk) is the channel realiza-

tion between the k-th BS and the n-th UE, σ2 is the noise power, and βn,k ∈ βββ|βn,k ∈
{0, 1},∀n ∈ NNN, ∀k ∈ KKK is the amount of bandwidth allocated for communication of the

n-th UE with the k-th BS. The matrix βββ ∈ BBB contains the bandwidth allocations of all

BSs, with BBB representing a set of all feasible bandwidth allocations. Note that SINR is

calculated only for active BSs (i.e., the BSs with ρk = 1). The bandwidth allocation also

contains information about the UE’s association to the BSs. The UE is considered to be

associated to the BS to which it has non-zero βn,k. We assume that the UE is associated

to a single BS (i.e., the bandwidth for each UE is allocated at most to one BS). Then, the

data rate provided by the k-th BS to the n-th UE via channel with the bandwidth Bk is

defined as:

cn,k = βn,kBklog2 (1 + γn,k) (4.50)

Objective Formulation

Our objective is to find the positions of the FlyBSs and associate the UEs to the BSs in

order to maximize the number of UEs satisfied with their experienced data rate. Without

loss of generality, we focus on downlink direction. Note that the n-th UE is assumed to

be satisfied if it experiences data rate cn,k equal to or higher than the minimum required

data rate cmin
n (i.e., the UE is satisfied if cn,k ≥ cmin

n ). The BSs that are unused or

cannot improve the UEs’ satisfaction are turned off to save energy. Thus, our objective

is to determine the optimal positions of the FlyBSs VVV ∗, the association of the UEs βββ∗

(represented via bandwidth allocation), and the status of the BSs (on/off) ρρρ∗. This

objective is formulated as:

βββ∗,VVV ∗, ρ∗ρ∗ρ∗ = arg max
βββ∈BBB,VVV ∈R3×K ,ρk∈{0,1}

∑
n∈NNN

∑
k∈KKK

[
cn,k ≥ cmin

n

]
(4.51)

subject to
∑
n∈NNN

βn,k ≤ 1,∀k ∈KKK, (4.52)∑
k∈KKK

[βn,k > 0] ≤ 1,∀n ∈NNN, (4.53)

where the operator [.] is equal to 1 if the condition (e.g., cn,k ≥ cmin
n ) is fulfilled, otherwise

it is equal to 0. The constraint (4.52) ensures that the BSs do not allocate more bandwidth

than available. Furthermore, the constraint (4.53) ensures that each UE can be associated

to a maximum of one BS.
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4.4.2 Proposed Solution

The defined objective is an NP-hard problem (due to its definition as a non-convex

function). Hence, to find the optimal positions of the FlyBSs, we exploit two evolutionary

algorithms: GA and PSO [87]. The evolutionary algorithms iteratively search for the

optimum within the search space, using several operations introduced later in this section.

First, we describe a general algorithm for the association of the UEs to the BSs,

including a bandwidth allocation and a decision on the number of active BSs. Then, we

integrate the association algorithm into the proposed algorithms for positioning of the

FlyBSs based on the PSO and the GA, respectively. Last, a discussion of the practical

implementation aspects is provided at the end of this section.

Association of the UEs and Bandwidth Allocation

The objective of the UEs’ association is to determine the serving BS for each UE and

to allocate bandwidth to the UEs to satisfy the UEs’ required data rates cminn (i.e., each

UE is allocated exactly with the bandwidth required to reach the cminn ). Then, based on

the association, we decide which BSs should be turned off, as those BSs do not improve the

UEs’ satisfaction. Note that we do not target a problem of minimization of the number of

active BSs. Such a problem is not straightforward, and possible extension of our proposed

algorithms is left for future research.

The proposed association of the UEs and the bandwidth allocation is described in

Algorithm 1. In the initial phase, the active FlyBSs are randomly deployed within the

area (line 1). The SINR between each BS and UE is calculated according to (4.49) from

a path loss model, following the same approach as the authors in [88] (line 4).

Then, the n-th UE is temporarily associated to the serving BS sn (i.e., to the BS with

the highest experienced SINR to minimize the bandwidth required to satisfy the UE’s cminn

(line 6)). Based on the temporal association, a set of vectors AAA = {AAA1,AAAk, . . . ,AAAK} is

created. Each vector AAAk from AAA represents a list of the UEs associated to individual BSs.

The list of UEs is created by adding the n-th UE to the vector AAAsn corresponding to the

serving BS sn (i.e., AAAsn ← AAAsn ∪n (line 7)). Next, we create the set KKK ′ containing indices

of the set AAA sorted according to the number of UEs served by each BS in descending

order (line 9). For purposes of the bandwidth allocation in the next steps, a temporal

set, NNN ′ ⊆NNN , is created (line 10). Subsequently, AAAk is emptied for each BS in KKK (line 11).

Based on the ordered set KKK ′, the bandwidth for communication is allocated to the UEs

to fulfill the UEs’ data rate requirements. The BSs allocate the bandwidth until no

bandwidth is left (lines 13 to 24).

The bandwidth is allocated according to the UEs’ SINR in descending order (i.e., the

UE with the highest SINR is allocated first). In terms of the algorithm, the UE n∗ with

the highest γn∗,k′ is selected first (line 15). Next, the bandwidth required to satisfy the

UE n∗ at the k-th BS is calculated as βreq = cmin
n∗ /log2 (1 + γn∗,k′) (line 16). If the k′-th

BS has enough bandwidth, the βreq is allocated to the UE n∗ and the UE n∗ is associated

to the k’-th BS (lines 17 to 19). The associated UE n∗ is removed from the set NNN ′, and
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the available bandwidth of the k′-th BS is updated (lines 20 and 21). The bandwidth

allocation continues until there is not enough remaining bandwidth that can satisfy any

UE. Then, the remaining bandwidth of each BS is divided among all the UEs served

by the given BS (line 25). Finally, bandwidth allocation is divided by the Bk to obtain

normalized bandwidth allocation βn,k (line 27), and the BSs serving no UE are turned off

(line 28).

Algorithm 1 Association of UEs and bandwidth allocation.

1: Deploy FlyBSs by generating random positions VVV ; set ρk = 1,∀k ∈KKK.
2: for n ∈NNN do
3: for k ∈KKK do
4: Calculate γn,k via (4.49).
5: end for
6: sn ← arg maxk∈KKK γn,k
7: AAAsn ← AAAsn ∪ n
8: end for
9: KKK ′ ← indices of AAA sorted in descending order.

10: NNN ′ ←NNN
11: AAAk ← ∅,∀k ∈KKK
12: for k′ ∈KKK ′ do
13: while Bk′ > 0 do
14: for n ∈N ′N ′N ′ do
15: n∗ ← arg maxn∈NNN ′ γn,k′

16: βreq =
cmin
n∗

log2(1+γn∗,k′)
17: if Bk′ ≥ βreq then
18: βn∗,k′ ← βreq

19: AAAk′ ← AAAk′ ∪ n∗
20: NNN ′ ←NNN ′\n∗
21: Bk′ ← Bk′ − βreq
22: end if
23: end for
24: end while
25: βn′,k ← βn′,k +

Bk′
|AAAk′ |

,∀n ∈ AAAk′
26: end for
27: βn,k ←

βn′,k
Bk

,∀k ∈ K
28: {ρk ← 0|∀k′ ∈KKK ′,AAAk′ = ∅}

Positioning of FlyBSs via Particle Swarm Optimization

In this subsection, we describe the proposed algorithm for optimization of the FlyBSs’

positions based on the PSO and its integration with the association. We exploit a common

PSO described in [91] and adapt it to the objective defined in (4.51). The PSO searches for

the optimal solution via a set of l ∈ L particles {WWW 1(t),WWW 2(t), . . . ,WWWL(t)} over iterations

represented by the discrete time t. In our case, each particle contains the positions of all

FlyBSs (i.e., WWW l(0) = VVV ). The search is done by updating the positions of the FlyBSs
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via a velocity vector DDDl(t) calculated as:

DDDl(t) = φDDDl(t− 1) + cpφ1

(
WWW l,local −WWW l(t− 1)

)
+

cgφ2

(
WWW global −WWW l(t− 1)

)
,

(4.54)

where φ is the inertia weight determining the convergence speed, φ1 and φ2 are positive

random variables, and cp and cg are the personal and global learning coefficients, re-

spectively. The velocity vector represents a weighted sum of the previous velocity vector

DDDl(t− 1), the difference between the FlyBSs’ positions of the l-th particle WWW l(t− 1), and

the l-th particle’s local best solution WWW l,local (i.e., historically the best FlyBSs’ positions

of the l-th particle), and the difference between the l-th particle WWW l(t− 1) and the global

best solution WWW global. The global best solution WWW global contains the best particle (i.e.,

the position of the FlyBSs with the highest targeted metric) out of all particles L, up to

the current iteration t. In our objective, DDDl(t) is a directional vector of the l-th particle,

represented by the positions of all FlyBSs between the time instants t and t − 1. Note

that DDDl(t) is calculated separately for each FlyBS of the l-th particle.

An example of the FlyBS position update is shown in Figure 4.17, where a single

selected FlyBS at a position from the corresponding l-th particle WWW l(t− 1) is updated by

DDDl(t), considering the local and the global best positions of the selected FlyBS according

to (4.54).

Each particle has its suitability represented by a cost function stored in Ql. The suit-

ability of the FlyBSs’ positions and the UE’s association of the l-th particle is defined by

the cost function Ql, reflecting our objective to maximize the UEs’ satisfaction according

to (4.51). Thus, the cost function is formulated as:

Ql =


∑

n∈NNN
∑

k∈KKK cn,k if cn,k ≥ cmin
n ,∀n ∈ N∑

n∈NNN
∑

k∈KKK
[
cn,k ≥ cmin

n

]
otherwise.

(4.55)

The search for the optimal solution of the objective function is then achieved by updat-

ing the positions of the FlyBSs corresponding to each particle WWW l(t) via a maximization

of the particles’ local best cost (Ql,local) and a global best cost (Qglobal). In other words,

D
l
(t)D

l
(t-1)

W
l
(t-1)

W
l
(t)

W
l,local

W
global

Figure 4.17. Update of FlyBS position via the proposed algorithm based on PSO.

54



4.4. INCREASING NUMBER OF COMMUNICATING USERS BEYOND 5G

the new position of the FlyBS is determined based on the best position of the given FlyBS

represented by the l-th particle in the past, and the FlyBS’s best position among all par-

ticles L. If all UEs are satisfied with the provided data rates, the remaining bandwidth

is allocated to the UEs so that the sum of the UEs’ data rates is maximized.

The proposed algorithm for the positioning based on the PSO with integration of the

UEs’ association is described in Algorithm 2. The PSO algorithm starts with the updated

association with the unused BSs turned off (as explained in the previous subsection)

(line 1). Based on the association, the particles are initialized (line 2). Then, the cost

function of each particle is calculated via (4.55) (line 3). The particle with the highest

cost is set as WWW global and the cost of this particle is set to Qglobal (lines 4 and 5). Then,

the PSO iteratively updates the FlyBSs’ positions until a maximum number of iterations

Mit is reached (line 8). For each updated FlyBSs’ position, the UEs’ are re-associated

(lines 9). Based on the updated FlyBSs’ positions and the UEs’ association, a suitability

of the particle is evaluated via the cost function (4.55) (line 10). Then, we check if the

updated positions improve the local solution (lines 11 to 13) or even the global solution

(lines 15 to 17). Once all Mit iterations are completed, the WWW global contains the set of

FlyBSs’ positions with the highest cost (suitability).

Algorithm 2 PSO for FlyBS positioning & UEs’ association

1: Associate UEs & allocate bandwidth by Algorithm 1 with unused BSs turned off.
2: Initialize particles WWW l(0), l = 1, . . . , L based on assoc.
3: Ql,local ← Ql

(
WWW l(0)

)
via (4.55)

4: Qglobal ← arg maxl∈LQ
l,local.

5: WWW global ← arg maxl∈LWWW
l(0).

6: for t = 1, . . . ,Mit do
7: for l = 1, . . . , L do
8: WWW l(t) = WWW l(t− 1) +DDDl(t) via (4.54).
9: Assoc. UEs & alloc. bandwidth by Algorithm 1 with unused BSs turned off.

10: Ql(t)← Ql
(
WWW l(t)

)
via (4.55).

11: if Ql(t) > Ql,local then
12: Ql,local ← Ql(t)
13: WWW l,local ←WWW l(t)
14: end if
15: if Ql,local > Qglobal then
16: Qglobal ← Ql,local

17: WWW global ←WWW l,local

18: end if
19: end for
20: end for

Positioning of FlyBSs via Genetic Algorithm

In this subsection, we describe the proposed algorithm for optimization of the FlyBSs’

positions based on the GA. We exploit a common GA described in [87] and adapt it

to the optimization problem defined in (4.51). The GA consists of a population GGG =
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{ggg1, . . . , gggL} with a size L. The population is composed of individuals gggl representing

possible solutions (i.e., sets of the positions of the FlyBSs). Each individual consists of

genes ggglk corresponding to the positions of FlyBSs (i.e., ggglk = vvvk).

The first step of the GA is to generate an initial population with the size L. After

that, a crossover operation inherent to all genetic algorithms is applied to the initial

population. The crossover operation is understood as a mechanism during which new

offspring are created from two selected parents. While each parent represents one of the

previous positions of the given FlyBS, the new offspring defines a new possible position

of the FlyBS. The selection of the parents j1 and j2 is done via Roulette Wheel Selection

(RWS). The RWS selects parents based on their probability of survival defined by the

cost function [153]. In our algorithm, the RWS is implemented by choosing the parent

j via {j ∈ Z, j ≤ L|
∑l=j

l=1 Fl ≥ ω} (i.e., by selecting a parent with fitness Fl equal to or

larger than ω). The ω is selected randomly with uniform distribution U(0, 1), and Fl is

determined from the fitness function defined as:

Fl =
e
− Ql

max{Ql}∑
l∈L e

− Ql

max{Ql}

(4.56)

where Ql is the normalized cost of the l-th individual calculated as Ql = Ql∑
l∈LQ

l . Note

that for the GA, we use the same cost function as expressed for the PSO in (4.55).

The number of offspring (new possible positions of the FlyBS) generated by the GA in

each iteration is defined as bLpcc, where pc is the crossover ratio representing a percentage

of the whole population selected as the parents. The positions of the FlyBSs belonging

to the selected parents are combined via an arithmetic recombination. This means the

generated positions of the FlyBSs are influenced by a recombination parameter α denoting

portions of the positions, which are taken from each of the selected parents. The parameter

α is selected randomly from the uniform distribution U(0, 1), following an arithmetical

crossover [153], where each offspring inherits a part of each parent’s position.

The principle of crossover operation is illustrated in Figure 4.18a, where two new

offspring l1 and l2 (i.e., new possible positions of the FlyBS) are generated from the

selected parents j1 and j2 (i.e., positions of the FlyBS in the past). The crossover operation

takes positions of the parents vvvj1k and vvvj2k and modifies them as follows:

vvvl1k =
(
αvvvj1k + (1− α)vvvj2k

)
(4.57)

vvvl2k =
(
αvvvj2k + (1− α)vvvj1k

)
(4.58)

To preserve a diversity in the population, a mutation is exploited besides the crossover

operation. The mutation corresponds to the process during which the position of the

FlyBS (vvvlk) is modified by a vector ~δk as follows:

vvvmk = vvvlk + ~δk,∀k ∈KKKF (4.59)
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Figure 4.18. Update of the FlyBS position by the proposed algorithm based on genetic
algorithm.

The value of ~δk is limited by the FlyBSs’ deployment area (i.e., simulation area).

Note that a direction of the vector ~δk is selected randomly. In our case, the muta-

tions are applied on randomly selected individuals with a probability pm (i.e., there are

bL (L+ Lpc) pmc mutants generated in each iteration). The principle of mutation is de-

picted in Figure 4.18b, where the l-th FlyBS with the position vvvlk generates a mutant m

with a new position corresponding to vvvmk .

After the crossovers and mutations, whole population (i.e., parents, offspring, and

mutants) is evaluated via the fitness function (4.56) to select proper individuals (i.e., sets

of positions of the FlyBSs) for the new iteration.

The proposed GA solution exploiting the defined operations (crossover, mutation,

etc.) is described in Algorithm 3. The algorithm is initialized by updated association

with unused BSs turned off by Algorithm 1 (line 1). The population GGG is then generated

based on the association (line 2) with the cost of each individual determined according to

(4.55) (line 3). The crossovers and mutations are applied to the positions of FlyBSs in the

GGG (lines 6 and 7) to generate new possible solutions (i.e., sets of positions of the FlyBSs)

within the constrained area of search for the optimum. Due to the updated positions of

the FlyBSs, the UEs’ association and the bandwidth allocation are updated as well. The

UEs are associated by considering only the BSs that are turned on (line 8). The cost of

the updated population is calculated via (4.55) (line 9). Based on the fitness function

(4.56), the fittest individuals are selected for the next iteration (line 11). If the population

is not diverse (i.e., the cost of all individuals is the same), the mutation percentage pm
is increased to pmutate,high to avoid premature convergence to a non-optimum solution;

otherwise, pm is kept at pmutate (line 12). Then, the individual with the highest cost Ql

(suitability) is selected as the most suitable solution (line 13).

Practical implementation aspects

In this subsection, we discuss aspects related to implementation of the UEs’ association

and the positioning of the FlyBSs. First, we focus on the mobile network entities where the
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Algorithm 3 GA for FlyBS positioning & UEs’ association

1: Assoc. UEs & allocate bandwidth by Algorithm 1 with unused BSs turned off
2: Initialize population GGG based on association
3: Calculate cost Ql of gggl,∀l ∈ L via (4.55)
4: for t = 1, . . . ,Mit do
5: for l = 1, . . . , L do
6: Apply crossovers via (4.57) and (4.58).
7: Apply mutations via (4.59).
8: Assoc. UEs & alloc. bandwidth by Algorithm 1 with unused BSs turned off
9: Calculate cost Ql of gggl,∀l ∈ L via (4.55)

10: end for
11: Select the fittest individuals to next iteration via (4.56)
12: Check population diversity and adjust pmutate.
13: ggg∗ ← arg maxl∈L cost

(
gggl
)

14: end for

algorithms for the joint positioning and association can be deployed and run. The most

straightforward option is to implement the algorithm directly at the FlyBSs. On one hand,

this option leads to a low latency of determining FlyBSs’ positions and UEs’ association,

since the FlyBSs just exchange control information among themselves, and there is no

need to communicate with the core network. On the other hand, this solution also drains

batteries of the FlyBSs; thus, the operational time of the FlyBSs is reduced. Although the

common UAVs, such as quad- or hexa-copters, can fly several hours if they are powered

with hydrogen cells, any additional energy consumption is undesirable [10]. Thus, running

the proposed algorithm directly at the FlyBSs is limited only to the scenarios where a

short operation time of the FlyBSs is not a problem.

The second option is to run the algorithm in a fixed infrastructure, such as common

SBSs, core network, or a Base Band Unit (BBU) if the Cloud-Radio Access Network (C-

RAN)) is deployed [10]. In this case, the energy required to run the proposed algorithm for

the positioning and association is not that critical. However, the latency (especially if the

algorithm is run in the BBU connected through a non-ideal fronthaul [154]) is the main

concern here and can result in incorrect positioning of the FlyBSs. As a consequence, this

option is preferable if a higher latency does not degrade the performance of the proposed

algorithm, such as for slow-moving UEs (pedestrians), where the delay on the order of

tens of milliseconds plays no role due to the slow movement of the UEs.

The proposed algorithms require information about the UEs’ positions (these are as-

sumed to be known in, e.g., [73] or [75]), their required data rates, and environment for

estimation of the propagation losses (such as [155] or [156]) to determine the SINR for a

given FlyBS’s positions (as assumed, e.g., in [88] and outlined in [73]). The required data

rate is known to the network, as this information is required for scheduling. The UEs’

positions represent overhead on the order of tens of bytes, which is negligible.
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4.4.3 Simulation Scenario and Performance Evaluation

Performance of the proposed solution is analyzed and compared with a competitive

solution by simulations conducted in MATLAB.

