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Abstrakt

Tato práce je zaměřena na analýzu datových tok̊u v Google BigQuery skrip-
tech a jejich reprezentaci. Nejprve popisuje př́ıstupy, které se použ́ıvaj́ı pro
data lineage, analýzu zdrojového kódu a vizualizaci toku dat v systému Manta.
Poté zkoumá technologii Google BigQuery, jej́ı databázové objekty a syntaxi
jej́ıho SQL dialektu. Pokračuje popisem architektury a návrhu implemento-
vaného prototypu. Posledńı kapitoly této práce jsou věnovány testováńı a
prezentaci výstup̊u vytvořeného prototypového řešeńı.

Kĺıčová slova Google BigQuery, data lineage, Manta, analýza zdrojového
kódu, datové toky
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Abstract

This thesis is focused on the analysis of data flows for Google BigQuery scripts
and their representation. Firstly, it describes the possible approaches to data
lineage, source code analysis, and data flow visualization in the Manta system.
It then examines the Google BigQuery technology, its database objects and
SQL dialect syntax. It continues with design and architecture, which are used
during the implementation of the prototype. The last chapters of this work
are dedicated to testing and presenting the outputs of the created solution.

Keywords Google BigQuery, data lineage, Manta, source code analysis,
data flows
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Introduction

Nowadays, everything is about the data and the ways it is being processed.
Organizations of different sizes, all the electronic devices and we ourselves
produce, receive and process data daily. The amount of it has significantly
increased over the past few years and it continues to grow.

Such a large amount of data brings up questions that need to be answered:
how to process, store, analyze, and, more importantly, understand it? The
answer to these questions becomes critical in the enterprise domain, where
proper data management is the key to success.

Modern companies can have hundreds of different systems running, where
each is working with data in its own way using different tools. In such an
interlinked environment tracing the origin of data and its destination with all
the transformations along the way becomes very complicated. This is where
having a proper data linage solution, such as Manta, becomes useful.

Manta focuses on analysis and visualization of how data flows inside the
enterprise. This type of analysis provides information about data and helps
the organization handle situations such as migration of the projects, data
consolidation and virtualization, impact analysis, and others.[1]

With modern trends of using cloud technologies in software development
and data analysis, Manta must stay up to date and cover this area too. One
of such tools that is gaining popularity is Google BigQuery.

Google BigQuery is a serverless, highly scalable data warehouse that comes
with a built-in query engine. It has a set of features that allow quick and easy
integration to other services and at the same time provide performance on the
same level as complex data warehouse solutions or even better.

This thesis is focused on implementing the module for dataflow analysis of
Google BigQuery scripts, which will be used as a part of the Manta system.
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Introduction

Goals

This thesis aims to implement a proof of concept tool to extract dataflow from
a set of Google BigQuery scripts to the Manta system. In order to achieve
this goal, the work is divided into the following steps:

• analysis of Google BigQuery technology and the way dataflow analysis
can be performed on its scripts,

• design and implementation of the module for extraction of metadata
needed for dataflow analysis,

• implementation of the module responsible for executing static code anal-
ysis on a set of Google BigQuery scripts,

• representation of the dataflow according to the standards of the Manta
system.

In the end, the appropriate testing needs to be designed and executed for the
implemented proof of concept.

2



Chapter 1
Basic concepts

This chapter describes the basic terms and concepts in data lineage and static
code analysis of SQL scripts domains. It also covers an introduction to the
Manta system and its approach to dataflow analysis.

1.1 Data lineage

Data lineage shows the origin of the data, where it moves or flows to in the
environment, and what transformations are applied to it along the way.[1]
With the amount of data and complex architectures of modern enterprise
systems, data lineage utilization is an important part of analytics processes.

There are several approaches to data lineage, including manual lineage,
lineage by tagging, parsing lineage, etc.[1] Parsing lineage belongs to the group
of approaches that can be automated. It involves a programmatical analysis
of the program and representing it in an understandable form. There are three
main ways of performing program analysis automatically:

• static program analysis – without executing the target program,

• dynamic programming analysis – during runtime of the program,

• combination of both of them.

Static program analysis is often performed on source code of the program.
This work executes static code analysis of SQL scripts before dataflow analysis
phase.

1.2 Static code analysis

Static code analysis is used in various tools, including integrated development
environments, compilers, or security applications. The compiler case is very

3



1. Basic concepts

similar to the approach used in this thesis and it consists of the following
phases:

• lexical analysis,

• syntax analysis,

• semantic analysis.

The following subsections discuss each of them.

1.2.1 Lexical analysis

The first phase of static code analysis is lexical analysis, or also known as
scanning. Lexical analyzer reads the stream of characters making up the
source program and groups them into meaningful sequences called lexemes.
For each lexeme, the analyzer produces a token on its output, which is passed
to later phases of code analysis.

The tokens are recognized based on a set of patterns, which are called
regular expressions. Regular expression is a notation used to describe regular
language — a language that is accepted by finite automaton. “A finite automa-
ton is a a formalism for recognizers that has a finite set of states, an alphabet,
a transition function, a start state, and one or more accepting states.”[2] The
concept of finite automaton lies in the core of the lexical analysis.

The patterns used to recognize tokens may specify additional logic of cre-
ating tokens, such as skipping whitespace or comments, that are irrelevant to
further processing phases. Examples of regular expressions can be seen in the
following code 1.1.

1 SELECT = " SELECT ";
2 FROM = "FROM ";
3 COMMA = ",";
4 SEMICOLON = ";";
5 SPACE = " ";
6 WHITESPACE = SPACE , { SPACE } ;
7
8 DIGIT = "0".."9";
9 LETTER : "a".."z" | "A".."Z";

10
11 UNSIGNED_INT = DIGIT , { DIGIT };
12 ID = LETTER , { LETTER | DIGIT };

Listing 1.1: Token patterns specification in EBNF

This set of patterns would be sufficient to execute lexical analysis on the
following statement 1.2. The patterns are simplified for the purpose of example
and do not cover the SQL SELECT statement’s full syntax.

1 SELECT 1, b FROM table1 ;

Listing 1.2: SELECT statement for lexical analysis

4



1.2. Static code analysis

Such lexical analysis would produce the list of tokens 1.3, where each can be
represented as a pair consisting of the name and value itself.

1 <SELECT , 'SELECT '> <UNSIGNED_INT , '1'> <COMMA , ','> <ID , 'b'> <
FROM , 'FROM '> <ID , 'table1 '> <SEMICOLON , ';'>;

Listing 1.3: Result of lexical analysis

1.2.2 Syntax analysis

The token stream generated in the previous step serves as an input to the
syntax analysis phase, also known as parsing. “The parser derives a syntactic
structure for the program, fitting the words into a grammatical model of the
source programming language. If the parser determines that the input stream
is a valid program, it builds a concrete model of the program for use by the
later phases of compilation.”[2]

SELECT

SELECT 
LIST

b1

LITERAL QNAME

FROM

TABLE

QNAME

table1

Figure 1.1: AST for SELECT statement
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1. Basic concepts

Abstract syntax tree, also known as AST, is often used as a “concrete
model of the program” on the output of the parsing. It is a tree-like structure,
that provides a high-level view of the structure of the input program. Figure
1.1 shows an example of an abstract syntax tree constructed for the statement
1.2.

At first, parse tree is constructed according to the rules defined in context-
free grammar, which consists of terminal and nonterminal symbols, set of
productions, also known as production rules, and start symbol. A grammar
is used to specify the syntax of the language, so one of its applications is
to describe the hierarchical structure of most programming languages. Parse
tree contains all the tokens provided to the parser on the input and also nodes
representing the used rules of the grammar. It serves as a conceptual basis for
building abstract syntax tree, which may skip some tokens and have different
structure. Usually, tokens that do not play any difference in further processing
of AST are skipped, such as semicolons between statements in SQL.

1.2.3 Semantic analysis

The next phase of static code analysis is semantic analysis, which ensures that
statements of the program are semantically correct according to the language
definition. Among its tasks belong type checking, resolution of identifiers, and
others.

In this thesis, this phase’s core goal is to find what all references in the
source script refer to. For this purpose, a semantic analysis tool uses the ab-
stract syntax tree constructed in the previous step and information in the sym-
bol table — a data structure used to hold information about source-program
constructs.[3] For example, the semantic analysis of statement 1.2 would in-
clude understanding what is referenced by identifiers “table1” and “a” and
checking that column “a” is indeed present in “table1”.

This thesis also includes deduction analysis, which is not a standard part
of static code analysis. It is a heuristic used in the Manta system, whenever
semantic analysis tool fails to resolve all the references. It is a process of
“guessing” what is referred by the references based on the knowledge of the
language structure. It is often used in cases where the symbol table does not
contain enough information. For example, in the case of statement 1.2 and
assuming not having information about “table1” in the symbol table, one of
the guesses could be that “table1” is either table or view and “a” is a column
of this table or view.

The semantic analysis phase’s output is again AST but with checked se-
mantic and nodes referencing the entities in the symbol table. As a result,
the symbol table structure is also enriched with data found or deduced during
this phase.

6



1.3. Data dictionary

1.3 Data dictionary

The symbol table mentioned in 1.2.3 plays a significant role during the seman-
tic phase of static code analysis. It allows to find objects and entities that
are referenced in the script, as well as to register a new one. That is why it
is essential to collect as much information as possible about analyzed source
codes and entities before starting a static code analysis.

1.3.1 Metadata extraction

SQL is a programming language mostly used to operate and manage data
stored in relational or other types of database systems. Data in database
systems is usually contained in structures and objects, such as tables, views,
etc. Manta system benefits from the nature of the database environment
and executes extraction of metadata from the target database instance as
preparation before static code analysis.

The extraction phase aims to collect information about target database
objects and save it to a data dictionary, which is equivalent to a symbol table
in Manta terminology. Thanks to the collected data, the semantic phase of
static code analysis can search for referenced entities in the data dictionary
and update it with new information found in the source code. This process
helps to increase the accuracy of resolving and in the result data lineage itself.

1.3.2 Database specific metadata

Except for extracted metadata, the data dictionary can also be updated with
database-specific information, such as object hierarchy, built-in functions, pro-
cedures, and variables. That heuristic is also part of the Manta approach to
the data lineage process.

