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Abstrakt

V této práci představujeme vlastńı metodu pro automatickou stylizaci vek-
torových animaci s použit́ım vzhledu běžných uměleckých médíı, primárně
zaměřenou na akvarely. Naš́ım hlavńım ćılem je co nejlépe zachovat vizuálńı
charakteristiky dynamického chováńı daného média.

Nejdř́ıve poskytujeme stručný přehled již publikovaných metod pro přenos
stylu a uměleckou stylizaci statických obrázk̊u a videa. Následně podrobně po-
pisujeme př́ıstup ke stylizaci založený na přenosu spojitých region̊u z předlohy.
Mimo to se zaměřujeme i na některá d̊uležitěǰśı př́ıbuzná témata a řešeńı
častých problémů. Nakonec formulujeme vlastńı př́ıstup k řešeńı stanoveného
úkolu založený na předchoźıch konceptech, a vyhodnocujeme jeho výstupy.
Zahrnujeme i popis některých implementačńıch detail̊u a krok̊u ke zrychleńı
implementovaného programu. Soud́ıme, že přes některé nedostatky, rovněž
zmı́něné v této práci, poskytuje navrhovaná metoda přesvědčivé výsledky od-
pov́ıdaj́ıćı zadáńı.

Kĺıčová slova přenos stylu, animace, syntéza textury, dle předlohy, umělecká
stylizace
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Abstract

In this thesis, we present a novel approach to the automatic stylization of
vector animation with the appearance of artistic media, primarily focused
on, but not limited to, watercolor. The main goal is to preserve the visual
characteristics of the given media’s dynamic behavior as much as possible.

We provide a quick overview of previously published methods for style
transfer and artistic stylization of still images and video. Subsequently, we
describe the patch-based approach to example-based stylization in detail. We
also focus on several important concepts related to this approach and solu-
tions to common problems. Finally, we formulate our approach to the given
task based on those concepts and evaluate its results. Details of our imple-
mentation and its optimization are included. We conclude that despite several
shortcomings also mentioned in this thesis, our method produces compelling
results in line with the set goal.

Keywords style transfer, animation, texture synthesis, example-based, artis-
tic rendering
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Introduction

For several decades, 2D animation has been a vital part of popular multimedia
and art. With the rising utility of computers, a number of software solutions
have emerged, that allow artists to design and animate a scene in terms of
vector graphics. Both vector-based animation and earlier animation drawn by
hand frame by frame often share common aspects to their visual style. One of
primary components of typical cartoon-like animation are larger contrasting
regions painted with flat color or smooth shading. A way to add to the visual
appeal of such animation is to slightly deviate from this common look and add
a fine texture or generally a different style to these regions. The goal of this
thesis is motivated by the need of an automated approach to such stylization,
as doing it by hand is too time consuming with a reasonably large sequences.

Automatic stylization of various imagery, including computer-generated
animation, is a widely and actively researched topic in computer science. In
this thesis, we choose to explore example-based approach to stylization of
animation. That means not mimicking a single particular style, but rather
transferring the look of an additional input – an exemplar image sequence
– to the target animation. The field of example-based texture synthesis and
image stylization has seen remarkable advancements in the past years, both in
terms of the visual quality of the results and the computation speed. We build
upon the state-of-the-art and formulate a method focused on example-based
stylization of a flat-colored image sequence with the look of watercolor or other
common artistic media, while maintaining their characteristic appearance as
closely as possible.

Compared to still image stylization, dealing with continuous animation
brings several additional problems to be addressed. Particularly maintaining
temporal continuity (most commonly referred to as temporal coherence) of the
stylized image sequence is of great interest. When each frame of a sequence is
synthesized independently, there is typically some amount of temporal noise
present. We are familiar with this effect from traditional hand-colored anima-
tion, which is also done in a frame-by-frame fashion. However, longer periods
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Introduction

of watching such flickering animation cause eye strain and generally result in
an unpleasant viewing experience. On the other hand, methods that enforce a
strong temporal coherence by propagating some information between frames
often produce artificially looking results, where textures are essentially stuck
to moving surfaces. Our goal in this thesis is to try to approach this problem
in a unique way and transfer not only the static look of the exemplar to the
target animation, but also the appearance of the material’s natural movement
over the surface. For example, a short video time-lapse of an ink drop soaking
into a piece of paper would be a suitable exemplar of a material dynamically
interacting with a surface. The aim is, given such exemplar sequence, that the
movement in the synthesized animation also resembles contiguous bleeding of
a color through fibres in paper.

Structure of the thesis

In the first chapter, we provide an overview of already published methods for
style transfer and automatic artistic stylization of still images and video.

The second chapter is dedicated to the patch-based approach to texture
synthesis. We formulate it as a global optimization problem in detail and
introduce the spectrum of related concepts and problems.

In the next chapter, we describe our approach exhaustively. Building upon
the concepts from the previous chapter, we formulate the problem rigorously
and describe all individual parts of the final algorithm in detail.

The fourth chapter provides some details of our implementation and de-
scribes the steps taken towards optimizing the computation time.

In the last chapter, we evaluate the achieved results and discuss the limi-
tations of the method that can be addressed in future work.
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Chapter 1
Related work

1.1 Stroke-based rendering

A large body of work focuses on methods in the category of stroke-based ren-
dering. They are based on an ordered placement of dabs of paint, single
strokes [1, 2, 3], or textured curves [4, 5] onto the output image to form a
stylized version of the given input (see figure 1.1). The placement of these
primitives can be determined either via local criteria [1, 4] or global optimiza-
tion [5]. Temporal coherence in video is typically achieved by moving the
already placed strokes according to the movement in the input video (e.g., its
optical flow [3] or a 2D projection of objects’ movement in a 3D scene [2]).
This approach effectively prevents the “shower door” effect, that is, when a
texture of a moving object stays fixed relative to the viewport, making the
object look like it was observed through a glass door [2]. Methods in this
category generally allow for a wide range of customization via the selection of
the painting primitives and textures and are able to produce compelling styl-
ization with various artistic media. However, the painting primitives used are
most often static, and in the case of animation stylization, they only change
position or shape between frames. Therefore, they are not able to convey the
dynamic behavior of a given artistic medium.

Figure 1.1: Stylized images generated with stroke based methods: Meier [2]
(left), Hertzmann [4] (center) and Hays, Essa [3] (right)
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1. Related work

Figure 1.2: Watercolorization results from [7]

1.2 Image filtering and processing

Another substantial subset of procedural takes on artistic stylization comprises
various filtering and processing of the input imagery and possibly blending it
with a procedurally generated texture. Such methods are widely used in con-
sumer photo-manipulation and graphics software. A framework for real-time
3D scene stylization is implemented in [6]. A common set of local semantic
parameters for various stylization effects is established while enabling users
to interactively vary these parameters in screen-, texture- and object-space.
Each of those effects, however, needs to be separately implemented for usage
in the framework. A pipeline for watercolorization of both still images and
video is presented in [7] (see figure 1.2). They employ a series of pigment
distribution heuristics, abstraction filters, and surface texture synthesis steps
to produce results looking as if they were painted with watercolor. They also
address temporal coherence in animation stylization in a fashion similar to
[2] (see above). Although their method produces compelling results, it is lim-
ited to only a particular look. Also, realistic movement of watercolor is not
addressed.

In [8], in addition to extending the watercolorization pipeline from [7],
a method is presented to maintain temporal coherence in stylized video us-
ing temporal morphological filtering and texture advection (i.e., warping a
texture along a motion-field). Similarly, in [9], a 2D pattern is successively
transformed in a shape-preserving manner to match the movement of objects
in an animated 3D scene. The video stylization techniques that rely on tex-
ture advection do not fit our goal of convincingly capturing the interaction of
an artistic medium with a static surface, because in such setting, the texture
features imparted by the surface should not undergo any deformation between
consecutive frames.

1.3 Physical simulation

Physical simulations have been employed to achieve a realistic look of water-
color imagery. A layered model for water flow and pigment deposition on the

4



1.4. Pixel-based and patch-based stylization by example

Figure 1.3: Simulated watercolor effects created using the system from [10]

surface is presented in [10]. All washes over the paper are simulated separately
and subsequently composited to form the final image. Their method enables
a wide range of effects observable in watercolor art, such as dry-brush, bloom-
ing, and bleeding (see figure 1.3). It is usable for both interactive painting
and automatic stylization. Several commercial products for digital painting
simulate the dynamic behavior of watercolor with high visual authenticity,
notably Fresco by Adobe [11] and Rebelle by Escape Motions [12]. None of
these approaches, however, is designed for use in animation stylization as-is.

1.4 Pixel-based and patch-based stylization by
example

Each of the methods mentioned so far has some degree of limitation to the
range of styles it can produce. Arguably more versatile are example-based
approaches to image stylization. The idea of example-based techniques is
that instead of focusing on a particular look, the stylization is learned from
an additional input — an exemplar. The seminal algorithm Image Analogies
presented in [13] uses the concept of additional guidance channels to stylize
an image based on a pair of a different image and its stylized version. This
particular method is a pixel-based one, as it generates one pixel of the final
image at a time. The pixel value is sampled from a probability distribution of
center pixels lying in visually similar rectangular patches [14]. Their Texture-
by-Numbers application shows the algorithm’s general ability to steer patch
selection towards particular source patches in different areas of the output
image and thus produce a stylization of a scene (see figure 1.4).

