
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 31, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Personal Finance Management Mobile App for iOS

 Student: Hoang Anh Ngo

 Supervisor: Ing. Marek Suchánek

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

The goal of the thesis is to design and implement a mobile app for iOS that would help users with personal
finance and budget management. Overall work must compliant to the common software engineering
practices:
- Review existing relevant applications, focus on features and UI/UX, and identify their advantages and
disadvantages. Set functional and non-functional requirements for the app.
- Analyze possibilities in terms of technologies for iOS mobile app development, including recommended
architectures and best practices.
- Design the app (both architecture and UI) based on the review and analysis using a software engineering
approach.
- Implement and test the app according to the design.
- Compare the final app with other solutions. Describe distribution and further development possibilities.

References

Will be provided by the supervisor.

Bachelor’s thesis

Personal Finance Management Mobile App
for iOS

Hoang Anh Ngo

Department of Software Engineering
Supervisor: Ing. Marek Suchánek

January 7, 2021

Acknowledgements

I would like to express my gratitude to the supervisor Ing. Marek Suchánek
for his invaluable practical support during writing and refining of this thesis.
I am deeply grateful to my family and friends for their presence and guidance
through my studies. My special thanks are to my partner, for her immense
mental support throughout the thesis development.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 7, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Hoang Anh Ngo. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ngo, Hoang Anh. Personal Finance Management Mobile App for iOS. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstract

The bachelor thesis addresses an analysis, design, and implementation of a mo-
bile application for finance management and budgeting on the iOS platform.
The thesis analyzes other competitive applications with emphasis on their user
interface, advantages and disadvantages. In particular, their main drawbacks,
which this work solves, are described in more detail. The following chapters
provide a description of the software engineering processes (design, implemen-
tation, and testing). The result of the thesis is a functional mobile application,
thanks to which the users will be able to manage their finances and budgets
easily. Realizing their financial habits, they will be ready to manage them
better.

Keywords mobile application, iOS, management, finance, budget, MVVM,
Swift

vii

Abstrakt

Tato bakalářská práce se zabývá analýzou, návrhem a implementací mobilní
aplikace pro platformu iOS pro správu financí a rozpočtů. V práci jsou analy-
zovány konkurenční aplikace s důrazem na jejich uživatelské rozhraní, výhody
a nevýhody. Podrobněji jsou popsány především hlavní nedostatky konku-
rečních řešení, které výsledná aplikace řeší. Následující kapitoly pojednávají
o procesech dle klasického softwarového inženýrství (návrh, implementace
a testování). Výsledkem práce je funkční mobilní aplikace, díky níž budou
uživatelé schopni jednoduše spravovat své finance a rozpočty, čímž zjistí své
finanční zvyky a návyky a naučí se lépe hospodařit se svými penězi.

Klíčová slova mobilní aplikace, iOS, správa, finance, rozpočet, MVVM,
Swift

ix

Contents

Introduction 1

1 Goals and Methodology 3

2 State of the Art 5
2.1 Spendee . 6
2.2 Wallet . 8
2.3 Pocket Expense 6 . 10
2.4 Summary . 12

3 Requirements Analysis 13
3.1 Functional Requirements . 13
3.2 Non-functional Requirements 14
3.3 Use Cases . 15

4 Design 21
4.1 iOS Development . 21

4.1.1 Objective-C and Swift 21
4.1.2 UIKit and SwiftUI . 22
4.1.3 Architectural Patterns 22
4.1.4 Supported OS . 24

4.2 Application’s Domain . 24
4.3 User Interface . 25

4.3.1 iOS Human Interface Guidelines 25
4.3.2 Nielsen’s Design Heuristics 28
4.3.3 Scenes Design . 28

5 Implementation 35
5.1 Firebase Backend . 35

5.1.1 Firebase Authentication 35
5.1.2 Cloud Firestore . 36
5.1.3 Cloud Functions . 38

5.2 iOS Application . 38
5.2.1 Reactive Programming 39

xi

5.2.2 Clean Architecture and MVVM 40
5.2.3 Dependency Management 43
5.2.4 Navigation . 45
5.2.5 UI Components . 45

6 Testing 49
6.1 Unit Tests . 49
6.2 UI Tests . 51
6.3 Usability Tests . 51

6.3.1 Test Scenarios . 52
6.3.2 Results . 53

7 Results and Future Development 55
7.1 Results . 55
7.2 Future Development . 55
7.3 Distribution . 56

Conclusion 59

Bibliography 61

A Acronyms 67

B Contents of Enclosed SD Card 69

xii

List of Figures

2.1 Spendee app preview . 6
2.2 Wallet app preview . 8
2.3 Pocket Expense app preview . 10

4.1 Interaction of MVC components according to [29] 23
4.2 Interaction of MVVM components according to [34] 24
4.3 Application domain’s conceptual model 25
4.4 Hierarchical and flat navigation style combined based on styles

mentioned in [10] . 26
4.5 Modality presentation types [10] 27
4.6 Core UI components used in the app [10] 28
4.7 Authentication scene navigation flow 29
4.8 Dashboard scene navigation flow 30
4.9 Insight scene navigation flow . 30
4.10 Create Form scene navigation flow 31
4.11 Budgets scene navigation flow . 31
4.12 Profile scene navigation flow . 31
4.13 Main scenes UI . 32
4.14 Additional screens UI . 33

5.1 Cloud Firestore NoSQL data model [46] 37
5.2 Data binding diagram example . 39
5.3 Clean Architecture scheme [53, 54] 40
5.4 Main layers of the app based on [54] 41
5.5 Data flow diagram for creating a wallet based on [54] 43

xiii

List of Tables

2.1 Features comparison . 11

3.1 Requirements coverage . 20

xv

List of Listings

5.1 An authentication example using Firebase Authentication . . . 36
5.2 Persisting data on Cloud Firestore 37
5.3 An example of persisted transaction in JSON 37
5.4 A Cloud Functions example in TypeScript 38
5.5 Data binding code example . 39
5.6 Domain layer components example implementation 41
5.7 Data Layer components example implementation 42
5.8 Presentation Layer components example implementation 42
5.9 Dependency Injection example implementation 44
5.10 Coordinator Pattern using XCoordinator [59] library 46
5.11 Creating and laying out UI components example 47
6.1 A unit test example . 50
6.2 A UI test example . 51

xvii

Introduction

The first smartphone appearance was in the late 90s; however, it was no later
than in 2007, when Apple has introduced its first iPhone, that smartphones
have gained on popularity [1]. In today’s digital world, a smartphone has
become one of the necessities in daily life thanks to its well-tailored features.
Owing to this technological jewelry, modern technology has permeated mobile
applications, affected, and advanced every aspect of our lives. [2] Smartphones
solve various day-to-day problems using a great number of applications. One
of the problems we might have or encounter in the future is keeping finances
under control.

Even though being organized is not an inborn skill, spending money on
nonessentials is. As a consequence, it is simple to lose track of expenses
and end up living from hand to mouth. With budgeting, we can prioritize
spending, manage finances better, or build new habits. Therefore, it allows
us to reach our long-term goals while maintaining financial health—whence
the motivation of creating an application further presented in the thesis.

Numerous applications already solve the described problem; however, ei-
ther they are inadvertently complicated for a regular end user, visually obso-
lete, or lacking apparent features. The following chapters describe the aim of
the thesis and analyze existing solutions. Other chapters are devoted to the
application’s design, implementation, and testing. Finally, distribution and
further development possibilities are specified.

1

CHAPTER 1
Goals and Methodology

The main objective of this bachelor thesis is to develop a mobile application for
iOS devices. The application will allow users to track, manage finances, and
create budgets, which will be of substantial benefit to their financial health.
Users will be able to take full control over their expenses and incomes, using
the application’s provided features.

Another goal is to address existing solutions that are popular in the mobile
market. An analysis will be conducted on their primary assets and drawbacks,
based on which the application’s functional as well as non-functional require-
ments will be identified. Regardless of the recency of the finance tracking
applications, the author strongly believes that tastes differ. For this reason,
there will always be room for improvement and to target a different group of
users.

Furthermore, to support the thesis’ goal, possible technologies and best
practices in iOS mobile development will be discussed. Last but not least,
the application’s implementation will conform to the discussed subjects and
Software Engineering development processes as much as possible, with the
consideration of the author’s experience and knowledge.

The application will be tested using various testing methods that the au-
thor found most suitable for the solution. Finally, future development and
distribution will be described.

3

CHAPTER 2
State of the Art

Despite the fact that the worldwide App Store [3] market is congested with
mobile applications (apps) for finance management and budgeting, not every
solution is perfect or available to every user. Such solutions are, for the most
part, impractically sophisticated. Other solutions, on the other hand, offer
few primary features; however, the essential ones are locked out from users by
a paid subscription plan. Whichever the case, it might discourage users from
using such apps.

Hence, the following chapter analyzes the Czech App Store’s current so-
lutions, i.e., Spendee, Wallet, Pocket Expense 6. Each app was chosen based
on its relevance, ratings, or popularity. It is no surprise that they have sev-
eral features in common. Therefore, the aim is to mainly focus on the below
listed fundamental features, which the current solutions have in common, and
identify their advantages and disadvantages. A conclusion and comparison of
features of all analyzed apps (Table 2.1) is available at the end of the chap-
ter. In addition, in this chapter, wallets and accounts, or transactions and
records are used more or less interchangeably since the terms are referred to
differently in the analyzed apps.

• User Profile

• Wallets

• Budgets

• Categorization

• Filter and Search

• User Interface (UI) / User Experience (UX)

5

2. State of the Art

(a) Overview screen (b) Wallet screen

Figure 2.1: Spendee app preview

2.1 Spendee
Spendee [4] is a personal multi-platform budgeting app, which is available
on the web, iOS, and Android Operating System (OS). Originating from the
Czech Republic, and with over three million downloads, it is also one of the
country’s most popular budgeting apps. Apart from the local mobile market,
it is also available in more than 150 countries. This section addresses the
iOS version only. [5]

Features
The app alone is free; however, its main features (as stated in the app’s de-
scription [4]) are noticeably limited by a subscription plan users have—free or
premium. Some of them are discussed in the paragraphs below.

User profile While some apps do not require having an account, Spendee
does. It is due to a sharing feature, which allows users to share their
wallets with others. For that, users are forced to create a profile using
either an e-mail, Facebook, or Google account. Users then are able to
change their first name, last name, or add their birthdate.
Nonetheless, it is convenient that the registration is swift and does not
involve e-mail address verification. On the flip side, the app immedi-
ately shows a pop-up dialog after finishing the registration offering its
premium subscription plan, which is an awful way to state that the app’s
functionalities are beforehand limited.

6

2.1. Spendee

Wallets A wallet represents a place, i.e., a bank, a saving, or a cash account,
where users track their transactions. The feature simulates the real-
world scenario, in which each user has a various number of accounts.
As a result, users are able to track various types of finances separately.

While premium users have an unlimited number of wallets, a free user
is only provided with one single wallet. Even though it is the only draw-
back, it has, at the same time, devalued its only advantage. Without
multiple wallets, it is just a bucket of bills crowded in one place.

Budgets This feature sets a certain limitation on the user’s wallet for one
or a few categories. It then handles and shows all transactions in given
categories and displays a percentage of money spent, which provides
users with some understanding of their financial habits and might help
them spend less, thus save more. Similar to the previous feature, the
ability to create multiple budgets is only accessible to premium users.

Categorization This feature allows users to maintain their finances orga-
nized. Users can categorize their transactions either by categories, notes,
or hashtags1. The app comes with a pre-defined list of categories, which
users may easily change or add. What is more, it is possible to create
as many of them as needed. Later in the app, each transaction may be
categorized.

Filter and search The app only supports searching, which outputs trans-
actions matching a queried phrase—yet only those that are categorized.
The result unfolds depending on what was searched.

UI/UX

The app’s user interface is modern, clean, and yet very simple. Its UI colors
depend on the user’s mobile color theme, i.e., light or dark. After launching
the app, users are presented with a wallet’s primary screen, which contains
a list of transactions, where they can quickly check the current balance and
expenses, see Figure 2.1b. In-app navigation is intuitive. To navigate through
screens such as a list of transactions, a wallet’s overview, or settings, one can
use a tab bar situated at the bottom of the mobile screen. Even though a few
bugs were found during the analysis, the overall impression matches the app’s
rating.

1Hashtag is a metadata tag often used on social sites [6].

7

2. State of the Art

(a) Overview screen (b) Wallet screen

Figure 2.2: Wallet app preview

2.2 Wallet
Wallet [7], or WalletApp, is another favored personal finance management app
from a Czech startup, Budgetbakers [8]. Apart from three million downloads,
an excellent rating of 4.7 out of 5 stars on the App Store, and features de-
scribed below, it is worth mentioning that the Budgetbakers boasts the newest
functionality, which, at the time of writing the thesis, was being tested in the
beta versions of the app. This functionality allows users to make actual fi-
nance transactions within the app, making Wallet the first-ever budgeting app
providing such a feature. [9]

Features
In contrast to Spendee, Wallet is equipped with a greater number of (free)
features and statistic tools, which would be a perfect match for demanding
users, yet, on the contrary, complicated for simple or new users in a budgeting
app. Conceivably, not all of them are free of charge. Besides, what is worth
mentioning is the app’s gaming feature that tracks the user’s satisfaction with
their records.

