
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 17, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Command Line Description Generator

 Student: Nikita Evstigneev

 Supervisor: Ing. Jiří Kašpar

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2020/21

Instructions

Study the Command Line Description (CLD) language and its extension for Linux and Windows OS.
Analyze the structure and format of Linux man pages.
Design and implement a tool generating command descriptions in the CLD language from Linux man pages.
Test the tool on man pages of the base SUSE Linux distribution.
Evaluate the resulting command descriptions in the dclsh shell prototype provided by the supervisor.

References

Will be provided by the supervisor.

Bachelor’s thesis

Command Line Description Generator

Nikita Evstigneev

Department of Information Security
Supervisor: Ing. Jǐŕı Kašpar

January 6, 2021

Acknowledgements

I would like to thank my supervisor Ing. Jǐŕı Kašpar for his help. Also, I would
like to thank my family, friends, and colleagues for their support during this
long academic journey.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 6, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Nikita Evstigneev. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Evstigneev, Nikita. Command Line Description Generator. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Tato bakalářská práce analyzuje problém generovańı popisu př́ıkaz̊u v jazyce
CLD z manuálńıch stránek, které pak mohou být použité v dclsh shellu. Ćılem
této práce je automatizovat proces psańı popisu př́ıkaz̊u tak, aby dosáhnout
pohodlněǰśı komunikaci mezi uživatelem a dclsh shellem.

Kĺıčová slova CLD, dclsh, man2cld, manuálńı stranka, př́ıkazový řádek,
shell

Abstract

This bachelor thesis analyzes the problem of generating command description
in CLD language from its manual page, which then can be used in dclsh
shell. The goal of this work is to automate the process of writing command
descriptions in order for dclsh shell to achieve more convenient communication
between user and shell.

Keywords CLD, dclsh, man2cld, man page, command line, shell

vii

Contents

Introduction 1

1 Shell commands 3
1.1 Shell Command Format . 3

1.1.1 Unix . 3
1.1.2 Windows . 4
1.1.3 VMS . 4
1.1.4 Wildcard characters . 4
1.1.5 Command line completion 4

1.2 Command Definition Language 5
1.2.1 Structure . 5
1.2.2 Describing command . 6
1.2.3 Describing command’s option 6
1.2.4 Describing values . 6
1.2.5 Defining custom types 8
1.2.6 Disallowing entities . 8

1.2.6.1 Specifying expression entities 8
1.2.7 Defining syntax . 9
1.2.8 Extension of CDL to describe syntax of Unix commands 10

2 Linux manual pages 11
2.1 Format . 11
2.2 Output . 12
2.3 Overstriking . 12
2.4 Man page structure . 13

3 Analysis and design 15
3.1 Input . 15

3.1.1 Generating input . 15
3.1.2 Name . 16

ix

3.1.3 Synopsis . 17
3.1.4 Description . 21
3.1.5 Combining output from synopsis and description sections 22

3.2 Output on example of mv command 23
3.2.1 Name and verb definition 23
3.2.2 Synopsis . 23
3.2.3 Description . 24

3.3 Architecture . 24
3.3.1 Process . 25
3.3.2 Requirements . 27
3.3.3 Use-cases . 27
3.3.4 Design . 27

4 Realisation 29
4.1 Technologies . 29

4.1.1 dclsh shell prototype . 29
4.2 Supported options and arguments 30
4.3 Reading user definitions files 30

4.3.1 User definitions file format 30
4.3.2 Parsing . 32
4.3.3 Merging . 33

4.4 Reading man page contents with overstriking 33
4.5 Parsing man page contents and creating command definition . 34

4.5.1 Splitting content into sections 35
4.5.2 Name section . 35
4.5.3 Selecting command name 35
4.5.4 Parsing options . 36
4.5.5 Synopsis section . 37
4.5.6 Syntax line . 37
4.5.7 Merging options and syntaxes 40
4.5.8 Arguments type detection 42
4.5.9 Replacing types from user definitions file 42

4.6 Writing the CLD command definition to a file 42
4.6.1 Enumeration types definition 42
4.6.2 Verb definition . 43
4.6.3 Syntax definition . 43
4.6.4 Qualifier definition . 43
4.6.5 Parameter definition . 44

4.7 Testing . 44
4.7.1 Splitting content into sections tests 44
4.7.2 Name section tests . 44
4.7.3 Synopsis parser tests . 45
4.7.4 Description parser tests 45
4.7.5 Merging synopsis and description output tests 45

x

4.7.6 Type detection tests . 46
4.7.7 User definitions tests . 46
4.7.8 Memory usage tests . 46
4.7.9 Manual testing . 46

4.8 Further required CLD extensions 49

Conclusion 51

Bibliography 53

A Acronyms 55

B Contents of enclosed CD 57

C Man pages, user definitions and outputs 59
C.1 Manual definition of mv command 59
C.2 ls command . 60

C.2.1 Man page . 60
C.2.2 User definitions . 65
C.2.3 Output CLD . 66

C.3 mv command . 72
C.3.1 Man page . 72
C.3.2 User definitions . 74
C.3.3 Output CLD . 74

C.4 tar command synopsis section 76

xi

List of Figures

3.1 Synopsis section content of ls command 17
3.2 Synopsis section content of mv command 18
3.3 Synopsis section content of hostname command 18
3.4 Part of description section of ls command 21
3.5 Name section of mv command . 23
3.6 Name section of mv command . 23
3.7 Syntax definition of mv in CLD . 25
3.8 Shortened version of description section of mv command 26

4.1 Syntax tree of third syntax of mv command 40

xiii

List of Tables

1.1 Built-in CLD types . 7
1.2 Logical operators . 8

2.1 groff output devices . 12

3.1 Replaceable tokens . 20

4.1 Supported options . 31

xv

Introduction

When working with a command line, it’s quite common to look up the syntax
or available options of the command we are interested in. Unix shell provides
a convenient way to do it with its manual pages. Though, there are use cases
when navigating through a 15-pages manual is not efficient. What if shell could
help us complete the option name or warn us about invalid argument type.
What if shell knew that we need to pass a name of a user as an argument and
listed it for us? Finally, what it would require to make shell more intelligent?

Apart from the shell itself, it would definitely need to know how a com-
mand is used. We can’t make the shell read manual pages, they are written for
humans. But what we can do is to prepare command description in a specific
format, that shell would understand. One of such formats, that was used for
the same purpose in VMS shell is described in this work.

The more commands shell is aware of the better experience will be achieved.
Though, preparing a description even for one command takes a significant
amount of time, but imagine writing descriptions for a hundred of them and
keeping it up to date when new features are released.

This work focuses on the problem of automatic generation of command de-
scription in CLD language from its manual page and analysis of CLD language
itself.

The first chapter covers specifics of shells, shell commands, and the intro-
duction of CLD language. It is followed by the specification of the required
extension of CLD language to describe Unix commands.

The second chapter describes Linux manual pages, it’s structure, and for-
mat.

The third chapter contains a deeper analysis of the manual page, inner
sections, and information that can be parsed from it. Example definition
is written for mv command. Based on the analysis, the solution design is
introduced.

The fourth chapter focuses on realization and testing. It describes used
technologies, generator usage, and algorithms for each of the individual sub-

1

Introduction

problems. The testing section of the chapter describes the process of auto-
mated testing (unit tests) and manual testing in order to evaluate the solution.
In the last section further required CLD extension is introduced to fulfill re-
quirements that occurred after deeper problem analysis.

2

Chapter 1
Shell commands

[4] defines shell as ”the command interpreter used to pass commands to an
operating system; so called because it is the part of the operating system that
interfaces with the outside world.“

In order user to use shell properly, it is required to know which commands
does shell support, the format of commands, and also individual command’s
syntax, options, and arguments.

1.1 Shell Command Format

Format of shell commands may vary, depending on concrete platform imple-
mentation. Though, terminology and order are common. Shell command
starts with the name of the command, following by options and arguments
separated by spaces. Options, options’ arguments, and command’s arguments
may be optional or required.

1.1.1 Unix

Unix format of shell commands uses dash (-) to distinguish a beginning of
short option (single alphanumeric character) and double dash (--) for a long
option. Short options can be combined under one dash following by options
without spaces (-la). The argument of an option is separated by an equal sign
(=) or space depending on the fact whether it’s required or not. If an argument
is required, it can be separated by a space. If an argument is optional, an equal
sign as a separator is required to resolve the ambiguity.

An example of Unix shell command using two short options combined
under a single dash and one command argument is shown below.

$ ls -la --sort=size /var/log

3

1. Shell commands

1.1.2 Windows

Windows shell has its root in DOS operating system. It is case-insensitive,
uses forward slash (/) as a start of an option and backward slash (\) to split
path components. Unlike Unix, spaces are not required to separate command
and option.

An example of Windows shell command is shown below.

DIR /aa C:\Windows\System32\winevt\Logs

1.1.3 VMS

VMS shell uses DCL (DIGITAL Command Language), which defines (simi-
larly to Windows) forward slash (/) to be a beginning of an option and is also
case-insensitive.

An example of VMS shell command is shown below.

set audit /alarm /enable=(authorization, breakin=all)

1.1.4 Wildcard characters

Most of the command lines support the ability to work with multiple files
with help of wildcard characters. Those can represent any character(s). The
process of expanding a wildcard pattern into the list of pathnames is called
globbing. Unix, Windows, and VMS support the following wildcards:

Question mark (?) represents a single character

Asterisk (*) represents any number of characters including an empty string

Apart from those with a common meaning, there are also differences be-
tween operating systems in wildcard characters: Unix support brackets ([]) to
represent one character of the set and curly braces ({}) to specify a sequence.
VMS supports percentage sign (%) which also represents a single character
and exists due to backward compatibility, hyphen (-) and ellipsis (...).

The next difference is in a place where globbing happens. On Unix systems
application will receive an expanded list from shell, while in Windows and
VMS patterns are passed to the application. An application then needs to
expand patterns into a list itself with help of OS services.

1.1.5 Command line completion

Command line completion is a feature that helps user with typing long names
of files and directories (basic completion). When user presses TAB key, it
automatically fills a partially typed name based on the current context.

4

1.2. Command Definition Language

In Unix systems, when multiple files are matching given input, it will
fill the common part of the name. Next TAB keypress will display a list of
matching names.

On Windows, even if more files are matching the given input, the first one
will be filled. Next TAB keypress will replace the filled input with the next
matched name. This is called rotating completion.

Unix shells offer advanced configurable completion. Bash, for example,
has its complete and compgen commands to manipulate the programmable
completion facilities. Whether Z shell offers fully programmable completion,
allowing completion of options and parameters based on its’ type derived from
current context and knowledge of all possible parameters and options of the
current command.

Similarly to traditional Unix shells, Windows PowerShell provides cus-
tomizable completion capabilities. CMD.EXE offers only basic completion of
file and directory names.

VMS traditional DCL shell replaces completion with other feature. It
allows commands, options, and keywords to shorten up to the shortest unam-
biguous strings.

1.2 Command Definition Language

Command Definition Language (CDL) was designed by Digital Equipment
Company to be used with their Digital Command Language on RSX11M+,
TOPS20, and later on OpenVMS. It defines how a command, its arguments,
and options should be described in form of text specification, usually stored
in a file called Command Definition File with .CLD extension.

1.2.1 Structure

According to [2], command definition file contains statements. Inside state-
ments, clauses can be used to specify additional information, separated by
either newline, space, or comma. Both statements and clauses can be written
in multiple lines.

Following statements are supported by CDL:

1. DEFINE SYNTAX

2. DEFINE TYPE

3. DEFINE VERB

4. IDENT

5. MODULE

5

1. Shell commands

1.2.2 Describing command

Command in the terminology of CDL is a verb and is defined by DEFINE
VERB statement. There is no limit for the number of verbs defined per one
file.

The format of this statement is shown below:

DEFINE VERB verb-name [verb-clause[, ...]]

where verb-clause is a clause specifying additional information about verb
and can be one of the following:

DISALLOW Controls the use of an entity or a combination of entities.

NODISALLOWS Permits all entities and entity combinations.

IMAGE Specifies an image to be invoked by the verb.

PARAMETER Defines a command parameter.

NOPARAMETERS Disallows parameters.

QUALIFIER Defines a command qualifier.

NOQUALIFIERS Disallows qualifiers.

ROUTINE Specifies a routine to be invoked by the verb.

SYNONYM Specifies a verb synonym.

1.2.3 Describing command’s option

To describe command’s option, we can use qualifier-clause, which has following
syntax: QUALIFIER qualifier-name. If an option also has an argument, value-
clause can be used.

Similarly, to describe command’s parameter, we use PARAMETER clause:
PARAMETER parameter-name, value-clause.

1.2.4 Describing values

To describe a value of parameter, qualifier, or keyword, we can use value-
clause. In parenthesis, we also can specify the value type and a flag whether
it is required. For example, VALUE(TYPE=$NUMBER,REQUIRED) says, that the
value should be a number and it is required.

The type of value can be either a built-in type or user-defined type. List
of supported built-in types are described in table 1.1.

In CDL it is also possible to write a list of values separated by commas in
place of one parameter or a list in parenthesis if it’s a value of a qualifier. To
achieve this, we need to add LIST statement, for example:
VALUE(REQUIRED, TYPE=$FILE, LIST).

