
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague May 16, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Evaluation of Analysis Frameworks in the ATLAS Experiment at CERN and Design of an

Optimized Framework for the Search and Determination of Properties of New Particles
 Student: Georgiy Ivannikov

 Supervisor: doc. Dr. André Sopczak

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2021/22

Instructions

Sophisticated analysis frameworks for the ATLAS experiment at CERN (which collects data) were developed
by different analysis groups.

1. Determine the requirements for an analysis framework to efficiently process large data sets recorded by
the ATLAS experiment.
2. Evaluate existing analysis frameworks for usability, performance, flexibility, data structure, resources,
etc.
3. Outline a general analysis framework that is capable to accommodate different analyses for searches for
new particles, and to measure their properties.
4. Work out the analysis framework specifics for two cases, a) single top-Higgs b) axion-like-particle.
5. Outline the documentation strategy for using the new framework and tracking the development
6. Estimate the performance using test techniques.
7. Evaluate the pros and cons of upgrading existing analysis frameworks to the new outlined framework.

References

Will be provided by the supervisor.

Bachelor’s thesis

Evaluation of Analysis Frameworks in the
ATLAS Experiment at CERN and Design
of an Optimized Framework for the Search
and Determination of Properties of New
Particles

Georgiy Ivannikov

Department of Software Engineering
Supervisor: doc. Dr. André Sopczak

January 7, 2021

Acknowledgements

I would like to thank my supervisor, André Sopczak for providing guidance
and feedback throughout this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work for non-profit purposes only, in any way that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on January 7, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Georgiy Ivannikov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ivannikov, Georgiy. Evaluation of Analysis Frameworks in the ATLAS Ex-
periment at CERN and Design of an Optimized Framework for the Search
and Determination of Properties of New Particles. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Existuje několik experiment̊u, které berou data na Large Hadron Collinder
(LHC) v CERNu ve švýcarské Ženevě. Jedńım z nich je experiment ATLAS.
Detektor ATLAS se použ́ıvá k měřeńı vlastnost́ı Higgsova bosonu a k hledáńı
nestandardńı fyziky, tj. Temné hmoty. Detektor generuje velké množstv́ı
nezpracovaných dat a poté je informace zpracovávána softwarovým systémem
ATLAS. Podle údaj̊u źıskaných z detektoru identifikuje spolupráce ATLAS
fyzické objekty. Těmito fyzickými objekty jsou např́ıklad elektrony, miony
nebo jiné elementárńı částice. Objekty pak mohou být použity k opětovnému
vytvořeńı reakćı vyv́ıjej́ıćıch standardńı částice nebo hypotetické částice. Tato
studie poskytuje konkrétńı př́ıklad vývoje softwaru pro Higgsovy bosony s
ćılem poskytnout návrhy na jeho zlepšeńı. Kromě toho je v této práci navržena
technika dokumentováńı rámc̊u. Rovněž se diskutuje o nápadech, jak lze
zlepšit monitorováńı pokroku.

Kĺıčová slova ATLAS, CERN, LHC, framework, Python, C++, dokumen-
tace, testováńı, benchmark, GitLab, Jira, Doxygen

vii

Abstract

There are several experiments that take data at the Large Hadron Collinder
(LHC) at CERN in Geneva, Switzerland. One of them is the ATLAS experi-
ment. The ATLAS detector is used to measure the Higgs boson properties and
to search for non-standard physics, i.e dark matter. A large amount of raw
data is generated by the detector, after which the information is processed
by the ATLAS software system. According to the data obtained from the
detector, the ATLAS collaboration identifies physical objects. These physical
objects are, for example, electrons, muons or other elementary particles. The
objects can then be used to recreate the reactions evolving standard parti-
cles or hypothetical particles. This study provides a specific example on the
software development for Higgs bosons with the aim of providing suggestions
to improve it. Moreover, in this thesis, a technique of documenting frame-
works is suggested. Ideas are also discussed on how progress monitoring can
be enhanced.