Patch-based methods, comprehensively covered in [15], go a step further,
and instead of copying single pixels from the exemplar, they transfer contigu-
ous patches of it. These patches can be of irregular shapes, and the optimal
seam between them is sought for as part of the synthesis [16, 17, 18]. Possible
overlapping of such patches is addressed by some kind of blending between
them [15].

Patch-based texture synthesis is often formulated as a global energy mini-
mization problem [19, 20]. In [21], [22], and [23], various additional constraints
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1. Related work

(a) Unfiltered source (b) Filtered source (c) Unfiltered target (d) Result

Figure 1.4: Texture-by-numbers: application of Image Analogies [13] for man-
ually guided texture synthesis

are introduced to avoid repetitive usage of only a few patches, which leads to
overly smooth areas — washout — in the synthesized results. As in Image
Analogies, the objective energy function can be designed to take additional
guidance channels into account [24, 22, 25]. Bénard et al. in [24] stylize ani-
mations originating from a traditional CG workflow, transferring the style of
(partially) stylized keyframes to the rest of the frames while preserving tempo-
ral coherence. They rely on user-provided velocity fields and orientation fields,
which can be computed automatically. The velocity fields are used to advect
the result of the previously synthesized frame to guide the synthesis of the
current frame. In the method for general video stylization presented in [26],
the necessary guidance channels and vector fields are generated automatically.

The problem at hand can also be seen as a fluid texturing one. In the
specific case of watercolor, we are actually working with a thin layer of fluid,
which moves over the surface by the action of physical forces. This view can
intuitively be generalized to other artistic media as well. In [20], Kwatra et al.
propose a method for synthesizing a temporally coherent sequence of images,
which move according to a user-provided flow field. A single exemplar image is
used to texture every frame of the sequence. A method for texturing a surface
of a three-dimensional body of fluid is presented in [27], where a bump map
is synthesized along with the texture to generate complex microstructures.
More recently, LazyFluids [23] enabled users to stylize a two-dimensional fluid
animation based on a provided flow-field and a video exemplar of a moving
fluid. They ensure that the exemplar’s movement is authentically represented
in the resulting sequence. While this leads to visual enrichment of temporal
dynamics in the animation, the resulting movement does not strictly follow
the target flow-field.

All of the mentioned fluid stylization methods utilize advection to main-
tain temporal coherence, which is not suitable for our purpose for reasons
mentioned in section 1.2.
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1.5. Neural-based style transfer

(a) Style exemplar (b) Content exemplar (c) Result

Figure 1.5: Image Style Transfer Using Convolutional Neural Networks [28]

1.5 Neural-based style transfer

Recent research on convolutional neural networks also led to their utilization
in style transfer. Gatys et al. in [28] showed that responses on different lay-
ers of a VGG object recognition network can be separated into style- and
content-related ones. Optimizing a white noise image to match a style exem-
plar in the style domain and an input image in the content domain leads to
an image capturing the desired content in the style of the style exemplar (see
figure 1.5). However, as stated in [28], it is problematic, both for a human
and a computer, to properly define what constitutes the style of an image.
Therefore this method often produces a mere recoloration of the input image
or, conversely, forces parts of the style exemplar’s content to appear in the
output (for example, the stars in figure 1.5c).

A general-purpose method combining neural and patch-based approaches
was recently presented in [29]. They first synthesize the global, semantically
meaningful style using a neural approach and then add fine details free of ar-
tifacts in a patch-based fashion. The method also allows for synthesizing very
high-resolution images in a reasonable time, overcoming another limitation of
purely neural-based methods, which is the upper limit on image resolution.

None of those methods, however, is designed for generating temporally
coherent animation. A method for general video-to-video translation based
on generative adversarial networks is presented in [30]. It is capable of, for
example, learning a mapping of segmentation masks to a photorealistic video.
The method is, however, mainly focused on larger-scale features and would
not be feasible for synthesizing imagery with fine detail. Also, as with other
neural-based approaches, the learning phase takes large amounts of time (it is
reported to take several days on multiple GPUs in [30]), which makes intro-
ducing new appearance exemplars a non-trivial task.
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Chapter 2
Background

Despite the previous chapter’s conclusion that no previously published method
can be used for our purposes as-is, many of their key ideas and solutions to
common problems are relevant to the goal of this thesis. Before looking into
them in detail, let us first establish some basic notions.

For purposes of this thesis, we define an image I in the domain D as a
two-dimensional array of values from D. For a pair of integer coordinates
p = (x, y), I(p) will denote the value of a pixel at coordinates x, y in an image
I. The notation I2 ⊂ I1 means that the image I2 is a rectangular window
cropped from I1. If I is an image with finite dimensions w and h, by denoting
p ∈ I we mean that p ∈ {0, . . . , w − 1} × {0, . . . , h− 1}.

When an image represents a boolean mask, that is, the domain D is {0, 1},
we will denote the count of pixels with the value of 1 as |I| and the fact that
I(p) = 1 will alternatively be denoted as p ∈ I.

In computer graphics, color is typically expressed in terms of its coordi-
nates in a chosen color space. Values in the linear RGB color space map to
intensities of the red, green, and blue components. In texture synthesis, the
choice of CIELAB color space is common because it is designed so that a rel-
ative change in the value roughly corresponds to the perceptual color change
consistently over the whole space. This is beneficial for evaluating visual sim-
ilarity of two images. As well as RGB, CIELAB also uses three components.
Therefore, we will refer as color images to images in the R3 domain.

2.1 Texture synthesis

Various methods for example-based texture synthesis have been published. In
this section, we will look into the basic approaches and concepts behind the
problem and finally show how the task of texture synthesis can be formulated
as global optimization of a synthesized image’s color values.

9



2. Background

2.1.1 Region-growing

The way the texture synthesis problem is approached in [14] serves as an im-
portant basis for patch-based methods. The texture exemplar S is viewed as
a sample from an infinite stationary texture Sreal. (A texture is said to be sta-
tionary when the probability distribution of a pixel value is independent of its
location.) The goal is to produce another sample T ⊂ Sreal from the same tex-
ture. Let I be an image and w(p) ⊂ I a square window of an odd size centered
on the pixel p ∈ I. The texture Sreal is modeled as a Markov random field
(MRF), i.e., it is assumed that the probability distribution of a pixel’s values
is independent of the values outside its spatial neighborhood. In other words,
the probability P (Sreal(q) = v) of pixel q having a value of v is equal to the
conditional probability P (Sreal(q) = v |w(q)). Let d(p, q) be an unspecified
perceptual dissimilarity measure between two equally sized square windows
centered on pixels p and q, respectively. The probability distribution function
of values in pixel q is approximated as the histogram of {S(p′) | d(p′, pbest) < ε}
for some small threshold ε, where pbest = arg minp′′∈S d(p′′, q). Sampling from
this estimated distribution gives the synthesized value of pixel q given a com-
plete window w(q). For this to be useful in texture synthesis, the dissimilarity
measure d must take into account the pixels in w(q) that are yet to be syn-
thesized. The complete texture synthesis then starts from a small seed and
grows it by synthesizing the rest of the texture one pixel at a time in the way
described above.

The sum of squared differences (SSD) of pixel values is often used as the
window dissimilarity measure. The pixel values in a n× n window w(p) from
a color image can be concatenated to form the vector w(p) ∈ R3n2 . The SSD
formula then takes the form

d(p, q) = ‖w(p)−w(q)‖2.
In this sense, finding the most similar windows can be thought of as finding
the nearest neighbors in R3n2 according to the metric represented by d. To
account for the yet unknown pixel values, one can sum only over the known
ones and weight the result accordingly.

This approach is well suited for synthesizing highly stochastic textures
but fails to preserve fine details in more structured exemplars. The patch-
based techniques we are interested in do not operate in terms of single pixels
but rather aim to produce continuous patches copied verbatim from the source
image (see figure 2.1). Ashikhmin in [31] shows that encouraging the formation
of such continuous regions leads to better preservation of the source texture’s
structure on a fine scale.

2.1.2 Texture optimization

The problem of patch-based texture synthesis can alternatively be posed as
a global optimization problem with a straightforward iterative algorithmic
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2.1. Texture synthesis

(a) Style exemplar (b) Result (c) A patch from the
exemplar

(d) Placement of the
patch in the result

Figure 2.1: An irregular patch transferred from exemplar to target [18]. The
black lines in (d) represent patch boundaries.

solution [19, 20]. One of its added benefits over the region-growing method
mentioned above is that it overcomes the unidirectional nature of the patch
formation and therefore does not end up deviating from the source as the syn-
thesized texture grows. The objective function that is subject to minimization,
also called the texture energy, is defined as

E =
∑
q∈T

min
p∈S

d(p, q). (2.1)

In plain words, it is a sum over all windows in the target T of distances
to their closest matching windows in the source S. As noted in [18], inside
a coherent patch copied from the source, these distances are zero. Therefore
minimizing this energy implicitly leads to such patches forming in the resulting
image with their edges seamlessly blended. The algorithm starts with an initial
guess of T and iteratively refines it in a fashion similar to the expectation-
maximization (EM) algorithm [19].

In the first step of the iteration, the nearest neighbor field (NNF) is con-
structed. It is a mapping NNF : T → S defined as

NNF (q) = arg min
p∈S

d(p, q).

Note that the energy function in equation 2.1 can now be formulated as

E =
∑
q∈T

d(NNF (q), q).

Therefore the NNF represents a set of parameters w.r.t. which the energy
function is minimized when T is fixed.