Simulation Scenario

We assume a scenario in which the deployment of the FlyBSs is meaningful (i.e.,

the UEs benefit from increased data rate satisfaction). Thus, four small-cell SBSs (i.e.,

KS = 4), with transmission power of 15 dBm, are deployed at positions [400 400, 400 1200,

1200 400, 1200 1200] in a simulation area of 1600 m x 1600 m, as shown in Figure 4.19.

Moreover, up to twenty FlyBSs (i.e., KF = 20), with the same transmission power as the

SBSs, are deployed in the same area. The deployment of both the FlyBSs and the SBSs

emulates a realistic case in which the FlyBSs cooperate with existing infrastructure, and

interference among the FlyBSs and the SBSs plays an important role in the association and

positioning. Thus, we also assume that all BSs transmit on the same frequency (i.e., each

BS interferes with other BSs). A signal propagation for the SBSs is modeled according

to [157] with path loss model PL = 128.1 + 37.6log10d, where d is a distance between the

UE and the SBS. For the FlyBSs, we select a commonly used path loss model from [155],

with Suburban environment parameters from [158]. A connectivity of the FlyBSs to the

core network of the operator is assumed to be of a sufficient capacity to transfer all the

UEs’ data transmitted over the access link (from the UE to the FlyBS) as expected (e.g.,

in [10] and [159]). The major parameters of the simulations are summarized in Table 4.2.

Performance Evaluation

In this section, we provide a performance evaluation of the proposed solutions. The

performance of the proposed algorithms based on GA and PSO is compared with a com-

monly exploited k-means algorithm (see, e.g., [93]) extended with the bandwidth alloca-

tion according to our proposed Algorithm 1 for a fair comparison. To the best of our

Table 4.2. Simulation parameters.

Parameter Value
Simulation area 1600m x 1600m
Carrier frequency 2 GHz
Number of SBSs/Maximal number of FlyBSs 4/20
Tx power of SBS/FlyBS 15/15 dBm
Bandwidth of SBS/FlyBS 20/20 MHz
SBS/FlyBS/UE height 20/20/1.5 m
Maximal number of iterations GA/PSO/k-means 100/100/100
Population size GA/Number of particles PSO 100/100
GA - pc/pmutate/pmutate,high 0.8/0.3/0.8
PSO - φ/φ1/φ2/cg/cp 4.1/2.05/2.05/1.5/1.5
Number of simulation drops 1000 drops
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Figure 4.19. Simulation area with FlyBSs and SBSs and associated UEs (association to
individual FlyBSs is indicated by colors).

knowledge, there is no other algorithm for comparison that solves joint association and

positioning and targets maximization of the UEs’ satisfaction. As exploiting the k-means

requires that we know the number of FlyBSs to be deployed, we investigate the k-means

with the same number of FlyBSs as the number of FlyBSs required by our proposed al-

gorithm based on the PSO. This allows a fair comparison of the k-means and the PSO in

terms of the UE’s satisfaction, which is our major objective.

In Figure 4.20a, we show the ratio of the satisfied UEs to the achieved throughput

(i.e., the UEs for which cn,k ≥ cmin
n ) for cmin

n set to the same value for all the UEs and

ranging between 1 and 20 Mbit/s. For all compared algorithms, the ratio of satisfied

UEs is decreasing with increase of both cmin
n and the number of UEs. The decrease in

satisfaction is because, while the UEs require higher data rates (i.e., higher cmin
n ), the BSs

still have a limited amount of bandwidth that can be allocated to the UEs. The gain of

the proposed algorithms based on GA and PSO compared to the k-means and 100 UEs

is up to 30 % and 31%, respectively. Although the gain decreases with more users in the

area, the gain of the proposed algorithms is above 6% for almost all values of cmin
n , even

for 1000 UEs. The improvement in the UEs’ satisfaction is achieved by the positioning of

the FlyBSs, association of the UEs, and turning off the BSs that are not necessary. All

these aspects lead to a higher level of the received signal and/or lower interference from

neighboring BSs.

Figure 4.20b depicts a total throughput, which is defined as the sum of data rates cn,k
over all UEs. It is demonstrated that the total throughput is increased by the proposed

algorithms (GA and PSO) when compared to the k-means. The gain typically ranges

between 19% and 47%. Again, the highest gain is achieved for a lower number of UEs.

For example, for 100 UEs, both proposed algorithms lead to an improvement in the total

throughput by approximately 30% for cmin
n = 1 Mbit/s with respect to the k-means. The
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(b) Total throughput of all UEs in the network.

Figure 4.20. Improvement of network performance in (a) UEs satisfaction and (b) network
throughput.

highest gain is observed for cmin
n = 2 Mbit/s and 100 UEs; in this case, the proposed algo-

rithms based on GA and PSO outperform the k-means by 128% and 126%, respectively.

This notable gain is because the k-means fails to handle small groups of the UEs requiring

relatively high data rates. In contrast, both GA- and PSO-based algorithms converge to

a suitable deployment and association that avoids redundant interference.

Figure 4.20b also shows an interesting phenomenon, as the total throughput for 500

UEs is higher than that for 1000 UEs if cmin
n = 1 Mbit/s. This is due to the definition

of the cost function in (4.55), and the fact that the primary objective is to maximize

the UEs’ satisfaction while the throughput maximization is only a secondary objective

(see (4.55)). Consequently, if all UEs’ requirements are satisfied with the experienced

throughput (i.e., the case with 500 UEs and cmin
n = 1 Mbit/s, as shown in Figure 4.20a),

both the GA and the PSO start maximizing the total throughput as well. In contrast,

if some of the UEs remain unsatisfied (i.e., the case with 1000 UEs deployed in the area

and cmin
n = 1 Mbit/s), the GA and the PSO aim to maximize the UEs’ satisfaction while

the throughput maximization does not take place. Consequently, the total throughput

for 1000 UEs is slightly lower than the total throughput achieved for 500 UEs if cmin
n =

1 Mbit/s.

The same behavior can be seen also for 100 UEs, where the throughput gradually

increases as long as cmin
n ≤ 5 Mbit/s since all 100 UEs are always satisfied (i.e., the pro-

posed algorithms are able to further maximize the throughput according to the secondary

objective). However, for cmin
n higher than 5 Mbit/s, the total throughput starts decreasing

(see the throughput for cmin
n between 5 and 7 Mbit/s). For these values of cmin

n , the case

when all UEs are satisfied (i.e., when throughput maximization takes place) occurs for

some simulation drops while, in other drops, not all UEs are satisfied (i.e., the secondary

objective of throughput maximization does not take place). The cases when all UEs are

satisfied and when some UEs are not satisfied are represented by different slopes of the
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Figure 4.21. Improvement of network performance in (a) UEs satisfaction and (b) network
throughput.

total throughput over cmin
n . Combination of both cases for cmin

n between 5 and 7 Mbit/s

results in a decrease in the total throughput. Nonetheless, with a further increase in cmin
n

above 7 Mbit/s, the total throughput starts increasing again, following the slope corre-

sponding to the second case (some UEs are not satisfied), with a slower increase in the

total throughput comparing to cmin
n ≤ 5 Mbit/s. The slope of the second case (cmin

n ¿

7 Mbit/s) is lower because the secondary objective takes place in no (or almost no) drops.

Note that the first non-satisfied UEs are those with the worst channel quality. Thus, the

total throughput still increases even if the secondary objective is not considered. This is

due to the allocation of bandwidth to the UEs with a higher channel quality.

The number of active FlyBSs required to maximize the UEs’ satisfaction is presented in

Figure 4.21a. The number of FlyBSs for the k-means is not shown, as the k-means cannot

change the number of active FlyBSs, and we set it to the number of active FlyBSs required

by the PSO, as explained earlier. From Figure 4.21a, we can see that the number of active

FlyBSs with required throughput increases for low cminn , but for cminn above 5 Mbit/s, the

number of active FlyBSs starts slowly decreasing for 500 and 1000 UEs. The decrease in

the number of active FlyBSs for a larger cminn is due to the fact that the additional FlyBSs

increase interference more than the amount the UEs can gain from the improved level of

the useful signal provided by the serving BS.

The proposed algorithms based on GA and PSO find the solution iteratively. An

evolution of the cost function Ql with iterations for cmin
n = 10 Mbit/s is shown in Fig-

ure 4.21b. The figure depicts the number of UEs satisfied with their data rates in each

iteration (following (4.55)). The value of the cost function (i.e., the number of satisfied

UEs) iteratively improves as the algorithms based on both the GA and the PSO find

better positions of the FlyBSs. It is shown that the positioning based on the GA provides

slightly higher values of the cost function in comparison to the PSO (difference is on the
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order of a few percent. However, the cost function converges almost to its maximum

in roughly 30 or 40 iterations for both algorithms. Then, the cost function remains al-

most constant. Such a low number of iterations required for the convergence makes the

proposed solutions promising for real networks.

The performance analysis presented in the previous figures shows that the GA slightly

improves the UEs’ satisfaction with respect to the PSO (by up to 2%, see Figure 4.20a).

At the same time, the GA increases the total throughput by 1%˜10% compared to the

PSO (see Figure 4.20b). In addition, the GA converges to these gains while requiring

approximately one FlyBS less than the PSO (see Figure 4.21a), so the operational cost

is slightly reduced by the GA as well. However, this gain is at the cost of a higher time

complexity of the algorithm based on the GA. The GA is of a higher time complexity than

the PSO because of the nature of the base GA and PSO algorithms (see, for example,

[160]). We express the time complexity as the time required to complete one iteration of

the algorithm (i.e., one update of the FlyBSs’ positions for each population/particle). The

iteration takes 0.22 and 0.13 seconds, on average, for the GA and the PSO, respectively.

Note that the times of each iteration are obtained at a desktop PC with Intel i7-7700K@4.2

GHz CPU and 32 GBs of RAM.

4.4.4 Conclusion

In this section, we have proposed an algorithm for the joint positioning of the FlyBSs

and association of the UEs to maximize the number of UEs satisfied with the experienced

data rates. The developed algorithm is presented in two variants: one based on the

GA and one on the PSO. We show that both approaches improve the UEs’ satisfaction

compared to the commonly used k-means by up to roughly 30%. Also, a gain in the total

throughput of all UEs is observed for both proposed algorithms. The gain typically varies

between 19% to 47%, but reaches its maximum of more than 100% for scenarios with a

lower number of UEs and medium to high data rates. We also show that the GA slightly

increases the UEs’ satisfaction and the total throughput while reducing the number of

required FlyBSs compared to the PSO. This improvement is, however, at the cost of a

higher time complexity.

The proposed algorithms exploit the collected network information from the UEs, as

described in Section 4.1 and Section 4.2. The mobile network optimization, as presented

in this section, is then applicable in general scenarios.
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Chapter 5

Resource allocation the MEC

The MEC provides computation resources at the edge of the mobile network, that

can be exploited by the mobile operator for the mobile network optimization, but also,

by the mobile users for offloading of their computation intensive tasks from their UEs

to the BSs serving as the MEC host. The previous chapter have dealt with collecting of

the mobile network information from the UEs and optimization of the mobile network

via deployment of the FlyBSs. In this chapter, we present a work for optimization of

the mobile network, where the UEs exploit the MEC for the computation offloading.

The optimization of the mobile network is done via determination of communication

and computation resource allocation for the mobile UEs. The communication resources

are represented by the communication bandwidth (in LTE-A represented by the RBs),

while the computation resources by the CPU processing time and RAM. Due to security

concerns, the computation resources are encapsulated and form either a VM or a container.

In general computing, including exploitation of the MEC the users require a certain

level of service, represented by the QoS. One of the primary indicators of the QoS in

the MEC is the offloading delay. The offloading delay represents time (or duration) from

the time the offloading starts to collection of the results back at the UE. The offloading

delay consists of: i) tO the time required to deliver the offloaded task from the UE to

the BS that starts the computation, ii) tP the time required to process the offloaded

task, iii) tC the time required to deliver the processed data from the BS that finishes the

computation to the UE, iv) tH the time consumed by the handover process, v) tM the

time of the VM starts (including obtaining UE’s application which processes offloaded

tasks) during the offloading. The total offloading delay experienced by the UE is then

tMEC = tO + tP + tC + tM + tH.

The rest of this chapter is organized as follows, first, a general description of MDP is

provided, as it is the main mathematical tool, that is exploited for solving the communica-

tion and computation resource allocation in this chapter. Then, in Section 5.2 we present

a solution for selection of the communication path for the computation offloading. In Sec-

tion 5.3 we describe a joint communication and computation resource allocation with fixed

mobility prediction accuracy. Then, this work is extended to a general scenario, where

we propose a mobility and channel quality prediction framework and joint algorithms for
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communication and computation resource allocation.

5.1 Markov Decision Process

The proposed algorithm for determination of the communication path, i.e., path selec-

tion, and computation resource allocation are based on the MDP. Therefore, we describe

the MDP and how it is exploited in the proposed algorithms in this section.

The MDP is a discrete-time stochastic control process that provides a mathematical

framework for modeling decision making. The MDP is an extension of Markov chains,

differing in addition of actions and rewards. A MDP is a tuple (S,A, Pa (s, s′) , Ra (s, s′)),

where s is a set of states called state space, A is a set of actions called action space,

Pa(s, s
′) is a probability that action a in state s at discrete time k will lead to state s′

at discrete time k + 1 and Ra(s, s
′) is the immediate reward received after transitioning

from state s to state s′ due to action a. The goal of solving the MDP is to find a policy

denoted as π that maximizes total reward V k
π over a potentially infinite horizon given by

the discrete time k [161]:

V k
π = Est(

∑
k

Rt|π, s) = R(s) +
∑
k

T (s, π(s, k), s′)V k−1
π (s′) (5.1)

π : s→ a,

where summation of reward per time step (T (s, π(s, k), s′)V k−1
π (s′)), represents expected

future payoff as a sum over k steps, Est () represents an estimate of reward. The estima-

tion is necessary in the mobile networks, as the channel quality fluctuates frequently.

Lets demonstrate our MDP approach on an example of a chain of two consecutive

time steps as shown in Figure 5.1, where states s (i.e., 1, 2, 3, and 4) represent a selected

serving BS, that is exploited to transmit the offloaded task to the MEC host. At the

beginning of the process (at time t = 0), we are in the state s = 1, as current serving BS

is 1. In the next time step (i.e., t = 1), a transition to four different states is possible. It

means the serving BS may stay the same, i.e., s = 1 or may change to a different one,

i.e., s′ ∈ {2, 3, 4}. These states are connected with the current state via edges denoting

the immediate transition reward R(s). The immediate transition reward of staying in the

current state (s) is 0 as the serving BS remains the same (there is no handover) and thus

no gain (loss) is obtained by this transition. In case of the transition to another state,

i.e., s′, there is a negative immediate reward due to handover (in Figure 5.1 denoted as

−tH). The handover introduces negative immediate reward as it leads to an overhead

and no useful data are being transmitted during the handover. Nevertheless, in case of

the transition to another state (2, 3, 4), there is also expected future reward (in Figure 5.1

denoted as T (s, π(s, k), s′)), which is calculated as a reward introduced by connection to

a new BS (2, 3, or 4) and staying there for a duration of a one time step.

To obtain the total reward V π
k , the procedure from Figure 5.1 has to be repeated

multiple times (for all time steps) until all required data is transmitted as shown in
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1 1

2

3

4

00

t=0 t=1

-tH

-tH

-tH

Figure 5.1. Reward on a chain of a single time step (i.e., k = 1).

Figure 5.2. Then, the selected path is represented by a chain of serving BSs (e.g., red line

starting in state 1 in time t = 0 and ending in state 2 in time t = k).
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Figure 5.2. Chain for calculation of the total reward (for the sake of figure clarity, negative
rewards −tH due to handover between states is not depicted for t > 1).

5.1.1 MDP in communication and computation resource alloca-

tion

The MDP is exploited for determination of communication path selection, as well as,

for computation resource allocation. Therefore, an example how the MDP is mapped to

the path selection problem is described. In the communication path selection problem, the

immediate reward R(s) is represented by handover delay tH(qs, q
′
s′) and energy consumed

during handover EH(qs, q
′
s′). The reward in terms of delay per step, in (5.1) denoted as

T (s, π(s, k), s′)V k−1
π (s′)), is calculated as a difference in communication delay if path q′s′

is selected instead of qs for both radio (i.e., tR(qs) − tR(q′s′)) and backhaul (i.e., tB(qs) −
tB(q′s′)). The reward in terms of UE’s energy consumption per step is calculated as a

difference in energy consumed if the communication over radio takes place via path q′s′

instead of qs(i.e., ER(qs)− ER(q′s′)).

All rewards (delay and energy) are added up to obtain the total reward. We also

reflect the possibility of weighting energy and delay (as defined in (5.3)) by parameter γ.
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Thus, the total reward for our proposal is defined as:

V k
π (qs, q

′
s′) = γ[−EH(qs, q

′
s′) +

∑
k

(ER(qs)− ER(q′s′))]+

(1− γ)[−tH(qs, q
′
s′) +

∑
k

(tR(qs)− tR(q′s′)) +
∑
k

(tB(qs)− tB(q′s′))]
(5.2)

where ER(qs) and ER(q′s′) denote the energy consumed by the UE’s radio communication

using current path qs and the new path q′s′ , respectively, tH(qs, q
′
s′) and EH(qs, q

′
s′) stands

for the delay and the energy consumed by handover from the serving cell to the neighboring

cell (transition from the path qs to the path q′s′), respectively. Delay due to the handover

(tH(qs, q
′
s′)) and energy consumed by the UE during handover procedure (EH(qs, q

′
s′))

reflect an overhead in terms of additional delay and energy consumption caused by the

handover procedure, respectively.

5.2 Selection of communication paths for MEC

In this section, we describe an algorithm for selection of communication path exploiting

handover in order to avoid distribution of the offloaded data via a backhaul of a limited

capacity. Our motivation is to shorten the time necessary for transferring the offloaded

data to an individual computing SCeNBs. To prevent high energy consumption at the

UE side, the energy spent by the UE for data transmission as well as energy spent by

handover itself is also considered for selection of the most suitable way of data delivery.

The problem is formulated as a MDP. In the MDP, any change of the serving SCeNB (i.e.,

each handover), motivated by an improvement of data delivery, is rewarded depending

on its impact on the UE’s energy consumption and transmission delay caused by both

data transmission and handover. The algorithm selects also the path for delivery of

computation results back to the UE. Independent selection of the communication paths

for data offloading (uplink) and results delivery to the UE (downlink) solves the problem of

mobility management for users exploiting the MEC (i.e., the problem of users moving from

one cell to another when the offloaded application is currently computed). Consequently,

the MEC can be efficiently utilized also by the moving UEs. In addition, the algorithm

is suitable for parallel computing, so, parallelized parts of the code (offloaded data) can

be delivered to multiple computing cells via multiple routes to minimize the transmission

delay.

This section is an extension of our previous work presented in [162], where we have

proposed general framework for the path selection and we have provided basic perfor-

mance analysis. With respect to [162], we extend our work in the following aspects: 1) we

consider path selection not only for uplink data offloading but also for downlink reception

of computation results in order to address a problem of user mobility management; 2)

we present more detailed description of the proposed algorithm including implementation
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aspects related to derivation of required parameters; 3) we enhance simulations by con-

sideration of multi-user multi-cell scenario and user’s mobility; 4) we evaluate also impact

of the proposed algorithm on the load of the backhaul network.

The rest of this section is organized as follows. In the next section, the proposed

algorithm for path selection is described along with implementation aspects. Simulation

methodology and scenario are presented in Section 5.2.7. Section 5.2.8 provides perfor-

mance evaluation and discussion of simulation results. The last section summarizes major

conclusions and outlines potential future research work.

5.2.1 Path Selection Algorithm

In this section, we present system model and proposed algorithm for data delivery

from the UE to individual BSs or SCeNBs performing computation and delivery of the

computing results back to the UE. Designed path selection algorithm takes into account

the UE’s energy consumption (both energy spent by data transmission and handover),

handover delay, radio channel quality, and backhaul conditions. Furthermore, we discuss

the implementation aspects and a possible reduction of the computation complexity.

5.2.2 System model

We assume the system composed of S SCeNBs that act as MEC hosts and U UEs.