Keywords ATLAS, CERN, LHC, framework, Python, C++, documenta-
tion, testing, benchmark, GitLab, Jira, Doxygen

ix

Contents

Introduction 1

1 CERN 3
1.1 ATLAS . 3
1.2 Large Hadron Collider . 4
1.3 Higgs boson . 4

2 Data flow 5
2.1 xAOD, DxAOD . 5
2.2 Group Frameworks . 5
2.3 FakeBkgTool . 6

2.3.1 Fake Factor Method . 6
2.3.2 Standard Matrix Method 7
2.3.3 Likelihood Matrix Method 7

2.4 Output . 10

3 Standard Matrix Method 11
3.1 Installation and set up . 11
3.2 Structure . 12
3.3 Result visualization . 13

3.3.1 TRExFitter . 13
3.3.2 TRExFitter configuration file 14
3.3.3 Result . 15

4 Framework evaluation 17
4.1 Usability . 17

4.1.1 Group framework 2 . 17
4.1.2 FakeBkgTool . 18

4.2 Performance . 18
4.2.1 Group framework 2 . 18

xi

4.2.2 FakeBkgTool . 19
4.2.3 Testing performance . 19

4.3 Flexibility . 20
4.4 Data structures . 21

4.4.1 Group framework 2 . 21
4.4.2 FakeBkgTool . 21

5 New outlined framework 23
5.1 Requirements . 23
5.2 Stability . 24

5.2.1 Unit testing . 24
5.2.2 Performance testing . 25
5.2.3 Integration testing . 25

5.3 Architecture . 25
5.3.1 Current state . 25
5.3.2 Microservice architecture 26
5.3.3 New framework architecture 26

5.4 Performance . 26
5.5 Configurability . 27
5.6 Automatization . 27
5.7 New framework evaluation . 28

5.7.1 Pros . 28
5.7.2 Cons . 29

6 Documentation and development tracking 31
6.1 Documentation . 31

6.1.1 API documentation . 31
6.1.2 Software documentation for its installation and applica-

tion . 32
6.2 Development tracking . 32

6.2.1 Jira . 33
6.2.2 Improvement of development tracking 33

6.3 Communication . 38

Conclusion 39

Bibliography 41

A Acronyms 45

xii

List of Figures

2.1 Comparison of the results of estimating a dataset with 5 loose
dilepton events for Standard and Likelihood MM. The four plots
show the effect of changing the number of tests. 9

2.2 Comparison of the results of estimating a dataset with 1000 loose
dilepton events for Standard and Likelihood MM. The four plots
show the effect of changing the number of tests. 10

3.1 The dotted line represents the actual form of the events found in
the used sample. After smoothing, the strong red line indicates
the form of the systematic uncertainty. The blue line shows the
symmetrical effect of moving the system in the opposite direction.
The blue hatched area is the statistical uncertainty. 16

4.1 Class that contains information about an event 22
4.2 Illogical use of data structures . 22

6.1 Integrations tab in Jira . 35
6.2 Form for filling in data about Jira 36
6.3 Jira connected . 37
6.4 Merge request title with issue id 37
6.5 Jira page with link to merge request in comments 38

xiii

List of tables

3.1 FakeBkgTool tool structure . 13

xv

Introduction

ATLAS collaboration has to process, store and analyze a large amount of data
coming from the ATLAS detector operating in the LHC tunnel. The amount
of data will grow rapidly because the LHC is constantly being modernized,
and, thus, ATLAS records more and more data, therefore the software used
for analysis of this data is an integral part of the work. For this purpose,
the members of the ATLAS collaboration have developed several frameworks.
The developers and maintainers of the ATLAS software are typical high en-
ergy particle physicists, therefore the software and the processes to develop
this software, according to software engineering standards can be improved in
several aspects.

The aim of the work

The aim of this bachelor’s work is to analyze existing frameworks, in order to
make suggestions for their improvement. It is also an aim to make suggestions
that will help improve the routine associated with working with software in
the ATLAS collaboration.

The first chapter provides the theoretical part of this work so that it is
possible to imagine what the ATLAS organization is and how the software
plays a role in their activity.

The second chapter describes the data flow in ATLAS. A brief description
is given of the data processing, starting from receiving them from the detector
to the final analysis result.

The third chapter describes the main ATLAS framework for data analysis
called Athena. The process of installing the framework, the format of input
data and output data come up as well as the use will be described.

The fourth chapter will reflect the practical part of this thesis. This will
show how the framework is evaluated according to the software engineering
criteria.

1

Introduction

The fifth chapter will describe the concept of a new framework and describe
the pros and cons of switching to it from the current one.

The sixth chapter will describe the software documentation strategy and
provide suggestions for improving the development tracking.

The last chapter contains the conclusion.