The second iteration step conversely minimizes E w.r.t. T while the NNF
stays fixed. When using SSD as the energy function, the minimization is a
convex problem which can be solved analytically by setting the derivative of
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2. Background

E to zero. The result of this minimization is simply setting the new value
of a pixel q to the average of contributions of all windows overlapping at q
according to the NNF, formally

T ′(q) = 1
n2

∑
−n

2≤x,y≤
n
2

S(NNF (q + (x, y))− (x, y)),

where n is the window size. This step is commonly referred to as the voting
step, as the source windows vote on the final pixel values.

Since the new pixel values in T result from blending several source win-
dows, the NNF might have changed after the second step. Therefore these
two steps are repeated until the NNF converges. In practice, however, it is
usually sufficient to set a fixed number of iterations.

A detail we did not cover yet is getting the initial guess of T . A straightfor-
ward solution would be to use pseudorandom values for each pixel. However,
doing so would introduce a bias towards source windows close to this arbitrary
random initialization. Results better corresponding with the source texture
can be achieved by randomizing the NNF instead and producing the initial T
with a single run of the voting step. This way, the global distribution of pixel
values in the initial guess corresponds with the exemplar.

2.2 PatchMatch

Various methods for retrieving the nearest neighbor of a window can be em-
ployed. The naive approach would be to exhaustively iterate over source pixels
and choose the one with the smallest distance. Substantial speed up can be
achieved using more elaborate methods. k-dimensional binary search trees [32]
offer logarithmic time complexity of the query operation and therefore are a
popular choice for this kind of task in various fields. The Winner-Update al-
gorithm [33] is another valid choice, and it does not suffer from the curse of
dimensionality as much. Note that the topic of dimensionality is very relevant
to us because, as we will see later, the actual search space is typically of much
higher dimension than 3n2. Some form of spatial hashing can be used as well.

The methods mentioned above enable retrieval of an exact nearest neigh-
bor. For our use-case, an approximate match is sufficient. Again, many meth-
ods for finding approximate nearest neighbors exist, but we will focus on one
specifically designed to produce a complete approximate NNF between two
images, PatchMatch [34]. The key idea of the algorithm is that, in a suffi-
ciently large image, a random assignment of a source pixel to a target one is in
many cases correct by itself, and given the inherent high correlation between
adjacent windows, good matches can be propagated between them.

The algorithm starts with a randomized NNF (figure 2.2a). Then an it-
erative improvement of it is performed. In each loop of the iteration, the
following two steps are taken successively for each pixel in T .

12



2.2. PatchMatch

(a) Random initialization (b) Propagation (c) Random search

Figure 2.2: The phases of the PatchMatch algorithm [34]. The window whose
mapping is being optimized is in blue.

First, an attempt is made to improve the mapping of a pixel q by propa-
gating the mapping of the pixel’s left and top neighbors q−(1, 0) and q−(0, 1).
The assumption is that if a neighbor pixel already has a good match in
S, the appropriate translation of its mapping is likely to be a good match
for the current pixel (figure 2.2b). Therefore the mapping of q is updated
to arg minp d(p, q) for p from {NNF (q), NNF (q − (1, 0)) + (1, 0), NNF (q −
(0, 1)) + (0, 1)}. Additionally, the direction is reversed on even iterations, and
the mapping is propagated from right and bottom neighbors instead.

In the second step done for a pixel q, the source S is randomly searched for
potentially better matches. Each candidate pi ∈ S is randomly chosen from
a window wi ⊂ S of size αinmax centered at the current NNF (q), where α is
a real positive coefficient less than one, nmax is the maximum search radius,
and i goes from 0 to the point where the window size is less than one (see
figure 2.2c). Again, arg minpi

d(pi, q) is chosen as the new value of NNF (q).
A typical choice for α is 0.5, and for nmax it is the maximal dimension of S.

This per-pixel improvement is repeated until the NNF converges. How-
ever, the convergence is shown to be very fast, so performing just a small fixed
number of iterations such as 4 or 6 is generally enough for a good approxima-
tion.

Furthermore, the search space can be extended with spatial transforma-
tions of the source windows, such as rotation and scale about the center
[35, 36]. Such mapping can be expressed by extending the source pixel coor-
dinates with additional parameters, for example, NNF (q) = (x, y, θ, s) when
both rotation and scale are to be searched over. In the random search phase,
the candidates get sampled from gradually contracting hypercubes in the pa-
rameter space. Special care must be taken in the propagation phase, as the
translations of the neighbors’ mappings have to be first transformed by the
Jacobian of the source window transformation. Note that if the rotation is not
constrained to multiples of 90 degrees, or the scaling allows for non-integer
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2. Background

(a) Source guidance channels (b) Source style

(c) Target guidance channels (d) Result

Figure 2.3: Various guidance channels used in StyLit [22]

factors, the x and y coordinates have to be real numbers as the translation
may result in non-integers. In the voting step, interpolation of the pixel values
has to take place when sampling the source at non-integer coordinates.

2.3 Guided synthesis

The perceptual distance measure d is not limited to just distances between
vectorized windows. As described in [20], it can, for example, match the image
gradient as well, as in

d(p, q) = ‖w(p)−w(q)‖2 + µ‖∇w(p)−∇w(q)‖2,

where ∇w(p) is the discrete gradient at p and µ is a parameter defining the
relative weight of the gradient difference. In that case, minimizing the texture
energy from equation 2.1 w.r.t. T requires solving a system similar to Poisson’s
equation. In general, any function of T can be used as long as it can be
minimized w.r.t. T .

A special case is when additional channels are introduced which only serve
as a guide for the synthesis (in terms of being present in the formula for the
distance measure d) but do not get synthesized along with T . Each of those
channels can be given an independent weight. The formula for weighted SSD
thus becomes

d(p, q) =
∑
i

weighti‖wi(p)−wi(q)‖2,

where weighti is the weighting coefficient of the i-th channel and wi is the
concatenation of values in the i-th channel of w.

For example, in Image Analogies [13], the luminance channel and responses
of several differently oriented derivative filters of the unfiltered images are used
as the guidance channels (referred to as feature vectors in the paper). In StyLit
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2.4. Multi-scale synthesis

Sl+1Tl+1 SlTl

NNFl+1 NNF ↑l

Figure 2.4: The result of upscaling an NNF mapping

[22], several separately rendered illumination effects (such as diffuse lighting
and indirect reflections) are used (see figure 2.3).

In general, whether they are user-provided or automatically generated by
pre-processing the images, the guidance channels serve the purpose of guiding
the target-to-source mapping towards appropriate locations in the exemplar,
based on information not directly present in the images themselves.

2.4 Multi-scale synthesis

A common way to speed up the convergence of synthesis while preserving
high-level structures is to perform it in a coarse-to-fine fashion. For both the
source image S and target image T , a sequence of images is generated such
that S0 = S, T0 = T , and Si, Ti are their lowpass filtered versions with cutoff
frequency decreasing with i = 1, . . . , L. Per the Nyquist-Shannon theorem,
the filtered images can be downsampled to lower resolutions, thus producing
what is called the Gaussian pyramid. The texture optimization algorithm then
starts at the coarsest level of the pyramid and proceeds as described above.
When moving a level up, the algorithm is initialized with the results from the
coarser level in the following way.

First, the resulting NNFl+1 from the coarser level gets upscaled to the
size of the current level. The most common and most straightforward choice
is to double the size at each level, so the upscaled mapping NNF ↑l is assigned
as

NNF ↑l (q) = 2NNFl+1(bq/2c) + (q mod 2),

where the division, floor, and modulus operators act per component of the
coordinate pair q. This essentially means that a mapping of a single target
pixel gets upscaled to a block of 4 pixels mapped to 4 neighboring source
pixels, as illustrated in figure 2.4.

The initial guess of T at level l is then obtained by simply performing
the voting step with the upscaled NNF. Performing the upscaling of T in this
manner, leveraging image information at the current pyramid level, ensures
that the image is crisp, which would not be the case if it was merely upsampled.
The upscaled NNF is also used as the initial instead of a random one.
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2. Background

Figure 2.5: Results from [21] comparing no spatial uniformity enforcement
(left), using BDS (middle), and their spatial uniformity constraints (right)

The single performance bottleneck of texture optimization methods is find-
ing the NNF mapping. The computational complexity of PatchMatch grows
linearly with the size of the target and logarithmically with the size of the
source. Therefore, doing the computation on coarser levels, which are or-
ders of magnitude smaller than the full resolution images, brings substantial
speedup. Furthermore, given the good guess used for initialization at finer
levels, fewer subsequent iterations are needed to improve it.

Another advantage of the multi-resolution approach is enhanced preserva-
tion of patterns in the texture that are larger than the window size. Since
equally sized windows are used on all pyramid levels, their size is essentially
enlarged in terms of the full resolution. Therefore, the windows in coarser
levels capture a larger context of the source texture.

2.5 Spatial uniformity constraints

A common undesirable phenomenon may occur with the approach described
so far, when the optimization process ends up using only a small number
of source patches and therefore not representing the source faithfully. The
problem stems from the fact that only local neighborhood similarities are
taken into account. Typically, source patches with a low variance of pixel
values are cheapest in terms of the texture energy, so the results tend to
manifest large overly smooth areas and not capture the overall appearance
well (see figure 2.5 left).

Histogram matching, introduced in [37], is a way to enforce some global
statistics of the resulting image, namely the histogram of individual color
channels. It takes place in the voting step, where color contributions of all
overlapping windows are weighted to penalize contributions that would lead
to an increase of difference between the source and target histograms.