User profile Much the same as the previous app, users can sign-up via the
same means as well as are not required to verify the e-mail address.
Following the sign-up, the app offers an introductory account base cur-
rency and an initial balance setting. Users can also personalize their
profile by filling out additional information, adjust their data and pri-

8

2.2. Wallet

vacy consents (geolocation tracking, advertisement e-mails, or customer
segmentation), and even delete the profile.

Wallets The app provides users with up to three accounts; any other amount
is unfortunately available for premium users only. Regardless, account
creation is straightforward and accompanies users with relevant account
settings, such as a current balance, type of account, currency, color,
or a possibility to exclude the account from overall statistics. Such
a process is a feature Spendee does not offer even with its only wallet.

Budgets Surprisingly this feature is limitless, which means there is no end
to creating and tracking budgets in the app. The feature clearly shows
how much money users spent and the amount left in a specific budget.
Each of the budgets then stores related records, which are only at the
paid users’ disposal, with detailed statistical information.

Categorization There are two means of categorization—categories and la-
bels. Categories have more or less the same purpose as the previous
app and differ in their customization. There are eleven categories pre-
pared in advance, which can only be edited (users cannot create nor
delete them). Additionally, each category includes several subcategories,
which are only editable as well. Nonetheless, it is possible to add other
subcategories.
A label is a characterizing word that is given to an object. In essence,
it should be a self-explanatory word/phrase that describes the object.
In the app, labels carry the exact purpose. For clarity, users are able to
differentiate them by defining colors. Simple as it is, colors are another
paid feature.

Filter and search The app meticulously tracks the user’s records and dis-
plays them detailly in statistic graphs. Users then may alter their con-
tent by filtering. Primary criteria on the filter are accounts and a period
that it ought to be applied. Furthermore, users can set custom filters,
for instance, categories, labels, currencies, and many more.

UI/UX
The whole app is made in a basic UI that conforms to the design standards [10]
of iOS development, which allows for natural navigation and usage of the
app. The main downside is the fact that some screens are overloaded with
information, which might seem, to a certain extent, chaotic. Another aspect
that is displeasing to the user’s experience is the stacking of screens on one
another. A real-life example would be accessing a bottom card in a stack of
cards. To get that card, one would need to remove all of the above cards.
A preview of the app is shown in Figure 2.2.

9

2. State of the Art

(a) Overview screen (b) Wallet screen

Figure 2.3: Pocket Expense app preview

2.3 Pocket Expense 6
Pocket Expense [11] is in comparison with the previous apps less popular, and
yet offers equally competitive design and services, as shown in Figure 2.3. The
app is preferably suited for users who do not expect sophisticated insights or
graphs and make do with fundamental budgeting tools.

Features
Unlike the previous apps, Pocket Expense has a little bit of every analyzed
feature. Although it seems to be perfect at first sight, the features share
many both positive and negative aspects.

User profile As opposed to the previous app, Pocket Expense only provides
a sign-up using an e-mail. However, it is absorbing that it also gives users
an option to sign-up “password-less”, which requires e-mail verification.
Unfortunately, due to an application-side error, this feature could not
be tested. Regarding the profile itself, it serves as a way of exporting or
restoring the user’s data (while the export feature is paid) as there is no
further profile personalization except for changing a profile’s photo.

Wallets As a free user, there is only one account available with no initial
setup—a premium profile is required to create multiple accounts with
user customization. The account is by default set with US currency,
which seems to be bound to the profile, not an account.

10

2.3. Pocket Expense 6

Budgets Users of the app are predestined to save money utilizing a single
budget with one non-changeable category once the budget is created.
The app then displays the amount left in the budget as users add their
expenses in the tracked category tied to actual expenditure.

Categorization Users can organize their expenses in categories, of which
they may have an unlimited number. Similarly to the above apps, each
tracked transaction is tied to one category, or in this case, split to mul-
tiple categories, for instance, a payment regarding two separate items.

Filter and search The filter feature changes the content of insights of either
all accounts or one specific account. With the filter usage, users can dis-
play transaction statistics from a chosen filtered period, such as a week,
month, year, or custom time.

The search is an elaborate and fast feature that finds transactions satis-
fying the search phrase, which can be a category, note, payee, or amount.
Furthermore, it is possible to search for related transactions of the same
category within the list of transactions, see Figure 2.3a.

UI/UX

Despite being unpopular, the app is styled with a trending UI, unambiguous
elements, and icons, making the app accessible even for users without any
previous experience with this type of application. The app presents a list of
transactions on launch that appears to be showing everything the user needs;
however, elements are missing in the term of UX. It is ambiguous on what
category the expenditure was spent. The app also provides an option to create
a transaction with split categories, which means splitting the transaction’s
amount into several categories. Such transactions are displayed ambiguously
as well. Above that, the app has video advertisements, which cannot be
dismissed until users have watched them.

Feature
App Spendee Wallet Pocket Expense 6

User Profile 3 3 3

Unlimited wallets
Unlimited budgets 3

Categorization 3 3 3

Filter 3 3

Search 3 3

Table 2.1: Features comparison

11

2. State of the Art

2.4 Summary
The purpose of this chapter was to analyze the relevant existing solutions
based on criteria/features that were regarded as essential for budgeting ap-
plications and describe their advantages and disadvantages. The following
Table 2.1 shows a comparison of the provided features of analyzed apps.

The outcome of the analysis results in two main supportable conclusions.
Firstly, each app allows users to create a user profile, which stores their data
for possible backup, and secondly comes with monetization that limits the
fundamental features of the app. It is crucial to provide users with as many of
those features as possible, and potentially monetize only additional features,
for instance, detailed insights or wallet sharing. Therefore, the future design
and implementation of the thesis will be conducted in regards to the mentioned
conclusions.

12

CHAPTER 3
Requirements Analysis

Requirements analysis is an integral process and critical to the success of
software development that must be exhibited to constrain an environment
in which the app will exist [12, p. 2–1]. Therefore, this chapter’s objective
is to provide a definition of such requirements that are generally of two types:
functional and non-functional. Both requirements were set on the ground of
the analysis in the previous Chapter 2 and are essential to defining the app’s
functionalities and scope. What is more, the chapter describes basic use cases
that are derived from the functional requirements.

3.1 Functional Requirements
This section introduces essential functional requirements of the thesis app,
which describe functions or components the app must offer as well as their
intended behavior—sometimes known as capabilities [12, p. 2–2].

F1 User account Each user must have an account to use the app, which can
be created during the registration process. After registration or sign-in
with an existing account, the user will not be required to do so again.
The signed-in user session will be active until the user does not explicitly
request to sign out.

F2 Wallets Users will be able to create an unlimited number of wallets.
As the name suggests, a wallet will have a current balance and provide
additional information such as the sum of the current month’s expenses
and incomes and a list of transactions that were made in the wallet.

F3 Budgets Users will be able to set up an unlimited number of budgets.
Each budget must specify a budgeting amount and list of categories that
are to be considered within the budget (budgeted categories).

13

3. Requirements Analysis

F4 Transactions Users will be able to create, edit, or delete transactions at
any point. Each transaction is bound to a wallet and must contain an
amount and category. Apart from these attributes, it may include a title
or a note for better categorization.

F5 Categories The app will provide users with a small number of prede-
fined categories; however, the users will also be able to create categories
of their own at any time. The main purpose of categories will be for
transaction categorization.

F6 List of transactions The app will have a list of transactions that will
contain records of one or all wallets. Each such list will only display the
ones inside the range of a specific period—i.e., an active filter.

F7 Filtering Users will be capable of filtering their transactions in the app
by a period of time to gain a better grasp of their finances.

F8 Sorting Users will be capable of sorting their transactions by creation
date, category, or amount.

F9 Searching Users will be able to search for their transactions by title,
description, amount, or category; however, only within the active filter
(a period of time).

F10 Insight The app will offer visualized statistical insights of the user’s
finances for one or all wallets (wallet’s spendings over time, incomes and
expenses, and the most spent categories). Within the insight, users will
be able to filter various periods and manage the filtered transactions.

F11 Localization The app will be localized in two languages—English and
Czech.

3.2 Non-functional Requirements
Apart from the functional requirements (see Section 3.1) that specify an app’s
behaviors, non-functional requirements specify criteria, constraints, and qual-
ities of an app, which means elaborating various characteristics: performance,
security, compatibility, and so on [12, 13]. These characteristics will have
a significant impact on architecture design.

N1 iOS App The app will be implemented for iOS devices supporting the
operating system iOS 13 and newer.

N2 Security The app will provide users with a secure way to authenticate
so that their personal data will be safe.

14

3.3. Use Cases

N3 Clean UI/UX The app will wear a simple and cleanly tailored design
by using recommended guidelines.

N4 Data persistence The app will store user data on an online server.

N5 Testability The app will be implemented in such a manner that the
app’s core functionalities will be easy to test. What is more, those
functionalities must be covered by appropriate tests.

N6 Scalability The app must be implemented so that the app can be easily
scaled in future development.

3.3 Use Cases
This section describes the necessary use cases that should clarify the behaviors
of functional requirements—defined in Section 3.1—under various conditions.
It is basically a conversation between the user, called the primary actor, and
the system. The user interacts with the system that responds accordingly [14].
Understanding the use cases significantly facilitates the UI design discussed
in Section 4.3 and gives well-laid documentation for acceptance tests in Chap-
ter 6. To check the coverage of requirements see Table 3.1.

Additional information

• For all use cases below, the primary actor is User.

• Notation <UC6 Display current transactions> means that the use case
uses the same flow the use case in the notation.

UC1 Sign-up
The user must have an Internet connection and an existing e-mail address,
which has not been registered in the system, to create an account successfully.
If these conditions are met, the system will create a new account under the
given credentials and automatically sign the user in.

• Pre-condition: System is connected to an Internet connection; User
has an e-mail address.

• Post-condition: System will have created a new account with the
given credentials and an initial wallet.

• Flow:

1. User selects to sign up.
2. System presents a sign-up screen.
3. User provides required credentials.

15

3. Requirements Analysis

4. System processes the credentials.
5. System creates a new account.
6. System signs User in.
7. System presents a wallet creation screen, in which User can set up

an initial wallet.

• Extensions:

4a. System fails to process the credentials.
4a1. System reports the failure to User.
4a2. User either cancels the flow or tries again.

4b. User provides an already registered e-mail.
4b1. System notifies User.

UC2 Sign-in
To sign in, the user must have an existing account and an Internet connection
to authenticate his credentials. Given that valid credentials were provided,
the system will sign the user in. In case the user was already signed in, the
whole flow is skipped and will continue to the system’s main screen.

• Pre-condition: System is connected to an Internet connection; User
has an account.

• Post-condition: User will be signed in.
• Flow:

1. User selects to sign in.
2. System presents a sign-in screen.
3. User provides required credentials.
4. System processes the credentials.
5. System signs User in.

• Extensions:

1a. User is already signed in.
1a1. User proceeds to the main screen.

4a. System fails to process the credentials.
4a1. System reports the failure to User.
4a2. User either cancels the flow or tries again.

16

3.3. Use Cases

UC3 Create a wallet
When creating a wallet, the user must provide the wallet’s necessary informa-
tion, such as the wallet’s name and initial balance.

• Pre-condition: User is signed in.
• Post-condition: System will have created a new wallet.
• Flow:

1. User selects to create a wallet.
2. System presents a wallet creation screen.
3. User provides required information.
4. User confirms the creation process.
5. System creates the wallet.

UC4 Create a transaction
The user must have at least one wallet to create a transaction that will be
bound to it.

• Pre-condition: User as at least one wallet.
• Post-condition: System will have created the transaction.
• Flow:

1. User selects to create a transaction.
2. System presents a transaction creation screen.
3. User fills in the necessary information about the transaction, in-

cluding a category and a wallet to which the transaction will be
bound.

4. User confirms the creation process.
5. System creates the transaction.

UC5 Display current transactions
• Flow:

1. User selects a wallet or all wallets for which to display the transac-
tions.

2. System presents the selected wallet(s).
3. System presents the list of transactions.

17

3. Requirements Analysis

UC6 Display transaction detail and edit it
The user will be able to edit any existing transaction if he has at least one.

• Pre-condition: User has at least one transaction.
• Post-condition: System will have changed and stored changes of the

transaction.
• Flow:

1. <UC5 Display current transactions>
2. User selects a transaction to edit.
3. System presents a transaction detail screen.
4. User selects to edit the transaction.
5. System presents a transaction edit screen.
6. User edits the transaction as needed.
7. User confirms the changes.
8. System stores the changes.

UC7 Filter out transactions
Given a list of transactions, the user will be able to filter out transactions
based on a given criterium, which will leave only transactions that satisfy it.

• Flow:

1. <UC5 Display current transactions>
2. User selects to filter transactions.
3. System presents a filtering form, in which User can set it up.
4. User chooses to filter transactions by period “Month”.
5. System alters the list of transactions leaving only the ones that

were created in a given month.

UC8 Sort transactions
Given a list of transactions, the user will be able to sort transactions based
on creation date, amount, title, or category.

• Flow:

1. <UC5 Display current transactions>
2. User selects to sort transactions.
3. System presents a sorting form, in which User can set it up.

18

3.3. Use Cases

4. User chooses to sort transations by category.
5. System alters the list of transactions so that they are ascending-

ly/descendingly sorted by category.

UC9 Search transactions
Given a list of transactions presented by the system based on the active filter,
the user will be able to search transactions within it. The search will depend
on a searched keyword—that is, date created, title, note, category, or amount.