1.4 Dataflow analysis

Based on the output of static code analysis, it is possible to construct a
dataflow graph, which is essentially one of the data lineage representations
of the input program. It is an oriented graph, where nodes represent data,
data transformations, or a more abstract containers for the data, and edges
between them represent how data flows.

In this thesis, the graph’s edges are labeled, which means they are divided
into two groups: direct and filter.

Direct edges represent the direct dependency of data from one node to
another. For example, in statement 1.2, the direct edge will be created from
column “a” in the table “table1” to the column “a” in the result.

7



1. Basic concepts

The filter edge is used to express filtering conditions, which may affect the
data contained in target node. An example could be the LIMIT clause of the
SELECT statement, which affects the amount of data in the result.

1.5 Manta Flow

Manta Flow is one of the applications developed in the Manta company, and
it focuses on the visualization of data lineage based on the analysis of source
code in a business intelligence environment. Manta technology supports and
integrates with various technologies in database, reporting and analysis, mod-
eling, data integration, and programming languages domains.[4] The example
of demo dataflow visualization created by Manta Flow can be seen in figure
1.2.

Figure 1.2: Demo visualization results generated by Manta Flow

The steps described in this chapter are part of how Manta Flow approaches
the source code analysis and generation of dataflow graphs.

8



Chapter 2
Analysis

This chapter focuses on describing what Google BigQuery and Google Cloud
Platform is. It also covers the BigQuery object hierarchy and metadata avail-
able for extraction. It provides a high-level understanding of syntax and pos-
sibilities of BigQuery standard and legacy SQL dialects.

2.1 Google BigQuery

Google BigQuery is a serverless, highly scalable data warehouse that comes
with a built-in query engine. It was first launched as a service in 2010 with gen-
eral availability in November 2011.[5] The query engine can run SQL queries
on terabytes of data in a matter of seconds and petabytes in only minutes.
Such performance comes without the need to manage any infrastructure and
without the need to create or rebuild indexes.[6] Key features of this technol-
ogy are the following: [7]

• Serverless – with serverless data warehousing, Google does all resource
provisioning behind the scenes, so end users can focus on data and anal-
ysis rather than worrying about upgrading, securing, or managing the
infrastructure.

• Petabyte scale – BigQuery gives great performance on users’ data, with
the ability to scale seamlessly to store and analyze petabytes to exabytes
of data with ease.

• Standard SQL – BigQuery supports a standard SQL dialect that is
ANSI:2011 compliant. BigQuery also provides ODBC and JDBC drivers
at no cost to ensure easy integration of existing applications with its
powerful engine.

Google BigQuery provides multiple ways to access its resources. To start
experimenting, it is enough to login to Google Cloud Platform, choose Big-
Query service, and run the query in web UI console. Figure 2.1 shows part
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2. Analysis

of Google BigQuery console with entered SQL query and the result of the
execution.

Figure 2.1: Google BigQuery web UI console with an executed query for the
number of COVID-19 cases in the United States based on the public dataset
data

2.1.1 Google Cloud Platform

Google BigQuery is available for users as a part of Google Cloud Platform
(GCP). GCP is a collection of products and services available in the form of
web services, which allows users to use some of Google’s infrastructure. This
collection includes many things that are common across all cloud providers,
such as on-demand virtual machines via Google Compute Engine or object
storage for storing files via Google Cloud Storage.[8] When comparing Google
BigQuery to other database and data warehouse solutions, it is important to
consider easy integrations to other Google Cloud Platform products. The list
of BigQuery features include:

10
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• federated queries that allow users to run queries against data held in
Google Cloud Storage, Cloud SQL (a relational database), Bigtable (a
NoSQL database), Spanner (a distributed database), or Google Drive
(which offers spreadsheets).

• The combination of Cloud Pub/Sub, Cloud Dataflow and BigQuery al-
lows creating ETL tool with customized steps and transformations based
on the user’s needs.

• With Dataproc and Dataflow, BigQuery provides integration with the
Apache big data ecosystem, allowing existing Hadoop/Spark and Beam
workloads to read or write data directly from/to BigQuery using the
Storage API.[7]

2.1.2 High-level architecture of BigQuery

BigQuery service is built on top of Dremel technology, which has been in
production internally in Google since 2006.[9] Dremel is a scalable, interactive
ad-hoc query system for the analysis of read-only nested data, capable of
running aggregation queries over trillion-row tables in seconds. Except for
Dremel, BigQuery also uses other Google’s technologies:

• Borg system is a cluster manager that runs hundreds of thousands of
jobs, from many thousands of different applications, across several clus-
ters, each with up to tens of thousands of machines.[10]

• Colossus is a distributed file system that is the successor to the Google
File System.[11]

• Jupiter is Google’s network that can deliver 1 Petabit/sec of total bi-
section bandwidth, allowing efficient and quick distribution of large
workloads.[12]

Figure 2.2 shows the high-level architecture of BigQuery with the technologies
mentioned above. In this figure, the compute (Borg) and storage (Colossus)
parts are separated, allowing BigQuery to scale both components indepen-
dently based on the current users’ demand.

11



2. Analysis

Figure 2.2: A high-level architecture of BigQuery [5]

2.1.3 Database objects’ structure

In comparison to other known databases, BigQuery has a slightly different
structure and terminology for its resources. Additionally, all the database re-
sources are grouped into Organizations, the root node of the Google Cloud
resource hierarchy. This entity provides control over all resources that be-
long to an organization or company. The following figure 2.3 shows a tree
representation of resource hierarchy in BigQuery.
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Figure 2.3: Resource hierarchy in BigQuery

In the hierarchy a project comes after the Organization resource and it
serves as the container for the datasets, external connections, and jobs. A
single project can be compared to a database instance in other database tech-
nologies. Dataset is the parent of the tables, user-defined functions, proce-
dures, and views. Dataset can be considered as a schema in a database like
PostgreSQL. The lowest level of objects hierarchy take tables, views, func-
tions and procedures, which are similar to objects in classical databases. An
external connection is an entity that is used during the federated queries in
BigQuery. Federated queries allow users to execute SQL queries against tables
stored in Cloud SQL without copying or moving data.[13] Its functionality is
similar to “dblink” feature in PostgreSQL or Oracle databases. A job resource
is automatically created, scheduled, and run whenever the user loads, exports,
queries, or copies data in the BigQuery platform.[14]

2.2 Metadata extraction

This section describes ways to extract information about stored objects in Big-
Query and required privileges for it. It also focuses on a detailed description
of object types, its attributes, and available metadata.

2.2.1 Ways to extract

There are three main approaches to interaction with BigQuery and extraction
of metadata:
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• INFORMATION SCHEMA views,

• SDK,

• REST API.

2.2.1.1 INFORMATION SCHEMA views

INFORMATION SCHEMA is a series of views that provide access to: [15]

• dataset metadata,

• routine metadata,

• table metadata,

• view metadata.

This way of extraction allows accessing metadata in a programmatical way
with the help of SQL queries. The problem is that list above does not contain
an ability to extract metadata about projects which are required for a suc-
cessful and complete process of extraction. The INFORMATION SCHEMA
feature was in the beta release phase when working on this thesis and might
be changed in future releases.

2.2.1.2 SDK

Google Cloud provides development tools and libraries in different program-
ming languages for interacting with its services and products. BigQuery also
has its project on GitHub. The SDK allows access to BigQuery service on the
same level as REST API with some known limitations.

This approach’s advantages are the ready-for-use objects class model, team
of developers that work on improvement of development tools, and online
community of people using the same library and sharing their experience.
The disadvantage of this approach is that BigQuery SDK does not provide
the functionality of accessing metadata about projects.

2.2.1.3 REST API

BigQuery service exposes access to its functionalities with the help of an appli-
cation programming interface (API). Within API, users can find resources for
interacting with core resources such as datasets, tables, jobs, and routines.[16]
Although Google documentation recommends using this service through the
libraries described in 2.2.1.2, it does not give such flexibility as in the case of
direct API usage.

The API is accessible with HTTPS and follows the REST principles. This
approach gives at least the same amount of functionalities as in previously
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described ways to extract metadata and the ability to list projects and its
metadata.

Considering all the previously mentioned pros and cons of different ap-
proaches, the BigQuery API approach was chosen for implementation.

2.2.2 Required privileges

To be able to extract metadata about objects, the prototype application has to
obtain access to them. Ideally, the implemented solution has to have enough
privileges to retrieve metadata about objects but not to be able to retrieve
objects’ data itself, i.e., not be able to access records in tables.

Thanks to Cloud Identity and Access Management tool, it is possible to
define and manage fine-grained access to Google Cloud Platform resources.
This service’s core concept is the definition of who (identity) has what access
(role) for which resources.[17]

The role is a collection of permissions. Permissions determine what oper-
ations are allowed on a resource. There are a set of predefined roles that are
available for users of Google Cloud Platform, and one of them is BigQuery
Metadata Viewer that contains the following permissions:

• bigquery.datasets.get

• bigquery.datasets.getIamPolicy

• bigquery.models.getMetadata

• bigquery.models.list

• bigquery.routines.get

• bigquery.routines.list

• bigquery.tables.get

• bigquery.tables.getIamPolicy

• bigquery.tables.list

• resourcemanager.projects.get

• resourcemanager.projects.list

Giving this role to proof of concept application ensures that only metadata
about database objects will be extracted and data itself will stay inaccessible.

2.2.3 Metadata to extract

The following subsection focuses on a detailed description of object types, its
attributes, and metadata available in the BigQuery platform. It also covers
the importance of extracted metadata for later use in building dataflows.
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2.2.3.1 Project

The project resource is the base-level organizing entity. It is not used solely
for purposes of BigQuery, but for Google Cloud platform in general. Creation
of a project is required to use Google Cloud services, managing APIs, billing,
and permissions.[18] A project has the following attributes that we need to
extract:

• id – unique identifier for the project,

• name – a human-readable name for the project.

A detailed list of projects is retrieved with the help of an HTTP GET request
from the following resource https://bigquery.googleapis.com/bigquery
/v2/projects.

2.2.3.2 Dataset

Datasets are top-level containers used to organize and control access to tables,
views, functions, and procedures. Each dataset is contained within a specific
project. It has the following attributes that need to be extracted:

• id – an identifier for the dataset that is unique per project,

• description (optional) – a description for the dataset,

• friendly name (optional) – a descriptive name for the dataset.