In [38], a measure of bidirectional similarity (BDS) is presented, that ex-
tends the energy function 2.1 with a completeness term:

E = 1
NT

∑
q∈T

min
p∈S

d(p, q) + 1
NS

∑
p∈S

min
q∈T

d(p, q),
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2.5. Spatial uniformity constraints

where NS and NT are the sizes of the source and target images respectively.
Minimizing w.r.t. this energy function enforces all source pixels to be repre-
sented somewhere in the target in addition to target patches being similar to
source ones.

The BDS measure optimization, however, still does not enforce uniform
usage of source pixels. A step towards this goal is taken in [21], where exces-
sive usage of just a small number of source pixels gets penalized through an
additional term in the distance function. An occurrence map Ω is introduced,
which keeps track of how many times each source pixel is used in the target:

Ω(p) = |{q ∈ T | p ∈ w(NNF (q))}| .
The distance function d is then extended with a term reflecting the usage
count of pixels in the source window:

d′(p, q) = d(p, q) + λ
Ω(w(p))
ωbest

,

where Ω(w) is the average occurrence count of pixels in the window w, that is
1
n2
∑
p∈w Ω(p), ωbest is the expected pixel occurrence count equal to n2|T |/|S|,

and λ is a parameter controlling the weight of uniformity enforcement. Results
obtained with this approach are seen in figure 2.5.

In [23], the uniform pixel usage is strictly enforced by the introduction of
an additional criterion∑

p∈S
δ(p) = |T | and δ(p)−K ∈ {0, 1},

where δ(p) is the number of usages of the source pixel p and K = b|T |/|S|c. A
modified NNF retrieval scheme is used, where the mapping gets retrieved in a
reversed direction, i.e., S → T . When more than one source pixel gets mapped
to a single target one, the assignment with the least distance is kept. This
process is repeated until all target pixels are assigned a mapping to a source
pixel. In order to fulfill the uniformity constraint, the reversed NNF retrieval
is constrained to target pixels with yet unassigned counterparts and source
pixels which satisfy δ ≤ K. Every time a source pixel p gets assigned, for which
δ(p) = K holds, a counter R, originally set to |T | mod |S|, gets decremented.
Once R reaches zero, only pixels satisfying δ(p) < K are considered.

The concept of adaptive error budget is introduced in [22]. Again, repeated
retrieval of reversed NNF is performed. An observation is made that the plot
of all distances in a mapping sorted in ascending order typically resembles a
hyperbole (see figure 2.6). In order to determine a feasible error budget, a
hyperbolic function f is fitted to the sorted distances, and a point k, such
that f ′(k) = 1, is retrieved. The point k represents a knee in the function,
after which errors start increasing quickly. Only those mappings with an index
below k in the ascending order are assigned, and the procedure is repeated
for the rest of the target pixels. While this approach does not enforce strict
uniformity, it still gives better results than using an occurrence map from [21].
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2. Background

A A′ B B′

: :::

Figure 5: The concept of image analogies. Exemplar image
c© Pavla Sýkorová.

i.e., that style from A′ is transferred to B′ according to the similar-
ity between A and B.

To solve this problem Hertzmann et al. originally proposed a simple
multi-scale algorithm. For each resolution level and each pixel q ∈
B′ in scan-line order, a best matching pixel p is found in the source
A′ such that

E(A,B, p, q, µ) = ||A′(p)−B′(q)||2 + µ||A(p)−B(q)||2 (1)

is minimized. Here A = {A,A′}, B = {B,B′}, and µ is a weight
that controls the influence of guidance. For any image I , we use
I(p) to denote a feature vector at a pixel p. The vector I(p) is
a concatenation of all pixels in a small square patch of width w
centered at the pixel p, where each pixel can have multiple feature
channels. For features, Hertzmann et al. use the intensity value
and an output from a steerable filter, whereas Bénard et al. [2013]
augment the RGB colors with several additional guidance channels,
including temporal coherence and a distance transform. In our case
the feature vector contains colors of the full rendered image (RGB)
and four LPE channels (each stored as a RGB image):

{A,B} = (FULL,LDE,LSE,L.*DDE,LD{1,2}E). (2)

More LPE channels could be added to increase the discriminative
power of the feature vector.

Although the original Hertzmann et al. algorithm produces impres-
sive results, it suffers from its greedy nature and can fail to preserve
high-level structures (see Fig. 10f). Subsequent work [Fišer et al.
2014; Barnes et al. 2015] showed that better results can be obtained
using the optimization scheme described by Kwatra et al. [2005]
and Wexler et al. [2007], which minimizes the following energy:

∑

q∈B

min
p∈A

E(A,B, p, q, µ) (3)

using EM-like iteration executed multiple times from coarse to fine
resolution:

input : multi-channel images A = {A,A′} and Bk = {B,B′k}
output: synthesized target image B′k+1

for each pixel q ∈ Bk do
NNF (q) = argmin

p∈A
E(A,Bk, p, q, µ)

for each pixel q ∈ Bk do
B′k+1(q) = Average(A,NNF , q)

Algorithm 1: EM-like iteration used to minimize energy (3).

Here B′k denotes the current pixel values stored in B′ and B′k+1

the updated values. NNF is the nearest neighbour field that assigns
source patch to each target patch and function Average computes
the average color of colocated pixels in neighbour patches.

This approach produces notably better results, but as described
in Section 2, it frequently leads to the wash-out effect (see Fig. 10i).

Kaspar et al. [2015] and Jamriška et al. [2015] mitigate this problem
by encouraging uniform source patch usage. However, this restric-
tion is suitable only when each randomly picked sub-region of the
source texture is perceived similarly. Enforcing uniform patch us-
age in our scenario would create artifacts; see Fig. 7 for a simplified
illustration of this problem. For example, if the target has compar-
atively more highlight region than the source, uniform patch usage
would force the highlight in the target to be filled with non-highlight
source patches (see, e.g., Fig. 10m, n). In our scenario we need a
different scheme that avoids the excessive use of certain patches
while still permitting non-uniform utilization.

A possible solution would be for each source patch to estimate its
optimal usage and then augment the original uniformity-preserving
approaches to handle this non-uniform case. However, it is diffi-
cult to estimate optimal patch utilization in advance unless we run
the actual synthesis. To overcome this chicken-and-egg problem
we propose a different approach that inspects the actual matching
errors during the synthesis and detects cases when the algorithm
starts to force patches into inappropriate locations.

Our solution is based on the idea of reversed NNF retrieval [Rosen-
berger et al. 2009; Jamriška et al. 2015], in which a best match-
ing target patch is retrieved for each source patch. The advantage
of this approach is that it can enforce uniform usage of source
patches. However, we must avoid forcing source patches to in-
appropriate locations in the target. We observe that, in practice,
when we sort all matching error values and plot them with nor-
malized axes, the resulting graph has a distinct, hyperbolic shape
(see Fig. 6). It starts with small error values, corresponding to fea-
sible assignments (A∗ in Fig. 6). There is a knee point k where
the error starts to increase rapidly. We estimate k by fitting a hy-
perbolic function f(x) = (a − bx)−1 to the data and retrieving
the point where f ′(x) = 1, i.e., k =

√
1/b + a/b. Patches with

indices above k are probably erroneous assignments (A× in Fig. 6)
that need to be avoided. We thus set a feasible error budget T that is
an integral of all patch errors with indices below k and modify the

feasible assignments
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Figure 6: Estimation of the error budget T : the sorted matching
errors of all potential source-to-target patch assignments can be
approximated by a hyperbolic curve f(x) on which a knee point k
is detected and used to distinguish between feasible A∗ and erro-
neous A× assignments. The integral of the errors in A∗ gives an
estimate of the error budget T .
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Figure 2.6: StyLit: Fitting a hyperbolic function to sorted distances in order
to determine a feasible error budget [22].

2.6 Temporal coherence

Texture synthesis methods can also be used to generate animation, i.e., se-
quences of individual frames. For basic texture synthesis tasks, the notion
of an image can be easily extended to three dimensions, as was seen, for ex-
ample, in [19]. Their method for spatio-temporal hole infilling works with
three-dimensional windows, which vote for pixel values in several frames at
once.

Synthesizing one frame at a time without proper guidance typically leads
to unpleasant temporal artifacts. The approaches described so far do not
guarantee convergence to any particular local minimum, so successive frames
may, and most often do, vary heavily. This leads to overall temporal noise in
the resulting animation and causes a sensation of flickering. While this effect
may be desirable to some degree (see [39]), too much noise is generally seen
as undesirable as it causes eye strain or even nausea in the observer.

Another unwanted effect that often appears in various video stylization
applications is the so-called shower door effect (coined in [2]). This term
refers to the case when a texture of a moving object stays fixed relative to
the viewport, therefore making the object look like it was observed through a
glass door. This can be seen as the opposite of the temporal noise problem.

To maintain temporal coherence and avoid the shower door effect, some
information has to be propagated between successive frames. A possible way
is to use the synthesized result of the previous frame advected according to
the motion or flow in the target scene as an additional guidance channel (see
[20, 24, 23]). This way, the synthesis of the current frame is guided towards
results somewhat similar to the previous frame (thus minimizing flickering)
while avoiding the shower door effect (thanks to advection).
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Chapter 3
Our approach

Principles relevant to the goal of this thesis were introduced. In this chapter,
the complete proposed algorithm will be presented, which builds on some of
those principles.