• Flow:

1. <UC5 Display current transactions>
2. User selects to search transactions.
3. User enters a keyword “Gro”.
4. System presents a list of transactions that contain the searched

keyword.

• Extensions:

4a. System cannot find any transaction satisfying the given keyword.
4a1. System presents an empty list of transactions.

UC10 Edit transaction after searching
At any time anywhere transactions are available (through a list of transac-
tions), the user will be able to select a transaction to perform an action—for
instance, editing.

• Pre-condition: User has at least one transaction.
• Post-condition: System will have changed and stored changes of the

transaction.
• Flow:

1. <UC9 Search transactions>
2. <UC6 Display transaction detail and edit it starting from step two>

UC11 Display wallet’s insights
• Pre-condition: User is signed in; User has at least one wallet.
• Flow:

1. User selects to view insight of a wallet.

19

3. Requirements Analysis

2. User either selects a specific wallet or all wallets to view the insight
for.

3. System presents an insight screen that includes statistical informa-
tion for the selected wallet within a certain period of time.

4. User performs desired actions, such as filtering or editing available
transactions.

UC12 Change app’s language
• Post-condition: System will have changed its language from Czech

to English, and vice versa.
• Flow:

1. User selects to change the app’s language from the device settings.
2. User changes the system language from Czech to English.
3. User confirms the change.
4. System changes the app’s language accordingly to the set language

in the device.

UC13 Create a transaction that affects a budget
• Pre-condition: User has an active budget for “Groceries” category.
• Post-condition: System will have created a transaction; System will

have changed the budget’s balance accordingly.
• Flow:

1. <UC4 Create a transaction> with “Groceries” category
2. System increases the budget’s spent amount by the given amount.

Use Case
Requirement F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

UC1 3 3

UC2 3

UC3 3

UC4 3

UC5 3 3

UC6 3 3 3

UC7 3

UC8 3 3 3

UC9 3 3

UC10 3 3 3

UC11 3 3

UC12 3

UC13 3 3

Table 3.1: Requirements coverage

20

CHAPTER 4
Design

The following chapter conceptualizes the work’s solution and forms a detailed
architecture meeting software requirements mentioned in Chapter 3. Encom-
passes the solution design that presents iOS development fundamentals, the
domain model of the work, final screen prototypes, and creates a clear struc-
ture for the upcoming stage of the software development process.

4.1 iOS Development
This section provides an insight into the iOS development environment. How-
ever, the aim is not to describe aspects of the environment in detail yet instead
give brief information on key parts of iOS development used in this work later
on.

4.1.1 Objective-C and Swift

Objective-C is an object-oriented programming language used by Apple since
the early 1980s that inherits the advantages from the first programming lan-
guages C and Smalltalk [15]. Since Objective-C is over 30 years old, it became
harder for new developers to learn and understand as the language aged. It
was not until June of 2014, during the annual Worldwide Developer Confer-
ence (WWDC) event, that Apple unveiled a new programming language called
Swift [16].

Despite both languages being native languages to code Apple products
and have corresponding App Programming Interfaces (API) and frameworks
(Cocoa, Cocoa Touch), they are not alike. Swift offers more powerful tools and
modern coding solutions for safer, faster, and more expressive code. Thanks to
a simpler syntax, Swift is more human-friendly and has a fast learning curve,

21

4. Design

making it more suitable for new iOS developers [16, 17]. That said, it was
chosen as the programming language for the following development.

4.1.2 UIKit and SwiftUI
The current development on iOS provides developers with two design
frameworks—UIKit and SwiftUI. Both frameworks allow developers to design
their app’s interfaces from scratch using the provided toolkit.

UIKit It is an event-driven framework built on imperative programming
paradigms [18, 19] that has been around for more than ten years [20],
making it as robust as possible. UIKit has gained comprehensive sup-
port over the years and provides a broad API coverage that supplies
developers with various library adaptations [21] to develop their apps
on the iOS platform.

SwiftUI This framework, released in 2019 at WWDC [22], brings devel-
opers a new modern way to design their app’s interfaces not only on
the iOS platform but also on all Apple platforms (macOS, tvOS, and
watchOS) [20, 23]. It uses declarative syntax, which might require
changing one’s perspective when transitioning from UIKit. Since SwiftUI
is a relatively young framework that is still evolving, it is unsurprising
that it is not feature-complete, which means it does not offer advanced
UI components that might be in other frameworks. Despite that, some
believe that SwiftUI is to replace the UIKit in years to come [21].

Given that SwiftUI does not provide broad API coverage as UIKit, is not
detaily supported and well-documented, the upcoming development phase im-
plements the work using the first framework. Regardless of what framework
is chosen, the implementation in Chapter 5 provides a generic solution for
both frameworks.

4.1.3 Architectural Patterns
If the decades-long software development has proven anything to be practical,
it is an architectural pattern. It has been giving developers solution blocks
that deliver effective solutions to structure the data flow, data storage, control
flow, and many more in any application [24, 25]. Therefore, it is vital at
this early stage of development to decide what architecture the app will be
built in to constrain the app’s quality attributes and meet the non-functional
requirements in Section 3.2.

Model-View-Controller

Model-View-Controller (MVC) is one of the widely used architecture patterns
in iOS development [26]. It has been around since the early days of Smalltalk

22

4.1. iOS Development

and is recommended by Apple that builds its frameworks on the same archi-
tecture pattern [27, 28].

It consists of three main components—i.e., model, view, and controller ob-
jects. Model objects encapsulate the application’s domain data and should not
be explicitly connected to view objects that present them. The view objects’
purpose is to display the model’s data and communicate user interactions to
controller objects. Thus the controller objects are mediators between models
and views, handle the application business logic, and manage other objects’
life cycle [29]. For better visualization, see Figure 4.1.

Even though the MVC pattern is relatively simple in theory, and works
perfectly for smaller-sized projects [30], in practice, view and controller objects
tend to become much more tightly coupled [31], which breaks the pattern and
leads to a so-called Massive View Controller [30]. As the project grows in
size, the controller’s responsibility gradually increases and makes it handle
responsibilities that it ought not, for instance, navigating or networking. Such
structure leads to an error-prone and hard to test codebase [30].

Controller

Notify

Model

User Action

View

UpdateUpdate

Figure 4.1: Interaction of MVC components according to [29]

Model-View-ViewModel

Model-View-ViewModel (MVVM) is another popular pattern [26], which
is very similar to MVC. Both of them assert the concept of Separation of
Concerns (SoC). Nevertheless, there are two main differences.

Firstly, it combines controller and view objects into one view object with
minimal responsibility compared to MVC controller objects [32]. Its primary
role is to manage UI components, handling user interactions, and binding
user data to a view model (called data binding, which is explained in Subsec-
tion 5.2.1). As a consequence, the pattern avoids Massive View Controller.

Secondly, it introduces a new object called view model specifically de-
signed for a view object responsible for handling any presentational logic,
such as transforming data into a human-readable form, which was initially
the controller’s responsibility in MVC [33]. Thus it plays a similar role as the
controller object; however, it separates concerns more.

View objects no longer own model objects but directly ask view model
objects that they own for the data necessary to update the UI. Such SoC
reduces the complexity of the view (controller) objects as the business logic
is moved out from it. More importantly, it increases the code’s testability
as the business logic does not depend on the view implementations. [34]
Moreover, as shown in Figure 4.2, the data flow is unidirectional, which helps
any codebase to be scalable in the future [35].

23

4. Design

Model ViewModel View

(View Controller

Notify Notify

Update Data Binding

Figure 4.2: Interaction of MVVM components according to [34]

4.1.4 Supported OS
When developing an iOS application, it is important to decide which minimum
iOS version the app will support. This decision will impact not only the app’s
availability but also the accessibility of the newest OS API. A “current minus
one” rule is often applied, which narrows the versions down to the latest and
previous iOS version. [36]

At the beginning of 2020, iOS13—the newest iOS version at the time—
usage was around 70% while iOS12 at round 23% [37]; however, with the re-
lease of iOS14 in September 2020 [38], iOS13’s usage has currently decreased
down to a mere 18% of all iPhone devices, making iOS14 the most used
iOS with 72% usage [39]. Given the statistics, the vast majority of iPhone
users update their devices to the newest iOS each year; thereby, iOS13 will
be the minimum supported version.

4.2 Application’s Domain
A domain model helps to identify the relevant concepts and ideas of a domain.
It decomposes the domain into individual conceptual classes or objects—that
reflect the real world—and visualizes the associations between them using
Unified Modeling Language (UML) notation. [40] See Figure 4.3.

The central object of the domain is a transaction that partakes in every
event in the app. For a transaction to exist, it has to belong to a category
and a wallet. While transactions are existentially dependent, categories and
wallets are not. Users will be able to create such transactions and provide
detailed attributes to characterize and categorize their spendings. During the
transaction’s lifetime, it can be regarded in one or more budgets if its category
is budgeted. The domain identifies various types of categories, wallets, and
filters. Moreover, the domain identifies four core scenes of the application:

• Dashboard: presents a list of transactions recorded in the current
month that belong to an active wallet. The user can change the ac-
tive wallet in the filter.

• Insight: shows insights of user’s spendings within the selected filter.

• Budgets: users can create budgets for the current month for one or
multiple categories.

• Profile: manages the user’s information.

24

4.3. User Interface

«Kind»
Person

«Role»
User

«SubKind»
Finance Application

isUserAuthenticated: Boolean [1]

{immutablePart}

◄ /is registered in

0..*

1

{essential, inseparable}
1

1

«Kind»
Scene

«SubKind»
Insight

«SubKind»
Budgets

{disjoint}

«SubKind»
Profile

«Category»
Category

◄ belongs to 0..*
{inseparable}

1

«Relator»
Authentication

Provider

«Mediation»

1..*

1

«Mediation»
11..*

«Kind»
Account

has ►
«Material»

1

11

1..*

«Relator»
Budget

amount: Float [1]
spent: Float [1]
isExhausted: Boolean[1]

«SubKind»
Active Wallet

«Mediation»

0..*

0..*

1

«Mediation» 1

0..*

«Role»
Filtered Transaction

/is affected by ►
«Material» 10..*

«Role»
Dashboard Transactions

«Mediation»
0..*1..*

/in categories
«Material»

1..*

0..*

«Role»
Budgeted Transaction

«RoleMixin»
Filtered

List of Transactions

/is displayed in

«Material»

1

0..*

«Role»
Insight Transactions

«SubKind»
Dashboard

1

1

1

1

«Kind»
Transaction

created: Date [1]

0..*

1

«SubKind»
Month

«SubKind»
Week

«SubKind»
Year

«Kind»
Wallet

balance: Float [1]

createTransaction(): Void

10..*
{inseparable}
belongs to ►

belongs to ►
{inseparable}

The result of Filter might not
return any Filtered

Transaction, whilst a Filtered
Transaction may be

displayed in one list only.
«Relator»

Filter

rangeStart: Date [1]
rangeEnd: Date [1]

«Mediation»

1

1

«Mediation»
1 1

Figure 4.3: Application domain’s conceptual model

4.3 User Interface
Designing the UI is only a small yet vital part of developing any software
application [41]. Therefore, for the UI design to succeed, it is necessary to
gain a clearer picture of the future users’ needs. The design is created based
on the previous existing solutions, requirements analysis, and the use cases
mentioned in Chapter 3.

The following section focuses on the designing process that follows Ap-
ple’s iOS Human Interface Guidelines [10] designing principles, as well
as Jakob Nielsen’s ten heuristics for interaction design [42]. However, the
objective is not to follow the guidelines step by step—following them is not
as straightforward as following a cooking recipe as they are purposely general
to make them broadly applicable [43]—but instead, use them as a ruler to
stay on the best practices track.

4.3.1 iOS Human Interface Guidelines
The iOS Human Interface Guidelines provide in-depth information and UI re-
sources for achieving a consistent appearance across iOS applications. The

25

4. Design

following are some of the UI components and techniques from the guideline
that this work’s app uses to meet the platform’s standards [10]:

App Architecture

Launch screen A launch screen appears immediately after an app starts.
Its purpose is not artistic, but to enhance the app’s perception as quick
to launch and ready for use. Every iOS app must have a launch screen.

Navigation Navigation is an important part of an app’s design. The
UI ought to be implemented so that the navigation feels natural and
familiar. The app uses a combination of flat and hierarchical navigation
style, which is the root of navigation flow.
On the top level, there are content categories (called “Scenes” in Sec-
tion 4.3.3) in the form of a single-level tree that allows users to switch
from one scene to another. Each lower level of flat navigation represents
hierarchical navigation that lets users navigate in a one-directional way
(down or up). An illustration of the combined navigation style is de-
picted in Figure 4.4; or in Section 4.3.3 that describes scene flow in more
detail.

Hierarchical

Flat

Figure 4.4: Hierarchical and flat navigation style
combined based on styles mentioned in [10]

Modality Modality is a design technique that presents content—an alert or
a modal view—in a temporary mode that is separate from the user’s
current context and requires an explicit action to exit. See Figure 4.6.
The app uses this technique to separate the primary navigation flow
from secondary flows. For instance, displaying a budget’s detail screen,
as Section 4.3.3 describes, is still in the Budgets scene’s main flow, while

26

4.3. User Interface

the secondary flow is navigating to a transaction’s detail screen from
within the budget’s detail screen.

