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Instructions

The aim of this work is to design and implement algorithms that detect suitable landmarks in the video of
the face for the purpose of automated speech therapy. Focus on the landmarks related to the tongue and
mouth.

- Research existing solutions and explore appropriate speech therapy exercises.
- Design the minimum requirements for the camera and evaluation system of the task.
- Design and implement facial landmark detection algorithms using computer vision algorithms.
- Select a basic set of speech therapy exercises and implement methods for their automated evaluation.
- Evaluate the achieved results and suggest future improvements.
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January 7, 2021





Acknowledgements

I would like to thank Ing. Lukáš Brchl for supervising my thesis, his guid-
ance, support and advice. Secondly, I wish to thank Ing. Anna Čudáková,
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Klimešová, Laura. Facial landmarks detection for the purpose of automated
speech therapy. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2021.



Abstrakt

Tato diplomová práce se zabývá detekćı obličejových landmark̊u s ćılem vy-
tvořit systém pro automatizované ohodnocováńı logopedických cvik̊u. Důležitou
součást́ı takového systému je schopnost detekce a sledováńı pohybu jazyka. K
tomuto účelu je použita hloubková kamera Intel RealSense D415. Výsledná
aplikace, která byla napsaná v jazyce Python, umı́ ohodnotit několik typických
logopedických cvik̊u ze živého záznamu z kamery či z předtočených vidéı ve
formátu .bag. Byla provedena experimentálńı analýza dvou vybraných cvik̊u
s využit́ım video dat několika dobrovolńık̊u zahrnuj́ıćıch dospělé i děti. V
pr̊uměru byl systém schopen detekovat 65% provedených opakováńı cvik̊u
přičemž žádný ze cvik̊u nebyl vyhodnocen předčasně.

Kĺıčová slova detekce obličejových landmark̊u, detekce jazyka, automati-
zace logopedie, strojové viděńı, Python, hloubková kamera, Intel RealSense
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Abstract

This diploma thesis focuses on facial landmark detection with the aim to
create a system for automated speech therapy. Important part of this system
is the ability to detect and track tongue movement. The Intel RealSense D415
depth camera is used for this purpose. The resulting application written in the
Python language is able to evaluate several typical speech therapy exercises
either from live camera footage or prerecorded videos in the .bag format. An
experimental analysis of two selected exercises was performed using video
data of several volunteers including both adults and children. On average
the system was able to recognize 65% of the performed exercise repetitions
without any of the exercises getting evaluated prematurely.

Keywords facial landmark detection, tongue detection, speech therapy au-
tomation, computer vision, Python, depth camera, Intel RealSense
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Introduction

Speech disorders are a common problem for many people who can struggle
with them throughout their lives. Children often undergo speech therapies
to identify and remedy these issues. Part of the process is to strengthen fa-
cial muscles and their mobility through various exercises using their lips and
tongue. The positive impact of these exercises is heavily dependant on fre-
quency of performing them. While the most important part of speech therapy
are training sessions with specialists, many patients could benefit from being
able to do these exercises on their own with getting feedback on the precision
of performed actions.

The aim of this thesis is to design and implement software to support au-
tomated speech therapy application. The outcomes are focused on landmark
detection, tracking and exercise evaluation. The user interface of the appli-
cation is being developed independently under the patronage of SIT Port in
Pilsen.

The first two chapters of this thesis are dedicated to research of relevant
terms and related works. The third chapter focuses on analysis of detecting
relevant facial landmarks which includes benchmarks of existing models and
comparison of different approaches of detecting the tongue. Outputs of these
chapters will serve the following chapter which is focused on the practical part
of this thesis – design of the solution and its implementation. The final chapter
contains the experimental evaluation of practical outcomes of this work.

The resulting system will be beneficial not only for supporting automated
speech therapy for children but also for patients recovering from strokes or
different nerve damage diseases. The outcomes of this work can also serve as
a support for systems built for human computer interaction using movements
of lips and tongue.

1





Chapter 1
Theoretical background

This chapter serves as an introduction to the important research terms which
are relevant for topic of this thesis. The following chapter 2 uses these terms
further to explain what methodologies were used to build related solutions.

1.1 Computer vision

Computer vision is a field which focuses on analysis and processing of visual
data in order to model the ability of human sight and translate it for the com-
puters. Different kinds of sensors and cameras can be used for this purpose.
However, compared to the human eye and brain, these sensors have only a
projected information about the reality [1].

One of the goals of computer vision is automation of visual inspections
which are prone to human error and bias. This affects various fields ranging
from factory production lines to toll gates and border security [2].

1.2 Input data

Computer vision works with two dimensional digital image or video data as
the input. Simply put, an image is a matrix of pixels. This can be written
mathematically as a function of two variables defined as

I[x, y] : N2 → Rn,

where n = 1 represents luminance (pixel intensity) and n = 3 represents
color [3].

1.3 Image processing methods

The image data collected for solving computer vision tasks often is not ready
for use from the start. Sometimes the image can contain defects such as

3



1. Theoretical background

low contrast or noise. Sometimes it is needed to enhance or even suppress
certain parts of an image so that the subsequent work is easier. These are
just some of the reasons to preprocess the image data before using it. There
are several types of methods for preprocessing. The types differ mostly in the
way of processing certain parts of input image in order to get a pixel value
of the output image. The most basic operations use only one input pixel at
a time to produce the output pixel value. Other operations use a local input
pixel neighbourhood to generate the output pixel value. The latter processing
technique is used with special operators, which are referred to as image filters.
Image filters can enhance an image in different ways. Among the most well
known cases are noise suppression filters and edge detection filters [1, p. 56-
108].

Filters are applied to an image using an operation known as convolution.
This operation is defined as

(F ∗G)[s, t] =
∑

x

∑
y

F [x][y] ·G[s− x][t− y],

where F is the input image and G is a kernel of the image filter [4].
Kernel of an image filter in theory is defined as an n-dimensional math-

ematical function. One of the most well known examples is the Gaussian
kernel which is uses the Gaussian probability distribution function for noise
suppression. In practice, the kernels can be estimated by a simple 2D matrix
of various sizes [1, p. 68-71].

When detecting edges in an image it is often useful to look at gradient
of the image as its magnitude (the Euclidean norm of the gradient) can be
used to pinpoint the edge location by pixel intensity changes. An important
filter, which is used to estimate the second derivative of an image and detect
its edges, is called a Laplacian filter [5].

Another interesting example is the Gabor filter. This filter is used for edge
detection, texture analysis or optical flow estimation. Gabor filter is a product
of Gaussian and sinusoidal signal [6]. The figure 1.1 showcases visualization
of this filter in 3D space.

1.4 Optical flow

Optical flow (OF) is a term linked to the object motion analysis. It is used to
represent motion changes in an image between frames. By computing OF it is
possible to determine and track both direction and velocity of an object over
time. For computation of optical flow there are two assumptions – brightness
of points is constant over time and nearby points in the image move with a
similar velocity. Firstly, a dynamic image as a function of position and time
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1.4. Optical flow

A Sinusoid oriented 30° with X-axis

A 2-D Gaussian

The corresponding 2-D Gabor filter

Figure 1.1: A 2D Gabor filter obtained by modulating the sine wave with a
Gaussian [7]

Figure 1.2: Example of optical flow computation: (a) Frame at time t1 (b)
Frame at time t2 (c) Computed optical flow [1, p. 522]

is defined from the input image as

f(x + dx, y + dy, t + dt) = f(x, y, t) + ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂t
dt +O(∂2)

= f(x, y, t) + fxdx + fydy + ftdt +O(∂2),

where f(x, y, t) refer to a state of image in (x, y) in time t. The optical
flow is determined by using an iterative method on two consecutive dynamic
images [1, p. 507-513]. An example result of optical flow computation can be
seen in the figure 1.2.

To simplify and speed up the computational process, several methods were
designed to estimate the optical flow result. Some methods focus on computing

5



1. Theoretical background

Figure 1.3: Example of segmentation using thresholding: (a) Original image,
(b) threshold segmentation, (c) threshold too low, (d) threshold too high. [1,
p. 113]

a sparse velocity field instead of a dense one for a subset of interesting points
in an image which needs to be defined prior to the computation [1, p. 524].

Slower, but more accurate are the dense methods for estimating OF. One
of such algorithms is named after its founder – Gunnar Farneback’s optical
flow method. The algorithm estimates disposition between two consecutive
frames using the polynomial expansion transform [8].

1.5 Image segmentation

Image segmentation is an important task in processing of image data prior to
their analysis. It aims to locate and divide an object in the image from its
surroundings. The most basic method of separating an object from its gray
image background is thresholding. This can work well with images which
are taken under good conditions and have a simple background. The output
image will only contain results which are above the selected threshold value.
Selecting the optimal value for threshold is very important for this method as
can be seen in the figure 1.3 [1, p. 112-113].