Furthermore, for each UE, we define set X consisting of n computing SCeNBs and set I

consisting of m SCeNBs that are in the neighborhood of the UE and can communicate

with the UE directly through the radio link. Note that sets X and I may be fully or

partially overlapping if computing cells are in radio communication range of the UE (i.e.,

if the UE can connect directly to the computing cells via radio link). In our model, the

SCeNB providing the highest RSSI to the UE is selected to be the serving cell for each

UE [109,163]. In case of the UE’s movement, the serving cell is updated if the RSSI from

the target SCeNB (RSSITC) becomes higher than the RSSI of the serving cell (RSSISC)

plus handover hysteresis (4HM), i.e., if RSSITC > RSSISC +4HM .

An example of the network model is shown in Figure 5.3. In this figure, c represents

capacity of the link and upper indexes B and R stand for backhaul and radio links,

respectively. In the given example, the cluster of cells performing computation is formed

of four SCeNBs. Out of those SCeNBs, the SCeNB1 is selected as the serving cell.

As depicted in Figure 5.3, data from the UE can be transferred to the SCeNBi over

the radio link with capacity cRi . The SCeNBi is connected to the operator’s core via the

backhaul with capacity cBi . The offloaded data is processed by the SCeNBi or forwarded

to another computing SCeNBx through backhaul of the SCeNBi (with capacity cBi in

uplink) and backhaul of the computing cell SCeNBx (with capacity cBx in downlink).

Note that index x stands for any SCeNB out of X except the SCeNBi (i.e., x = 2, 3, 4 in

Figure 5.3). Selection of the computing cells can be done according to complexity of the

offloaded data processing and available computing power of the SCeNBs as suggested, e.g.,

in [99,121,164]. After the SCeNBs finish data computation, the results are delivered back
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to the UE. New path for backward delivery of computation results (from each SCeNBx

to the UE) must be derived if radio and backhaul links are not symmetric in uplink

and downlink, if the UE moves during computation, or if the channel/link load or quality

changes. Therefore, computation results can be delivered to the UE through a new cell(s),

which again minimize delay and/or energy consumption according to the user’s preference.

In case when the offloaded task requires simultaneous uploading (task offloading) and

downloading (results reception), both are done via the same serving cell selected by the

proposed path selection algorithm. It means, the UE communicates over the same serving

cell for uplink and downlink until all data is transmitted and received. Then, if handover

is beneficial, new serving cell is selected (still just one serving cell for both uplink and

downlink). Changing the UE’s serving cell for offloading and results reception can lead

to a change in assigned IP address and, thus, it may lead to problem with routing of data

to destination. Nevertheless, this problem is solved by a method for addressing devices

in MEC as outlined in [101].

Each computing task offloaded to the SCC (in this thesis denoted as ”offloaded task”)

is divided between the computing cells. Each SCeNBx (where x ∈ X) is expected to

compute a part λx ∈ (0, 1] of the whole offloaded task, which is of the overall size of LUE.

The individual part Lx computed by the SCeNBx is then expressed as Lx = λx · LUE
where

∑
λx = 1. In this section, we assume to split the offloaded task into parts with the

same size among all computing cells, i.e., λ1 = λ2 = ... = λx. In general, the size of each

offloaded part should correspond to the computing power of individual SCeNB involved in

computation. The optimal distribution of offloaded task to individual computing SCeNBs

is out of scope of this thesis and this topic is left for future research.

Figure 5.3. Network topology and definition of parameters required for path selection.

The common approaches for delivery of the offloaded task to the computing cells and

back assume that data from the UE to the computing cells is always delivered through

the same serving cell (SCeNB1 in Figure 5.3) [19, 21]. This serving cell is selected only

according to the rules applied in common mobile networks, i.e., with respect to radio

channel quality or available capacity of radio channel [110, 163]. To overcome potential

delay due to distribution of data among all computing SCeNBx over the backhaul with
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limited throughput, we exploit an opportunity to transfer data also via neighboring cells.

In this case, individual parts of the data for computation are delivered to individual

computing cells through specific neighbors, which offer the lowest transmission delay over

both radio and backhaul links.

Note that for each computing cell, data can be delivered through different neighboring

cell. This implies a need for performing handover during communication. In our proposed

algorithm, handover is not enforced during transmission of the offloaded task to each of

assigned computing cells. Instead, handover is performed when no data is being transmit-

ted at the moment. For example, following Figure 5.3, data designated to be computed

at the SCeNB1 is transmitted to this SCeNB. After successful transmission, handover

is performed before data to the next SCeNB (e.g., SCeNB2) is transmitted. Therefore,

offloading is not interrupted by handover as each part of the task is offloaded/received at

its destination before handover.

Comparing to the conventional handover in mobile networks, the handover is not

conditioned only by radio quality but also by backhaul [111] and selection of computing

cells. The proposed algorithm is labeled as a PSwH. The scheme using single serving cell

selected in conventional way according to radio quality for delivery of all offloaded data

is denoted as a SO in the rest of the thesis.

5.2.3 Path selection exploiting handover

The proposed path selection algorithm suitable for the SCC combines the time required

for transmission of offloaded task over radio and backhaul links (in the rest of thesis

denoted as transmission delay) and energy consumed by the UE by both transmission

of data over radio link and handover (in the rest of thesis denoted as energy).

Each q-th path between the UE and the computing cell is described by the transmission

delay (tq) and the energy consumed by the UE’s transmission (Eq). In our path selection

algorithm, both tq and Eq are combined into a single metric of the q-th path, Mq:

Mq = γEq + (1− γ)tq (5.3)

where γ is the weighting factor showing preference for low delay (γ → 0) or for high

energy efficiency (γ → 1), tq (Eq ) represents normalized delay (energy) of the q-th path.

In order to enable combination of both metrics, both are normalized (i.e., scaled into

range from 0 to 1) with respect to the maximum observed value as follows:

tq =
tq

max{t1, t2, ...tp}
(5.4)

Eq =
Eq

max{E1, E2, ...Ep}
(5.5)

where p is the number of possible paths from the UE to the computing cells. Parameter

p is calculated as the cardinality of Q, i.e., p = |Q|, where Q is the set of all possible
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paths including all combinations of computing SCeNBs (set X) and all SCeNBs within

radio communication range of the UE (set I). The path selection algorithm is defined

as the MDP, as described in Section 5.1, where the state s represents currently selected

path qs (using the serving cell selected in conventional way according to radio link qual-

ity) and the future state s′ is another possible path q′s′ (composed of radio and backhaul

connections) out of Q. Note that Q includes also paths obtained by performing handover

to neighboring cells. As the radio and backhaul parameters fluctuate over time, calcu-

lated time of transmission is only an estimation of the expected transmission time. This

estimation introduces an error in derivation of the reward. The estimation error can be

avoided by reservation of radio and backhaul resources solely for the purposes of data

offloading to the SCC, i.e., using Guaranteed Bit Rate (GBR) [165] in LTE-A networks.

Nevertheless, this would lead to QoS degradation for other UEs. Thus, Est is computed

as a sum over k steps, representing estimated duration of the data transmission. The

actions in the MDP for selection of the communication path are defined as: 1) transit to

another state s′ (change current path) if it improves Mq or 2) stay in the current state

s (use the same path) if Mq cannot be improved by selection of another path. However,

with dynamicity of the mobile networks, transitions from one state to another (option 1)

cannot be stationary mapped to states and need to reflect changes of the network topology

and transmission parameters of each link. Thus, we calculate table of transitions among

states every time when the task is offloaded. Optimum policy π is obtained at the end of

the algorithm and it gives desired policy maximizing the reward. As the delay and the

energy are used as metrics, the optimal policies can be calculated in order to minimize

delay, energy or a trade-off between both metrics. The reward depends on the delay due

to handover (tH) if the handover is performed, delay by the transmission over radio (tR)

and transmission delay on backhaul (tB).

Thus, the reward for transition from the state s to the s′ defined in (5.1) can be

rewritten for purposes of the path selection as follows.

The transmission delays tR and tB are computed knowing amount of data to be trans-

ferred over radio (vR,ibits) and backhaul (vB,ibits) and knowing capacity of the radio link (cRi ),

capacity of backhaul of the serving (cBi ) and the computing (cBx ) cells:

tR =
vR,ibits

cRi
(5.6)

tB =
vB,ibits

cBi
+
vB,ibits

cBx
(5.7)

5.2.4 Path selection algorithm

The pseudo-code for the proposed algorithm, which selects the path between the UE

and the computing SCeNBs for given γ is shown in Algorithm 4. The algorithm calculates

delay tq and energy Eq spent by the UE for delivery of the offloaded task to each SCeNBx

(Step 3) using available radio links of neighboring cells (Step 4). Delay and energy due to
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transmission using radio of the SCeNBi to deliver data to the SCeNBx are derived using

(5.6), (5.7) and (A.4), (A.11), respectively (Steps 6 and 7). If data is sent over backhaul

link (Step 8), its delay is added to the path delay (Steps 9, 10). Afterwards, the delay and

energy of each combination of radio and backhaul links is calculated (Steps 15 and 16).

Impact of handover on the path selection is included by adding delay of handover (tH)

and energy consumed by the UE during handover (EH) to the delay and energy derived

for the q − th path (Steps 18 and 19). Energy consumed by the UE during handover is

calculated using (A.4) by substituting tH for tR. Subsequently, tq and Eq are normalized

in order to be weighted (Steps 23 and 24). Then, the path metric Mq is calculated by

weighting tq and Eq (Step 25). Finally, the new path q′s′ with the lowest Mq for given γ

is returned (Steps 27, 28).

Algorithm 4 Selection of path for data delivery

cBi ,cBx , cRi ,vR,ibits,v
B,i
bits,γ

1: tq ← null
2: Eq ← null
3: for x ∈ X do
4: for i ∈ I do
5: tR ← vR,ibits/c

R
i

6: dix ← tR
7: eix ← E[tR]
8: if vB,ibits > 0 then
9: tB ← vB,ibits/c

B
i + vB,ibits/c

B
x

10: dix ← dix + tB
11: end if
12: end for
13: end for
14: for q ∈ Q do
15: tq ←

∑
q d

q
x

16: Eq ←
∑

q e
q
x

17: if handover then
18: tq ← tq + tH
19: Eq ← Eq + EH
20: end if
21: end for
22: for q ∈ Q do
23: tq ← tq/max{tq}
24: Eq ← Eq/max{Eq}
25: Mq ← γEq + (1− γ)tq
26: end for
27: q′s′ ← argmin{Mq}
28: return q′s′
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5.2.5 Implementation aspects

To enable implementation of the proposed path selection algorithm, capacity of radio

link, capacity of backhaul link, and transmission/reception power level at the UE’s side

must be obtained. The capacity of uplink radio link is derived from the number of

allocated RBs. This can be obtained through uplink grant reception [42]. Similarly, the

capacity of downlink radio link depends on the number of allocated RBs. This information

is derived by means of downlink assignment as described in [42]. Apart from the number

of allocated RBs, the capacity depends on MCS used for transmission based on SINR.

From knowledge of the amount of bits to be transmitted to each computing SCeNBx, and

radio capacity of each SCeNB, we calculate the delay of radio transmission using (5.6).

The capacity of backhaul connection is calculated based on known maximum backhaul

capacity and link utilization. Required parameters for calculation of energy consumption

are measured directly by the UE or obtained via control channels from the SCeNBs.

To determine the most suitable paths, it is necessary to identify cells, which are in

communication range of the UE. This can be done according to the SINR. In the common

mobile networks, such as LTE-A, the UE can monitor SINR from the SCeNBs included in

Neighbor Cell List (NCL) (for more details about NCL, refer to [166]). The NCL contains

all potential neighbors of the UE’s serving cell. Thus, this corresponds to the list of the

SCeNBs, which might be available for data transmission.

Each SCeNB can be switched off at any time since the SCeNBs can be deployed also

by users (e.g., femtocells) [167]. Thus, a secondary path should be defined for a case when

the primary path is no longer available due to its failure. To keep routing overhead low in

case of the link failure, data to be sent over this link will be rerouted through the original

serving SCeNB selected according to signal quality, if possible. In case of the serving

SCeNB failure, the UE will reinitiate path selection as there is a major change in state of

links and there is no other backup route. Note that this problem requires also selection

of a new serving cell for communication purposes. However, this is a common problem,

for which existing mobile networks are able to find a solution by selection of new serving

cell according to RSSI (for more details, see [168]).

5.2.6 Complexity of the path selection algorithm

Complexity of the proposed path selection algorithm is proportional to the number

of computing SCeNBs (n) and the number of SCeNBs in radio communication range of

the UE (m). The number of possible paths can be computed as partial permutation.

Thus, the complexity of algorithm is O(mn). This complexity might be redundant as

many SCeNBs in communication range of the UE provide radio channel of quality not

suitable to satisfy requirements on delay imposed by a service (treq). Hence, we narrow-

down former set of all SCeNBs in communication range of the UE (I) to the set Y with

a size of my, consisting of the SCeNBs with SINR above a threshold ρSINR. The set Y

is created to cut off unusable SCeNBs with very low channel quality. The cut, defining

the set Y , has no negative impact on performance of the proposed algorithm, as the cut
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removes only the SCeNBs, which cannot be used for communication due to low channel

quality. This means that we set the SINR threshold ρSINR equal to a minimum SINR

when devices can communicate and thus, SCeNBs with SINRSCeNB < ρSINR are not

considered for the path selection. note that the size of set Y can be controlled by setting

the threshold ρSINR. However, high ρSINR could lead to performance degradation as

some base stations in proximity of UE, which potentially available for data transmission,

might be excluded from the set Y disregarding the amount of available radio resources and

backhaul. Anyway, considering low radius of small cells, wall attenuation and interference,

the number of small cells in radio communication range (i.e., SINRSCeNB > ρSINR) is

very low (in our simulations, typically between two and four). Thus, complexity of the

proposed solution after removing unsuitable base stations form set Y is also kept at low

level.

Consequently, the set Y includes only SCeNBs, which can provide SINR high enough

to satisfy treq, i.e., the set Y is defined as:

Y = {y | y ∈ I, y > ρSINR} (5.8)

By this approach, the list of SCeNBs in UE’s proximity is reduced from a size of m to

my. Consequently, the complexity of the proposed path selection algorithm is reduced

from O(mn) to O(my
n), where m > my. Note that this leads to replacement of the set I

by the set Y in Algorithm 4 in Step 4.

5.2.7 Evaluation Methodology and Scenario

In this section, scenarios, deployment and simulation models used in MATLAB sim-

ulations for performance evaluations are presented. The simulation area is composed of

two-stripes of buildings (as shown in Figure 5.4) as suggested by 3GPP in [157]. The size

of each building’s block is 20 x 100 m and blocks are separated by streets with a width

of 10 m. The overall simulation area is composed of 4 x 4 blocks of offices or apartments.

The size of the whole simulated area is 430 x 270 m. Fifty outdoor UEs are randomly

deployed at the beginning of the simulation and they move along the streets according

to Manhattan Mobility model [169], with a movement speed of 1 m/s. In addition, also

indoor UEs are randomly deployed in offices with 20% offices occupied with one UE, i.e.,

there are 64 indoor UEs. Movement of the indoor UEs is modeled so that the UEs move

within the apartments at discrete positions with a specific time distributions as defined

in [170]. Inside the buildings, also the SCeNBs are randomly dropped to the offices with

equal probability in a way that 20% of offices are equipped with a SCeNB. Therefore, 64

SCeNBs are deployed indoor. Besides the SCeNBs, also a macrocell eNB is placed outside

the block of buildings at coordinates of [425 m, 265 m] (see Figure 5.4).

The offloaded tasks is computed at 1, 2, 3 or 4 SCeNBs, with equal probability of

each option. One of the computing SCeNBs is the serving one if this one can offer enough

computing resources as suggested in [19]. In simulations, the computing SCeNBs are

selected as a random set of n closest available SCeNBs.
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Figure 5.4. Simulation scenario with example of deployment of buildings, users, SCeNBs
and eNB for simulations.

We assume the size of offloaded task is either 300 kB or 30 MB to represent two different

loads corresponding to different types of applications [171]. Interval between two offloaded

tasks is set to 64 s and 512 s for a size of tasks of 300 kB and 30 MB, respectively. This

interval is selected to generate enough traffic so that one request transfer affects selection

of path for another.

If two or more offloaded tasks are generated at the same moment, the path selection

is done sequentially for each task. Therefore, the impact of the path selection for the first

offloaded task is subsequently considered for the second offloaded task and so on.

Major parameters of the simulation, summarized in Table 5.1, are in line with the

recommendations for networks with small cells as defined by 3GPP in [157]. We also

follow parameters of the physical layer frame structure for LTE-A mobile networks and

signal propagation as defined in the same document. Based on [109] and [172], we set

handover delay to be 30 ms. In LTE-A, OFDMA is used for communication at the physical

layer in downlink whereas SC-FDMA is used in uplink. The smallest unit to be allocated

to the UE is a RB, which consists of 12 subcarriers and 7 symbols. Downlink and uplink

are separated by means of Frequency Division Duplex (FDD).

Radio and backhaul resources are shared among the UEs in such manner that newly

incoming request can be assigned with up to half of available resources to guarantee

resource availability also for other potential UEs and services. A part of radio link capacity

is assumed to be consumed by the background traffic (common voice and data services

exploited by other users). Thus, the maximum number of available RBs per subframe for

uplink and downlink in our simulations is 40 and 80, respectively.

We consider SCeNBs connected to the operator’s network through either DSL or opti-

cal fiber. Maximum throughput of both is generated by a normal distribution with mean

value µ and standard deviation σ as specified in Table 5.2. The optical fiber is used solely

for the corporate scenario which assumes several cells within one building [170] sharing

the same backhaul. All cells belonging to the same corporate building are interconnected

with Local Area Network (LAN) offering throughput of 100 Mbit/s among the SCeNBs.

If two or more SCeNBs within the same corporate building communicate with each other,

we assume direct communication between the SCeNBs via LAN. Consequently, no part
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Table 5.1. Simulation parameters

Parameter Value

Simulation area 430 x 270 m

Carrier frequency 2 000 MHz

Bandwidth for downlink/uplink 20/10 MHz

Tx power of eNB/SCeNB 43/23 dB

Attenuation of external/internal/separating walls 20/3/7 dB

SCeNB deployment ratio 0.2

Shadowing factor 6 dB

Handover interruption duration 30 ms

Number of Indoor UEs/Outdoor UEs/SCeNBs 64/50/64

Speed of outdoor users 1 m/s

Traffic generated by one request 300 kB/30 MB

Time between two requests for 300 kB/30 MB tasks 64/512 s

Simulation time 20 000 s

Number of simulation drops 4

of the offloaded task is distributed to the core network over optical fiber. The DSL back-

haul connection corresponds to the residential scenario where the SCeNBs are deployed

in private flats and connected to the core network [170]. For both scenarios, the UE

can communicate with the computing SCeNBs also via eNB. The eNB is connected to

operator’s network through a link with a throughput of 1000 Mbit/s.

Table 5.2. Parameters of backhaul models.

Parameter Value

Optical fiber µ (uplink/downlink) 100/100 Mbit/s

Optical fiber σ (uplink/downlink) 11.5/11.5 Mbit/s

DSL µ (uplink/downlink) 1/5.5 Mbit/s

DSL σ (uplink/downlink) 100 Mbit/s

eNB uplink/downlink 1000/1000 Mbit/s

5.2.8 Simulation Results

In this section, simulation results are presented and discussed. The performance is

evaluated for the proposed PSwH algorithm and also for commonly adopted SO ap-

proach [19,21,113,173] (only the serving SCeNB selection based on RSSI level is assumed).

Simulation results are divided into subsections analyzing : 1) transmission delay, 2) en-

ergy consumed by the UE, 3) satisfaction of users with experienced delay, 4) load of the

SCeNB’s backhaul, and 5) number of additional handovers generated by the PSwH. We

also discuss selection of proper values of weighting parameter γ and we summarize major

findings from simulations in this section.
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(a) (b)

Figure 5.5. Average time (tMEC) required for transmission of offloaded task with size of (a)
300 kB and (b) 30 MB for DSL backhaul (top subplot) and fiber optic (bottom subplot)
backhauls.