List of datasets and detail about every dataset is retrieved from the following
resources:

• https://bigquery.googleapis.com/bigquery/v2/projects/{proj
ectId}/datasets

• https://bigquery.googleapis.com/bigquery/v2/projects/{proj
ectId}/datasets/{datasetId}

2.2.3.3 Table

A table contains individual records organized in rows. Each record is com-
posed of columns (also called fields). Every table is defined by a schema that
describes the column names, data types, and other information. Two table
types are supported in BigQuery:

• native tables – tables backed by native BigQuery storage,

• external tables – tables backed by storage external to BigQuery.

Metadata of both of these table types contains the following information:
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• name – a name for the table that is unique per dataset,

• description (optional) – a description for the table,

• friendly name (optional) – a descriptive name for the table,

• schema (optional) – a definition of the schema of the table that contains
the following information about every column of the table:

– name – a name for the column,
– type – a data type for the column,
– mode (optional) – the column mode that tells whether the column

is nullable, required, or repeated,
– description (optional) – a descriptive name for the column.

In addition to the mentioned attributes, external table metadata also provides
information about source URIs and source format for the data.

External tables are part of external data sources functionality in BigQuery.
It is a data source that can be queried directly even though the data are
not stored in BigQuery. Instead of loading or streaming the data, the table
references the external data source. Four data source types are supported:
Cloud Bigtable, Cloud Storage, Google Drive, and Cloud SQL[19]. Every time
user queries an external data source, the data are loaded from the specified
location and then processed in BigQuery.

Metadata about the table resource also contains information about en-
cryption configuration, clustering, range partitioning, and others. However,
this information is not relevant for building dataflows and it is not going to
be saved.

2.2.3.4 View

A view is a virtual table defined by a SQL query, and user queries it in the
same way as a table.[20] Two types of views are supported in BigQuery:

• view,

• materialized view.

Materialized views are precomputed views that periodically cache results of
a query for increased performance and efficiency.[21] A materialized view is
relatively new functionality in BigQuery. It was added in a beta release on
the 8th of April 2020.[22] That is why the extraction of metadata about this
resource is not covered by this master thesis and will not be implemented in
a proof of concept application.

Metadata about views are very similar to the metadata about tables, and
even its extraction is done with the help of the same resources. To distinguish
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a view from a table when querying metadata, the “type” attribute is used.
This attribute can have the following values: TABLE, EXTERNAL, VIEW and
MATERIALIZED VIEW. Except for table metadata attributes, the view definition
attribute is extracted too. This attribute contains a query string used to define
the view, and it is useful to understand the source of data in the view.

2.2.3.5 Function

BigQuery supports user-defined functions and lets users define functions with
SQL expressions or JavaScript code. The following metadata about function
are extracted:

• name – a name for the function that is unique per dataset,

• function definition – SQL or JavaScript body of the function,

• return type (optional) – data type of the returned value,

• language (optional) – specification of the programming language used
to a define function, either SQL or JavaScript,

• imported libraries (optional) – stores the path of the imported JavaScript
libraries,

• parameters (optional) – list of function arguments. Every argument has
its metadata:

– name – name of the argument,
– data type – a data type of the argument.

JavaScript functions in BigQuery allow users to write function definition in
JavaScript programming language. It also allows using other JavaScript li-
braries that have to be predefined during the creation of function with the
help of imported libraries attribute. List of user-defined functions and meta-
data about them are retrieved from the following resources:

• https://bigquery.googleapis.com/bigquery/v2/projects/{proj
ectId}/datasets/{datasetId}/routines

• https://bigquery.googleapis.com/bigquery/v2/projects/{proj
ectId}/datasets/{datasetId}/routines/{routineId}

2.2.3.6 Procedure

Procedures are another type of resource that is available to BigQuery users.
In its core procedure is a block of statements that can be called from other
statements. Procedures are similar to user-defined functions, except it can be
written only in SQL language, there is no return type, and its arguments have
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a mode. Mode allows to specify whether it is input, output, or both input and
output argument. Procedures metadata are retrieved with the same resource
as user-defined functions in BigQuery. In order to distinguish between both
entities, the attribute “type” is used. It can have a “SCALAR FUNCTION”
or “PROCEDURE” value.

2.3 Analysis of BigQuery SQL

BigQurey has its own SQL dialects, which are similar to SQL dialects of
other known database systems such as PostgreSQL or Oracle but with some
differences and additional clauses. This section focuses on describing BigQuery
SQL dialects and their syntax.

2.3.1 Standard and legacy SQL

BigQuery supports two SQL dialects: standard SQL and legacy SQL. Legacy
SQL was initially named BigQuery SQL and was renamed to legacy SQL after
the release of the new dialect. Standard SQL is ANSI:2011 compliant and has
extensions that support querying nested and repeated data.

The standard SQL is the preferred SQL dialect for querying data stored
in BigQuery. New features added to the BigQuery platform are not being
backported to legacy SQL. The documentation for standard SQL covers more
details and is maintained better than for the legacy dialect. Default dialect
depends on the tool that is being used for interaction with BigQuery: [23]

• in the Cloud Console and the client libraries, standard SQL is the de-
fault,

• in the classic BigQuery web UI, the bq command-line tool, and the
REST API, legacy SQL is the default.

Even though the default dialect is set, the user may change it with the pro-
vided configurations. There is also the ability to set preferred dialect directly
through the SQL with #legacySQL and #standardSQL prefixes.

The proof of concept application supports script analysis for statements
written both in standard and legacy SQL. The following subsections focus
on discussing statements supported in standard SQL dialect with remarks
regarding differences in legacy SQL.
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2.3.2 Data types

Table 2.1: Data types in BigQuery legacy and standard SQL

Standard SQL Legacy SQL Description

BOOL BOOLEAN Boolean values are represented by the
keywords TRUE and FALSE.

INT64 INTEGER Numeric values that do not have frac-
tional components.

FLOAT64 FLOAT Double precision (approximate) deci-
mal values.

NUMERIC NUMERIC Decimal values with 38 decimal dig-
its of precision and 9 decimal digits of
scale.

STRING STRING Variable-length character (Unicode)
data.

BYTES BYTES Variable-length binary data.

STRUCT RECORD Container of ordered fields each with
a type (required) and field name (op-
tional).

ARRAY REPEATED An ordered list of zero or more elements
of non-ARRAY values.

TIMESTAMP TIMESTAMP Representation of an absolute point in
time.

DATE DATE Representation of a logical calendar
date, independent of time zone.

TIME TIME Representation of time independent of
a specific date and timezone.

DATETIME DATETIME Representation of date and time with
the range 0001-01-01 00:00:00 to 9999-
12-31 23:59:59.999999.

GEOGRAPHIC - A collection of points, lines, and poly-
gons, which is represented as a point
set, or a subset of the surface of the
Earth.
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BigQuery supports both simple and complex data types such as ARRAY or
STRUCT. Table 2.1 contains a list of all data types with their names in both
of the dialects. GEOGRAPHY is supported only in standard SQL. There is also
limited support for data types such as DATE, TIME, DATETIME, and TIMESTAMP
in legacy SQL.

Table 2.2 shows a list of data type properties, which implies restrictions
on storing and querying data with specific types.

Table 2.2: Data type properties in BigQuery standard SQL

Property Description Data types

Nullable Value can be null. All data types except ARRAYs can
be nullable.

Orderable Allowed in ORDER
BY.

All data types except for ARRAY,
STRUCT, GEOGRAPHY.

Groupable PARTITON/GROUP
BY or DISTINCT
can use it.

All data types except for ARRAY,
STRUCT, GEOGRAPHY.

Comparable Values of the same
data type can be
compared.

All data types except ARRAYs and
GEOGRAPHYs. STRUCT data
type has limited support for compar-
ison.

2.3.3 Lexical Structure

This subsection describes the lexical structure of BigQuery statements. Big-
Query statement consists of a series of tokens separated by whitespace or
comments. Tokens include identifiers, quoted identifiers, literals, keywords,
operators, and special characters.[24]

2.3.3.1 Identifiers

Identifiers are names that are associated with columns, tables, and other
database objects. They can be unquoted or quoted.[24] Backticks are used
in standard and brackets in legacy SQL for quoted identifiers. Below are ex-
amples of the same query using quoted identifiers written in standard and
legacy SQL:

1 # standardSQL
2 SELECT * FROM
3 `bigquery -public -data. covid19_open_data . covid19_open_data `;

Listing 2.1: Quoted identifiers in standard SQL
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1 # legacySQL
2 SELECT * FROM
3 [bigquery -public -data: covid19_open_data . covid19_open_data ];

Listing 2.2: Quoted identifiers in legacy SQL

Quoted identifiers may contain special characters, such as spaces or symbols,
but cannot be empty. Unquoted identifiers can contain letters, numbers and
underscores but cannot begin with a number.

There are multiple syntactically correct ways to quote an identifier in stan-
dard SQL. The identifier can consist of multiple name segments. In listing 2.1,
the identifier consists of three name segments: name of the project at the start,
name of the dataset in the middle and name of the table in the end. Every
segment could be quoted separately, or only part of the identifier, that uses
symbols that have to be quoted, may be quoted.

There are additional restrictions to identifiers used for objects such as
table, view, column, etc.

2.3.3.2 Literals

A literal is a representation of a constant value of a built-in data type. Most
of the literals in BigQuery have the same syntax as in other known database
systems. ARRAY and especially STRUCT data types are somehow unique to
BigQuery technology and their literals have special syntax.

Syntax of struct literal is the following:
1 (expr , expr [, ...])

Listing 2.3: Struct literal syntax

Where “expr” is an element in the struct. There must be at least two expres-
sions specified or otherwise, it is indistinguishable from an expression wrapped
in parenthesis. The literal above will output a struct with anonymous fields
in which data types are inferred from the input expressions. Having anony-
mous fields means that none of the elements can be referenced. There is also
a syntax for naming elements of the struct and explicitly entering the struct
literal data type.

ARRAY data type is not unique to BigQuery, and its literal syntax is similar
to other database technologies.

