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Abstract

This diploma thesis provides an overview of various hybrid vehicle drive modes and control
strategies implemented to minimize fuel consumption. A novel control strategy for a hill climb
and descent journey of a parallel hybrid vehicle using eHorizon road slope information is
proposed that uses particle swarm optimization, a meta-heuristic based optimization algorithm
to optimize power distribution between hybrid vehicle drive units during a hill climb event. A
black box vehicle model is developed in Matlab as an abstract function operating on simple
input-output logic. The control strategy is tested over different scenarios of terrain profiles with
various velocity profiles and battery state of charge parameters. The optimum results of fuel
consumption for each scenario were compared with that of a rule-based controller in Ricardo
Ignite software, which demonstrate the optimality and predictive ability of the new control

strategy over a rule-based controller.
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1 Introduction

The use of fossil fuels has led to an increase in global greenhouse gas (GHG) emissions leading
to global warming. The transport sector accounts for 30.8% of total energy consumption of
which road transport accounts for 85% and 24.6% of GHG emissions. Road transport also
accounts for 71.7% of the total GHG emissions from transport sector in the European Union for
2017, with cars contributing 60.6%, light duty trucks 11.9%, heavy duty trucks and buses 26.3%

and motorcycles 1.2%.[1]

While growing environmental concerns have led to stricter emission legislations, thus pushing
manufacturers and researchers towards electrification of vehicles. While pure electric vehicles
continue to struggle with issues regarding range, price, battery weight and charging networks,
hybrid vehicles seem to be an intermediate choice between the transition from conventional
combustion engine propelled vehicles to pure electric vehicles [2]. Hybrid vehicles have two or
more energy converters and energy storage system (ESS), available on board for vehicle
propulsion. One aspect of hybrid vehicle design is development of energy management
strategies which share power among the multiple sources of energy to meet several objectives

such as minimizing consumption, emission reduction and drivability enhancements.

Besides electrification, autonomous and connected vehicles are other dimensions towards
which the future of automobiles is heading [3]. Increasing demand and research in these fields
make available various tools and information which expand the scope of fulfilling these
objectives. One such tool is electronic horizon or eHorizon which provides connected vehicles
digital maps including information about the road ahead much beyond the visual range of the
driver and on-board sensors [4]. Based on the available information, the future course of the

vehicle can be predicted for improved safety, efficiency and comfort.

This diploma thesis deals with the development of an optimal control algorithm for a parallel
hybrid electric vehicle during a hill climb journey with minimum fuel consumption as the goal.
The reason behind this topology selection was its simple architecture, fewer components and
fewer energy conversions which makes it robust for the application of the discussed
optimization algorithm. The main idea is to design a control strategy for a HEV travelling across
a hilly terrain using road slope information which minimizes fuel consumption for the trip, while
using particle swarm optimization to optimize the power distribution between the engine and

the electric motor for hill climb section of a trip and additionally for generation of the battery



from the engine. The effectiveness of the new control strategy will be compared against a
generic rule-based controller from the Ignite powertrain library. It also investigates the
possibility to use a predictive optimisation strategy aimed at reducing fuel consumption of a
HEV by using eHorizon road slope information and explores the real-time optimization

capabilities of bee algorithm.

1.1 Outline of the thesis
The next chapter deals with a brief overview of classification of hybrid vehicles based on
topology and degree of hybridization. The various modes of a parallel hybrid electric vehicle and

the associated control strategies are discussed.

Chapter 3 briefly describes the types of control strategies associated with energy management
of a hybrid vehicle. In this, the concepts of eHorizon and particle swarm optimization are also

introduced.

Chapter 4 describes the vehicle models created in Ricardo Ignite and Matlab along with detailed

mathematical models of critical vehicle components.

In Chapter 5, the novel control strategy along with its implementation as Matlab programs are
described. This includes the application of an artificial bee colony algorithm for optimal power
distribution between the engine and the electric motor during a hill climb event. The control
strategy is applied to four hypothetical scenarios of hilly terrains, each with its unique velocity

trajectory.

In Chapter, the results of fuel consumption of the new control algorithm are discussed and

compared with a rule-based controller in Ignite.



2 Problems with HEVs

A hybrid electric vehicle or HEV is a hybrid vehicle in which at least one energy converter for
vehicle propulsion is an electric drive (electric machine) and has an electric energy source
(battery, supercapacitor) to drive the electric machine. A vehicle powertrain consists of parts
essential to drive the vehicle — engine, motor generator, transmission, differential, shafts and

wheels.

2.1 Architectures

In order to optimize the energy expenditure of a HEV, it is necessary to understand the operating
modes and architecture of various HEV topologies and the degree of complexity involved.
Depending on the structural arrangement of the driveline mainly the engine and the electric

machine (EM), HEV topologies can be broadly classified into the following:

Generator [ Charger Converter | leadle
- ] motor
Flywheel]l |
Or o
Capacitor,

(a) Serial Hybrid Electric Vehicle

Electric
motor

Battery [C]Converter

Reservoir

(b) Parallel Hybrid Electric Vehicle

]

Charger IConverter]

Battery

Electric

Reservoir —

(c) Series-Parallel Hybrid Electric Vehicle
Figure 1 Topology of various HEV architectures [5]
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2.1.1 Series HEV

Series-HEV (S-HEV) is similar to an electric vehicle or EV with two DC sources — an internal
combustion engine (ICE) — generator group and an Energy Storage System or ESS, usually a
battery pack with a bidirectional DC/DC converter for charging and discharging. Since the ICE is
mechanically decoupled from the wheels, it is possible to perpetually operate the engine at its
most efficient region of fuel consumption and/or emissions, which is the main advantage of
such topology. Depending on the traction power demand, excess energy is stored in the ESS or
energy is provided by the ESS to compensate for the deficit power. S-HEV provides high
performance at low speeds and frequent start stops, but the main disadvantage is energy losses
during multiple conversions and inability to perform efficiently at high speeds, since the driving

is always electric.

2.1.2 Parallel HEV

In Parallel-HEV (P-HEV), not to be confused with PHEV (Plug-in HEV), the ICE and electric
machine (EM) are mechanically coupled such that their combined torque and transmitted to
the wheels via a conventional drive train consisting of gearbox, final drive and differential. The
energy losses are lower compared to S-HEV, because of the mechanical connection. In contrast
to S-HEVs, P-HEVs usually consist of a larger combustion engine and a small but efficient motor
generator unit, since the drive is predominantly by the engine with electric drive being

secondary.

Depending on the size of the EM and ESS, P-HEV can operate in EV only mode, though only for
short duration and at low speeds, engine only mode which is suitable for high speeds, e.g.,
highway driving and P-HEV mode, where EM is used in boost mode, which assists the ICE for

better drivability and performance.

P-HEVs can be further classified as PO, P1, P2, P3, P4 based on the position where the EM is
torque coupled relative to ICE and Transmission in the drivetrain as shown in Figure 2. Based on
the size of the electric machine (EM) and battery, P2 and P3 parallel hybrids can also feature full

electric drive for short distances.
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Figure 2 Topology and features of Parallel HEV configurations based on position of electric machine [6]
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2.1.3 Series Parallel HEV

Series-Parallel HEV (SP-HEV), also known as power split HEV, is a combination of the advantages
of series and parallel HEV. It enables use of downsized electrical components compared to S-
HEV and downsized ICE compared to P-HEV. A major addition is the use of a power-split (usually
a planetary gear system) device which splits the ICE power to drive the wheels and charge the
ESS. The main disadvantages include packaging challenges and control complexity because of

additional degrees of freedom of operation for the individual components.

2.2 Degree of Hybridization

Based on the extent of the degree to which electric energy is used, hybrid vehicles can be
classified as micro (mHEV), mild (MHEV), full (HEV), plug-in (PHEV), battery electric vehicle (BEV)
with range extender engine which charges the battery when discharged or low on charge and
finally BEV with pure electric drive only. Due to relatively small size of battery and electric
machine on the mHEV and MHEV, it is not beneficial to design control strategies because of low
potential for improvement. Full Hybrids and above, on the other hand have enough share
electric operation and demand for optimal control strategies, to fully exploit the benefits of

hybridization.



1. Conventional Vehicle
(ICE only)

2. Micro Hybrids

. (start/stop)

3. Mild Hybrids

(start/stop + kinetic energy recovery)

4. Full Hybrids

(mild hybrid + electric launch + engine assist)

Size of Internal
Combustion Engine

5. Plug-in Hybrids

(full hybrid + electric range)

6. Electric vehicles
(battery or fuel cell)

==

Size of Electric Motor
and Battery

Figure 3 Various hybridization degrees with increasing electrification [7]

2.3 P2 Parallel Hybrid Architecture

P2 and power-split hybrids are the most common hybrid types available on the market because
of the large potential for likely reduction of fuel consumption of about 30 % [8]. This is slightly
higher for P2 because of fewer energy conversions. While power-split hybrids allow more
operational flexibility over P2, though at the cost of increased complexity. Moreover, with a
direct coupling of the motor to the transmission input shaft, means the engine and the motor
always rotate at the same speed when coupled, resulting in a simple model. So, the P2
architecture was selected for this study. Notable HEVs with the P2 architecture include Hyundai
Sonata, loniq, Volkswagen Jetta, Kia Niro. Because of the recency of the available data and the
vehicle itself, the vehicle model used in this study is based on the 2020 Hyundai lonig Hybrid
[9].

Wheel and Brake
Electrical energy transfer

- Mechanical energy transfer

Sl Engine Clutch Motor Transmission

alll .f/ —_— \

Q= I I | | |
- |
\
P Ny

| Differential
Battery Bidirectional Wheel and Brake
DC-DC

Figure 4 Topology of a P2 Parallel Hybrid Electric Vehicle [10]



Figure 4 shows the vehicle model with a P2 parallel hybrid topology. The internal combustion
engine and electric machine are sources of mechanical power as torque, with the former
converting chemical energy of the fuel and the latter electric potential energy of the battery.
Both sources are connected to the gearbox which transmits the torque to the front wheels via
the final drive and differential. The transmission clutch required to shift gears is located within
the transmission housing in the figure. The Clutch also called as engine clutch or eClutch
separates the engine from the rest of the powertrain during electric drive and regenerative
braking. This avoids engine braking during regenerative braking and allows the engine to run in

idle or switched off.

2.4 Hybrid vehicle modes of operation

Unlike conventional vehicles, HEVs, due to their diverse and dynamic powertrain, can work in
multiple modes of operation, depending on the topology and parameters. The choice is usually
made by software logic in the Hybrid Vehicle Controller, sometimes referred to as Energy
Management System (Figure 6). Depending on the state of the engine and electric motor, a

hybrid drive train has several modes of operation:

1) Pure electric (electric only or EV mode): The ICE is switched OFF and the battery provides
the full traction power via the EM.

2) Pure ICE (Engine-only): The EM is electrically switched off and the ICE provides the full
traction power.

3) Hybrid or Electric Assist: Both the ICE and EM simultaneously provide the requested torque
in parallel to the rest of the driveline.

4) Battery charging: The ICE propels the vehicle while simultaneously charging the battery via
the EM working as generator.

5) Regenerative braking: The kinetic energy of the vehicle during braking (or potential energy
during downhill motion) can be used to rotate the electric motor which would act in
generator mode to produce electricity which simultaneously slows the vehicle and charges
the battery.