Delay of UE data transmission/reception

Impact of the PSwH algorithm on the average delay caused by transmission of the

offloaded task between the UE and the computing SCeNBs is depicted in Figure 5.5a

and Figure 5.5b. From both figures, we can observe that delay increases with γ. This

is because high γ indicates priority for low energy consumption while delay becomes less

important (see (5.3)). The proposed PSwH reaches lower delay comparing to the SO

for all values of γ. Low delay achieved by the PSwH results from avoiding low quality

backhaul if it is possible to transmit data directly to the computing SCeNBs or through

different SCeNBs with less loaded backhaul. For the offloaded task with a size of 300 kB,

the average transmission delay tMEC is reduced by up to 26.9% for DSL backhaul and up

to 7% for optical fiber backhaul, as shown in Figure 5.5a. For the offloaded task’s size of

30 MB, the PSwH shortens the delay by up to 21.5% comparing to the SO in case of DSL

backhaul and by up to 53.7% for the optical fiber backhaul as shown in Figure 5.5b.

Energy consumed by UE for data transmission/reception

The proposed PSwH should avoid draining of the UE’s battery caused by data trans-

mission/reception and handover. By increasing γ, radio paths with lower energy con-

sumption are used more often and the energy consumption is decreasing (see Figure 5.6a

and Figure 5.6b). Energy required for the UE’s transmission depends on transmission

power level and transmission duration as specified in (A.4). Lower energy consumption

comparing to the SO is achieved by shortening the transmission time resulting from per-

forming handover to less loaded SCeNBs (offering more available RBs for transmission).

The reason for lower energy consumption for transmission via less loaded SCeNB is that a

linear increase in the number of consumed RBs leads to a linear decrease in the transmis-

sion delay while increase in the energy consumption is logarithmic (see (A.3)). Another

reason for lowering the energy consumption by the PSwH is the usage of the connection
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(a) (b)

Figure 5.6. Average energy (E) required for transmission of offloaded task with size of (a)
300 kB and (b) 30 MB for DSL backhaul (top subplot) and fiber optic (bottom subplot)
backhauls.

with a more robust MCS, which requires lower transmission power (see [162] for more

details).

From Figure 5.6a and Figure 5.6b, we can see that the PSwH reduces energy consump-

tion by up to 3.2% in case of the DSL backhaul and by up to 4.1% for the optical fiber

backhaul if the offloaded task is of 300 kB as shown in Figure 5.6a. For the offloaded task

of 30 MB (shown in Figure 5.6b), the PSwH lowers energy consumption by up to 4.1% for

DSL backhaul and by up to 10.4% for the optical fiber. The energy consumption can be

increased comparing to the SO if the users do not care about energy (low γ). However, in

this case, the users indicate their preference for the delay so they are not unhappy with

increased energy consumption.

There is one singular point when impact of γ on the energy is unexpected (energy

rises with γ). This situation is shown in Figure 5.6b for large offloaded tasks (30 MB)

and low quality backhaul (DSL). In this scenario, the algorithm is trying to minimize

energy consumption by selection of the most appropriate radio path disregarding delay

(see (5.3)). Hence, the algorithm tends to associate all UEs to the SCeNBs with radio

links requiring the lowest energy consumption. However, for the UEs trying to offload

data later when other transmissions are already in progress, not enough radio resources

are available. Consequently, those UEs are associated to the SCeNBs, which may lead to

even higher energy consumption than in case of the SO.

Satisfaction of users with experienced transmission delay

The satisfaction of UEs with experienced transmission delay tMEC with respect to

their required delay treq is shown in Figure 5.7 and Figure 5.8 for DSL and optical fiber

backhauls, respectively. The satisfaction is understood as a ratio of users (Rs), who

experience delay lower than the requested one (i.e., tMEC ≤ treq). The satisfaction increases

as γ decreases since lowering delay becomes of higher priority than energy consumption.
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(a) (b)

Figure 5.7. Ratio of users satisfied with experienced delay, RS, for DSL backhaul for
offloaded task of 300 kB (a) and 30 MB (b).

(a) (b)

Figure 5.8. Ratio of users satisfied with experienced delay, RS, for optical fiber backhaul,
for offloaded task of 300 kB (a) and 30 MB (b).

As can be seen from Figure 5.7 and Figure 5.8, the UEs’ satisfaction is increasing with

treq for both compared algorithms. This fact is expected as more time is available for

delivery of data for higher treq. Comparing the PSwH with the SO for DSL backhaul, the

proposed algorithm increases the satisfaction up to 10% for the offloaded task with a size

of 300 kB (Figure 5.7a) and up to 15% for the offloaded task with a size of 30 MB (Figure

5.7b).

For the optical fiber backhaul, the satisfaction of UEs with experienced transmission

delay is shown in Figure 5.8. The PSwH improves the satisfaction by up to 7% for the

offloaded task of 300 kB (Figure 5.8a), and up to 29% for the offloaded task of 30 MB

(Figure 5.8b).
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(a) (b)

Figure 5.9. Mean number of the offloaded tasks, µT , transmitted over DSL backhaul for
the offloaded task size of 300 kB (a) and 30 MB (b).

Load of small cell’s backhaul

The proposed algorithm takes advantage of handovers to speed up data delivery and

also to offload the backhaul of SCeNBs. The load of backhaul (µT ) is represented by

a mean number of the offloaded tasks transmitted per backhaul link and time. For the

PSwH, the backhaul load increases with γ since a priority is given to lowering the UE’s

energy consumption while backhaul capacity (represented by transmission delay) is of

a lower priority. This behavior results from the lowering energy consumption (high γ),

which leads to selection of less energy consuming radio link even if backhaul has to be

used. Contrary, the most of the traffic is transmitted directly to the computing SCeNB

in radio communication range if the users prefer low delay (low γ).

In Figure 5.9a, we can see that the PSwH reduces the DSL backhaul load by up to 32%

comparing to the SO for both uplink and downlink for the offloaded task of 300 kB. For the

offloaded task of 30 MB, more than 9% decrease in DSL backhaul utilization is observed

as well for both directions as shown in Figure 5.9b. The decrease in backhaul load by the

PSwH is due to exploitation of the radio link rather than low quality backhauls.

In case of the optical fiber, the PSwH lowers the backhaul load by up to 11% for the

offloaded task with a size of 300 kB and by up to 15.5% for the offloaded task with a size

of 30 MB, as shown in Figure 5.10a and Figure 5.10b, respectively.

Number of performed handovers caused by the proposed algorithm

The ratio of additional handovers introduced by the PSwH for the transmission of

offloaded task (RH) is shown in Figure 5.11. If the PSwH is used, the number of handovers

for delivery of the offloaded task of 300 kB is increased by 53-56% for the optical fiber

backhaul and by 53-55% for the DSL backhaul (see Figure 5.11a). If the size of offloaded

task is 30 MB (Figure 5.11b), the number of handovers is increased by 5% for DSL

backhaul and by 12.5% for optical fiber backhaul. For both backhauls, the number of
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(a) (b)

Figure 5.10. Mean number of the offloaded tasks, µT , transmitted over optical fiber
backhaul for the offloaded task size of 300 kB (a) and 30 MB (b).

handovers increases with γ for low values of γ and then decreases for high values of γ.

This behavior is a result of combination of handovers initiated for minimization of the

energy consumption as well as for minimization of the delay for 0 < γ < 1. For γ = 0 or

γ = 1, the handover is initiated less often as only either energy consumption or delay are

targeted. Note that the impact of γ on the number of additional handovers is very low

(below 3.5%).

Less significant increase in the number of handovers for large offloaded tasks (30 MB)

is caused by more time required for transmission of such task. Therefore, the radio links of

the SCeNBs in communication range of the UE (included in set I) are heavily loaded for a

longer period of time. Consequently, allocation of resources at the overloaded neighboring

SCeNBs for the users associated to another cell is not feasible.

The proposed algorithm introduces additional handovers, which can lead to redun-

dant signaling and interruption in communication due to performing handover (known

as handover interruption). The signaling overhead generated per handover is in order of

kb [174]. The overall number of handovers per one offloaded task is very low (roughly 0.8

in average). Hence, total handover overhead is in order of kb per offloaded task and can

be considered negligible. The second problem, handover interruption, is not related to the

SCC services as the users do not care about interruption in transmission of the offloaded

task if the computation results are delivered within desired delay treq. The handover inter-

ruption is considered in the PSwH algorithm (see (5.1)). Thus, all above-presented results

already include impact of the handover interruption. Of course, the handover interruption

introduced by the PSwH can degrade quality of conventional services (voice, video, etc.)

running at the UE simultaneously with offloaded SCC services. In case of simultaneous

usage of the SCC offloading service and common real-time service, the user must indicate

priority for one type of services. If the preference is given to the SCC service, the user

should not be disappointed with lower quality of the secondary service. Contrary, if the

preference is given to the conventional real-time (non-SCC) service, the SCC service will
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(a) (b)

Figure 5.11. Ratio of additional handovers generated by the PSwH algorithm, RH , with
respect to the SO for offloaded tasks of 300 kB (a) and 30 MB (b).

be handled in conventional way (i.e., by means of SO algorithm) with no gain in delay or

energy consumption but also with no degradation in QoS for the non-SCC service. Note

that the SCC is intended mainly for delay sensitive and real-time services (applications).

Therefore, simultaneous usage of the SCC service and common non-SCC service is not

very likely.

Discussion of results and selection of proper γ

In this section, proper selection of γ for the proposed algorithm is discussed along with

gain in above-mentioned performance metrics introduced by the PSwH.

The proper γ is selected in such a way that the delay reduction comparing to the SO is

maximal while energy consumption is still lowered or at least not impaired comparing to

the SO. The selected values of γ are shown in Table 5.3. The proper value of γ spans over

the whole range (i.e., from 0 to 1) and individual proper value depends on combination

of backhaul quality and a size of the offloaded task. Consequently, also the gain (∆)

introduced by the PSwH comparing to the SO varies for backhaul types and a size of

the offloaded tasks. The gain ∆ is defined as improvement introduced by the PSwH with

respect to the SO for each performance metric. For example, the gain in delay is defined

as ∆tMEC = (tPSwH − tSO)/tSO. Therefore, the negative numbers (green color) in this

table represent improvement introduced by the PSwH comparing to the SO (e.g., the

PSwH reduces delay by 20.2%) while the positive numbers (red color) indicate worsened

performance (additional handovers introduced by the PSwH).

The variation of gain for different backhauls and offloaded task size is caused by

availability of each backhaul for data transmission and its ability to handle given level of

load introduced by the offloading tasks. For high quality optical fiber backhaul, the small

tasks (300 kB) can be handled even by the SO algorithm as the optic is able to distribute

such small amount of data easily. Thus, to reach a gain by the PSwH, a high number of

handovers must be performed to find more suitable way of data distribution. However,
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for other scenarios optical fiber with large tasks or DSL with both sizes of the tasks),

the SO fails in distribution of the tasks over backhaul, which can be easily overloaded

by the offloaded tasks. Consequently, the gains introduced by the PSwH become more

significant.

Table 5.3. Summarized improvement (green color) in performance metrics introduced by
the PSwH comparing to the SO for proper values of γ.

Backhaul type Size of task Proper γ ∆tMEC [%] ∆E [%] ∆µT [%] RH [%]

DSL 300 kB 1 -20.2 -3.2 -29.2 +53.5

DSL 30 MB 0.5 -19.1 -0.9 -9.1 +5.1

optical fiber 300 kB 0.75 -3.8 -0.8 -14.3 +54.3

optical fiber 30 MB 0 -54.3 -7.5 -16 +12.4

5.2.9 Conclusion

In this section, we have proposed a new path selection algorithm for delivery of the

offloaded tasks between the UE and the cloud-enhanced small cells, representing MEC

hosts. The algorithm forces the UE to perform handover if it is efficient in terms of the

overall transmission delay (considering radio and backhaul) and/or energy consumption

of the UE. In order to find a trade-off between transmission delay and energy efficiency,

weighting of both metrics is introduced. The proposed algorithm reduces the transmission

delay by up to 20.2% and 54.3% in scenario with small cells connected to the operator’s

network by the DSL backhaul and optical fiber, respectively. At the same time, the energy

consumption of the UE can be lowered by 3.2% and by 7.5% for DSL and optical fiber

backhauls, respectively. Notice that the improvement accomplished by the PSwH depends

on the size of offloaded task together with used backhaul connection. The proposed

algorithm also increases user’s satisfaction with experienced delay (up to 29%) and lowers

backhaul load (up to 32%). The improvements reached by the proposed algorithm are

at the cost of additional handovers. Nevertheless, delay introduced by these additional

handovers is already considered in the path selection algorithm. Therefore, the handovers

do not decrease QoS but leads only to negligible additional overhead (few kb per offloaded

task).

As the algorithm can select efficient path for downlink and uplink independently, it is

suitable also for mobility management of moving user’s exploiting the SCC services.

5.3 Joint computation and communication resource

allocation under fixed prediction accuracy

In the previous section, we have proposed an algorithm for communication resource

allocation (communication path selection). However, due to the inherited mobility of
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the UEs, it is necessary to determine allocation of the computation resources as well.

Therefore, in this section, we describe a solution for joint communication and computation

resource allocation.

This section is organized as follows, in the next section, we define model of the inves-

tigated MEC system. In Section 5.3.2, the proposed algorithm is described. Simulation

environment and results are presented in Section 5.3.3, and Section 5.3.4 concludes the

joint communication and computation resource allocation.

5.3.1 System model

The system is assumed to be composed of set S of base stations s ∈ S. To generalize

the system model, the base station can be represented either by macro cell (eNB), SCeNB,

or Femto Cell eNB (HeNB). Unless otherwise stated, the label eNB covers all types of

base stations. For each UE, the serving eNB s′ ∈ S is selected as the one with the

highest Received Signal Strength (RSS). As the UE moves, the serving eNB is updated

by following a conventional hard handover procedure (see [163]). The handover introduces

an interruption in communication with a duration of tHO (known as handover delay or

handover interruption). This delay consists of time required to break the connection with

current serving eNB and to establish a connection with a new eNB. Note that the UE can

neither transmit nor receive data during hard handover in mobile networks.

To facilitate MEC, a VM for the UE is created at a base station, which is denoted as

sVM ∈ S. Number of the UEs with VM allocated at the s-th eNB is labeled as nVMs (t),

whereas number of UEs utilizing communication resources of the s-th eNB is denoted

as ncs(t). The VM can be placed at i) the eNB selected based on offloading delay or

energy and kept there [21], ii) the serving eNB and migrated to a new serving eNB after

handover [175], iii) dynamically placed by considering the UE’s movement [130].

The offloaded task is defined by its size L (in bits), the number of instructions to be

processed B, and the size of computed results R (in bits). As a possibility to migrate the

VM is considered, the size of the migrated VM is defined as a number of bits G.

In Figure 5.12, an example of UE’s movement for two adjacent time instances t and

t + ∆t is depicted. The UE communicates with the serving eNB via radio channel with

SINRs and capacity cRs . Each eNB is connected to mobile operator’s core network (net-

work connection through which the eNB is connected to the Internet) via backhaul with

capacity cBs .
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Figure 5.12. System model.

A set of eNBs with which the UE can communicate over radio channel is denoted

as I; I ⊂ S. The set I includes the eNBs for which the SINR observed by the UE is

above SINRmin. An example of SINRmin for LTE-A network and Block Error Rate

(BLER) of 10% is a value of -6.9 dB [176]. If the UE needs to deliver an offloaded task

to sVM , the transmission can be done directly via radio if s′ = sVM or the offloaded task

is transmitted via radio of s′ and then via backhaul connection between s′ and sVM . The

capacity available for delivery of the offloaded task from the UE to the eNB with allocated

VM is calculated as:

cUE,sVM =

cRs′ s′ = sVM

min{cRs′ , cBs′,sVM} otherwise
(5.9)

where capacity between two eNBs s′ and sVM is calculated as cBs′,sVM = min{cBs′ , cBsVM}.
As prediction is considered in our model, predicted communication capacity and avail-

able computing capacity (in instructions per second) are denoted as c̃(t) and k̃(t), respec-

tively, where t is the time instance at which capacity and computational resources are

being predicted. The predicted radio capacity is derived from predicted position of the

UE mapped to SINR maps as introduced in [177]. From information about SINR and

ncs(t), available capacity of radio is computed as:

c̃Rs (t) = thr{MCS{SINRs(t)},
nRBs
ncs(t)

} (5.10)

where MCS{SINRs(t)} maps SINR to MCS (e.g. by [176]), nRBs specifies the number

of all RBs of the s-th eNB and function thr(), maps MCS and the number of RBs to

the number of bits for transmission as described in [31]. For backhaul, the predicted

capacity is calculated as c̃Bs (t) = c̄Bs
ncs(t)

, where c̄Bs denotes backhaul capacity of the s-th

eNB. Apart from the capacities, the predicted delay of offloading consists of delay due to

uploading the offloaded task to the VM, tsO = L
c̃UE,sVM (t)

+
∑
tHO, computation delay, i.e.,

time required to process the offloaded task by the VM, tsP = B
k̃(t)

, delay due to collecting

results by the UE from the VM, i.e., downloading computed results from the eNB where

the VM is allocated, tsC = R
c̃sVM,UE(t)

+
∑
tHO, delay of the VM migration represented by

time required to copy and start the VM from current serving eNB to a new serving eNB,
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tsM = G
c̃s,sVM (t)

and delay of starting VM instead of migrating VM, tAPP.

As we target offloading of real-time applications, we assume that the VM is pre-

allocated [178]. Thus, delay due to starting the VM is equal only to delay of starting

the offloaded application on the side of the VM. Total delay of one offloaded task is then

defined as tsMEC = tsO + tsP + tsC +
∑
tsM +

∑
tAPP and it is a sum of communication,

computation, VM migrations, and starting of VMs.

5.3.2 Dynamic Resource Allocation

The proposed dynamic resource allocation in this section is based on our previous

PSwH algorithm described in [162], which exploits reward function fromMDP to select

the communication path q. The PSwH forces the UE to perform handover to new eNB if

it is profitable for the UE from the offloading point of view. In this section, we enhance

the PSwH algorithm by mobility prediction and we design a cooperative algorithm for

dynamic VM placement based on calculating reward in terms of communication capacity

and incorporating load balancing. Both algorithms are based on reward function from

MDP and utilize prediction window denoted by τ .

The idea of cooperation between both proposed algorithms is to dynamically place

the VM before the UE starts offloading, as migration (or start) of the VM if offloading

is in progress would increase the offloading delay by the VM migration (ot starting the

VM). Therefore, when the UE starts offloading its task, the VM will be already prepared

at the suitable eNB. From the perspective of delay, the suitable eNB would be the eNB

with good radio channel (high SINR), as the channel quality directly relates to the com-

munication channel capacity. Also the UE exploits the PSwH algorithm enhanced with

mobility prediction to select a suitable communication path (i.e., the serving eNB) in or-

der to further reduce offloading delay. Cooperation is achieved by starting the algorithm

for dynamic VM placement in-between offloading of two consecutive tasks, when certain

radio conditions are met (SINR is below a given threshold). Both, the PSwH enhanced

by mobility prediction and the dynamic VM placement algorithms are based on MDP, as

described in Section 5.1. In the MDP we replace states s and s′ with selected communi-

cation path q and q′ respectively. With respect to PSwH in [162], the reward function is

based on prediction, i.e., estimation Est is replaced by prediction Pred.

As the VM have to be ready to process the offloaded task when offloading starts [98],

the decision on VM placement should be made before the offloading starts. Therefore, the

algorithm for dynamic VM placement is initiated if eNBs with (SINRs > SINRsVM |s ∈
S, s 6= sVM) are in communication proximity of the UE in order to provide sufficient

capacity of radio communication channels.

To find the best placement of VM, SINR to set S is predicted. However, the set S

could be quite large. Thus, in our proposal, we define a reduced set Z{z ∈ Z|(SINRz >

SINRmin) ∩ (nVMz (t) < nlimit)}. In this set, each eNB z has SINR above SINRmin.