6

1.2. Command Definition Language

Type Short description
$ACL The value must be an access control

list.
$DATETIME The value must be an absolute time

or a combination time. DCL con-
verts truncated time values, com-
bination time values, and keywords
for time values (such as TODAY)
to absolute time format. DCL fills
blank date fields from the current
system date and fills omitted time
fields with zeros.

$DELTATIME The value must be a delta time.
DCL fills missing fields with zeros.

$EXPRESSION The value must be a DCL-style ex-
pression. DCL evaluates the expres-
sion and provides the results.

$FILE The value must be a valid file speci-
fication.

$INFILE The value must be an existing file.
$DIRECTORY The value must be a directory.
$NUMBER The value must be an integer rep-

resented by either decimal, octal, or
hexadecimal numbers.

$PARENTHESIZED_VALUE The value must be enclosed in
parentheses. Note that DCL does
not remove the parentheses.

$QUOTED_STRING The value must be a string en-
closed in quotation marks. Note
that DCL does not remove the quo-
tation marks.

$REST_OF_LINE DCL treats the rest of the line liter-
ally as the specified value, ignoring
spaces or punctuation marks. DCL
does not remove quotation marks
when processing the string.

Table 1.1: Built-in CLD types [2]

7

1. Shell commands

Operator Precedence Meaning
ANY2 1 True if any two or more

of the entities listed are
present

NEG 1 True if the negated
form of the entity is
present

NOT 1 True if the entity is not
present or if an entity is
present by default

AND 2 True if both entities are
present

OR 3 True if either entity is
present

Table 1.2: Logical operators [2]

1.2.5 Defining custom types

When built-in types are not enough, we can use DEFINE TYPE statement
to introduce a new type, which represents a keywords list and may later be
referenced in value-clause. It has following syntax: DEFINE TYPE type-name
[type-clause[, . . .]] where type-name is a name of the keyboards list and type-
clause lists all acceptable keywords.

Each possible keyword is described in a type-clause. It starts with re-
served word KEYWORD, which is followed by the keyword itself. For example,
KEYWORD GREEN. To specify the default value we may use the reserved word
DEFAULT: KEYWORD RED, DEFAULT.

1.2.6 Disallowing entities

CDL allows us to selectively disallow entities in a special verb clause DISAL-
LOW. It has the following format:

DISALLOW expression
An expression is logically evaluated when the command string is parsed.

Each entity in expression is checked on its presence, true - entity in expression
is present, and false - entity in expression is absent. A logical operator and
parenthesis can be used to combine multiple entities inside an expression.
Supported logical operators are shown in table 1.2.

1.2.6.1 Specifying expression entities

To specify an entity in an expression, we need to reference it uniquely. We
can do it by using:

8

1.2. Command Definition Language

1. A parameter, qualifier, keyword name or label

2. A keyword path

3. A definition path

Referencing the entity via its name or label is possible only if it is defined
in the current definition and its name or label is unique.

To assign a label to an entity, LABEL=label-name can be used. If an entity
has no assigned label, a name should be used.

When we need to reference a keyword defined in other definition than
current, a keyword path should be used. Keyword path consists of (at most
eight) entity names or labels that are separated by a period. The first name in
a path is the name (or label) of the first entity that references the keyword’s
value type definition.

So, let’s take a closer look at an example. Let’s assume, that we have de-
fined two parameters PARAMETER P1, VALUE(TYPE=COLORS) and PA-
RAMETER P2, VALUE(TYPE=COLORS). Its value type is a custom value,
defined as keyword list COLORS consisting of keywords RED and BLUE, the
definition of which is followed the parameter definitions. Consider now we
want to disallow usage of parameter P1 value to be RED, when qualifier Q is
present. To do this, and not accidentally remove the support of P2 value to
be RED with qualifier Q, we should specify DISALLOW Q AND P1.RED.

Name or label and keyword path are possible to use when DISALLOW
command is used in the same definition as where the entities are defined.
But in case we want to refer to an entity that is defined in another DEFINE
statement, we will need to use a definition path. For example, a definition
path is needed when a syntax definition provides new disallow clauses for
parameters or qualifiers that are defined in a primary definition. A definition
path has the following format:

<definition-name>entity-spec
The definition name is the name of the DEFINE statement where the

entity is defined or the keyword path begins. The entity specification can be
an entity name, a label, or a keyword path. The angle brackets are required.

1.2.7 Defining syntax

A quite common case is when a command has multiple valid syntaxes. For
example, command mv, which is moving files, supports 3 of them: one for
renaming and two for moving files (destination directory specified as option’s
argument or as command’s argument).

CDL provides DEFINE SYNTAX statement to define an alternative syntax of
a previously defined verb, which will be used based on the presence of described
keywords, parameters, or qualifiers in the command string. Redefining syntax
is also possible for previously defined syntax.

9

1. Shell commands

Defining syntax consists of two parts: referencing syntax from the affected
command verb (primary DEFINE statement) and syntax definition itself (sec-
ondary DEFINE statement).

To refer to the syntax, verb clause SYNTAX=syntax-name should be spec-
ified. For example, QUALIFIER LINE, SYNTAX=LINE, which says, that when
qualifier LINE is seen, syntax LINE should be used.

To define syntax itself, statement DEFINE SYNTAX should be used, which
has following format:

DEFINE SYNTAX syntax-name [verb-clause[, ...]]

The syntax-name verb clause is the name of the syntax. As verb clause, the
same verb clauses can be used as are allowed in DEFINE VERB statement,
except SYNONYM.

1.2.8 Extension of CDL to describe syntax of Unix
commands

Based on preliminary analysis CDL was extended with following statements:

• IMAGETYPE {VMS, UNIX, WINDOWS} - to be able to distinguish between
syntax of the command and way of passing command line arguments

• UNIXOPT string - to specify option’s short name(s)

• UNIXLIST - to specify list of parameters separated by space

• HELP string - to specify help string

10

Chapter 2
Linux manual pages

History of manual pages in Linux according to [1] has begun in 1964, when
Jerome H. Saltzer wrote a utility RUNOFF for MIT’s IBM 7094 CTSS oper-
ating system, the original purpose of which was to format Saltzer’s doctoral
thesis proposal.

In 1969, McIlroy made an important release of Multics BCPL port to
GECOS GE-645 computer at AT&T Bell Labs, Murray Hill, that influenced
the history of RUNOFF. He did not refer to the CTSS RUNOFF source code
in writing runoff, nor any other speculated derivatives of Saltzer’s utility.
RUNOFF started to be called shortly roff.

Later on, as most of the programming team of Multics continued to work
with UNIX, runoff was incorporated as UNIX runoff(1) in Version 1 AT&T
UNIX, 1971.

In future versions of UNIX there were plenty other implementations of
this utility, such as nroff(1) (Joseph F. Ossanna, 1972), troff(1) (Joseph F.
Ossanna, 1973), ditroff(1) (1979, Joseph F. Ossanna, Brian Kernighan).

The most popular in modern UNIX installations is the GNU troff - groff.
In this work, we will primarly focus groff, which is compatible with troff im-
plementation, but has many extensions.

2.1 Format

English text and special control words shape an input for the troff. Control
words must be placed on a new line and start with a period to be distinguished
from other text. troff does not print the control words.

groff provides wide range of low level operations for formatting text (font
control, line length, indenting, etc.), however it might be difficult to use by
itself. To simplify usage, groff provides a macro facility for routine operations
(printing paragraphs, adding footnote, etc.). Macros can be combined into
package. Most common packages are: man, mdoc, me, ms, and mm. [5]

11

2. Linux manual pages

Device Short description
ascii Text output using the ascii character

set.
cp1047 Text output using the EBCDIC code

page IBM cp1047 (e.g., OS/390
Unix).

dvi TeX DVI format.
html HTML output.
latin1 Text output using the ISO Latin-1

(ISO 8859-1) character set.
pdf PDF files.
utf8 Text output using the Unicode (ISO

10646) character set with UTF-8 en-
coding.

xhtml XHTML output.

Table 2.1: groff output devices [5]

2.2 Output

As [5] describes, in groff output targets are called devices. A device can be
hardware or a software file format. List of devices shortened to file formats
only is presented in table 2.1.

Simple text formats, such as ascii, utf8, and cp1047, are also extended
with overstriking. So they don’t miss the font style, which may be useful
considering rules described in section 2.4.

2.3 Overstriking

Overstriking is a method to achieve bold and underlined font styles in a limited
environment (terminal, for example) by using a backspace character. Earlier
it was also used to print diacritics and other unavailable characters in ASCII,
but with introducing UTF-8 encoding this feature is no longer needed.

To achieve bold font style, character is repeated again after backspace. For
example, a\ba, where \b is a backspace, will produce a.

To achieve underlined font style, sequence underline, backspace, character
is used. For example, _\ba will produce a.

When the whole word needs to be written in bold font style, each character
is written in that way. For a sentence, white spaces are written as usual,
without overstriking.

12

2.4. Man page structure

2.4 Man page structure

As [3] says, manuals are divided into sections. Those sections are traditionally
defined as follows:

1 User commands (Programs)

2 System calls

3 Library calls

4 Special files (devices)

5 File formats and configuration files

6 Games

7 Overview, conventions, and miscellaneous

8 System management commands

In this work we will primarily focus on section 1 User commands (Pro-
grams). Now let’s take a look at man page structure described in [3], specifi-
cally for section 1:

1. Man page title

2. NAME section

3. SYNOPSIS section

4. DESCRIPTION section

5. OPTIONS section (optional)

6. EXIT STATUS section (optional)

7. SEE ALSO section

Synopsis section according to [3] should describe the syntax of the com-
mand and its arguments (including options); boldface is used for as-is text
and italics are used to indicate replaceable arguments. Brackets ([]) surround
optional arguments, vertical bars (|) separate choices, and ellipses (...) can be
repeated.

In practice, italics is also often duplicated with underlined font style.
Name section contains one or more command names and a short descrip-

tion that follows the name and a dash (-) character.
The synopsis section contains a symbolic description of all syntax that a

command supports.
Description and/or option sections usually contain a description of all sup-

ported options. There are also a few exceptions, where options are described
in different sections.

13

Chapter 3
Analysis and design

3.1 Input

Parsing and analyzing raw groff can be quite challenging due to a variety
of ways to achieve the same result. Also, the resulting solution will heavily
depend on the concrete version of the macros package and if a new package
will be introduced, the solution will no longer work. This leads us to the
analysis of output formats, which were described in section 2.2.

Though formats html and xhtml have a clear specification and are easy to
parse, they still are too rich in possible ways to achieve the same result.

On the other hand, simple text formats (ascii, utf8) are quite straightfor-
ward, all advanced formats’ ambiguity is represented here only in the number
of white spaces and newlines between sentences/paragraphs. We are also
aware, that those formats don’t miss bold and underline font styles, which
can be useful considering rules discovered in section 2.4.

Finally, comparing between ascii and utf8, we may find ascii more suitable
for the scope of this work. While looking at all utf8 outputs generated by
groff for different manual pages we have encountered at least 4 different ways
to represent a dash symbol. While in ascii there are only two of them: - and
--. ASCII encoding itself is quite poor, but luckily man pages are written in
English, without diacritics, so it should be just enough.

3.1.1 Generating input

Manual pages are written with the usage of groff typesetting system. To
analyze the input, at first, we need to prepare it. To find the sources of a
manual page, we can use option -w of command man: man -w command-name.
It will print the location of the source file of the manual page for the given
command:

$ man -w tar
/usr/share/man/man1/tar.1.gz

15

3. Analysis and design

In some cases, the source file may be compressed. With help of gunzip
command we can decompress it:

$ gzip -cd /usr/share/man/man1/tar.1.gz > tar.1

Having groff source in tar.1 file, let’s now convert it to ASCII with over-
striking. Accordingly to the examples section in [5] we can do it with the
following command:

$ groff -P -c -man -T ascii tar.1 > tar.1.txt

This should be enough for input for the tool. However, for the sake of
good readability in this work, we will also remove overstriking from the input.
In cases where font style matters we will mention and describe it explicitly.
To remove overstriking we can use col and it’s option -b:

$ cat tar.1.txt | col -b > tar-plain.1.txt

Now as we set the pipeline for finding and converting man page contents
to the desired format, let’s take a closer look at concrete parts, that we are
interested in.

3.1.2 Name

The name section contains one or more names of the command and a short
description for each of them. Let’s take look at the most common formats of
the name section we may encounter.

• Simple with one command name. A separator between name and de-
scription also may be single or double dash. Most of commands are
written in this format (ls, mv, tar, etc.).

tar -- The GNU version of the tar archiving utility

• Multiple command names separated by a comma, that have the same
description. For example, login and logout.

login, logout - write utmp and wtmp entries

• Multiple command names, each having its own description. For example,
hostname.

hostname - show or set the system’s host name
domainname - show or set the system’s NIS/YP domain name
ypdomainname - show or set the system’s NIS/YP domain name
nisdomainname - show or set the system’s NIS/YP domain name
dnsdomainname - show the system’s DNS domain name

16

3.1. Input

This section is worth parsing as we can get names of all commands that
are described in man page and also a short description.

Multiple types of formats can be generalized into the following one:

<NAME1>[, <NAME2>[, <NAME3>[, ...]] {-|--} <description>
[<possible continue of the multiline description>]
[...]