1 [ ARRAY[<data_type >] ] "[" [ expr[, ...] ] ] "]"

Listing 2.4: Array literal syntax

ARRAY keyword is optional, and explicit specification of the array elements’
data type is also optional but cannot exist without the ARRAY keyword. Then
follows a list of expressions enclosed in square brackets. Arrays can be empty.

The GEOGRAPHY data type mentioned earlier cannot be expressed as literal.
In order to work with it, BigQuery provides built-in functions. Some of them
are in the following list:
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• ST GEOGPOINT, ST MAKELINE, ST MAKEPOLYGON – build new geography
values from coordinates,

• ST GEOGFROMGEOJSON, ST GEOGFROMWKB – create geographies from an ex-
ternal format such as WKB and GeoJSON.

2.3.3.3 Case sensitivity

Case sensitivity of BigQuery identifiers differs based on the category of the
object it is used for. Following table 2.4 provides an overview of known and
documented rules.

Table 2.3: Case sensitivity in BigQuery

Category Is case sensitive?

Keywords No

Built-in Function names No

User-Defined Function names Yes

Table names Yes

Column names No

Aliases within a query No

Whether the identifier is quoted or unquoted, it does not affect its case-
sensitivity.

2.3.3.4 Keywords

Keywords are other building blocks of every programming language. They
have special meaning in the language, and in BigQuery there is only one
restriction that is put on their usage: keywords cannot be used as identifiers
unless they are enclosed in backticks. The full list of reserved keywords can
be found in BigQuery documentation.[24]

2.3.4 Query syntax

Query statements are intended to scan one or more tables or expressions and
provide the result rows. In BigQuery, the query statement is represented with
the SELECT statement. SELECT statement syntax both in standard and legacy
SQL is similar SQL dialect in other databases such as PostgreSQL. BigQuery
supports the following clauses in the SELECT statement:
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Table 2.4: SELECT clauses in BigQuery

Clause Standard SQL Legacy SQL

SELECT Yes Yes

FROM Yes Yes

JOIN Yes Yes

WHERE Yes Yes

GROUP BY Yes Yes

HAVING Yes Yes

ORDER BY Yes Yes

LIMIT Yes Yes

WITH Yes No

WINDOW Yes No

OFFSET Yes No

EXCEPT Yes No

FOR SYSTEM TIME AS OF Yes No

REPLACE Yes No

OMIT RECORD IF No Yes

Table of the supported clauses 2.4 contains some clauses that are not very
popular among other technologies or may be known under a different name.
To better understand the concepts of query statements, some of them will be
discussed in the following subsections.

2.3.4.1 EXCEPT clause

EXCEPT clause is defined as a part of SELECT * EXCEPT statement.
1 # standardSQL
2 WITH actors AS ( SELECT 'Ivan ' first_name , 'Trojan ' last_name ,

125 movie_cnt )
3 SELECT * EXCEPT ( First_Name ) FROM actors ;
4 +-- ---------+-----------+
5 | last_name | movie_cnt |
6 +-- ---------+-----------+
7 | Trojan | 125 |
8 +-- ---------+-----------+

Listing 2.5: EXCEPT clause example
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Code 2.5 shows an example of usage of this clause. It aims to specify one or
more columns to exclude from the resultset. Columns to exclude are specified
with its names that are case insensitive in BigQuery.

It is important to know that this clause cannot exclude columns that do
not have names. So for example, code in the listing 2.6 cannot be executed
due to compilation error.

1 # standardSQL
2 SELECT * EXCEPT ( First_Name ) FROM ( SELECT 1, 2, 3);
3 -- Column First_Name in SELECT * EXCEPT list does not exist

Listing 2.6: EXCEPT clause error example

2.3.4.2 FOR SYSTEM TIME AS OF clause

The FOR SYSTEM TIME AS OF is an optional clause that can be specified after
the name of the table in FROM clause. This allows to reference the historical
versions of the table definition and data in it.

1 # standardSQL
2 SELECT count (*) AS count
3 FROM bigquery -public -data. crypto_ethereum . tokens ;
4 +-- -------+
5 | count |
6 +-- -------+
7 | 193488 |
8 +-- -------+
9

10 SELECT count (*) AS count
11 FROM bigquery -public -data. crypto_ethereum . tokens
12 FOR SYSTEM_TIME AS OF
13 TIMESTAMP_SUB ( CURRENT_TIMESTAMP (), INTERVAL 6 day);
14 +-- -------+
15 | count |
16 +-- -------+
17 | 192676 |
18 +-- -------+

Listing 2.7: FOR SYSTEM TIME AS OF clause example

In code example 2.7, the second statement selects historical data of the same
table used in the first statement. There are two restrictions on the value of
the timestamp expression:

• it cannot have value more than seven days before the current timestamp,

• it cannot be in the future.

The FOR SYSTEM TIME AS OF clause is also supported in other data warehouse
solutions. For example, in Snowflake, it is known as AT or BEFORE clause[25].
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2.3.4.3 REPLACE clause

This clause is used as a part of the SELECT * REPLACE statement. It contains
one or more expression AS identifier clauses where the identifier is a
column name. It replaces the value of the matching column in the resultset
with the value of the expression. An example of the REPLACE clause can be
found in 2.8.

1 # standardSQL
2 WITH actors AS (
3 SELECT 'Jiri ' first_name , 'Machacek ' last_name ,
4 85 movie_cnt , 2 movie_in_progress_cnt
5 )
6 SELECT * REPLACE (
7 movie_cnt + movie_in_progress_cnt AS movie_cnt ,
8 0 AS movie_in_progress_cnt )
9 FROM actors ;

10
11 +-- ----------+-----------+----------+-----------------------+
12 | first_name | last_name | movie_cnt | movie_in_progress_cnt |
13 +-- ----------+-----------+----------+-----------------------+
14 | Jiri | Machacek | 87 | 0 |
15 +-- ----------+-----------+----------+-----------------------+

Listing 2.8: REPLACE clause example

2.3.4.4 OMIT RECORD IF clause

The OMIT RECORD IF clause is a construct that is unique to BigQuery. Its
behavior is similar to the WHERE clause — it allows to filter records based on
the condition.

1 # legacySQL
2 SELECT repo_name FROM
3 [bigquery -public -data: github_repos . languages ]
4 OMIT RECORD IF
5 COUNT( language .name) < 160
6 +-- --------------------+
7 | repo_name |
8 +-- --------------------+
9 | polyrabbit / polyglot |

10 +-- --------------------|

Listing 2.9: OMIT RECORD IF clause example

In comparison to the WHERE clause, it has two differences. The records will
be omitted from the resultset if the condition is evaluated to true, and kept
otherwise. The second difference is the ability to use scoped aggregation
functions in its condition, which may be useful when working with repeated
and nested data types.
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In example 2.9, names of repositories that have less than 160 languages
used in it are filtered. In this case, the “language” field is an array of records
with one of the sub-fields named “name”.

2.3.5 Data manipulation language

BigQuery is primarily a data warehouse into which data are loaded or streamed
and left unmodified.[6] However, BigQuery supports data manipulation lan-
guage (DML), which enables to insert, update, and delete records in tables.
The statements of this type can be executed only with standard SQL. It is
important to note that each DML statement is executed in an implicit trans-
action, which means that changes are committed automatically in case of
success. There is no support for multi-statement transactions.

In the following subsections, a brief overview of the available DML state-
ments will be presented.

2.3.5.1 INSERT statement

The INSERT statement’s behavior is the same as in other databases — it adds
records to the target table. There is an ability to use a list of values or SELECT
statement to specify what has to be inserted. Insertion of multiple rows at
once within the VALUES clause and the SELECT statement is supported. In
code 2.10, there is an example of an INSERT statement in BigQuery.

1 # standardSQL
2 INSERT actors (first_name , last_name , movie_cnt )
3 VALUES ('Jiri ', 'Machacek ', 85) ,
4 ('Ivan ', 'Trojan ', 125);

Listing 2.10: INSERT statement example

The specification of the list of columns in the target table is optional.

2.3.5.2 DELETE statement

The DELETE statement is used to remove records form the target table. The
WHERE clause specifying rows to remove is mandatory. To delete all rows from
the table WHERE true can be used.

1 # standardSQL
2 DELETE actors AS a
3 WHERE a. first_name = 'Ivan ';

Listing 2.11: DELETE statement example

As in example 2.11, an alias for the target table can be specified and later
used in the query. It is important to note that after specifying the alias, the
original target table’s name can no longer be used in qualified names of the
columns in WHERE clause.
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2.3.5.3 TRUNCATE TABLE statement

Except for DELETE, the TRUNCATE TABLE statement can be used to delete rows
in the target table. This statement deletes all the rows from the table but
leaves schema, description and labels of the target intact.

1 # standardSQL
2 TRUNCATE TABLE actors ;

Listing 2.12: TRUNCATE TABLE statement example

2.3.5.4 UPDATE statement

The UPDATE statement is used to update existing rows in the table. BigQuery
supports the following clauses of the UPDATE statement:

• SET – list of columns which have to be updated with specified expression
value,

• FROM – a list of tables, whose columns can appear in WHERE or SET clause,

• WHERE – mandatory clause to specify the condition that row has to satisfy
in order to be updated.

Nested and repeated fields also can be updated with the help of this statement.
In the case of the column of type struct, the full path to the sub-field has to
be specified.

1 # standardSQL
2 UPDATE actors
3 SET movie_cnt = movie_cnt + 1, movies = ARRAY(
4 SELECT movie FROM UNNEST ( movies ) AS movie
5 UNION ALL
6 SELECT ('Charlatan ', CAST('2020 -08 -20 ' AS DATE))
7 )
8 WHERE first_name = 'Ivan ' and last_name = 'Trojan ';

Listing 2.13: UPDATE statement example

In example 2.13, for actors with the first name “Ivan” and last name “Trojan”,
the number of movies is increased by one and to the array of their movies a
movie with name ”Charlatan” and release date August 20, 2020 is added.

2.3.5.5 MERGE statement

A MERGE statement is an atomic combination of INSERT, UPDATE, and DELETE
operations, that runs (and succeeds or fails) as a single statement.[6] In Big-
Query, this statement consists of the following building blocks:

• target name – the name of the table that is going to be changed,
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• source name – table or subquery that is used as a source of the data to
be updated or inserted,

• merge condition – boolean expression that is used by the JOIN to match
rows in source and target tables,

• when clause – allows specifying WHEN MATCHED, WHEN NOT MATCHED and
WHEN NOT MATCHED BY SOURCE options and INSERT, UPDATE or DELETE
statements. Each MERGE statement must contain at least one when clause,

• search condition – the optional clause that can be combined with the
when clause. The when clause statement is executed for a row only if
merge condition and search condition are satisfied.