Also, the set includes only the eNBs, which are not overloaded, i.e., their load is below

nlimit, to distribute computational load more equally.
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The proposed algorithm for dynamic VM placement is described in Algorithm 5. For

each eNB in Z (step 1) and each eNB from set I (step 2), SINR is predicted by applying

SINR map [177] on predicted UE’s mobility (step 3). Communication capacity is predicted

from predicted SINR and ncs(t)(step 4). In order to prefer eNBs with good channel

quality in the future (next time steps), a slope of SINR is calculated as shown in step 5

and eNBs with negative slope are discarded from set I (steps 6 and 7). To suppress impact

of shadowing and fast fading, the slope is calculated over a whole period of prediction

interval τ . For each VM placement, we select the eNB with the highest available capacity

(step 10) and then eNB with the highest predicted gain in capacity is selected for VM

placement (step 13). Following selection of eNB for VM placement, VM migration delay

is predicted (step 14) and the option with lower delay between start of VM and VM

migration is selected (step 15).

Algorithm 5 VM dynamic placement.

1: for z ∈ Z do
2: for i ∈ I do
3: predict SINRi(t, t+ ∆t, ..., t+ τ)
4: predict c̃z,i(t, t+ ∆t, ..., t+ τ)
5: α = dSINRi

dt

6: if α ≤ 0 then
7: I = I \ i
8: end if
9: end for

10: c̃z = maxi{c̃z,i}
11: end for
12: ŝVM = sVM
13: sVM = arg maxz(c̃z − c̃current)
14: t̃M = G

c̃ŝV M ,sVM

”

15: option = min(tAPP, t̃M)

Algorithm 6 PSwH with prediction.

1: for i ∈ I do
2: predict c̃i(t, t+ ∆t, ..., t+ τ)
3: if s′ = i then
4: ρi = 1
5: else
6: ρi = 1− tHO

7: end if
8: end for
9: while L > 0 do

10: q(t) = arg maxi(c̃i(t)× (∆t · ρ))
11: L = L−max(c̃i(t)× (∆t · ρ)
12: if i = q(t) then
13: ρi = 1
14: else
15: ρi = 1− tHO

16: end if
17: t = t+ ∆t
18: end while

The enhancement of the PSwH by mobility prediction is described in Algorithm 6.

First, available capacities of eNBs in set I are predicted (step 2) and handover vector

ρ = {ρ1, ρ2, ..., ρ|I|} is initiated by setting its elements ρi to 1 if eNB i is also the serving

eNB (step 4) or 1− tHO otherwise (step 6). The handover vector is used for modification

of communication capacity to each eNB as no data can be transferred between the UE

and the eNB during tHO. Until all required data L are transmitted (step 9), the eNB with

the highest communication capacity is selected as q(t). Note that the impact of handover

on other services is discussed in [162]. Also, vector ρ is modified to be in line with q(t)

(step 12).

As the optimal solution for selecting VM placement and path selection is a combi-

natorial problem, it is required to go through every combination of serving eNB, VM
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placement, and every step during offloading. This would have a large computation com-

plexity and therefore, in our proposal, we reduce candidates for VM placement and path

selection. Therefore, algorithm for VM placement has time-complexity of O(|Z||I|τ) and

path selection O(|I|τ). Both time-complexities are lower than time-complexity of algo-

rithm proposed in [130].

5.3.3 Performance Evaluation

In this section, models and scenario for performance evaluation are defined. The

evaluation is carried out by means of simulations in MATLAB.

Simulation scenario and models

Major parameters of the simulation, presented in Table 5.4., are in line with recom-

mendations for networks with small cells as defined by 3GPP in [157]. We also follow

parameters of the physical layer and frame structure for LTE-A mobile networks defined

in the same document.

Signal propagation is modeled according to 3GPP [157] with path loss model PL =

128.1 + 37.6log10(d), where d is a distance between the UE and the eNB. A mapping

function between SINR and MCS with BLER=10% is obtained from [176]. The offloaded

task and results size is 200 kB [171], while each task contains 1e6 instructions to be

processed. The computation power of eNB and SCeNB is 3300 Millions Instructions Per

Second (MIPS) [179]. The backhaul of eNBs is modeled as optical fiber with capacities

(in Mbit/s) generated from normal distribution with µ = 100 and σ2 = 2.

Table 5.4. Simulation parameters

Parameter Value
Simulation area 800 x 800 m
Carrier frequency 2 GHz
Bandwidth for downlink/uplink 10/10 MHz
Tx power of eNB/SCeNB/UE 27/15/10 dB
Number of eNB/SCeNB 19/57
VM size/start time 20 MB/500 ms
Offloaded task/results size 200/200 kB
Offloaded task number of instructions 1e6 instructions
eNB/SCeNB CPU 3300 MIPS
Prediction window τ/Wang’s algorithm 20s/60s
Prediction accuracy 90%
Shadowing factor 6 dB
Handover interruption duration 30 ms
Number of UEs 200
Speed of users 1 m/s
Backhaul capacity-Normal distribution µ = 100, ρ2 = 2 Mbit/s
Simulation time T 2 000 s
Number of simulation drops 10 drops
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Since we target to real-time applications, offloaded task has a size of 200 kB (as in [180]

authors consider task to be in tenths of kB) and its arrival rate is specified by λ. The

size of data transferred during VM migration (data in RAM of offloaded task) is 20 MB.

Time before VM is prepared to process an offloaded task (start time) is 500 ms, which

consist only of starting an offloaded application at the VM. Radio and backhaul resource

allocation is done by round-robin scheduling.

We assume the hexagonal grid of 19 eNB like in [130] and we further drop 57 HeNBs

into the simulation area. There are 200 UEs moving within the area of all eNBs ac-

cording to smooth random mobility model. The prediction accuracy of users’ mobility in

simulations is based on percentage of correct predictions in [181], i.e., it is 90% in our

case.

Performance evaluation

In our simulations, the proposed algorithm is compared with three competitive algo-

rithms:

� SO [175] - The VM is kept at the serving eNB, so the VM is migrated each time

handover is performed.

� Wang’s algorithm [130] - VM placement is based on predicted future costs of its

placement.

� PSwH [162] - Communication path (serving eNB) is selected so to minimize com-

munication delay.

In Figure 5.13a we show the average offloading delay (consisting of uploading offloaded

task, computing, and collecting results) of the task in dependency on task inter-arrival

rate (λ). From this figure, we can see that with decreasing λ, the average offloading

delay increases as the load of communication and computation resources increases. The

proposed algorithm reduces the average offloading delay significantly comparing to all

competitive algorithms. For lightly loaded network (λ = 40s), the average offloading

delay is reduced by the proposed algorithm by 27.3%, 15.6%, and 9.7% with respect to

the SO, Wang’s algorithm, and PSwH, respectively. For heavily loaded network (λ = 10s)

the gain is 30.5%, 29.2%, and 26.6% with respect to the SO, Wang’s algorithm, and PSwH,

respectively. The gain is caused by cooperation between VM placement and path selection

according to predicted situation in the network.

Note that results for the SO and Wang’s algorithm for λ < 10s are not depicted as

these algorithms cannot handle such load of network as delay of tasks can lead to tasks be-

ing buffered at the UE and thus leading to congestion of communication and computation

resources. The proposal, by combining both VM placement and path selection avoids over

utilized eNBs a thus works even for λ = 1s. The proposal outperforms all compared algo-

rithms as compared to the PSwH, which has the second lowest delay, reduces offloading

delay by up to 66%.
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(a) (b)

Figure 5.13. Offloading times required to offload, compute and collect results of the
offloaded task, Average time (a) and CDF of time (b).

In Figure 5.13b, we compare CDF of the average offloading delay for λ = 10s. We show

CDF for λ = 10s as it corresponds to heavily loaded network, which is more challenging

than lightly loaded network.

The offloading delays reached by UEs in case of the SO, Wang’s algorithm, and PSwH

are spread significantly from relatively low values (115 ms) to extremely high delays not

acceptable for real-time services (even more than 2s). Contrary, the proposed algorithm

offers stable delay around 200 ms for almost all UEs. For example, the delay experienced

by 95% of UEs is below 250ms for the proposal while competitive SO, Wang’s algorithm,

and PSwH requires 610ms (144%more), 610ms (144% more), 500ms (100% more), re-

spectively. Consequently, almost all UEs exploiting the proposed algorithm can exploit

real-time services with high quality.

In Figure 5.14a, comparison of average energy consumed by the UE for communication

of a single task is shown. With decreasing λ, consumed energy increases as offloading delay

is higher due to increased network load and relation between UE’s energy consumption

and delay [149]. From Figure 5.14a, we can see, that the PSwH is the most energy hungry

and it consumes between 10.7% and 188% more energy than the proposed algorithm. The

SO and Wang’s algorithm require less energy (up 9%) per offloaded task than the proposed

algorithm if the network is lightly loaded (λ > 15s). Contrary, for heavily loaded network

(λ < 15s), the proposed algorithm becomes more energy efficient (saving of 9%). The

reason for increase in energy consumption by the proposal at light network load is the

fact that the proposed algorithm targets solely on offloading delay and disregard energy

consumption. Extension towards consideration of the energy consumption is considered

as a future work. Note also that the SO and Wang’s algorithm cannot serve tasks with λ

lower then 10s.

In Figure 5.14b, we show CDF of the energy spent by the UE for communication for

λ = 10s. The energy consumption reached by the SO and Wang’s algorithm is spread

more wide so energy consumption of some UEs is reduced comparing to the proposed
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(a) (b)

Figure 5.14. Energy consumption of UE communication, Average energy (a) and CDF of
energy consumption (b).

algorithm while some UEs consumes significantly more energy. This shows fairness of the

proposed algorithm among users and there are no users significantly punished for unfair

allocation of resources for computation. The energy consumed by 95% UEs is below

8.61J for the proposal while competitive SO, Wang’s algorithm, and PSwH consumes

15.3J (77.7%more), 15.3J (77.7% more), 16.3J (89.3% more), respectively.

5.3.4 Conclusion

In this section, we have proposed an algorithm for dynamic allocation of computing

and communication resources for the MEC. The algorithm dynamically places VMs con-

sidering load of eNBs and selects communication path between the UE and the eNB with

allocated VM. The algorithm is based on MDP and exploits mobility prediction with a

known prediction accuracy.

Comparing to state of the art approaches, the proposed algorithm reduces the offload-

ing by 10-66%. The superiority of the proposed algorithm is more notable for high arrival

rate of the offloading requests, i.e., for heavily loaded network. At the same time, the

energy consumed by the UEs for offloading is kept at similar level as for the state of the

art algorithms. The proposed algorithm also balances fairness among users in terms of

experienced delay and energy consumption so that all UEs can exploit real-time services

even for very high arrival rates of the offloading requests.

5.4 Prediction based communication and computing

resource allocation for MEC

The joint communication and computation resource allocation in the previous section

is limited to a scenarios with a known and fixed mobility prediction accuracy. Therefore,

to overcome this limitation, we present a solution consisting of the UE’s mobility and

channel quality prediction framework with an algorithm for joint communication and
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computation resource allocation, that enable exploitation of the MEC for a real-time

offloading.

The contribution and novelty of the proposed solution in this section is summarized

as follows:

� We propose a novel algorithm for the DCCRA for MEC systems. Unlike the existing

works, we target the offloading of the real-time applications by the moving UEs. This

implies requirements on a very low delay. We solve this problem via two cooperating

sub-algorithms, one for the dynamic selection of the communication path (i.e., the

gNB that serves the UE) and one for the VM placement.

� To facilitate the proposed DCCRA, we develop a framework for a prediction of

the UE’s mobility and channel quality based on a probabilistic model of the UE’s

mobility. The mobility prediction is first illustrated in a scenario with one degree

of mobility freedom and, then, we generalize it for multiple degrees of mobility

freedom.

� Via simulations, we show that the proposed algorithm enables offloading of the real-

time applications by the mobile UEs and keeps the offloading delay under 100 ms

even for a high arrival rate of up to five tasks per second per UE. Such performance

is notably superior to existing works and it facilitates exploitation of the MEC

services by the real-time applications even for the moving UEs. Furthermore, we

show that the performance of the proposed solution in terms of the offloading delay

and the energy consumption of the UEs is significantly improved comparing to

existing solutions and it is even close to the case with a perfect prediction of the

channel quality.

The rest of this section is organized as follows. In the next section, the resource allo-

cation problem is formulated and assumptions along with a system model are described.

In Section 5.4.2, the framework for the mobility and channel prediction suitable for the

proposed resource allocation is outlined. The proposed resource allocation algorithm is

defined in Section 5.4.3. Then, in Section 5.4.4, the environment and models for sim-

ulations are presented, and the simulation results are discussed in Section 5.4.5. Last,

Section 5.4.6 concludes this section and the proposed solution.

5.4.1 System Model and Problem Formulation

In this section, we define the system model exploited for the proposed algorithm, we

formulate the computing and communication resource allocation problem for the offload-

ing, and we summarize the main assumptions for the resource allocation algorithm.

System Model

We consider a set S = {s1, s2, . . . , sM} of the gNBs and a set U = {u1, u2, . . . , uN} of

the UEs. The serving gNB for the UE at the discrete time t, denoted st ∈ S, is selected
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as the gNB providing the highest RSS. As the UE moves, the serving gNB is updated

following a conventional hard handover procedure based on the RSS considering also a

handover interruption with a duration of tHO. This means that the serving gNB is updated

if there exists the gNB s′ ∈ S, where s′ 6= st, for which RSS(s′) > RSS (st)+∆HO, where

∆HO is the handover hysteresis (see, e.g., [182] for more details about the conventional

hard handover and hysteresis in mobile networks). Based on the serving gNBs determined

for the UEs, we define nRt (s) as the number of UEs sharing the radio communication

resources of the s-th gNB at the time t, respectively. Furthermore, in a similar way, we

define nBt (s) as the number of UEs sharing the backhaul communication resources of the

s-th gNB at the time t, respectively.

Then, we define s∗t ∈ S as the gNB where the VM or the container for the UE is

placed at the time t. We assume the possibility to pre-allocate the VMs or the containers

on multiple gNBs to alleviate the issue of an unreliable mobility and channel predictions.

Nevertheless, only one VM or container is exploited by the application offloaded by each

UE at any given time. The time required to start the VM, including the VM pre-allocation,

on the gNB is denoted as tVM . Next, we define ωt(s) as the amount of available processing

resources of the s-th gNB in MIPS at the time t. Then, the MIPS requirements of the

application offloaded by the u-th UE is labeled as ω(u). The s-th gNB is considered for

the VM placement of the u-th UE at the time t only if the following condition holds:

ωt(s) > ω(u). (5.11)

Note, that the offloaded application requires not only the computing power, but also

memory and/or hard drive capacity. These resources can be formulated in the same way

as for the computing power requirements and an extension of the condition (5.11) to these

parameters is straightforward. Therefore, without loss of generality and in order to keep

our notation simple, we consider (5.11) as the only resource restriction of our problem.

The MEC system model with the gNB communication and computing load is shown in

Figure 5.15.

The offloaded task is defined by the amount LO of offloaded data (in bits), the amount

LC of collected data representing the computation results (again in bits), and the number

LP of instructions of the offloaded task to be executed at an gNB. The offloaded tasks are

generated by the offloaded application with a task arrival rate λ, representing the number

of offloaded tasks generated per second. The offloaded task can be delivered from the UE

to the computing gNB directly via radio if st = s∗t or indirectly via the serving gNB st,

if the serving gNB is different from the computing gNB s∗t , i.e., if st 6= s∗t . The latter

case can appear, for example, in the situation when the serving gNB is not able to offer

a sufficient computing power to the UE. The latter case assumes to exploit the backhaul

connections of the s∗t and the st for a transfer of the offloaded task between the serving

and the computing gNBs. Note that the backhaul communication between the st and the

s∗t is assumed to be routed via an operator’s core network as it is done in conventional

mobile networks [183,184].
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Figure 5.15. MEC system model with one mobile UE.

Furthermore, we define the set Qt(u) ⊆ S as the subset of all gNBs with which the u-th

UE can communicate at the time t. In particular, this set contains only the gNBs to which

the UE has SINR above a minimumSINR level required for communication (SINRmin).

For the communication between the UE and the serving gNB, we assume LTE or 5G-

based radio interface with radio resources shared equally among all UEs connected to the

same gNB. Thus, the radio communication data rate between the u-th UE and the s-th

gNB is calculated as:

ct (u, s) = νuρu
nRB(s)

nRt (s)
, (5.12)

where νu is the number of bits per symbol for a given modulation scheme, ρu is the code

rate used for the radio communication between the gNB and the u-th UE, and nRB(s)

is the number of RBs available at the s-th gNB. Both νu and ρu are derived from the

channel quality according to the SINR of the u-th UE (see [176] for more details).

When st 6= s∗t , the data rate expected on the backhaul connection between the serving

gNB st and the computing gNB s∗t (see Figure 5.15) is defined as:

ct (s, s∗) = min

{
cs

nBt (s)
,

cs∗

nBt (s∗)

}
, (5.13)

where cs and cs∗ denote the available backhaul capacity of the serving gNB st and the

computing gNB s∗t , respectively. Note that the ”min” in (5.13) indicates that different

data rates can be expected on the backhauls belonging to st and s∗t .

The communication data rate available for a delivery of the offloaded task from the

UE to the s∗t either directly via radio (if st = s∗t ) or indirectly via the radio of st and the
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backhauls of st and s∗t (if st 6= s∗t ) is derived as:

cULt (u, s, s∗) =

ct (u, s) if st = s∗t

min {ct (u, s) , ct (s, s∗)} otherwise
, (5.14)

Problem Formulation

Our objective is to find an allocation strategy of the computing and communication

resources that minimizes the total offloading metric, represented by the offloading delay.

Thus, the objective is to find the resource allocation strategy that minimizes the total

offloading delay for the UE (denoted as tMEC). Minimization of the total offloading delay

enables offloading of the real-time tasks, as these tasks require a very low delay. The total

offloading delay consists of:

i) the time required to deliver the offloaded task from the UE to the gNB that starts

the computation, determined as:

tO =
LO

cULt (u, s, s∗)
, (5.15)

ii) the time required to process the offloaded task, calculated as:

tP =
LP

ωt(s)
, (5.16)

iii) the time required to deliver the processed data from the gNB that finishes the

computation to the UE, defined as:

tC =
LC

cDLt (u, s, s∗)
, (5.17)

with data rate cDLt (u, s, s∗), derived in line with (5.14), but for the downlink, as the results

of computation are received by the UE,

iv) the time consumed by the handover process, defined as:

tH =
nH∑
i=1

tiHO (5.18)

where tiHO is the duration of the i-th handover and nH is the number of handovers due to

the UE changing serving gNB.

v) the time of the VM starts (including obtaining UE’s application which processes

offloaded tasks) during the offloading, determined as:

tM = nVMtVM (5.19)

where nVM is the number of VM starts (equal to 0 if no VM starts is needed or VMs are
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pre-allocated) taking place during the offloading process. Note that the gNB that receives

the offloaded data and the gNB that delivers the results back to the UE may not be the

same due to the UE’s mobility. The total offloading delay experienced by the UE is then

calculated as:

tMEC = tO + tP + tC + tM + tH. (5.20)

We can treat the minimization problem as a pair of joint problems. The first problem

is the determination of the sequence of gNBs {s∗t}
opt
t , where the VM (or the container)

should be placed for the u-th UE at each time t. The second problem is the selection

of the communication path, identified with the serving gNBs sequence {st}opt
t . Merging

both problems, we formulate the objective as:

{s∗t}
opt
t , {st}opt

t = arg min
{s∗t∈S}t,{st∈S}t

tMEC. (5.21)

However, solving (5.21) is, in general, difficult and impractical as both computing

and communication resource allocation have to be done together for each t leading to

a complex problem. Furthermore, the offloading delay (5.20), consisting of the time to

offload the task (5.15) and the time to collect the processed results (5.17), depend on

the data rates defined in (5.14). These data rates are not always known and should

be predicted. This complicates the possibility to reach the global optimum. Moreover,

finding the global optimum at each t leads to allocation of the computing resources (VMs)

at different gNBs due to variation of the channel quality over time. Exploiting the VMs

on different gNBs then leads to a high number of VM starts (tM) and handovers (tH) as

shown in [185]. Thus, even though the global optimum is known, it may be impossible to

reach it in practice, as the VMs would be constantly started over and over again.

Since the problem (5.21) is impractical and cannot be directly solved, we simplify

the problem and transform it into the maximization of the communication data rate

cULt (u, s, s∗) due to the constant LO and LC, while considering (5.11), (5.13), (5.14), and

(5.20). We focus on the uplink communication rate, because the uplink is commonly

assumed to be of a lower data rate than the downlink. The extension to consider the

downlink communication rate is trivial and we leave it out to simplify the notations.