Edge-based segmentation methods are another approach to the image seg-
mentation problem. These methods rely on edge detectors, for example edge
detection image filters [1, p. 123].

Region growing segmentation is a method which works better with noisy
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1.6. Methodology for solving computer vision tasks

images where edge detection algorithms can have problems. The general idea
is to assign pixels in image to regions based on pre-defined conditions. These
can range from pixel intensity levels to texture structures. The goal is to
maximize each of the regions area [1, p. 164].

1.6 Methodology for solving computer vision tasks

Computer vision tasks can be solved by using various kinds of models which
can be trained using the collected image or video data in order to gain insights.

Ensemble methods are using multiple classifiers together to share insights
among themselves and classify samples together. There are two approaches
to these methods. Bagging is considered to be the simpler approach. The
idea behind bagging is to have multiple classifiers used in parallel. The group
reaches the final decision by the majority of votes [p. 173][9].

Adaptive Boosting algorithm or AdaBoost is an ensemble method which
was created as a better alternative to bagging algorithms. AdaBoost trains
its weak learners using different subsets of training data, which are chosen for
each learner probabilistically. Each classifier has a weighted vote and together
with all the classifiers a final prediction is made based on the weighted majority
[9, p. 179].

Support-vector machines (SVMs) are usually used in classification prob-
lems. The goal is to find a function which is able to separate samples of
different classes. The classification accuracy tends to be more precise the
greater the size of the margin separating the classes [9, p. 84-85].

With the popularity of deep learning, neural networks are often a choice for
solving computer vision tasks. The convolutional neural networks (CNNs) are
used in particular. Their architecture is designed to be able to process image
data using much less parameters than classic fully connected feed-forward
networks. As a result of this, CNNs can have more layers. One of the core
concepts is the convolution layer. Each convolution layer has a predefined
number of different image filters. Each of these filters will be convolved with
the input image. Due to the feature extracting capabilities of the Gabor filter,
they are often a good choice for the filters. The output features are represented
by the filtered images. In one CNN there are usually multiple convolution
layers. Convolution layers are usually paired with pooling layers which aim
to gradually downsample the number of features while still retaining valuable
information [10, p. 85-129].

A special case of CNNs are the hourglass networks. They are able to
capture features of the input image at different scales. The architecture of
the network is built using two mirrored CNNs. These kinds of networks are
sometimes referred to as encode-decode networks or convolution-deconvolution
networks. Convolution and pooling layers are used to change the output sizes.
Each resolution scale will have its counterpart in the mirrored section of the

7



1. Theoretical background

Labels predicted by a classifier
pos neg

True labels pos NT P NF N

neg NF P NT N

Table 1.1: The basic quantities used in the definitions of performance criteria
[9, p. 212]

network. Firstly, a downsampling network is used to collect features at differ-
ent resolutions. This is then followed by an upsampling network which collects
and combines the features available from all the scales [11].

Several frameworks can be used to create and train a neural network model.
Among the most popular are TensorFlow [12] and PyTorch [13]. TensorFlow
has many variants for different use cases. For example, TensorFlow.js can be
used for creating and deploying models in the browser [12].

1.7 Methodology for evaluation of classification
performance

Classification is one of the most typical machine learning tasks. A classifier
model can be trained to evaluate and assign one or more target classes to an
input sample [9].

To validate how well can a trained model perform, some evaluation metrics
must be defined. While a simple accuracy metric can be used as a ratio of cor-
rectly classified samples against the number of all samples in the classification,
this metric tends to be not as informative, especially in a case of having more
than one target class. Similarly defined error rate, which takes into account
the number of all misclassified samples, can also give the wrong idea about
the performance the more classes are used for classification. Another aspect
to keep in mind is the balance of class samples used for testing the perfor-
mance. In the table 1.1 a set of basic quantities is defined. NT P and NT N

are the number of correctly classified positive samples and correctly classified
negative samples respectively. NF P and NF N on the other hand represent the
misclassified samples from positive and negative samples respectively [9, p.
212].

The table 1.1 can be referred to as the confusion matrix of a binary clas-
sifier [14]. For a model with more than one target classes, the situation is
a little more complex as suddenly there are more than one value for each of
the number of positive and negative quantities. The table 1.2 showcases a
confusion matrix for a 3-class classifier. All the values on the diagonal are
considered to be the number of correctly classified positive samples per each
class. For a number of correctly classified negative samples per class, only the
values which are not in the class’s row and column are counted [15].

8



1.8. Face detection

Predicted
Greyhound Mastiff Samoyed

Greyhound PGG PMG PSG

Mastiff PGM PMM PSMActual
Samoyed PGS PMS PSS

Table 1.2: Confusion matrix for a multi-class classification model [15]

More informative and detailed measures, compared to the accuracy and
error rate, are precision and recall. Precision marks the probability of the
classifier being correct by labeling positive sample. It is calculated as

Precision = NT P

NT P + NF P
.

Recall measures the probability of the positive sample being recognized by
the classifier. Similarly, it can be calculated as

Recall = NT P

NT P + NF N
.

Some use cases benefit from higher value of precision, other from higher
value of recall. Precision can be a more valuable information when evaluating
a recommending system for users. Recall on the other hand will be important
when classifying medical diagnosis so that the patients are classified by the
correct diagnosis [9, p. 211-218].

Another way to measure performance using the metrics defined above is
to combine them together. This measure can be defined as

F1 score = 2× Precision× Recall
Precision + Recall ,

and it stands for F1 score. This metric is helpful when it is not obvious
whether to weigh precision or recall as the more relevant metric [9, p. 219].

Another interesting measure is the Hamming loss which refers to the av-
erage number of times an incorrect class is predicted by the classifier. It is
normalized by the number of target classes. It is defined as

Hamming loss = 1
nlabels

nlabels−1∑
i=0

l(ŷi 6= yi),

where l(x) indicates if the predicted value ŷi matches the truth value yi

[16].

1.8 Face detection

Detection tasks in general can be viewed as a classification problem which
aims to classify whether an object is or is not present in an image. In case

9



1. Theoretical background

the object is present then the location of the found object should be returned.
Objects in images can be described by their salient features, such as their
shape, color or texture. When in the context of locating object in one image,
the process can be described as object detection. If the input data is a video
sequence, then the goal can be to follow the detected object’s position. This
task is referred to as object tracking [17].

Face detection is a specialized case of an object detection task with the
key focus on detecting human faces from images. It is a very challenging task
as the human face appearance can take many different shapes and forms even
if the perfect lighting and background conditions are assumed [18].

The following subsections focus on describing a selection of methods used
for face detection.

1.8.1 Haar cascades

Haar cascades are a concept which was introduced in [19]. Firstly, the image
features are obtained by applying different Haar filters on a training set. Dif-
ferent filters amplify different edge features. The training set contains both
positive and negative samples. The method further introduces a variant of
AdaBoost algorithm, which is used to first select a subset of samples and then
train a classifier on the selection.

This method is implemented in the OpenCV framework [20].

1.8.2 Histogram of oriented gradients

Histograms of oriented gradients (HOG) were defined in [21]. This method
aims to define a feature set to robustly describe an object to be detected. The
local image gradients are used to model these features as they have good char-
acteristic capabilities around important edges in the image. HOG descriptors
are used on a set of training images which contain the object to look for. These
are then combined with images which don’t contain the objects and together
they are used to train an SVM classifier with a Gaussian kernel.

This method is implemented in the Dlib toolkit [22].

1.8.3 Single shot MultiBox detector

This method for detecting objects in images was introduced in [23]. The
implementation leverages a single CNN which returns a collection of same sized
bounding boxes of an object along with scores of the object presence. The base
of the CNN is appended with multiple feature layers with decreasing size. This
allows for predicting detections at multiple scales. Multiple bounding boxes
of different scales are defined along the ground truth bounding boxes. The
network can learn many more different variations of each object class because
of this.
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Figure 1.4: Calculation of angle for rotation in a face alignment task [26]

The final detection is preceded by a non-maximum suppression step. This
processing technique was designed to merge multiple bounding boxes which
may relate to the same area of the image. The greater the overlap of bounding
boxes, the higher the score is for that image area. In the end the areas with
scores above the threshold will selected and the windows overlapping with this
area will be eliminated [24, p. 145].

A modified version of this model was created and trained to detect human
faces. The output is a TensorFlow.js model named Blazeface [25].

1.9 Face alignment

Face alignment is a computer vision task which is often used for improving
accuracy of face recognition or facial landmark detection pipelines. The aim
is to find the optimal transformations of the input image to convert it in a
standardized format. These transformations include for example scaling by a
parameter or rotating by an angle [26]. The methodology of how the angle
can be calculated is showcased in the figure 1.4.