(a) Alert (b) Modal View

Figure 4.5: Modality presentation types [10]

UI Components

Tab bars 4.6a A tab bar is used as a top-level component in the flat navi-
gation style that has the ability to navigate between different scenes of
an app swiftly. It appears at the bottom of an app screen and consists
of buttons with a label and icon. The tab bar uses buttons strictly for
navigation instead of performing actions.

Navigation bars 4.6b A navigation bar allows users to navigate through
a series of hierarchical screens by stacking them on one another. When
this happens, the navigation bar displays a back button indicating pos-
sible navigation backward. It may also have additional control items for
managing the active view.

Search bars 4.6c As the name suggests, a search bar allows users to type
text into a field, which leads to searching for results in some collection
of data. It should be noted that the search bar does not perform the
actual searching—that the developer must implement himself—but in-
stead provides native appearance and animations.

Tables 4.6d A table displays large or small amounts of information cleanly
in a single-column list of rows. It can be used to present data or as an
entry point to means of navigation.

Buttons 4.6e A button performs an app-specific action, for instance, to cre-
ate or cancel editing a transaction, and appears either in navigation bars
or at the bottom of the app screen.

As can be seen in Figure 4.13, owing to the UIKit framework all of the
above mentioned components can be greatly customized to match the app’s
style.

27

4. Design

(a) Tab Bar (b) Nav Bar (c) Search Bar

(d) Table (e) Button

Figure 4.6: Core UI components used in the app [10]

4.3.2 Nielsen’s Design Heuristics

The ten general heuristics for interaction design by Jakob Nielsen is a usability
engineering method for finding drawbacks of a designed UI to be addressed
and fixed during the design process. [42]

Some ambiguities were resolved in time owing to the heuristics. For in-
stance, one of the heuristics—the visibility of system status, which says the
app should always keep users informed about its current status—has led to
adding/fixing a missing empty state of table components. Therefore, the final
screen presents an illustration with a message stating that the user does not
have any data in the table, delivering much clearer experience.

4.3.3 Scenes Design

The analysis in the previous chapters led the UI design to break into six main
scenes 2—Dashboard, Insight, Create Form, Budgets, and Profile. The follow-
ing sections describe each scene including their navigation flow illustration. All
designs are visible in Figure 4.13.

2The work defines a scene as a group of multiple screens, which form one functional unit
for which it makes sense to create a unified navigation flow.

28

4.3. User Interface

Authentication
The scene is quite simple. It consists of two text fields to fill in credentials and
“a confirm button” to perform the authentication action. An additional but-
ton is placed below this button to redirect users to a different authentication
flow (see Figure 4.7), where Google Account can be used to authenticate. If
the user does not have an account, he can switch to a sign-up screen to create
one. The screens are almost identical except for an extra text field to enter
the user’s name. See Figure 4.13a.

The scene is error preventive (fifth heuristic of [42]), so the confirm button
is initially disabled to prevent the user from triggering the action without
providing the required credentials. Furthermore, the scene presents alerts in
the event of unsuccessful authentication.

Sign-Up

Screen

Google

Sign-in/up

Screen

Figure 4.7: Authentication scene navigation flow

Dashboard

A Dashboard scene is pertained to display the most critical and valuable
information in an app in one place. The analysis has identified three essential
pieces of information to display to the users.

The scene displays an active wallet’s 3 name, current balance, and cashflow
indicating expenditures and earnings at the top of the app screen, as illustrated
in Figure 4.13b. Under the wallet’s name, users can see the current date.
Beneath this section, users can find the current month’s list of transactions
belonging to the active wallet.

Moreover, the scene provides users with search and sort functionalities to
find and organize their spendings by tapping on dedicated icons/labels; and
are able to view a transaction’s detail screen by tapping on the transaction
or change the active wallet by tapping on the wallet’s name. For the scene’s
navigation flow, see Figure 4.8.

Insight

The Insight scene provides users with a visual illustration of their wallet’s
spendings in some period, which the users may alter in provided filter func-

3An active wallet is either one or all of the user’s wallets set to be displayed. In other
words, it is a default wallet on which users can perform various actions the app provides.

29

4. Design

Search

Screen

Sort

Action

Sheet

Transaction
Detail

Screen

List

of

Wallets

Screen

Figure 4.8: Dashboard scene navigation flow

tionality. The UI reflects the set filter with clear labels of the selected wallet’s
name, a textual description of the period, and a table of transactions. Fur-
ther, the scene presents the spendings in the form of a bar and pie chart—one
visible at a time—each showing different sets of data. The bar chart shows
spendings aggregated by time, while the pie chart shows data by four most
spent categories. Within the Insight, users are able to view a transaction’s
detail screen as well.

Filter

Screen

Transaction

Detail

Screen

Figure 4.9: Insight scene navigation flow

Create Form

The F4 Transactions requirement defined in Section 3.1 states a transaction
must be createable at any point. To meet the requirement, the creation of
transactions cannot be within some scene; instead, it has to be a scene itself.

Besides, adding new transactions will probably be the most performed
action, which adds to the importance of having this functionality easily acces-
sible. As presented in Figure 4.13b, the scene’s button is designed as glowing
to diverge from others to emphasize on its importance. However, doing so,
the design breaks the guidelines [10] recommendations not to execute actions
from tab bar buttons. This is an example when it is not straightforward to
follow the guidelines step by step, and sometimes it is necessary to design the
UI as the domain requires.

The form (Figure 4.13d) allows users to create a transaction by filling in
the amount, transaction’s title, note, and date. Further, users can change
the type of the transaction by tapping on “Expense” or “Income”, change to
which wallet, and to which category the transaction is going to belong.

30

4.3. User Interface

List

of

Wallets

Screen

List

of

Categories

Screen

Figure 4.10: Create Form scene navigation flow

Budgets

The scene’s main screen (Figure 4.13e) is a table of budgets. Each budget
is displayed as a cell containing the budget’s name, the actual budget, and
both visual and percentage indicator of the amount spent. To create a new
budget a button with “plus” icon is provided on the right side of the navigation
bar. A budget’s detail screen (see Figure 4.14), where users can see additional
information such as budgeted categories and transactions, is presented by
tapping on a cell.

New

Budget

Screen

Budget
Detail

Screen

Figure 4.11: Budgets scene navigation flow

Profile

The Profile scene (Figure 4.13f) shows the user’s name and e-mail address.
The current scope only allows users to manage their wallets and categories
from the scene or log out.

List

of

Wallets

Screen

List

of

Categories

Scree

Authentication

Scene

Figure 4.12: Profile scene navigation flow

31

4. Design

(a) Authentication (b) Dashboard (c) Insight

(d) Create Form (e) Budgets (f) Profile

Figure 4.13: Main scenes UI

32

4.3. User Interface

(a) Budget detail (b) Creating new category (c) Empty state

(d) Transaction detail (e) Searching (f) Sort action sheet

Figure 4.14: Additional screens UI

33

CHAPTER 5
Implementation

In light of the work’s objective and the previous analysis, the following chapter
describes the work’s most important process, separated into two main sections.
The first section gives a brief overview of the technologies used for the server-
side implementation of the app. The second section explains how most parts of
the app are implemented, starting from the codebase structure to navigation
to UI components layout creation.

5.1 Firebase Backend
Firebase is Google’s application development platform that helps develop-
ers build scalable mobile and web applications using the infrastructure built
on Google services. The platform provides functionalities like analytics,
databases, messaging, user authentication, and crash reporting. [44]

In other words, the Firebase platform as the backend is an additional ap-
plication that is accessed through the Internet via provided API from frontend
clients—the iOS app. This section is concerned about Firebase technologies
used in the implementation process to disburden the client-side app business
logic from the backend-side logic, which will be of great benefit in the long-run
as both codebases will be insulated.

5.1.1 Firebase Authentication

Firebase Authentication is one of Firebase’s services that provide end-to-end
identity solutions, supporting e-mail and password accounts, phone authen-
tication, and authentication using social network accounts like Google, Face-
book, GitHub, and many more. The service removes the burden of implement-
ing a secure authentication system from scratch, which is incredibly difficult

35

5. Implementation

without any prior knowledge. In addition to that, it also provides a cus-
tomizable drop-in authentication API that handles the UI flow for signing
users. [45]

The current implementation leverages the service’s advantages of let-
ting users easily sign-in or sign-up using an e-mail and password account
or a Google account. Listing 5.1 shows how the Firebase Authentication API
takes care of the hard part of authenticating users. The API performs an asyn-
chronous method signIn(email:password:completion) in the background
leaving only the responsibility of handling its callback. In the event of an
error, an alert is presented to the user; otherwise, the application navigates
to the app’s main screen.

1 typealias Handler = (Result<Void, Error>) -> Void
2
3 /// Authenticate user using an e-mail password account.
4 func signIn(email: String, password: String, handle: @escaping Handler) {
5 Auth.auth().signIn(withEmail: email, password: password) {
6 result, error in
7 if let error = error {
8 handle(.failure(error))
9 return

10 }
11
12 // handle callback - i.e. navigate to Dashboard Scene
13 handle(.success(()))
14 }
15 }

Listing 5.1: An authentication example using Firebase Authentication

5.1.2 Cloud Firestore
Cloud Firestore is a serverless NoSQL document-oriented database that allows
developers to build hierarchies to store, synchronize, and query data structured
in the form of collections and documents [46]. As Figure 5.1 shows, a collec-
tion is the root element of the data model containing multiple documents.
Documents are objects containing the stored data as key-value pairs and may
even contain subcollections [47].

Using Firestore, the app is able to store user’s data online, allowing data
sharing across multiple devices in case the user is signed-in on more devices.
Additionally, Firestore offers seamless integration with other Firebase ser-
vices, including Firebase Authentication and Cloud Functions (read Subsec-
tion 5.1.3) [46]. That said, the database is chosen to be the only persistence
storage for the app due to its provided services.

The data model of the database consists of one root users collection
containing documents for each registered user. A user’s document, identi-
fied by the registered e-mail address, holds four subcollections—categories,
wallets, transactions, and budgets—persisting precisely what the name
suggests.

36

5.1. Firebase Backend

Document1

Document1 Document1

Document2

Document2 Document2

Document3

Document3 Document3

Collection

Subcollection Subcollection

Figure 5.1: Cloud Firestore NoSQL data model [46]

Persisting users’ data is made simple using Firestore API and Swift’s
Codable protocol [48]. The Codable protocol provides easy data serialization
to and from an external representation, such as JavaScript Object Notation
(JSON), which is perfect since Firestore represents the data in JSON for-
mat [49]. Listing 5.2 demonstrates how a transaction is created and persisted
in the database without the need for explicit serialization, whereas Listing 5.3
shows the transaction’s representantion in JSON.

1 struct Transaction: Codable {
2 let title: String
3 let amount: Double
4 }
5
6 let database = Firestore.firestore()
7
8 /// Create a transaction for a specific user
9 func create(_ transaction: Transaction) {

10 do {
11 // the serialization is done internally thanks to Codable protocol
12 _ = database.collection("users")
13 .document("userId") // an example user identifier
14 .collection("transactions")
15 .addDocument(from: transaction)
16 } catch let error { /* handle error state */ }
17 }

Listing 5.2: Persisting data on Cloud Firestore

1 {
2 "title": "Shopping",
3 "note": "Bought food for dinner",
4 "amount": 634.78,
5 "category": { "name": "Grocery" },
6 "walletRef": { /* FIRDocumentReference */ }
7 }

Listing 5.3: An example of persisted transaction in JSON

37

5. Implementation

5.1.3 Cloud Functions
Cloud Functions is a serverless service that lets developers implement and de-
ploy JavaScript or TypeScript backend code in the cloud. The code is deployed
to Google’s Cloud infrastructure and gets executed in response to events trig-
gered by Firebase; for instance, Firestore read and write events. The service
is fully insulated from both the database and the iOS client application, so it
guarantees a certain level of separation and scalability of both codebases as one
is not dependant on the other. It is absorbing to note that using Cloud Func-
tions, a part of the codebase is not reverse-engineerable. [50]

This solution is suitable for performing additional operations next to the
app’s primary operations. For instance, creating a default list of categories on
every user’s registration or performing a side-effect when creating a transaction
(e.g., altering a wallet’s balance). The example code in Figure 5.4 illustrates
the implementation of onCreate cloud function that is triggered whenever the
user creates a transaction, or more precisely, whenever a write event occurs in
the user’s Transactions collection. Alternatively, a similar function may be
triggered upon read or update events as well.

1 export const updateWalletOnTransactionCreate = functions.firestore
2 .document("users/{userId}/transactions/{transactionId}")
3 .onCreate(async (change, context) => {
4 const transaction = change.data() // the created transaction
5 const userId = context.params.userId
6 const db = admin.firestore()
7
8 // async. retrieve wallet's snapshot to alter its balance
9 const walletSnap = await db

10 .collection("users")
11 .doc(userId)
12 .collection("wallets")
13 .doc(change.data().walletId)
14 .get()
15
16 // calculate new wallet balance and income/expense
17 // based on the transaction type
18 await walletSnap.ref.update({
19 /* new wallet state with updated balance */
20 })
21 })

Listing 5.4: A Cloud Functions example in TypeScript

5.2 iOS Application
The following section outlines the iOS client’s implementation process for
personal finance management and budgeting. The text proceeds chrono-
logically similarly to how the implementation does, i.e., starting from the
project’s structure planning and dependency management to navigation be-
tween screens to the realization. The mentioned process has a significant
impact on the codebase’s final internal structure, considering how it will be

38

5.2. iOS Application

testable, scalable, and reusable in the future. Finally, the section describes
the process of creating the UI and the steps during the implementation of
several important features.