6) Stationary charging: The vehicle is at standstill and the ICE powers the generator to charge
the battery.

7) Hybrid regeneration: During braking, a part of the kinetic energy is dissipated by friction

brakes and a part is recuperated by regeneration braking

10



2.4.1 Regenerative Braking Strategies

Regenerative braking converts the kinetic energy of vehicle to electric energy by braking though
the electric motor acting as generator. This electric energy can be stored in the battery to be
used later to drive the vehicle. The amount of recuperated energy depends on the type of
regenerative braking strategy applied, which defines brake force blending between the
mechanical brakes and the generator. According to the amount of brake force provided by

regenerative braking and friction brakes, regenerative braking strategies (RBS) can be classified

as:
0.45
0.45
=030 =
et Service brakes 2 0.30 .
S O S et Service brakes
= engilged ’:); O T P
@ b5
2 o
z Ob : Z o1s
M/G regeneration ?M/G torque
0 + _ Compression braking | 0 ‘. Compression braking |
0 25 50 75 100 25 50 75 100
Brake pedal position (%) Brake pedal position (%)
(a) Series RBS (b) Parallel RBS

Figure 5 Regenerative Braking Strategies [11]

Series Regenerative Braking Strategy

With series RBS, as the name suggests, initially as the brake pedal is depressed, as long there is
enough regenerative braking torque from electric machine, S-RBS uses only generator to brake
the vehicle. Further depression of the brake pedal engages the service brakes as shown in Figure
5 (a), when the maximum generator power is reached. With S-RBS, there is always a chance of

capturing kinetic energy, when the vehicle brakes.
Parallel Regenerative Braking Strategy

Parallel RBS as shown in Figure 5 (b) always engages the friction brakes together with generator
brakes, whenever the brake pedal is pressed, in tandem with generator brakes. The ratio of split
is determined by an algorithm which blends the two braking systems such that the braking
action is smooth and seamless. Since a part of kinetic energy is always lost as heat by friction

brakes, P-RBS is inferior to S-RBS in terms of fuel economy.
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3 Review of HEV Control Strategies

For a hybrid vehicle to be truly beneficial over its conventional and electric counterparts, it must
have a control strategy which efficiently manages all the working components involved in
various hybrid modes discussed in Section 2.4. The efficient management refers to setting the
working points of the HEV components, namely engine, electric machine, battery and
transmission such that certain goals are achieved, commonly pertaining to fuel economy,

emissions and performance.

Hybrid control strategy is usually implemented as software instructions called the Energy
Management System in the hybrid supervisory controller which coordinates the operation of all
other low level controllers of each individual components, namely Engine Control Unit (ECU),
Battery Management System (BMS), Transmission Control Unit (TCU) and Motor Control Unit
(MCU) as shown in Figure 6. The hybrid controller acts as a junction between the driver, vehicle

and all other component level controllers.

From the driver From the vehicle

Pn’q Vveh mm# Wpmor
- Energy i = e e r e e ==

Management
System

7}['[) ;SrOC ? ji’ r ?-.‘F.i(?f
"=
Y : L\

ECU BMS TCU MCuU

[ L L L L L T L T T T A

Powertrain
ECU Engine Control Unit BMS Battery Management System
TCU Transmission Control Unit MCU Motor Control Unit

Figure 6 HEV Control Architecture [12]

The presence of multiple sources of energy and the possibility of being able to operate each
source within a finite working range, say speed and load on the engine and electric machine
(consequently the battery) gives rise to the challenge of searching for the optimum working
point for each machine. This gives rise to the concept of Energy Management Strategy (EMS)

which in a broad sense refers to the algorithm being followed by the hybrid controller designed

12



to optimize certain aspect of the hybrid driveline, for instance, fuel consumption minimization

and emission reduction.

Because of the contrast in working principles and operating regions of the electric machine and
combustion engine, it is difficult to develop an EMS in which the ideal efficiency and operation

of all components is guaranteed.

Many studies have been published on control strategies for HEVs. A common goal is to select
optimal driving mode and operate the active components during the selected mode in their
most efficient operating regions. In a broad sense, existing EMSs can be classified as rule-based

(RB), optimization-based (OB) and learning-based (LB) [13].

Since each control strategy and optimization method has its rewards and limitations, an ideal
approach should use a mix of different solutions, forming an integrated EMS (iEMS) which
minimizes fuel consumption and improves performance as shown in Figure 7. Past, present and

future information can act as a bridge among different methods to fulfil optimization objectives.
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Figure 7 Classification of Energy Management Strategies [13]
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3.1 Rule-Based v/s Optimization Based

3.1.1 Rule-Based Control Strategies

A rule-based (RB) strategy refers a predefined set of “if-then” rules to switch working modes
and lookup tables to determine operating regions of active components, namely engine, electric
machine and battery. For instance, a rule-based strategy based on SoC limits for electric drive
or EV mode may have a ‘disable EV’ SoC parameter which disables pure electric drive below a
set SoC, to conserve the battery. This strategy is applied to causal control problems where the

drive cycle cannot be predicted.

3.1.2 Optimization Based Control Strategies

These strategies make use of one or multiple of several optimization algorithms [14] to minimize
or maximize a cost function over a discrete time interval within certain static and dynamic
constraints. An example of a static constraint can be a predefined engine elasticity range, i.e.,
the difference between the maximum and minimum engine speeds between which the engine
is operated by appropriate gearing. A dynamic constraint can be dynamic limits for the SoC
depending on the future information, if available, such as opportunities for regenerative braking
ahead can allow a further drop in SoC. The cost function can be a linear or non-linear
combination of one or more designer’s requirements of the system such as fuel consumption,
emissions, mechanical losses, electrical losses or any other, depending on the application.
Optimization Based strategies outperform rule-based strategies in terms of optimality when

applied to acausal control problems with information about the future route and drive cycle.

ECMS converts a global optimization problem to a local one. The objective or cost function is
the equivalent fuel consumption which is a combination of the actual fuel consumption in the

engine and the converted fuel consumption of electrical power at ESS.

s(t)

Meq(t) = ms () + 77— Ppare(t) [g/s] (1)
LHV
Theqlg/s] : equivalent fuel consumption of the HEV
melg/s] : fuel consumption in the ICE
Qruvl]/g]  :lower heating value of fuel
s(t), : equivalence factor, equivalent fuel consumption of the electrical energy being

drawn from or stored to the battery, also called virtual fuel consumption in the battery

Pyoet (W] : battery electrical power
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The equivalence factor is sensitive to the vehicle and the drive cycle and the success of the
optimization depends on its accuracy. Adaptive ECMS uses a feedback control method to
dynamically tune the equivalence factor for different drive cycles. A modified form of ECMS
called ECMS-CESO [15] is designed to Catch Energy Saving Opportunities across a trip, without

the need for calculations used to predict vehicle velocity and horizon optimization.

3.2 Adaptive and Predictive Control Strategy

Adaptive and Predictive strategies differ from static or offline strategies in the sense that they
have real-time and future information respectively to dynamically alter the states of all
machines. Adaptive EMS uses information from sensors such as cameras, radars and vehicle
surrounding (nearby vehicles), to adapt the control strategy to the surroundings. For example,

coasting when there is a traffic jam or downhill slope ahead.

Predictive EMS uses information about the projected route including information such as
terrain, traffic and anticipated driver behaviour to calculate optimal vehicle control to achieve
design objectives of EMS. The information can be either relayed to the driver via driver
information display and suggest the driver to take certain action for example advise the driver
to release the gas pedal when a potential for coasting is detected [16], or directed to the hybrid

control module which takes action based on the information.

3.3 eHorizon

The term horizon refers to the extent of human vision, which extends to a few 100 metres in
front of the eyes. Hence, a human has only limited sensory prediction about the road. Electronic
horizon (eHorizon) extends the horizon for the vehicle beyond human vision [4]. For example,
eHorizon provides GIS data which includes road topography data such as slope, curvature, speed
limits, etc. eHorizon is a map transmission technology that sends updated maps with real time
information about the road terrain, traffic information, etc. to the connected vehicle. The GIS
data can be downloaded via HD maps corresponding to the vehicle’s longitudinal position
determined by GPS. These maps differ from regular GPS maps for navigation which are two-

dimensional, much less precise and less frequently updated.

If the route is known in advance, either from a planned trip, previous trips or by prediction using
some prediction algorithms (artificial intelligence, machine learning), decisions that are optimal

in terms of fuel consumption can be made and actions taken. The distance for which the data is
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available is termed the horizon length and the maximum distance available currently is shown

in Table 1.
Table 1 Attributes of eHorizon data as per ADASIS v2.x protocol [17]
Maximal Horizon Length [m] Nominal Resolution [m]
Static Data 8192 (13-bit) 50
Dynamic Data 4000 250

Most control strategies work on past and current data alone, with no knowledge of the future.
Electronic horizon (eHorizon) [4] provides future information such as road topology, traffic and
environment predictions on a future route, which can be harnessed to improve performance of
an iEMS. Notable works include IMPERIUM project which works in the direction of improved
efficiency of connected vehicles using eHorizon information. Some relevant works include the
various proprietary predictive cruise controls by major truck manufacturers which optimise the

vehicle trajectory on a hilly terrain to save fuel. [18], [19]

3.4 Meta-heuristics

Heuristic algorithms rely on underlying information about the problem to which it is applied.
For example, heuristic optimization strategies for fuel consumption minimization use explicit
set of rules to restrict the search area. For example, setting engine operating limits within a
certain rpm range. Heuristic algorithms use readily accessible though loosely applicable
information to solve a control optimization problem. Heuristics are problem-specific, i.e., an
algorithm for one problem may not guarantee a solution when applied to a different problem,

like the example above, which is specific to an engine in a specific vehicle.

Meta-heuristics unlike heuristic algorithms are independent of the of the problem
characteristics and hence also known as black box optimization techniques. Meta-heuristic or
Stochastic search methods such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Bee Algorithm (BA), possess global optimality and robustness and are thus gaining attention
[20], [21]. Despite low capability of real time implementation and no guarantee of global
optimality, they possess high optimality [22]. Another advantage of meta-heuristics is the
possibility to analyse the properties of the meta-heuristics itself, like the influence of

metaheuristic-specific parameters on the search behaviour. [20]
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3.5 Particle Swarm Optimization

PSO is based on the collective behaviour of social organisms, called particles, moving in groups,
such as colony of bees, ants or flock of birds, etc. These social groups have a natural inclination
to optimally perform group tasks like bees foraging for food. Members of a group interact within
themselves by sharing information about their position with their local neighbours. When
applied to optimization problems, the position of each particle corresponds to a discrete value
of control parameter to an objective function. Figure 8 shows the sequence of finding global
minima across a two-dimensional search space, the boundaries of which are set by the
constraints of the optimization problem. The initial positions of the particles are randomly
assigned and with successive iteration, the particles communicate among themselves and move
closer to the optimal solution which minimizes or maximizes the objective function. The
particles move with a velocity indicated by the length of the arrows which is proportional to the
distance from the global minimum. The number of particles, number of iterations and initial
positions of the particles are all tuneable parameters which define the performance and
accuracy of the PSO algorithm. The communication between the particles in solving the
collective task is implemented as probability functions based on evolutionary algorithm to select

the fittest solution and reject the rest.