3.1 Problem formulation

The patch-based algorithm presented in this thesis aims to provide a way
to automatically stylize a vector animation with the appearance and motion
characteristics of a traditional painting medium, primarily focused on, but not
limited to, watercolor.

The synthesis is guided only by the shape of objects in a target animation
and not, for example, by their color. Therefore, we generalize the target
guidance to a sequence of boolean masks. Parts outside the mask are not
synthesized as a part of the algorithm, and it is up to the user to composite
the result with a background afterward (possibly using some other method
for texture synthesis to generate the background and blend it with the result
seamlessly). It is assumed that the exemplar is captured perpendicular to the
surface. The inputs to the algorithm are following (see figure 3.1):

• Srgb = {Srgbi }
lS
i=1 — a sequence of images serving as the style exemplar,

• Smask = {Smaski }lSi=1 — a sequence of boolean masks corresponding to
the occurrence of the material in the exemplar,

• Tmask = {Tmaski }lTi=1 — a sequence of boolean masks defining the desired
placement of the material in the resulting sequence.

Some simplifying assumptions are made about the process that causes
motion in the source and target sequences:

• The motion field is as smooth as possible in both the spatial and tem-
poral domains.
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3. Our approach

correspondence

synthesis

inputs output

Figure 3.1: A demonstration of the inputs and outputs of the algorithm on
several frames from the respective sequences

• The process is fully reversible and time-independent. In other words,
the motion can be arbitrarily scaled along the temporal axis even by
negative factors.

• The process is also independent of direction and position in screen space.

• All movement in the sequence is planar and is caused exclusively by this
process and not, for example, by movement of the camera.

Note that these assumptions typically do not strictly correspond with the real
physical phenomena manifested in the captured exemplars (e.g., diffusion does
not fulfill the reversibility assumption). However, our aim is not to achieve
physically accurate renderings (for example, a splotch of ink would not behave
like a walking figure under natural circumstances), and these assumptions will
help us stylize variously moving shapes while preserving some degree of visual
coherence.

The look of an artistic medium is analyzed as an interaction between two
different textures — the static texture of the surface and the dynamic texture
of the artistic material. In this setting, the static nature of the surface texture
should be preserved in the target sequence as much as possible. This criterion
rules out using texture advection for achieving temporal coherence.

Even though the algorithm produces one frame at a time, the whole source
sequence serves as an exemplar for each frame. Additionally, in connection
with the direction independency assumption, spatial rotations of the source
patches are searched over. In contrast with some other approaches, this avoids
the necessity of enriching the source with its precomputed rotations.
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3.2. Texture synthesis

3.2 Texture synthesis

The texture optimization algorithm of Kwatra et al. [20] described in section
2.1 is used as the basis for the texture synthesis. It is ran for each target frame
individually, starting with the first one. In its basic form, it can be described
with the following pseudocode:

Algorithm 1 Texture Optimization
Input sequences Srgb and Smask (see section 3.1), the mask of the current

frame Tmaski , the initial mapping NNFinit
Output the optimized mapping NNF , the synthesized image T rgbi

function optimize(Srgb, Smask, Tmaski , NNFinit)
NNF ← NNFinit
T rgbi ← vote(Srgb, NNF )
for j ← 1 . . . opt iters do

NNF ← findNNF(Srgb, Smask, T rgbi , Tmaski )
T rgbi ← vote(Srgb, NNF )

end for
return NNF, T rgbi

end function

The function findNNF returns a mapping of every target pixel p ∈ Tmaski

to the nearest neighbor of its corresponding window in the sequence Srgb. The
nearest neighbor is represented as a quadruple (x, y, k, θ), where 1 ≤ k ≤ lS
is a source frame number, θ is a rotation of the mapped source window, and
(x, y) ∈ Smaskk .

3.3 Spatial uniformity

To encourage spatially uniform usage of source patches, a method closely based
on that of Kaspar et al. [21] (see section 2.5) is used.

Merely using a sequence of occurrence maps, one for each source frame, is
not sufficient for preventing washout in our setting. This is due to the com-
bination of two factors. First, the count of available source pixels is typically
much larger than the count of synthesized pixels in a single target frame. Sec-
ond, the contents of consecutive source frames are very similar to each other.
Therefore, penalizing repeated usage of individual source pixels would not
prevent the usage of many very similar source patches from different frames.
Instead, a slightly modified approach is taken, where besides penalizing the
usage of source pixels lying in an assigned window, usage of collocated pixels
in several neighboring frames gets penalized too. The count of neighboring
frames is configured with the parameter occ radius.
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Additionally, rotations of source patches have to be considered. Therefore,
the formula for the occurrence map becomes

Ω(p, i) =
∣∣∣{q ∈ T rgb | (p1, p2, i) ∈ w∗(NNF (q))}

∣∣∣ , ∀p ∈ Srgbi ,

where w∗(x, y, k, θ) represents a three-dimensional box with dimensions n ×
n×(2∗occ radius+1), centered on the point (x, y, k), and rotated by θ radians
in the x, y-plane. The new formula for ωbest is set to

ωbest = n2(2 ∗ occ radius+ 1)|Tmask|/|Smask|.

3.4 Edge effects

In a wide range of artistic media, including watercolor, the appearance of a
painted area is substantially different between the area’s edge and its interior.
Also, in regions close to the edge, the directionality of the texture is typically
much more pronounced. An approach very similar to that in LazyFluids [23]
is taken to address that. A signed distance field is used to enable the above
effects in the synthesized result. For a boolean mask Imask, it is an image DI ,
for which the following holds:

DI(p) =
{

minq /∈Imask ‖p− q‖ if p ∈ Imask

−minq∈Imask ‖p− q‖ otherwise.

Its computation was implemented using the Meijster’s algorithm [40].
A guidance channel is derived from the distance field (see figure 3.2c).

Let Sguide = {Sguidei }lSi=1 and T guide = {T guidei }lTi=1 be the sequences of source
and target guides, respectively. Both Sguide and T guidei become additional
parameters of the previously defined functions optimize and findNNF. The
edge guidance channel is then defined as

Idfi (p) = min(DI(p)/border width, 1).

The border width parameter is used to set the distance range, where the
distinct edge effects take place in the exemplar images, partitioning the image
into a border segment and an interior segment, where Idf < 1 and Idf = 1,
respectively (see figure 3.2d).

The ratio between sizes of the two segments is dependent on the shape
of the mask. If the size ratios of the segments differ substantially between
the source and the target, the current formulation of spatial uniformity can
force source’s edge patches to the target’s interior, or vice-versa. To mitigate
this problem, the NNF mapping is modified so that it only matches pixels in
corresponding segments, and the ωbest variable is evaluated for each segment
separately:

ωbest =
{
n2(2 ∗ occ radius+ 1)|T df < 1|/|Sdf < 1|, for border pixels,
n2(2 ∗ occ radius+ 1)|T df = 1|/|Sdf = 1|, for interior pixels.
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3.5. Flow effects

(a) Color channels
of an exemplar

(b) The exemplar’s
mask

(c) The border
guidance channel

(d) The border and
interior segments
derived from the
guidance channel

Figure 3.2: An example of the border guidance channel and the border/interior
segmentation

3.5 Flow effects

Another source of a media’s distinctive look is its flow over the surface. Parts
of an image, where the material is subject to movement, typically have dif-
ferent qualities of the texture than those mostly stationary (see figure 3.3a).
To construct guidance channels facilitating this effect, we need to take the
material’s motion into account. Let us assume that Imotioni is an accurate
two-dimensional flow field between frames i and i + 1 of a sequence I. The
first of the two flow-related guidance, Ifwd, is then constructed by accumu-
lating the amount of motion at each pixel since the start of the sequence.
Formally, it is defined as Ifwdi (p) = ‖acci(p)‖, where

acci(p) =
{
acci−1(p) + Imotioni−1 (p), if i > 1 and Imaski (p)
(0, 0), otherwise.

The channel is illustrated in figure 3.3c. By zeroing the accumulator out-
side the mask we make sure that the accumulation is restarted at coordinates
where the material appears repeatedly. Note that although the guidance is a
single value, the accumulation is done in two dimensions. This goes hand in
hand with our assumption of reversibility: a backward movement following an
equivalent forward one should reduce the accumulated value back to zero, as
if the process running backward got the material to its original state.

The second, complementary, guidance channel (illustrated in figure 3.3d)
is calculated in the opposite time direction, i.e., Ibwdi (p) = ‖acc′i(p)‖, where

acc′i(p) =
{
acc′i+1(p) + Imotioni (p), if i < lI and Imaski (p)
(0, 0), otherwise.

The final step towards fulfilling the assumption of reversibility is that in
the distance measure d, when the source and target directions are roughly op-
posite, the Sfwd and Sbwd guidance channels in the source are swapped before
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flowing

stationary

(a) A splotch of watercolor manifesting different looks at flowing and stationary parts

(b) Corresponding flow field. Angle is encoded as hue and magnitude as intensity.

(c) Derived guidance channel fwd

(d) Derived guidance channel bwd

Figure 3.3: Flow consistency guidance illustrated on three frames picked from
a longer sequence
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3.6. Flow orientation alignment

comparing them to the target ones. Formally, an assignment q → (p1, p2, k, θ)
is said to be in roughly opposite direction if Tmotioni (q) · RθSmotionk (p) < 0,
where Rθ is the operator of rotation by θ radians, Thus, reversing the order
of the source frames should have no impact on the resulting sequence.