1.10 Facial landmark detection

Facial landmarks can be described as key characteristics on a human face.
Among the commonly detected landmarks are for example eye pupils, nose
tip or mouth corners. The analysis of these key points is beneficial for var-
ious computer vision use cases including biometry (e.g. face recognition for
secure authentication), face tracking or emotion detection. Typically the fa-
cial landmark detection process is preceded by several sub-steps, most notably
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detection of a face region, face alignment, and color and illumination prepro-
cessing [27].

There are different ways to categorise facial landmarking algorithms. In
[28] they divide the algorithms into holistic, regression-based and Constraint
Local Model methods.

In the recent years, the use of deep neural networks to solve facial land-
marking have been becoming more popular. With the right amount of compu-
tational power these methods can outperform the traditional methods in both
processing time and accuracy. Their biggest advantage is their greater robust-
ness in facial variety as well as working around more challenging conditions
related to lighting, facial occlusions and steeper head angles [29].

I choose a selection of various methods which I explore in more detail.
These methods have different approaches to the landmark computation. The
selected methods are further explored in the chapter 3, where I perform bench-
marks and comparisons. The sections 1.13, 1.14 and 1.15 describe methods
using more traditional machine learning algorithms. In the sections 1.16, 1.17,
1.18 and 1.19 I explore some example methods using deep learning.

Before exploring the details behind each method, the sections 1.11 and 1.12
showcase how landmarks can be mapped in an image and some state-of-the-art
datasets which can be used to train and test the solution’s performance.

1.11 Landmark markups

Various methods output different facial landmarks. Some methods use only
main facial landmarks, such as eye pupils, note tip and mouth corners, while
others output a larger amount of detail. One of the most notable example is
the 68 facial landmark markup which is the common format for many state-
of-the-art datasets [30]. It can be seen in the figure 1.5.

1.12 Datasets for face-related tasks

While methods and technologies used are a backbone of a facial landmark
detection system, these methods need data to train. There are several state-
of-the-art datasets which are often used for training and testing landmark
detectors or face alignment pipelines. Their variety in subjects, angles and
luminance greatly improve robustness of such trained models as well as thor-
oughly test how this method would handle difficult conditions. Among the
notable examples are HELEN with 194 annotated landmarks [32], LFPW
with 35 annotated landmark points [33].

To unify data across multiple databases as well as to standardize the land-
mark markup scheme, the 300W dataset combines selection of other datasets
like LPFW and HELEN. The resulting database contains all of the samples
annotated with 68 landmark markup [34].
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Figure 1.5: 68 facial landmark markup [31]

Datasets are not limited to 2D space only. 300W-LP dataset is a syn-
thetically created expansion of the 300W. Each sample is annotated with
coefficients of the 3D Morphable Model which is used to map a 2D image of
a human face into 3-dimensional space [35].

1.13 Active Shape Model

Active Shape Model (ASM) was introduced in [36]. It belongs to a branch of
methods known as flexible models. These models are typically used to describe
cases of objects which have high variety of shapes, such as the human face or
body organs. Similar methods to ASM are the Active Contour models (also
known as snakes). There are differences between the two, most notably ASM
employ a global shape constraint. This means that a shape can only deform
in ways which were found in the training set.

The method focuses on statistics of landmark coordinates. In order to be
able to compare the statistic properties of landmarks across multiple examples
from the training set, an alignment must be performed first to standardize
the samples. This is done iteratively by rotating, scaling and translating each
shape in the training set by a calculated mean shape from previously aligned
shapes. Once all samples have been aligned a point clouds of all the landmarks
in the set can be used by a Point Distribution Model to determine variance of
coordinates within the individual clouds. An important thing to note is that
the landmarks usually don’t move independently but are partially correlated
with one another [36].
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1.14 Active Appearance Model

Dating back to the year 1998, [37] introduced the Active Appearance Model
(AAM) as an extension of the original ASM. It obtains the shape model using
the Point Distribution Model just like ASM. Additionally, the model preserves
image information and combines it in the statistical model along with the
shape. That is done in such a way that after a mean shape of the training set
is obtained, each example image in the training set is aligned to match the
mean shape. All grey images in the training set are also normalized so that
the differences in lighting conditions are suppressed as much as possible to not
intervene with the statistical properties of the model. The normalized image
vectors as well as the shape vectors are combined under one linear model using
the principal component analysis.

A pre-trained instance of this model, which was trained on multiple datasets
including LFPW and HELEN, is available through the Menpo library [38].

1.15 Ensemble of regression trees

One of the most well known tools for facial landmark detection is provided by
the Dlib toolkit. It uses HOG for face detection and an ensemble of regression
trees as a for pose estimation. The Dlib’s version of the model was trained on
the 300-W dataset to output 68 facial landmarks [39].

The details of this procedure were described in [40]. Let S be the shape
vector containing 2D landmarks of image I. The current estimate of this vector
is noted as Ŝ(t). Each regressor rt(·, ·) in the cascade updates the vector using
the following formula:

Ŝ(t+1) = Ŝ(t) + rt(I, Ŝ(t)).
Each regressor makes its prediction using the features of the original image.

The regressors are trained using gradient tree boosting algorithm with a sum
of squares loss. To work around missing landmarks during the training phase,
a weight coefficients are introduced. Missing landmarks are simply marked
with weight of 0 [40].

1.16 Joint Multi-task Cascaded Convolutional
Networks

The Joint Multi-task Cascaded Convolutional Networks (MTCNN) were first
described in [41]. It is a method which aims to solve face detection and face
alignment as well as detection of 5 major facial landmarks – eye pupils, nose
tip and mouth corners. In order to unify the detection and alignment tasks
this solution combines three cascaded CNNs in its framework. This framework
is designed as lightweight as possible to enable realtime performance.
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Firstly, an image pyramid is built from the input by making several scaling
operations. All these images are fed as an input into Stage 1 network (P-Net
for Proposal Network). This CNN outputs bounding boxes for each of the
inputs. Before the move to the second stage, there are calibration and merging
operations happening to eliminate bounding boxes with too many overlaps.
In the Stage 2 network (R-Net for Refine Network) the candidate bounding
boxes get even more refined by reusing the same methodology as in Stage
1. Finally in Stage 3, the network (O-Net for Output Network) returns the
detected facial landmarks along with the final bounding box [41].

1.17 Deep Alignment Network

The Deep Alignment Network (DAN) introduced in [42] is a robust deep
learning-based face alignment method. It was trained on the 300W dataset.
The method describes a novelty approach for solving face alignment by pro-
cessing entire images rather than patches extracted around certain landmarks.

The initial input into the network is a warped image. The network refines
the detected landmark location over time by chaining layers into several stages.
Each stage has a Connection layer which outputs a landmark heatmap, esti-
mate of the input image transformation and a feature image. These three are
then fed as input into the consecutive stage’s feed-forward neural network for
further refinement. The landmark heatmap is a special concept of the solution
which marks the individual landmark location with intensity so that the closer
the landmark is, the higher the intensity value is in the heatmap. With this
approach the landmark estimates can be used and refined by the subsequent
network stages as the previous positions are reflected by the heatmap [42].

The figure 1.6 shows how the outputs look after going through the stage
process. The first column marks the initial input image, the second column
shows the image transformation estimate, the third column contains the land-
mark heatmap estimate and the fourth column marks the feature image esti-
mate [42].

1.18 Face Alignment Network

The Face Alignment Network (FAN) was introduced in [43]. This method can
be used for both 2D and 3D face alignment. The network was built using 4
stacked hourglass networks, however instead of a bottleneck block there is a
custom hierarchical multi-scale residual block.

The network for 2D and 3D face alignment is using the same architecture.
The training was done using the 300W-LP dataset which was divided into 2D
and 3D versions based on their annotations [43].

The paper further explores a way to create a 3D face alignment dataset
using a network which will convert data of a 2D dataset into projected 3D
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Figure 1.6: Outputs of a DAN stage [42]

Figure 1.7: The architecture of PRNet [45]

landmarks. The network’s design is based on the design of the FAN and it
was also trained on the 300W-LP which contains both 2D and 3D annotations.
The resulting network was used to generate a whole new 3D face alignment
dataset – LS3D-W. This synthetic dataset consists of approximately 230000
images [43].

Face detection is a part of the FAN implementation along with the fa-
cial landmark detection model. There are different options for face detectors
included, notably Dlib and Blazeface [44].

1.19 Position map regression network

Position map regression network (PRNet) was introduced in [45]. This end-
to-end method was designed to predict dense alignment out of which a 3D face
shape is reconstructed. A trained encoder-decoder network firstly maps a 2D
image into 3D coordinate space using a UV position map which was designed
for this solution specifically. The process of the method is highlighted in the
figure 1.7. The used dataset for training was the 300W-LP. The resulting
network takes about 9.8 ms to process a 256× 256 input RGB images.
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1.20 Tongue image processing

Difficulties of working with tongue image data and trying to analyze the out-
puts are likely linked to the unique physiology of the tongue. Tongues have
no skeletal structure, they can bend, protrude and twist freely which makes
them difficult to track for a specific shape [46].