5.2.1 Reactive Programming
Mobile applications expect to be interacted with by users, and the personal
finance app is no exception. The interaction is represented as an event such
as tapping on a button to create a transaction. Such an event changes the
UI and the state of the application. A list of transactions gets refreshed and
updated with the newly created transaction, a title displaying the current
wallet’s balance changes by an amount, or a budget’s spent amount changes
due to the transaction being in a budgeted category.

Hence, the reactive programming paradigm, which provides a way of work-
ing with asynchronous data and propagation of change [51], is used in the
implementation to handle these events in a clean and maintainable manner.
More specifically, the implementation utilizes the RxSwift library, which lets
developers write asynchronous code reacting to new data and events in a se-
quential, isolated manner [52]. Moreover, RxSwift goes well with view model
objects as it allows simple data model binding. As Figure 5.2 and Listing 5.5
show, a view model object exposes Observable<T> properties that are bind
directly to view object’s UI components [52].

Transaction ViewModel

ViewController

UILabel

UILabel

UIDatePicker

Observable<Double>

Observable<String>

Observable<Date>

Figure 5.2: Data binding diagram example

1 // view model object with exposed observables
2 final class TransactionsListViewModel {
3 let title: Observable<String>
4 let amount: Observable<String>
5 }
6
7 // view object
8 final class TransactionsListViewController: UIViewController {
9 var viewModel: TransactionsListViewModel!

10
11 /// Data binding the view model's exposed observables to UI components
12 func bindViewModel() {
13 viewModel.title.bind(to: titleLabel.rx.text).disposed(by: bag)
14 viewModel.amount.bind(to: amountLabel.rx.text).disposed(by: bag)
15 }
16 }

Listing 5.5: Data binding code example

39

5. Implementation

5.2.2 Clean Architecture and MVVM
Clean Architecture is an architectural pattern introduced by Robert C. Martin,
which main role is to provide the Separation of Concerns (SoC). The separa-
tion is achieved by dividing the architecture into at least two layers—one for
business rules and one for interfaces—with specific responsibilities. Amongst
the main advantages of this pattern, and the reasons the architecture has
been chosen for the implementation of this work, are testability, scalability,
independent UI, and independent database. [53]

The primary rule of Clean Architecture is the Dependency Rule. The rule
says that the code’s dependency flow can only go from the outer layer inward,
as depicted in Figure 5.3. The code in the inner layers has no knowledge
or whatsoever about functions, classes, or variables on the outer layers, e.g.,
the code cannot have a use case implementation that is dependant on the
implementation of a database. [53]

Although Figure 5.3 shows that the architecture is structured into four
layers, according to [53], the number of circles is a rule of thumb and should
reflect the software’s needs. Nevertheless, the Dependency Rule should always
be applied. Therefore, after generalizing all layers, the code’s structure is di-
vided into three main layers—domain, data, and presentation—which suits
the needs of iOS development with MVVM pattern, see Figure 5.4.

Database

UI

API

Presenters

Use Cases

Domain Layer

EntitiesDependency Rule

Data Layer

Presentation Layer

Figure 5.3: Clean Architecture scheme [53, 54]

Domain layer

The domain layer is the inner-most layer of the architecture containing entities,
use cases, and repository interfaces. It is the core of the application, which
is fully isolated from other layers, making the layer fully testable [54].

40

5.2. iOS Application

Presentation Layer

(MVVM)

Domain Layer

(Business Logic)

Data Layer

(Data Repositories)

Dependency Dependency

Figure 5.4: Main layers of the app based on [54]

1 // Entity
2 struct Wallet {
3 let id: String
4 let type: WalletType
5 let name: String
6 let balance: Double
7 let income: Double
8 let expense: Double
9 }

10
11 // Repository interface
12 protocol WalletsRepository {
13 func create(_ wallet: Wallet) -> Observable<Void>
14 }
15
16 // (3) Use Case interface and implementation
17 protocol CreateWalletUseCase {
18 func execute(_ wallet: Wallet) -> Observable<Void>
19 }
20
21 final class CreateWalletUseCaseImpl: CreateWalletUseCase {
22 private let walletsRepository: WalletsRepository
23
24 init(walletsRepository: WalletsRepository) {
25 self.walletsRepository = walletsRepository
26 }
27
28 func execute(_ wallet: Wallet) -> Observable<Void> {
29 return walletsRepository.create(wallet)
30 }
31 }

Listing 5.6: Domain layer components example implementation

Data layer

The data layer contains concrete implementations of repositories defined in
the domain layer. This layer manages any communication with the Firestore
database and takes care of the data’s serialization to the domain entities,
which means it has to be dependent on the domain layer.

Presentation layer

The presentation layer is where the application’s interface logic is handled.
It contains UI components, view model objects (presenters), and view objects
from the MVVM design pattern. In order to present data to users, the layer
needs to be dependent on the domain layer only.

41

5. Implementation

1 // Repository implementation
2 final class WalletsRepositoryImpl: WalletsRepository {
3 private let firestoreService: FirestoreService
4
5 init(firestoreService: FirestoreService) {
6 self.firestoreService = firestoreService
7 }
8
9 // dependency on the domain layer's entity

10 func create(_ wallet: Wallet) -> Observable<Void> {
11 // firestoreService creates and persists a new wallet on Firestore
12 // returns an observable sequence that emits Void
13 // as the response once the process has finished
14 return firestoreService.createWallet(wallet)
15 }
16 }

Listing 5.7: Data Layer components example implementation

1 // (1) View object
2 final class WalletsViewController: UIViewController {
3 var viewModel: WalletsViewModelType!
4
5 private let createWalletButton = UIButton()
6
7 func bindViewModel() { // data binding to the view model
8 createWalletButton.rx.tap
9 .bind(to: viewModel.onCreateWalletButtonTapped)

10 .disposed(by: bag)
11 }
12 }
13
14 // (2) View Model object
15 final class WalletsViewModel: WalletsViewModelType {
16 // exposing observable for data binding
17 let onCreateWalletsButtonTapped = Observable<Void>.just(())
18
19 // dependency on the domain layer's use case
20 init(createWalletUseCase: CreateWalletUseCase) {
21 onCreateWalletButtonTapped
22 .map { Wallet() }
23 .flatMap { createWalletUseCase.execute($0) } // executing use case
24 .subscribe(onNext: { // handling response
25 // successfully created - refresh list of wallets
26 }, onError: {
27 // an error occured - show an alert
28 })
29 .disposed(by: bag)
30 }
31 }

Listing 5.8: Presentation Layer components example implementation

Example

Listings 5.6, 5.7, and 5.8 and Figure 5.5 presents a diagram exemplifying the
data flow of the UC3 Create Wallet use case (see Section 3.3) and demonstrates
how each layer’s component is glued together to implement the functional-
ity. Per MVVM’s definition in Subsection 4.1.3, WalletsViewController
(the view object) handles the user’s request to create a wallet and unidirec-
tionally forwards the request to WalletsViewModelType, which executes the
CreateWalletUseCase. After receiving an asynchronous response from the

42

5.2. iOS Application

WalletsRepository, the use case passes the response back to the view model
that updates the UI with a newly created wallet or presents an alert if an
error occurs. Also, note that the separation of the architecture into the three
layers does not break the Dependency Rule since:

1. WalletsViewController is a UI component from the outer-most blue
layer,

2. WalletsViewModelType is a Presenter from the green layer,

3. CreateWalletUseCase is a Use Case from the red layer,

4. WalletsRepository is the Database component from the outer-most
blue layer, as Figure 5.3 shows.

WalletsViewController

(UI)

1

WalletsViewModelType

(Presenter)

2

WalletsRepository

4

CreateWalletUseCase

3
Request

Response

Dependency Rule Dependency Rule

Presentation Layer Domain Layer Data Layer

Figure 5.5: Data flow diagram for creating a wallet based on [54]

5.2.3 Dependency Management
With the given structure defined in the previous Subsection 5.2.2, it is clear
that the implementation involves a considerable amount of layers and com-
ponents, creating a certain relationship between one another—a dependency.
Dependencies in the implementation are managed by a principle called De-
pendency Injection (DI).

According to [55], the Dependency Injection, which uses the fifth principle
of SOLID, Inversion of Control (IoC), provides:

• better and easier application Unit testing and scalability,

• less boilerplate for the initialization of dependencies is done by the in-
jector component,

• and enabling loose coupling.

Although numerous libraries and implementations exist providing DI,
the application’s implementation uses protocol composition [56] with an
initializer-based injection method [57] to manage dependencies in the project

43

5. Implementation

without the need for a third-party library. Using this method, all de-
pendencies can be declared in one singleton class AppDependency, which
is injected in other component’s initializators. Owing to the protocol
composition, the injected component does not have access to every de-
pendency declared in AppDependency, but only the one’s it conforms to
with protocol conformance. The following example in Listing 5.9 shows
how DI of CreateWalletUseCase’s dependency on WalletsRepository and
TransactionsRepository is achieved. Note that the WalletsRepository
and WalletsRepositoryImpl are taken from Listing 5.6 and Listing 5.7. Also,
note how the IoC is applied.

1 // Dependency protocols
2 protocol HasWalletsRepository {
3 var walletsRepository: WalletsRepository { get }
4 }
5
6 protocol HasTransactionsRepository {
7 var transactionsRepository: TransactionsRepository { get }
8 }
9

10 /// A container storing all dependencies required in the app
11 final class AppDependency {
12 // to achieve only one instance of AppDependency in the app
13 static let shared = AppDependency()
14 private init() { }
15
16 // Implementing conformance to dependency protocols - stored dependencies
17 lazy var walletsRepository: WalletsRepository = {
18 WalletsRepositoryImpl()
19 }()
20 lazy var transactionsRepository: TransactionsRepository = {
21 TransactionsRepositoryImpl()
22 }()
23 lazy var anotherRepository: AnotherRepository = {
24 AnotherRepositoryImpl()
25 }()
26 }
27
28 // AppDependecy's conformance to dependency protocols
29 extension AppDependency: HasWalletsRepository { }
30 extension AppDependency: HasTransactionsRepository { }
31 extension AppDependency: HasAnotherRepository { }
32
33 /// A Use Case component that is dependent on WalletsRepository
34 final class CreateWalletUseCaseImpl: CreateWalletUseCase {
35 // Protocol composition - composes two protocols together (or more...)
36 typealias Dependencies = HasWalletsRepository & HasTransactionsRepository
37
38 init(dependencies: Dependencies) {
39 // can access the WalletsRepository and TransactionsRepository only
40 // the AnotherRepository is inaccessible as the Dependencies type
41 // does not conform to HasAnotherRepository protocol
42 dependencies.walletsRepository.create() // accessing the dependency
43 dependencies.transactionsRepository.doSomething()
44 }
45 }
46
47 /// Initialization of a component with its dependency
48 let createWalletUseCase: CreateWalletUseCase =
49 CreateWalletUseCaseImpl(dependencies: AppDependency.shared)

Listing 5.9: Dependency Injection example implementation

44

5.2. iOS Application

5.2.4 Navigation
As the root container for the main scenes, the combined navigation style, men-
tioned in Subsection 4.3.1, is implemented using UITabBarController, and
UINavigationController, as the root component for the underlying hierar-
chical navigations. Each scene has its own UINavigationController con-
sisting of a root view controller. The UITabBarController manages each
UINavigationController and controls which navigation controller is dis-
played.

The navigation within each scene is implemented using
UINavigationController that defines a stack-based scheme. When-
ever the user navigates deeper in a navigation flow, a view controller
is pushed on the navigation controller’s stack. On the contrary, a view
controller is popped from the stack whenever the user navigates back in
a navigation flow. Since navigation controllers manage view controllers on
their stacks, only the top-most view controller is displayed. In some cases,
a view controller is modally presented over the top-most view controller.

Coordinator Pattern

Most of the business and presentational logic has been moved out of the view
controller objects using the MVVM design pattern, which greatly solves the
Massive View Controller problem. However, the responsibility to control the
navigation in the application is still encoded in a view controller’s code. This
responsibility is separated from view controllers using a Coordinator Pattern
introduced by Soroush Khanlou [58].

The navigation code is decoupled from the view controller and moved to
a coordinator object. Each scene has its Coordinator accountable for cre-
ating the navigation controller’s root view controller, view controllers, and
the navigation between them, i.e., pushing, popping, or presenting view con-
trollers. Practically, the Coordinator starts the navigation flow of a scene.
See Listing 5.10 demonstrating the implementation of coordinator pattern us-
ing XCoordinator [59] library.

5.2.5 UI Components
Every UI component in the app is created entirely programmatically, without
using Storyboards and XIB (XML Interface Builder) files. A programmatic
UI provides better performance making the app build faster since it does
not have to load XIB files from disk and convert them to NIB (NeXTSTEP
Interface Builder) files [60, 61]. Further, components in code are more familiar
for developers, better to debug, provide more control, and especially easier to
resolve merge conflicts [61].