3.6 Flow orientation alignment

Another guidance channel, Idir, is used to keep the flow direction in a source
patch aligned with the direction in the area of the target, where this patch is
copied onto. This channel holds the orientation of the motion field, i.e.,

Idiri (p) = atan2(Imotioni (p)).

The orientation alignment term in the distance measure d is an exception
to the SSD metric. When evaluating distance between a single source pixel
p in frame i and a target pixel q in frame j with a rotation of θ radians,
the contribution of the term is set to the tangent of the angle difference af-
ter the rotation, i.e., | tan(Sdiri (p) + θ − T dirj (q))|. This way, similarly aligned
flow orientations (possibly in the opposite direction) are preferred, and, con-
versely, mappings resulting in an orientation close to being perpendicular to
the direction of the target flow are strictly avoided.

3.7 Temporal coherence

The core idea of this thesis is in the way the source movement is transferred to
the resulting sequence. In a fashion similar to other video synthesis methods,
additional guidance channels are introduced to guide the synthesis of a frame
based on the previously synthesized one. Contrary to most of those methods,
the guidance is not obtained by transforming the previous frame.

Instead, the guidance channels are synthesized using the final NNF of the
previous frame. A new mapping, NNFprev, is produced by shifting the time
components of the assigned coordinates to match the desired amount of flow
in each target pixel.

Let us assume, for now, that flow directions at the mapped source coor-
dinates match the target ones (i.e., they are not allowed to point in opposite
directions, see section 3.6). The amount of movement ∆T fwd(q) at a target
pixel q between frames j − 1 and j is equal to T fwdj (q) − T fwdj−1 (q). Let the
nearest neighbor coordinates of q from the previous frame j−1 be (p1, p2, i, θ),
and ∆Sfwd∆i = Sfwdi+∆i(p) − S

fwd
i (p) be the amount of movement at the source

pixel p between the frames i and i+ ∆i. Now, finding the optimal time offset
∆i is a question of setting it such that

∆i = arg min
∆i′≥0

|∆T fwd(q)−∆Sfwd∆i′ (p)|.
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NNFprev(q) is then set to (p1, p2, i + ∆i, θ). This way, the mapping
NNFprev maps each target pixel to the same x, y-location in the source se-
quence as the previous frame’s NNF does, but to a different point in time, at
which the material at that location has moved by an amount corresponding
with the desired one. And since the flow directions at the target pixels and the
assigned source pixels are roughly aligned, this process essentially amounts to
pushing the material from the previous frame into areas it should be located
at in the current frame.

When the target and rotated source flow directions at pixels q and p are
roughly opposite (see section 3.5), Sbwd is used instead of Sfwd, and the time
component is shifted backward, i.e., ∆i ≤ 0. This enables, for example, a
sequence of an expanding splotch of watercolor to serve as an exemplar for
a sideways moving target animation: in the target areas where the desired
flow is directed inside the mask, the new patches for the temporal coherence
guidance are taken from earlier source frames, facilitating the effect of the
paint “de-expanding” in the direction of the motion.

The target guidance T prev is then simply obtained by running the voting
step with NNFprev. In the source sequence, Sprev is equal to Srgb; that is,
the target guidance channels are used to directly guide the appearance of the
currently synthesized frame. Also, NNFprev is used as the initial NNF to
encourage stability of the mapping.

Clearly, this guidance channel is only meaningful in areas where the previ-
ous mask overlaps with the current one. Therefore, the weight of this temporal
coherence term in the distance measure is set to zero outside of those areas.
In the first frame, it is set to zero over the whole image, since no previous
frame is present.

A fairly common scenario is that the movement in a target animation is
way stronger than in an exemplar sequence. Therefore, the amount of move-
ment between source frames i and i+ ∆i may not be sufficient to match the
desired movement between target frames j − 1 and j and the synthesized se-
quence would thus lag behind the target animation. Thankfully, there is a
way to detect this case and correct for it. A sign of the material in T prev at
pixel q not being moved by a sufficient amount is that the assigned source
pixel p is too far or too near to the mask’s edge in comparison to the target
pixel q. Taking inspiration in LazyFluids [23], we introduce a spatially vary-
ing temporal modulation factor m(q) in the distance function. It determines
the temporal coherence weight based on the difference between the targets
distance T dfj (q) and the sources distance Sdfi+∆i(p) using the formula

m(q) =
{

0, if q /∈ Tmaskj−1 ,

smoothstep(|T dfj (q)− Sdfi+∆i(p)|,mu,ml), otherwise,

26



3.8. Flow field construction

where smoothstep is the common utility function defined as

smoothstep(x, l, u) =


0, if x′ ≤ 0,
1, if x′ ≥ 1,
3x′2− 2x′3, otherwise,

; x′ = (x− l)/(u− l),

and mu and ml are configurable upper and lower thresholds.
This concludes the introduction of all guidance channels used in the algo-

rithm. The guidance channels Iguide are therefore formed by concatenating
individual values in Idf , Ifwd, Ibwd, Iprev and Idir. The distance measure
formula thus becomes

d(p, i, θ, q) = ‖wrgb
θ (p)−wrgb(q)‖2

+ weightdf‖wdf
θ (p)−wdf (q)‖2

+ weightfwd‖wfwd
θ (p)−wfwd(q)‖2

+ weightfwd‖wbwd
θ (p)−wbwd(q)‖2

+m(q)weightprev‖wprev
θ (p)−wprev(q)‖2

+ weightdir| tan(Sdir(p) + θ − T dir(q))|,

where wθ is a square window cropped from an image rotated by θ radians
around the window’s center.

3.8 Flow field construction

The overall algorithm is designed to allow for any source of the motion infor-
mation, as long as it adheres to the assumptions posed in section 3.1.

The model implemented for our purposes is very simplifying, yet suffi-
ciently general. Its idea is best demonstrated in a one-dimensional case first.
Let B1, B2 be boolean masks of two adjacent frames and D1, D2 their corre-
sponding signed distance fields.

B1 B2

D1 D2

Let ∆D = D2 −D1 and D′2 be the discrete derivative of D2. The amount
of movement at border pixels of B2, i and j, is then approximated as the
product of ∆D and D′.

D′2(j)D′2(i)

∆D(j)

∆D(i)
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3. Our approach

(a) Masks of two adjacent frames (b) Their corresponding signed distance
fields (positive values in green, negative
in red)

(c) The difference
of the distance
fields at the second
mask’s border, i.e.,
the amount of flow

(d) The gradient of
the second distance
field, i.e., the flow
direction (hue is di-
rection, intensity is
magnitude)

(e) The difference
and gradient multi-
plied, i.e., the final
flow at the border

(f) The final flow
field obtained by
diffusing the border
pixels’ values

Figure 3.4: Flow field construction in 2D

The smooth motion field over all interior pixels is then obtained by inter-
polating the values calculated at the border pixels.

In the two-dimensional case, the distance field’s discrete gradient is used
in place of the derivative. The interpolation of the border values is replaced
with diffusion over the interior pixels. All the steps are illustrated in figure
3.4. The diffusion is calculated by solving a Poisson equation with zero right-
hand-side: ∇2Imotioni = 0. The computed values at the border pixels are used
as the boundary conditions. Computation of the diffusion was implemented
using a simplified V-cycle multigrid method with no pre-smoothing and several
iterations of the Gauss-Seidel algorithm for post-smoothing.

Note that even in the two-dimensional case, it is still assumed that the
motion direction is aligned with the gradient of the distance field, or, in other
words, that it is perpendicular to the edge of the mask. While this is a signif-
icant simplification, it usually corresponds well with most natural exemplars,
where the movement is caused by diffusion.
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3.9. Multi-scale scheme

Sl+1Tl+1 SlTl

NNFl+1 NNF ↑l

Figure 3.5: Upscaling an NNF mapping with a target window mapped to a
rotated source window

3.9 Multi-scale scheme

The process described above is plugged into a multi-scale scheme described in
section 2.4. The number of pyramid levels is set to blog2 nmin/nc, where nmin
is the minimum dimension of the full-resolution source and target images and
n is the window size. This ensures that the window size gets close to, but does
not exceed, the size of the images in the coarsest level.

Since we are dealing with arbitrarily rotated mappings, the rotations have
to be taken into account when calculating the upscaled x, y-coordinates. In the
process of upscaling an NNF, a 2-by-2 block of pixels is generated from a single
pixel in the coarser mapping (see section 2.4). Each of the four coordinates
in the upscaled NNF is spatially offset by some amount from the doubled
original x, y-coordinates. With transformations in place, these offsets have to
be transformed by the Jacobian of the window transformation (similarly to
how propagation is handled in PatchMatch), which, in our case, is simply the
opposite rotation about the center of the source pixel (see figure 3.5). Thus,
the final formula for the x, y-coordinates in the upscaled NNF becomes

NNF ↑l (q) = 2NNFl+1(bq/2c) + 0.5 +R−θ(q mod 2− 0.5),

where 0.5 is the vector (0.5, 0.5) and Rθ is the operator of rotation by θ
radians.

As noted in section 3.7, the NNFprev is used to initialize the NNF mapping
for each frame except the first one. To implement this principle on multiple
levels, the initial NNF on level l is obtained by merging two mappings: the
already described upscaled NNF ↑l and a downscaled NNF ↓prev. The NNF
downscaling process consists of the following steps done per each pixel p ∈
NNF ↓prev:

1. nearest neighbor coordinates are gathered from a square window from
NNFprev of side length 2l with the top-left corner at 2lp (figure 3.6a),

2. each (x, y) pair of these coordinates is transformed by the inverse of the
upscaling transformation (figure 3.6b),
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3. the mode of transformed (x, y, i, θ) coordinates is assigned as the new
value of NNF ↓prev(p) (figure 3.6c).