There are different tasks in computer vision for which tongue images are
used. Two main processing techniques which are relevant for the topic of
this thesis are tongue image segmentation and tongue tracking. Processing of
tongue images has various uses from detecting illnesses to pattern recognition
for biometric purposes.

One example of tracking tongue movement was described in [47]. This
system uses the Gunnar Farneback algorithm for estimating dense optical flow.
It uses the entire face frame to compute the points where the flow magnitude
is over a certain threshold. The application is implemented in Matlab.
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Chapter 2
Related work

In this chapter I focus on describing existing applications and research fields
that are relevant for the topic of this thesis. The findings of these works help
me derive the most suitable solution for the expected outcomes of this thesis.
While there are several applications dedicated to the topic of automated speech
therapy I am also considering other use cases which deal with processing image
data of lips and tongue.

2.1 Traditional Chinese medicine

The traditional Chinese medicine (TCM) is a discipline of life science originat-
ing from ancient China. It focuses on research of human health and disease
prevention. One of the key elements of TCM is tongue diagnosis. It is used
to evaluate patient’s health based on tongue features such as color or texture
[48].

For the purpose of automation there are several applications which focus
on either preprocessing tongue image data or combining computer vision al-
gorithms to help analyze the input. The data used for this purpose are mostly
images of fully protruded tongues from frontal view.

2.1.1 Color based tongue segmentation using active contour

The solution described in [49] tackles the tongue segmentation by using active
contour. The initial contour is approximated by analyzing the tongue image in
HSV space. The most prominent features were located in the Hue and Value
component of the image. After separating the selected components, a binary
image is created for each of these subset images. Binary image simply creates
a black and white image from the input based on intensity of each pixel. If
the pixel intensity reaches a threshold then in the output there will be a white
pixel assigned. For pixels under the selected threshold there will be a black
pixel assigned in the output. Fusing the hue and value binary images gives
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Figure 2.1: Results of found tongue contours [49]

Figure 2.2: Results of tongue coating segmentation [50]

the initial contour for later processing. The initial contour is being evolved by
minimizing an energy function for separating tongue area and skin. Sample
results can be seen in the figure 2.1.

2.1.2 Separation framework of tongue coating

The same research team used this algorithm further for separating tongue
coating from tongue image as described in [50]. The sample results are show-
cased in the figure 2.2.

2.2 Human computer interfaces

A human computer interface (HCI) is an assistive technology that serves as
means of communication between a computer and its user. In the past the
most common ways of communicating with computers were hardware ma-
chines which transmitted user’s input into computer instructions such as track
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Figure 2.3: Gestures for detection [52]

pads, touch screens and keyboards. The problem with using these devices is
when the user has limited control over their motor functions. In order to
enable people with disabilities to make use of electronic devices, researchers
shifted their focus to alternative methods of controlling computers. These
methods mimic traditional input from hardware devices by implementing var-
ious gesture detection systems which can be taught to detect subtle facial
expressions such as eye-blinking [51].

In this section I focus on HCI solutions which use mouth and tongue
detection as a part of their workflow.

2.2.1 Tongue side protrusion gestures detector

For the purpose of human computer interaction, [52] designed a system for
evaluating tongue protrusion gestures from a simple web camera. Two different
gestures are being detected – tongue protruded on left and right side of mouth
as shown in the figure 2.3. The system requires for the mouth to be closed
during evaluation. Initially, for segmenting the mouth region this solution
uses Haar cascades to detect face and then cropping bottom third of the
detected face. Width is estimated by the detected position of the eyes. The
mouth region is further processed with a Gabor filter to locate the mouth line
connecting the corners. This initial mouth line is then used for tracking of
the mouth. The protrusion is located by comparing normalized correlation
coefficient value with both halves of initial mouth template over time.

2.2.2 Camera-based tongue computer interface

The solution described by [53] implements an assistive technology which en-
ables the users to control a joystick using 6 different tongue and mouth ges-
tures – closed mouth, opened mouth, tongue up, tongue down, tongue left
and tongue right. As a first step, the mouth region of interest is located and
transformed so that the input images match in size. The AdaBoost algorithm
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is used to classify state of mouth. Each gesture has its own strong classifier.
This prototype was tested in a first phase of evaluation of the interface. For
the second phase of testing there was an addition of training samples collected
from user during the evaluation process. The previously trained strong clas-
sifiers output top 3 most probable gestures. These findings are evaluated by
a final classifier which is trained on data captured by the user. While the
accuracy of the gesture improved with the second phase of evaluation, there
has been an increased latency of the classification.

2.3 Automated speech therapy

There have been solutions built in the past for the use case of speech therapy
automation. I keep a strict focus on applications analyzing image data only
while omitting the ones that perform their analyses on audio data. There are
also applications using contact devices for the user to be worn or attached to
their mouth such as magnetic sensors placed on the tongue. These solutions
will also not be included in this section as they are not as relevant to the use
case of this thesis.

2.3.1 sMilestone

This medical software was designed for post-stroke patients in order to speed
up the process of speech recovery. The solution uses the Microsoft Kinect
1.0 sensor to capture depth features of patient’s face. Along with the Kinect
sensor, the application leverages the Microsoft’s Software Development Kit
(SDK) including most notably the Face Tracking SDK. It enables to track
87 facial landmarks in real-time. For tracking the tongue tip the application
first locates the mouth area and searches for a point closest to the sensor in
this bounded space. With further image data readings the location of the
tip is refined even more by searching just the area where the previous closest
point was found. The application also takes into account that the depth field
roughness of the Kinect. In order to keep the detection smooth the localized
tip changes only once every few frames. As a proof of concept the authors also
developed a game which uses this tongue tip tracking system. The application
requires the user to stick their tongue out as much as possible in order to find
the correct tongue tip position [54].

Important outcome of this work is its focus on depth information and how
it can accurately generalize tracking of tongue tip. With the use of the Kinect
sensor the authors were able to track tongue tip in realtime but with a major
constraint by needing the users to protrude their tongue fully out of their
oral cavity before controlling the application. However, the speech therapy
exercises often include more subtle movements of the tongue.

The desktop version of Kinect devices is not being sold anymore [55] which
further limits the application’s use.
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Figure 2.4: Results of tongue segmentation and tongue tip localization [58]

2.3.2 AssistLT

This project was funded by the Technology Agency of the Czech Republic
with the task to develop a system for automatic speech therapy evaluation.
The project started in the year 2018 and ended in the year 2019 [56].

Technical details of the solution were published in [57]. Since the intended
user base of the application are children, there was a focus on augmented real-
ity features that make the speech therapy more engaging. For face landmark
detection the Dlib library is used. Using landmarks there are several fea-
tures being calculated on top of them to validate mouth states such as closed
mouth, opened mouth, smile, etc. For tongue related exercises the solution
implements a CNN which outputs segmented tongue area mask and a tongue
tip are mask out of single image input. Resulting outputs of the implemented
CNN are showcased in the figure 2.4 where ground truth area is marked green
and predicted area is marked red.

The solution is still under active development. One of the newer features
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is teeth detection for use with additional speech therapy exercises. Another
addition is a human computer interface mode which leverages the current
tongue detection system for controlling keyboard using tongue movements
[58].
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Chapter 3
Analysis

In this chapter I analyze possibilities of solving each of the works’s sub-tasks
based on both their performance and usability in order to design the most
suitable solution in the following chapter.

3.1 Facial landmark detection

In order to find the most suitable approach for landmark detection I have
performed benchmarking of several landmarking models. I have chosen Dlib
[39] and pretrained AAM model from Menpofit [38] library for Python as the
more traditional approaches to facial landmark detection. From deep learning
models I have chosen MTCNN [59], DAN [60], FAN [44] and PRNet [61].

3.1.1 Selected datasets

The methods I selected for testing were trained on different state-of-the-art
facial landmarking datasets, such as 300W and LFPW. To evaluate used al-
gorithms I looked for datasets which weren’t part of the training process and
still maintained decent level of difficulty in terms of lighting and angles.

First dataset I chose was the BioID Face database [62]. This dataset
consists of 1571 gray images. Each image is manually annotated with 20
landmarks. The mapping of the landmarks is shown in the figure 3.1. The
resolution of all the images is 384×286. The dataset was built on the facial
data of 23 different individuals (including people of different races, genders and
facial features such as beards and glasses) in various background surroundings.

Second dataset I chose came from Kaggle [63]. This dataset contains over
7000 images with up to 15 marked landmarks. However, not all of these images
have all the 15 landmarks annotated. I created a selection of images containing
all the available landmarks. There was 2140 in the final image subset. Each
image has a fixed size of 96x96 pixels. Several sample images of this dataset
can be seen in the figure 3.2 including the ground truth landmarks.
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Figure 3.1: Ground truth markup of BioID dataset

Figure 3.2: Sample images of the Kaggle dataset including ground truth land-
marks [64]
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3.1. Facial landmark detection

3.1.2 Error metric

From the selection of models I measured their accuracy while considering that
not all of the chosen models output the same amount of facial landmarks. The
other thing to consider was also the amount of landmarks that were available
for the selected datasets as well as their order in the output. I settled on 5
key facial points – pupils, nose tip and mouth corners. This mapping is used
by the MTCNN model.