Figure 8 Simulation of a particle swarm searching for global optimum of a solution [23]

The main advantages of PSO include:

e Simple to understand and implement

e Fewer parameters need to be adjusted

e Fast convergence speed

e Strong capability of local search
In this text, a category of PSO, Artificial Bee Colony (ABC) based on the behaviour of artificial
bees in a colony with the collective objective of achieving minimum fuel consumption with a
variation of control parameter (in this text, motor torque), is explored. The optimization

algorithm is invariably referred to as Bee Colony Optimization (BCO).
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4  Vehicle Model

A hybrid electric vehicle simulation model is required to validate and analyse a control strategy
or EMS, or in this context, an optimisation algorithm. Since, bee colony optimisation belongs to
meta-heuristics, it requires a black box function which mimics the vehicle model for which
optimisation is to be performed. The result of the optimisation is a power distribution between
the engine and the electric motor across road segments for a given horizon length. The
characteristic maps of engine, motor and battery were digitized [24] using Origin 2019 data
analysis and graphic software [25] using the default parameters [26] from characteristic plot
images of various components used in previous studies. All source images are mentioned in

Appendices 11.1 - 11.5.

4.1 Vehicle Specifications
The vehicle specifications are closely based on the loniq Hybrid with a kerb weight of 1361 kg.
A payload of 200 kg (2 passengers + luggage) was added and the total vehicle mass was rounded

to 1600 kg. The dynamic tyre radius was calculated from the tyre specifications.[27]

Table 2 Vehicle Parameters: Hyundai lonig Hybrid [9]

Description Symbol Value Unit
Total vehicle mass m 1600 [ke]
Aerodynamic drag coefficient C, 0.24 -
Vehicle frontal area S, 2.63 [m?]
Dynamic tyre radius Tayn 0.308 [m] [28]
4.2 Engine

The engine is a 1.6L naturally aspirated GDi unit from the 2020 loniq Hybrid working on the
Atkinson cycle, with a peak power of 77 kW at 5700 rpm and peak torque of 147 Nm at 4000
rom [9]. The torque output T, at the engine shaft is the algebraic sum of the indicated or
combustion torque T4 and friction torque Ty, for a given engine speed n, as shown in

Equation ( 2).

Te (ne) = Tind(ne) + Tfric(ne) [Nm] = f([rpm]) (2)
Pe(ne) = % "Nt Te(ne) [W] = [rpm] [Nm] (3)
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Fe __ P& W]

T Pruet iy Quay = lgs~*11Jg7"] 4
BSFC (n,, T,) = 3.6 - 106 %f [g kWh1] = % (5)
where,
N, : engine shaft rotational speed
T, : engine output torque at shaft
P, : engine output power
Pryer : power of the fuel consumed to produce power P,
e : engine fuelling rate to achieve desired power

Qruyy = 43.4 MJ/kg :lower heating value of the fuel [29]

Ne : overall engine efficiency

It is modelled as a static 2-D map with brake specific fuel consumption (BSFC) as a function of
engine speed and torque as shown in Figure 9, which indicates the efficiency of the engine in
converting chemical energy of the fuel to mechanical power as in Equations (4 ) and (5). The
map was digitized from the image of a BSFC plot used in a recent control analysis study of the
same vehicle [26]. The BSFC map was converted to a engine fuel map as shown in Appendix 11.1
using Equation ( 5 ), to be compatible with the IGNITE ‘Basic Engine’ component. The torque is
a function of the engine speed and is read from a speed v/s torque 1-D lookup table. The lines
of constant power indicate the power output of the engine for any given vehicle velocity and
the location of the operating point on this line indicates the degree of gear selected or the gear

ratio.

Engine Idling
Since the EU safety regulations do not allow the engine to be switched off during downhill
driving on a highway, the fuel consumption data for the idling region needs to be estimated to

extend the map. This means that at zero fuelling rate,
Te (ne) = Tfric(ne) (6)

Assuming zero fuelling rate for the friction torque line in Figure 9 and using Equation ( 6 ), the
fuel map was extended to fill the missing data till the 0 Nm torque limit. For simplicity, the
friction torque was assumed to be constant -15 Nm for all speeds, since the idling speed is the

only point of concern.
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Figure 9 Digitized Engine BSFC map of loniq Hybrid [26]

4.3 Electric motor generator

Since the electrical data were not available for the lonig Hybrid, the electrical system of the
2011 Sonata Hybrid was used instead, since they are closely similar. The AC motor requires an
inverter to convert the DC electric power from the battery to AC and vice-versa. The electric
motor converts the electric potential of the battery to mechanical power output. It also
functions as a generator during regenerative braking and engine generation, to charge the high

voltage battery.

Table 3 Comparison of Electrical system of loniq Hybrid and Sonata Hybrid

Parameter loniq Hybrid 2020 [9] Sonata Hybrid 2011 [30]
Type PMSM PMSM

Peak power 32 kW 34 @ 6000 rpm

Peak torque 170 205

W] = [rpm][Nm] ~ (7)

s
ngMech = % ' Tlmg ) ng (nmg)
Pm.gMech
= MGMech (8)
Nmotor ngElec
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ngElec

Ngen = 15— (9)
mgmech
where,
BPrguech : Mechanical power at the motor generator shaft
Prgeiee : Electrical power at the battery terminals

Convention of T, positive (+) for motor regime and negative (-) for generator regime, is

considered.

Numotor» Ngen - Combined inverter motor efficiency in the motor and generator regime

respectively

The motor is modelled like the engine except that its efficiency means the ratio of mechanical
power to electrical power during the motor phase ( 8 ) and vice-versa during the generator
phase ( 9 ). The contours in Figure 10 indicate combined efficiency of the motor and inverter.
The generator characteristics are assumed to be identical to the motor. The operating region is

limited below the maximum torque line by the control strategy.
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Figure 10 Combined Motor Inverter Efficiency Map (motor regime) of Sonata Hybrid [30]

4.4  Battery

The battery data correspond to that of 2011 Hyundai Sonata Hybrid in Appendix 11.5. Beginning

of Test (BOT) refers to the test performed when both vehicle and battery are new while End of
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Test (EOT) is the test after approximately 260,000 kms of on-road testing [31]. The test results
are about a decade old and considering the development in battery technology, the battery
characteristics at BOT seem to be suitable for a more recent and moderately new vehicle. The
battery capacity is estimated as 1.4 kWh (5.3 Ah) with operation limited between 20 — 80% SoC,
to ensure battery SoH. The battery is simplified as a single cell representing the full battery pack

with a constant coulombic efficiency of 97%.

Table 4 High Voltage Lithium-ion Battery Specifications

Parameter Symbol Value Units
. Conax 53 [Ah]
Capacity
Eax 1.4 [kWh]
Nominal voltage Viom 270 [V]
Coulombic Efficiency Ncoulomb 0.97 -

4.4.1 Battery Electric Model

In this study, a 0™ — order equivalent circuit model, also called Rint model as shown in Figure 11
is used. It comprises of a voltage source V,. connected in series with an internal resistance 7;,;,
the values of which are digitized form the plots in Appendix 11.5. The temperature effects on

the battery characteristics are not considered.

320 . | 0.7
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== Charging Internal Resistance

300 -»-s:Discharging Internal Resistance 0.65
= 0.6
w . 106
g 280, g
= =
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%‘ 260 I
& 05 @
£ 240 £

(3]

8— 0.45 CIEJ
> +—
@ 220 . £
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T
i}

200 - 0.35
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Battery SoC
Figure 11 Battery characteristics of Hyundai Sonata Hybrid [31]
Pyare = ngElec 174 (10)
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The electric power at the battery terminals Pg,¢; is equal to the electric power of the motor
generator. The sign of the battery power is in accordance with the motor electric power —
positive during charging and negative while discharging. Using the battery characteristics in

Figure 11,
Voc = f(SoC) : Battery open-circuit voltage, voltage at the battery terminals at no load

Rin: = f(SoC, sign(Pyq::)) : Battery internal resistance

? Pjoul ? P]oul
+
Rint ® : Rint |—— @<-mmmem ;
Peow i Peow i
1 1
Voc Ieff i/term Pyare () Voc lfeff Vierm Py ()
| 1 ;
.<_________.! H
— - — ‘_
Iterm(_) Iterm("')
(a) Motor phase (a) Generator phase

Figure 12 Equivalent Circuit diagram of battery electric model with battery losses (not to scale)

Applying Ohm’s Law to the equivalent circuits shown in Figure 12, terminal voltage
Vierm = Voc = ltermRint [V] = [V] - [A][2] (11)

Ppatt = Vierm * Iterm (W] =[V] [A] (12)
Combining equations (11 ) and (12)

Itzerm + Voc lterm — Ppaee = 0 (W] (13)

and solving to get the battery terminal current

I _ —Voc — \/Vozc + 4 Rint Ppatt [A] (14)
term 2 . Rmt

The sign of I;,,-,corresponds to the nature of state change of the battery, positive for charging.

The length of arrows in Figure 12 roughly correspond to the relative magnitude of the quantities.
4.4.2 Battery SoC Model and Losses

The change in SoC is determined by Coulomb counting method, where the change in battery
capacity in Coulombs is equal to the amount of charge being moved in and out of the battery as
electric current during charging and discharging respectively. This was done since Ignite uses

this method for soc calculation.
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The actual current inside the battery (rate of charge storage and discharge), is different from
the terminal current, due to irreversibility of chemical reactions occurring inside the battery.
This effective current is the rate of change of electric charge inside the battery. This means that
during charging, the actual charge being stored in the cell is less than the charge being pushed
into the cell at the terminals (Ioffective < lterminar)- Similarly, during discharging, the net
charge discharged from the cell is higher than the charge available at the terminals

(Ieffecti,,e > Iterminal)- The rate of change of stored charge, effective current:

Lepr = lterm - U%ﬁ 4] (13)
SO0Cringr = SOCinit + lesy .;Z%Cr:ax (16)
where,
Losr : Effective cell current in the battery
SOCinit : Initial SOC at time = 0 seconds
SO0Csina : Final SOC after time tg,, seconds

4.4.2.1 Coulomb Loss
Coulomb loss power P.,,,; accounts for the energy lost due to irreversibility, determined by the
change in entropy of the electro-chemical reactions, determined by coulombic efficiency. This

loss is manifested as heat leading to temperature increase of the battery cells.

Peowr = —Voc * | Ierm — Lesy (W] (17)
Prowt = —IfermRine (W] (18)
Pross = Peowt + Prow (W] (19)
Petec = Ppart + Pross (W] (20)

4.4.2.2 Joule Loss

Joule loss power P,,,,; accounts for the resistive losses due to heating of the battery internal
resistance when current is drawn. In addition to thermal dissipation, Joule loss also leads to a
drop in battery SoC, indirectly since Joule loss causes an increase in the terminal current, which

in turn increases the effective cell current hence causing drop in SoC.
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Both Joule loss and Coulomb loss are always negative with respect to the battery power P4+,
i.e., there is a loss of power either way while charging or discharging, leading to P, s being

always negative.

4.5 Transmission

The gearbox of loniq Hybrid is a 6-speed DCT with two final drive ratios (4.188: 15t — 4", 3.045:
5t —reverse). A single final drive is used with the 4" and 5™ gears accordingly adjusted, to keep
the model simple. The efficiency data was not available and are hence suitable assumptions are

used.