Specifically, one to many names are separated with comma and space.
Followed by single or double dash (wrapped in spaces). Followed by a descrip-
tion. The description may be multi-line. We can distinguish between names-
containing line and description-only line by checking if it contains name and
description separator in it. All these can be repeated until the end of the
section.

All command names will be useful for further parsing. As for our final
output in CDL we will use the command name as a verb-name and description
as a help string.

3.1.3 Synopsis

The synopsis section describes all possible usages in a short amount of text.
We will break parsing this section into two problems: finding syntax line(s)
per each command and parsing the syntax line itself. As a first step, we will
look into defining the general format of the synopsis section and then look
into ways of parsing tokens, their attributes, and meaning.

There are multiple formats that we encountered during the analysis. Those
can be summarized as follows:

• Single syntax shown in figure 3.1. For example, ls.

• Multiple syntax related to one command shown in figure 3.2. For exam-
ple, mv.

• Multiple syntax for different commands shown in figure 3.3. For exam-
ple, hostname.

Now let’s take a closer look at them.

ls [OPTION]... [FILE]...

Figure 3.1: Synopsis section content of ls command

17

3. Analysis and design

Synopsis of ls command shown in figure 3.1 can be read as: command
name (ls) followed by zero or more options and then zero or more files.

We should be able to recognize the command name as we know all of them
from the name section. The following OPTION token is wrapped into brackets,
which means it is optional according to [3]. The ellipsis tells us, that the
preceding token can be repeated. Similarly, FILE token is also optional and
can be repeated.

Understanding what exactly concrete token means may not be easy at this
moment. Let’s postpone the token understanding for now and focus on the
overall structure of the synopsis section by taking a look at more examples.

mv [OPTION]... [-T] SOURCE DEST
mv [OPTION]... SOURCE... DIRECTORY
mv [OPTION]... -t DIRECTORY SOURCE...

Figure 3.2: Synopsis section content of mv command

Differently to ls, mv command’s synopsis shown in figure 3.2 contains
multiple lines. Each line is describing syntax, i.e. unique usage. Syntaxes can
differ from each other either the amount of parameter or its’ types. Or it may
include a special option, which triggers such specific syntax.

hostname [-a|--alias] [-d|--domain] [-f|--fqdn|--long]
[-A|--all-fqdns] [-i|--ip-address] [-I|--all-ip-addresses]
[-s|--short] [-y|--yp|--nis]
hostname [-b|--boot] [-F|--file filename] [hostname]
hostname [-h|--help] [-V|--version]

domainname [nisdomain] [-F file]
ypdomainname [nisdomain] [-F file]
nisdomainname [nisdomain] [-F file]

dnsdomainname

Figure 3.3: Synopsis section content of hostname command

hostname command synopsis section has even more syntaxes defined for
more than one command: 3 for hostname and 1 for every other. This is

18

3.1. Input

an example of one of the most complicated synopsis content that we have
encountered. As we can also see, the syntax may extend to more than one
line. It’s easy to distinguish as those lines do not begin with the command
name.

Generalization of formats described above will look as follows:

<COMMAND-NAME> <SYNTAX-LINE>
[<SYNTAX-LINE-CONTINUES>]
[...]

For each of the command names that we already know we should be able
to parse corresponding one or more syntax lines. Syntax line may also be
written on multiple lines. We should be able to recognize the end of multi-
line syntax by checking the prefix of the line on containment of one of the
command names. That will mean a new syntax line is starting.

Having prepared syntax lines per command name, we are now ready to
proceed with syntax line parsing.

By examining ls command synopsis shown in figure 3.1 we have already
identified several rules: brackets ([]) means token(s) wrapped in it is optional
and ellipsis (...) means preceding token(s) can be repeated.

Synopsis of hostname also contains not yet covered symbol - vertical bar
(|). Which represent separate choices. In other words, only one of the tokens
separated by a vertical bar can be used.

Let’s now step back and return to the problem of token understanding we
mentioned at the beginning of this section.

We can be sure, that tokens that start with a double dash (for example,
--alias) represent a long option, as well as tokens starting with a single dash
and containing a single character (for example, -a) represent a short option.

Tokens, that start with a single dash, but are longer than one character
(for example, -aABcCdeEfFg) we can treat as short options joined under a
single dash. But unfortunately, some commands define long options with a
single dash, for example, gcc. To resolve this ambiguity, we require additional
information: a list of known options. Imagining that we have already a list
of all known options, we can detect which case is it by searching option with
name as a token (stripping the leading dashes, of course). This leads us to
one of the requirements for the solution: options should be parsed earlier than
the synopsis.

And the last type of token is a token that does not start with a dash. By
default, those can be treated as an argument with few exceptions.

Token OPTION, that we saw in ls synopsis section, shown in figure 3.1 is one
of them. Here we can assume, that OPTION token represents the replaceable
token for all common options. By iterating through man pages of standard
UNIX commands, we may also find several aliases for it: option and options.

19

3. Analysis and design

Name CLD type
FILE, FILENAME $FILE or $INFILE
DIR, DIRECTORY $DIRECTORY
NUM, NUMBER $NUMBER

Table 3.1: Commonly used replaceable tokens and matching CLD type

The second exception arises from the fact, that there are valid options that
do not need to be preceded by dash at all. For example, A in tar command.
This problem again leads us to search the list of known options. If we are able
to find an existing option with such name, it’s an option, otherwise, we can
be confident it’s an argument.

When a token is treated as an argument, there is one more potential am-
biguity. Let’s take a look at token DIRECTORY in the third syntax of mv com-
mand’s synopsis shown in figure 3.2. Until we don’t know whether option
-t has an argument or not, we are not able to say whether it’s an option
argument or a command argument. To identify, we will need to find a known
option with the name of a preceding token if any. In case of -t it has an ar-
gument, so we say DIRECTORY is an option argument. But next token SOURCE
is a command argument.

The next step we can do is to guess the type of the argument from its
name, such as file, directory, user.

Iterating through manual files of all standard commands, we can make
table 3.1 of commonly used replaceable tokens and match them with corre-
sponding CLD types.

Our assumption may help detect a few types of arguments, but not all of
them. In order to make a flexible solution, we will introduce the ability for the
user to append additional input. We can accept optional input from the user
in form of additional definitions file, where he can match replaceable tokens
with correct CLD types. The user may often see repeatable definitions, so we
probably want to accept this input in two forms:

• Global user definitions file, for generally applied definitions

• Local user definitions file, for command-specific definitions

The definitions file will be a primary method of how to adjust the output
of the program to the desired one and is described in more detail in section
4.3.

To sum it up, synopsis section of command manual file includes useful
information, such as:

• Syntax

• Options that trigger specific syntax

20

3.1. Input

• Option constraints

• Arguments

3.1.4 Description

Description section includes, apart from the rest, definitions of command’s
options - name(s), description and arguments.

List information about the FILEs (the current directory by
default).
Sort entries alphabetically if none of -cftuvSUX nor --sort
is specified.

Mandatory arguments to long options are mandatory
for short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

--author
with -l, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

--block-size=SIZE
scale sizes by SIZE before printing them; e.g.,
’--block-size=M’ prints sizes in units of
1,048,576 bytes; see SIZE format below

-p, --indicator-style=slash
append / indicator to directories

Figure 3.4: Part of description section of ls command

Figure 3.4 shows a part of ls description section content. At first sight, we
may notice, that option definition starts with a line that starts with a dash.

21

3. Analysis and design

Unfortunately, limiting criteria to only this condition may result in too many
false-positive results.

That’s why here we will also look at font style on an example of one of the
definitions of the options:

−p, −−indicator-style=slash
append / indicator to directories

So, to reduce false positives we, additionally to starts with dash condition,
may also check that it starts with the bold font style. This will reduce false
positives to almost zero.

The first line contains a symbolic definition of an option and the rest of
the lines in the paragraph are a human-readable description of the option.

The symbolic definition contains zero, one or more short names, and zero,
one or more long names. Names are separated by comma and space.

If an option has an argument, after the last name follows an equal sign or
space and argument name, written in underline font style, meaning replaceable
text. To detect the argument’s type we can use the definition file.

It may also happen, that option’s argument is optional. Then whole argu-
ment part, starting from equal sign and ending with argument type is wrapped
into brackets, for example −−color[=WHEN].

After the first line with the signature goes a human-readable multi-line
description of the option. The description ends either right before the next
option begins, after an empty line, or until the end of the file.

Pure output of description section is a list of options, where for each option
we can parse:

• Short name(s)

• Long name(s)

• Argument name

• Whether argument is required

• Human-readable description

3.1.5 Combining output from synopsis and description
sections

In the analysis of the synopsis section, we have already mentioned, that it
requires a list of known options to resolve ambiguity in several cases. But at
that moment we left a special replaceable token OPTION without attention.
As a reminder, OPTION token we treat as a placeholder for all common
options. We saved its attributes and now that we have all syntaxes parsed,
we may proceed further and replace them with common options.

22

3.2. Output on example of mv command

Common options, or in other words, options that are not syntax-specific
can be derived from a set of all known options subtracting a set of all syntax-
specific options.

3.2 Output on example of mv command

In this section, we will focus on the problem of writing CLD command defi-
nition from outputs of the parsing stage. We will analyze the process on the
example of concrete command and then will think of more generic steps to
achieve the same result for any type of command introduced in the previous
section. We will also rely on CLD specification introduced in section 1.2.

3.2.1 Name and verb definition

NAME
mv - move (rename) files

Figure 3.5: Name section of mv command

The output from the name section of the manual page of mv shown in
figure 3.5 is a short command description and command’s name. We can now
start defining verb, as shown in figure 3.6. The verb has the name of the
command and a short command description as a help string. It also contains
additional information, such as image (can be retrieved with help of builtin
which command) and image type (hardcoded to unix for now).

DEFINE VERB mv
IMAGE "/bin/mv"
IMAGETYPE unix
HELP "mv - move (rename) files"

Figure 3.6: Name section of mv command

3.2.2 Synopsis

Synopsis section shown in figure 3.2 contains description of three syntaxes. All
three contain optional, replaceable generic placeholder OPTION. First syntax

23

3. Analysis and design

then defines optional -T option and two required, non-repeatable arguments:
SOURCE and DEST. Seconds syntax only defines two required arguments:
repeatable SOURCE and non-repeatable DIRECTORY. The third syntax line
is ambiguous, there are two possible variants. It defines required option -t, re-
quired argument DIRECTORY and required repeatable argument SOURCE.
But are not able to say whether argument DIRECTORY belongs to option -t
or command itself without a list of known options. We need to look -t option
up in the description section and find out that it has an argument.

Now we can extend our CLD definition with this information as shown in
figure 3.7.

There are few conventions we agreed upon to proceed through the limits
of the CDL.

• First, verb definition itself in CDL counts as a syntax, and syntax clause
in CDL is taken as an alternative usage definition. So our first syntax is
defined in the verb clause and left two syntaxes with help of the syntax
clause.

• Secondly, options with only short name are named with prefix OPTION
and as CDL is a case insensitive language we agreed that upper case
letters have naming prefix OPTION UPPER. The short name of the
option is defined in a special UNIXOPT clause.

• Thirdly, the type of values will be the same as its corresponding re-
placeable token. Later, the user may alternate its type with help of a
definitions file by adding an entry defining a type for a given replaceable
token.

It also worth mentioning, that even if an option belongs to a single syntax,
CDL requires that it’s also defined in verb clause and then repeated in syntax
clause. That is why, for example, -t in this case is defined in two places.

3.2.3 Description

Finally, by processing a shortened version of the description section shown
in figure 3.8 and replacing types with builtin in CDL ones, we end up with
definition listed in appendix C.1.

3.3 Architecture

This section covers the architecture of the application. We will go through
current processes, requirements, and use-cases. The output of this section
should be the first architecture draft.

24

3.3. Architecture

DEFINE VERB mv
IMAGE "/bin/mv"
IMAGETYPE unix
HELP "move (rename) files"

QUALIFIER OPTION_UPPERT
UNIXOPT "T"

PARAMETER P1, LABEL=SOURCE
VALUE (REQUIRED, TYPE=SOURCE)

PARAMETER P2, LABEL=DEST
VALUE (REQUIRED, TYPE=DEST)

QUALIFIER OPTION_t, SYNTAX=syntax3
UNIXOPT "t"
VALUE (REQUIRED, TYPE=DIRECTORY)

DEFINE SYNTAX syntax2
PARAMETER P1, LABEL=SOURCE

VALUE (UNIXLIST, REQUIRED, TYPE=SOURCE)
PARAMETER P2, LABEL=DIRECTORY

VALUE (REQUIRED, TYPE=DIRECTORY)

DEFINE SYNTAX syntax3
QUALIFIER OPTION_t

UNIXOPT "t"
VALUE (REQUIRED, TYPE=DIRECTORY)

PARAMETER P1, LABEL=SOURCE
VALUE (UNIXLIST, REQUIRED, TYPE=SOURCE)

Figure 3.7: Syntax definition of mv in CLD

3.3.1 Process

The current state can be described as follows. When a user wants to use
the CLD command line utility he manually prepares the CLD definitions and
builds the utility from the source codes.

Manual preparation of CLD definitions involves the following steps:

• finding a manual file for the command that is being integrated

25

3. Analysis and design

DESCRIPTION
Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.

Mandatory arguments to long options are mandatory
for short options too.

...

-b like --backup but does not accept an argument

-f, --force
do not prompt before overwriting

...