Nonetheless, the programmatic approach’s downside is worse visualization
of the UI and app’s flow as the component’s creation is not maintained in one

45

5. Implementation

1 import XCoordinator
2
3 // each route represents a possible step in a navigation flow
4 enum InsightRoute: Route {
5 case insight
6 case filter
7 }
8
9 /// A coordinator managing a navigation controller

10 final class InsightCoordinator: NavigationCoordinator <InsightRoute> {
11 init() {
12 // initialize the coordinator with an initial route
13 super.init(initialRoute: .insight)
14 }
15
16 /// Decide how to transition to the given route
17 /// - pushing, popping (or dismissing if a view controller is presented

modally)
18 override func prepareTransition(for route: InsightRoute) ->

NavigationTransition {
19 switch route {
20 case .insight:
21 // injecting a weak reference of the InsightCoordinator instance
22 // into view controller's view model to trigger different
23 // routes in the navigation flow
24 let viewmodel = InsightViewModel(router: unownedRouter)
25 let viewController = InsightViewController(with: viewmodel)
26 // push on the navigation stack
27 return .push(viewController)
28 case .filter:
29 // present the view controller modally
30 return .present(FilterViewController())
31 }
32 }
33 }
34
35 final class InsightViewController: UIViewController {
36 private let viewModel: InsightViewModelType
37
38 init(with viewmodel: InsightViewModelType) { self.viewModel = viewmodel }
39
40 override viewDidLoad() {
41 super.viewDidLoad()
42 // tell the view model to navigate to the filter screen
43 viewModel.navigateToFilter()
44 }
45 }
46
47 final class InsightViewModel {
48 private let router: UnownedRouter<InsightRoute>
49
50 init(router: UnownedRouter<InsightRoute >) { self.router = router }
51
52 func navigateToFilter() {
53 // trigger the filter route on InsightRoute
54 // (will call the prepareTransition(for:) method)
55 router.trigger(.filter)
56 }
57 }

Listing 5.10: Coordinator Pattern using XCoordinator [59] library

place compared to Storyboards [61]. Additionally, laying out UI components
is required to be done programmatically as well using Auto Layout. Natively,
using either NSLayoutConstraint class or Visual Format Language (VFL),
which allows creating constraints using ASCII formatted strings [62]. In any
case, the current implementation uses a library called SnapKit [63], providing

46

5.2. iOS Application

the same functionalities as the native methods do; however, making the laying
out more readable with less code. Listing 5.11 below shows the usage of
SnapKit to create a UIView component within another one filling its space
with padding and the comparison with the NSLayoutConstraint code. All
UI components in the implementation are using the demonstrated method.

1 import SnapKit
2
3 let superView = UIView() // creating component
4 let childView = UIView()
5 let padding: CGFloat = 20
6
7 superView.addSubview(childView)
8
9 // NSLayoutConstraint version

10 // enable custom Auto Layout constraints
11 childView.translatesAutoresizingMaskIntoConstraints = false
12 NSLayoutConstraint.activate([
13 childView.leadingAnchor.constraint(equalTo: superView.leadingAnchor,
14 constant: padding),
15 childView.trailingAnchor.constraint(equalTo: superView.trailingAnchor,
16 constant: -padding),
17 childView.topAnchor.constraint(equalTo: superView.topAnchor,
18 constant: padding),
19 childView.bottomAnchor.constraint(equalTo: superView.bottomAnchor,
20 constant: -padding)
21])
22
23 // SnapKit version
24 childView.snp.makeConstraints {
25 $0.edges.equalToSuperview().inset(padding)
26 }

Listing 5.11: Creating and laying out UI components example

47

CHAPTER 6
Testing

This chapter is an overview of the software testing process conducted during
and after the implementation process. The app’s testing is separated into
three test types—unit, UI and usability tests. The following sections describe
each test, how it is carried out, and what the results are.

6.1 Unit Tests
As part of the testing, the source code also includes a set of unit tests to
ensure the correctness of individual units of the app. The unit tests follow the
FIRST principles, which are:

• Fast: tests should not take long to execute,

• Independent: tests should be isolated from the testing environment,

• Repeatable: tests should always return the same result, regardless of
the testing environment,

• Self-validating: the programmer should not validate the test’s result,

• Thorough: tests should cover as many use cases as possible. [64]

To write and make unit testing follow the “Three A’s of Testing: Ar-
range, Act, Assert” (also referred to as Given-when-then), the tests use Swift’s
XCTest framework [65], which includes XCTestCase class for defining test cases
and test methods. The testing environment is set by overriding XCTestCase's
setUp() method giving space to the definition of an initial custom state set
before each test. After each test, the environment may be cleaned up by
calling an overridden tearDown() method.

49

6. Testing

Additionally, the tests use RxTest [66] library for testing reactive streams
of data written in RxSwift. This library provides extra testing functionalities,
such as TestScheduler, that allows easy data stream testing in a virtual time,
thanks to which events that are emitted over time can be tested [52].

The testing process checks most of the application’s view model logic, for
instance, sorting, filtering, searching, or credentials format validation. More-
over, with the provided DI (see Section 1), the view model’s dependencies
are effortlessly replaced with mocked implementations conforming to required
protocols. For example, the MockedAppDependency contains mocked imple-
mentations of services and repositories used in view models. Listing 6.1 puts
all of the above in an example demonstrating a unit test for the searching
functionality. The functionality is expected to return a set of transactions,
which attributes (title, amount, date created, etc.) match the search phrase.

1 final class TransactionsSearchViewModelTests: XCTestCase {
2 private var viewModel: TransactionsSearchViewModelType!
3
4 override func setUp() {
5 super.setUp()
6 let mockedTransactions = [
7 Transaction(amount: 10, title: "Robot"),
8 Transaction(amount: 100, title: "Robert"),
9 Transaction(amount: 120, title: "Berta"),

10 Transaction(amount: 200, title: "Bot"),
11 Transaction(amount: 400, title: "Root"),
12 Transaction(amount: 412, title: "Rotob")
13]
14
15 scheduler = TestScheduler(initialClock: 0)
16 viewModel = TransactionsSearchViewModel(// dependency injection
17 allTransactions: mockedTransactions,
18 dependencies: MockedAppDependency.shared
19)
20 }
21
22 func testSearchByAmount() {
23 // for observing events emitted by the viewModel
24 let filteredObserver = scheduler.createObserver([Double].self)
25
26 // observer 'filtered' observable
27 viewModel.outputs.filtered.drive(filteredObserver).disposed(by: bag)
28
29 // mock user typing search phrases - .next(event time, search phrase)
30 // and bind to the view model (mocks data biding)
31 let mockedEvents = [.next(10, "1"), .next(20, "12"), .next(30, "")]
32 scheduler.createColdObservable(mockedEvents)
33 .bind(to: viewModel.inputs.onSearchTextTyped)
34 .disposed(by: bag)
35
36 scheduler.start()
37
38 // test exact time and result
39 XCTAssertEqual(filteredObserver.events, [
40 .next(10, [10.0, 100.0, 120.0, 412.0]),
41 .next(20, [120.0, 412.0]),
42 .next(30, [10.0, 100.0, 120.0, 200.0, 400.0, 412.0])
43])
44 }
45 }

Listing 6.1: A unit test example

50

6.2. UI Tests

6.2 UI Tests
Due to the fact that individual UI components were manually tested in parallel
with the implementation using a simulator, UI tests were given less attention.
Regardless, the source code contains several UI tests validating the UI against
business requirements, i.e., the scene’s initial state correctness or the screen’s
state after some workflow.

The UI tests are written with the support of the XCTest framework and
XCode’s recording tool that records the developer’s interaction with the sim-
ulator, converting them to code that is later asserted. Below, Listing 6.2
illustrates a single UI test that checks the initial state of a screen.

1 var app: XCUIApplication!
2
3 override func setUp() {
4 super.setUp()
5 app = XCUIApplication()
6 app.launch()
7 }
8
9 func testDefaultBudgetCreateScreenState() throws {

10 // generated by the recording tool
11 app.tabBars["Tab Bar"].buttons["Budgets"].tap()
12 app.navigationBars["Budgets"].buttons["Add"].tap()
13
14 // assert UI components' state
15 for cell in app.tables.cells.allElementsBoundByIndex {
16 XCTAssertFalse(cell.isSelected)
17 XCTAssertTrue(cell.isEnabled)
18 }
19
20 XCTAssertFalse(app.buttons["Create"].isEnabled)
21 }

Listing 6.2: A UI test example

6.3 Usability Tests
The usability test is a method of testing the intuitiveness of the app’s de-
sign using a group of representative users, which oftentimes leads to exposing
design flaws in terms of both the UI and the functionality of the app’s fea-
tures. Also, this method helps to understand the target group’s behavior and
discover opportunities to make improvements. [67]

The aim is to address a small group of testers having experience in using
similar apps. Alternatively, the users showing interest in using such an app.
Before the testing, the app’s characteristics and basic features were shared
with each tester. Testers received an identical set of intuitive and straight-
forward tasks to perform (see Subsection 6.3.1)—such tasks are critical to
understand for day-to-day usage of the app. Moreover, these tasks were to
validate the fulfillment of the functional requirements defined in Section 3.1.

51

6. Testing

The testing was conducted separately, and each tester was required to think
out loud to understand his behavior, thoughts, and motivations better.

6.3.1 Test Scenarios
The following list of test scenarios describes individual tasks carried out dur-
ing usability testing. The descriptions only provide brief information about
what is required to do, not the steps how or what is expected to happen,
so as not to limit the tester’s freedom of choice. This method has been chosen
to deduce the app’s intuitiveness from the tester’s actions better and whether
the outcome matches the tester’s expectations.

1. Registration
Register as a new user and proceed as required. You do not necessarily
have to use your personal e-mail address.

2. Adding transactions
Create one or more transactions with information as you see fit and
choose to display one of the transactions detail screen. Also, try adding
a transaction in “Sport” category.

3. Editing transaction
Choose one of the trasanctions you have created, edit it as you want and
save the changes.

4. Adding wallets, categories and budgets
Go around the app and create one wallet, category, and budget.

5. Viewing a budget detail
Look into one of your budget’s detail to see what categories the budget
includes.

6. Searching
Search for a transaction that you have added before.

7. Viewing statistics
See how much you have spent in the current month and in what cate-
gories. After seeing the statistics, you have realized that the numbers
do not add up. Delete one transaction.

8. Sorting
Sort the current month’s transactions by an amount to see what was
your highest transaction.

52

6.3. Usability Tests

6.3.2 Results
The usability testing was attended by five testers of various backgrounds and
experience with financial apps. Two of them were using another similar app
at the time, whereas the rest were iOS users who wanted to get involved with
such an app. The testing was held in-person with the author and each tester
individually. The testers were given a brief time to explore the app, considering
the fact that it was their first time using it. Therefore, it was a must for
them to go through the app at least once to grasp the app’s navigation and
UI elements layout.

The test scenarios were to verify the app’s most critical use cases’ intu-
itiveness, which owing to the testing and the testers’ feedback, have proved
to be clear and intuitive. Despite the fact that testers were able to complete
all tasks successfully, there still were a few uncertainties during the testing.
Below are the issues, which were appropriately changed based on the testers’
report:

• The label showing a wallet’s current balance did not format the amount
clearly, making larger amounts hard to read. Therefore, a decimal num-
ber formatting has been added to the labels showing an amount.

• It was not apparent that some labels could trigger an action, for instance,
wallet’s name in the Dashboard scene or the selection of category while
creating a transaction. As a result, a downward icon has been added,
indicating action.

• While editing a transaction, it was not obvious which fields were editable.
In response, fields that are not editable have been disabled or have an
indicating icon hidden.

• It was not intuitive what keywords the user could search transactions by;
hence, the placeholder changed from “Search” to “Search by transaction
attributes”.

Further, as reported by the testers, the app and the navigation within
felt natural and intuitive by dint of clean separation of scenes, workflows, and
native design. The workflows contained the same UI elements in various places
in the app with the same functionality, making them understandable. Also,
the workflows did not require tricky navigation making features comfortably
accessible.

53

CHAPTER 7
Results and Future

Development

7.1 Results
The result of this bachelor thesis is a fully functional prototype of the spec-
ified mobile application meeting the requirements in Chapter 3. Compared
to the existing solutions analyzed in Chapter 2, the final app provides every
analyzed feature, i.e., allows users to create an account, lets users create an
infinite number of wallets and budgets, manages transactions under various
categories for better categorization, and offers transactions sorting, filtering
and searching.

Nevertheless, it is apparent there are many differences in the provided
features, the most notable of which is the unlimitedness of wallets and budgets
or the absence of extra features such as transaction labels, or an overview of
wallets. However, the final prototype is implemented to provide the necessary
yet critical features required to manage personal finances and budgeting.

7.2 Future Development
Although the app provides all fundamental features for personal finance man-
agement app, there are variety of ideas in regards its improvement. These
ideas should be taken into consideration before deploying the app to produc-
tion.

Onboarding The usability testing outcome resulted in the necessity of on-
boarding flow as the testing users appreciated a brief introductory time
to explore the app. The app would present an onboarding flow to the

55

7. Results and Future Development

user upon its first installation, describing essential feature flows and ele-
ments. Such a feature would significantly improve the user’s experience
when onboarding.

Local data persistence While it was not acknowledged during the devel-
opment as an essential feature, storing the user data in local persistent
storage would decrease the user’s network data usage and increase the
app’s performance considering restoring the app’s state and displaying
already downloaded data. Additionally, the feature would allow users
to create transactions offline when the network is unavailable.

Improve budgets Since the current implementation allows users to create
monthly budgets only, future versions of the app could provide more
options such as daily, weekly, or yearly budgets. Also, the created budget
is not reoccurring, which means users cannot set the budget to reappear
each period.