Table 5 Transmission specifications of Hyundai loniq Hybrid [9]

Gear (G) Ratio (1) Efficiency (17¢)

1 3.867 0.95

2 2.217 0.95

3 1.371 0.96

4 0.930 0.96

5 0.695 0.97

6 0.558 0.97
Final Drive 4.188 (rpp) 0.97 (MFp)

4.6 Longitudinal Vehicle Dynamics
The longitudinal vehicle model governs the longitudinal position x, velocity v and acceleration

a of the vehicle.

F°’Ward

Traction

—> 0 -~

Figure 13 Longitudinal Vehicle Dynamics Model
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Table 6 Environment parameters for the vehicle

Constant Symbol Value Unit
Rolling resistance coefficient Croll 0.015 -
Ambient air density P 1.2 [kg/m3]
Acceleration due to gravity g 9.81 [m/s?]

The external longitudinal forces on a vehicle moving with velocity v are:

Rolling resistance Frout = Crou M g COS [N] (21)

Gradient resistance Fs1ope = m g sina [N] (22)

dynamic d 1 2 (23)
Aerodynamic drag Faero = 5 PSxCx¥ [N]

Applying Newton’s law to the vehicle longitudinal direction,

dv
mE = Frrac = Frou(@) = Fyero (UZ) - FSlope (@) — Fyrake [N] (24)

dav . . . dx . .
where, a = gl the acceleration on the vehicle and v = s the velocity

Frrqc :tractive force generated by the powertrain on the wheels

Fgrake : brake force on the wheels

Using wheel dynamic radius 74, from Table 2, the wheel angular velocity, torque and power:

v [ms~]
Wy, = -1y - - (25)
Taym [rad s™*] il
Trrac = Frrac Tayn [Nm] (26)
Prrac = FrracV (W] = [N] [m 5_1] (27)

For a hybrid vehicle with regenerative braking ability the total brake force is the sum of the

mechanical brake force Fgyqke,,,., aNd regenerative brake force FBrakeRegen' The maximum

brake force is assumed to be 10 kN.

Ferake = FBrakeMech + FBrakeRegen [N] (28)
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Using backward kinematics from the wheels to the traction source, the angular speed and

torque required at the gearbox input:

Wypxinput = Ww TFpTG [N]

TTraction [Nm]
e "M "Trp " NFD

TReq =

(29)

(30)

For a P2 HEV considered in Section 4.1, the angular velocity of the engine w,, motor generator

wygand gearbox input shaft wgpxmpy are given as

— — -1
We = Wng = Wypxinput [rad s™*]

T, is the engine torque and Ty;,¢0r IS the motor torque output.

(31)

During regenerative braking, the available braking torque at the generator shaft is given as

TTraC
Taviregen = — 'NMrp "Tg [Nm]
TrD " TG

For a Parallel HEV with multiple driving modes described in Section 2.4,

Boost or Electric Assist: Treq = Te + Tmotor [Nm]

Generation while driving: Treq = Te + Tgen [Nm]

The total energy consumption E (s) for a distance s is given as

X

E(x) = fF(x) - dx /]

0

(32)

(33)

(34)

(35)

where, F(x) is the net tractive force required to drive the vehicle as function of distance x

from initial position 0.
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4.7 IGNITE Vehicle Models

Since this thesis was part of my internship at Ricardo, the vehicle model was built in Ricardo
Ignite software which is a physics-based simulation package for complete vehicle system
modelling and simulation with a vast library of various powertrain components and example
models. An existing model ‘midsize p2 hybrid’ from the examples library of Ignite software as a

platform to build the vehicle model based on the characteristics described in Section 4.

4.7.1 IGNITE Model with default rule-based controller

This model simulates the longitudinal dynamics of a vehicle based on driver accelerator and
brake pedal inputs. The driver is modelled as a Pl controller simulating the accelerator and brake
pedals to follow a given drive cycle. The ‘Parallel Hybrid Vehicle Controller’ (working described
in Section 5.5) manages the various hybrid modes and generates appropriate demands for the
engine and motor with distribution based on fuzzy rule-based strategies. The ‘Shift Strategy’

selects suitable gear according to a pre-defined speed and driver demand lookup table.

TransmissionCqntrollerDiscrete ParallelHybridVghicleController ShiftStrategy = 4’@'

HorizonEnd Terminate

Ba iumlde reakout_INV

BasicVehigheBreakout
[

Power Traction
Driveshaft

BasicVehicleGrade

Ground

Figure 14 IGNITE Vehicle Model with Default Rule-Based Controller

4.7.2 IGNITE Model with Novel Control Strategy

This model (Appendix 11.8)lacks the hybrid controller and shift strategy from previous model
and is configured to receive a velocity, motor demand and gear as a function of distance
travelled in metres. The driver demand signal is bypassed to the engine as engine demand to
follow the input speed profile, by providing the deficit (Pqc — Prot) OF excess (Perqc + Pyen)

power.
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5 Description of Control Algorithm

The control algorithm will be tested for various terrain profile scenarios with a variation of
velocity and SoC parameters to find the optimum combination for each scenario. The horizon
length is the extent of the horizon, i.e., the distance ahead of the vehicle till which eHorizon
data is available. The horizon is divided into finite segments of equal length xRes and the nodes
are counted from 1 till nSeg. As described in Section 3.3, the maximum horizon length is

estimated as 8000 m. The term script refers to Matlab scripts.

5.1 Terrain Scenarios

Four different hypothetical terrain scenarios are considered as shown in Figure 15, to test the
algorithm. Each scenario consists of a total horizon length of 8 km with a mix of flat, uphill and
downhill sections. To keep calculations simple, a constant grade is considered for each section.
The maximum grade was chosen to be 8% to roughly comply with a typical highway as shown
in Appendix 11.7. The script createTerrain.m takes the following input and creates 4 road
profiles with 4 equal sections as shown in Figure 15 and saves the output as a lookup table of
grade and altitude of the road against distance {x [m]: z [m], grade [%]} as terrain_data.mat.

The x resolution of the terrain data is parameterized and was considered 10m.

5.2 Drive Cycles

The initial idea was to find the optimum velocity profile that minimizes fuel consumption, but
that would greatly increase the complexity of the power distribution algorithm described in
Section 5.4.1. Since that speed profile is not known and optimization of velocity is difficult, a
quicker option is to test with different parameterized speed profiles and select the optimal
velocity profile out of a set of pre-defined profiles. The drive cycles for each scenario are linearly
varying with respect to time based on conventional cruise control velocity profiles across a hilly

road on highways. [4], [32]

Table 7 Drive Cycle Parameters

Parameters Symbol

Entry speed at beginning of horizon VEntry
Exit velocity at end of horizon Vit
Minimum speed VMin
Maximum speed Umax
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Figure 15 Velocity Profiles for Various Scenarios of Hilly Terrains

The script createDriveCycle.m takes the velocity parameters in Table 7 as input and creates a
drive cycle for each scenario as shown in Figure 15. The pre-defined velocity profile is saved as
dc_data.mat, as a lookup table of speed, acceleration and time against distance

{x [m]: t [s],v [km/h], a [m/s?]}.

The script createHorizon.m takes the following inputs and creates an input file horizon.mat with
the necessary horizon parameters and indexes the drive cycle data against each segment node
from 1 till nSeg + 1 segments obtained using segment resolution xRes, from position 0 till the

end of horizon, in this case 8000 m (Section 3.3). This is done to make use of Matlab array
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indexing for faster computation. There is an additional parameter accOverride [0 / 1], which

when enabled [1], allows free coasting as described in Section 5.3.1.

Table 8 Horizon parameters

Parameters Data file / Symbol
Vehicle parameters vehdata.mat
Terrain profile terrain_data.mat
Drive cycle dc_data.mat
Segment resolution xRes™ [m]
Initial SoC SoCnit
Minimum SoC below which boost is disabled SoCyin
Maximum SoC above which generation, regeneration is disabled SoCyax

* xRes is a universal parameter used across all sub-functions using the horizon data.

5.3 Black Box Vehicle Model

Since, bee colony optimisation belongs to meta-heuristics class of optimisation, it requires
multiple iterations of simulation with variable parameter combinations to search for the optimal
solution. This method when applied to a physics-based real time simulation model such as in
IGNITE, Simulink, etc. takes hours of computation time to find an optimal solution, since these
are designed to provide nearly continuous output using small discrete time intervals to simulate
a given time — velocity based drive cycle such as WLTC. This limits the use of meta-heuristic
algorithms to offline optimizations [33] and parameter tuning [34]—[36]. This combined with
their inevitable pre-processing time overhead, bottlenecks the otherwise fast computation time

of meta-heuristics, making it unsuitable for real-time predictive applications.

Thus, it is required to use a minimalistic black box model of the vehicle with all the essential
stakeholders of the optimisation problem — vehicle, engine, motor, battery, gearbox, shift
strategy. This model when simulated over a given discrete time or longitudinal position interval,
must possess near identical dynamics characteristics to that in IGNITE. The purpose of the black
box vehicle model is to act as a simple function that converts a given input (in this case, motor
demand) to outputs that constitute the cost function (in this case, fuel consumption over a finite

distance).
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Figure 16 Representation of segments, nodes and x coordinates

The black box vehicle is defined as a script Fcn.m which takes the inputs and sequentially
evaluates each sub-function as shown in Figure 15. The subscript i refers to the position at start

of segment and i 4+ 1 at the end of segment as shown in Figure 16.

The black box function sequentially invokes each sub-model functions beginning with the
evaluation of traction power required for the given velocity v; and road slope corresponding to
segment iSeg. Subsequently, the corresponding power required at the gearbox input, motor
power, engine power, battery electric power and SoC and the optimal gears are selected finally

returning the outputs as shown in Figure 17.

Table 9 List of inputs and Outputs for black box vehicle model

Symbol Description Units / Range
Inputs
iSeg Segment number [1, nSeg+1]
v; Velocity at start of segment [km/h]
So(; SoC at start of segment [0, 1]
mgd,; Motor generator torque normalized to maximum motor torque [-1, 1]
G; Gear at start of segment [1, 6]
Outputs
Vig1 Velocity at next node [km/h]
So0Ciyq SoC at next node [0, 1]
FCseg,,. Fuel consumed for the segment (8]
Giiq New gear for segment iSeg
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Figure 17 Overall scheme of Black Box Vehicle Function

5.3.1 Traction power

Theinput iSeg is used as an index to find the segment boundary nodes (i, i + 1),corresponding
to position (x;1, X;+1) and subsequently fetch the acceleration a; for the segment and grades

at the segment nodes. The input ¢; is the mean grade of the two nodes is used to evaluate the

gradient resistance Fgope-
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To allow coasting downhill, a sub-model sets the acceleration equal to that due to the net
resistance forces on the vehicle, when the gradient resistance Fgj,,, exceeds the other
resistance forces Fr,;; + Faero resulting in a net forward force on the vehicle. This allows free
coasting to quickly achieve the maximum speed resulting in a higher recuperation potential

compared to a linear velocity profile on a descent.