On the selected point subsets I calculated the normalized mean error [65]
which can be defined as

NME = 1
N

N∑
i=1

√
∆x2

i + ∆y2
i

d
,

where N is the number of landmarks and d is the normalizing coefficient
for which I used inter-pupil distance. ∆xi and ∆yi denote the difference
between the ground truth and predicted coordinates of the i-th landmark.
The numerator part of the fraction is the formula for Frobenius norm.

3.1.3 Accuracy comparison

After saving the computed features from all models and datasets, I used the
Pandas library to process and analyze the outputs. Then I used the Matplotlib
library to create the plots. The calculated error distribution for each of the
benchmarked methods can be seen in the figure 3.3. The DAN model was the
most accurate from the selection with 86 % of errors on selected datasets were
under 0.25 in terms of point-to-point error. While PRNet was outperformed
by the other models in tests on selected datasets it has shown much better
performance on testing videos of people practicing the speech therapy exercises
captured for this thesis. They were taken with a phone low quality front
camera without fixed face position and angle of the subjects. The model
showcased better ability in locating lip landmarks in difficult conditions of
tongue being fully protruded falling third only to the DAN and FAN models.

3.1.4 Processing time comparison

All experiments were run on a machine with the following specifications:

• OS: Ubuntu 20.04.1 LTS 64-bit

• CPU: Intel(R) Core(TM) i5-7600K @ 3.80 GHz

• RAM: 32 GB

• GPU: NVidia GeForce RTX 2080 Ti (11 GB GDDR6)

• CUDA version: 10.1
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Figure 3.3: Normalized point-to-point error distribution using 5 landmarks

As there were images in the tested datasets which included different image
sizes I had to factor this into the final result. For each image I calculated
runtime per pixel. For every landmarking method I computed the average
across all the images in both datasets. The comparison results are showcased
in the table 3.1. In the same table I estimated how long it would take to
process an image of size 640 × 480 pixels using each of the methods from
the measured value. Dlib turned out to be the fastest of the chosen methods
in terms of processing runtime per pixel. However the model’s performance
was much slower when tested on videos of speech therapy exercises. In that
setting, the FAN model was the fastest performer.

3.2 Tongue tip localization

In this section I aim to analyze possibilities for locating tongue tip which is
the most important information I need for evaluating tongue related exercises.
While not each of these options can determine the tongue tip location, they
can still be used as a stepping stone in evaluating different gestures. I focus
on the positives and negatives each of these options can bring.
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Table 3.1: Comparison of average runtime per image pixel for benchmarked
methods

Method Average runtime per pixel [ms] Estimate runtime on
640× 480 picture [s]

Dlib 4.35× 10−4 0.13
AAM 4.01× 10−2 12.31
PRNet 6.56× 10−3 2.01
DAN 1.31× 10−3 0.40
MTCNN 6.90× 10−3 2.12
FAN 2.22× 10−3 0.68

3.2.1 Optical flow

For tracking using OF there are options to use either sparse or dense methods.
While dense methods can be more accurate, they are much more computa-
tionally demanding than sparse methods. For sparse tracking there would be
a selection of points in the oral cavity which would be used to analyze tongue
movement. Based on the vectors I would estimate the direction of the tongue’s
movement.

+ No prior data training & annotating

− Needs to save the previous frame data to work

− Does not locate the tongue tip by itself

− Computationally demanding

− Accuracy is dependant on the user’s movement and camera equipment

3.2.2 Detecting tongue gestures using a CNN

This option would require to train a CNN which would classify image ges-
tures such as tongue tip located up, down, left, right. Similar approach was
described by [66].

+ More robust and precise than OF

+ Needs only the current frame to work

+ Annotation of training data would be simpler with labels rather than
coordinates

+ Can train for special states of mouth e.g. opened without tongue visible,
closed
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− Exercise evaluation too broad e.g. cannot react to improvements of
patients, exercise evaluated as a false positive

− Would require a lot of training data

3.2.3 Detecting tongue tip coordinates using a CNN

Instead of detecting broad gestures the CNN could learn to detect one land-
mark on tongue image – tongue tip. Dataset for training would require manual
annotation of estimated coordinates. In order to ensure the necessary robust-
ness there would have to be a large number of images of various groups of
people.

+ More robust and precise than OF

+ Needs only the current frame to work

+ Exercise evaluation could be very precise – calculation of tongue tip
distance from a lip point

− Annotation of data would be a complex manual work

− Would require a very large amount of training data to be robust enough

3.2.4 Detecting tongue tip coordinates using a depth sensor

Using this method I would use depth information of the input to locate tip of
the tongue. Based on location of the found tip coordinates the implementation
would estimate the corresponding gesture. A reliable face landmark detector
would be needed to locate mouth area as accurately as possible. Locating
and tracking a minimum point in a segmented region would be less expensive
computation compared to calculating OF. For users it would mean to make a
prior investment into a depth sensing camera device however there would no
longer be dependence on the user’s camera quality.

+ No prior data training/annotating

+ Needs only the current frame to work

+ Exercise evaluation could be very precise – calculation of tongue tip
distance from a lip point for detecting the true location

+ Would not depend on user’s camera set up at all

− Additional investment into a depth sensor needed (both for testing &
for application users)

− Output may not show tongue tip but the most protruded tongue part
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− Sensitive to the user’s head tilt angle

− Performance and quality loss due to the physical connection of the sensor

3.2.4.1 Depth sensors’ comparison

There are several options for external depth sensor cameras which could be
used for this particular problem. I am including only the devices which are
available to buy which is why I am not including Microsoft Kinect1. I am
comparing them based on their capabilities, specifications and costs.

Intel RealSense D415 The D415 model is priced for $149. The depth tech-
nology used is active infrared stereo. The camera’s built-in infrared pro-
jector enables the sensor to pick up finer details in the scene [67]. It
supports depth resolution up to 1280× 720 pixels and frame rate up to
90 FPS. The depth field of view is given at 65◦ ± 2◦ × 40◦ ± 1◦. The
depth sensor can capture range from 0.16 metres to 10 metres. The RGB
sensor uses the rolling shutter and supports resolution up to 1920×1080
pixels with 30 FPS frame rate. The field of view of the RGB sensor is
69◦ ± 1Ö42◦ ± 1 [68].

Intel RealSense D435 While the depth technology used by this model is
also active infrared stereo like the previous model, there are several
differences. Compared to the D415 model the depth sensor has a greater
field of view with 86◦× 57◦(±3◦). Additionally it can detect depth from
minimal distance of 0.106 metres. These differences allow for better
capturing of a wider space as well as the option to capture elements
much closer to the sensor. The parameters regarding the RGB sensor
are identical to the D415 model. The price of the device is $179 [68].

Orbbec Astra Series This product line consists of Astra, Astra S and Astra
Pro with all three products priced at $149.99 [69]. While the Astra S
has a range between 0.4 and 10 metres, the Astra and Astra Pro have
a range between 0.6 to 8 metres. All three models have the field of
view of 60◦H× 49.5◦V× 73◦D and they also share the depth resolution
specification of 640× 480 pixels at 30 FPS frame rate. The Astra Pro’s
RGB sensor supports resolution up to 1280×720 pixels at 30 FPS while
the Astra and Astra S support up to 640× 480 pixels at 30 FPS [70].

The devices by Intel are compatible with the software development kit
which is available across different platforms and can be used by different pro-
gramming languages. Another part of this kit is the Intel RealSense Viewer
application which provides a user interface for the camera. Besides testing

1See subsection 2.3.1.
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different settings and filters of the camera stream, it can also be used to cap-
ture videos to .bag compressed files and play them back [71]. The cameras
can also be used with an Android phone or tablet by connecting a USB On-
the-go (OTG) device using an input connector suitable for the target device.
The authors of the librealsense library have released a sample application in
the Google Play store, which showcases communication between the external
camera and an Android device via OTG connection [72].

The Astra device line can be used programmatically with the Astra SDK
which is supported on numerous platforms. There are also additional fea-
tures available such as the Orbbec Body Tracking library which needs to be
purchased separately for a license fee of $74.99 [73].

32



Chapter 4
Design and implementation

The Intel RealSense D415 depth camera was selected for capturing image and
depth data stream. Its depth sensor’s technical parameters are sufficient for
the use case of this thesis. The RealSense SDK will be used to capture and
process RGB and depth data programmatically.

4.1 Requirements and prerequisites

In order to be able to use the application there is a couple of requirements on
the user’s setup so that the optimal quality of the output is assured.