These two mappings are then merged on a per-pixel basis based on which
of the two mappings has the smaller error.

The complete algorithm per frame i thus can be described with the fol-
lowing pseudocode:

Algorithm 2 Multi-scale optimization
NNFprev ← empty mapping
Ti ← empty image
for each level l do

if l is the coarsest level then
if first frame then

NNFinit ← random mapping
else

NNFinit ← downscaleNNF(NNFprev)
end if

else
if first frame then

NNFinit ← upscaleNNF(NNFl+1)
else

NNF ↑l ← upscaleNNF(NNFl+1)
NNF ↓prev ← downscaleNNF(NNFprev)
NNFinit ← mergeNNF(NNF ↑l , NNF ↓prev)

end if
end if
NNF, T rgbi ← optimize(Srgb, Sguide, Smask, T guidei , Tmaski , NNFinit)

end for
output T rgbi

NNFprev ← shiftNNF(NNF )
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3.9. Multi-scale scheme

(a) A 2-by-2 block of pixels mapped to
different source pixels

(b) Their coordinates transformed to the
coarser level

(c) Voting on the final coordinates by
majority

Figure 3.6: Downscaling an NNF mapping
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Chapter 4
Implementation details

The method was implemented for CPU in C++17. Performance-critical parts
were parallelized using the OpenMP API.

Single-precision (32-bit) floating-point values were used in image represen-
tation. Although this poses significantly larger memory size requirements than
using the traditional 8-bit unsigned chars, it greatly improves flexibility when
interpolating and blending the values, without significant loss of precision.

In this chapter, we will go over some of the most important implementation
details and describe the usage of the implemented program.

4.1 Spatio-temporal smoothing

How the source masks are obtained is heavily dependent on the nature of the
source imagery. Therefore it is left up to the user to provide them. However, in
practice, several steps turned out to be common to the mask extraction process
regardless of the nature of the exemplar, and have been therefore implemented
as part of the program. It is desirable for a mask to have smooth edges and also
to include a little of the unpainted surface surrounding the painted area. To
achieve both these goals, the provided masks are convolved with a smoothing
Gaussian kernel of tunable size and thresholded with a value less than 0.5 (see
figure 4.1).

Boolean masks inherently are not able to capture sub-pixel movement
between two consecutive frames. When such slow movement is present in the
source or target sequences, our method for flow-field approximation produces
highly inconsistent results. To alleviate this, an artificial smoothing in the
temporal domain is introduced: prior to feeding the distance fields into the
flow-field generation procedure (see section 3.8), they are first convolved with
a small one-dimensional Gaussian kernel along the time axis. The difference
between flow-fields with and without the temporal smoothing applied can be
seen in figure 4.2.
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(a) An RGB source
image

(b) A correspond-
ing user-provided
mask obtained by
thresholding the
red channel of the
RGB image

(c) The blurred
mask

(d) The final mask
obtained by thresh-
olding the blurred
version

Figure 4.1: Common pre-processing of boolean masks

Imask1 Imotion1 Imask2 Imotion2 Imask3

Figure 4.2: Enlarged part of three successive frames’ masks with corresponding
motion fields between them, without (top) and with (bottom) the distance-
field temporal smoothing applied

The complete pipeline for obtaining all guidance channels is illustrated in
figure 4.3.

4.2 Adaptive initialization

A random guess of both the NNF and the synthesized image is only done
in the coarsest pyramid level of the first frame, as shown in section 3.9. In
the following frames and pyramid levels, the initialization is obtained from
previous results (through NNF ↓prev and NNF ↑l ). Since the whole synthesis
process thus essentially lies in successive refinement of a single NNF mapping,
it is desirable for the initial guess to be as good as possible. Therefore, in the
final implementation, the initialization (outlined at the end of section 2.1.2)
is followed by a single run of PatchMatch with a zero weight on the color
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Input masks

smoothen masks

Masks

get distance-fields

construct flow-fields

temporal smoothing

Distance-fields

Flow-fields

construct fwd and bwd

fwd and bwd guides

Figure 4.3: Diagram of all steps in the guidance channels’ construction

channels. This way, the initial guess does not only reflect the global color
distribution, but also takes into account differences of looks of different parts
of an image based on information in the guidance channels.

4.3 Adaptation of the PatchMatch algorithm

The PatchMatch algorithm (see section 2.2) was used to implement the NNF
retrieval in the function findNNF. In its propagation phase, the x and y source
coordinates get offset from coordinates at a neighboring target pixel by certain
amount. In our setting, there are two additional coordinates in the NNF: k for
the source frame number, and θ for rotation (described in section 3.2). Both
these two values get copied between neighbors without any transformation,
i.e., the propagation is completely equivalent to a basic 2D case.

The four-dimensional parameter space is searched over only in the random
search phase. Each candidate (x, y, k) integer triplet is randomly sampled
from a cuboid of dimensions 0.75i(xmax, ymax, kmax), where i is the candidate
number, xmax and ymax are the width and height of the source images, and
kmax is the length of the source sequence. As for the rotation coordinate θ, it
is actually not a part of the random search. Instead, two values are tried for
each (x, y, k) triplet when attempting to improve a mapping at target pixel q
in frame j: in the direction of the target flow and in the opposite direction,
i.e., θT −θS and θT −θS+π, respectively, where θS = atan2(Smotionk (x, y)) and
θT = atan2(Tmotionj (q)). Treating the rotation parameter in this way reduces
the search space by one dimension, which means substantial speedup of the
search. The particular choice of the two values is justified by the principles
described in sections 3.6 and 3.7.

4.4 Run-time optimizations

There are many opportunities to make the program run faster than a naive
sequential implementation. In general, all computation-heavy loops without
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loop-carried data dependencies were parallelized. Furthermore, several steps
have been made to save work, some of which slightly reduce the quality of
produced results.

4.4.1 Optimization of the distance measure function

The function patchError evaluating the distance measure between two win-
dows gets called in the tightest inner loops of the algorithm and runs billions
of times in a typical run of the program. This makes it the single most obvious
candidate for optimization and even micro-optimization.

It loops over pixels in the source and target windows and accumulates
the individual per-pixel errors (see section 2.3). Most of the time it is called
from the findNNF procedure, where its value is used for comparison with
the error of the current nearest neighbor assignment. If the accumulated
sum exceeds the current error during the iteration, it is already clear that
the mapping will be discarded, and therefore there is no need to continue
with the summation. This is implemented with an additional parameter of
the patchError function, errorBest, through which the function takes the
current error, and prematurely breaks from the loop once the accumulated
sum of errors exceeds it. Where the exact error value is desired, errorBest is
set to INFINITY.

From observation, our treatment of rotation in the random search phase
of the PatchMatch algorithm (see section 4.3) is enough to produce mappings
with the orientations of the flow-fields aligned (see section 3.6 for the align-
ment). Therefore, the orientation alignment term was intentionally left out of
the final implementation of the distance computation in patchError. As this
term was the only exception to the distance measure being an SSD, the only
arithmetic operations taking place in the adjusted patchError function are
addition and multiplication. These operations are orders of magnitude faster
than computation of the tangent function present in the alignment term and
are typically fused and/or vectorized by the compiler.

Another micro-optimization with a perceivable effect on the run-time was
hard-coding the value of the window size. This opens up possibilities for
more aggressive optimizations by the compiler, such as loop unrolling and
vectorization. Thanks to the multi-level approach, smaller window sizes are
sufficient (see section 2.4). The hard-coded window size in our implementation
is 5× 5 pixels.

4.4.2 PatchMatch parallelization

A parallelized version of the PatchMatch algorithm proposed in [35] was im-
plemented. Despite the propagation part of the algorithm being inherently
sequential, the parallel algorithm is able to produce results comparable to the
sequential version with speedup nearly linear in the number of utilized CPU
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4.4. Run-time optimizations

cores. In each iteration of the outermost loop, each thread works on a sep-
arate vertical tile of the NNF. The propagation across the tiles’ boundaries
is thus delayed by one iteration. To prevent data races in accesses to values
in adjacent tiles, the last row of each tile is not stored until the end of an
iteration when other threads no longer read from it. The synchronization is
implemented with a barrier. Following is the commented C++ code of the
outer loops in our final implementation of the PatchMatch algorithm with
some minor implementation details, such as bound checking, left out.

for(int i = 0; i < pm_iters ; ++i)
# pragma omp parallel default ( shared )
{

int num_threads = omp_get_num_threads ();
int thread_num = omp_get_thread_num ();

// tile_height = ceil( target_height / num_threads )
int tile_height = ( target_height + num_threads - 1) /

num_threads ;

int dir , begin_x , begin_y , end_x , end_y;

// reverse propagation direction in odd iterations
if(i % 2) {

dir = -1;
begin_x = target_width - 1;
end_x = -1;
begin_y = ( thread_num + 1) * tile_height - 1;
end_y = thread_num * tile_height - 1;

} else {
dir = 1;
begin_x = 0;
end_x = target_width ;
begin_y = thread_num * tile_height ;
end_y = ( thread_num + 1) * tile_height ;

}

// copy the last row into a thread -local storage
// signature : slice(left , top , width , height )
NNF last_row = nnf.slice (0, end_y -dir , target_width , 1);

for (int y = begin_y ; y != end_y; y += dir) {
for (int x = begin_x ; x != end_x; x += dir) {

// get reference to the coordinates mapped at x, y
Coords & coords =

(y == end_y - dir) ? last_row (x) : nnf(x, y);

// propagation ...
// random search ...