One of the limitations of the MERGE statement is the inability to use corre-
lated subqueries within a when clause, search condition, UPDATE or INSERT
statement inside the when clause.

1 # standardSQL
2 MERGE actors a
3 USING
4 ( SELECT 'Ivan ' first_name , 'Trojan ' last_name , 86 movie_cnt ) s
5 ON a. first_name = s. first_name AND a. last_name = s. last_name
6 WHEN MATCHED THEN
7 UPDATE
8 SET movie_cnt = s. movie_cnt
9 WHEN NOT MATCHED BY TARGET THEN

10 INSERT (first_name , last_name , movie_cnt )
11 VALUES (first_name , last_name , movie_cnt )
12 WHEN NOT MATCHED BY SOURCE THEN
13 DELETE ;

Listing 2.14: MERGE statement example

In example 2.14, MERGE statement updates, inserts or deletes data from table
“actors” based on the USING clause subselect.

2.4 Requirements analysis

This section lists functional and non-functional requirements for the proof of
concept application.

2.4.1 Functional requirements

FR1: Metadata extractor for BigQuery
The implemented solution has to be able to extract metadata about specified
BigQuery projects and all related database objects in it. It also includes:

• adding extracted metadata into the data dictionary,
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• persisting metadata,

• extracting BigQuery specific information such as database objects hier-
archy, built-in functions, and system variables,

• generating DDL scripts based on the extracted metadata.

FR2: BigQuery standard and legacy SQL parsing
Reading and parsing the SQL script in a file or a string is part of the pro-
totype implementation. Parsing of SELECT, INSERT, UPDATE, DELETE, MERGE
statements in standard SQL and SELECT statement in legacy SQL have to be
supported. Because of the continuous work and improvements of the standard
SQL language by the BigQuery team, some changes released after the start
of the work on the master thesis are expected not to be supported by the
implemented prototype.

FR3: Building AST
The result of the parsing should be in the form of an abstract syntax tree. Its
structure will allow the convenient traversing and processing during the later
phases of implementation.

FR5: Semantic analysis
The implemented prototype has to be able to process the abstract syntax
tree created during the parsing phase. It has to recognize declarations of new
database objects and add this information to the data dictionary. It also has
to find references to database objects and map them to existing data dictio-
nary entities.

FR6: Deduction
The implemented solution must be capable of handing references that are not
pointing to any object in the previously created data dictionary. In this case,
it has to deduce the referenced entity and register it in the data dictionary.

FR7: Dataflow
Proof of concept application has to create dataflow for the provided BigQuery
script with statements listed in second functional requirement and represent
it in the form of a graph. Created dataflow graph should also be available in
the format that would allow further processing and visualization.

2.4.2 Non-functional requirements

NFR1: Execution time
The implemented solution should extract metadata and parse the provided
scripts in time that would be the same or at least close to other solutions in
the Manta portfolio. However, the speed of extraction metadata in the case of
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BigQuery can be affected by the chosen extraction approach. Every extractor
call requires the initialization of a new HTTPS connection, which may slow
down the performance.

NFR2: Memory management
The prototype is required to run and succeed under different circumstances
and with available resources. One of the resources that may be limited is
memory. The prototype, especially the extractor part, should manage used
memory correctly and be able to handle the situation, where all the metadata
will not fit into the memory.

NFR3: Usage of existing technologies and formats
The proof of concept application will be part of the Manta system, so it should
comply with the existing architecture. To achieve this, it should use provided
interfaces and classes where possible, save data to the same storage as other
technologies, and represent processing results in the format that can be con-
sumed and processed by other components of the Manta system.

NFR4: Implementation quality
The created implementation has to be production quality and follow the pro-
gramming standards in Manta:

• review – results have to reviewed by at least one member of the team
(not including the developer himself),

• unit-testing – code should be covered with unit tests that make sense,

• development tracking – development has to be tracked and reported
regularly with the existing Manta tools,

• extensibility – implemented solution has to be designed in a way that
allows adding new features and improvements in the future.
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Design

This chapter describes the architecture of the created solution and tools used
during the implementation.

3.1 Architecture

The implemented prototype functionalities can be logically separated into
three parts:

• extraction part – connects to the target database, extracts the metadata
from it, and saves them for later use by other modules,

• parsing and resolving part – is responsible for parsing the input scripts,
building the AST and resolving the references in the script,

• dataflow part – uses the results of previous steps to build a graph rep-
resentation of dataflow and saves it for future processing.

3.1.1 Extractor

As mentioned before, this part is focused on extracting metadata about objects
in the target database and saving them for later use. This process consists of
the following steps:

• connecting to the target database – includes retrieval of the access token
that is required for authorization of every request for metadata from
BigQuery API services,

• retrieving the metadata and its processing – includes execution of re-
quests for metadata to the BigQuery platform and converting the raw
representation into the designed data model,

• saving metadata into data dictionary – includes mapping of the extracted
metadata and adding it to the data dictionary,
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• generating the DDL – includes generation of data definition language
scripts based on the extracted metadata,

• saving DDLs – includes saving the generated DDL created in the previ-
ous step,

• persisting the data dictionary – includes persisting of the data in the
data dictionary into the persistence storage.

manta-connector-bigquery-dictionary

«interface»
BigQueryExtractor

+ extract() : void
+ setExtractedDdlTypes(Set<DdlType>) : void
...

<<interface>>
DdlScriptGenerator

+ createTableDdl(String..., Table) : String
+ createViewDdl(String..., View) : String
...

<<interface>>
DdlWriter

+ writeDdl(DdlType, String ...) : void
+ reinit() : void
...

<<interface>>
MetaDao

+ getAllProjects() : List
+ getViewForName(String, ...) : View
...

<<interface>>
DictionaryWriter

+ addProject(Project) :IResDataType
+ addDataset(..., Dataset) : IResDataType
...

DdlWriterImpl

FsNameNormalizer

+ normalize (List<String>, String) : String
+ reinit() : void

DdlScriptGeneratorImpl

DictionaryWriterImpl

BigQueryDataDictionary

+ createProject(...) : IResDataType
+ createDataset(...) : IResDataType
...

<<interface>>
CredentialService

+ getAccessToken() : String

CredentialServiceImpl

e.p.m.c.bigquery.extractor.mapper

<<interface>>
ProjectMapper

+getAllProjects() : List

<<interface>>
TableMapper

+ getTableNames(String, ...) : List
+ getTableForName(...) : Table

ProjectMapperImpl TableMapperImpl

...

...

MetaDaoImpl

e.p.m.c.bigquery.extractor.entity

Project

DatasetTable

Function

...

BigQueryExtractorImpl

Figure 3.1: BigQuery extractor module class diagram

manta-connector-bigquery-dictionary-extractor module contains the ex-
tractor functionality. Its classes and interfaces are captured in figure 3.1. The
presented class diagram contains only high-level concepts of classes, its at-
tributes and methods, and does not reveal all the details.

The BigQueryExtractor is an API that can be used by other modules
to run the process of the extraction. Its implementation manages and con-
trols the whole extraction process. It uses the MetaDao interface in order to
retrieve metadata. The MetaDao implementation delegates calls to *Mapper in-
terfaces from eu.profinit.manta.connector.bigquery.extractor.mapper
package, where every interface is focused on retrieving metadata for the con-
crete type of the object. Retrieving of access token required for authorization
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of every request is done with the help of the CredentialService interface.
The eu.profinit.manta.connector.bigquery.extractor.entity package
contains the data model of retrieved metadata. After the metadata is ex-
tracted and converted, BigQueryExtractor uses the DictionaryWriter in-
terface to save the data into the data dictionary. DdlScriptGenerator is
responsible for generating DDL based on the metadata, and DdlWriter pro-
vides a unified interface for saving the generated script to the file system.
Persisting the data dictionary is executed with the help of API available in
the data dictionary object.

3.1.2 Parsing and resolving

The following figure 3.2 provides an overview of classes and interfaces in
manta-connector-bigquery-resolver module.

manta-connector-common-ast

<<interface>>
ParserService

+parseStringScript(String, ...) : IBigQueryAstNode
+parseFileScript(File, ...) : IBigQueryAstNode
...

ParserServiceImplBigQueryLexer

<<abstract>>
MantaAbstractLexer

BigQueryMain

<<abstract>>
AbstractBigQueryParser

<<abstract>>
MantaAbstractParser

antlr3/parser

BigQueryMain.g BigQueryLexer.g
...

BigQueryAstNode

e.p.m.c.bigquery.resolver.ast.impl

AstAggRef AstTable...

manta-connector-bigquery-model

<<interface>>
IAstAffRef

findCallSegments() : List

<<interface>>
IAstTable

getAliasName() : EntityName

...

<<interface>>
IBigQueryAstNode

+ getParent() : IBigQueryAstNode
+ getChildre(): IBigQueryAstNode
+ accept(IBigQueryAstVisitor) : Object

Figure 3.2: BigQuery parsing and resolving module class diagram

The manta-connector-bigquery-resolver module contains the imple-
mentation of parsing and resolving parts. The parsing part is mainly rep-
resented with interface ParserService and its implementation. It provides
an API for other modules to parse input script in a string or file format and
returns the built AST. The main parsing logic is represented by the ANTLR

35



3. Design

files located in antlr3/parser package. It consists of lexer and parser gram-
mar files. These files are later compiled with ANTLR program and moved into
eu.profinit.manta.connector.bigquery.resolver.parser package.

The ParserService is also responsible for initiating resolving of AST, but
the core logic of it is implemented in classes located in eu.profinit.manta.
connector.bigquery.resolver.ast package and impl subpackage. All of
the Ast* classes extend BigQueryAstNode class and implement their own logic
of resolving.