2

Chapter 1
CERN

This chapter aims to acquaint the reader with CERN, ATLAS and the Large
Hadron Collider. Also, special attention will be paid to the ATLAS detector
and how the data stream from the detector is processed.

CERN is a project financed by more than twenty European states, a
dozen more countries and international organizations have observer or as-
sociate member status in it. The most important and famous CERN project
is the Large Hadron Collider - an elementary particle accelerator. The LHC
has two general purpose detectors, ATLAS and CMS [1]. It explores from the
Standard Model to extra dimensions and particles that can be dark matter.
The difference between the detectors lies in their technical designs. The ex-
periments performed on these detectors are referred to as the detectors name
[1].

1.1 ATLAS

ATLAS is designed to investigate different types of physics that might be
detected in energetic collisions at the Large Hadron Collider. Some of this
research is about confirming or improving measurements of the parameters of
the Standard Model, while many others are looking for new physics. ATLAS
uses an advanced decision making system (trigger system) to tell the detector
which events to record and which to ignore [2].

The detector produces a huge amount of raw data - about 25 MB per
event (in its original raw form, suppressing zeros reduces it to 1.6 MB) for
each of 40 million beam intersections per second in the center of the detec-
tor, which gives a total of 1 PB per second raw data [3]. For all recorded
events, an offline reconstruction is performed that converts the signals from
the detectors into physical objects such as hadronic jets, photons and leptons.
For the reconstruction of events, grid computing (LHC Computing Grid) is
intensively used, which allows parallel use of computer networks of univer-
sities and laboratories around the world for the resource-intensive (in terms

3

1. CERN

of using processor time) task of reducing large amounts of initial data to a
form suitable for physical analysis. The software for these tasks have been
developing for more than twenty five years and continues to improve as the
experiment progresses [4].

1.2 Large Hadron Collider

The Large Hadron Collider is a colliding particle accelerator designed to ac-
celerate protons and heavy ions (lead ions) and study the products of their
collisions. The center of mass energy of the collisions is 13 TeV. The main
task of the Large Hadron Collider is to reliably detect at least some deviations
from the Standard Model - a set of theories that make up the modern under-
standing of fundamental particles and interactions. Although it has many
advantages, it also possesses many difficulties. For example, it does not de-
scribe the gravitational interaction whilst also not explaining the existence of
dark matter or dark energy. The Large Hadron Collider should help answer
questions that are not resolved in the Standard Model [5].

1.3 Higgs boson

The Higgs boson is an elementary particle, the quantum of the Higgs field,
which necessarily arises in the Standard Model of particle physics due to the
Higgs mechanism of spontaneous breaking of electroweak symmetry. It was
postulated by British physicist Peter Higgs in his fundamental papers pub-
lished in 1964. After several decades of searches, on July 4, 2012 [2], as a
result of research at the Large Hadron Collider, a candidate for its role was
discovered - a new particle with a mass of about 125-126 GeV / c2 [6]. There
is good reason to believe that this particle is the Higgs boson. In March 2013,
there were reports from individual CERN researchers that the particle found
six months earlier was indeed the Higgs boson [7].

4

Chapter 2
Data flow

The ATLAS Computing System processes the data produced by the ATLAS
detector. Computing software are used to store, process and evaluate large
amounts of collision data. Data from the ATLAS detector is calibrated, recon-
structed and automatically distributed worldwide by the ATLAS Data Man-
agement system. The ATLAS Production System then filters through these
events and selects the ones needed for a particular type of analysis. This
shrinks the data set down to a manageable size in order for the scientists to
analyze the data [8]. The data flow from recording the ATLAS detector data
to the analysis is as follows: FakeBkgTool is a framework that was created by

Detector xAOD DxAOD GW1 GW2 FakeBkgTool

the ATLAS collaboration for the data analysis. Before the data reaches the
framework for processing they are placed in containers through xAOD and
DxAOD. In the subsequent analysis it is more convinient to use a data struc-
ture ntuples called using Group Framework 1 (GFW1) and Group Framework
2 (GFW2).

2.1 xAOD, DxAOD

xAOD, DxAOD - tools for creating containers that will store event data re-
ceived from the detector. The large amount of recording data is therefore
structured in different formats. This step is necessary to separate the data
according to specifications. The containers include physical reconstructed ob-
jects like muons, electrons and other elementary particles [8] [9].