The following list of components must be used:

• Intel RealSense D415 camera

• USB-C to USB-B 3.2 cable (included with the camera)

• a tripod with a 1/4-20 UNC mounting thread

There are also requirements for how the user should proceed when using
the solution:

• User should be using the application in a reasonably lit room. There
does not need to be a special lighting in place directed at user but the
face should not be occluded with too much shadow.

• The camera should be seated on a tripod. The camera must be leveled
with the ground in order to capture face from 90◦ angle. The camera
needs to be placed approximately between 40 cm and 45 cm away from
user’s nose tip. The camera height should be set in parallel with the
user’s lips. The set up is further showcased in the figure 4.1.

• User should sit straight and keep the head movements to the minimum.
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tripod

D415
mouth level

~ 40-45 cm

Figure 4.1: Camera setup guidelines (vector image edited from [74])

• Each exercise should be performed as slowly as possible. This way the
exercise is most effective as well as easier for the application to process.

• When performing exercises with the tongue, the mouth should be opened
as much as possible.

4.2 Workflow of the application

The application will be performing the following set of subtasks:

1. Load current image and depth data

2. Face detection

3. Facial landmark detection

4. Mouth localization

5. Calculation of mouth measurements

6. Detection of mouth state (closed/open)

7. Detection of tongue gesture

8. Update of exercise sequence based on detected gesture
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4.3. Detecting facial landmarks

4.3 Detecting facial landmarks

The first key step in the application’s workflow is to detect user’s face and the
facial landmarks. The most important landmarks for the application logic are
around the lips. Following the analysis of different algorithms I have chosen
the FAN network as means to detect facial landmarks. Upon detecting and
locating these landmarks I calculate several measurements such as lip height
and height of the oral cavity. Based on these measurements, specifically if the
height of oral cavity is larger than height of the thicker lip, I estimate whether
the mouth is opened or closed.

4.4 Detecting and tracking tongue

For estimating tongue tip movements I follow a set of constraints which can
be described by pseudo code 1.

Algorithm 1: Tongue tip tracking
Data: Color and depth image stream
Result: Tongue tip estimation point
initialization;
while stream is running do

find landmarks;
check if mouth is opened;
if mouth is open then

if minimum point is not being tracked then
find minimum in oral cavity;
if found minimum is close to depth threshold then

save new found minimum for next frame;
end

else
find new minimum in previous minimum point’s area;
if new minimum is in mouth bounds then

save new found minimum for next frame;
else

release the current minimum point from tracking;
end

end
end

end

When locating the initial tongue tip, the algorithm is looking for a depth
minimum within the oral cavity. In order not to misdetect teeth as tongue
tip candidate the initial area of search is located near the mouth center and
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the radius of the area is approximately 1/4 of located oral cavity. A minimum
is considered to be the tracked tongue tip once the depth value reaches a
threshold close to a minimum depth value of the lip area. While the initial
minimum found may not be the tongue tip precisely, the estimate eventually
converges towards this point by locating a new local minimum in the previously
found area of interest. This area is is marked by points surrounding previously
found minimum point. Sometimes it can happen that there are multiple points
in the region of interest which have the same depth value. If that is the case
then a center of these points is estimated by their bounding box and this
center will be the next found minimum point. This allows for more controlled
estimate of the found minimum if a larger tongue area is protruded in the
current frame. Tracking point gets reset if the tip estimation reaches set
mouth bounds or mouth gets detected as closed.

There are several parameters to consider when setting up the tracking
algorithm. If the search area between the last located point is too small, the
location may get stuck in a local minimum. If the search window is too big, the
location may converge towards a lip point closer to the depth camera instead of
following the tongue. If either of these cases should occur, the tracking should
reset in order to try to repair itself. For this purpose it’s also important to
define bounds of the mouth where the search for a local minimum can still
happen.

4.5 Exercise description and key gestures

For this thesis I chose a subset of exercises which were shown to me by a
speech therapy expert. Most of the exercises focus on tongue movements.
A description as well as a sequence of steps and key points of tracking are
described in the table 4.1.

The tongue is found in a key position based on the closest lip point in
the [x, y] coordinate space. If the found minimum depth is close enough to
the lip point based on a selected threshold, the tongue is set to cover this lip
point. Special cases are the mouth corners which are usually located slightly
further away from the depth sensor than the rest of the lips. In order for the
detected position to be the mouth corner, the area around each of the corners
is checked. If the found minimum is in a proximity of a corner and the mean
depth of points around the corner is less than the mean depth of points around
the other mouth corner, it is assumed that the mouth corner is covered by the
tongue.

4.6 Exercise evaluation workflow

Exercises are defined as key gestures performed in a sequence. While the
full sequence is not detected, exercise should not be validated as successfully
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Table 4.1: Descriptions and key gestures of selected speech therapy exercises

Exercise
ID

Description Gesture sequence

1 The user slowly moves tongue across the
top palate to the upper lip and back again.

Tongue out, tongue top
center, tongue out

2 The user slowly licks their lower lip from
right to left and back.

Tongue right corner,
tongue bottom center,
tongue left corner,
tongue bottom center,
tongue right corner

3 The user slowly licks their upper lip from
right to left and back. Tongue tip is
pointed towards the nose.

Tongue right corner,
tongue top center,
tongue left corner,
tongue top center,
tongue right corner

4 The user slowly licks their lips in circular
motion.

Tongue right corner,
tongue top center,
tongue left corner,
tongue bottom center,
tongue right corner

5 The user has their mouth opened and
moves tongue from left corner to the right
corner without moving the jaw.

Tongue right corner,
tongue out, tongue left
corner

performed. Additionally, some gestures within the exercise can be more impor-
tant and should therefore be performed for a longer period of time. Example
of this is the exercise with ID 1 which was described in table 4.1. The key
gesture in that case is tongue top center. In order to enforce the importance
of this gesture it should be held in correct position for a longer period of time
compared to the other gestures within the sequence.

After a tongue gesture is identified, the current sequence state is updated.
Once the correct gesture was performed for the defined count, the active ges-
ture to evaluate changes to a following gesture of a sequence. The exercise can
be enforced to be repeated multiple times so while this count is not achieved,
the sequence simply restarts itself upon completion.

4.7 Implementation

All of the code for the application was written in Python 3.6. The main
libraries which I used to load and process the data from the depth camera
were OpenCV and Pyrealsense2. Additional packages were based on the re-
quirements of facial landmark detection model which is implemented using
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PyTorch framework. Operations with vectors and matrices were implemented
using the Numpy package. The complete list of packages which were needed
to be installed on top of a clean Python environment were:

• Pyrealsense2 v2.40.0

• OpenCV v4.1.0

• PyTorch v1.7.1 (tested with versions for CUDA v10.1 and CPU only)

• face-alignment v1.3.3

While there are not any specific OS restrictions listed with these packages,
I only tested the application on Linux.

4.7.1 Input data description

I have been working with the resolution of 640×480 pixels and frame rate of 30
FPS from both depth and RGB sensor which proved to be sufficient settings
for the proof of concept. Pyrealsense2 provides a wrapper for many functional-
ities to process incoming camera streams. The stream can be accessed both by
using pre-recorded .bag files and using data coming from the camera directly.
When recording data through the Intel RealSense Viewer application the
recording preset needs to be changed to High Accuracy. These presets are pre-
pared by Intel and they are optimized for the device type and resolution. Alter-
natively these presets can be downloaded in a JSON format [75]. The relevant
file I have used in my application is the MidResHighAccuracyPreset.json.

I have used post-processing filters for the depth data in order to enhance
the incoming depth image stream. The importance of this step can be seen
in the figure 4.2. The visible holes in the raw image would drastically change
the outcomes of the detection process but it is remedied by the use of filters.
The filters which I am using are depth to disparity, temporal filter, hole-filling
filter and disparity to depth in their default setting.

The data captured by the RealSense camera device can be further trans-
formed with Pyrealsense2’s library functions in order to used seamlessly by
the Numpy package. While the image data are defined as 3-channel matrices
as one would expect, the depth data are instead given as a 2D matrix where
each value is represented by depth value of the point. In order to get the actual
metric distance between camera and a point, the data needs to be scaled by a
constant depth scale parameter which can be accessed by a library function.

4.7.2 Core of the application

The script rs fan pipeline.py contains the main logic of the application. It
can be run in two different modes. It either uses realtime data pulled from the
D415 camera which needs to be plugged in the target device during runtime,
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Figure 4.2: Comparison of raw depth image data and depth image after post-
processing using filters

or it can load a compressed .bag file which was recorded through the Intel
RealSense Viewer application.

There are several parameters to specify when running the script:

--realtime This flag indicates that the input will be taken directly from a
camera plugged in the computer.

--visible This flag indicates that the output of the application will be ren-
dered in a separate window on top of being saved to a video file. The
stream can be closed by pressing the esc key or the q key on the key-
board.