-S, --suffix=SUFFIX
override the usual backup suffix

-t, --target-directory=DIRECTORY
move all SOURCE arguments into DIRECTORY

-T, --no-target-directory
treat DEST as a normal file

-u, --update
move only when the SOURCE file is newer than the
destination file or when the destination file is
missing

...

Figure 3.8: Shortened version of description section of mv command

• reading a manual file

• writing CLD definition

Our goal is to enhance this by automating part of the process of writing
CLD definitions.

26

3.3. Architecture

3.3.2 Requirements

The result of this work should be a tool that fulfills the following requirements:

• Tool should generate CLD definitions of commands from corresponding
Linux manual page in SUSE Linux distribution

• User should be able to alternate output by providing additional input
with tokens to replace or type definitions to include

3.3.3 Use-cases

In the scope of this work, we will target a single use-case: the user wants to
create a CLD definition of command from the manual file.

This use-case can be though split into multiple:

• user wants to generate CLD definition from manual file for the first time
without additional input

• user already have generated CLD definition and now want to apply some
changes to produce better output by providing additional input

3.3.4 Design

Application will have streamline flow with following steps:

1. Parsing arguments

2. Reading user definitions file if any

3. Reading man page contents

4. Splitting man page contents into sections

5. Parsing NAME section to retrieve information about all command
names described in man page

6. Selecting one command name for the output

7. Parsing options from predefined sections (DESCRIPTION, OPTIONS)

8. Parsing SYNOPSIS section and splitting it’s content into syntax lines
per command name

9. Parse syntax lines of selected command name

10. Merging syntaxes and options. Creating command definition

11. Writing command definition in CLD to file

27

Chapter 4
Realisation

This section describes implementation details, such as technology choices, lim-
itations, and algorithms.

4.1 Technologies

The existing command line utility, which takes CLD definitions as input is
written in C. Because the output of this work may be later integrated into
CLI, we have chosen to write CLD generator tool also in C with C99 standard.

The solution has no external dependencies. The only dependencies are
standard libraries: stdio, stdlib, string, unistd.

To build it from source codes make utility and GNU C compilers are re-
quired.

4.1.1 dclsh shell prototype

The output of the solution will be tested via one of the components of dclsh
shell.

dclsh shell consists of two components:

1. CDU (Command Definition Utility) - a compiler of command descrip-
tion in CLD to internal form. At the moment of the start of this work, it
supported extensions described in section 1.2.8. During the implemen-
tation of the solution of this work, CDU was twice extended: to support
dashes in identifiers and multi-line string literals, later to support alter-
native syntaxes and further special features of several Unix commands
discovered to be necessary after the first usage of the tool.

2. dclsh itself is a shell, so far in its early stages of development. Originally
created for realization of a unified command line interface of FC network
simulation. Consist of three sub-components:

29

4. Realisation

a) Editor for interactive command input
b) Command parser, which converts it into internal form according to

the compiled version of CLD specification
c) Library routines for the interfaces of internal commands

So far, there are no modules available for running external commands,
redirecting input and output, working with variables or helper functions for
expanding the file specification, automatic completion of incomplete options
and text constants, or sensitive hints. These will emerge from the follow-up
to this project.

Therefore, the following was used to test the correctness of the function:

• CDU utility for syntax and completeness checks (also detects referenced
missing parts)

• Manual checks for factual correctness

4.2 Supported options and arguments

The application expects one required argument - path to the text file with
contents of man page. The text file should be in ASCII with overstriking
encoding. Steps on how to generate such file were described in section 3.1.1.

The application also supports few non-required options that are shown in
table 4.1.

4.3 Reading user definitions files

User may optionally provide two definition files: global and command-specific,
or just any one of them.

By default, the application expects the global definitions file to be located
in the working directory and have a name global.def. Command specific
definitions file should be located in the working directory and have the name
in format command-file-name.def. So, for example, if input file argument is
/usr/share/man/man1/ls.1, it will search for ls.1.def file. Default values
can be overwritten by specifying it explicitly via option --global-definitions
or --definitions respectively.

4.3.1 User definitions file format

User definitions file was introduced for two reasons:

• to solve human-readable description ambiguity problem for enumeration
types

30

4.3. Reading user definitions files

Option Description
--generate-definitions FILE Generates definitions file template.
-c, --command-name STRING Specify command name to gener-

ate output for in case when multi-
ple commands were found in man
page. Useful, for example, for com-
mand hostname or logout.

-g, --global-definitions FILE Specify global user definitions file.
Default value is ./global.def.

-d, --definitions FILE Specify command-specific user def-
initions file. Default value is
<INPUT-FILE>.def.

-o, --output FILE Specify output file. Default value is
<INPUT-FILE>.cld.

-l, --log-level
{DEBUG,INFO,WARN,ERROR}

Specify log level. Default value is
WARN.

-b, --debug Alias for --log-level DEBUG.
-v, --verbose Alias for --log-level INFO.
-h, --help Shows help.

Table 4.1: Supported options

• to replace occurrences of non-existing types from man page with sup-
ported by CLD types

These reasons lead to the following requirements:

• user should be able to change type in generated CLD

• user should be able to define enumeration type

Additionally, we wanted to keep the ability for the user append to manually
prepared CLD blocks.

Finally, requirements analysis resulted in the following format of defini-
tions file. A definitions file is a text file containing an unlimited amount of
definitions of three types: enumeration, type replace rule or CLD append rule.

Enumeration definition is written in format: enum-name = (enum-value1
[”enum-value1-description”] enum-value2 [”enum-value2-description”] ...). In
other words, it starts with a name, followed by equal sign, followed by enumer-
ation values optionally followed by description in quotes separated by whites-
pace(s) and wrapped in parenthesis. Examples:

FORMAT = (gnu "GNU tar 1.13.x format"
oldgnu "GNU format as per tar <= 1.12)"
pax "POSIX 1003.1-2001 (pax) format"

31

4. Realisation

posix "same as pax"
ustar "POSIX 1003.1-1988 (ustar) format"
v7 "old V7 tar format")

DATE-OR-FILE = ($DATE $FILE)

Type replace rule is written in format: type-name-to-be-replaced = type-
name-to-replace-with. Example: color_WHEN = WHEN.

In case that a type represents a list of values, [] suffix can be used. For
example, userlst = $UID[].

CLD append rule has a beginning, defining a place where CLD should
be appended. Then follows the piece of CLD, wrapped into curly brackets.
Possible formats are shown below:

QUALIFIER <qualifier-name> {
<CLD to append to the end of qualifier statement>

}
SYNTAX <syntax-name> {

<CLD to append to the end of syntax statement>
}
VERB_HEADER {

<CLD to append to the beginning of verb statement>
}
VERB {

<CLD to append to the end of verb statement>
}
END {

<CLD to append to the end of tar statement>
}

Lines that start with an exclamation mark are treated as comments. Ex-
ample: ! This is a comment.

4.3.2 Parsing

Parsing such file is pretty straightforward. We iterate through lines of a file
and:

• skip the line if it starts with an exclamation mark because it’s a comment

• search for equal sign position

• if an equal sign is presented on the line

– if there is an opening parenthesis after equal sign then it’s an enu-
meration definition, otherwise, type replacement rule

32

4.4. Reading man page contents with overstriking

– for type replacement rules we need two tokens - before the equal
sign and after the equal sign, both with whitespace trimmed

– for enumeration we take token on the left side of the equal sign as
a name, now we need the values part

– we search for a closing parenthesis in the right part of string and
track quotes, so that we don’t treat parenthesis in the description
as a closing parenthesis of enumeration values

– if we iterated through the whole string and didn’t reach closing
parenthesis we read next line from the file and do the previous step
again until we find it

– when we have found bounds of enumeration values part we begin ex-
tracting values and optionally their description from it by iteration
over characters with known rules: value goes first, then whitespace,
then description if the first character is a quote, otherwise it’s next
value

• If equal sign is not presented on the line then case insensitively compare
prefix of the line

– If the prefix is VERB_HEADER, VERB or END, read the block of text
until closing curly parenthesis and store this block in corresponding
property of definitions structure.

– If the prefix is SYNTAX or QUALIFIER, read next word (skipping
leading whitespaces) - this is a name. Then read the block of text
until closing the curly parenthesis. Store this block and a name in
the corresponding key-value pair array.

4.3.3 Merging

When both command-specific and global files are present, we merge defini-
tions into one for the sake of simpler further usage. After reading command-
specific definitions, we append rules from global definitions, that are not al-
ready present.

Presence is given by the condition that definitions have an element with
the same name. This results in command-specific definition having a higher
priority so that rules located there can overwrite rules from global definitions.

4.4 Reading man page contents with overstriking

For further steps we will need text content of a manual page in two forms:

• Text with font style attribute

• Plain text

33

4. Realisation

As discussed in section 3.1.4, font style attribute will improve results of
option parsing by making more specific criteria on how to find an option and
so reducing false positives. To have a font style attribute alongside the text
block that it belongs to, we introduce rich text blocks and a utility function
to parse overstriking, with an array of rich text blocks as it’s output.

A rich text block is a simple structure, that stores plain text content and
font style: normal, bold, or underline.

Parsing text with overstriking is achieved with the algorithm described in
the following steps:

1. Begin with an empty array of rich text blocks and current block that
have font style set to normal and empty content

2. Iterate through all character in the input string with steps 3-6

3. Detect font style of the current character

• bold if next character is a backspace followed by the same character
as current

• underline if the current character is an underscore and the next
character is a backspace

• normal otherwise

4. If currently saved font style is not equal to detected character’s font style
and current block’s content is not empty, push it to the resulting array
of rich text blocks and reset current block to empty

5. Copy the character to the current block set block’s font style to the font
style of the character

6. In case current font style is not normal, skip 2 more characters

For the rest of the parsing stages, it will be enough to have plain text.
Converting text with overstriking to plain text is as simple as removing all
occurrences of a backspace character and it’s preceding character.

4.5 Parsing man page contents and creating
command definition

This section will go through implementation details of steps 4-10 of application
flow described in section 3.3.4.

34

4.5. Parsing man page contents and creating command definition

4.5.1 Splitting content into sections

The next stages require the content of a certain section as an input. Therefore,
we need to process the content of man page and split it into sections. As an
output, we will have an array of key-value pairs, where the key is a section
name and the value is a section content. Having an output in such form will
fulfill a prerequisite for necessary operation: to get content of a certain section
by its name.

Every line in the input file can be classified as one of the following three:
header, a section name, or section content. The header is always located on
the first line, this we will skip. Section name has no indentation apart from
the section content, which follows the name and has an indentation.

We iterate through lines of the input file, skipping the header. We keep a
record of the current section name and its content. If a line has an indentation,
we append it to the current section content. Otherwise, we push the current
section if it’s not empty into the resulting key-value array, reset the current
section, and set the name of the current section to be the content of the current
line. At the end of the cycle, we push last time the current section if it’s not
empty.

4.5.2 Name section

As the output from the name section, we expect to have an array of command
names and corresponding description to each command name. Name section
format was described in section 3.1.2. Font style doesn’t matter, so we remove
overstriking from the whole section content as described in section 4.4.

Each line in the name section can be classified as one of two: a line con-
taining command name(s) and description or a continuation of the description
of command names from the lines above. To distinguish between those two
types of the line we check for a separator: dash wrapped with spaces (” - ”)
or double dash wrapped with spaces (” -- ”).

When a separator was found, meaning it’s a line that contains command
names, we split the string into two parts using the found separator: command
names and beginning of the description. The first part then is being split again
with separator ”, ” and the result is taken as an array of command names.
We push each command name to the resulting array and as a description of
each of them assign the second part of the string.

When a separator was not found, we append the whole line to the descrip-
tion of each of the command names that were found last time.

4.5.3 Selecting command name

When multiple command names were found in the previous section, we need
to select one of them to process only parts related to it in the next steps. For
example, hostname man page content contains multiple command names and

35

4. Realisation

also multiple syntaxes in the synopsis section. Not every syntax described in
the synopsis relates to all command names.

Command name specified via --command-name option is used if it is pre-
sented in parsed command names array.

Otherwise, we try to find such command name, that is contained in the
input file name. If nothing passes that criteria, we select the first command
name in the array.

4.5.4 Parsing options

Options may be found in DESCRIPTION or OPTIONS sections. For each of
those sections, we repeat the same process, merging the results.

The strategy of parsing section content will rely on the format of the
option described in section 3.1.4. In practice, we also discovered, that there
are exceptions from the previously described format. For example, in find
command where the option is written in normal font style instead of bold. To
support such a few exceptions, we have removed the font style condition.

We iterate through lines of section content, trim whitespaces from both
sides for each line and look at the prefix of the line. If it starts with a dash
and the previous line was empty, we treat this line as the line with option
definition.

There are cases though when even the option definition line contains a
description of an option. To distinguish between help text and argument, we
additionally check the number of whitespaces as in most cases helper text is
separated with multiple whitespaces. If it’s not the case, like for example, in
option --help in ls command, the user still can tell that it’s not an argument
via special type replacement rule described in 4.3.1. In such case, the argument
will be removed during the type replacing phase and its name will be inserted
at the beginning of the help string.

Processing option definition is done in two steps:

1. Extracting and classifying symbols

2. Creating option entities from classified symbols

There are 3 types of symbols: short name, long name, and argument name.
There can be zero, one, or more short names as well as long names. Argument
name can be only one.