2.2 Group Frameworks

There are two group Frameworks: Group Framework 1 and Group Framework
2. Both frameworks serve to represent the data in a data structure called

5

2. Data flow

ntuples. The frameworks then store all the information in a way that can be
handled by the scientists. The process goes in such a way that first GFW1
processes the events and wraps the data in ntuples, then GFW2 reads these
ntuples, loop over all the entries and apply some event selections that slim
the GFW1 ntuples in order to produce mini-ntuples. These mini-ntuples can
be used for further analysis. GFW1 ntuples have a large size and can only be
stored on the world wide grid, therefore GFW2 which is a slipped version is
created such that this data can be stored for fast access on disks. Disks space
is about 10 TB. Group framework 1 is recreated several times a year them,
which takes about one week each time. [10].

2.3 FakeBkgTool

The fakeBkgTool is a framework written in the C++ programming language
created by the ATLAS collaboration as a general analysis tools for the scien-
tists. The framework contains several methods for analysis: Standard Matrix
Method, Fake Factor Method and Likelihood Matrix Method. Each method
differs in the speed of processing the data. These 3 methods are used to esti-
mate non-prompt and fake lepton backgrounds directly from the data and do
not rely on the simulation [11].

2.3.1 Fake Factor Method

The fake factor method is a data-driven procedure for modeling background
arising from misidentification. The method provides a measurement of the
yield and the kinematic distributions of fake background. It is a general
technique, applicable to any physics analysis in which particle-level selection
criteria is used to suppress background. The fake factor method can be used
with any number of final state particles and it is independent of the event
selection. In the following it is presented in the context of modeling the back-
ground to misidentified electrons and muons, referred to as “leptons”, but the
general discussion and techniques described are applicable to the background
modeling of any particle with identification criteria: photons, hadronic-taus,
heavy-flavor jets, or more exotic objects such as lepton-jets [12]. The funda-
mental idea of the fake factor method is simple: select a control sample of
events enriched in the background being estimated, and then use an extrap-
olation factor to relate these events to the background in the signal region.
The method is data-driven provided the control sample is selected in data, and
the extrapolation factor is measured with data. For background arising from
particle misidentification, the extrapolation is done in particle identification
space. The control sample is defined using alternative particle selection cri-
teria that are chosen such that the rate of misidentification is increased. [13]
The extrapolation factor relates background misidentified with this criteria
to background misidentified as passing the full particle selection of the signal

6

2.3. FakeBkgTool

region. The extrapolation factor is referred to as the “fake factor”. The fake
factor is measured and applied under the assumption that it is a local prop-
erty of the particles being misidentified and is independent of the event-level
quantities. The fact that the extrapolation is done in an abstract particle iden-
tification space can be conceptually challenging, but the underlying procedure
is straightforward [14].

2.3.2 Standard Matrix Method

This technique is based on a linear relationship established between the un-
known prompt or non-prompt nature of the leptons and their observed isola-
tion and identification quality. Using the loose lepton definition as baseline,
the identification and isolation quality for a given lepton can take two exclusive
values: tight or not-tight [15]. The matrix method is expressed analytically:

NF = NTT +NTT +NTT (2.1)

where

• N – number of events

• F – non-prompt leptons

• R – prompt leptons

• T – tight leptons

• r(f) – efficiencies and represent the probability of a loose prompt (non-
prompt) lepton to be tight

• RF FR FF can be obtained by matrix inversion

2.3.3 Likelihood Matrix Method

The Standard Matrix Method is restricted in two key ways that are particu-
larly important at low statistics:

• the estimate for the number of fakes can be negative

• the uncertainty is the quadrature sum of the fake estimates from each
event, which may not be appropriate

7

2. Data flow

This method uses the likelihood function from mathematical statistics and
thus solves these problems.

The likelihood function in mathematical statistics is the joint distribution
of a sample from a parametric distribution, viewed as a function of a param-
eter. This uses the joint density function (in the case of a sample from a
continuous distribution) or the joint probability (in the case of a sample from
a discrete distribution) calculated for the sampled data [15] [16].

The likelihood approach offers several advantages:

1. Avoiding nonphysical answers

2. Having better statistical precision than the standard MM

3. Remains robust even when the real and fake efficiencies are not so dif-
ferent

A comparison of the analysis results between likelihood MM and standard
MM is shown in the Figures 2.1 and 2.2.