--input string This parameter expects a string specifying the path to a .bag
file which will be used as an input. If the realtime mode is toggled on
then this input parameter is ignored.

--exercise int This parameter specifies which exercise will be evaluated
during execution. If no exercise ID is specified or the ID is not valid
then no exercise will be evaluated and the application will only track
movement and predict gestures.

--reps int This parameter specifies how many times should the exercise be
performed.

--winsize int This parameter defines size of the search window when track-
ing tongue based on previous minimum location. The figure 4.3 shows
how this parameter helps define the search area.
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--tdtol float This parameter defines how big of a depth value difference
between the minimum point in the oral cavity and a weighted minimum
lip point there has to be in order to start tracking tongue in the oral
cavity. If the minimum values are not within the specified threshold
then the detected tongue gesture is tongue in.

--mctol float This parameter defines how big of a depth value difference
between points around mouth corners there needs to be to detect the
tongue covering one of the corners. If the minimum values are within this
specified tolerance then tongue cannot be detected as covering mouth
corner. The smaller the parameter value, the greater the lenience when
detecting tongue covering mouth corner gesture.

--tcscale float This parameter defines a scale of depth tolerance when de-
termining if tongue covers a specific lip point. The higher this value is,
the more likely will the tongue be classified as covering a lip. Moreover
the smaller this value is, the more likely the detected gesture will result
in tongue out.

--lcscale float This parameter defines how much will the lip area be scaled
by. This defines how far can the minimum point be tracked up the
mouth before the tracking gets reset and a new search will happen. If
the parameter value is too small, the tracking will get reset more often.
If the parameter value is too large, it can happen that the tracking will
follow a lip point rather than the tongue.

4.7.3 Utilities

The script func utils.py provides important functions for supporting main
application logic. There are four main areas of functionalities that are imple-
mented in this script:

• Calculating mouth features such as width and height for different parts

• Finding minimum location either as initial search or around the previ-
ously found minimum area

• Evaluating tongue coverage of different lip parts

• Lip and mouth mask operations

Mask operations are especially useful when locating minimum. By using a
mask instead of a regular bounding box I have much better control over which
points are to be considered to be in an area of interest.
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winsize

search window

Figure 4.3: The winsize parameter value and how it affects the search bound-
ing box around the previously found minimum value (marked as the red pixel)

4.7.4 Exercise definition

Exercises are defined as a constant using a Python dictionary. Each dictionary
key marks the index of an exercise step. The value is comprised of a list
which includes exercise step gesture name and a number of frames marking
the length of performing this gesture. This allows for defining important
parts of the exercise which should be performed for a longer period of time. It
also reduces the risk of gesture misclassification affecting the proper exercise
performance. All exercises from table 4.1 were defined in a file constants.py.
Some of the exercise gesture sequences were simplified for the experimental
evaluation which will be further discussed in the subsequent chapter 5.

41





Chapter 5
Experiments and evaluation

For the evaluation of the design I described in the previous chapter I have
used recordings of several individuals performing the speech therapy exercises
with the selected depth camera. The recordings for each of the exercises were
created using the same settings, however they were not necessarily taken in
the same conditions described in section 4.1. I decided to focus in greater
detail on exercises 1 and 5 which are the simpler ones in terms of gesture se-
quence complexity. While these gestures are also relatively easy for the users
to perform without any expert guidance, the outputs have shown that there
was a lot of room for individual variety in how the exercises were performed.
This kind of user input helps to uncover different weaker points of the designed
solution as well as the important aspect of how important is the correct setup
of the user’s environment while using the application. For each of these exer-
cises I am describing the used input data as well as individual parameters set
for processing these recordings using my application in order to get the most
exercise repetitions evaluated.

All experiments were performed on the same machine2 which was used
for benchmarking landmark detectors. The evaluation metrics and plots were
computed using the scikit-learn library. The frame rate for each of the input
videos was around 19 to 22 FPS when running without visible the output
window.

5.1 Exercise 1

During this exercise the goal is to move the tongue tip slowly across the top
palate inside the mouth and continuing this movement towards the top lip
which should get fully covered by the tongue. The sequence of gestures is
shown in the figure 5.1.

2See 3.1.4
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Figure 5.1: Sample sequence of exercise 1

This exercise should by its definition include the tongue moving inside the
oral cavity. However, this kind of movement cannot be reasonably tracked with
the depth camera, so the gesture sequence had to be simplified to not include
the tongue in gesture. As stated in the previous chapter, the key gesture in
this sequence is tongue top center which is why in the exercise evaluation and
the labeling of generated image data I paid a greater attention to the tongue
being placed as high as possible over the top lip.

5.1.1 Description of input videos

Adult 1 Approximately 47 cm away from the camera. Head was facing the
camera. Performed 4 repetitions. Mouth was opened wide during tongue
protrusion. Closest to the exercise description.3 Parameters: --winsize
2, --tdtol 7.5× 10−3, --mctol 2.0, --tcscale 0.225, --lcscale 0.65

Adult 2 Approximately 50 cm away from the camera. Performed 2 repeti-
tions. Head was slightly tilted so that right mouth corner was closer to
the camera than the left mouth corner (approximately 0.5 cm). Lips
were very close together during the tongue protrusion. Parameters:
--winsize 2, --tdtol 2.5×10−2, --mctol 1.0, --tcscale 0.1, --lcscale
0.7

Adult 3 Approximately 35 cm away from the camera. Performed 5 repeti-
tions. Head was facing the camera. On first repetition the lips were close
together when protruding tongue. For the rest of the repetitions the lips
were further apart. Parameters: --winsize 2, --tdtol 7.5 × 10−3,
--mctol 1.0, --tcscale 0.175, --lcscale 0.5

Child 1 Approximately 40 cm away from the camera. Performed 4 repe-
titions. Head was tilted so that right mouth corner was closer to the
camera than the left mouth corner (approximately 1 cm). Tongue move-
ment was very fast. Tongue was only moving between mouth center and
the top lip, the movement never went in and out the oral cavity. Param-
eters: --winsize 2, --tdtol 8.5× 10−3, --mctol 3.0, --tcscale 0.17,
--lcscale 0.55

3Link to the evaluated video: https://youtu.be/PMxhPDdGhBE
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Figure 5.2: Normalized confusion matrix of gestures in exercise 1

Child 2 Approximately 35 cm away from the camera. Performed 4 repeti-
tions. Head was facing the camera. During one repetition the lips were
close together while the tongue was protruded. Parameters: --winsize
2, --tdtol 1.0× 10−2, --mctol 1.0, --tcscale 0.2, --lcscale 0.6

Child 3 Approximately 32 cm away from the camera. Performed 2 repe-
titions. A lot of head movement during the exercise. Lips were very
close together during the tongue protrusion, mouth was not opening at
all during the exercise. Parameters: --winsize 2, --tdtol 2.5× 10−2,
--mctol 3.5, --tcscale 0.15, --lcscale 0.7

5.1.2 Evaluation of gesture classification

The confusion matrix shown in the figure 5.2 contains true and predicted
gestures for all of the input videos.

From this data I have calculated the following quality metrics:
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Table 5.1: Results of evaluation of exercise 1

Video Subject Repetitions made Repetitions detected
Adult 1 4 4
Adult 2 2 1
Adult 3 5 4
Child 1 4 3
Child 2 4 3
Child 3 2 1

• precision = 0.7

• recall = 0.62

• F1 score = 0.62

• Hamming loss = 0.38

5.1.3 Evaluation of exercise sequence detection

The table 5.1 describes how many repetitions of the exercise were evaluated as
successful based on each of the input videos. The percentage of total detected
repetitions out of all performed was 76% with no prematurely evaluated rep-
etitions.

5.1.4 Experiment conclusion

The biggest problem with evaluating this exercise was with the different ap-
proach the users were taking while performing it. While the algorithm was
able to track tongue movement when the mouth was open as much as possible,
it had problems detecting movement when the lips were very close together as
the tracking sequence does not trigger when the mouth is detected as closed.
The figure 5.3 shows the manifestation of this problem. This has been a prob-
lem during testing of the other exercises as well. The logic of the algorithm
in this case should stay as is, but a further incentive for the users is needed so
they know how much should they open their mouth or warn them when they
keep the lips too close together.

Other weaker point of the exercise evaluation happened while the tongue
was supposed to move from the top lip back in the oral cavity. For the majority
of users this movement was much more subtle and faster than moving the
tongue tip upwards. That was usually the cause of why the sequence was not
registered fully or with a considerable delay.

For future research it would be needed to think more about the sequence
of this exercise. The sequence could be even more strict and enforce the user
to close the mouth entirely after finishing the repetition. This would allow to
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Figure 5.3: Problems with gesture detection during exercise 1

Figure 5.4: Sample sequence of exercise 5

separate the start and end of the exercise and potentially increase the exercise
detection.