The first step of processing is a continuous iteration of characters of ev-
ery block. We collect regular characters into a symbol. Then, when reached
the end of the rich text block or reached special characters, such as brackets,
comma, whitespace, and equal sign, we finalize the current symbol by detect-
ing its type and moving its content to the corresponding array of symbols of
that type.

Symbol classification uses the following rules:

36

4.5. Parsing man page contents and creating command definition

• symbol is a long option there are two leading dashes or one leading dash
and its length including leading dashes is bigger than 2

• symbol is a short option if either there is one leading dash and its length
including leading dashes is 2 or if font style is bold, it has no leading
dash and it’s length is 1

• otherwise symbol is an argument

Apart from other special characters, reaching brackets also marks argu-
ment as optional - that’s the only one use case discovered when brackets are
used.

The second step of processing is creating option entities from symbols.
From all of the long name symbols an option entity is created with the first
short name symbol if any. From the rest of the short name symbols are then
created options with short name only, without a long name. Finally, all created
options are pushed into the resulting array.

The rest of the blocks that were not marked as option definition are taken
as an option description. Also, the rest of the lines until an empty line (end
of a paragraph) or until a line that starts with a dash are treated as an option
description. Those lines are being converted to plain text and copied to the
description property of the last created options if any.

The output of this stage is an array of known options. Each option may
have a short name, long name, description, argument, and argument attributes
(optional, repeating).

4.5.5 Synopsis section

The synopsis section consists of syntax lines that follow command names. Its
format is described in more detail in section 3.1.3. From this section we need
to get syntax lines per command name. Uses plain text content, without
overstriking.

Having command names prepared we can easily parse the synopsis section
so that for each command name we have an array of syntax lines. We iterate
through lines of synopsis section content, looking at the beginning. If the line
has some of the command names as a prefix, it’s treated as a beginning of the
syntax line for that command. A syntax line can be written on multiple lines,
so we continue reading until we find another line with the command name as
a prefix, or until an empty line. Then the process repeats until we reach the
end of the section.

4.5.6 Syntax line

Now we have selected a command name and syntax lines per command name.
We ignore syntax lines of other command names and only parse syntax lines

37

4. Realisation

related to the selected command name. We also use an array of known op-
tions as an input to resolve ambiguity, as was discussed in section 3.1.3. The
algorithm described above is repeated for each of the syntax lines.

Parsing syntax line is divided into two problems:

• Extracting symbols from the line and storing it in a suitable data struc-
ture

• Building a syntax from the result of the previous step

To store symbols a tree data structure was chosen. It allows being more
flexible in defining rules on how to build a syntax out of a tree of symbols and
symbol classification rules. It will be further referred to as a syntax tree.

Syntax tree node can be one of the following types:

• Symbol. A leaf node, containing a symbol.

• Optional. A node, which marks all its children as optional. Expected to
have only one child.

• Repeating. A node, which marks all its children as repeating. Expected
to have only one child.

• Sequence. A container node for multiple tokens on the same level.

Following steps describe how to build a syntax tree out of syntax line:

1. We start by creating a root node of type sequence and setting pointer
current node to a root node

2. Iterate through characters of the syntax line with steps 3-

3. Examine the current character:

• If it’s opening bracket ([)
a) If current node is symbol, close it by setting current node

pointer to the parent of current node. This operation will be
further referenced as close symbol node.

b) If current node is not of type sequence, create a sequence node,
replace current node in it’s parent with the sequence node, set
current node as a child of the sequence node. Finally, change
current node pointer to the sequence node. We will further
reference this operation as insert a sequence node.

c) Create an optional node.
d) Add optional node as a child of current node.
e) Set current node pointer to the optional node.

38

4.5. Parsing man page contents and creating command definition

f) Create a sequence node.
g) Add sequence node as a child of current node.
h) Set current node pointer to the sequence node.

• If it’s a closing bracket (])
a) Do close symbol node.
b) Traverse up until optional node is found.
c) Set current node pointer to the parent of optional node.

• If it’s a comma or a dot and together with following characters it
makes string ,... or ...

a) Do close symbol node.
b) If the current node is a sequence create and insert a repeating

node instead of the last child, that last child put as a child of
the repeating node, don’t change the current node pointer.

c) If current node is optional or symbol create a repeating node,
replace current node as child in it’s parent with repeating node,
and insert current node as a child of repeating node. Set current
node pointer to repeating node.

• If it’s a whitespace do close symbol node, then insert a sequence
node.
• If it’s a character in a certain range of allowed characters (alphanu-

meric, +-_˜#?=:/@)
a) If the current node is a symbol, append the character to the

symbol.
b) Otherwise create a symbol node, set the character as a symbol,

add as a child to the current node.
c) For both cases set current node pointer to symbol node.

• Otherwise do close symbol node.

Example of a syntax tree build from third syntax line of mv command (see
figure 3.2) is shown on figure 4.1.

Next, we build a syntax out of the syntax tree. The syntax is a struc-
ture for the internal representation of command syntax to be further used for
the output writing in CDL. It contains an array of options and an array of
command arguments. So the goal is to extract symbols from the tree, classify
them, convert them to corresponding representation, set the attributes, and
append them to the syntax.

We traverse the tree recursively from the root to the leaves. While travers-
ing, we might find repeating or optional node. At that moment we set the
corresponding flag (is repeating, is optional) so that when we reach a leaf,
which is always a symbol, we can set those values as attributes.

When reached a symbol, we classify it by following rules:

39

4. Realisation

sequence

repeating

optional

sequence

symbol
OPTION

symbol
-t

symbol
DIRECTORY

repeating

symbol
SOURCE

Figure 4.1: Syntax tree of third syntax of mv command

• It’s an option if there is an option from known options input array, which
short or long name matches the symbol without leading dashes.

• It’s a special placeholder for any common options if its name without
leading dashes matches string OPTION, option or options.

• It’s an array of short options if it has one leading dash and its length
without leading dashes is more than 1.

• It’s an argument if it has no leading dashes and:

– It’s an option’s argument if a right-most symbol to the left of the
current node is a known option and it has an argument.

– It’s a command argument otherwise.

Symbols that were classified as an option or command argument are con-
verted into the corresponding internal structure. Their name is set to the
symbol value without leading dashes. Their attributes’ values are set to be
corresponding flag values. Finally, they are appended to the syntax.

4.5.7 Merging options and syntaxes

At beginning of this stage, we have extracted syntaxes from the synopsis and
an array of options. For each option, we now also need to detect option type:

40

4.5. Parsing man page contents and creating command definition

whether it’s a common option or a syntax-specific option. Then we can replace
placeholder options with common options.

This stage is focused on merging the array of options into individual syn-
taxes with the following rules:

• Syntax, that contains placeholder option should receive all common op-
tions which attributes copied from the placeholder option, placeholder
itself should be removed

• Syntax specific options should receive attributes (like argument, descrip-
tion, name, short name) from options array

• Each option should be marked as syntax specific or common

• Only primary (1st) syntax should contain common options, secondary
syntax contain only specific options

To do that we follow the algorithm described below:

1. Detect all syntax specific options and store it in an array as references,
also store information to which syntax it is related

2. Iterate over all syntax with steps 3-8

3. Initialize new array of options for the current syntax

4. Search for a placeholder option in current syntax options and store a
reference to it

5. Iterate over all options array

6. If we reach syntax-specific option, we check whether it’s related to cur-
rent syntax and if yes, append this option to the resulting array and
copy all valid attributes from synopsis version

7. If we reach common option and the current syntax is primary syntax
(i.e. first), we append this option to the resulting array and copy all
attributes from the placeholder option if it exists

8. Replace syntax options array with newly created, continue to next syn-
tax from step 3, if no syntax left continue to the next step

9. Iterate over all syntax and remove arguments that have the same name
as arguments of its options.

As a next step, we give each syntax a name, so it’s easier to reference it
later in CLD. Following rules are used:

• Primary syntax is always named syntax1

41

4. Realisation

• Secondary syntaxes are named after their unique options. Long name if
exist, otherwise short name. For example, syntax that have it’s unique
option target-directory will be named target-directory.

• If secondary syntax has no unique options name is syntaxN, where N is
order number.

4.5.8 Arguments type detection

Now that we have syntax, options, and arguments we want to proceed to the
next step - type detection and type matching with the user definitions file.

As a first step, we iterate over all arguments (command’s and options’)
and collect information about how many occurrences of the same name we
have. Then we iterate over all arguments again and set a type to its name if
it only appears once or if it’s a command argument. If it appears more times
and it’s an argument of an option, we set a type to the format
optionName argumentName. Doing it this way we allow a user to specify
different types for different options depending on a context. It’s quite usual,
that options have the same argument name, but their types are different.

4.5.9 Replacing types from user definitions file

User definitions file allows a user to specify simple type replacement rules.
This step is implementing it. For each argument type of all arguments and
all options which have arguments in all syntaxes we search for a rule in user
definitions and if there is, we replace the argument type with the one that rule
defines, if there are no rules we skip it and go to the next argument type.

4.6 Writing the CLD command definition to a file

Command definition is parsed and stored in an internal data structure. Now
it’s time to write it to the output file in CDL. Default output file name format
is inputFileName.cld. We begin with opening the file in write mode, checking
for errors, and proceed to the actual output.

4.6.1 Enumeration types definition

At first, enumeration types from user definitions are being written to the file.
Enumeration declaration begins with DEFINE TYPE typeName. Then follow
values with KEYWORD value, NONNEGATABLE. Optionally followed by value de-
scription: HELP "help string". We use qualifier clause NONNEGATABLE here
to disallow negating by adding NO to the name as it’s not what is supported
by default.

42

4.6. Writing the CLD command definition to a file

4.6.2 Verb definition

Next, we proceed to the verb definition which is mostly based on information
from the name section. We define verb by using statement
DEFINE VERB commandShortName. Then we try to get the command’s loca-
tion by calling system command which. If we receive output without errors we
specify an image location by using verb clause IMAGE "pathToExecutable".
After this, we specify the image type as unix with clause IMAGETYPE unix and
escaped command description as help: HELP "escapedCommandDescription".
The header of the verb definition is now ready. We may proceed to the next
step - defining syntaxes.

4.6.3 Syntax definition

As we know from section 1.2.7, CDL treats syntax as an alternative way to
use verb. We on the other side, have an array of equal syntaxes rather than
having one primary and all others as an alternative. It is required in CDL to
define a verb and all possible qualifiers even syntax-specific ones. Alternative
syntaxes are defined later and contain qualifier definition again, but only of
those specific. So we will treat the first syntax in the array as a primary and
all others as an alternative. When merging options to syntaxes described in
section 4.5.7 we already did most of the preparation phase, so that we have
common options contained only in the first syntax, and now it should be clear
why we did it that way.

Syntax definition starts with DEFINE SYNTAX syntaxName statement.
Which we will skip for the first (primary) syntax so that it’s content belongs
to the verb definition we started previously. Then we iterate over options in
current syntax and define CDL qualifiers out of them. And after we iterate
over arguments and define CDL parameters. Finally, we append CLD that
user definitions have for current syntax or verb if it’s primary syntax.

There is also one exception in syntax definition: CDL does not support
syntaxes without qualifiers as there is no direct reference from the verb to the
syntax. To resolve the problem, we have introduced ALTSYNTAX syntaxName
statement, which allows us to reference syntax without qualifiers from the
verb definition. This way the first syntax without options is referenced from
the verb, the next one from the previous one, and so on.

4.6.4 Qualifier definition

To define qualifier we use clause QUALIFIER name. Due to case insensitivity
we have agreed to rename options by applying rules described in section 3.2.2:
options with short names only will be renamed to OPTION_l or OPTION_UPPERL
where l is a lowercase letter as a short name and L is a uppercase letter as a
short name. If current option is a syntax-specific we specify a syntax name
with a SYNTAX=syntaxName clause. If the option has a short name we specify

43

4. Realisation

it with UNIXOPT "shortName" clause. Then we specify argument if any by us-
ing VALUE (REQUIRED, DEFAULT="defaultValue", TYPE="typeName"), de-
pending on attributes of an argument we may skip the required and/or de-
fault value. Next, if the option has a description we specify it with statement
HELP "description". Lastly, we append CLD that contains user definitions
have for the current qualifier.

4.6.5 Parameter definition

To define parameter PARAMETER Pn, LABEL=paramName is used, where agreed
naming convention is that parameters are named Pn, where n is an order num-
ber of the parameter and original parameter name is used as a label. Then
follows value specification VALUE (REQUIRED, DEFAULT="defaultValue",
TYPE="argumentType"), where required and/or default value again skipped
depending on attributes of the argument. If the argument is marked as re-
peated, UNIXLIST statement is also written in VALUE clause.

Using steps described above we have specified verb containing parameters
of the first syntax and all qualifiers: common and syntax-specific. Then we
specified all other syntaxes with their parameters and their syntax-specific
qualifiers. That should be it, so lastly we close the file.

4.7 Testing

Testing correctness of the generator is done via unit tests and manual tests.
Makefile define a target test, which builds an application with different
main function declared in main.tests.c. Running tests is as easy as call-
ing make test. There is also a memory_test target to execute all tests under
valdrind environment with leak checking enabled.

4.7.1 Splitting content into sections tests

Splitting man page content into sections logic is tested on input data, that
contains a header, 3 sections with a single line, multi-line content, and empty
lines and empty section at the end of the file. The unit test validates, that
header is skipped, 3 sections in between contain all content, including empty
lines, and that empty section at the end of the file is not included in the result.