Profile customization Although profile customization is a matter of needs
in such an app, future versions could allow users to change their e-mail
address and password.

Notifications To further improve users’ experience using the app, it could
automatically send notifications as a reminder to record daily expendi-
tures and revenues. The app could as well allow users to set up custom
notifications.

Support different platforms Considering the app’s availability, it would
be of great benefit if the app was available on different platforms such
as macOS, web, or Android. It would give users various options on where
to use the app and attract new users.

7.3 Distribution
The app has not been published yet due to the unavailability of a paid Apple
Developer Program account mandatory for its distribution. Therefore, the
app’s future development might consider publishing it to the App Store.

The project needs to be thoroughly tested and prepared before distribution
by providing required information such as a unique bundle ID, build string,
app icon, and launch screen. One should take caution when setting the in-
formation since most of them is not editable after the distribution. With an
active Apple Developer account and a ready-made project, the application
can then be archived and uploaded to the App Store Connect for applica-
tion distribution using the TestFlight testing platform or through the App
Store. [68]

56

7.3. Distribution

While TestFlight is used to distribute beta versions of the app to internal or
external testers, the App Store distributes production versions. To distribute
the app on the App Store, it must undergo strict app quality control, so it
is necessary to submit the app to App Review, which verifies the fulfillment
of Apple Store Review Guidelines. Only after the app is approved, it can be
published to the App Store. [69]

57

Conclusion

This bachelor thesis’ primary objective was to design an iOS mobile applica-
tion, which would provide users with a straightforward way to manage their
personal finances and budgets. Another goal was to analyze existing solutions,
emphasizing their advantages and disadvantages, based on which functional
and non-functional requirements would be defined. Finally, develop a func-
tional prototype of the mobile application, which would subsequently be the
subject to appropriate tests.

Prior to the application’s design, an analysis of existing solutions was
performed, specifically Spendee, Wallet, and Pocket Expense. Based on this
analysis, the shortcomings of these solutions were identified, and the main
functional requirements of the designed application were defined. The anal-
ysis was followed by the design of the application, during which great focus
was placed on the design of sustainable architecture, reusability, scalability,
and testability of the code base, as well as the simplicity of the user interface.
During the development, best practices were applied, and proven technologies
in iOS mobile development were used. Throughout the implementation, the
application was continuously tested by the developer, and in the final part
was subjected to usability testing. Finally, possible steps for future develop-
ment were described. The result of this work is a fully functional prototype
that meets all defined goals and requirements. Additionally, the application
is ready for future development.

Last but not least, working on the bachelor thesis has provided the au-
thor with the opportunity to try the whole process of software development
all alone, starting from the analysis through the design to the implementa-
tion and the testing process. It has undoubtedly allowed the author for the
acquirement of valuable knowledge and experience in writing academic work
and broadening his horizons of iOS mobile development and software devel-
opment methodologies.

59

Bibliography

1. GORDON, Kyle. Topic: Smartphones. In: statista.com [online] [visited
on 2020-04-16]. Available from: https://www.statista.com/topics/
840/smartphones.

2. Impact of Smartphones on Society – Use of Mobile Phones. In: keyideas-
infotech.com [online] [visited on 2020-04-16]. Available from: https :
//www.keyideasinfotech.com/blog/impact- of- smartphone- on-
society.

3. App Store [online]. Apple Inc., © 2020 [visited on 2020-04-17]. Available
from: https://www.apple.com/ios/app-store.

4. CLEEVIO S.R.O. Spendee - peníze a rozpočty [software]. Version 3.15.8
[visited on 2020-04-17]. Available from: https://apps.apple.com/cz/
app/spendee-pen%C3%ADze-a-rozpo%C4%8Dty/id635861140?l=cs.

5. Case Studies – Spendee [online]. Cleevio, © 2008–2020 [visited on 2020-
04-16]. Available from: https://www.cleevio.com/spendee.

6. Hashtag [online]. Wikimedia Foundation [visited on 2020-04-17]. Avail-
able from: https://en.wikipedia.org/wiki/Hashtag.

7. BUDGETBAKERS S.R.O. Wallet – příjmy a výdaje [software]. © 2016.
Version 2.12.1 [visited on 2020-04-28]. Available from: https://apps.
apple.com/cz/app/wallet-daily-budget-profit/id1032467659.

8. Budgetbakers [online]. BudgetBakers s.r.o, © 2016 [visited on 2020-04-28].
Available from: https://budgetbakers.com.

9. HOLZMAN, Ondřej. Revoluce u Budgetbakers, v aplikacích českého star-
tupu půjde i platit. Hlásíme se o místo nad všemi bankami, říká jeho šéf
[online]. CzechCrunch [visited on 2020-04-28]. Available from: https:
//www.czechcrunch.cz/2020/04/revoluce- u- budgetbakers- v-
aplikacich- ceskeho- startupu- pujde- i- platit- hlasime- se- o-
misto-nad-vsemi-bankami-rika-jeho-sef/.

10. Human Interface Guidelines [online]. Apple Inc., 2020 [visited on 2020-
04-27]. Available from: https://developer.apple.com/design/human-
interface-guidelines/ios.

61

https://www.statista.com/topics/840/smartphones
https://www.statista.com/topics/840/smartphones
https://www.keyideasinfotech.com/blog/impact-of-smartphone-on-society
https://www.keyideasinfotech.com/blog/impact-of-smartphone-on-society
https://www.keyideasinfotech.com/blog/impact-of-smartphone-on-society
https://www.apple.com/ios/app-store
https://apps.apple.com/cz/app/spendee-pen%C3%ADze-a-rozpo%C4%8Dty/id635861140?l=cs
https://apps.apple.com/cz/app/spendee-pen%C3%ADze-a-rozpo%C4%8Dty/id635861140?l=cs
https://www.cleevio.com/spendee
https://en.wikipedia.org/wiki/Hashtag
https://apps.apple.com/cz/app/wallet-daily-budget-profit/id1032467659
https://apps.apple.com/cz/app/wallet-daily-budget-profit/id1032467659
https://budgetbakers.com
https://www.czechcrunch.cz/2020/04/revoluce-u-budgetbakers-v-aplikacich-ceskeho-startupu-pujde-i-platit-hlasime-se-o-misto-nad-vsemi-bankami-rika-jeho-sef/
https://www.czechcrunch.cz/2020/04/revoluce-u-budgetbakers-v-aplikacich-ceskeho-startupu-pujde-i-platit-hlasime-se-o-misto-nad-vsemi-bankami-rika-jeho-sef/
https://www.czechcrunch.cz/2020/04/revoluce-u-budgetbakers-v-aplikacich-ceskeho-startupu-pujde-i-platit-hlasime-se-o-misto-nad-vsemi-bankami-rika-jeho-sef/
https://www.czechcrunch.cz/2020/04/revoluce-u-budgetbakers-v-aplikacich-ceskeho-startupu-pujde-i-platit-hlasime-se-o-misto-nad-vsemi-bankami-rika-jeho-sef/
https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios

Bibliography

11. APPXY INFORMATION TECHNOLOGY CO., LTD. Pocket Expense
6 [software]. 2018. Version 6.4.2 [visited on 2020-05-04]. Available from:
https://apps.apple.com/cz/app/pocket-expense-6/id424575621?
l=cs.

12. ABRAN, Alain; MOORE, James W; BOURQUE, Pierre; DUPUIS,
Robert; TRIPP, L. Software Requirements. In: Software engineering body
of knowledge. IEEE Computer Society, Angela Burgess, 2004, chap. 2.

13. Non-functional requirement [online]. Wikimedia Foundation [visited on
2020-06-23]. Available from: https://en.wikipedia.org/wiki/Non-
functional_requirement.

14. COCKBURN, Alistair. Introduction. In: Writing effective use cases.
Addison-Wesley Professional, 2000, chap. 1, p. 1.

15. About Objective-C. In: Programming with Objective-C [online]. Apple
Inc., 2014 [visited on 2020-11-29]. Available from: https://developer.
apple.com/library/archive/documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/Introduction/Introduction.html.

16. Swift.org [online]. Apple Inc., 2020 [visited on 2020-11-29]. Available
from: https://swift.org.

17. Swift [online]. Apple Inc., 2020 [visited on 2020-11-29]. Available from:
https://developer.apple.com/swift.

18. UIKit [online]. Apple Inc., 2020 [visited on 2020-12-01]. Available from:
https://developer.apple.com/documentation/uikit.

19. HUDSON, Paul. What is SwiftUI? In: [online]. Hacking With Swift,
2019 [visited on 2020-12-01]. Available from: https : / / www .
hackingwithswift.com/quick-start/swiftui/what-is-swiftui.

20. MOAKLEY, Brian. UIKit Fundamentals. In: [online]. Razeware LLC.,
2020 [visited on 2020-12-01]. Available from: https : / / www .
raywenderlich.com/16124941-uikit-fundamentals/lessons/1.

21. HUDSON, Paul. Answering the big question: should you learn SwiftUI,
UIKit, or both? In: [online]. Hacking With Swift, 2019 [visited on 2020-
12-01]. Available from: https://www.hackingwithswift.com/quick-
start/swiftui/answering-the-big-question-should-you-learn-
swiftui-uikit-or-both.

22. TAM, Audrey. SwiftUI: Getting Started. In: [online]. Razeware LLC.,
2019 [visited on 2020-12-01]. Available from: https : / / www .
raywenderlich.com/3715234-swiftui-getting-started.

23. SwiftUI Tutorials [online]. Apple Inc., 2020 [visited on 2020-12-01]. Avail-
able from: https://developer.apple.com/tutorials/swiftui.

62

https://apps.apple.com/cz/app/pocket-expense-6/id424575621?l=cs
https://apps.apple.com/cz/app/pocket-expense-6/id424575621?l=cs
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://swift.org
https://developer.apple.com/swift
https://developer.apple.com/documentation/uikit
https://www.hackingwithswift.com/quick-start/swiftui/what-is-swiftui
https://www.hackingwithswift.com/quick-start/swiftui/what-is-swiftui
https://www.raywenderlich.com/16124941-uikit-fundamentals/lessons/1
https://www.raywenderlich.com/16124941-uikit-fundamentals/lessons/1
https://www.hackingwithswift.com/quick-start/swiftui/answering-the-big-question-should-you-learn-swiftui-uikit-or-both
https://www.hackingwithswift.com/quick-start/swiftui/answering-the-big-question-should-you-learn-swiftui-uikit-or-both
https://www.hackingwithswift.com/quick-start/swiftui/answering-the-big-question-should-you-learn-swiftui-uikit-or-both
https://www.raywenderlich.com/3715234-swiftui-getting-started
https://www.raywenderlich.com/3715234-swiftui-getting-started
https://developer.apple.com/tutorials/swiftui

Bibliography

24. Introduction. In: Architectural Patterns [online]. The Open Group, 2001
[visited on 2020-11-29]. Available from: http://www.opengroup.org/
public/arch/p4/patterns/patterns.htm.

25. KALELKAR, Medha; CHURI, Prathamesh; KALELKAR, Deepa. Im-
plementation of model-view-controller architecture pattern for business
intelligence architecture. International Journal of Computer Applications
[online]. 2014, vol. 102, no. 12 [visited on 2020-11-29].

26. VERWER, Dave. The iOS Developer Community Survey [online]. © 2019-
2020 [visited on 2020-11-29]. Available from: https://iosdevsurvey.
com/2019.

27. LASO-MARSETTI, Felipe. Model-View-Controller (MVC) in iOS –
A Modern Approach. In: [online]. Razeware LLC., 2019 [visited on 2020-
11-29]. Available from: https://www.raywenderlich.com/1000705-
model-view-controller-mvc-in-ios-a-modern-approach.

28. HUDSON, Paul. What is MVC? In: [online]. Hacking With Swift,
2019 [visited on 2020-11-29]. Available from: https : / / www .
hackingwithswift.com/example-code/language/what-is-mvc.

29. Model-View-Controller. In: [online]. Apple Inc., © 2012 [visited on 2020-
11-29]. Available from: https : / / developer . apple . com / library /
archive/documentation/General/Conceptual/CocoaEncyclopedia/
Model-View-Controller/Model-View-Controller.html.

30. ALJAMEA, Mariam; ALKANDARI, Mohammad. MMVMi: A validation
model for MVC and MVVM design patterns in iOS applications. IAENG
Int. J. Comput. Sci [online]. 2018 [visited on 2020-11-29].

31. MVVM in Practice - RWDevCon Session - raywenderlich.com. In:
Youtube [online]. 2016 [visited on 2020-11-30]. Available from: https://
www.youtube.com/watch?v=sWx8TtRBOfk. Channel raywenderlich.com.

32. GREENE, Joshua; STRAWN, Jay, et al. Design Patterns by Tutorials:
Learning design patterns in Swift 4. Razeware LLC., 2018.

33. Model-View-Controller. In: [online]. Apple Inc., © 2018 [visited on
2020-11-29]. Available from: https : / / developer . apple . com /
library/archive/documentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html.

34. KRUTSINGER, Chuck. iOS MVVM Tutorial: Refactoring from MVC.
In: [online]. Razeware LLC., 2020 [visited on 2020-11-30]. Available from:
https://www.raywenderlich.com/6733535- ios- mvvm- tutorial-
refactoring-from-mvc.