1. Entries – number of tests

2. Measured N fake – measured number of fake events

3. Blue dash line – exact number of fake events

4. Red area – standard MM result

5. White area – likelihood MM result

It follows from these graphs that even with a small number of tests, the
likelihood MM result is close to real. The advantage of standard MM is that
the method was able to find the exact number of fake events with fewer tests,
but up to this point the results were far from optimal.

8

2.3. FakeBkgTool

Figure 2.1: Comparison of the results of estimating a dataset with 5 loose
dilepton events for Standard and Likelihood MM. The four plots show the
effect of changing the number of tests.

9

2. Data flow

Figure 2.2: Comparison of the results of estimating a dataset with 1000 loose
dilepton events for Standard and Likelihood MM. The four plots show the
effect of changing the number of tests.

2.4 Output

The conclusion of data analysis is presented as root files. ROOT is the stan-
dard ATLAS/CERN tool for histogramming and storing data. ROOT en-
ables statistically sound scientific analyses and visualization of large amounts
of data: today, more than one exabyte (1,000,000,000 gigabyte) are stored in
ROOT files.

10

Chapter 3
Standard Matrix Method

The full workflow for data analysis using the Matrix Method is outlined in
this chapter. It will also identify the method of visualizing the effects of
the analysis. A concrete example of a tool which is used to illustrate the
complexity of the existing software provided in this chapter.

3.1 Installation and set up

Until recently, in order to use any method for data analysis, it was necessary to
have the whole FakeBkgTool framework installed. This approach was criticised
as storing the entire framework took up an enormous amount of memory
and the installation period was very time consuming. Therefore, recently
at one of the meetings of the ATLAS team, which develops and maintains
this framework, a great emphasis was placed on the sole purpose of finding a
solution. The Standard Matrix Method was put forward due to the fact that
this tool can run code in standalone mode. This tool contains the minimal
set of FakeBkgTool packages needed to run, in sparse checkout mode. The
project has the following directories [17]:

• run – directory containing a file (input.txt) listing the root files with
data sets for further analysis. Also, at the end of the analysis, files with
the analysis results will be saved in this directory.

• source – contains C++ code for using the Matrix Method, which is part
of the FakeBkgTool framework.

• build – directory that contains all the necessary files and the Makefile
for building the project. To build the project, one needs to run the
command

cmake ../source

11

3. Standard Matrix Method

• util – contains a script “run.sh” that starts data analysis. To run the
script, one needs to run the command

./run.sh ./run/input.txt true

In the case of data analysis from Monte Carlo, one writes ‘true‘ as third
argument, otherwise ‘false‘.

• data – contains a file with efficiency for muons. It also contains an XML
table with the characteristics of input leptons. Each table block has the
following format:

<ROOT source={file with efficiency path}>
<{lepton name} type={real/fake efficiency}
input=\central value" stat={stat}>
<TH1 X={momentum} > mu_pt_eta_ge2j1b </TH1>
</{lepton name}>

</ROOT>

Before running the script, one needs to run the commands

setupATLAS
lsetup "root 6.14.04-x86_64-slc6-gcc62-opt"

to use aliases (command abbreviation) of the ATLAS and root commands.

3.2 Structure

All the tools in the FakeBkgTool framework consist of the same structure,
input and output data format. They contain a constructor and three functions:
initialize, execute, finalize. Each method is described in Table 3.1

12

3.3. Result visualization

Constructor Initialization of all FakeBkgTool
variables, the declaration of proper-
ties, the instruction of all the point-
ers, etc.

Initialize Histogram and trees for output are
created.

Execute Here FakeBkgTool framework work
with each individual event. Incom-
ing data in the form of variables, an-
alyze them and then filled the his-
tograms.

Finalize All post-processing actions are in
this function. At this stage, frame-
work analyzes all the events, fills in
the histograms and records them in
files if necessary.

Table 3.1: FakeBkgTool tool structure

3.3 Result visualization

After the end of the script, root files are produced with the analysis result
in the ‘run‘ directory. At the next point, to simplify working with them it
was important to illustrate this data. For this function, ATLAS utilizes the
TRExFitter tool.

3.3.1 TRExFitter

TRExFitter is a tool to create graphs or charts to allow the researcher to
statistically display their results. The idea behind it is to build upon existing
code and macros and link them with a series of new classes in order to provide
additional convenient features [18].