X; a; Vi ___h Myheel 50 If:’

3
Fnet = FRGII + FAE?"D + Fslope

Coasting

2 .2
| Vign — Vg
- 1 —_— B

2(Xppq —X;)

Y

Fyoc = ma;
k J

Ftrﬂc = Fner +Facc

Ttrac = Ftrac ) rdyn
Viea = W

tsgg = a
L

Figure 18 Traction power calculation flowchart

Acceleration at node i is currently using lookup table of drive cycle. Can be alternatively
overridden as a parameter (using accOverride flag). The net resistance force is calculated at the
wheels (excluding F,..). To enable coasting downhill, a coasting sub-model which, when

enabled via the Coast flag will override the acceleration input to allow free coasting.
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The velocity at the next node (v;;;) is calculated and constrained by velocity bounds
(parameters v,,in, Umax)- If the final velocity (v;,,) does not follow acceleration input, the
acceleration qa; is recalculated to comply with v; . The acceleration resistance from the final
a; is calculated. The main outputs are the wheel angular speed n,,,0.;[FPM] and traction torque

Tirgc [Nm].

5.3.2 Shift Strategy

The shift strategy consists of 3 parts — the initial pre-selection of feasible gears, finding the
optimal gear and shift decision. The gear selected at node i, G; is denoted as G-, in the context

of shift.

5.3.2.1 Pre-selection of feasible gears

The power (speed, torque) at the gearbox input shaft is a function of the selected gear G;.
Since the gearbox has a discrete number of gears, it is possible to use MATLAB vectorization to
evaluate important variables required to select optimal gear, for all gears and then eliminate
gears based on feasibility of each individual component (i.e., motor, engine, battery). Thus,
initially all gears are deemed feasible and all subsequent values are a matrix of values, with

each row corresponding to a gear. The initialised values are shown in Table 10.

The set of feasible gears {Gp.qs} is reduced using the following constraints:

Ngbxinputmm < Ngbxinput < Ngbxnputmgy [rpm] (36)
_ngmax(nmg) < ng < ngmax(nmg) [Nm] (37)
T, .(=40Nm) <T, <T, (n.) [Nm] (38)

where, Ngpxmput,,;,, = 1700 oM, Ngpymput,,,, = 3500 rpm are the minimum and maximum

gearbox input shaft speeds as the boundaries for downshift and upshift respectively.

MGmax : maximum motor torque
Tengim : minimum engine torque below which engine is disconnected by the eClutch

Teng, . (Me) : maximum engine torque at the given speed n,

The gearbox input speed limits correspond to the engine operating speed range in Section 4.2.
The maximum engine and motor torques are read from the maps in Figure 9 and Figure 10 and

the minimum torque for motor is set as 0 Nm while for engine it is set as 40 Nm, since operating

35



below this pushes the engine into regions of low efficiency and the loss in efficiency increases
rapidly with decreasing torque as shown in Figure 9. The engine is thus not allowed to operate

in boost mode below this torque and the deficit torque is filled by the motor.

Table 10 Optimal gear initialization table

Component Symbol Initial value
G [123456])
Transmission Ngpx [6x1]
Tgbx [6x1]
Thg 0
Motor Generator Mg 0
Pbatt 0
eClutch 0 [Disengaged]
N, Idle [1000 rpm]
Engine
T, Idle [0 Nm]
my Idle [0.16 g/s]
SO0Ciyq S0C¢;
P 0
Battery coul
Pjoul 0
Pbrake,mech 0
Pfuel 0
Pelec 0
Optimal Gear Selection 0
Shift Strategy Narive
Gopt 0
Gsel 0

5.3.2.2 Finding Optimal Gear

When more than one gears are feasible, the gear with the maximum driveline throughput
efficiency is the optimal gear G,,,; as shown in Figure 19. This efficiency refers to the ratio of the
total output power to the total input power, the sense of which changes according to the hybrid
mode. The total power at the gearbox input is the algebraic sum of the engine power and motor

generator power (sign indicates regime) and at the wheels is the traction power.
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5.3.2.3 Shift Inhibit Strategy
Early simulations revealed frequent shifting, sometimes oscillations between multiple gears.
The reason was location of motor operating point in regions of low torque where in the motor

map in Figure 10, where efficiency changes are steep.

The shift inhibit strategy prevents shifting into the optimal gear if the optimal gear is different
from the current gear. It works by checking a series of trade-offs iteratively by preferring each
intermediate gear starting from the current gear, as shown in Figure 20. The trade-offs are
based on the initial results and sensitivity analysis and work well for the simulations described
in Section 6.3. The corresponding message is stored indicating the reason for the shift inhibit

operation, shown in the blue boxes.

] Polec = Ppatt + Peowr + Pjaui
P_fue! = mf ' LHL‘}

Ngegrs = 1

ERROR Message
Pe!ec+Pfue! =0 8

Gopt = Greas = Only Feasible Gear

_ P!‘r-::c _ Ptrr::r: + Pglgc
ndrr’ve - P P ndrtUGggngratjgn - P ?}I . = ———
fuel + Petec fuel drivéregen

: Overall driveline throughput efficiency

Gopt = G {Max(Ngrive)}

Figure 19 Optimal Gear Selection Flowchart

The algorithm in Figure 20 makes it possible to check for all intermediate gears though only

following cases have been implemented in programs:
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For difference in gears:
1 - check for G.,;- only, 2 —check for Gy +/-1 towards G

Cases with difference > 2 are unlikely to be encountered during any of the scenarios.

This works well to prevent unnecessary shifting in all cases. The rare cases of oscillations are
because of the bee colony being unaware of the impact of shift operations on its associated cost

function, i.e., instantaneous fuel consumption.

/ chr: G opt /

chr € {GFeas}

Current gear not feasible
Shifting required

h 4

k= Gopt: - chr
/\ No
> k>0 > Gser = Gopt
Yes
k
Gpref = Gopt - (k)m
Yes — -
Narive(Gopt) — Narive (Gpres) < 0.01 Efficiency gain < 1%

No

Yes
|Pbatt(Gopt) - Pbatt(ch.r)l < 100 APBatt < 100W

No

Yes
Te(Gopt) > 0 AND T.(Geyr) = 0 —»  Keep Engine OFF

No

Yes
eClutch(Gey,) # eClutch(Ggpe) Keep eClutch state
No
A
k=k-1 Gser = Gpref

Figure 20 Optimal Gear Shift Inhibit Flowchart
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Figure 21 Power Distribution Flowchart for Hybrid Mode and Motor Generator Mechanical Power
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5.3.3 Optimal hybrid operating mode and motor control strategy

The control strategy works with the motor being controlled explicitly by the independent
variable mgd, while the engine works to fill the deficit torque Tgeq — Trng- The appropriate

hybrid mode is chosen based on the values of the traction power and motor generator power.

This sub model represents motor generator logic to calculate the motor generator torque
from the inputs to the main model function (Fcn.m). As shown in Figure 21 Power Distribution
Flowchart for Hybrid Mode and Motor Generator Mechanical Power,the main inputs are
torque request Tg,, at the gearbox input for each feasible gear and the motor generator
demand. Based on these values, the motor mechanical power is calculated which acts as an

input for the next sub-model (5.3.4).

5.3.4 Engine control strategy

After the required torque and motor torque are defined, the remaining torque is provided by
the engine subject to constraints of speed and torque. If the engine torque is below the limit
defined in Section 4.2, the engine is set to idle and the motor torque adjusted according as

shown in Figure 22.

Tequ = TReq - ng

Toreq < Temax@Tighy Eliminate gear(s)

Low engine demand cut-off

ng = Tqu
eClutch =0
T.=0
N, To, 1t (Idle)

Y

eClutch =1

n =n Keep initial values:
T _QT_ gb‘} eClutch =0
¢~ "Req — mg n,, Ty, e (1dl
1y = f(n,,T,) e Te Ty (1dle)

Figure 22 Power Distribution Flowchart for Engine State and Mechanical Power
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5.3.5 Battery

This sub-model is constructed using equations of battery model in Section 4.4 calculating all the
electrical quantities from the motor mechanical power. The main outputs are the motor

efficiency, the change in battery SoC and battery power losses.

5.4 Control Algorithm for Various Scenarios

From Section 5.1 and 5.2, it is evident that the different terrain profiles and velocity trajectories
demand different control strategies each specific to the characteristics of the road profile
ahead. The initial section of flat road has a constant velocity till a change of slope occurs. For
uphill sections, boost or EV assist is used for which the motor power follows the output of the
ABC algorithm, shown as BCO Boost in Figure 23. For downhill sections, the velocity profile in
Section 5.2 is overridden to accelerate the vehicle by free coasting and then regenerative
braking begins once the vehicle reaches maximum velocity v, In cases where the SoCis lower
than the initial SoC at the end of the terrain journey, a generation strategy described in Section

5.4.2 is used to top up the battery to the initial capacity at the beginning of horizon.

soc
‘ Socml‘n
| Engine only BCO Boost Coast + Regen BCO Generation
Engine only Coast + Regen BCO Boost Engine only
| Engine only BCO Boost | BCO Generation
SON
Engine only | Coast + Regen | BCO Boost

Figure 23 Control Strategies for various scenarios of hilly terrain
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5.4.1 Working Principle of Artificial Bee Colony Power Algorithm for EV / Boost

The goal is to find the optimum motor demand for a section of hill climb, such that the fuel
consumption for that section is minimized. The following artificial bee colony algorithm is
constructed from an open-source implementation of the ABC algorithm in MATLAB [37]. Since
the final SoC at the end of the horizon must be same as the initial SoC at the beginning of horizon

for fuel consumption results to be directly comparable as grams.

Based on the input parameter, nPop number of bees numbered b =1,2,3,..,nPop are
assigned the task of finding the optimal solution, whose job is to find the optimum trajectory by
varying position Pos;, between Pos,,;,, and Pos,,x with a parameterized Step that results in a
minimalization of the cost function C,, for each bee b, as shown in Figure 24. In this section the
segments are denoted by the variable i, not to be confused with the node denomination in

Section 5.3.

A bee has two major attributes: Position — represents the value of input variable of to the black
box function, in this case motor demand and Cost — represents the output value of the black

box function, in this case Cumulative Fuel Consumed after traversing through nSeg segments.

The size of the solution space thus becomes:

. P0S,qy — POSmm\™ %9

( Step )

Posmax O ’p""Q\\ O O O O O
X OO0 O 0 O O O O
$ O O O Ot 0 0 0
5 .0 0 0 0070
8 Q0. © O .0

| . 0= O

Posmin b

i=1 2 3 4 5 .. .. nSeg
Segments

Figure 24 Representation of bees searching the solution space across segments for the global optimum
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5.4.1.1 Initialization

The aim is to search for motor demand between the range [0 — 1], with parameterized step —
say [0.2] iteratively for each segment of a given horizon — thus the sample size of search space
is the set {0, 0.2, 0.4, 0.6, 0.8, 1}. The optimum demand is the one that results in minimum
cumulative fuel consumption at the end of the horizon. For a vehicle horizon, the horizon needs
to be discretized into a finite number of segments, such that the dynamics of the vehicle are
respected. The position thus becomes a vector of values for each segment spanning from the
segment node (beginning of segment) for a distance of xRes ([m] parameter). The cost is also a
vector of values for each segment, the cumulative sum of which at the end gives the cumulative
fuel consumption or the aggregate cost function. Thus, the black box function described in
Section 5.3, must be sequentially invoked for each subsequent segment till the end of the

horizon.

As shown in Figure 24 and Figure 25, each bee is initialized with a random position for the first
segment. The finite solution space shown as circles denote possible values of each bee’s position
Pos,. The subsequent positions are determined by a 1/3 probability, i.e., there is an equal

chance that the bee’s next position relative to i:

Posy,,. = Posp,_, + {0, +Step, —Step} [0, 1] (39)

The Step is a parameter that defines the maximum change in position of a bee relative to

previous segment. In the Figure 24, considering the position boundaries 0 and 1, the Step is 0.2.