3.1.3 Dataflow

Dataflow part is implemented in manta-dataflow-generator-bigquery mod-
ule and its core logic is located in class FlowVisitor. FlowVisitor class con-
sists of process methods responsible for the processing of AST and resulting
in a dataflow graph. It also uses an instance of BigQueryGraphHelper, which
contains some common processing logic. The high-level class diagram of the
dataflow module can be seen in figure 3.3.

manta-connector-bigquery-model

FlowVisitorBigQueryAstVisitorAdaptor

<<interface>>
IBigQueryAstVisitor

+ process(IAstAggRef) : Object
+ process(IAstWithClause) : Object
...

BigQueryGraphHelper

manta-dataflow-generator-common

<<abstract>>
AstGraphHelper

<<abstract>>
AbstractGraphHelper

manta-dataflow-model

<<interface>>
Node

+ getChildren() : Set
+ getParent() : Node
...

<<interface>>
Edge

+ getSource() : Node
+ getTarget() : Node
...

<<interface>>
Graph

+ addNode(...) : Node
+ addEdge(...) : Edge
...

...

FlowVisitorFactory

+ createFlowVisitor(...) : FlowVisitor
+ setDbResource(...) : void
...

Figure 3.3: BigQuery dataflow module class diagram

The dataflow module mostly depends on three other modules:

• manta-dataflow-generator-common – contains interfaces and classes
for simplified construction of resulting graph,

• manta-dataflow-model – contains building blocks such as Node, Edge,
Graph for dataflow graph,
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• manta-connector-bigquery-model – serves as a connecting point to
other implemented modules. It is described in detail in 3.1.4.

3.1.4 Other modules

There are three more modules that have been created during the implemen-
tation of the proof of concept application:

• manta-connector-bigquery-model – defines interfaces for AST nodes
and its processing,

• manta-connector-bigquery-dictionary – implements data dictionary
for BigQuery,

• manta-connector-bigquery-dictionary-mapping – contains the iden-
tification of data dictionaries and their configurations.

As shown in 3.2 and 3.3, both the dataflow and the parsing modules depend on
the manta-connector-bigquery-model module. This module contains inter-
faces of AST nodes created during the parsing, which will later be processed
by the dataflow module. This creates an additional level of abstraction and
avoids strict coupling of manta-connector-bigquery-resolver and manta-
dataflow-generator-bigquery modules. This module also defines the inter-
face for the BigQuery data dictionary, which again allows other modules not
to depend on the concrete implementation. Except for defining interfaces for
AST nodes, the model module defines IBigQueryAstVisitor, an interface for
traversing AST.

3.2 Tools

The proof of concept application was implemented with the help of tools
and technologies that are already used in the Manta system. The following
subsections describe some of them.

3.2.1 Java

The implementation is in the programming language Java version 8. Java is
a general-purpose, concurrent, class-based and object-oriented language with
a long history and good community support.[26] This language is chosen to
implement the BigQuery prototype to be consistent and follow design and
architecture principles in the Manta system.

3.2.2 Spring

For convenient and fast development of the prototype, Spring framework major
version 5 was used. Spring is one of the most popular technologies used in
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the Java programming language world. Its first version was released in the
year 2002, and it is being developed until now. The framework covers many
different areas of programming, and it consists of 20 different modules, which
do not have to be used all at once.[27] Spring Context, Spring Beans, Spring
Core, Spring Test and Spring JDBC were used to implement the application.

3.2.3 ANTLR

The big part of static code analysis for scripts written in BigQuery SQL lan-
guage implemented using ANTLR tool version 3. The acronym ANTLR is
decoded as ANother Tool for Language Recognition, and it provides a frame-
work for constructing recognizers, interpreters, compilers, and translators from
grammatical descriptions in different programming languages.[28]

During the development of the BigQuery prototype, the following features
of the ANTLR tool were used:

• definition of BigQuery lexer, which enables to define rules for lexical
analysis,

• definition of BigQuery grammar, which is responsible for syntax analysis,

• definition of rewrite rules as part of parser definition, which allow to
design the structure of abstract syntax tree as needed.

3.2.4 Testing tools

To follow Manta software development standards, the implemented function-
ality was covered with the unit and manual tests. “A unit test is an automated
piece of code that invokes the unit of work being tested, and then checks some
assumptions about a single end result of that unit”.[29] For purposes of unit
testing, the JUnit major version 4 framework was used. It is again well known
in Java programming language community and perfectly satisfies the testing
needs of the implemented prototype.

In combination with JUnit technology, the Mockito version 3 testing tool
was used. It allows to simulate behavior of some components the code under
test is dependent on. It simplifies the process of testing software that depends
a lot on other components or environmental factors. For example, it allows to
test the metadata extraction logic itself without being dependent on the real
response of BigQuery API service with the help of mocking its responses.

3.2.5 Maven

As discussed in section 3.1, the implemented solution is separated into different
modules, and it also depends on other modules existing in the Manta system.
For better maintenance, control, and build of application modules, Apache
Maven is used. All the definitions of the module, its dependencies, and build
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steps are defined within the pom.xml file. Maven is later used in combination
with the Jenkins tool, which allows using benefits of continuous integration
and delivery.
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Chapter 4
Implementation

This chapter describes the implementation details of the modules described
in chapter 3, and provides insight into problems encountered during the de-
velopment process.

4.1 Extractor

Section 3.1.1 lists six main steps the metadata extraction process consists of.
The following subsections describe these steps in more detail.

4.1.1 CredentialService

CredentialService is the interface that provides a single method called
getAccessToken(). Other components of the extractor module use this in-
terface to retrieve the access token required for authorization of request for
metadata to BigQuery API services.

Because BigQuery API is a part of a more generic Google API system,
all rules that apply to Google API also apply to the BigQuery API. Google
APIs use the OAuth 2.0 protocol for authentication and authorization. The
standard Google API OAuth 2.0 scenario for server applications consists of
obtaining service account credentials from the Google API console, requesting
an access token from the Google Authorization Server, and sending the access
token to the Google API that is needed to be accessed.[30] A service account
is a particular type of Google account that belongs to an application instead
of an individual end-user.

A service account comes with the public/private key pair. The private key
has to be provided to the implementation of CredentialService in the form
of application properties before the start of extraction. This key is used to
sign JSON Web Token that is sent to Google Authorization Service with a
request for obtaining the access token. If the JWT token is formed correctly
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and the service account has required permissions, the access token response is
returned. An example of an access token response can be seen in figure 4.1.

1 {
2 " access_token ": "1/8 xbJqaOZXSUZbHLl 5EOtu1pxz3

fmmetKx 9W8CV4t79M",
3 "scope": "https:// www. googleapis .com/auth/ bigquery "
4 " token_type ": " Bearer ",
5 " expires_in ": 3600
6 }

Listing 4.1: Access token response example

Except for the token value itself, it also contains a token expiration time, which
is used for caching purposes of CredentialService. Instead of requesting the
token every time the request is made, it is requested once and then reused until
it expires and then requested again.

4.1.2 Retrieving and converting metadata

Retrieving metadata is done with the help of BigQuery API services, which
are accessible with HTTPS protocol. BigQuery API services follow the REST
design principle, and metadata to extract are represented as resources, which
are described more in detail in subsection 2.2.3.

Package eu.profinit.manta.connector.bigquery.extractor.mapper
consists of interfaces with suffix Mapper, where every interface is dedicated to
the extraction of concrete type of database objects metadata. For example,
FunctionMapper is designed to provide access to metadata about functions.
Like most other interfaces in the same package, the FunctionMapper defines
two methods:

• getFunctionNames(projectId, datasetName) – returns list of func-
tion names or empty list if there are no functions found in the dataset
in the project,

• getFunctionForName(projectId, datasetName, functionName) – re-
turns retrieved function metadata or null in case requested function is
not found.

The naming of methods in other interfaces is designed accordingly to the type
of database object they extract.

Package eu.profinit.manta.connector.bigquery.extractor.mapper.
impl contains the implementation of the interfaces mentioned above. In most
cases, the implementation consists of executing the request for metadata and
processing the response. The request for metadata part is very similar for
most of the metadata resources and its common part was implemented in
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class BigQueryApiCaller. This class provides convenient methods for the
extraction of a collection and a single metadata object. It is also responsible
for recording the amount of time spent on HTTP requests and the number of
calls made for statistical purposes. After successful execution of the request,
the response is returned and further processing of it is executed in one of the
implementations of Mapper interfaces.

1 {
2 "etag": " ABeXQI 4azA2CQY2O+nHXhw ==",
3 " routineReference ": {
4 " projectId ": "bigquery -manta -test",
5 " datasetId ": "test",
6 " routineId ": "f1"
7 },
8 " routineType ": " SCALAR_FUNCTION ",
9 " creationTime ": "1604250002155",

10 " lastModifiedTime ": "1604250002155",
11 " language ": "SQL",
12 " arguments ": [
13 {
14 "name": "x",
15 " dataType ": {
16 " typeKind ": "INT64"
17 }
18 }
19 ],
20 " definitionBody ": "pow(x, 2)"
21 }

Listing 4.2: BigQuery API response for procedure metadata

In figure 4.2, there is an example of response for metadata of function with
name f1, which returns the value of input integer raised to the power of two.
The response is returned in JSON format, where every field of the response
and its structure is documented within BigQuery online documentation. The
processing of this response is done with the help of Jackson library, which
enables to parse the response and get the needed fields using well-designed
API methods.

After the response is processed, its information is saved into the designed
data model, represented by classes in the eu.profinit.manta.connector.
bigquery.extractor.entity package. These classes were designed based on
the structure of the metadata response for each type of database object. It was
also limited only to a subset of metadata fields that are important for further
processing. In some cases, additional classes, such as Column or SqlDataType,
were created to have a better data model.
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4.1.3 DictionaryWriter

After the successful extraction of metadata, it has to be saved in the data
dictionary. DictionaryWriter is an interface that defines a set of methods
for saving the metadata of all database objects. DictionaryWriterImpl is
its single implementation, and it handles the mapping of extracted metadata
to the internal representation of the data dictionary. It is also responsible
for counting the number of saved objects into the data dictionary for statistic
purposes.

4.1.4 DdlScriptGenerator

This interface defines a set of methods used to generate DDL scripts for
database objects based on the extracted metadata. BigQuery defines data
definition language only for a subset of database object types. Therefore
DdlScriptGeneratorImpl implements the generation of DDL scripts only for
tables, views, functions and procedures. Because only a subset of metadata is
extracted during the extraction, the original DDL can differ from the generated
one, but this fully satisfies the requirements of the implemented prototype.
For example, DDL of the CREATE TABLE statement can contain kms key name
option, which describes the Cloud KMS encryption key used to protect Big-
Query table, but it is not essential for further processing of the implemented
prototype and it would be missing in the generated DDL.