The framework has the following features:

• read efficiencies

• read input histograms

• read input ntuples

• calculate exclusion limit

• calculate significance

• draw pre-fit plots

13

3. Standard Matrix Method

• and many others informative plots

Input:

• histograms or ntuples

• configuration file

Output:

• Pre-fit and post-fit data/MC plots and tables

• Various plots for checks: pull plot, correlation matrix, systematics before
and after smoothing etc.

3.3.2 TRExFitter configuration file

Based on the configuration file, the TRExFitter framework will produce plots.
Parametres:

• NtuplePaths – path to the inputs to use (in our case, the path to root
files in the run directory)

• MCweight – weights to apply to Monte Carlo data

• Selection – pre-selection to apply

• Fit – type of fit to perform

• Limit – settings to obtain a limit

• MCweight – weights to apply to Monte Carlo data

• Region – These blocks specify which regions enter the fit. Note that
while there is only one instances of all the previous blocks, there can be
multiple regions, and each has a unique name

• Type – can be CONTROL / SIGNAL / VALIDATION.

• Sample – Just as for regions, there can be many samples, which will be
used to build the fit model.

• SampleType1 – One has one sample for data with the corresponding
type, one SIGNAL and a few BACKGROUND type samples. All of
these will enter in every region, unless we specify otherwise.

• NtupleFile – name of the .root file for visualization.

• Systematic – the blocks here specify systematic effects to be considered
in the fit. There can also be many, each with a unique name.

14

3.3. Result visualization

• Samples – specifies the Sample as given systematic acts on.

• Smoothing – applies smoothing to the shapes of the systematic effects
via this option.

3.3.3 Result

All plots, graphs and charts produced by TRExFitter for the Matrix Method
are in the ttWChecks MM folder. In the case of Monte Carlo, in the ttWChecks MM mc comporasion
folder. Folders contains the following content:

• Plots – contains one plot showing data and MC for each defined region,
as well as summary plots.

• Tables – contains various tables in text or .tex format, showing for
example the yields per sample and per region.

• PieChart.png and SignalRegions.png – show background composi-
tion and fraction of signal in the defined regions.

15

3. Standard Matrix Method

An example of a TTBar plot showing the effect of the ttbar shower sys-
tematic in the signal region is show in Figure 3.1.

Figure 3.1: The dotted line represents the actual form of the events found
in the used sample. After smoothing, the strong red line indicates the form
of the systematic uncertainty. The blue line shows the symmetrical effect of
moving the system in the opposite direction. The blue hatched area is the
statistical uncertainty.

16

Chapter 4
Framework evaluation

This chapter will evaluate the main frameworks expressed throughout this
thesis: GFW2 and FakeBkgTool.

4.1 Usability

There are 3 different ways to use frameworks: locally, lxplus (remote server)
and on the Grid. Each method differs in the parameters used at running and
in the initial setup. The initial setup is the sequential launch of commands
that allow researchers to use ATLAS tools. The usability is evaluated based
on the launch of the tool themselves, because there is no difficultiy to set up
ATLAS.

4.1.1 Group framework 2

The setup procedure is simple. First one needs to clone the package and then
source the setup script for the first time. If one wants to submit jobs to the
grid later on one needs to configure the proxy. To start the framework, one
needs to run the script. To run the script, one must pass next parameters: list
of input root files, name of the output root file and sum of the events weights
used for the normalization. In the case of launching on the Grid, one needs
to additionally pass the user id and submission id and do not need to pass
the sum of events. A simple configuration and a small number of parameters
make the framework usage as simple as possible. Despite this, when using it,
one needs to periodically change the source code. Typical cases which require
changes in the GFW2 framework are [19]:

• the change of tight lepton or jet selections

• missing variables already stored in GFW1 ntuples

• recalculation of variables based on information from GFW1 ntuples

17

4. Framework evaluation

This makes using the framework not so convenient and easy, because
changing the source code can pose difficulties for a scientist who is not di-
rectly envolved in the GFW2 development.