For the first segment, each bee is initialized with a random motor demand from the set of
possible solutions which for a step of 0.2 and range [0, 1] is {0, 0.2, 0.4, 0.6, 0.8, 1}. The black
box vehicle function (Section 5.3) is run for one segment with this motor demand with the initial
velocity and SoC values. The outputs of the first segment velocity, SoC and fuel consumption at
the end of segment v;, S0Cy, FCge g, are the main outputs of the black box function and serve

as inputs for the next segment.

Using this demand, the SOCseg44is calculated. If SOCseg41 < SOChyip, this means that the bee’s
position for this segment will cause SOC to go below limit. Thus, decrease it by one step
repeatedly till a demand is achieved for which the SOC does not go below limit (implemented

using a while loop in runABC.m).
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The objective function is the cumulative cost for all the segments is calculated for each bee:

nSeg

C, = Z FC; (g] (40)
i=1

After initialization, each bee has a vector of positions for each segment and the cost for each

segment, along with Best Position and Best Cost for the population.

5.4.1.2 Iterations
As described in Section 3.5, ABC being a PSO algorithm performs a repetitive search over the
solution space for a finite number of iterations or till a convergence criteria is met. The strength

of PSO is the communication between the bees and their collective problem-solving approach.

5.4.1.2.1 Selection Probabilities

Each iteration begins with an analysis of the solution found by the bees, which is the normalized
error of each bee’s cost C;, from the worst solution C,,,, (maximum value of objective function)
as in Equation ( 41 ). Then the fitness probability of each bee is calculated from its normalized
error. From Equation ( 42 ), it can be seen that the fitness of a bee is exponentially proportional

to its closeness to the optimum solution [38].

0, = _Cmax = Cp (41)
Cnax = Cmin
Pb = e_(omax_ob) (42)

5.4.1.2.2 Scout Bees

The scout bee is based on the Roulette Selection Principle of genetic algorithm where fittest
individuals (with a higher fitness probability) are selected as parents [39]. For each bee in the
original population, a new bee called scout bee Nb is created which inherits the position, cost
and additional values such as SoC and velocity data for each segment. The scout bee selects a
random segment from the parent bee’s solution space and iterates from that segment till the
end. The cost obtained by the new bee Cy,;, is compared with the cost of the old bee C}, and in
case the scout bee has a better solution (Cy, < Cp), the old bee inherits the position, cost, SoC

and velocity values from the new bee.

An iteration ends when all bees in the population have their values compared with the scout

bees and the global best solution .4 is updated.
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Figure 25 Artificial Bee Colony Flowchart for Optimum Power distribution in EV/Boost Mode
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5.4.2 ABC for Generation

The ABC algorithm for generation is the same as that for power distribution, except for position
and cost function. The position, in this case, is the generator demand, which according to the
followed sign convention is motor demand with an inverted sign, i.e. within the range [-1, 0]
and the cost function is the difference SOC,,;; — SOC,zpq, Wwhere SOC,,,,4 is the SoC at the end

of horizon.

The Cost function does not use fuel consumption, since this would result in a multi objective
optimization and suitable weights must be defined for fuel consumption and ASoC, since these

are conflicting objectives.

5.4.3 Optimal ABC parameters

As it will be seen in this section that the performance of ABC depends on the selection of suitable

parameters the most important being step size, population and maximum number of iterations.

5.4.3.1 Step Parameter

The size of the solution space increases exponentially with step size. But since the ABC is a
learning-based algorithm, its performance is independent of the size of the solution space.
Moreover, the step parameter limits the deviation in position between subsequent segments.
It was observed that large step sizes of the order of >0.1 causes rapid oscillations of the motor
demand along with inferior solutions because of a limited number of operating points to choose
from. The oscillations are eliminated with a low step size of the order 0.01. Consequently,
oscillations of shift are also minimized with lower step sizes. Oscillation begin to appear with
step size = 0.05 and become significant at step size 0.1. Sample results with different step sizes

in Attachment [].

5.4.3.2 Brute-Force Search

In this context, the BCO does not have a global optimum (minima) of fuel consumption value
for reference (convergence criterion), the first task was to find the global minima using brute-
force search method with a small number of segments. The vehicle was run with the following

parameters, only for the BCO boost section (hill climb):
Venery + 80 km/h, vy 1 50 km/h, vpyqx : 100 km/h, vy : 80 km/h

SOCpnir : 0.8, SOCpyin: 0.2
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Each possible permutation of the optimization variable (in this case, mg demand), was run on
the black box vehicle with the above parameters. All solutions where the SOC dropped below

SOCyin, Were eliminated as non-feasible solutions.

This global minimum, though available for only 8 segments, sets the benchmark for the ABC
algorithm to be compared against and is enough to analyse the convergence criteria of the ABC.
To ensure consistency in results, each set of permutations was run 3 times and the time in Table

11 is the mean time.

All computations and simulations were performed on a laptop with an Intel Core-i5 7200U CPU
with 2 cores and 4 threads on a single core, single threaded workload. The acausal nature of
black box function does not permit the use of parallel processing in MATLAB environment (using

parfor loop and parpool).

Table 11 Results of brute-force search for optimum motor demand during hill climb

Step Possible values nSeg Permutations Time minCost = FC,,;,, [g]
6 6 =46 K 1 min 59.07
1-0
0.2 =1+ ——=6
0.2 8 68 =1.68M  42min 58.19

5.4.3.3 Population and Iterations

The same experiment was repeated, this time using ABC to search for the minimum cost
(cumulative fuel consumption). To find the optimum combination of bee population nPop and
the corresponding iterations until convergence, a sweep was performed on the number of bees
from 10 till 100 with a step of 10, with the same maximum number of iterations = 100. The cost
(FC cumulative) and time were recorded for each iteration, for each bee size. Each parameter
combination was run 3 times. The graph in Error! Reference source not found. shows the first
occurrence unique cost values during the ABC search and the corresponding time. For each
individual run, dots of same colour when connected with straight lines, resemble a typical
stepped convergence curve. This gives an overview of the convergence speed as a function of

population and iterations.

A statistical analysis was done to conclusively select the optimal ABC parameters. The results
shown in Table 12 shows a comparison of two important characteristics of ABC — accuracy of

convergence and time required to do so. The accuracy of the bee colony optimisation in
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searching for the solution for minimum fuel consumption is calculated by FC Difference, which
is the normalised error of the results of BCO to the difference of the worst exact solution
(FCpax) and best exact solution (FC,,;,,). The calculation speed proportion of the BCO is the
ratio of the time taken to compute the exact solution to the time by BCO to achieve the given

solution.

Before proceeding with experiments with optimisation, it is important to analyse the
performance impacts of the optimisation parameters on the solution accuracy, precision and
speed. It is evident from the low standard of mean that BCO is precise enough to and in the
search for optimal solution, accuracy stays within approximately 0.05% of the optimal solution

and the computation speed outperforms a brute search method by at least an order.

It can be seen from Figure 26, that ABC is reliable enough to converge within 5 seconds, in most
cases, and the increase of computation time with very high population sizes and iterations,

provides diminishing returns.

From Figure 26, it can be inferred that a bee population of 20 — 30 converge to optimal solution
within 30 iterations. So, a combination of the BCO parameters between the above values,
should be selected to maintain a balanced parameter set for BCO. To provide a failsafe against
missing optimal solution with very large solution space, a combination of 50 bees with 50

iterations seem to be an ideal choice for further optimizations.

[
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Figure 26 Convergence characteristics of ABC -REPLACE
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Table 12 Comparison of Bee Colony Optimization with Brute Force Search Results

Exact solution: Time [s]: 2515

Max: 197.56

FC[gl:
= Win: 58.19

FC[g] | Iterations

Iterations

FC
Difference

FC 5 10 20 30 40 50 60 70
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5827 5827 5827

8838888

g
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15793 8175 5708 4377 3544 2939 2537 2236 1999 1804
9616 4556 3074 2325 1857 1549 1324 1157 1029 924
11374 5832 3009 855 745 661
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3753 1848 936
3896 1871 945
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88838858888

5.4.3.4 Optimal Parameters with realistic solution space

The previous sub-section showed the ability of the BCO to quickly converge to the global

minima, within a short time. But since the actual number of segments in a real scenario will be

much > 8 and Resolution << 250m. So, the above sweep was conducted again, this time with a

finer resolution of the search space and parameters close to practical values, resolution of 25 m

with step: 0.01. The solution space for a 2000 m segment thus becomes 801°1. A bee size of 30

- 60 seems to be suitable as it consistently converges to the minimum within a reasonably short

time of less than a minute. To guarantee convergence, a bee size of 50 and 50 iterations were

selected as a safe option.

0.01

NormalizedCost
o

-0.01,

20

Population

70
Iterations

Figure 27 Convergence Characteristics of BCO with varying population sizes with 80 segments
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5.5 Working of Ignite Rule-Based Parallel Hybrid Controller

The default controller from Ignite Powertrain library, called Parallel Hybrid Vehicle Controller
comprises of control strategy elements which actuate the engine, electric motor and brakes
depending on the driver input signals — corresponding to accelerator and brake pedal positions
(0 — pedals not depressed, 1 — fully pressed pedals). The output control signals to the engine
and motor correspond to the normalized power of engine (B, /P, ) and motor (Byg/Png,... )
respectively. The friction brake demand is the mechanical brake force normalized to the
maximum brake force (10 kN). The demand signals are quantified based on fuzzy logic strategies
governing various hybrid modes (Section 2.4).

Table 13 Signals to the Ignite Rule-Based Controller

Inputs Units Outputs Units
Vehicle velocity [m/s] Engine demand [0-1]
Engine speed [rpm] Motor generator demand [0-1]
Motor generator speed [rpm] Engine clutch engagement Oor1l
Battery SoC [0-1] Friction brake demand [0-1]
Driver acceleration demand [0-1]
Driver brake demand [0-1]
Maximum motor/generator torque [Nm]

5.5.1 Demand Split Strategy

The driver accelerator demand represents the traction power request normalised to the
maximum available engine power. This strategy splits the power request between the engine
and the electric motor using fuzzy logic. The input signals — battery SoC and driver accelerator
demand are fuzzified as ramp functions shown in Figure 28. The resulting motor demand is

limited by the product of the fuzzy outputs, each between [0 —1].

1 0.4 +0.01
Boost
SoC Demand
0
0 0.4 Nelelrs 1

Disable boost SOC = SOC;,,;; — 0.2

Boost high demand threshold
0.45

1
Boost
Driver Demand l V T
0
0

demand
Driver Demand =

=

0.4
Boost low demand threshold

Figure 28 Demand split strategy of Ignite Rule-Based controller
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5.5.2 Generation Strategy

Similar to the demand split strategy, this strategy generates a negative motor generator

demand signal limited by factors of SoC, driver accelerator demand and engine speed as shown

in Figure 29
Full generation SOC
0.2
1 \
Gen | ‘ ‘
50C | pemand ‘ ‘ ‘
0 |
0 SoC > 0.7 1
Zero generation SOC = S0Cjir
Full generation acc demand
0.3
1
Driver Gen
demand Demand
0
0 ) 0.35 Driver Demand = 1
Zero generation acc demand
Full generation engine speed
2700 3000
1 I}
Engine Gen ‘ ‘
€ Demand ‘
speed 0 |
1000 1600 Engine Speed [rpm] =
Zero generation engine speed

Figure 29 Generation strategy of Ignite Rule-Based controller

5.5.3 Regeneration Strategy

This follows Series regenerative braking strategy discussed in Section 2.4.1 and converts the
driver brake demand to a corresponding braking torque on the generator limited by factors of
SoC as shown in Figure 30. The brake power shortfall is compensated by the mechanical brakes

as discussed in Section 5.3.3.