4.1.5 DdlWriter

DdlWriterImpl implements DdlWriter and is focused on saving the generated
DDL to the file system. Its method writeDdl() has quite a simple logic:
creating the name and path in the file system for the DDL script and saving
it. The name of the file for the DDL script has to reflect the name of the
object defined in the script. There are also some limitations from the file
system side: the file’s name has to be unique and should not contain symbols
that are not allowed. Before creating the name of the file, based on the
identifier of BigQuery object, it has to be normalized, which is done with the
help of FsNameNormalizer class. This class solves the described problems
of normalization and returns the file’s path and name based on the provided
parameters.

4.1.6 Data dictionary persisting

BigQueryDataDictionary represents a data dictionary for saving extracted
metadata of BigQuery objects. It extends the functionality defined in the
class AbstractDataDictionary, a part of the common modules defined in
the Manta system. Thanks to this extension, it can persist saved metadata to
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the persistent storage without any further implementation. The persistence
is implemented with the method persist() in AbstractDataDictionary.

4.1.7 BigQueryExtractor

As mentioned earlier in 3.1.1, BigQueryExtractor’s extract() method uses
all components mentioned in this section and orchestrates the process of ex-
traction and saving the metadata. Its implementation BigQueryExtractorImpl
is configurable with the following methods:

• setDictionary – allows to set the instance of data dictionary which is
going to be used for saving the extracted metadata,

• setExtractedDdlTypes – allows to specify types of objects that are
going to be extracted,

• setOutputDdlTypes – allows to configure types of database objects,
whose DDL are going to be created and saved,

• setIncludedProjectsDatasets – allows to specify BigQuery projects
and datasets which have to be extracted,

• setExcludedProjectDatasets – allows to specify BigQuery projects
and datasets which must not be extracted.

It is also responsible for handling exceptions that may occur and collecting
the statistics from the used components to process them at the end of the
extraction process.

4.2 Parsing and resolving

The section describes the implementation of parsing and resolving parts.

4.2.1 Parsing

Parsing logic is mainly realized with the help of ANTLR tool, and it is lo-
cated in files with .g extension in antlr3/parser package. During the
phase of building the project, files from this package are processed by the
ANTLR tool, and their java representations are generated and located into
eu.profinit.manta.connector.bigquery.resolver package.

4.2.1.1 BigQueryLexer

File BigQueryLexer.g describes the rules that are used for lexical analy-
sis. The generated Java equivalent is BigQueryLexer class, which extends
MantaAbstractLexer. In turn, this class extends org.antlr.runtime.Lexer
class and contains some additional error processing logic.
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BigQuery lexer consists of definitions for different types of tokens, such
as string and number literals, reserved and non-reserved keywords, operators
and special characters. It also contains rules for whitespace and single- or
multiline- comments. For example, the rule for single-quoted string literal
looks like:

1 fragment ANY_CHAR : ∼'a' | 'a ';
2 fragment SINGLE_QUOTED_STRING : '\'' (∼('\'' | '\\') | ( '\\'

ANY_CHAR ) )* '\'';

Listing 4.3: BigQuery single quoted string lexer rule

Section 2.3.3.1 described the specialty of quoted identifiers in standard SQL
dialect, which can contain multiple name segments. The nextToken() method
from the parent class had to be overridden to handle these segments’ parsing
correctly. The simplified version of this method is presented in figure 4.4

1 boolean inBacktickQuotedID = false;
2
3 public Token nextToken () {
4 if(input.LA (1) == '`') {
5 inBacktickQuotedID = ! inBacktickQuotedID ;
6 mBACKTICK (); // process the backtick character
7 }
8
9 if( inBacktickQuotedID ) {

10 while (true) {
11 if(input.LA (1) == '.') {
12 mPERIOD (); // process period character
13 } else {
14 mQuotedFragment (); // process name segment
15 }
16 emit ();
17 return state.token;
18 }
19 } else {
20 return super. nextToken ();
21 }
22 }

Listing 4.4: Overriden nextToken() method in BigQueryLexer

4.2.1.2 BigQuery parser grammar

BigQuery parser grammar is represented within three files: BigQueryMain.g,
BigQueryExpressions.g and BigQueryNonReserveredKW.g. This structure
was inspired by existing parsers for other SQL dialects in the Manta system.

BigQueryNonReserveredKW.g mainly consists of non reserved words and
reserved words rules, which help separate reserved and non-reserved key-
words into two separate groups. This separation is required because reserved
keywords cannot be used as identifiers unless enclosed in backticks. It later
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affects the grammar rules focused on parsing parts of the language, which can
contain identifiers.

BigQueryExpressions.g contains almost the whole parsing logic of SELECT
statement in BigQuery and also some general building blocks, which are used
in other statements. These building blocks include expressions, data types,
aggregated references and qualified names.

BigQueryMain.g is a starting point for parsing every statement, and it
also contains parsing logic for data definition and modification language. An
example of the rule that recognizes the type of input statement can be seen
in figure 4.5:

1 common_table_expression_statement
2 @init{
3 registerNewSymbolsScope ( ResScope . SELECT_SCOPE );
4 }
5 :
6 ( with_clause ? ( SELECT | LEFT_PAREN )) => s = select_statement
7 -> ˆ( AST_SELECT_STATEMENT < AstStandaloneSelect >[ contextState ] $s)
8 |
9 ( KW_INSERT ) => s = insert_statement

10 -> ˆ( AST_INSERT_STATEMENT < AstStandaloneInsert >[ contextState ] $s)
11 |
12 ( KW_DELETE ) => s = delete_statement
13 -> ˆ( AST_DELETE_STATEMENT < AstStandaloneDelete >[ contextState ] $s)
14 |
15 ( KW_UPDATE ) => s = update_statement
16 -> ˆ( AST_UPDATE_STATEMENT < AstStandaloneUpdate >[ contextState ] $s)
17 ;
18 finally {
19 SYMBOLTABLESCOPE_stack .pop ();
20 }

Listing 4.5: Common table expression statement rule

The figure above 4.5 contains rewrite rules that follow the -> symbol. This
operator of ANTLR language allows to define how to generate the output, which
is the AST in this case. It allows to perform different kinds of transformations,
such as reordering nodes, deleting nodes or creating imaginary nodes. In
figure 4.5, imaginary nodes AST SELECT STATEMENT, AST INSERT STATEMENT
and others are created to identify the root of the subtree for the processed
statement.

4.2.2 Resolving

The second part of the manta-connector-bigquery-resolver is the resolving
of the references used in the input script.
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4.2.2.1 AST nodes

BigQueryAstNode is an ancestor class for every node created in AST. Some
of the AST nodes have special meaning and in this case, a special class and
interface are defined for their representation. All the classes of AST nodes are
put into the eu.profinit.manta.connector.bigquery.resolver.ast.impl
package. In most cases, these classes contain resolving logic and helper meth-
ods that will allow easier traversal of AST and finding required elements in
it.

BigQueryAstNode implements IBigQueryAstNode that declares methods
for accessing its parent and children in the AST. Additionally, BigQueryAstNode
defines resolve() method, which in the default implementation does not have
any special logic — it just delegates the resolving to its children. This method
may be overridden in case the special class is created for an AST node. An
example of such class is AstCreateTable, representing the root for the CREATE
TABLE statement in AST.

resolve() is the starting point of the whole process of resolving. The
result of parsing is represented with an instance of BigQueryAstNode pointing
to the root of the abstract syntax tree. In case the resolving is requested, the
ParserServiceImpl calls resolve() method on the AST root node, which
delegates it to its children.

ParserServiceImpl is the implementation of ParserService, which de-
clares several methods for parsing and resolving the input scripts.

4.2.2.2 Context concept

Many AST node classes implement the AstInteranlResolve interface in ad-
dition to implementing the resolve() method. This interface defines method
resolveInternal(Stack<Map<EntityName, IResObject>>) with one param-
eter called context. This allows to execute resolving of the node with addi-
tional information that may be defined in the different part of the statement
and restrict the lookup of references to a special range of variables available at
this moment. An example of its usage can be seen in the following statement:
4.6

1 SELECT
2 ( SELECT c2
3 FROM t2
4 WHERE CAST(c1 AS INT64) = t1.c1
5 )
6 FROM t1;

Listing 4.6: SELECT statement with scalar subquery

Assuming that column c1 exists in table t2, unqualified column name c1
inside the subselect statement must be resolved to the column of table t2
even though the column with the same name exists in table t1. If at the
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moment of entering the subselect, the new layer with variables referencing the
columns of table t2 was not created in the context, c1 could reference columns
in both tables t1 and t2.

4.3 Dataflow

This section describes the manta-dataflow-generator-bigquery module im-
plementation. FlowVisitor and BigQueryGraphHelper are two classes that
contain most of the dataflow building logic.

4.3.1 Dataflow graph

The dataflow phase accepts the resolved AST on input and produces a dataflow
graph. Dataflow graph is mainly represented with interfaces Graph, Node
and Edge, which are part of the manta-dataflow-model module. The Graph
interface defines methods for adding, removing and changing nodes and edges
in the graph.

The implemented prototype does not work with the mentioned interfaces
directly but instead uses an abstraction, which is represented by helper classes
such as AstGraphHelper and AbstractGraphHelper. Some of the methods
that they provide are the following:

• addNode(String name, NodeType type, Node parent):Node – adds
a node to the graph with the specified name, type and parent node,

• addDirectFlow(Node source, Node target):Edge – adds a direct edge
between two nodes,

• addFilterFlow(Node source, Node target):void – adds a filter edge
between two nodes.

BigQueryGraphHelper extends abstract class AstGraphHelper and adds helper
methods that are common for the processing of different statements. It is im-
portant to understand the dataflow graph’s underlying model even though it
is not used directly.