4.7.2 Name section tests

The logic that extracts command names and their description from the name
section is tested on input data, that contains both dash and double dash as
a command - description separator, two command names on the same line
separated by a comma and one command name on a separate line. Input data

44

4.7. Testing

also includes a multi-line description. The unit test validates that all possible
variations of the general format of the name section are parsed correctly.

4.7.3 Synopsis parser tests

Synopsis parsing logic is tested with two unit tests:

• Splitting synopsis content into syntax lines per command name. Input
data contains lines that do not start with command name and lines that
do. There are also single-line and multi-line syntax occurrences.

• Building a syntax tree out of syntax line. Input syntax line contains
repeating, optional placeholder option, a short option, a long option
with argument, and two command arguments. The unit test validates
that option’s argument was recognized as the option’s argument, the
correctness of returned options and arguments and its attributes.

4.7.4 Description parser tests

Description parser logic is tested with a single unit test, which input data
contains:

• short-only option

• long-only option

• option with short and long names and an optional argument

• option with multiple short and multiple long names and a required ar-
gument

• option with a description that is starting on the same line as option
definition

Test validate count of parsed options, attributes of each option, such as
type (short, long, short and long), names, description, argument presence,
argument name, argument attributes.

4.7.5 Merging synopsis and description output tests

The logic of merging output from synopsis and description sections parsing is
tested by a single test case. That test case covers common options placeholder
substitution, primary syntax, and syntax-specific options.

The test validates that syntaxes contain only syntax-specific options, that
belong to current syntax, except the first syntax, which also contains all com-
mon options. Apart from it, there is also validation that all occurrences of
common option placeholder were removed and that the first syntax contains

45

4. Realisation

common options with correct attributes taken from the placeholder. At last,
the test validates, that syntaxes were named after its first syntax-specific op-
tions if any, otherwise syntaxN, where N is an order number.

4.7.6 Type detection tests

Type detection tests are covered by a single test case and validate that all
naming conventions are applied: command argument type is the same as its
name, option’s argument type is its name following option’s name and that
for short name only option OPTION_ or OPTION_UPPER prefix is used.

4.7.7 User definitions tests

User definitions tests are covered by two use cases: parsing and merging.
Parsing test case validates correct parsing of two possible statements and

their variations: type replacement rules and enumerations. As input we pre-
pared a string containing: a line with a comment; type replacement rules con-
taining not only alphabet characters but also dashes, brackets, dollar signs,
underscores; single line enumeration definition and multi-line enumeration def-
inition containing value descriptions. Test code validates total count and each
of the type replacements rules and enumerations and all of its’ attributes.

Merging test case validates merging of two definitions that have enumera-
tion with the same name, type replacement rule with the same name, and also
each of them has its unique content. It validates, that all unique content of
both definitions present, and in case of definitions with the same name those
from the second file are present.

4.7.8 Memory usage tests

Makefile contains two additional targets to check memory leaks under valgrind
environment:

• memory_test to run all unit tests

• memory_test_tar to run the tool with tar man page as an input

Running both test targets proved, that no memory errors were detected.

4.7.9 Manual testing

In this section, we will look into the process of defining valid CLD definitions
for a few commands. We’ll start from scratch by running the tool against
a formatted manual page and let it generate a user definitions file template.
Then we will edit the template, check and fill all types. After that, we will
generate the final CLD and validate it with help of cdu utility described in
section 4.1.1.

46

4.7. Testing

For all tests below we have used man pages from OpenSUSE Leap version
15.1.

Let’s start with ls command. It’s an example of a more or less simple
command, which consists of one syntax only. The formatted plain text content
of ls man page can be found in appendix C.2.1.

$ make
$ man -w ls
/usr/share/man/man1/ls.1.gz
$ gzip -cd $(man -w ls) > test-data/ls.1
$ groff -P -c -man -T ascii test-data/ls.1 > test-data/ls.1.txt
$./man2cld --generate-definitions-template test-data/ls.def \

-o test-data/ls.cld test-data/ls.1.txt

At this moment we should see that test-data folder has four files in it: raw
man page source in groff, formatted man page, definitions template, and first
output. Making ourselves familiar with the output and looking into options
description, we should be able to notice, that there are few keyword types that
the tool wasn’t able to parse. For example, argument WHEN of color option.
According to the description it accepts one of following values: always, auto
or more.

In the user definitions template then we have prepared a type replacement
rule for it: WHEN = $STRING. So our goal right now is to improve it by specify-
ing, that WHEN is a keyword by changing the type replacement rule to keyword
type definition rule: WHEN = (always auto more).

One more issue we can notice in CLD is that tool has wrongly under-
stood, that option help has an argument display. This happened due
to relaxed criteria in option parsing logic to support more formats of man
pages. This issue is solved easily by appending a special type replacement
rule: display = NOT_AN_ARGUMENT.

By iterating all of the types we can end up with a definition file similar to
the one listed in appendix C.2.2.

Now we are going to run the tool again to apply the latest version of
definitions. Then, validating the result via cdu.

$./man2cld --definitions test-data/ls.def -o test-data/ls.cld \
test-data/ls.1.txt

$ /home/cdu/cdu3 test-data/ls.cld
Openning file test-data/ls.cld
$ echo $?
0

No errors were printed, also to confirm a successful finish we check the exit
code, which is 0 - success. We have now valid CLD definition of ls command,
which can be found in appendix C.2.3.

47

4. Realisation

The next command that we will generate a definition for is mv. This in
difference to the ls have multiple syntaxes. We will check that the tool’s
multi-syntax output is valid. Formatted plain text contents of man page can
be found in appendix C.3.1.

$ man -w mv
/usr/share/man/man1/mv.1.gz
$ gzip -cd $(man -w mv) > test-data/mv.1
$ groff -P -c -man -T ascii test-data/mv.1 > test-data/mv.1.txt
$./man2cld --generate-definitions-template test-data/mv.def \

-o test-data/mv.cld test-data/mv.1.txt

Now, we should be able to improve argument types by manual edit of
test-data/mv.def file. We can end up with content listed in appendix C.3.2.

Let’s run the tool again and validate it.

$./man2cld --definitions test-data/mv.def -o test-data/mv.cld \
test-data/mv.1.txt

$ /home/cdu/cdu3 test-data/mv.cld
Openning file test-data/mv.cld
$ echo $?
0

This confirms that the multi-syntax definition is valid. Full output in CLD
can be found in appendix C.3.3.

Next command that we are going to test tool on is tar. tar contains more
syntax lines as listed in appending C.4. All of them are contained in three
sections, separated by usage type:

• Traditional usage

• UNIX-style usage

• GNU-style usage

It became clear in practice, that so many similar syntaxes confuse the tool.
In order to cover all possible syntaxes, we are going to remove traditional and
UNIX-style usage sections, leaving only GNU-style section. This section covers
all possible modes of tar command. As for the short option style, there is
nothing to worry about, because each long option will have a corresponding
short name parsed from the description section, so it also will be covered.

Disallowing options from different syntax will require manual definition
with help of append CLD feature, that user definitions file format supports.
Moreover, tar allows specifying options without a leading dash, in CLD this
is achieved by manually adding OPTBROCADE statement to the verb definition.
Repeating the same steps as with previous commands, we get to the point
where we can check the final output.

48

4.8. Further required CLD extensions

$./man2cld --definitions test-data/tar.def \
-o test-data/tar.cld \
test-data/tar-edited.1.txt

$ /home/cdu/cdu3 test-data/tar.cld
Openning file test-data/tar.cld
Line 117: OPTPARAMETER
%cdu-E-invitem, Invalid item "OPTPARAMETER" encountered.
Some text will be skipped
generate_table_blocks: 0
%cdu-F-intinvnode, Internal error: invalid node encountered

Here, cdu did not recognized the OPTPARAMETER statement. After
discussion, we have concluded that this problem occurred due to not complete
implementation of the defined extension in the current version of cdu. We have
manually verified, that OPTPARAMETER in this case is placed correctly. To
verify the rest of the definition we removed this statement and run cdu again.

$ /home/cdu/cdu3 test-data/tar-no-optparameter.cld
Openning file test-data/tar-no-optparameter.cld
$ echo $?
0

There are several more commands for which we have generated definitions
and successfully validated them using the established process:

• find

• test

• ps

All of them have a unique format of the description section, where options
are described. Due to the large size, they are not included in the appendix
but can be found in attachments to this work.

4.8 Further required CLD extensions

During a deeper analysis of some commands (tar, test and ps) we found out
next extension of the CDL language is required to describe possible options.
New statements are the following

• OPTPARAMETER to specify option without leading dash, for example, A in
tar

• OPTBROCADE to specify long option name with single leading dash, for
example, -follow in find

49

4. Realisation

• UNIXNEGATE to negate option by using + instead of -

• NOEQSIGN to forbid using equal sign as a separator between option and
it’s argument

• ALTSYNTAX syntax-name to be able to specify alternative syntax, which
does not have syntax-specific options

Furthermore, from the analysis it became clear that we need to extend
supported types with the following:

• $SIZE - size with units (KB, MB, etc.)

• $TEST_EXPRESSION - Unix test command expression

• $UNIXPROT - Unix protection specifier

• $UID - user name or UID

• $GID - group name or GID

• $MAJORMINOR - version specification, number.number

• $FREE - any value delimited by a space or a string in quotes

The next required extension originates from a specific argument type of ls
command DATE-OR-FILE. CDL does not allow to combine values of different
types. Here we introduce a new syntax for defining such data types, which is
similar to keyword type definition except that TYPE is used instead of KEYWORD:

DEFINE TYPE DATE-OR-FILE
TYPE $DATE
TYPE $FILE

50

Conclusion

The theoretical part of this work was focused on studying Command Line
Description language and Linux manual pages. We described the syntax of
CLD, terminology, and the possibilities it provides. We also defined an exten-
sion to be able to describe Unix commands. Then, we described the format
and structure of Linux manual pages, possible alternative formats, and have
selected the most suitable one.

In the analytical part of this work, we have looked more closely at the
manual page in the selected format. We have chosen parts of input containing
valuable information, how to find and extract it. Then, we have verified
how extracted information would be described in CLD on an example of mv
command. Afterward, we have designed the solution by stating the current
manual process, enhancement we were willing to do, and requirements. We
have specified possible use-cases and finally based on all previously collected
information defined how the solution would work.

In the practical part of this work, we have focused on the implementation
of the designed solution. We have defined a way to proceed through limitations
of the automatic process and its possible errors by providing additional input
in form of a user definitions file. Furthermore, we have tested the solution with
unit tests, memory tests, and manual tests. Manual tests included writing a
complete definition for commands, such as ls, mv, tar, find, test, and ps. Those
definitions were afterward successfully tested on correctness via cdu utility -
one of the components of dclsh shell.

During implementation, we have discovered several missing features in
CLD to be able to describe Unix commands. We have defined and specified
necessary extensions.

The implemented solution can be used to automate the process of writing
CLD definitions for Unix commands, therefore allowing dclsh shell to use these
definitions.

51

Bibliography

[1] Kristaps Dzonsons. History of UNIX Manpages. url: http://manpages.
bsd.lv/history.html. [cit. 2019-12-15].

[2] HP OpenVMS Command Definition, Librarian, and Message Utilities
Manual. Version 7.3. Hewlett-Packard Company. Jan. 2005.

[3] man-pages - conventions for writing Linux man pages. Version 4.04. The
Linux Foundation. Dec. 2015. [cit. 2019-12-15].

[4] Eric Raymond. The Jargon File. url: http://www.catb.org/jargon/
html/S/shell.html. [cit. 2019-12-15].

[5] The GNU Troff Manual. Free Software Foundation, Inc. Nov. 2008. url:
https://www.gnu.org/software/groff/manual/groff.htm. [cit.
2019-12-15].

53

http://manpages.bsd.lv/history.html
http://manpages.bsd.lv/history.html
http://www.catb.org/jargon/html/S/shell.html
http://www.catb.org/jargon/html/S/shell.html
https://www.gnu.org/software/groff/manual/groff.htm

Appendix A
Acronyms

DOS Disk operating system

DCL DIGITAL Command Language

CDL Command definition language

CLD Command line description

ASCII American standard code for information interchange

FC Fibre channel

CDU Command definition utility

55

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

man2cld.................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

57

Appendix C
Man pages, user definitions and

outputs

This chapter includes contents of plain text man pages, user definitions, and
CLD outputs generated by the tool for different commands.