35. CACHEAUX, Rene. Advanced Unidirectional Architecture with Rene
Cacheaux - Live Tutorial Session - RWDevCon 2018. In: Youtube [online].
2019 [visited on 2020-11-30]. Available from: https://www.youtube.
com/watch?v=OD_yHH_R7qo. Channel raywenderlich.com.

63

http://www.opengroup.org/public/arch/p4/patterns/patterns.htm
http://www.opengroup.org/public/arch/p4/patterns/patterns.htm
https://iosdevsurvey.com/2019
https://iosdevsurvey.com/2019
https://www.raywenderlich.com/1000705-model-view-controller-mvc-in-ios-a-modern-approach
https://www.raywenderlich.com/1000705-model-view-controller-mvc-in-ios-a-modern-approach
https://www.hackingwithswift.com/example-code/language/what-is-mvc
https://www.hackingwithswift.com/example-code/language/what-is-mvc
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://www.youtube.com/watch?v=sWx8TtRBOfk
https://www.youtube.com/watch?v=sWx8TtRBOfk
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://www.raywenderlich.com/6733535-ios-mvvm-tutorial-refactoring-from-mvc
https://www.raywenderlich.com/6733535-ios-mvvm-tutorial-refactoring-from-mvc
https://www.youtube.com/watch?v=OD_yHH_R7qo
https://www.youtube.com/watch?v=OD_yHH_R7qo

Bibliography

36. LEE, Antoine Van Der. Picking your minimum iOS version to sup-
port. In: [online]. SwiftLee, 2019 [visited on 2020-12-30]. Available from:
https://www.avanderlee.com/workflow/minimum-ios-version.

37. WUERTHELE, Mike. Vast majority of all iPads, iPhones in service use
iOS 13. In: [online]. Quiller Media, Inc., 2020 [visited on 2020-12-30].
Available from: https://appleinsider.com/articles/20/01/28/
vast-majority-of-all-ipads-iphones-in-service-use-ios-13.

38. STAFF, MacRumors. iOS 14. In: [online]. MacRumors.com, LLC., 2020
[visited on 2020-12-30]. Available from: https://www.macrumors.com/
roundup/ios-14.

39. App Store [online]. Apple Inc., © 2020 [visited on 2020-12-30]. Available
from: https://developer.apple.com/support/app-store.

40. LARMAN, Craig. Domain Model - Visualizing Concepts. In: Applying
UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Pearson Educations (US), 2004, chap. 10.

41. LAUESEN, Soren. User interface design: a software engineering perspec-
tive. Pearson Education, 2005.

42. NIELSEN, Jakob. 10 Usability Heuristics for User Interface Design. In:
[online]. Nielsen Norman Group, 2020 [visited on 2020-12-02]. Avail-
able from: https://www.nngroup.com/articles/ten- usability-
heuristics.

43. JOHNSON, Jeff. Designing with the mind in mind: simple guide to un-
derstanding user interface design guidelines. Morgan Kaufmann, 2020.

44. Firebase [online]. Google LLC., 2020 [visited on 2020-12-04]. Available
from: https://firebase.google.com.

45. Firebase Authentication [online]. Google LLC., 2020 [visited on 2020-12-
04]. Available from: https://firebase.google.com/products/auth.

46. Cloud Firestore [online]. Google LLC., 2020 [visited on 2020-12-08]. Avail-
able from: https://firebase.google.com/products/firestore.

47. Cloud Firestore Documentation [online]. Google LLC., 2020 [visited on
2020-12-08]. Available from: https://firebase.google.com/docs/
firestore.

48. FRIESE, Peter. Mapping Firestore documents using Swift Codable. In:
Youtube [online]. 2020 [visited on 2020-12-08]. Available from: https:
//www.youtube.com/watch?v=3- yQeAf3bLE&feature=youtu.be.
Channel Firebase.

49. Encoding and Decoding Custom Types [online]. Apple Inc., 2020 [vis-
ited on 2020-12-08]. Available from: https : / / developer . apple .
com / documentation / foundation / archives _ and _ serialization /
encoding_and_decoding_custom_types.

64

https://www.avanderlee.com/workflow/minimum-ios-version
https://appleinsider.com/articles/20/01/28/vast-majority-of-all-ipads-iphones-in-service-use-ios-13
https://appleinsider.com/articles/20/01/28/vast-majority-of-all-ipads-iphones-in-service-use-ios-13
https://www.macrumors.com/roundup/ios-14
https://www.macrumors.com/roundup/ios-14
https://developer.apple.com/support/app-store
https://www.nngroup.com/articles/ten-usability-heuristics
https://www.nngroup.com/articles/ten-usability-heuristics
https://firebase.google.com
https://firebase.google.com/products/auth
https://firebase.google.com/products/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://www.youtube.com/watch?v=3-yQeAf3bLE&feature=youtu.be
https://www.youtube.com/watch?v=3-yQeAf3bLE&feature=youtu.be
https://developer.apple.com/documentation/foundation/archives_and_serialization/encoding_and_decoding_custom_types
https://developer.apple.com/documentation/foundation/archives_and_serialization/encoding_and_decoding_custom_types
https://developer.apple.com/documentation/foundation/archives_and_serialization/encoding_and_decoding_custom_types

Bibliography

50. Cloud Functions for Firebase [online]. Google LLC., 2020 [visited on
2020-12-08]. Available from: https : / / firebase . google . com /
products/functions.

51. SARU. Introduction to Functional Reactive Programming using Swift.
In: [online]. A Medium Corporation, 2019 [visited on 2020-12-10]. Avail-
able from: https : / / medium . com / @saru2020 / introduction - to -
functional-reactive-programming-using-swift-ea30b1e38309.

52. PILLET, Florent; BONTOGNALI, Junior; TODOROV, Marin; GARD-
NER, Scott, et al. RxSwift: Reactive Programming with Swift. Razeware
LLC., 2017.

53. MARTIN, Robert C. The Clean Architecture. In: [online]. 2012 [visited
on 2020-12-09]. Available from: https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html.

54. KUDINOV, Oleh. Clean Architecture and MVVM on iOS. In: [online].
2019 [visited on 2020-12-09]. Available from: https://tech.olx.com/
clean-architecture-and-mvvm-on-ios-c9d167d9f5b3.

55. KARIA, Bhavya. A quick intro to Dependency Injection: what it is,
and when to use it. In: [online]. 2018 [visited on 2020-12-10]. Available
from: https : / / www . freecodecamp . org / news / a - quick - intro -
to- dependency- injection- what- it- is- and- when- to- use- it-
7578c84fa88f.

56. Protocols [online]. Apple Inc., 2020 [visited on 2020-12-10]. Available
from: https : / / docs . swift . org / swift - book / LanguageGuide /
Protocols.html.

57. KOFLER, Stefan. Dependency Injection Strategies in Swift. In: [on-
line]. 2019 [visited on 2020-12-10]. Available from: https : / /
quickbirdstudios . com / blog / swift - dependency - injection -
service-locators.

58. KHANLOU, Soroush. The Coordinator. In: [online]. 2015 [visited on
2020-12-14]. Available from: https://khanlou.com/2015/01/the-
coordinator.

59. XCoordinator [online]. Stefan Kofler and Paul Kraft, 2019 [visited on
2020-12-14]. Available from: https://quickbirdstudios.github.io/
XCoordinator.

60. CARNEY, TJ. What’s a XIB and Why Would I Ever Use One? In:
[online]. A Medium Corporation, 2017 [visited on 2020-12-17]. Available
from: https://medium.com/@tjcarney89/whats-a-xib-and-why-
would-i-ever-use-one-58d608cd5e9b.

65

https://firebase.google.com/products/functions
https://firebase.google.com/products/functions
https://medium.com/@saru2020/introduction-to-functional-reactive-programming-using-swift-ea30b1e38309
https://medium.com/@saru2020/introduction-to-functional-reactive-programming-using-swift-ea30b1e38309
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://tech.olx.com/clean-architecture-and-mvvm-on-ios-c9d167d9f5b3
https://tech.olx.com/clean-architecture-and-mvvm-on-ios-c9d167d9f5b3
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f
https://docs.swift.org/swift-book/LanguageGuide/Protocols.html
https://docs.swift.org/swift-book/LanguageGuide/Protocols.html
https://quickbirdstudios.com/blog/swift-dependency-injection-service-locators
https://quickbirdstudios.com/blog/swift-dependency-injection-service-locators
https://quickbirdstudios.com/blog/swift-dependency-injection-service-locators
https://khanlou.com/2015/01/the-coordinator
https://khanlou.com/2015/01/the-coordinator
https://quickbirdstudios.github.io/XCoordinator
https://quickbirdstudios.github.io/XCoordinator
https://medium.com/@tjcarney89/whats-a-xib-and-why-would-i-ever-use-one-58d608cd5e9b
https://medium.com/@tjcarney89/whats-a-xib-and-why-would-i-ever-use-one-58d608cd5e9b

Bibliography

61. XCode: Using Storyboards and Xibs Versus Creating Views Pro-
grammatically. In: [online]. ByDesign Development Inc., 2020 [vis-
ited on 2020-12-17]. Available from: https : / / codewithchris . com /
xcode - using - storyboards - and - xibs - versus - creating - views -
programmatically.

62. SINGH, Bhagat. Building an App with only code using Auto Layout. In:
[online]. Razeware LLC., 2019 [visited on 2020-12-17]. Available from:
https://www.raywenderlich.com/6004856-building-an-app-with-
only-code-using-auto-layout.

63. SnapKit [online]. © 2011-2020 [visited on 2020-12-17]. Available from:
https://github.com/SnapKit.

64. RAHMAN, Tasdik. F.I.R.S.T principles of testing. In: [online].
A Medium Corporation, 2019 [visited on 2020-12-22]. Available from:
https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-
testing-1a497acda8d6.

65. XCTest [online]. Apple Inc., © 2020 [visited on 2020-12-22]. Available
from: https://developer.apple.com/documentation/xctest.

66. RxTest [online]. CocoaPods, © 2020 [visited on 2020-12-22]. Available
from: https://cocoapods.org/pods/RxTest.

67. Usability Testing. In: [online]. The Interaction Design Foundation, 2019
[visited on 2020-12-22]. Available from: https://www.interaction-
design.org/literature/topics/usability-testing.

68. Preparing Your App for Distribution [online]. Apple Inc., © 2020 [vis-
ited on 2020-12-29]. Available from: https://developer.apple.com/
documentation/xcode/preparing_your_app_for_distribution.

69. App Review [online]. Apple Inc., © 2020 [visited on 2020-12-29]. Available
from: https://developer.apple.com/app-store/review.

66

https://codewithchris.com/xcode-using-storyboards-and-xibs-versus-creating-views-programmatically
https://codewithchris.com/xcode-using-storyboards-and-xibs-versus-creating-views-programmatically
https://codewithchris.com/xcode-using-storyboards-and-xibs-versus-creating-views-programmatically
https://www.raywenderlich.com/6004856-building-an-app-with-only-code-using-auto-layout
https://www.raywenderlich.com/6004856-building-an-app-with-only-code-using-auto-layout
https://github.com/SnapKit
https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-testing-1a497acda8d6
https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-testing-1a497acda8d6
https://developer.apple.com/documentation/xctest
https://cocoapods.org/pods/RxTest
https://www.interaction-design.org/literature/topics/usability-testing
https://www.interaction-design.org/literature/topics/usability-testing
https://developer.apple.com/documentation/xcode/preparing_your_app_for_distribution
https://developer.apple.com/documentation/xcode/preparing_your_app_for_distribution
https://developer.apple.com/app-store/review

APPENDIX A
Acronyms

ASCII American Standard Code for Information Interchange
API App Programming Interface
App Mobile Application

DI Dependency Injection
ID Identifier

IoC Inversion Of Control
JSON JavaScript Object Notation
MVC Model View Controller

MVVM Model View ViewModel
NIB NeXTSTEP Interface Builder

NoSQL Non-Structured Query Language
OS Operating System

SoC Separation of Concern
UI User Interface

UML Unified Modeling Language
UX User Experience

VFL Visual Format Language
WWDC Worldwide Developer Conference

XIB XML Interface Builder
XML Extensible Markup Language

67

APPENDIX B
Contents of Enclosed SD

Card

readme.md.......the file with SD card contents description in MD format
src...the directory of source codes

implementation..............the directory of source codes of the app
thesis...............the directory of LATEX source codes of the thesis

samples.............................the directory of application samples
app.mov........................the app sample video in MOV format

text......................................the directory of the thesis text
thesis.pdf............................the thesis text in PDF format

69

	Introduction
	Goals and Methodology
	State of the Art
	Spendee
	Wallet
	Pocket Expense 6
	Summary

	Requirements Analysis
	Functional Requirements
	Non-functional Requirements
	Use Cases

	Design
	iOS Development
	Objective-C and Swift
	UIKit and SwiftUI
	Architectural Patterns
	Supported OS

	Application's Domain
	User Interface
	iOS Human Interface Guidelines
	Nielsen's Design Heuristics
	Scenes Design

	Implementation
	Firebase Backend
	Firebase Authentication
	Cloud Firestore
	Cloud Functions

	iOS Application
	Reactive Programming
	Clean Architecture and MVVM
	Dependency Management
	Navigation
	UI Components

	Testing
	Unit Tests
	UI Tests
	Usability Tests
	Test Scenarios
	Results

	Results and Future Development
	Results
	Future Development
	Distribution

	Conclusion
	Bibliography
	Acronyms
	Contents of Enclosed SD Card