4.1.2 FakeBkgTool

A full description of using the FakeBkgTool framework is outlined in the pre-
vious chapter, Standard Matrix Method. The usage is identical for all other
methods of the framework, with the exception that the Fake Factor Method
does not need a file with efficiencies. The problem is that in addition to this, it
is necessary to change the source code of the framework for each specific case.
As described above, each method has the same structure and basic functions:
constructor, initialize, execute, finalize. Every time one uses the FakeBkgTool,
one needs to change the initialize function, which is responsible for where the
result will be saved. In addition, during sessions with ATLAS scientists, it
was noted that it is often necessary to change the source code. As described in
the previous chapter, the constructor in the FakeBkgTool framework methods
is used to initialize variables, properties, etc. The constructor contains the
following properties that need to be changed:

• inputFiles – location of input files with efficiencies(in case of using
Fake Factor Method, this property is not used).

• m convertWhenMissing – bool where set ’true’ mean to compute fake
factors from fake efficiencies only if the latter are provided in the config
files.

• m tightDecoNameAndType – name (and type) of the decoration used to
indicate whether leptons pass the ’tight’ requirements or not.

• m progressFileName – name of ntuple file with results from a subset of
the data.

Frequent changes to the source code coupled with insufficient documenta-
tion makes the use of the framework difficult and confusing.

4.2 Performance

ATLAS frameworks are huge and powerful computing systems. Each of these
systems requires high performance for reasonable runtime.

4.2.1 Group framework 2

The GFW2 is written in Python. Python is a high-level general-purpose
programming language focused on improving developer productivity and code

18

4.2. Performance

readability. A broad number of useful functions are included in the standard
library for dealing with arrays and for performing data structure operations
with a minimum amount of written code. These advantages make Python an
ideal choice for the ATLAS framework. In its arsenal, Python also has such
libraries as Pandas and Numpy. These libraries are used in Data Science and
Machine Learning to efficiently work with arrays. ATLAS does not use them
at the moment, but the code written in GFW2 makes it easy to incorporate
the data from the library and thus boost the performance of algorithms that
convert the data arrays to ntuples[19].

4.2.2 FakeBkgTool

The framework where computation time plays an important role is the Fake-
BkgTool. Since this framework is used for data analysis and it uses broad
complexities, it is necessary to have the maximum speed of operations. The
FakeBkgTool framework is written in C++. C++ is a general-purpose com-
piled, statically typed programming language. C++ is the same C language,
only with OOP (object-oriented programming) support and many libraries.
This implies that, compared to higher-level languages, it is possible to work
with low-level memory as well as faster code execution. This maximizes the
productivity in data analysis. However, the C++ language has its drawbacks,
such as a high probability of errors, because it is necessary to control mem-
ory and the compiler will not be able to tell if the code has errors and may
crash. At the moment, the FakeBkgTool framework rarely undergoes any
global changes, so using the C++ language is the best solution and makes the
framework work as efficient as possible.

4.2.3 Testing performance

Since the FakeBkgTool framework occupies the main difficulty in working in
terms of time, in this section the performance of this particular framework
will be tested. Benchmarks are one way to test a performance. Benchmarks
provide an opportunity to obtain information about the number of cycles
and the complexity of the algorithm, in addition to the time and memory
consumption. While working on a project, testing with benchmarks seems
impossible due to the lack of resources to run projects locally. The next way
to test software is to measure CPU time. The performance of the Standard
Matrix Method will be measured on a 505 MB data sets.

1. For testing code located in the ”util” project directory in the file ttW applyMM orig_cxx
will be used, because all the mathematical operations for data analysis
are used here.

2. The second step is to import the library ”ctime”:

19

4. Framework evaluation

#include <ctime>

3. The next step is to wrap the code that reads data from data sets and
the code that performs calculations with the following commands:

std::clock_t c_start = std::clock();
// code
std::clock_t c_end = std::clock();

4. At the end of the program, one needs to measure the result in seconds
and displays it on the screen:

long_double time_elapsed_ms = 1000.0 * (c_end-c_start) / CLOCKS_PER_SEC;
std::cout << "CPU time used: " << time_elapsed_ms / 1000.0 << " s\n";

5. After finishing the set up, one needs to run the script to analyze the
data from the data sets

6. The obtained results are:

CPU time used: 566 s - time taken to read data
CPU time used: 10194 s - time spent on computation

This indicates that most off the time is used for actual computations.
Further studies would be needed to determine the CPU time use in individual
functions.

4.3 Flexibility

In this case, it is worth evaluating how the frameworks are suitable for 2
cases: single top-Higgs and axion-like-particle, because the top-top-Higgs case
is analyzed by default.