5.2 Exercise 5

During this exercise the user moves their tongue from left mouth corner to
the right while keeping their jaw in a fixed position. It is not required for the
tongue to hold the corner position for a prolonged amount of time but the
corners should be considered the key gestures in this case and therefore have
a bigger priority over the movement which happens between the two corners.

Different users started from different mouth corners. For evaluation the
exercise repetition was counted when they moved their tongues from the left
corner to the right corner and then made a move from the right corner towards
the left corner again. The figure 5.4 shows how the sequence should look like.

5.2.1 Description of input videos

Adult 1 Approximately 47 cm away from the camera. Head was facing the
camera. Performed 4 repetitions starting from left mouth corner. Mouth
was opened during tongue protrusion. The tongue rarely touched the
lips during the transition between mouth corners. Closest to the exercise
description.4 Parameters: --winsize 2, --tdtol 9.0 × 10−3, --mctol
0.25, --tcscale 0.25, --lcscale 0.7

4Link to the evaluated video: https://youtu.be/p5iINEdr3Z4
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Adult 2 Approximately 48 cm away from the camera. Performed 3 repe-
titions. Head was tilted so that left mouth corner was closer to the
camera than the right mouth corner (approximately 1 cm). Mouth was
opened during the tongue protrusion. Tongue was moving in a slow pace.
Tongue was overlapping the bottom lip slightly when moving between
mouth corners. Parameters: --winsize 3, --tdtol 1.0×10−2, --mctol
0.1, --tcscale 0.1, --lcscale 0.7

Adult 3 Approximately 40 cm away from the camera. Performed 3 repeti-
tions. Head was facing the camera initially but it was moving during
the exercise and got tilted so that the right corner was closer to the
camera than the left mouth corner (approximately 1 cm). Mouth was
opened during the tongue protrusion. Tongue was moving at a rapid
pace. Tongue did not touch lips between movements from corner to
corner. Parameters: --winsize 6, --tdtol 1.5 × 10−2, --mctol 0.1,
--tcscale 0.3, --lcscale 0.7

Child 1 Approximately 33 cm away from the camera. Performed 10 repe-
titions. Head was facing the camera. Mouth was opened a little just
so that the tongue’s border was close to the lips. Tongue movement
was very fast and mouth corners were not touched for a longer period
of time. Tongue was not touching the lips while moving from corner to
corner. Parameters: --winsize 4, --tdtol 5.0 × 10−2, --mctol 0.01,
--tcscale 0.575, --lcscale 0.7

Child 2 Approximately 33 cm away from the camera. Performed 10 rep-
etitions. Head was slightly tilted so that the right mouth corner was
closer to the camera than the left mouth corner (approximately 0.5 cm).
Mouth was opened wide. Tongue was overlapping the bottom lip dur-
ing the movement between mouth corners. Tongue movement was very
fast. Parameters: --winsize 5, --tdtol 2.5×10−2, --mctol 2.5×10−2,
--tcscale 0.1, --lcscale 0.65

5.2.2 Evaluation of gesture classification

The confusion matrix shown in the figure 5.5 contains true and predicted
gestures for all of the input videos.

From this data I have calculated the following quality metrics:

• precision = 0.58

• recall = 0.28

• F1 score = 0.33

• Hamming loss = 0.72
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Figure 5.5: Normalized confusion matrix of gestures in exercise 5

Table 5.2: Results of evaluation of exercise 5

Video Subject Repetitions made Repetitions detected
Adult 1 4 4
Adult 2 3 2
Adult 3 3 2
Child 1 10 2
Child 2 10 5

5.2.3 Evaluation of exercise sequence detection

The table 5.2 describes how many repetitions of the exercise were evaluated as
successful based on each of the input videos. The percentage of total detected
repetitions out of all was 53% with no prematurely evaluated repetitions.
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5.2.4 Experiment conclusion

For experimental purposes it was not checked whether the users moved their
jaw in any way during the performance. In the future this would need to be
actively checked by the application during runtime according to the location
of jaw landmarks.

This exercise has proved very sensitive in cases when the user’s head was
tilted in one direction. Even a 1 cm difference between corners’ depths of-
ten resulted in delayed detection of the corner gesture or gesture not getting
detected at all. In the future this problem would have to be dealt with ei-
ther by guiding users how to use the application properly or by find a way of
compensating for the bigger depth values based on the head tilt.

Another problematic aspect was speed of the tongue movement. It was
possible to track fast tongue movement by increasing the winsize parameter
but if the user did not have fully opened mouth this often broke the sequence
as the minimum point got tracked towards the lip where depth values were
much smaller than in the tongue area. While this could have been balanced
by reducing the lcscale parameter, the tracking would loose a lot of valuable
information of user’s tongue movement. Combined with the tilt of the head
this proved to be a big problem for detecting the whole exercise sequence.

In this exercise it is expected that the gesture being detected during move-
ment in between mouth corners would be tongue out. In theory this would
work best with user pointing the tongue tip forward in order not to overlap
the top or bottom lip. In practice the users often pointed their tongue tip
downwards which resulted in detecting the gesture tongue bottom center in-
stead. For the algorithm it was the logical outcome as the detected minimum
depth of oral cavity was technically close to the depth of the bottom lip by a
selected threshold. The potential fix of the logic would be to try to estimate
if the tongue truly covers the lip physically or only hovers over it. This could
prove difficult to implement due to different thicknesses of tongues as well
as the individual users’ ability to protrude tongue forward. Another way of
going about solving this particular problem would be to separate key gestures
and the movement in between. This would allow for different gestures being
counted as a part of the sequence while keeping the important gestures en-
forced. It would need to be consulted with speech therapists in order not to
make the system too lenient to be helpful for the users.

The figure 5.6 shows typical problems of misdetection happening during
evaluation of exercise 5.

5.3 Future improvements

This application still has areas for improvement before being released to the
general public. I have analyzed several points of improvement for the current
application logic in the dedicated subsections of each experiment. In this
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5.3. Future improvements

(a) Tongue hovering
over lip during

movement

(b) Lips too close
together

(c) Head tilting

Figure 5.6: Problems with gesture evaluation of exercise 5

section I would focus more on different areas of improvement, most notably
related to user experience.

While this working prototype is able to track and evaluate speech therapy
exercises, the application would benefit from being easier to use. At this stage
it is needed to set up multiple parameters individually for the best possible
evaluation performance. This could be changed by implementing machine
learning methods to either help set up the optimal parameters automatically or
train a classifier to evaluate tongue gesture state based on the mouth features
and depth map.

One possible approach for increasing the evaluation accuracy would be to
properly enforce how a user behaves while using the application, for example
how is their head tilted or how quickly they perform the exercise. This could be
a challenge from the user interface perspective and it would require a further
cooperation with speech therapists. The benefit would be that the users would
be lead towards doing the exercises in the proper way.

An interesting addition for the application would be to add an augmented
reality component to make the exercises more fun and enjoyable especially for
younger children.
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Conclusion

The goal of this thesis was to design and implement software for detecting
facial landmarks to support an automated speech therapy application. The
biggest and most challenging aspect of this application was the detection and
tracking of tongue movement.

I have conducted a research of existing solutions and technologies which
were used to solve similar use cases. The analysis of the positives and negatives
of various approaches has led me to design an application which leverages the
Intel RealSense D415 depth camera.

I have performed an experimental evaluation of the design on two selected
speech therapy exercises. Despite the lower exercise sequence detection which
in most cases was caused by head tilting, rapid tongue movement and mouth
being opened too little, the depth camera has proven to be a reliable method
for tongue tracking.

With the cooperation and support of SIT Port in Pilsen, where the user
interface of the application is under active development, I will work further
on improving the current solution to be more reliable and easier to use. The
end goal is to release the application to the general public and enable users
to practice different speech therapy exercises without active supervision of a
speech therapy expert.
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[57] B́ılková, Z.; Novozámský, A.; et al. Automatic Evaluation of Speech Ther-
apy Exercises Based on Image Data. In Image Analysis and Recognition,
edited by F. Karray; A. Campilho; A. Yu, Cham: Springer International
Publishing, 2019, ISBN 978-3-030-27202-9, pp. 397–404.
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Appendix A
Acronyms

AAM Active appearance model

ASM Active shape model

CNN Convolutional neural network

DAN Deep Alignment Network

FAN Face Alignment Network

FPS Frames-per-second

HCI Human computer interface

HOG Histogram of oriented gradients

MTCNN Multi-task Cascaded Convolutional Networks

NME Normalized mean error

OF Optical flow

OTG USB On-the-go

PRNet Position map regression network

SDK Software development kit

SVM Support-vector machine

TCM Traditional Chinese medicine
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Appendix B
Contents of enclosed CD

README.md.........................the file with CD contents description
src ............................ the directory of implementation sources

demos.......................the directory of sample demo notebooks
outputs.......................the directory of sample output videos

text..........................................the thesis text directory
sources.............the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format
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