Therefore, we transform the problem into the following:

{s∗t}
opt
t , {st}opt

t = arg max
{s∗t∈S}t{st∈S}t

{ct (u, s, s∗)}t (5.22)

s.t. ωt(s
∗) > ω(u). (5.23)

where the constraint (5.23) is defined to avoid placing the VMs on the gNBs, which do

not have enough computing power to host the VM for the UE. The constraint (5.23)

considers computing power of the gNBs, since each gNB can have different computing

power. Since {s∗t}
opt
t and {st}opt

t can be different, the transformed problem can be solved

as two subproblems via two proposed cooperative algorithms.
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Assumptions

In this section, we assume that every task is offloaded, as assumed in [130]. The

assumption of offloading every task represents the case of the UE that does not have

enough computing resources to process tasks itself and is forced to offload them. Note

that introducing the offloading decision simply leads to a lower amount of tasks to be

processed in the MEC servers, as only some tasks would be offloaded. Thus, the proposed

solution is applicable to any offloading decision algorithms and its impact on performance

is proportional to changes in the task arrival rate λ investigated later in this section.

In [130] and [185], the authors suppose that the communication data rate is predicted

with a pre-defined fixed accuracy, but this assumption is quite strong. More realistically,

here, we assume that the prediction accuracy is unknown and varies in time, or even that

a prediction is unavailable at all. This reflects the unreliability of the UEs’ mobility pre-

diction strategies, even when they are based on a significant amount of information about

the UEs [186]. A suitable approach is to exploit probabilistic models or probabilistic-free

models as in [187]. To design and implement such approach, we assume that the knowl-

edge of users’ contextual information, such as scheduled meetings, favorite places, etc. as

exploited, e.g., in [186,187] is not available. Such assumption complicates the prediction

and potentially negatively impacts on the performance of the developed algorithm. How-

ever, this assumption is motivated by questionable willingness of the users to provide this

type of information to the network operator due to privacy issues. Thus, we expect the

availability of only the information that is typically available to the network or which is

commonly shared by the users. More specifically, we exploit anonymized UEs positions

and SINR at those positions. As this type of information can be easily anonymized, the

privacy risks are significantly lowered with respect to [186,187].

For clarity and simplification of explanation, we assume the architecture where the

MEC servers are collocated with the gNBs as proposed in [19,101]. Note that a placement

of the MEC servers to other network nodes, such as core network elements, increases tO
and tC. Since the proposed algorithm considers tO and tC in terms of the communication

data rate, it can be simply extended to consider also different placements of the MEC

servers. However, this extension is omitted here for the sake of clarity.

The data of the offloaded task are processed via an UE application in the MEC. For

this, we assume, that the UE’s application at the MEC server (represented by a gNB or

Small Cell gNB (SCgNB)) is obtained from a cloud storage during the VM start time.

5.4.2 Mobility and Channel Quality Prediction

To solve the problem formulated in the previous section, we develop the mobility and

channel quality predictions with a low complexity to derive the expected communica-

tion data rate. The predicted data rate is then exploited by the proposed computing

and communication resource allocation algorithm. The effectiveness of different mobil-

ity prediction approaches depends on the application scenarios. Therefore, we split the
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description of the mobility prediction into two cases with: i) one degree of mobility free-

dom (e.g., movement along a sidewalk or street with no possibility to turn away), and

ii) multiple degrees of movement freedom with possibility to change the direction (e.g.,

crossroads, open spaces, squares, etc.). These two cases are explained in the next two

subsections. Then, the last part of this section describes the proposed channel quality

prediction strategy, which is further exploited for the communication data rate prediction.

Mobility prediction with one degree of mobility freedom

If the UE’s mobility is limited to one degree of mobility freedom (i.e., UE following

a sidewalk or street) an extrapolation of the UE’s movement is a suitable approach to

predict the UE’s future position following the assumption of the limited knowledge about

the UEs as defined in Section 5.4.1. The prediction of the UE’s movement can be divided

into two subcases: i) the UE moving along a straight path and ii) the UE moving along a

curved path. In the first subcase, we can simply extrapolate the future movement of the

UE from its past movement. However, in the second case, a linear motion extrapolation

of the UE’s movement would lead to an inaccurate prediction of its position, crossing

the environment boundaries such as sidewalks, streets or walls, as shown in Figure 5.16.

Therefore, after describing the extrapolation of the UE’s movement, we also outline how

to exploit the knowledge of the environment to obtain a more accurate prediction of the

UE’s movement.

The position of the UE at the discrete time t is represented by the coordinates (xt, yt).

From the current time instant t and the previous time instant t−∆t, we obtain the UE’s

approximated velocity vector (∆x,∆y) where:

∆x =
xt − x(t−∆t)

∆t
, (5.24)

∆y =
yt − y(t−∆t)

∆t
. (5.25)

The predicted UE’s position at the time t + k∆t, where k = {1, 2, . . . , K} and K∆t

being the prediction window in seconds (typically ranging up to tens of seconds [43]), is

calculated as:

xt+k∆t = xt + k∆x∆t, (5.26)

yt+k∆t = yt + k∆y∆t. (5.27)

Now we describe an extension of the simple linear extrapolation defined in (5.26) and

(5.27) by exploiting a knowledge of the environment. Let the UE be located at the position

(xt, yt) (indicated by a dot in Figure 5.16) and let the UE follow a curved street as shown

in Figure 5.16. In our model, the street is represented by a discrete set of street centers

X × Y =
{

(x(j), y(j))
}
j∈J , J ⊆ Z, indicated by the crosses in Figure 5.16. To exploit the

knowledge of the environment, the UE’s position is mapped to the closest street center,
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Predicted UE movement disregarding environment

Predicted UE movement considering environment

Actual UE movement

Street center position

Current UE position

(x(j*),y(j*))

(xt,yt)

UE

Figure 5.16. Example of UE mobility prediction with one degree of mobility freedom
following a curved street with known street center positions.

identified by the index j∗ determined as follows:

j∗ = arg min
j∈J

√(
xt − x(j)

)2
+
(
yt − y(j)

)2
. (5.28)

In Figure 5.16, the closest street center to the UE is
(
x(j∗), y(j∗)

)
. Based on the

knowledge of the environment, the UE’s position at t+ k∆t is then mapped to the street

center indexed by j∗ + κ(k) as:

xt+k∆t = x(j∗+κ(k)), (5.29)

yt+k∆t = y(j∗+κ(k)). (5.30)

where κ(k) =

⌊
k∆t

√
∆x2+∆y2

∆j

⌉
approximates the number of street centers run over by

the UE during k time instants and ∆j is the distance between any two consecutive street

centers, which we consider constant and can be computed as

∆j =

√(
x(j+1) − x(j)

)2
+
(
y(j+1) − y(j)

)2
. (5.31)

Mobility prediction with multiple degrees of movement freedom

Now, we extend our mathematical formulation to the case where the UE has multiple

degrees of mobility freedom. The set of degrees of freedom for the UE movement is denoted

as W . This set includes the angles w that the UE can select for its future direction. The

set of arrival angles V includes the angles v from which the UE has arrived to the current

position. In a general scenario, the UE can select any departure (arrival) angle between

0◦ and 360◦. To limit the complexity, we discretize the angles in a similar way as in [187].

This means that a range of nearby angles is represented by a single departure angle. For
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example, the discretization with angle difference of 1º results in 360 elements (arrival and

departure angles) in the both sets V and W . An example of the UE with four degrees

of freedom, i.e., |V | = |W | = 4, is shown in Figure 5.17, where the UE arrives from the

angle v3 and can depart in the direction of any angle from the set {w1, w2, w3, w4}.
In our model, among all the departure angles in W , we consider only those with

non-zero probability of selection. The adopted probabilistic model is based on Markov

chains with underlying Hidden Markov Model (HMM), which is suitable for systems with

multiple states and transitions between those states. The important property of Markov

chains is that the conditional probability distribution of future states depends solely on

the present state. This property is valid for our model as we can legitimately suppose

that the departure angle selected by the UE depends only on the arrival angle v and the

current UE’s position.

The HMM model consists of states and transition probabilities between the states.

The states of the HMM model (represented by departure angles) are learned from an

environment layout in the form of a map, (e.g., openstreetmaps.org [188]). Exploitation

of the environment maps for mobility prediction is considered for example in [186] or

[187]. Therefore, with the known states, only the transition probabilities (probability

of the transition from the arrival to departure angles) of the Markov chain need to be

estimated. The transition probabilities represent the probability that each departure angle

is chosen [189]. Estimation of the transition probabilities is then done by estimation of the

transition probabilities of the Markov chain as described in [189]. To this end, the number

of transitions from each arrival angle v ∈ V to each departure angle w ∈ W is counted.

Note that, if the number of states in unknown, the estimation of the HMM states and

transition probabilities is done via the Maximum Likelihood Estimation (MLE) [190].

As the time to learn the transition probabilities between each arrival and departure

angle can be high, we consider the transition model aggregated over all the UEs altogether,

which reduces the learning time for the estimation of the transition probabilities between

the states in the Markov chain. The cost of this aggregation is a slightly lower accuracy

of the learned model. However, once enough transitions for each UE are collected, the

transition model of the individual UE can be used to replace the aggregated model. It

is worth to mention that the learned aggregated transition model still guarantees good

results, because the main purpose of the model is to avoid the transitions with very low

probabilities. Moreover, by exploiting the aggregated transition model, the transition

probability of any UE, including those with unknown transition model, can be predicted.

The probability that the UE at the position (xt, yt) selects a departure angle w con-

ditioned by the arrival angle v is denoted P (w|v, (xt, yt)). This probability, representing

the transition probability in the Markov chain [189], is calculated as:

P (w|v, (xt, yt)) =
N (v, w, (xt, yt))∑

w′∈W N (v, w′, (xt, yt))
, (5.32)

where w ∈ W is the selected departure angle, N (v, w, (xt, yt)) is the number of transitions

from the arrival angle v to the departure angle w at the UE’s position (xt, yt) summed

100



5.4. PREDICTION BASED COMMUNICATION AND COMPUTING RESOURCE
ALLOCATION FOR MEC

v1=w1=20° 

v2=w2=75° 

v3=w3=180° 

v4=w4=300° 

Figure 5.17. Example of the UE with multiple degrees of mobility freedom, arriving from
angle v3 (red dashed line) with multiple options for the departure angle w (solid lines).

up till the current time t and for all UEs. Notice that we do not exclude the possibility

that the UE stops at the crossroad or departs via the arrival angle (i.e., w = v). In this

case, the VM placement remains constant, because frequent re-deployments or migrations

would overload the network and lead to a disruption in the MEC service. However, the

communication path selection is exploited to provide sufficient connectivity considering

also channel changes.

Based on the probabilistic model (5.32), we extend the prediction of mobility by

considering the departure angles w with non-zero probability. When, the surrounding

environment is unknown, for a given w, (5.26) and (5.27) are modified as follows:

xwt+k∆t = xt + k∆t
√

∆x2 + ∆y2 cos(w), (5.33)

ywt+k∆t = yt + k∆t
√

∆x2 + ∆y2 sin(w), (5.34)

where ∆x and ∆y are calculated via (5.24) and (5.25), respectively. Furthermore, in the

case when the movement is predicted with environment knowledge, we extend (5.28) to:

j∗w = arg min
j∈Jw

√(
xwt+∆t − x(j)

)2
+
(
ywt+∆t − y(j)

)2
, (5.35)

where Jw is the set of street centers along the departure angle w. Note that j∗w represents

the closest street center to the UE’s position at the time t+∆t, when the departure angle

is w. Accordingly, (5.29) and (5.30) are generalized as follows:

xwt+k∆t = x(j∗w+κ(k−1)), (5.36)

ywt+k∆t = y(j∗w+κ(k−1)), (5.37)

with κ(0) = 0.

From the estimated positions of the UE at the times t+ k∆t, we calculate the corre-

sponding Euclidean distances to the gNBs. These distances replace the communication

data rate as the offloading metric whenever the data rate is unknown or impossible to

predict. The predicted Euclidean distance between the UE and the s-th gNB located at
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(x(s), y(s)) at the time t+ k∆t is calculated as:

dt+k∆t (s, w) =

√(
xwt+k∆t − x(s)

)2
+
(
ywt+k∆t − y(s)

)2
. (5.38)

SINR and communication data rate prediction

After predicting the UEs’ future movement, the communication data rate is calculated

based on the estimated future SINR values. Future SINR is predicted either from SINR

maps [94] or is extrapolated from the past SINR values if the SINR map is not learned

yet. First, we describe the exploitation of the SINR map, and then we describe the

extrapolation of theSINR based on the past SINR values.

The SINR map, shared by all the gNBs is represented by a matrix Ψ containing the

SINR levels Ψx,y observed by the UEs at discrete and quantized coordinates x ∈ N and

y ∈ N. The SINR map is updated each time when the SINR measurement is received

from the UE at the coordinates (x, y) and stored in ψx,y. The update of the SINR map is

implemented as a weighted average of the current SINR map value Ψx,y and ψx,y. Then,

the SINR map is updated as follows:

Ψx,y ← ((1− χ) Ψx,y + χψx,y) , (5.39)

where χ is the weight of the new input value to the SINR map. Note that χ can be

optimized based on the performance in a real deployment. Due to the dependency of χ

on the real deployment, we leave the optimization of χ for future research.

If the SINR map is not learned yet, the SINR is extrapolated based on Autoregressive

integrated moving average (ARIMA) [191], because it enables prediction of non-stationary

SINR as required in our case. The SINR is non-stationary due to its time variance caused

by varying power levels of received and interference signals.

The generic ARIMA (P,D,G) model is defined by the order of autoregressive part

P , the degree of the first differencing D, the order of the moving average part G, and

the model parameters: the autoregression θi and the differencing and moving average

terms φi (index i indicates terms of autoregression and terms of moving average). As the

SINR does not periodically change values, we leave out the seasoning difference, which is

a common part of the generic ARIMA, but it is exploited only if the predicted time series

depends on the month, hour, and so on. For our purposes of the SINR level prediction,
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we define the ARIMA model for SINR prediction as:

BPSINRt = SINRt−P , (5.40)

φi(B) = 1−
G∑
i=1

φiB
i, (5.41)

θi(B) = 1−
P∑
i=1

θiB
i, (5.42)

SINRt =
θG (B) et

φP (1−B)D
, (5.43)

where SINRt is the SINR time series, Bi is the lag operator of the i-th order, and et is

the error term of the ARIMA model.

The ARIMA model and the coefficients of autoregression, moving average, and lag

operator are estimated from the past samples of SINR by MLE following [191]. Then,

the future SINR levels SINRt+∆t, SINRt+2∆t, . . . , SINRt+K∆t are calculated based on

the estimated ARIMA model and the coefficients from (5.43). The communication data

rate is then predicted from SINR levels at times (t+ ∆t, t+ 2∆t, . . . , t+K∆t) via (5.12).

Note that K represents the number of predicted SINR samples.

5.4.3 Proposed Dynamic Communication and Computing Re-

source Allocation Algorithm

In our previous work [185], we have shown that if a prediction with a fixed accuracy is

available and the VMs are pre-allocated on all gNBs, the communication and computing

resource allocation can handle offloading of the tasks with the arrival rate λ up to 1

task per second in the considered scenario. However, the hypothesis of fixed prediction

accuracy is not reasonable for real networks. Thus, we propose an algorithm, denoted

DCCRA, which exploits the probabilistic UEs’ mobility prediction approach described in

Section 5.4.2.

The DCCRA is composed of two cooperating algorithms: one for the computing and

one for the communication resource allocation. The computing part targets a proper

VM placement (computing resource allocation) while the communication part consists

in selection of a proper communication path (communication resource allocation). The

cooperation of the proposed algorithms is shown in Figure 5.18 for a prediction window

of K∆t. First, the VM placement is determined for each UE via Algorithm 7 over the

duration of K∆t. Then, a proper communication path is selected by Algorithm 8 for

individual UEs in every time interval t. Both parts of the DCCRA are described in the

following subsections, respectively, followed by a complexity analysis.

Note that the computing resources can be allocated either in the form of the VMs or

the containers. To simplify the following text, we describe the algorithm for the VMs, but

these are interchangeable with the containers in the proposed algorithm. Furthermore,
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Figure 5.18. Cooperation of the proposed DCCRA algorithms.

the proposed algorithm is designed for a generic case with multiple degrees of mobility

freedom, as described in Section 5.4.2.

Computing resource allocation

The computing resource allocation part of the proposed DCCRA algorithm, deciding

where and when to allocate the VMs for each UE, is described in this sub-section.

In general, the DCCRA selects the most suitable gNB s∗t for the placement of com-

puting resources in terms of the VMs. However, in the case with multiple degrees of

movement freedom, the VM is pre-allocated on multiple gNBs. Both availability of the

computing resources and the quality of all potentially involved communication links are

considered. To alleviate the gNBs’ backhaul load for the placement of the computing

resources, we restrict the list of available links exclusively to the gNBs from set Qt(u)

with which the UE can communicate directly at the time t. This restriction leads to a

lower overhead, as the SINR information from the gNBs in S\Qt(u) is not required.

The management of VMs (starting, terminating, and adapting VMs to the actual

movement and channel quality of the UEs) is done in a MEO, located in the core network

[12]. Whenever the information about the UEs’ movement and the channel quality is

available, the MEO adapts the VM initialization based on the actual UE’s velocity and

position. The adaptation of the VM initialization, consists of changing the allocation of

the computing resources for the UE to other gNB if the real movement of the UE differs

from the predicted one. On the other gNB, the pre-allocated VM is exploited if available,

otherwise the VM is started. Furthermore, the MEO terminates VMs that are no longer

needed. The computing resources are allocated every K∆t seconds to update the VM

placement. The value of K∆t can be adapted to each environment, e.g., K∆t is set to a

high value (tens of seconds) in an area with very few crossings whereas in an area with

a high number of crossings, such as city center, K∆t is set to a low value (few seconds
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or less). Thus, the computing resource allocation can be dynamically adapted to various

environments and various UE’s mobility characteristics (walking, in a car, train, etc.).

The process of computing resource allocation is shown in Algorithm 1. The algorithm

is designed for the case of UEs with several degrees of mobility freedom (line 2). At first,

the UE’s velocity vector is predicted (line 1). Then, if the environment is known (line 3),

it is exploited to predict the closest street centers (line 4). Afterwards, the computing

resources are allocated for every time instant t+ k∆t until t+K∆t (lines 6 to 31). Only

the gNBs with enough available computing resources are considered for the VM placement

(lines 13 and 14).

In the next steps, the offloading metric αwτ (s) is determined. The offloading metric

αwτ (s) is derived from the communication data rate (according to (5.12)), either from

SINR map (line 17) provided that the SINR map is available (line 16), or from SINR

predicted from known previous SINR levels by ARIMA (line 23) if SINR can be predicted

(line 19). If SINR to the s-th gNB cannot be predicted due to a lack of information for

the prediction (i.e., if SINR map is not trained or not enough known previous SINR levels

are available) the offloading metric αwτ (s) is set based on the distance dτ (s, w) defined in

(5.38) (line 20).

The sequence of the gNBs that maximizes the decision metric αwτ (s) is selected for the

VM placement {s∗τ (w)}t+K∆t
t (line 30). The sequence {s∗τ (w)}t+K∆t

t is then exploited at

the MEO to manage the initialization of the VMs. The management of the VMs includes

determination of the time instances when the VM is started (tS) and ended (tE). Between

these two times, the VM on the gNBs should be up and running. The time instances tS
and tE are derived based on {s∗τ (w)}t+K∆t

t and are equal to the first and the last occurrence

of s in the sequence {s∗τ (w)}t+K∆t
t , respectively. Furthermore, we avoid the pre-allocation

of the VM to the gNBs, where the VM would be exploited for less than the VM startup

time tVM (line 33). The gNBs for which tE − tS < tVM are removed from {s∗τ (w)}t+K∆t
t

and these are not considered for the VM placement. Instead, already running VMs are

exploited to handle the offloading. Thus, the computing load of the gNBs is decreased

and the gNBs can be exploited for the VMs of the other UEs.