0.8-0.05
Regenerative Gen 1
Braking demand
SoC limits 0
soc > 1

0.8
Maximum SOC to allow regeneration

Figure 30 Regeneration strategy of Ignite Rule-Based controller

Besides the above strategies, the controller also features a Start-Stop strategy to switch off the
engine in cases of low demand and stationary vehicle. And a Hybrid Clutch Control to disconnect

the engine from the driveline during idling.
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6 Results and Discussion

The results constitute the important characteristics of the vehicles in the MATLAB model, IGNITE
model with new control strategy and IGNITE model with rule-based controller. A sweep of
velocity and SoC parameters was performed as shown in Table 14, and the variant with the
minimum fuel consumption is compared against rule-based controller in IGNITE. Appendix 11.9
shows a summary of the results for each variant (Plots of results in Attachments). The variant
with a maximum velocity of 110 km/h was eliminated as it failed to climb a 8% grade road. The
number of bees for generation was reduced to 20 since it is a simpler optimization task showing

faster convergence.

Table 14 Velocity and SoC Parameter Combinations for different scenarios

Parameter | Units Hill Ascent Valley Descent

Variable Parameters

VEntry [km/h] 70, 80, 90
VUMax [km/h] 90, 100
SOCiit [%] 60, 70, 80 40, 50, 60

Total combinations = 3 (vEntry) X 2(Vprax) X 3(S0Cp;t) X 4(scenarios) = 72

Constant / Dependent Parameters

Vymin [km/h] 50

VExit [km/h] VEntry
SOCyin [%] SOCi: — 0.2 SOCinit SOCinit — 0.2 | SOCi;e — 0.2
SOCyax [%] 80

Bee Colony Parameters

nPop 50 — EV/Boost, 20 — Generation
maxlt 50
Step 0.01

The results with the minimum fuel consumption are shown in Figure 31- Figure 34. The
operating points of the engine with an indication of the gear and hybrid mode are also

illustrated.
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Scenario 1: Hill
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Figure 31 Results of MATLAB model, Scenario 1: Hill
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Scenario 2: Valley
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Figure 32 Results of MATLAB model, Scenario 2: Valley
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Scenario 3: Ascent
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Figure 33 Results of MATLAB model, Scenario 3: Ascent only
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Figure 34 Results of MATLAB model, Scenario 4: Descent only
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6.1 MATLAB Model with novel control strategy

The ABC algorithm showed good response to the velocity profile with an even distribution of
electric power for the entire section of the climb and increasing the EV assist towards the end
of the ascent where the velocity is low, and it is a known fact that electric drive is most efficient
at low speeds. The shift strategy worked well to prevent unwanted shifts and almost always
selected the optimal gear.

In general, the key takeaways from the results are the following:

* The bee colony optimized power distribution algorithm effectively shifts load between the
engine and the motor while responding to the velocity and terrain changes. Thus, a given
pool of SoC, in this case 0.2 is always effectively distributed across an entire EV assist phase,
especially in scenarios 1 and 2.

* For scenario 4, it was required to spend the SoC gained by regeneration on the downhill, by
using EV assist on the flat section. This resulted in a pure electric drive till the SoC was
depleted. Though the engine is in region of relatively low efficiency, the motor efficiency is
reasonably good.

* Engine operating points are close to maximum efficiency region in all cases of EV assist which
is a direct indicator of improved fuel consumption. This proves the effectiveness of the bee
algorithm trying to minimize fuel consumption, which is a consequence of high engine
efficiency.

* Generator phase is usually in high efficiency region where it is optimally applied from a
heuristic standpoint. This is seen in the case of generation applied during a deceleration
event after the end of a descent (Figure 31) where it pushes the engine into more efficient
region. On the other hand, when applied to an acceleration event, like after the end of ascent
on a flat road (Figure 33), generation led to a fall in engine efficiency.

* Motor phase is not always in region of good efficiency which is a result of the shifting strategy
considering the overall system efficiency. The cost function for motor demand evaluation
within the bee colony algorithm for EV assist comprises only of the engine fuel consumption.
Moreover, it is impossible to have both the engine and motor operating at the region of
maximum efficiency at the same time. A possible option to improve motor efficiency is
addition of motor efficiency to the cost function with suitable weights to consider the trade-

off between the efficiency lost on part of engine to gain efficiency on the motor side.
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6.2 Validation of MATLAB vehicle model with IGNITE

The Matlab black box model (Section 5.3) was simulated along the route defined in Section 5.1
with drive cycles defined in Section 5.2 and results compared with simulation results of the
IGNITE vehicle model with the new control strategy. All variables being calculated in the black
box model were found to have good correlation within 1% of the IGNITE vehicle, despite using
a calculation time interval of 25 m (= 1 seconds time step at 90 km/h), whereas IGNITE uses a
0.1 s time step. The small deviation in velocity (< 1km/h) can be due to various reasons, a few
being response delay of the driver Pl controller, inertia, stiffness and damping of the driveline
components and the associated losses all of which are neglected within the MATLAB model. The
deviationin SoCis due to the response delay of the motor to the controller signal and hysteresis.
Besides these small deviations, the vehicle models in Ignite and Matlab are equivalent enough

for a valid comparison to be made between control strategies applied to either models.

6.3 Comparison of results of new control strategy with Rule-Based controller in IGNITE

The Rule-Based controller in IGNITE was initially optimized in HEEDS MDO by my supervisor Ing.
Cvetkovic to optimize equivalent fuel consumption for WLTC class 2. The rule-based controller
always follows a fixed set of rules irrespective of the drive cycle and terrain. This makes it
difficult to establish an ideal rule-based controller. However, even with a few forced
parameters, the characteristics of a rule-based controller remain the same and can be very well
compared with other control strategies. But since the scenarios being considered are much
different from standard drive cycles, hence some parameters in the Rule-Based controllers had
to be set accordingly for the results to be comparable. In order to directly compare the total
fuel consumption values at the end of each scenario, the SoC values at the beginning and end

must be equal (ASoC = 0), indicating no net electric energy transfer.
Following changes were made to the Rule-Based controller parameters to achieve ASoC = 0:

e Upper limit of SOC for generation was set to be the initial SoC to balance the SoC
e Engine speed limits for generation were reduced to allow generation in Scenario 3
e Driver demand limits for boost were reduced for Scenario 4 to allow boost after

regeneration to reduce the SoC to initial SoC
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Figure 35 Comparison of results of new control strategy with IGNITE rule-based controller



Table 15 Comparison of results of fuel consumption and SoC for different models and scenarios

MATLAB IGNITE IGNITE
model with model with model with %
new new Rule-Based Difference
controller controller controller
Scenario 1 (a) (b) (c) (c-b)/c [%]
SOCrinal 0.7 0.697 0.706 1.27
Cumulative FC [g] 254.9 256.8 295 13
Scenario 2
SOCrinal 0.6 0.596 0.6 0.67
Cumulative FC [g] 257 258.9 291.8 11.3
Scenario 3
SOCrinai 0.6 0.59 0.59 0
Cumulative FC [g] 364.5 366.6 403.4 9.1
Scenario 4
SOCrinai 0.6 0.597 0.6 0.5
Cumulative FC [g] 128.2 127 150 15

The rule-based controller unaware of the length of the ascent depletes the available SoC
midway through the climb thus increasing the demand on the engine and hence steep rise in
fuel consumption. During the descent immediately after the ascent, it generates for a short time
before coasting. Generation is caused by low SoC and low engine demand. This is also visible for

an ascent only scenario where it cannot avoid generation in the initial flat section.

For a descent only scenario, the rule-based controller does not boost immediately after the
descent since the traction power is lower than the boost threshold. Lowering the threshold
causes it to boost though with progressively decreasing demand because of the dependence on

the SoC.

Compared to other scenarios, the fuel savings are meagre for scenario 3, because of aggressive
generation implied during an acceleration event to increase the SoC. The fuel economy
improvement in all other scenarios proves that even if not essential, if there is a requirement

for boost, it is always optimal for the bee algorithm compared to the rule-based controller.
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7 Conclusion

The first part of the thesis dealt with an overview of hybrid vehicles and control strategies and
shortlisting of candidate hybrid vehicles, of which the 2020 Hyundai loniq was the most relevant
as well as recent, for which | could find all the data. The second part was mostly about building
the vehicle models in Ignite and Matlab from available data and theory followed by the
formulation and implementation of a novel control strategy using the Matlab black box model.
| created Matlab functions and scripts (Appendix 12) to implement the control strategies and
scenarios (Section 5), throughout which | was guided by my supervisors Ing. Josef Morkus and
Ing. Milan Cvetkovic, especially during design of the shift strategy and avoiding shift oscillations
and design of scenarios. | created the flowcharts in Section 5.3 and 5.4 to represent the control
flow and calculations involved in the Matlab programs, which were consistently improved with

every consultation.

Another task was to explore the real-time predictive implementation potential and optimality
of a custom artificial bee colony algorithm to optimize power distribution between the engine
and motor during a hill climb journey using eHorizon road slope information. The Matlab code
implementation of the bee algorithm, was done with the help of Ing. Cvetkovic and colleagues
from TU Belgrade, Marko Stoki¢ and Nemanja Mijovic. To equalize the initial and final SoC, |
used a simple modification of the bee algorithm as generation strategy, which though not
optimal in terms of fuel consumption, yet achieved the SoC target, sometimes even improving

fuel consumption and engine efficiency.

The MATLAB vehicle model is capable to be used as a black box model for optimization
algorithms and the key gain is its computational speed and accuracy. The artificial bee colony
algorithm matches its expectations of reaching quite fast and precise global optimum. Its
dependence on the cost function shows that with a well-tuned cost function, the efficiency of

the overall system (Engine-Motor-Battery) can be improved.

The proposed control algorithm has better predictive abilities compared to the causal strategy
of conventional rule-based controller and results in a more even distribution of power
compared to the lumped distribution of the rule-based. The rule-based strategies are highly
sensitive to the vehicle and control parameters and finding the optimal rule-based parameters
specific to the discussed scenarios requires a research of its own. Nonetheless, the basic

characteristics of any rule-based controller stay the same, thus allowing results to be compared.
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The attachments (Appendix 12) also contain several autorun scripts to perform simulation, plot
results and export outputs as spreadsheets for a sweep of parameters for bee colony

optimization (population, iteration) and scenarios (velocity, SoC).

Overall, the goal of minimizing fuel consumption was achieved with the proposed control
algorithm, though sometimes at the expense of low efficiency in other components, particularly
the motor generator. This is clearly because of the single objective attribute of the optimization
problem and imposition of certain hard constraints, such as forcing generation and boost to

equalize the SoC.