4.3.2 FlowVisitor

The visitor pattern is used for processing nodes of AST created during the
parsing phase. FlowVisitor extends BigQueryAstVisitorAdaptor class which
implements IBigQueryAstVisitor interface. This interface declares methods
with signature process(IAst*) for processing AST nodes, which are impor-
tant for creating the dataflow graph. Classes of AST nodes that have to be
processed have to implement the accept(IBigQueryAstVisitor) method to
be correctly processed by the visitor.
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The goal of FlowVisitor is to process input AST nodes and generate a
related part of the dataflow graph. The logic of creating the dataflow graph
was mostly inspired by other existing SQL dialects in the Manta system.
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Chapter 5
Testing

This chapter describes the process of testing the proof of concept application.
To ensure the correctness of the implemented functionality, unit, integration
and performance tests were created. Unit and integration tests can be ex-
ecuted automatically, and in combination with continuous integration tools,
allow the development of new features with a lower risk of breaking existing
functionalities.

5.1 Extractor

The extractor part covers the extraction and saving of the metadata of objects
from the target database. The extractor module is responsible not only for
integration to the target platform but also for converting, mapping and saving
the metadata.

5.1.1 Unit and integration tests

For most of the components described in 4.1, unit tests were created in the
following classes:

• AbstractRoutineMapperImplTest, FunctionMapperImplTest – cover
the more complex logic of mapping the JSON response to the data
model,

• DictionaryWriterImplTest – verifies the DictionaryWriterImpl ser-
vice, which saves metadata to the data dictionary,

• DdlScriptGeneratorImplTest – compares the generated DDL scripts
with expected ones,

• DdlWriterImplTest – checks that files with generated DDL are saved
to the expected location and with the expected content,
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• BigQueryExtractorImplTest – tests different scenarios of extraction,
such as error handling in case of an unexpected error, or handling of
different configurations of the extractor.

Except for unit tests, integration tests were also implemented in the extrac-
tor module. MetaDaoImplTest tests the process of connecting to the target
database and requesting the metadata from it. It also tests the part of the
converting and mapping logic of the metadata to the metadata model. The
previously mentioned BigQueryExtractorImplTest also contains tests of the
complete extraction process with integration to the BigQuery testing account
created for these purposes.

5.1.2 Memory management and performance tests

To be compliant with memory management and time execution requirements,
a set of manual tests were executed on the extractor module.

Memory management test aims to verify that extractor works correctly
even with limited available resources. This test uses -Xmx Java option that
limits Java heap size.This test execution showed that the BigQuery extractor
could handle the extraction and persisting of 3250 different database objects
with Java heap size set to 70, 65 and 60 megabytes. These results satisfy the
requirements put on the prototype.

Performance test executes extraction process on big enough target instance
of BigQuery. For this test, five projects were created, and each of them consists
of 1000 tables, 1000 views and 1000 functions. The average time of multiple
executions of this test is 52 minutes, which means that almost five objects are
processed per second. This result is slower compared with other technologies
in the Manta system. The main reason for worse performance might be using
HTTPS protocol in combination with the REST API service of BigQuery
instead of JDBC, which is usually used in the Manta system for extraction
purposes.

5.2 Parsing and resolving

The manta-connector-bigquery-resolver module focuses on parsing input
scripts and resolving references in built AST. This module is covered by unit
tests and it logically can be divided into two groups: tests of parsing and tests
of resolving.

5.2.1 Parsing

Parsing tests verify that input scripts can be parsed without errors and that
the AST structure is built according to the design. These tests are executed
with class AnnotatedFilesResolverTest, which iterates over the set of input
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scripts in directory test/resources/SimpleTests and does parsing for each
of them. At the end of the parsing, the test checks that there are no error
or warning messages in the log output, verifying that the parsing did not fail.
The output AST representation is not compared to any expected result but
was checked manually during implementation.

Manual tests were done with the tool GraphViz. This tool takes AST,
converted to DOT format, and prints it as an image to the specified file. An
example of such image can be seen in figure 5.1, which shows the AST for a
simple INSERT statement with a VALUES clause.

Figure 5.1: AST for INSERT statement

5.2.2 Resolving

Resolving tests are executed in the same manner as parsing tests but with an
additional step checking the resolved references. Manta system has developed
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its own set of utilities, which simplify the process of verification the results of
resolving.

These utilities take SQL script on input, which is annotated by multi-line
comments. With the help of these annotations, the following properties of a
resolved entity can be verified: it is correctly resolved, i.e., it references the
expected object, it is not deduced, it has the correct type, it has the right
parent, it has the correct name. Also, names of the columns of the resultset
and structure of result AST can be checked.

1 # standardSQL
2 CREATE TABLE t1 /* name = "T1" */ /*= t1*/ (
3 a /*= t1a */
4 /* parentEntity = t1 */
5 /* parentEntity . hasProperty ( DB_TABLE ) */
6 INT64 ,
7 b STRING
8 );
9

10 SELECT
11 a /*= t1a */ /* hasProperty ( COLUMN ) */ /* ! deduced () */
12 AS aAlias /* `ancestor :: AST_ALIAS ` != null */
13 FROM t1 /*= t1 */;
14
15 SELECT * FROM t1;
16 /* a | b */

Listing 5.1: Resolving tests with annotations example

In listing 5.1, there is an example of the usage of almost all types of annotations
that can be applied.

5.3 Dataflow

The functionality of this module is also covered with unit tests. Test class
AstFilesFlowTest works similarly to tests in parsing and resolving modules.
It takes input scripts, parses and resolves them, and then generates dataflow
graph. Created dataflow graph can be serialized to a string, which allows a
simple comparison of it with the expected result. Serialization of dataflow
graph is done with toString(Graph) method of GraphUtils class from the
manta-common-testutils module. This class is also capable of deserializing
the string back into Graph instance.

Input scripts and expected results are located in test/resources/flow
directory. AstFilesFlowTest is configured to accept files with extension sql
and compare the generated graphs with the content of files with the same
name but suffixed with expected.txt.

During the development process, manual tests were also executed. Dataflow
graph is converted to DOT format and is printed as an image with GraphViz
tool. Output examples can be seen in chapter 6.
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Chapter 6
Result examples

This chapter contains an example of processing a simple input SQL script and
its dataflow graph. It also describes the purpose of nodes and edges in the
resulting graph.

6.1 CREATE TABLE statement

Dataflow graph will be generated for BigQuery CREATE TABLE statements
shown in code example 6.1. CREATE TABLE statement for the table named
t1 does not generate dataflow itself, but the statement for the table named
t2 does. In BigQuery, CREATE TABLE AS statement allows to create a new
table based on the resultset of SELECT statement. In this case, the SELECT
statement will work with table t1.

1 # standardSQL
2 CREATE TABLE t1 (
3 a INT64 ,
4 b INT64 ,
5 c INT64
6 );
7
8 CREATE TABLE t2 AS
9 SELECT b, c

10 FROM t1
11 WHERE a = 42;

Listing 6.1: CREATE TABLE and CREATE TABLE AS examples

In figure 6.1, there is the dataflow graph generated for these statements, which
is limited to the subset of nodes that play a role in this case. Every node in
the figure consists of the following elements:

• position in the script, where it is used. This information is captured
inside <> symbols, usually at the left hand side of the node,
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• name of the node, usually on the left hand side or right after the position
in the script information,

• node type inside brackets,

• parent of the node inside the parenthesis.

Nodes are connected with labeled edges, which represent the flow of the data
in the statement. There are two categories of edge labels used in this graph:
D stands for direct and F for filter flow. For example, between column b in
table t1 and column b in table t2, there is a path that consists of direct edges
and nodes related to the representation of the SELECT statement. This path
describes that data from column b in table t1 are used as the origin of data in
column b in t2. On the other hand, there is a <11,5>Where node in the middle
of the graph, which has filter edges to 1 b and 2 c ResultSetColumn nodes.
This connection describes that resultset columns of the SELECT statement
might be affected by WHERE clause.

This way graph represents dataflows for the CREATE TABLE AS statement
with detailed information about building blocks of the newly created table.

Figure 6.1: Dataflow graph for CREATE TABLE AS statement
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Conclusion

The objective of this master thesis was to analyze BigQuery technology and
semantics of its query language, learn about the Manta system and its ap-
proach to static code analysis and data lineage. It was required to implement
the extraction of metadata needed for dataflow analysis and design a way to
analyze and represent the source codes in the Google BigQuery language. The
final goal was to implement a proof of concept application that will extract
dataflow from a set of Google BigQuery scripts to the Manta system and cover
it with proper quality tests.

All the mentioned objectives were accomplished. A way to analyze the
source code of Google BigQuery language was found, and relevant dataflow
declarations and statements were detected. The proof of concept application
was implemented, and it was extensively tested.

The implemented application does not cover analysis of all the statements
existing in Google BigQuery language, but it is able to process most essential
constructs and concepts in it. It also does not provide the full support for non-
atomic objects of STRUCT data type due to the complexity of its processing
and representation. The design and implementation of the proof of concept
application are done in a way that allows extending current functionalities
and adding support for other statements of the BigQuery language.

The implemented solution will be integrated into the Manta system and
added to the portfolio of supported technologies.
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Appendix A
Acronyms

EBNF Extended Backus–Naur Form

AST Abstract Syntax Tree

SQL Structured Query Language

ANSI American National Standards Institute

ODBC Open Database Connectivity

JDBC Java Database Connectivity

UI User Interface

COVID-19 Coronavirus disease 2019

GCP Google Cloud Platform

NoSQL non-SQL

ETL Extract Transform Load

API Application Programming Interface

REST Representational State Transfer

SDK Software Development Kit

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

WKB Well-Known Binary
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A. Acronyms

JSON JavaScript Object Notation

FR Functional Requirement

NFR Non-Functional Requirement

JWT JSON Web Token

KMS Key Management Service

DML Data Manipulation Language

DDL Data Definition Language
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Appendix B
Contents of enclosed USB

readme.txt ...................... the file with USB contents description
src ... the directory containing source codes of the implemented modules

manta-connector-bigquery-aggregation
manta-connector-bigquery-dictionary
manta-connector-bigquery-dictionary-extractor
manta-connector-bigquery-dictionary-mapping
manta-connector-bigquery-model
manta-connector-bigquery-resolver
manta-connector-bigquery-testutils

manta-dataflow-generator-bigquery-aggregation
manta-dataflow-generator-bigquery

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis..............the directory of LATEX source codes of the thesis
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