An example of the Algorithm 7 determining VM pre-allocation is shown in Figure

5.19. In this example, there are three gNBs (gNB1, gNB2, gNB3) and one UE located

on a crossroad with three possible future directions w1, w2, and w3. For each direction

and each time step, the gNBs are ordered according to α (see table in the middle part in

Figure 5.19). Then, tS and tE are determined as the first and the last occurrence of each

gNB in the first row of the table in Figure 5.19 over all departure angles.

Selection of communication path

To further reduce the offloading delay, we propose also an algorithm reducing the

communication delays tO and tC . The algorithm forces the UE to perform handover to

the gNB that provides the fastest delivery of the offloaded task to the VM considering

radio as well as backhaul data rates. The algorithm is inspired by our previous work,

PSwH algorithm [162], [192]. The PSwH maximizes the communication data rate of the
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Figure 5.19. Example of VM placement by Algorithm 7 for three gNBs (number of rows in
each table in the middle part of the figure) over five time instants (columns in each table in
the middle part of the figure). For each departure angle, represented by individual table,
a sequence (row) of the gNBs maximizing α is chosen and then exploited to determine tS
and tE for each gNB.

UEs. However, in the PSwH, the UEs do not cooperate and the algorithm does not

consider the prediction of the channel quality for resource allocation. Thus, we propose

the algorithm that efficiently handles the rapid changes in the UEs’ communication data

rates. The selection of the communication paths for the UEs is made by an iterative

update of the serving gNBs every ∆t as shown in Algorithm 8, assuming fixed s∗t for

every u during given time interval 〈t,t+ ∆t〉.

The algorithm for selection of communication path starts with a determination of the

serving gNBs based on the SINR of the UEs (line 1). Then, the current data rates in

uplink (following (5.14)) and downlink (by adapting (5.12)) are derived from the known

SINR and from the number of connected UEs. Then, a set of the gNBs Ŝ is created by

sorting the gNBs in descending order based on their radio communication load nRt (s) (line

3). The algorithm then goes through the gNBs in Ŝ that have more than one connected

UE (lines 4 and 5). Four variables are defined for the communication path selection: i)

minimal gain of handover to avoid exploiting handover for the UEs with a minor data

rate improvement ε, ii) the UE uH with the highest benefit from handover to any gNB

(set initially to 0, see (line 6)), iii) the gNB sH selected by the UE uH as a candidate

for the handover (set to 0 in initial phase), and iv) maximal achievable handover gain of

all the UEs β (also set to 0 in initial phase). The algorithm iteratively searches for the

UE, which can benefit the most from handover, i.e., the UE that maximizes β (lines 9 to

17). The auxiliary handover gain βa (exploited to find β) is determined for each pair of

the UE and the gNB that can communicate with SINR above SINRmin (lines 9 and 10).

The gain is defined as the difference between the achievable communication data rates

(in both uplink and downlink) when the UE is connected to its serving gNB st and to a

target gNB from the set S\st (line 11). If βa is higher than β, uH and sH are updated.
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Then, if β is equal to or higher than the threshold ε, the UE uH is handed over to the

gNB sH (line 19) and the UEs’ data rates are updated (line 20).

Complexity

The minimization of the offloading delay by the joint selection of the VM placement

and the communication path leads to a combinatorial formulation. The total complexity

of the DCCRA for N UEs and considering |W | is O (N |S||Qt|K +N |W ||Qt|K), where

|Qt| = maxu ∈U |Qτ (u)|. The state of the art algorithm presented in [130], further de-

noted as VM VM Online Approximation Placement (VM-OAP) algorithm, has complexity

O (N |S|2K). However, the VM-OAP algorithm is designed only for one degree of free-

dom. When |W | = 1 and all gNBs being considered for the path selection, i.e., |Qt| = |S|
(worst case scenario), the DCCRA is of the same complexity as the VM-OAP algorithm

in the worst case.

5.4.4 Simulation Scenario and Models

In this section, we describe simulation models and scenarios for performance evalua-

tion carried out in MATLAB. The main simulation parameters, presented in Table 5.5,

are in line with recommendations for mobile networks with small cells as defined by

3GPP in [157]. We also follow the specifications of the physical layer and frame struc-

ture parameters for LTE-A mobile networks defined in the same document. The signal

propagation over radio channel is modeled according to 3GPP [] with path loss model

PL = 128.1 + 37.6log10d, where d is the distance between the UE and the gNB. We con-

sider the mapping function between SINR and MCS defined in [176] for BER of 10 %.

The minimal SINR to enable communication, SINRmin, is set to -6.9 dBm, according

to [176]. We set the weighing factor for SINR map updates, χ, to 0.5 so that the SINR

changes due to varying environment are quickly propagated in our model. Note that, in

a real deployment, χ can be adjusted based on the environment. The backhaul of the

gNBs is modeled as an optical fiber with capacities following a normal distribution with

average µ = 100 and variance σ2 = 2 (in Mbit/s).

Since we target the real-time applications, the offloaded tasks with sizes of 20 and 200

kB are considered [180]. Moreover, the offloaded task with a size of 2000 kB is investigated

as well, to show performance even for larger tasks. The VM startup time tVM , representing

the time required to initialize the VM and to prepare it to process the offloaded tasks is

4.5 s for the VMs [23]. This corresponds to the time between the moment when the VM

pre-allocation begins to the moment when the offloaded application is run. Note that

the tVM contributes to the offloading delay only when the VM is not prepared on the

gNB on time. The radio and backhaul resources are allocated to the UEs by round-robin

scheduling.

The simulation area, as shown in Figure 5.20, represents a part of Prague, Czech

Republic. The environment is similar to the one in [187], where the authors consider

arrival and departure angles difference of 90◦. In this area, four gNBs (represented by
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Table 5.5. Simulation parameters.

Parameter Value
Simulation area 650m x 370m
Carrier frequency 2 GHz
Bandwidth of uplink/downlink 10/10 MHz
Tx power of gNB/SCgNB/UE (STx) 27/15/10 dBm
SINRmin -6.9 dB
Weighting factor 0.5
Number of gNB/SCgNB 4/30
VM startup time tVM 4.5 s
Prediction window K 200
ARIMA number of past samples 20
Offloaded task size LO = results size LC 20/200/2000 kB
Offloaded task number of instructions LP 1e6 instructions
gNB/SCgNB CPU 3300 MIPS
Shadowing factor 6 dB
Handover interruption duration tHO 30 ms
Threshold ε 100 kbit/s
Number of UEs 30/60/90
Speed of users 1 m/s
Backhaul capacity – Normal distribution µ=100, σ2=2
Simulation time/Number of simulation drops 3 600 s/ 20 drops
Simulation step 100 ms

blue discs in Figure 5.20) are deployed according to the real position of the gNBs of

a mobile operator [193]. In addition, 30 SCgNBs, divided into two sets with different

transmission frequencies are randomly deployed (denoted as orange crosses in Figure

5.20). To show the impact of network load on the performance, 30, 60, and 90 UEs are

randomly dropped into the simulation area. The UEs follow the realistic mobility model

with crossroad direction probabilities defined in [193]. The number of UEs per cell in

our scenario is about 0.9, 1.8, and 2.7, which is higher than that in [130] (where they

assume roughly 0.55 UEs per cell). The reason for a higher UEs’ density, i.e., 60 and 90

UEs, is to evaluate the performance with highly loaded MEC servers. Furthermore, the

bandwidth for communication is 10 MHz in uplink and 10 MHz in downlink allocated in

FDD manner. We exploit a common handover procedure based on SINR, as described

in [194], to keep the UE connected to the gNB with the highest SINR. In the simulations,

the UEs move with the same speed. This might be seen as an optimistic assumption,

however, the proposed DCCRA takes into account the speed of UE via (9) and (10).

Thus, the DCCRA can handle easily different speeds of UEs without any degradation of

performance.

The energy consumption model of the UEs follows an empirical model defined in

Appendix A [149].
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50 meters

Figure 5.20. Simulation model with deployment of gNBs and SCgNBs.
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Figure 5.21. Mean times required to offload, compute, and collect results of the offloaded
task for 30 UEs with LO = LC = 20 kB (a), LO = LC = 200 kB (b), and LO = LC =
2000 kB (c).

5.4.5 Performance Evaluation and Discussion of Results

The performance of the proposed algorithm (DCCRA) is compared with two state-of-

the-art approaches:

� SO according to [175] - where the VM is kept at the serving gNB, so the VM is

migrated each time handover is performed.

� VM-OAP according to [130] – where the VM placement is based on predicted future

costs (in terms of channel quality) of its placement.

In addition to these two competitive solutions, we also show the performance of the

DCCRA under perfect mobility and channel quality prediction with the VM pre-allocation

on only one gNB (denoted as DCCRA-perfect in this section) to see potential improvement

if the prediction would be ideal.

In Figure 5.21, we show the mean offloading delay over the task arrival rate for 30

UEs with the offloaded task size of 20 kB (Figure 5.21a), 200 kB (Figure 5.21b), and
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Figure 5.22. Mean offloading energy for 30 UEs with LO = LC = 20 kB (a), LO = LC =
200 kB (b), and LO = LC = 2000 kB (c).

2000 kB (Figure 5.21c). In each figure, we see that a higher arrival rate generally leads to

a higher offloading delay because more offloaded tasks per second are generated and more

communication and computation resources are consumed. Furthermore, it is shown that

increasing the offloaded task size results in a higher offloading delay, as more data have to

be transmitted. The SO algorithm supports offloading up to λ = 0.2 for LO = LC up to

200 kB. The SO algorithm does not enable a higher λ as it does not exploit any prediction

or pre-allocation of the VMs, thus, the resources become unavailable even for a very light

computation load. The VM-OAP algorithm enables λ up to 2 for LO = LC = 20 kB.

However, for a higher LO and LC, the VM-OAP algorithm can handle λ only up to 0.33.

The VM-OAP exploits channel quality prediction, but it does not pre-allocate the VMs.

The DCCRA outperforms both compared algorithms by enabling the offloading of the

tasks with λ up to 5 for LO = LC up to 200 kB, and λ up to 0.5 for LO = LC = 2000 kB.

This means that the DCCRA enables offloading with almost twice higher λ than the VM-

OAP. Comparing the DCCRA to the DCCRA perfect, we can see that the performance

of both is very similar and the ideal prediction does not lead to any notable reduction in

the offloading delay.

The proposed DCCRA reduces the offloading delay by up to 78 % comparing to the SO

algorithm for λ = 0.2. In comparison to the VM-OAP, the DCCRA reduces the offloading

delay by 8.2 % for LO = LC = 20 kB and λ = 2. Furthermore, increasing LO = LC to

2000 kB leads to an increased gain (15.2 % for λ = 0.33) of the DCCRA in comparison

to the VM-OAP algorithm. The offloading delay reduction is achieved by optimizing the

placement and pre-allocation of the VMs, as well as the selection of the communication

path. Increasing LO = LC leads to a higher offloading delay for all compared algorithms,

but the DCCRA keeps the offloading delay below 100 ms for small sized tasks (LO = LC

below 2000 kB).

Figure 5.22 shows the mean energy consumed by the UEs for the transmission of

the offloaded task and the reception of the computing results with the offloaded task

size of 20 kB (Figure 5.22a), 200 kB (Figure 5.22b), and 2000 kB (Figure 5.22c).

In all these figures, any increase in λ or LO = LC, leads to an increase in the energy

consumed per the offloaded task, because the network load rises. The higher energy
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Figure 5.23. Mean times required to offload, compute, and collect results of the offloaded
for 60 UEs with LO = LC = 20 kB (a), LO = LC = 200 kB (b), and LO = LC = 2000 kB
(c).
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Figure 5.24. Mean offloading energy for 60 UEs with LO = LC = 20 kB (a), LO = LC =
200 kB (b), and LO = LC = 2000 kB (c).

consumption is caused by increased communication time due to the communication and

computing load of the gNBs, and the relation between the energy and the transmission

time (see (A.12)). In comparison to the SO algorithm, the proposed DCCRA increases

the consumed energy by less than 23 %, however, it is only 0.1 J, for LO = LC = 20 kB and

8.3 %, i.e., 0.5 J, for LO = LC = 200 kB. Note that this increase is largely compensated

by a significant reduction in the offloading delay by up to 78 % and by enabling the

offloading of tasks with LO = LC = 2000 kB, as shown in Figure 5.21. Furthermore,

the DCCRA reduces the energy consumed for the offloading by up to 35 % compared to

the VM-OAP algorithm. The reduction in the offloading energy is achieved by avoiding

the overloaded communication paths and by pre-allocation of the VMs. Avoiding the

overloaded communication links is done by the proposed selection of communication path,

while the VMs are pre-allocated to minimize the delay of VM startup (migration). Again,

we see that the DCCRA provides a similar performance as the DCCRA perfect.

In Figure 5.23, we show the mean offloading delay over the task arrival rate for 60

UEs with the offloaded task size of 20 kB (Figure 5.23a), 200 kB (Figure 5.23b), and

2000 kB (Figure 5.23c). The results follow the same trends as shown in Figure 5.21

for 30 UEs. The DCCRA increases the gain in comparison to the VM-OAP to 31 % for
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λ = 0.33 and LO = LC = 2000 kB. This is caused by the fact that the DCCRA balances

the computing and communication loads among the gNBs.

Similar changes due to the increased number of UEs are seen in mean offloading energy,

as shown in Figure 5.24 with the offloaded task size of a 20 kB (Figure 5.24a), 200 kB

(Figure 5.24b), and 2000 kB (Figure 5.24c). However, a higher offloading delay leads

to an increased energy consumption. The DCCRA leads to a similar energy consumption

as the DCCRA perfect for LO = LC = 200 kB or less. In the case of LO = LC = 2000

kB, the DCCRA slightly lowers the energy consumption with respect to the DCCRA

perfect. This is caused by the pre-allocation of slightly more VMs for each UE by the

DCCRA comparing to the DCCRA perfect. These additional pre-allocated VMs by the

DCCRA are exploited to avoid the overloaded gNBs. Note that the DCCRA perfect does

not predict the number of connected UEs, thus, the predicted data rate as well as the

overloading of the gNBs is not predicted perfectly. Therefore, the DCCRA provides a

minor improvement over the DCCRA perfect, but at the cost of pre-allocating a higher

number of VMs.

The mean offloading delay for 90 UEs is shown in Figure 5.25 with the offloaded task

size of 20 kB (Figure 5.25a), 200 kB (Figure 5.25b), and 2000 kB (Figure 5.25c). The

increased number of UEs, again, leads to an increased offloading delay. The SO algorithm

cannot handle the offloading for 90 UEs due to keeping the VM on the serving gNB.

Furthermore, the VM-OAP cannot handle the offloading for 90 UEs and LO = LC above

20 kB, as shown in Figure 5.25b and Figure 5.25c, as it does not exploit pre-allocation.

The DCCRA enables offloading with λ equal to 5, 2, and 0.5 for LO = LC equal to 20,

200, and 2000 kB, respectively. From Figure 5.21, Figure 5.23, and Figure 5.25, we

see that the DCCRA keeps the offloading delay for small offloaded tasks (below 200 kB)

under 100 ms, which is not possible with any of the competitive algorithms.

The energy consumed for the offloading for 90 UEs is shown in Figure 5.26 with the

offloaded task size of 20 kB (Figure 5.26a), 200 kB (Figure 5.26b), and 2000 kB (Figure

5.26c). Again, the increased number of the UEs leads to an increased energy consumption.

The results for the SO algorithm are not shown, as the algorithm cannot handle such high

number of UEs. Furthermore, the VM-OAP is shown only for LO = LC = 20 kB, as it

cannot handle larger offloaded task sizes with 90 UEs. The DCCRA consumes slightly

less energy than the DCCRA perfect for LO = LC = 2000 kB due to the same reason as

for 60 UEs (Figure 5.24c).

The mean amount of data transmitted over the backhaul due to delivery of the offload-

ing task to the computing VM and collection of the results at the UE is shown in Figure

5.27a for 20 kB, in Figure 5.27b for 200 kB, and in Figure 5.27c for 2000 kB. Since the

SO algorithm places the VMs exclusively on the serving gNB, no data is transmitted over

the backhaul. Thus, the SO is not included in these figures. For the VM-OAP algorithm,

the amount of data transmitted over the backhaul is constant over all investigated task

arrival rates for all numbers of UEs, and for all offloaded task sizes. For the proposed

DCCRA, the amount of data transmitted over the backhaul is slightly decreasing with

increasing λ. This is caused by the need for a closer placement of the VMs to minimize the
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Figure 5.25. Mean times required to offload, compute, and collect results of the offloaded
for 90 UEs with LO = LC = 20 kB (a), LO = LC = 200 kB (b), and LO = LC = 2000 kB
(c).
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Figure 5.26. Mean offloading energy for 90 UEs with LO = LC = 20 kB (a), LO = LC =
200 kB (b), and LO = LC = 2000 kB (c).

communication delay when the time between two consecutive offloaded tasks is low (i.e.,

for a high λ). The proposed algorithm transmits 40 % less data over the backhaul com-

paring to the VM-OAP. This reduction is achieved by allocating the VMs in a proximity

of the UEs to reduce the offloading delay and to alleviate the backhaul communication

load. The DCCRA perfect transmits slightly more data over the backhaul comparing

to the DCCRA. This is caused by the pre-allocation of the VM on a lower number of

the gNBs, as shown in Figure 5.28. Comparing the impact of the size of offloaded task

(i.e., comparing sub-figures Figure 5.27a, Figure 5.27b, and Figure 5.27c), we can see

that the amount of data transmitted over the backhaul is increasing proportionally to the

offloaded task size.

The number of VMs deployed for all UEs during the simulation run is shown in Figure

5.28. The sub-figures represent results for the tasks with a size of 20 kB (Figure 5.28a),

200 kB (Figure 5.28b), and 2000 kB (Figure 5.28c), respectively. To provide an insight

into performance of our prior work [185], the number of pre-allocated VMs is equal to

the number of UEs (60) multiplied by the number of gNBs (34), i.e., 2040 VMs in our

scenario. This number is many times higher than the number of gNBs where the VM is

pre-allocated by the DCCRA, thus, we do not show the lines for 2040 VMs in the figure.

Since only our proposed algorithm exploits the possibility to deploy more than one VM
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Figure 5.27. Mean amount of data transmitted per backhaul per task for LO = LC = 20
kB (a), LO = LC = 200 kB (b), and LO = LC = 2000 kB (c), solid line represents 30 UEs,
dashed 60 UEs and dotted 90 UEs.
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Figure 5.28. Number of pre-allocated VMs for the proposal during the simulation run.
for LO = LC = 20 kB (a), LO = LC = 200 kB (b), and LO=LC = 2000 kB (c), solid line
represents 30 UEs, dashed 60 UEs and dotted 90 UEs.

per UE, other algorithms are not depicted. The SO and VM-OAP algorithms deploy the

same number of VMs as the number of UEs offloading their tasks, i.e., 30 VMs for 30

UEs, 60 VMs for 60 UEs, and 90 VMs for 90 UEs. To show the impact of mobility and

channel prediction, we compare the DCCRA to the DCCRA perfect for λ = 2 with 30,

60, and 90 UEs. From the Figure 5.28, we see that just after the simulation starts, there

is a steep increase in the number of the deployed VMs, as the number of UEs offloading

their tasks increases. However, when all the UEs are offloading their tasks, the number

of deployed VMs stabilizes at 32.4 VMs for 30 UEs, 65 VMs for 60 UEs, and 98 VMs for

90 UEs. In case of the DCCRA perfect, the number of deployed VMs is 31 VMs for 30

UEs, 61.5 VMs for 60 UEs, and 93 VMs for 90 UEs. On the average, there are 1.08 and

1.03 VMs pre-allocated per UE for the DCCRA and the DCCRA perfect, respectively,

for all sizes of the offloaded tasks. The difference in the number of pre-allocated VMs

between the DCCRA and the DCCRA perfect is caused by the need to pre-allocate more

VMs for the DCCRA to compensate for the mobility and channel prediction inaccuracies.

The minor fluctuation in the number of pre-allocated VMs over time is caused by the

fact that the UEs are selecting from multiple future angles at irregular time instants.
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With pre-allocation of 8 % more VMs than the number of UEs, the DCCRA enables the

offloading of the real-time task with very high arrival rate.