}
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upscale optimize

Figure 4.4: Refinement of patch boundaries through optimization on finer
pyramid levels. The x any y source coordinates are encoded in the red and
blue channels.

}

// store the last row back into the shared storage
# pragma omp barrier
nnf.slice (0, end_y - dir , target_width , 1) = last_row ;

}

4.4.3 Tunable iteration counts

The run-time of the program is almost directly proportional to the number
of iterations in the optimize and findNNF functions. Therefore, tuning these
parameters and finding their lowest sufficient values is key to achieving quicker
computation. Moreover, it makes sense to set different iteration counts on
different pyramid levels (see section 2.4). Since the computation of coarse
levels is faster, one can set a higher iteration count to provide as good an initial
guess as possible for the finer levels. On the other hand, optimization on the
finer levels typically tends to mostly optimize the patches’ boundaries from the
initial upscaled mapping through propagation with only a few improvements
via the random search (see figure 4.4). Therefore, the iteration counts on
finer levels can be set to lower values without a major negative effect on the
result, while saving time in the most expensive parts of the computation.
From experimentation, the following values of the parameters opt iters and
pm iters were determined as the lowest sensible ones:

pyramid level opt iters pm iters
l 4 6
l − 1 2 4
l − 2 to 1 1 4

Furthermore, optimization on the finest pyramid level has been completely
left out. Instead, the final image is obtained by voting with the upscaled NNF
from the second finest level. In other words, only the initial guess of T rgbi at
the finest level is output.
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4.5. Program usage

4.5 Program usage

The program is run from the command line and takes all arguments in the
form --option value. Both the inputs and outputs are sequences of PNG
images. The possible arguments are listed in the following table.

option name default value description
--target-path required

printf-formatted paths to
images, e.g., output/%05d.png

--src-path required
--src-mask-path required
--out-path required
--src-start 1 index of the first input frame
--target-start 1
--src-frames 50 count of input frames
--target-frames 50
--src-speed 1 index increment between two

frames--target-speed 1
--src-scale 1.0 scaling factor of input frames
--target-scale 1.0
--blur-sigma 8 standard deviation of the Gaus-

sian filter for spatial smoothing
(see section 4.1)

--time-blur-sigma 2 as above for temporal smoothing
--dist-weight 5.0 weights of the edge, flow and

temporal coherence guidance (see
sections 3.4, 3.5, and 3.7)

--flow-weight 0.1
--prev-weight 1.0
--lambda 2 see section 2.5
--occ-radius 10 see section 3.3
--patchmatch-alpha 0.75 see section 2.2
--border-width 10 in pixels; see section 3.4
--prev-modulation-bounds 10,2 comma-separated list of exactly

two values mu and ml in pixels
(see section 3.7)

--patchmatch-iterations 6,4 comma-separated list of iteration
counts of PatchMatch for differ-
ent pyramid levels, starting with
the coarsest one; the last value
gets used for all unspecified finer
levels

--opt-iterations 4,3,2 as above for the optimize func-
tion
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Chapter 5
Evaluation

Five style exemplars with different characteristics (see figure 5.1) and six target
animations manifesting various kinds of movement (see figure 5.2) were used
to evaluate the method’s capabilities. Results of all their combinations are
available in the supplementary material. The outputs differ in scale, speed,
and frame range of the style exemplars used. For specific values of these
parameters, we refer readers to the scripts used to generate the results, which
are also attached. Previews of some of the outputs are in figure 5.3.

(a) 01 (b) 02

(c) 03 (d) 04

(e) 05

Figure 5.1: Previews of the source exemplars used for evaluation. The checker-
board pattern indicates areas outside the mask.
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(a) genie (b) horse (c) jump

(d) squiggle (e) sunflower (f) waving. Segmented
mask provided by the au-
thors of [41].

Figure 5.2: Previews of the target animations used for evaluation

The results show the method’s ability to generalize to complex shapes not
present in the exemplars and transfer finely detailed texture. Despite the
interpolation of source pixels’ values due to arbitrary rotation and blending of
the rotated patches, the outputs generally do not suffer from loss of detail or
washout. The computation times are feasible: generating the 750× 600-pixel
versions of the horse animation took approximately 2.7 seconds per frame on
an Intel® Core™ i5-10400F CPU.

When dealing with a small scale movement, e.g., in the first frames of a
longer animation, the temporal coherence is very good. The synthesized ani-
mation tends to locally preserve the exemplar’s appearance exactly. However,
our goal is to extend the limited movement in an exemplar over a whole target
sequence. How well this is achievable heavily depends on the style exemplar
used. For example, the exemplar 03 has only a small area with substan-
tial movement, and thus the results tend to slightly flicker at some moving
edges because no appropriate movement pattern is available in the source.
Also, areas where the movement is directed inward the mask are slightly more
problematic compared to regions where the target mask advances outward.
This is given by the fact that the temporal coherence guidance is propagated
only forward in time and therefore the exemplar’s movement is not able to
keep up with the desired movement in the target. Using lower values of the
prev-weight parameter governing the temporal coherence guidance’s weight
results in less frequent but more obvious flickering. A fast motion that is
inherently incoherent is generally handled well (see results with the jump an-
imation).

Note that in the case of the style exemplar 04, our simple flow-field ap-
proximation algorithm fails to determine the real direction of the motion. This
manifests in the results as the material moving diagonally to the mask’s edge.
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(a) The genie animation stylized with the exemplar 01

(b) The horse animation stylized with the exemplar 02

(c) The sunflower animation stylized with the exemplar 03

(d) The jump animation stylized with the exemplar 04

(e) The waving animation stylized with the exemplar 05. Segments were generated
separately, colorized and composited together with a solid color background.

Figure 5.3: Previews of the results
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5. Evaluation

(a) Normal result (b) Target animation reversed

Figure 5.4: The squiggle animation displaying unrealistic appearance of a
material being added onto a canvas and a more realistic result produced when
the target animation was reversed

5.1 Limitations and future work

An undesirable effect of working with complete source and target sequences
is that the whole source sequence and the yet unprocessed part of the target
sequence, along with all computed guidance channels, need to be stored in
memory. The maximum virtual memory size utilized when synthesizing 400
frames of the horse animation reached up to approximately 9 GiB. This limits
the dimensions and length of a sequence that could be synthesized in a single
program run.

Another shortcoming of our method is that parameter selection can be
quite unintuitive for a user. For example, setting too high a value of the
lambda parameter leads to loss of spatial coherence, as the NNF retrieval tends
to favor pixels with zero occurrence count over the coherent ones. Another
instance of this problem is the weight of the temporal coherence guidance,
which, when lowered, typically leads to increased flickering in other video syn-
thesis methods. As mentioned above, the effect is often almost the opposite
in our setting: low values of the prev-weight parameter can reduce high-
frequency flickering at the cost of having sudden “jumps” in the resulting
animation caused by replacing large areas with new content at once. Also,
the border-width parameter needs to be set by hand for each style exemplar
separately. During the research, we experimented with automatic segmenta-
tion of the source imagery into the border and the interior segments based on
differing texture characteristics. However, we have not found any sufficiently
reliable method that could be used with a general style exemplar without user
input.

A case not addressed in this work is when a new material should be added
onto the surface during the animation. It can be observed in the results
obtained with the squiggle animation. The area under the imaginary brush
looks like it has already bled into the paper (see figure 5.4a), which is the exact
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5.1. Limitations and future work

opposite of what one would expect in an animation of a line being painted.
Somewhat more realistic results can be obtained by generating the sequence
in reverse order (see figure 5.4b). This, however, is not an intended behavior
but rather a side-effect of our approach to temporal coherence enforcement.
Our method could be modified to correctly handle the addition of a material
onto a canvas in possible future work.
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Conclusion

In this thesis, we have presented a general overview of various approaches to
automated artistic stylization and style transfer for still images and video. We
then focused on patch-based texture synthesis and looked at some of the most
important related concepts in detail. Among those concepts were the formula-
tion of the problem as a global optimization one, guiding the synthesis through
additional image channels, different ways of preventing undesirable washout
in the synthesized results, maintaining temporal coherence of an animation,
and a coarse-to-fine approach to the synthesis.

Based on those concepts, we then formulated our method for example-
based stylization of animation with the appearance of natural artistic media.
The presented method aims to transfer a media’s dynamic behavior convinc-
ingly. This was achieved with a novel approach to temporal coherence enforce-
ment, which utilizes the movement already present in the exemplar sequence.
We described all parts of the algorithm in detail, including the computation
of all necessary guidance channels, washout prevention in our specific setting,
and utilizing the multi-scale approach to synthesis.

The method was implemented in C++, and the results evaluated with
several target animations and source styles. Implementation details were also
presented as part of this thesis, with the main focus on improving the compu-
tation speed.

The results confirm that our method is able to achieve the set goals. Still,
there is room for further improvement. The author believes that, despite
several limitations and shortcomings, the method can serve as a basis for
future research in the field.
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Appendix A
Contents of enclosed CD

code......................................the directory of source codes
samples..................sample style exemplars and target animations

source ......................................... the style exemplars
target-mask .......................... the target animations’ masks
generate all.sh.......the script generating all sample combinations

thesis.................the directory of LATEX source codes of the thesis
DP Adam Platkevic 2020.pdf ......... the thesis text in PDF format

video...................the directory with video previews of the results
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