7.1 Possible continuation of the thesis
A possible continuation of work would be a simultaneous optimization of the vehicle trajectory
together with optimum power distribution, which would require trade-off calculation between

speed and time [40], since trip time and fuel consumption are conflicting objectives.

It would be also possible to improve the generation strategy to minimize fuel consumption
together with achieving target SoC. The shift strategy can be further optimized by its addition

to the bee colony cost function.

Addition of variables to the cost function translates to addition of dimensions to the bee colony
search space, which will test the performance of the bee colony optimization over multiple

dimensions and objectives.

The Matlab black box model can be parameterized to represent any parallel hybrid vehicle and

prove a useful tool for testing other optimization algorithms.
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11 Appendix

11.1 2020 lonig Hybrid Engine BSFC Map
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Figure 36 Source Image of 2020 loniq Hybrid Engine BSFC Map [26]
11.2 Engine Fuel Consumption Map extended till engine friction torque
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11.3 2011 Hyundai Sonata Hybrid Combined Motor Inverter Map
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Figure 38 Source Image of 2011 Hyundai Sonata Combined Motor Inverter Efficiency Map [30]

11.4 Battery specifications of 2020 Hyundai lonig and 2011 Sonata Hybrid

Table 16 Comparison of battery parameters of loniq and Sonata Hybrid

2020 loniq Hybrid [9] 2011 Sonata Hybrid [31]

Type Lithium-ion Polymer Lithium-ion Units
c n 5.3 5.3 [Ah]
apaci
pactty 1.56 1.4 [KWh]
Nominal cell voltage - 3.75 [V]
Nominal pack voltage 240 270 [V]
Number of cells 72 72 -
11.5 Original Battery Test Results of 2011 Hyundai Sonata Hybrid
Table 17 Test Results of 2011 Hyundai Sonata Hybrid Battery [31]
Odometer Rated Capacity Measured Measured
Test Date (mi) (Ah) Capacity (Ah)  Energy (Wh)
BOT July 22,2011 5,730 5.30 5.29 1,394
EOT May 29, 2013 160,116 5.30 4.15 1,060
Difference — 154,386 — 1.14 (22%) 334 (24%)
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11.6 2011 Hyundai Sonata Hybrid Battery Characteristics
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Figure 39 Open Circuit Voltage v/s SOC Characteristics of 2011 Hyundai Sonata Hybrid Battery [31]
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Figure 40 Charging Internal Resistance v/s SOC of 2011 Hyundai Sonata Hybrid Battery [31]
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11.7 Design speeds and road grade data for motorways in the Czech Republic

Table 18 Design speeds and grade for various road classes in the Czech Republic [41]

Tabulka 9 — Navrhové rychlosti podle druhu Gzemi a nejvétsi dovolené podéiné sklony (s)
navrhovych kategorii silnic a dalnic )

Kategorijni typ silnice Navrhova rychlost v km/h pro Gzemi
Deboiceioics rovinaté pahorkovité horské
nebo mimné zvinéné
podélny skion (s) v %
D335 120 120 100" 80"
D275 3 4" 45" 45"
R 33,5; R27,5 120 100 80
R 255 35 45 5
S245 100 80 70
35 4,5(az6 ) 6
S 20,75 90 80 70
4 45(az6™) 6
S115 90 80 70
45 6 7,5
S95 80 70 60
45 6 8
S75 70 60 50
45 7 9
S6,5 60 60 50
7 8 9
S40 40 40 30
10 11 12
7 Hodnoty pro vétve kiizovatek jsou uvedeny v CSN 73 6102.
™) Prekrodeni hodnoty je tfeba doloZit rozborem zvy3eni spotfeby pohonnych hmot a je vazano na souhlas
prislusného ustredniho organu statni spravy ve vécech dopravy.
™) Vyssich hodnot Ize pouzit v pripadech, kdy neobvyklé zvy$eni objemu zemnich praci nadmémé zvysi
ekonomickou naro&nost feSeni nebo by se nadmérné zvétdilo trvalé odnéti kvalitni nebo chranéné
zemédélské pady. Soulasné je v8ak nutné pfi pouziti vétSich sklonl posoudit zvySenou spotiebu
pohonnych hmot a bezpecnost dopravy.
™ Rozhodnuti o navrhové rychlosti zavisi na moznostech danych pfedevaim konfiguraci terénu,
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11.8 Ignite Model with New Controller
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11.9 Summary of Results with new Control Strategy
Results Plot (Appendix 12) File Name Identifier: plotFileName.png:

[Scenario]_[Comblof[18]_soclnit[socinit]_Min[socMin]_Max[socMax]_vEntry[vEntry]_vMax[vMax]_vMin[vMin]
_[Repl.png

A. Scenario 1 — Hill

Table 19 Results: Scenario 1: New control strategy with different velocity and SoC parameters

Scenario 1: Hill
Comb | Rep | vEntry | vMax | soclnit | socMin tEnd tN fcEnd | fcN | fcN*tN | fcN*tN
2 70 50 1.00
1.00
70 50 1.01
1.02
1.02
1.03
1.02
1.04
0.82
0.82
0.83
0.83

O O U1 0 O b ©O N N 00O U1 A W W E N PFEP N

I
o N

N e e T e e = T~ T S N S =Y
N 0O OO N N WO U W s

[E=Y
[y
N N R N R R R R R R R NNNNNNRNRNRERNRRELRNRNERNNRIRLERELEN

[y
oo

73



B. Scenario 2 —Valley

Table 20 Results: Scenario 2: New control strategy with different velocity and SoC parameters

Scenario 2: Valley

Comb

O O N N 0 0o & M U1 L OO P P NN W W
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vEntry

80
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80
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80
80
80
80

vMax | soclnit

50
50

50

50

50
50

50
50

50

50

50
50

socMin tEnd

50
50
399.92
399.92
50 = 399.92
50 = 399.92
399.92
399.92
50 390.25
50 390.25
390.25
390.25
390.25
390.25
377.19
377.19
50 377.19
50 377.19
377.19
377.19
50 372.75
50 372.75
372.75
372.75
50
50
372.75
372.75
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tN

0.76
0.76
0.76
0.76
0.76
0.76
0.58
0.58
0.58
0.58
0.58
0.58
0.34
0.34
0.34
0.34
0.34
0.34
0.25
0.25
0.25
0.25

0.25
0.25

fcEnd

259.84
259.94
262.40
262.43
262.64
262.80
263.58
263.69
263.98
263.98
264.28
264.42
264.76
264.79
268.21
268.25
268.79
268.82

fcN

0.18
0.19
0.34
0.34
0.36
0.37
0.42
0.42
0.44
0.44
0.46
0.47
0.49
0.49
0.71
0.71
0.75
0.75

fcN*tN

0.10
0.10
0.11
0.12
0.14
0.14
0.20
0.20
0.21

0.15
0.15
0.16
0.16
0.17
0.17
0.18
0.18
0.19
0.19

fcN+tN

1.00
1.03
1.03
1.03
1.03
1.05
0.90
0.90
0.91
0.92
0.94
0.95
0.92
0.93
0.94
0.95
1.00
1.01

0.96
0.97
1.00
1.00

0.86
0.87




C. Scenario 3 —Ascent only

Table 21 Results: Scenario 3: New control strategy with different velocity and SoC parameters

Scenario 3: Ascent

Comb

AN R N R

11

10
10

12
12

14
13
16

14
17
16
17

18

11

15
13
18
15

Rep

vMax | soclnit | socMin tEnd tN fcEnd fcN | fcN*tN | fcN*tN

vEntry

1 1.00
0.08 1.08
0.12 1.12
0.13 1.13
0.21 1.21

374.59 0.25 0.11 0.70
429.62 0.45 375.46 0.27 0.12 0.72
429.62 045 375.92 0.28 0.13 0.73
377.28 0.32 0.14 0.77
377.50 0.32 0.32 1.32
378.18 0.34 0.15 0.79
379.30 0.37 0.17 0.82
380.06 0.39 0.39
380.94 0.41 0.41
0.19

80
80

N N P P PN R P RPN P NP NMNDNNPRPNPEPEPNMNNDNMNRPRPRNPRPRPRRERPNNERPRDNDNNDNLPRE
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D. Scenario 4 — Descent only

Table 22 Results: Scenario 4: New control strategy with different velocity and SoC parameters

Scenario 4: Descent

Comb

N N 0O 00O 0h~ b 0O P P NN WW

e T = T e T e o e e S O e S S SN S
D O N N0 0O Ul U WwWw A DNOORRERNN

Rep

[y

N P P NP NN P NP NNMNPRPRPNPNNMNNNMNENRPRPRRPRPNENPRPRPDNNNEDNREREDNDEDNRENDN

vEntry

80
80
80
80
80
80
80
80
80
80
80
80

vMax | soclnit

50

50

50
50

50
50

50

50

50
50

50
50

socMin tEnd

50
50
349.58
349.58
50  349.58
50 349.58
349.58
349.58
341.00
341.00
50 341.00
50 341.00
341.00
341.00
324.82
324.82
50 324.82
50 324.82
324.82
324.82
50 321.00
50 321.00
321.00
321.00
321.00
321.00
50
50
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tN

0.73
0.73
0.73
0.73
0.73
0.73
0.59
0.59
0.59
0.59
0.59
0.59
0.32
0.32
0.32
0.32
0.32
0.32
0.26
0.26
0.26
0.26
0.26
0.26

fcEnd

136.59
136.72
137.82
137.82
138.20
138.21
140.26
140.26
140.64
140.73
140.82
140.82
144.13
144.21
144.48
144.49

fcN

0.38
0.38
0.43
0.43
0.45
0.45
0.54
0.54
0.56
0.56
0.57
0.57
0.72
0.72
0.73
0.73

fcN*tN

0.11
0.11
0.11
0.11
0.12
0.12

0.18
0.18
0.18
0.18
0.18
0.18
0.19
0.19
0.19
0.19

fcN+tN

1.00
1.00
1.00
1.00
1.02
1.02

0.97
0.97
1.02
1.02
1.04
1.04

0.98
0.98
0.99
1.00

0.97
0.97
0.98
0.99
1.00
1.00




12 Attachments

Description Filename
IGNITE Models CD\Ignite\
Ignite Model with new controller BCO.ignx
Ignite Model with Rule-Based controller RB.ignx

Results All_BCO_RB.rpostx
MATLAB Functions CD\main\
Battery Batt.m

Traction Power
Vehicle Black Box Function
ABC for Boost

ABC for Generation

calcTraction.m
Fcn.m
runABC.m?

runABCgen.m

MATLAB Scripts
Simulate full horizon
Sweep of ABC parameters

Sweep of Velocity, SoC

Create Terrain Profiles
Create Velocity Profiles
Create Horizon Data File

Main data file with all vehicle data

CD\main\
calcFullHorizon.m
ABCsweep.m

autorunAllSce.m

CD\main\createHorizon\
createTerrain.m
createDriveCycle.m
createHorizon.m

vehdata.mat

Results of new control strategy for different velocity and soc combinations

Plots :  CD\results\plots\plotFileName.png

Summary excel spreadsheet CD\results\Summary_Scenarios.xlIsx

Master’s Thesis PDF:
CD\Hill Climbing Algorithm for Fuel Consumption Optimization of HEV vehicles.pdf

1 This function was developed with the help of my thesis supervisor Ing. Cvetkovic and colleagues from TU Belgrade,
Marko Stoki¢ and Nemanja Mijovic.
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