5.4.6 Conclusion

In this section, we have proposed a novel algorithm for dynamic pre-allocation of

computing and communication resources for the MEC. The algorithm dynamically pre-

allocates VMs considering the computation load of gNBs and selects the best communica-

tion path between the UE and the gNB with allocated VM. For the proposed algorithm,

we have designed a suitable mobility channel prediction with a low complexity.

Comparing to state of the art approaches, the proposed algorithm reduces the offload-

ing delay by up to 64 %, while reducing UE’s energy consumption by up to 39 %. The

proposed algorithm enables offloading of tasks with arrival rate up to 5 tasks per second

per UE for small task sizes. The competitive algorithms do not surpass 2 and 0.5 tasks

per second for very small and small task sizes. The proposed algorithm, also provides

offloading delay below 100 ms for small sized offloaded tasks, making it suitable for real-

time offloading. Furthermore, we show that the performance of the proposed algorithm

is similar to the case with perfect mobility and channel prediction.
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Algorithm 7 Allocation of computing resources.

1: Calculate UE’s ∆x and ∆y velocity via (5.24) and (5.25)
2: for w ∈ W such that P (w|v, (xt, yt)) > 0 do
3: if there exists a known map of street centers then
4: Calculate j∗w via (5.35) from (5.33) and (5.34)
5: end if
6: for τ = t, t+ ∆t, . . . , t+K∆t do
7: if there exists a known map of street centers then
8: Calculate (xwτ , y

w
τ ) via (5.36) and (5.37)

9: else
10: Calculate (xwτ , y

w
τ ) via (5.33) and (5.34)

11: end if
12: for s ∈ Qτ (u) do
13: if ωτ (s) < ω(u) then
14: Qτ (u)← Qτ (u)\s
15: else
16: if Ψx,y 6= 0,∀bxwτ e, bywτ e then
17: SINRτ (s)← Ψxwτ ,y

w
τ

18: else
19: if SINRτ (s) is not predictable then
20: αwτ (s)← 1

dτ (s,w)
,∀s ∈ Qτ (u)

21: break
22: else
23: Predict SINR by (5.43)
24: end if
25: end if
26: Calculate cτ (u, s) via (5.12)
27: αwτ (s)← cτ (u, s)
28: end if
29: end for
30: s∗τ (w)← arg maxs∈Qτ (u) α

w
τ (s)

31: end for
32: end for
33: Remove s with VM exploited for less than tVM
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5.4. PREDICTION BASED COMMUNICATION AND COMPUTING RESOURCE
ALLOCATION FOR MEC

Algorithm 8 Allocation of communication resources.

1: Determine serving gNBs maximizing SINR.
2: Calculate the uplink and downlink data rates cULt (u, s, s∗) and cDLt (u, s, s∗) for each

UE and gNB.
3: Sort the gNBs in descending order based on nRt (s) to Ŝ
4: for doŝ ∈ Ŝ
5: if thennRt (ŝ) > 1
6: Initialize uH = 0, and sH = 0.
7: while do(true)
8: β = 0
9: for dou ∈ U such that st = ŝ

10: for dos ∈ Qτ (u)
11: βa = min

(
cULt (u, s, s∗)− cULt (u, ŝ, s∗),
cDLt (u, s, s∗)− cDLt (u, ŝ, s∗)

)
12: if thenβa > β
13: uH = u, sH = s.
14: β = βa

15: end if
16: end for
17: end for
18: if thenβ ≥ ε
19: st(u

H) = sH

20: Update cULt (u, s, s∗) and cDLt (u, s, s∗).
21: else
22: break
23: end if
24: end while
25: end if
26: end for
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Chapter 6

Conclusion

This thesis focuses on collection of mobile network information from the UEs and

allocation of communication and computation resources for the MEC services. In this

chapter, a summary of the thesis is provided, followed by a description of the research

contribution based on the presented work. To conclude this chapter, a future research

direction is provided.

6.1 Thesis summary

This thesis focuses on allocation of communication and computation resources for

MEC. The motivation behind the thesis is to design and propose solution for real-time

self optimization of the mobile networks. To achieve this goal, several objectives are

specified, and solutions are provided.

The first part of this thesis describes solutions for collecting a large amount of data

from mobile devices (UEs, sensors, vehicles, etc.). One of the main limitations of the

mobile networks is number of devices that can be served by the mobile networks. Thus,

we have proposed a solution to overcome current limitation to enable more than 65 000

devices per base station transmitting small amounts of data (tens of bits), which is in

line with the expected number of devices connected to one gNB in 5G (10 000 to 100

000 devices, see [2]). The solution for enabling such a huge number of devices exploits

D2D for data relaying. However, it is necessary to provide a solution for allocation of the

communication resources to satisfy the mobile users. Thus, we solve this via NBS that

leads to a natural cooperation of the devices. Moreover, the proposed solution is in the

closed form, therefore, have a very low computation complexity and works even under

fast changing communication quality. An important aspect for the devices exploiting the

mobile networks is the energy consumption. Therefore, we provide an analysis of energy

consumption for data relaying via D2D communication. The analysis shows, that the

D2D relaying lowers energy consumption of the devices in comparison to the traditional

communication, where all transmissions go directly to the BS.

The collected mobile network information is necessary for deployment of the FlyBSs

that provide an option to tackle the problem of the time and space varying requirements
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on the mobile networks. This is achieved by positioning the FlyBSs to satisfy the require-

ments in the mobile networks and repositioning when the time and space requirements

change. To this end, we propose a solution that jointly positions the FlyBSs and associates

the UEs. The proposed solution significantly (up to 30%) increases the UEs satisfaction

with the provided data rates.

The second part of the thesis focuses on allocation of the communication and compu-

tation resources to the mobile users exploiting the MEC services (including distributed

computing). First, we propose a solution, based on the MDP, for allocation of the com-

munication resources, that selects the communication path, i.e., serving BS. The proposed

solution exploits the BSs in proximity of the user and selects the best communication path

based on the user’s preferences for delay and energy consumption. It is shown, that this

approach can significantly reduce communication delay or energy compared to the state

of the art solutions. Compared to the existing approach, the proposed solution reduces

communication delay by up to 29%.

The allocation of the communication resources is extended to jointly allocate com-

munication and computation resources by the proposed algorithm. First, we propose a

solution that considers UEs mobility with a known prediction accuracy. The proposed

solution reduces offloading delay in comparison to the state of the art solutions by 10-66%.

This solution is further extended so the prediction accuracy is unknown. The proposed

solution exploits existing mobility prediction algorithms to select which computation re-

sources should be used for processing of the offloaded task and to select the most suitable

communication path. The proposal is formed from two cooperating algorithms in order

to achieve a low complexity and to enable offloading of tasks with a high frequency, which

is not possible with the existing approaches. The proposed solution reduces offloading

delay by up to 66% compared to the state of the art algorithms and enable offloading of

offloaded tasks with time between two tasks of 1s.

6.2 Research contributions

The solutions proposed in the thesis have been presented at multiple conference and

journal papers indexed in WoS. The research contributions of these papers and related

objectives in each paper are as follows:

� A solution to enable collection of data from a large number of devices had been pro-

posed. The proposed solution combines reduction of the communication overhead

and exploitation of buffering (transmission of multiple data from a single device)

and clustering (exploiting D2D for relayed transmissions). This solution, described

in Section 4.1 and published in [132], fulfills the Objective 1.

� In Section 4.2, we propose time resource allocation algorithm based on NBS so that

the UEs are motivated to cooperate in relaying communication. This is necessary

for enabling communication of a huge number of UEs. This solution, described in

Section 4.2 and published in [133], fulfills the Objective 2.
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� An analysis of energy consumed for the D2D relaying and benefits of the relaying,

that is exploited for communication of a huge number of UEs are presented in

Section 4.3. This solution, described in Section 4.3 and published in [134], fulfills

the Objective 2.

� Algorithms for joint positioning of the FlyBSs and association of the UEs to improve

their satisfaction with the provided QoS are proposed. These algorithms are based

on the GA and the PSO and exploit the collected mobile network information from

the UEs. This solution, described in Section 4.4 and published in [135], fulfills the

Objective 3.

� An algorithm for selection of communication path between a UE and MEC hosts has

been proposed. The proposed algorithm, based on the MDP exploits possibility of

handover to shorten the time of transfer of data for computation by avoiding usage

of low capacity backhaul. This solution, described in Section 5.2 and published

in [162,192], fulfills the Objective 4.

� A solution for joint communication and computation resource allocation based on

predicted mobility of users and load of eNBs’ communication and computation re-

sources, that consists of two cooperative algorithms has been proposed. The first

proposed algorithm, dynamic VM placement, decides whether there is a more suit-

able place for the VM allocation before the offloaded task is processed at the VM.

The second algorithm is path selection enhanced by mobility prediction. This solu-

tion, described in Section 5.3 and published in [185], fulfills the Objective 5.

� We further extended previous work by proposing a low-complexity computing and

communication resource allocation for offloading of real-time computing tasks gen-

erated with a high arrival rate by the mobile users. In comparison to previous work,

we assume that the mobility prediction accuracy is unknown and the VMs are not

prepared on all eNBs to reduce the computation load. This solution, described in

Section 5.4 and published in [195], fulfills the Objective 5.

6.3 Future research direction

This thesis focuses on allocation of communication and computation resources for the

MEC. The thesis consists of two parts, collection of the mobile network information and

allocation of communication and computation resources in the MEC.

In the collection of the mobile network information, primary focus is given to static

users. Therefore, this work should be extended to consider mobility of the users and the

consecutive challenges, such as handovers or fast varying channel quality. To overcome

this, the algorithms for selection and management of the clusters (one device relaying data

from others with D2D) should be adapted. To this end, it is also necessary to extend

the time resource allocation based on the NBS in the frequency domain to accommodate
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even higher number of UEs. The exploitation of the FlyBSs that provides improves UEs

satisfaction with the provided data rates should be extended to consider the mobility of

the UEs as well. Moreover, due to the limited flying time of the FlyBS the proposed

solution should be extended to consider energy consumption of the FlyBSs.

The allocation of the communication and computation resources based on the collected

mobile network information provides solutions for mobile UEs even without knowledge

of the future movement. The work presented in [195] enables real-time computation

offloading. However, with novel applications and services, the offloading delay should be

reduced even further. Therefore, mmWaves or Visible Light Communication should be

considered for lowering communication delay. Due to costly deployment of the ultra-dense

cells, exploitation of the relayed communication for the MEC can provide a feasible option

in the areas with a poor coverage. Apart from reducing delay, the energy consumption of

communication is critical aspect. Thus, the proposed algorithms should not only consider

energy consumption, but target on reduction of the energy consumption of the UEs to

increase the battery life time when the MEC services are being used.

With mobile networks shifting from the specialized hardware towards software defined

networks, the mobile networks become more flexible and the proposed solution can exploit

technologies such as Open Air Interface (OAI) [196] or Open Radio Access Network (O-

RAN) [197], which run mobile networks on generic hardware. Therefore, the proposes

solution should be implemented and tested in the real mobile networks to validate their

performance.
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Appendix A

Energy consumption of mobile

networks

One of the important benefits of exploiting the MEC is that the computation is done

on the MEC host instead of the UE. Thus, energy for computation is not consumed at

the UE, and its battery life time is prolonged. To show energy consumption of the state

of the art algorithms and the proposed solutions, energy consumption model is defined in

this section.

A.1 Uplink transmission power control

The energy consumption of the UE depends on its transmission power PTx. The

transmission power in mobile networks is controlled by the BS, and is based on the

received power SRx at the BS. At the BS there is a target received power SRx,target, that

should be met by appropriate PTx. Based on the channel quality, e.g., SINR, MCS

for the transmission is selected. The MCS specifies modulation and code rate, thus,

defining number of bits transmitted per symbol. The MCS follows SINR, as with higher

SINR, higher MCS can be selected for a transmission. Transmission power control, as

defined by the 3GPP in [31] depends on MCS and available bandwidth represented by

RBs in LTE-A system. The SINR at receiver is proportional to the transmission power

PTx at transmitter, path loss PL and interference from other cells. In LTE-A, the PTx

required for selected MCS and given number of allocated RBs is defined, according to

3GPP [31,198,199], as follows:

PTx = min
(
PMAX, P

0 + α · PL + 10log10 (M) + ∆TF + f
)

(A.1)

where PMAX is the maximum available transmission power (23 dBm for the UE class

3 [199]); α ∈ {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} corresponds to the path loss compensation

factor, PL is the downlink path loss estimate, M stands for the number of assigned RBs,

∆TF represents a closed loop UE specific parameter based on the applied MCS, f is

a correction value (also referred to as a Transmission Power Control (TPC) command
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A.1. UPLINK TRANSMISSION POWER CONTROL

[198,199]), and parameter P 0 represents the power offset computed as:

P 0 = α · (SINR0 + PN) + (1− α) · (PMAX − 10log10(M0)) (A.2)

where PN is the noise power per RB, and M0 defines the number of allocated RBs for the

case when the UE would be transmitting with its maximal transmission power).

Parameters ∆TF and f are used for dynamic adjustment of the transmission power

to keep required SINR at the receiver. As we assume open loop power control, we can

omit these parameters as indicated in [199]. The parameter α is set to 1 so the UE fully

compensates the path loss. Under these assumptions (commonly considered in real mobile

networks), we can simplify power offset to P 0 = α · (SINR0 + PN) and then, (A.1) can

be rewritten as:

P Tx = min{PMAX , α · (SINR + PN + PL) + 10log10(M)} (A.3)

From the known transmission power, energy consumed by the transmission of data, with

duration tUL is calculated as:

EUL
R = P Tx · tUL (A.4)

Form the (A.3) it is seen, that the energy consumption depends on the SINR (MCS).

To show how consumed energy changes with various SINR (MCS) values, an example

of tradeoff between energy and duration of transmission of 100 kB using 10 RBs with

PL=80 dB is shown in Figure A.1 This figure shows, that high energy is consumed if the

transmission lasts a short time. Contrary, less energy is required if the transmission time

is prolonged.

Figure A.1. Example of tradeoff between energy and time consumed by transmission of
100 kB using 10 RBs with path loss of 80 dB.
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A.2. EMPIRICAL ENERGY CONSUMPTION MODEL

A.2 Empirical energy consumption model

A more advanced energy consumption model for the UE, based on a real measured

UE data is described in [149,200]. The energy consumption model consists of uplink and

downlink energy consumption models, that are presented in this section. For the reception

of computation results in downlink, the energy EDL
R is derived based on knowledge of the

power required for data reception (PRx). This power depends on the level of signal received

by the UE (SRx) and data rate as specified in [174].

This energy consumption model considers the power consumption of the UE being

turned on PON=853 mW, the uplink communication power PUL, and the downlink com-

munication power PDL. In both uplink and downlink, the power consumption consists

of the signal processing parts PTxBB and PRxBB, the radio parts PTxRF and PRxRF , and

the consumption of the circuitry of communication parts PTxON and PRxON . Hence, the

power consumed for the uplink communication (PUL) is calculated as:

PUL = PTxON + PTxRF + PTxBB [mW] (A.5)

where PTxON = 29.9 mW, PTxBB = 0.62 mW, and PTxRF is calculated as:

PTxRF =


0.78STx + 23.6 STx ≤ 0.2

17STx + 45.4 0.2 < STx < 11.4

5.9S2
Tx − 118STx + 1195 11.4 < STx

(A.6)

where STx is the transmission power of the UE in dBm. Then, the energy consumed in

the uplink for a transmission with a duration of tO is calculated as:

EUL = PULtO (A.7)

The power consumed for downlink communication (PDL) is calculated as:

PDL = PRxON + PRxRF + PRxBB [mW] (A.8)

where PRxON = 25.1 mW, and PRxBB is calculated as:

PRxBB = 0.97RRx + 8.16 [mW] (A.9)

where RRx is the downlink throughput in Mbit/s, and PRxRF is calculated as:

PRxRF =

−0.04SRx + 24.8 SRx ≤ −52.5

−0.11SRx + 7.86 SRx > −52.5
(A.10)

where SRx is the power received at the UE from the gNB in dBm. Similarly to the uplink,
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A.2. EMPIRICAL ENERGY CONSUMPTION MODEL

energy consumed in the downlink with duration of tC

EDL = PDLtC (A.11)

The energy consumption of the UE is then calculated by multiplying the required power

by the transmission time:

E =EUL + EDL = PON (tO + tC + tH) +

+ PDLtC + PULtO [J]
(A.12)

142



Appendix B

Approximation of IRELAY2 (N, σ)

An approximation on IRELAY
2 (N, σ) is given as:

IRELAY
2 (N, σ) ≈ σ

N∑
k=0

(
N

k

)
(−1)k

( A(k)γmax

γ̄2 + γ̄σγmax

+
B(k)

γ̄
log(1 +

σγmax

γ̄
)+

C(k) log |1 +
γmax

α(k)
|+D(k) log |1 +

γmax

β(k)
|
)

where

A(k) = σ2

(γ̄−α(k)σ)(γ̄−β(k)σ)
, B(k) = σ2(α(k)σ+β(k)σ−2γ̄)

(γ̄−α(k)σ)2(γ̄−β(k)σ)2

C(k) = 1
(α(k)−β(k))(α(k)σ−γ̄)2 , D(k) = 1

(α(k)−β(k))(β(k)σ−γ̄)2

{α(k), β(k)} =
(
− kq2 ±

√
k2q2

2 − 4kq1q2 − 4kq1

)
/2kq1

q1 = −0.4920, q2 = −0.2287, q3 = −1.1893 (B.1)

Proof. To derive an approximate expression on IRELAY
2 (N, σ), we use an approximation

on Q(x) ≈ exp[−(q1x
2 +q2x+q3)] and e−z ≤ 1

1+z
,∀z ≤ 0 in (4.47) to represent the integral

IRELAY
2 (N, σ) ≈

∫ γmax

0

dx

(xσ + γ̄)2(1 + k(q1x2 + q2x+ q3))
(B.2)

where γmax <∞ is chosen to avoid the divergence of the integral. The integration in (B.2)

is derived in exact form as presented in (B.1). This completes the proof of Proposition

1.
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Appendix C

Scaling Law on Energy Consumption

We use Q(0) = 1/2 to get an upper bound on the integral IRELAY
1 (N, σ) in (4.42):

IRELAY
1 (N, σ) ≤ 1

2N
(

1

γth

− 1

γ̄
) (C.1)

where the equality is achieved when γth = γ̄. The integral IRELAY
2 (N, σ) in (4.42) can be

decomposed:

IRELAY
2 (N, σ) =

∫ δ1

0

1

(xσ + γ̄)2
(1−Q(x))Ndx

+

∫ δ2

δ1

1

(xσ + γ̄)2
(1−Q(x))Ndx

+ · · ·+
∫ ∞
δM

1

(xσ + γ̄)2
(1−Q(x))Ndx

(C.2)

where δi > δi−1 > 0, i = 1, 2, · · · I, where I > 0 is a positive integer. Since Q(δi) <

Q(δi−1), we use the minimum of Q-function in each interval of integration to get an upper

bound (C.2):

IRELAY
2 (N, σ) ≤ (1−Q(δ1))N

1

σ
(
1

γ̄
− 1

σδ1 + γ̄
)

+ (1−Q(δ2))N
1

σ
(

1

σδ1 + γ̄
− 1

σδ2 + γ̄
)

+ · · ·+ 1

σ
(

1

σδI + γ̄
)

(C.3)

We use δi =
√
ci log(N) where 0 ≤ ci ≤ 1, inequality (1 − x)N ≤ 1

1+Nx
, and a lower

bound on Q-function Q(x) ≥ κ2e
−x2

, where κ2 = 0.3885 to bound (1−Q(δi))
N :

(1−Q(δi))
N ≤ 1

1 + κ2N1−ci
(C.4)
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Using (C.4) in (C.3), we get

IRELAY
2 (N, σ) ≤ 1

σ

[ 1

γ̄ + σ
√
cI log(N)

+

I−1∑
i=1

(
1

1 + κN (1−ci)
)(

1

γ̄ + σ
√
ci−1 log(N)

− 1

γ̄ + σ
√
ci log(N)

)
] (C.5)

where c0 = 0. Using (C.1), (C.5) in (4.42), and neglecting negative terms, we get (4.47).

When N → ∞, the term involving 1/N becomes negligible, and we get the scaling law

for energy consumption of Theorem 4.
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