C.1 Manual definition of mv command

DEFINE VERB mv
IMAGE "/ bin/mv"
IMAGETYPE unix
HELP "mv - move (rename) files"

QUALIFIER OPTION_b
UNIXOPT "b"
HELP "like --backup but does not accept an argument "

QUALIFIER force
UNIXOPT "f"
HELP "do not prompt before overwriting "

QUALIFIER suffix
UNIXOPT "S"
VALUE (REQUIRED , TYPE= $STRING)
HELP " override the usual backup suffix "

QUALIFIER no -target - directory
UNIXOPT "T"
HELP "treat DEST as a normal file"

QUALIFIER update
UNIXOPT "u"
HELP "move only when the SOURCE file is newer

than the destination file or when the
destination file is missing "

PARAMETER P1 , LABEL= SOURCE
VALUE (REQUIRED , TYPE= $INFILE)

PARAMETER P2 , LABEL=DEST
VALUE (REQUIRED , TYPE=$FILE)

59

C. Man pages, user definitions and outputs

QUALIFIER target -directory , SYNTAX =target - directory
UNIXOPT "t"
VALUE (REQUIRED , TYPE= $DIRECTORY)
HELP "move all SOURCE arguments into DIRECTORY "

DEFINE SYNTAX syntax2
PARAMETER P1 , LABEL= SOURCE

VALUE (UNIXLIST , REQUIRED , TYPE= $INFILE)
PARAMETER P2 , LABEL= DIRECTORY

VALUE (REQUIRED , TYPE= $DIRECTORY)

DEFINE SYNTAX target - directory
QUALIFIER target - directory

UNIXOPT "t"
VALUE (REQUIRED , TYPE= $DIRECTORY)
HELP "move all SOURCE arguments into DIRECTORY "

PARAMETER P1 , LABEL= SOURCE
VALUE (UNIXLIST , REQUIRED , TYPE= $INFILE)

C.2 ls command

C.2.1 Man page

LS (1) User Commands LS (1)

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory

by default).
Sort entries alphabetically if none of -cftuvSUX nor --

sort is speci -
fied.

Mandatory arguments to long options are mandatory for
short

options
too.

-a, --all
do not ignore entries starting with .

-A, --almost -all
do not list implied . and ..

--author

60

C.2. ls command

with -l, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

--block -size=SIZE
with -l, scale sizes by SIZE when printing them;

e.g.,
’--block -size=M’; see SIZE format below

-B, --ignore - backups
do not list implied entries ending with ˜

-c with -lt: sort by , and show , ctime (time of last
modification of

file status information); with -l: show ctime and sort by
name;

otherwise : sort by ctime , newest first

-C list entries by columns

--color [= WHEN]
colorize the output ; WHEN can be ’always ’ (default if

omitted),
’auto ’, or ’never ’; more info below

-d, --directory
list directories themselves , not their contents

-D, --dired
generate output designed for Emacs ’ dired mode

-f do not sort , enable -aU , disable -ls --color

-F, --classify
append indicator (one of */=>@|) to entries

--file -type
likewise , except do not append ’*’

--format =WORD
across -x, commas -m, horizontal -x, long -l, single -

column -1,
verbose -l, vertical -C

--full -time
like -l --time -style=full -iso

-g like -l, but do not list owner

--group - directories -first
group directories before files;

61

C. Man pages, user definitions and outputs

can be augmented with a --sort option , but any
use of

--sort=none (-U) disables grouping

-G, --no -group
in a long listing , don ’t print group names

-h, --human - readable
with -l and -s, print sizes like 1K 234M 2G etc.

--si likewise , but use powers of 1000 not 1024

-H, --dereference -command -line
follow symbolic links listed on the command line

--dereference -command -line -symlink -to -dir
follow each command line symbolic link

that points to a directory

--hide= PATTERN
do not list implied entries matching shell PATTERN (

overridden
by -a or -A)

--hyperlink [= WHEN]
hyperlink file names; WHEN can be ’always ’ (default if

omitted),
’auto ’, or ’never ’

--indicator -style=WORD
append indicator with style WORD to entry names: none (

default),
slash (-p), file -type (--file -type), classify (-F)

-i, --inode
print the index number of each file

-I, --ignore = PATTERN
do not list implied entries matching shell PATTERN

-k, --kibibytes
default to 1024 - byte blocks for disk usage; used only

with -s
and per directory totals

-l use a long listing format

-L, --dereference
when showing file information for a symbolic link , show

informa -
tion for the file the link references rather than for

the link
itself

62

C.2. ls command

-m fill width with a comma separated list of entries

-n, --numeric -uid -gid
like -l, but list numeric user and group IDs

-N, --literal
print entry names without quoting

-o like -l, but do not list group information

-p, --indicator -style=slash
append / indicator to directories

-q, --hide -control -chars
print ? instead of nongraphic characters

--show -control -chars
show nongraphic characters as -is (the default , unless

program is
’ls ’ and output is a terminal)

-Q, --quote -name
enclose entry names in double quotes

--quoting -style=WORD
use quoting style WORD for entry names: literal , locale ,

shell ,
shell -always , shell -escape , shell -escape -always , c,

escape
(overrides QUOTING_STYLE environment variable)

-r, --reverse
reverse order while sorting

-R, --recursive
list subdirectories recursively

-s, --size
print the allocated size of each file , in blocks

-S sort by file size , largest first

--sort=WORD
sort by WORD instead of name: none (-U), size (-S),

time (-t),
version (-v), extension (-X)

--time=WORD
with -l, show time as WORD instead of default

modification time:
atime or access or use (-u); ctime or status (-c);

also use
specified time as sort key if --sort=time (newest first)

63

C. Man pages, user definitions and outputs

--time -style= TIME_STYLE
time/date format with -l; see TIME_STYLE below

-t sort by modification time , newest first

-T, --tabsize =COLS
assume tab stops at each COLS instead of 8

-u with -lt: sort by , and show , access time; with -l:
show access

time and sort by name; otherwise : sort by access time ,
newest

first

-U do not sort; list entries in directory order

-v natural sort of (version) numbers within text

-w, --width=COLS
set output width to COLS. 0 means no limit

-x list entries by lines instead of by columns

-X sort alphabetically by entry extension

-Z, --context
print any security context of each file

-1 list one file per line. Avoid ’\n’ with -q or -b

--help display this help and exit

--version
output version information and exit

The SIZE argument is an integer and optional unit (
example : 10K is

10*1024) . Units are K,M,G,T,P,E,Z,Y (powers of 1024)
or KB ,MB ,...

(powers of 1000).

The TIME_STYLE argument can be full -iso , long -iso , iso ,
locale , or

+ FORMAT . FORMAT is interpreted like in date (1). If
FORMAT is FOR -

MAT1 <newline >FORMAT2 , then FORMAT1 applies to non - recent
files and FOR -

MAT2 to recent files. TIME_STYLE prefixed with ’posix -’
takes effect

only outside the POSIX locale . Also the TIME_STYLE
environment vari -

able sets the default style to use.

64

C.2. ls command

Using color to distinguish file types is disabled both
by default and

with --color=never. With --color=auto , ls emits color
codes only when

standard output is connected to a terminal . The
LS_COLORS environment

variable can change the settings . Use the dircolors
command to set it.

Exit status :
0 if OK ,

1 if minor problems (e.g., cannot access subdirectory
),

2 if serious trouble (e.g., cannot access command -
line argument).

AUTHOR
Written by Richard M. Stallman and David MacKenzie .

REPORTING BUGS
GNU coreutils online help: <https :// www.gnu.org/ software /

coreutils />
Report ls translation bugs to <https :// translationproject .

org/team/>

COPYRIGHT
Copyright (C) 2017 Free Software Foundation , Inc. License

GPLv3 +: GNU
GPL version 3 or later <https :// gnu.org/ licenses /gpl.html

>.
This is free software : you are free to change and

redistribute it.
There is NO WARRANTY , to the extent permitted by law.

SEE ALSO
Full documentation at: <https :// www.gnu.org/ software /

coreutils /ls >
or available locally via: info ’(coreutils) ls invocation ’

GNU coreutils 8.29 February 2018 LS (1)

C.2.2 User definitions

FILE = $INFILE
SIZE = $SIZE
WHEN = (always auto never)
color_WHEN = WHEN
format_WORD = (across commas horizontal long single - column
verbose vertical)

65

C. Man pages, user definitions and outputs

none_OR_WORD = $STRING
hide_PATTERN = $QUOTED_STRING
hyperlink_WHEN = WHEN
WORD_OR_slash = (none slash file -type classify)
ignore_PATTERN = $QUOTED_STRING
quoting - style_WORD = (literal locale shell shell - always
shell - escape shell -escape - always c escape)
time_WORD = (atime access ctime status)
TIME = (full -iso long -iso iso locale)
TIME_STYLE = (TIME $STRING)
tabsize_COLS = $NUMBER
width_COLS = $NUMBER
display = NOT_AN_ARGUMENT

C.2.3 Output CLD

DEFINE TYPE WHEN
KEYWORD always , NONNEGATABLE
KEYWORD auto , NONNEGATABLE
KEYWORD never , NONNEGATABLE

DEFINE TYPE format_WORD
KEYWORD across , NONNEGATABLE
KEYWORD commas , NONNEGATABLE
KEYWORD horizontal , NONNEGATABLE
KEYWORD long , NONNEGATABLE
KEYWORD single -column , NONNEGATABLE
KEYWORD verbose , NONNEGATABLE
KEYWORD vertical , NONNEGATABLE

DEFINE TYPE WORD_OR_slash
KEYWORD none , NONNEGATABLE
KEYWORD slash , NONNEGATABLE
KEYWORD file -type , NONNEGATABLE
KEYWORD classify , NONNEGATABLE

DEFINE TYPE quoting - style_WORD
KEYWORD literal , NONNEGATABLE
KEYWORD locale , NONNEGATABLE
KEYWORD shell , NONNEGATABLE
KEYWORD shell -always , NONNEGATABLE
KEYWORD shell -escape , NONNEGATABLE
KEYWORD shell -escape -always , NONNEGATABLE
KEYWORD c, NONNEGATABLE
KEYWORD escape , NONNEGATABLE

DEFINE TYPE time_WORD
KEYWORD atime , NONNEGATABLE
KEYWORD access , NONNEGATABLE
KEYWORD ctime , NONNEGATABLE
KEYWORD status , NONNEGATABLE

DEFINE TYPE TIME

66

C.2. ls command

KEYWORD full -iso , NONNEGATABLE
KEYWORD long -iso , NONNEGATABLE
KEYWORD iso , NONNEGATABLE
KEYWORD locale , NONNEGATABLE

DEFINE TYPE TIME_STYLE
TYPE TIME
TYPE $STRING

DEFINE VERB ls
IMAGE "/ bin/ls"
IMAGETYPE unix
HELP "list directory contents "

QUALIFIER all
UNIXOPT "a"
HELP "do not ignore entries starting with ."

QUALIFIER almost -all
UNIXOPT "A"
HELP "do not list implied . and .."

QUALIFIER author
HELP "with -l, print the author of each file"

QUALIFIER escape
UNIXOPT "b"
HELP "print C- style escapes for nongraphic characters "

QUALIFIER block -size
VALUE (REQUIRED , TYPE=$SIZE)
HELP "with -l, scale sizes by SIZE when printing them

; e.g.,
’--block -size=M’; see SIZE format below"

QUALIFIER ignore - backups
UNIXOPT "B"
HELP "do not list implied entries ending with ˜"

QUALIFIER OPTION_c
UNIXOPT "c"
HELP "with -lt: sort by , and show , ctime (time of last

modification of
file status information); with -l: show ctime and sort by name;
otherwise : sort by ctime , newest first"

QUALIFIER OPTION_UPPERC
UNIXOPT "C"
HELP "list entries by columns "

QUALIFIER color
VALUE (TYPE=WHEN)
HELP " colorize the output ; WHEN can be ’always ’ (default if

omitted),

67

C. Man pages, user definitions and outputs

’auto ’, or ’never ’; more info below"

QUALIFIER directory
UNIXOPT "d"
HELP "list directories themselves , not their contents "

QUALIFIER dired
UNIXOPT "D"
HELP " generate output designed for Emacs ’ dired mode"

QUALIFIER OPTION_f
UNIXOPT "f"
HELP "do not sort , enable -aU , disable -ls --color"

QUALIFIER classify
UNIXOPT "F"
HELP " append indicator (one of */=>@|) to entries "

QUALIFIER file -type
HELP "likewise , except do not append ’*’"

QUALIFIER format
VALUE (REQUIRED , TYPE= format_WORD)
HELP " across -x, commas -m, horizontal -x, long -l, single -

column -1,
verbose -l, vertical -C"

QUALIFIER full -time
HELP "like -l --time -style=full -iso"

QUALIFIER OPTION_g
UNIXOPT "g"
HELP "like -l, but do not list owner"

QUALIFIER group - directories -first
HELP "group directories before files ;"

QUALIFIER sort
VALUE (REQUIRED , TYPE= $STRING)
HELP "(-U) disables grouping

sort by WORD instead of name: none (-U), size (-S), time (-t),
version (-v), extension (-X)"

QUALIFIER no -group
UNIXOPT "G"
HELP "in a long listing , don ’t print group names"

QUALIFIER human - readable
UNIXOPT "h"
HELP "with -l and -s, print sizes like 1K 234M 2G etc ."

QUALIFIER si
HELP "likewise , but use powers of 1000 not 1024"

68

C.2. ls command

QUALIFIER dereference -command -line
UNIXOPT "H"
HELP " follow symbolic links listed on the command line"

QUALIFIER dereference -command -line -symlink -to -dir
HELP " follow each command line symbolic link"

QUALIFIER hide
VALUE (REQUIRED , TYPE= $QUOTED_STRING)
HELP "do not list implied entries matching shell PATTERN (

overridden
by -a or -A)"

QUALIFIER hyperlink
VALUE (TYPE=WHEN)
HELP " hyperlink file names; WHEN can be ’always ’ (default if

omitted),
’auto ’, or ’never ’"

QUALIFIER indicator -style
VALUE (REQUIRED , TYPE= WORD_OR_slash)
HELP " append indicator with style WORD to entry names: none (

default),
slash (-p), file -type (--file -type), classify (-F)
append / indicator to directories "

QUALIFIER inode
UNIXOPT "i"
HELP "print the index number of each file"

QUALIFIER ignore
UNIXOPT "I"
VALUE (REQUIRED , TYPE= $QUOTED_STRING)
HELP "do not list implied entries matching shell PATTERN "

QUALIFIER kibibytes
UNIXOPT "k"
HELP " default to 1024 - byte blocks for disk usage; used

only with -s
and per directory totals "

QUALIFIER OPTION_l
UNIXOPT "l"
HELP "use a long listing format "

QUALIFIER dereference
UNIXOPT "L"
HELP "when showing file information for a symbolic link , show
informa -

tion for the file the link references rather than for the link
itself "

QUALIFIER OPTION_m
UNIXOPT "m"

69

C. Man pages, user definitions and outputs

HELP "fill width with a comma separated list of entries "

QUALIFIER numeric -uid -gid
UNIXOPT "n"
HELP "like -l, but list numeric user and group IDs"

QUALIFIER literal
UNIXOPT "N"
HELP "print entry names without quoting "

QUALIFIER OPTION_o
UNIXOPT "o"
HELP "like -l, but do not list group information "

QUALIFIER hide -control -chars
UNIXOPT "q"
HELP "print ? instead of nongraphic characters "

QUALIFIER show -control -chars
HELP "show nongraphic characters as -is (the default , unless

program is
’ls ’ and output is a terminal)"

QUALIFIER quote -name
UNIXOPT "Q"
HELP " enclose entry names in double quotes "

QUALIFIER quoting -style
VALUE (REQUIRED , TYPE=quoting - style_WORD)
HELP "use quoting style WORD for entry names: literal ,

locale , shell ,
shell -always , shell -escape , shell -escape -always , c, escape
(overrides QUOTING_STYLE environment variable)"

QUALIFIER reverse
UNIXOPT "r"
HELP " reverse order while sorting "

QUALIFIER recursive
UNIXOPT "R"
HELP "list subdirectories recursively "

QUALIFIER size
UNIXOPT "s"
HELP "print the allocated size of each file , in blocks "

QUALIFIER OPTION_UPPERS
UNIXOPT "S"
HELP "sort by file size , largest first"

QUALIFIER time
VALUE (REQUIRED , TYPE= time_WORD)
HELP "with -l, show time as WORD instead of default

modification time:

70

C.2. ls command

atime or access or use (-u); ctime or status (-c); also use
specified time as sort key if --sort=time (newest first)"

QUALIFIER time -style
VALUE (REQUIRED , TYPE= TIME_STYLE)
HELP "time/date format with -l; see TIME_STYLE below"

QUALIFIER OPTION_t
UNIXOPT "t"
HELP "sort by modification time , newest first"

QUALIFIER tabsize
UNIXOPT "T"
VALUE (REQUIRED , TYPE= $NUMBER)
HELP " assume tab stops at each COLS instead of 8"

QUALIFIER OPTION_u
UNIXOPT "u"
HELP "with -lt: sort by , and show , access time; with -l:

show access
time and sort by name; otherwise : sort by access time , newest
first"

QUALIFIER OPTION_UPPERU
UNIXOPT "U"
HELP "do not sort; list entries in directory order"

QUALIFIER OPTION_v
UNIXOPT "v"
HELP " natural sort of (version) numbers within text"

QUALIFIER width
UNIXOPT "w"
VALUE (REQUIRED , TYPE= $NUMBER)
HELP "set output width to COLS. 0 means no limit"

QUALIFIER OPTION_x
UNIXOPT "x"
HELP "list entries by lines instead of by columns "

QUALIFIER OPTION_UPPERX
UNIXOPT "X"
HELP "sort alphabetically by entry extension "

QUALIFIER context
UNIXOPT "Z"
HELP "print any security context of each file"

QUALIFIER OPTION_1
UNIXOPT "1"
HELP "list one file per line. Avoid ’\n’ with -q or -b"

QUALIFIER help
HELP " display this help and exit"

71

C. Man pages, user definitions and outputs

QUALIFIER version
HELP " output version information and exit"

PARAMETER P1 , LABEL=FILE
VALUE (UNIXLIST , TYPE= $INFILE)

C.3 mv command

C.3.1 Man page

MV (1) User Commands MV (1)

NAME
mv - move (rename) files

SYNOPSIS
mv [OPTION]... [-T] SOURCE DEST
mv [OPTION]... SOURCE ... DIRECTORY
mv [OPTION]... -t DIRECTORY SOURCE ...

DESCRIPTION
Rename SOURCE to DEST , or move SOURCE (s) to DIRECTORY .

Mandatory arguments to long options are mandatory for
short options

too.

--backup [= CONTROL]
make a backup of each existing destination file

-b like --backup but does not accept an argument

-f, --force
do not prompt before overwriting

-i, --interactive
prompt before overwrite

-n, --no - clobber
do not overwrite an existing file

If you specify more than one of -i, -f, -n, only the
final one takes

effect .

--strip -trailing - slashes
remove any trailing slashes from each SOURCE argument

-S, --suffix = SUFFIX

72

C.3. mv command

override the usual backup suffix

-t, --target - directory = DIRECTORY
move all SOURCE arguments into DIRECTORY

-T, --no -target - directory
treat DEST as a normal file

-u, --update
move only when the SOURCE file is newer than the

destination
file or when the destination file is missing

-v, --verbose
explain what is being done

-Z, --context
set SELinux security context of destination file to

default type

--help display this help and exit

--version
output version information and exit

The backup suffix is ’˜’, unless set with --
suffix or SIM -

PLE_BACKUP_SUFFIX . The version control method may be
selected via the

--backup option or through the VERSION_CONTROL
environment variable .

Here are the values :

none , off
never make backups (even if --backup is given)

numbered , t
make numbered backups

existing , nil
numbered if numbered backups exist , simple otherwise

simple , never
always make simple backups

AUTHOR
Written by Mike Parker , David MacKenzie , and Jim Meyering .

REPORTING BUGS
GNU coreutils online help: <https :// www.gnu.org/ software /

coreutils />
Report mv translation bugs to <https :// translationproject .

org/team/>

73

C. Man pages, user definitions and outputs

COPYRIGHT
Copyright (C) 2017 Free Software Foundation , Inc.

License GPLv3 +: GNU
GPL version 3 or later <https :// gnu.org/ licenses /gpl.html

>.
This is free software : you are free to change and

redistribute it.
There is NO WARRANTY , to the extent permitted by law.

SEE ALSO
rename (2)

Full documentation at: <https :// www.gnu.org/ software /
coreutils /mv >

or available locally via: info ’(coreutils) mv invocation ’

GNU coreutils 8.29 February 2018 MV (1)

C.3.2 User definitions

SOURCE = $FILE
DEST = $FILE
CONTROL = (none off numbered t existing nil simple never)
SUFFIX = $STRING
display = NOT_AN_ARGUMENT
DIRECTORY = $DIRECTORY
target - directory_DIRECTORY = $DIRECTORY

C.3.3 Output CLD

DEFINE TYPE CONTROL
KEYWORD none , NONNEGATABLE
KEYWORD off , NONNEGATABLE
KEYWORD numbered , NONNEGATABLE
KEYWORD t, NONNEGATABLE
KEYWORD existing , NONNEGATABLE
KEYWORD nil , NONNEGATABLE
KEYWORD simple , NONNEGATABLE
KEYWORD never , NONNEGATABLE

DEFINE VERB mv
IMAGE "/ bin/mv"
IMAGETYPE unix
HELP "move (rename) files"

ALTSYNTAX = syntax2

QUALIFIER backup
VALUE (TYPE= CONTROL)

74

C.3. mv command

HELP "make a backup of each existing destination file"

QUALIFIER OPTION_b
UNIXOPT "b"
HELP "like --backup but does not accept an argument "

QUALIFIER force
UNIXOPT "f"
HELP "do not prompt before overwriting "

QUALIFIER interactive
UNIXOPT "i"
HELP " prompt before overwrite "

QUALIFIER no - clobber
UNIXOPT "n"
HELP "do not overwrite an existing file"

QUALIFIER strip -trailing - slashes
HELP " remove any trailing slashes from each SOURCE argument "

QUALIFIER suffix
UNIXOPT "S"
VALUE (REQUIRED , TYPE= $STRING)
HELP " override the usual backup suffix "

QUALIFIER no -target - directory
UNIXOPT "T"
HELP "treat DEST as a normal file"

QUALIFIER update
UNIXOPT "u"
HELP "move only when the SOURCE file is newer than the

destination
file or when the destination file is missing "

QUALIFIER verbose
UNIXOPT "v"
HELP " explain what is being done"

QUALIFIER context
UNIXOPT "Z"
HELP "set SELinux security context of destination file to

default type"

QUALIFIER help
HELP " display this help and exit"

QUALIFIER version
HELP " output version information and exit"

PARAMETER P1 , LABEL= SOURCE
VALUE (REQUIRED , TYPE=$FILE)

75

C. Man pages, user definitions and outputs

PARAMETER P2 , LABEL=DEST
VALUE (REQUIRED , TYPE=$FILE)

QUALIFIER target -directory , SYNTAX =target - directory
UNIXOPT "t"
VALUE (REQUIRED , TYPE= $DIRECTORY)
HELP "move all SOURCE arguments into DIRECTORY "

DEFINE SYNTAX syntax2

PARAMETER P1 , LABEL= SOURCE
VALUE (UNIXLIST , REQUIRED , TYPE=$FILE)

PARAMETER P2 , LABEL= DIRECTORY
VALUE (REQUIRED , TYPE= $DIRECTORY)

DEFINE SYNTAX target - directory

QUALIFIER target - directory
UNIXOPT "t"
VALUE (REQUIRED , TYPE= $DIRECTORY)
HELP "move all SOURCE arguments into DIRECTORY "

PARAMETER P1 , LABEL= SOURCE
VALUE (UNIXLIST , REQUIRED , TYPE=$FILE)

C.4 tar command synopsis section

SYNOPSIS
Traditional usage

tar {A|c|d|r|t|u|x}[GnSkUWOmpsMBiajJzZhPlRvwo] [ARG ...]

UNIX -style usage
tar -A [OPTIONS] ARCHIVE ARCHIVE

tar -c [-f ARCHIVE] [OPTIONS] [FILE ...]

tar -d [-f ARCHIVE] [OPTIONS] [FILE ...]

tar -t [-f ARCHIVE] [OPTIONS] [MEMBER ...]

tar -r [-f ARCHIVE] [OPTIONS] [FILE ...]

tar -u [-f ARCHIVE] [OPTIONS] [FILE ...]

tar -x [-f ARCHIVE] [OPTIONS] [MEMBER ...]

GNU -style usage
tar {-- catenate |-- concatenate } [OPTIONS] ARCHIVE ARCHIVE

76

C.4. tar command synopsis section

tar --create [--file ARCHIVE] [OPTIONS] [FILE ...]

tar {--diff|-- compare } [--file ARCHIVE] [OPTIONS] [FILE
...]

tar --delete [--file ARCHIVE] [OPTIONS] [MEMBER ...]

tar --append [-f ARCHIVE] [OPTIONS] [FILE ...]

tar --list [-f ARCHIVE] [OPTIONS] [MEMBER ...]

tar --test -label [--file ARCHIVE] [OPTIONS] [LABEL ...]

tar --update [--file ARCHIVE] [OPTIONS] [FILE ...]

tar --update [-f ARCHIVE] [OPTIONS] [FILE ...]

tar {-- extract |--get} [-f ARCHIVE] [OPTIONS] [MEMBER ...]

77

	Introduction
	Shell commands
	Shell Command Format
	Unix
	Windows
	VMS
	Wildcard characters
	Command line completion

	Command Definition Language
	Structure
	Describing command
	Describing command's option
	Describing values
	Defining custom types
	Disallowing entities
	Specifying expression entities

	Defining syntax
	Extension of CDL to describe syntax of Unix commands

	Linux manual pages
	Format
	Output
	Overstriking
	Man page structure

	Analysis and design
	Input
	Generating input
	Name
	Synopsis
	Description
	Combining output from synopsis and description sections

	Output on example of mv command
	Name and verb definition
	Synopsis
	Description

	Architecture
	Process
	Requirements
	Use-cases
	Design

	Realisation
	Technologies
	dclsh shell prototype

	Supported options and arguments
	Reading user definitions files
	User definitions file format
	Parsing
	Merging

	Reading man page contents with overstriking
	Parsing man page contents and creating command definition
	Splitting content into sections
	Name section
	Selecting command name
	Parsing options
	Synopsis section
	Syntax line
	Merging options and syntaxes
	Arguments type detection
	Replacing types from user definitions file

	Writing the CLD command definition to a file
	Enumeration types definition
	Verb definition
	Syntax definition
	Qualifier definition
	Parameter definition

	Testing
	Splitting content into sections tests
	Name section tests
	Synopsis parser tests
	Description parser tests
	Merging synopsis and description output tests
	Type detection tests
	User definitions tests
	Memory usage tests
	Manual testing

	Further required CLD extensions

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Man pages, user definitions and outputs
	Manual definition of mv command
	ls command
	Man page
	User definitions
	Output CLD

	mv command
	Man page
	User definitions
	Output CLD

	tar command synopsis section