No changes are required from GFW2 to cover these cases. It is enough
to start the framework and generate ntuples. For single top-Higgs case, all
changes must be made in the FakeBkgTool framework. Not much change needs
to be done because single top-Higgs also needs to estimate non-prompt and
fake lepton backgrounds. Using the Standard Matrix Method as an example,
one needs to make the following updates:

• ttWapplyMMorig.cxx. For the single top-Higgs case, the ”selection cuts”
expression must be changed.

• efficiencies.xml. In the file with efficiencies, one needs to change the
selection type depend on the case. For the Fake Factor Method, nothing
needs to be changed, because this method does not use efficiencies.

20

4.4. Data structures

In the case of axion-like-particle, not everything is so trivial. Unlike
the top-top-Higgs and single top-Higgs, photons are analyzed in axion-like-
particle. FakeBkgTool can be adapted for this case, but requires a signifficant
rewiting of the code and it is easier to create a new framework that specializes
in axion-like-particle.

Concluding that the framework is flexible enough for small changes, but
they are not ready for more global updates. It is also worth noting that the
source code must be changed for each case, which is bad practice.

4.4 Data structures

The type of data structures that were used in the software plays an important
role, because the possibility to extend the code depends on it. Data structures
are also selected for a specific task in order to achieve the best performance.

4.4.1 Group framework 2

GFW2 does not use complex data structures and uses only arrays and standard
data types such as bool, int etc. The purpose of this framework is to group data
into analysis ntuples. ATLAS collaboration members use this data structure
to analyze data.

A tuple is a fixed length ordered set. One example of a data set that
GFW2 handles looks like this:

mc16_13TeV.364174.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV70_\
140_CFilterBVeto.deriv.DAOD_HIGG8D1.e5340_s3126_r9364_p4133

This data set contains complete information about the recorded event
registered in the ATLAS detector from LHC proton collision. For example
mc16 13TeV means simulations protons of 13 TeV collision energy.

To keep information about events, the ATLAS has 2 types of data struc-
tures: ntuples and full root trees, which are used for storing C++ objects.
They use the same basic format, however, the ntuple is simpler, therefore,
when using root trees, the processing time of the input data in the FakeBkg-
Tool can increase. The ntuple is tabular where each event consists of a fixed
length row of data. Ntuple allow mixed data types, where each element could
be an integer, float, double, or a fixed length array. This makes the given data
structure optimal for the required task [20].

4.4.2 FakeBkgTool

The FakeBkgTool framework is written in C++, which supports the use of
classes and structures, which makes it possible to use more complex data
structures to increase the efficiency and readability of the code. The ATLAS

21

4. Framework evaluation

developers have taken advantage of this opportunity and sufficiently represent
the data in a more understandable form. One example is a class that contains
information about an event, which is shown in Figure 4.1

Figure 4.1: Class that contains information about an event

At the same time, there are places where the use of data structures can
be improved. As can be seen in the Figure 4.2, instead of using an array
of structures that would act as a DTO define and store information about
the name and type, this code uses a separate array for names and for types.
These parameters have the same index in array, are related to each other and
they could be combined into some kind of data structure. Also, there are
many code sections where variable names are not self-explanatory, therefore
this makes the code difficult for understand for developers who has recently
joined the project.

Figure 4.2: Illogical use of data structures

22

Chapter 5
New outlined framework

This chapter describes a new framework for analyzing large data sets recorded
by the ATLAS detector. This framework partially solves the problems that
currently exist in the current framework, and will highlight its strengths.

5.1 Requirements

Before starting to develop a framework, there is need to define the require-
ments. Requirements will be divided into 2 types: requirements that apply
to all frameworks in general and requirements for an analysis framework for
processing large data sets.

Since the framework will be used in the future when developing other soft-
ware, the first requirement will be a good architecture. The difference between
a framework and a library is that a library can be used in a software product
simply as a set of subroutines of similar functionality, without affecting the
architecture of the software product and without imposing any restrictions.
At the same time, the framework dictates the rules for building the archi-
tecture of the application, setting the default behavior at the initial stage of
development. The next requirement is a full test coverage. If the work of
the framework is unstable, then this will cause problems for all the software
that uses it, therefore it is necessary to achieve the maximum possible stable
operation and this can be done by writing tests. The next necessary require-
ment is the documentation of the code. A large number of people work with
the framework who did not take part in development, so it is necessary to
convey information on how to use the framework. This applies to both the
documentation of the framework in general and the compilation of the API
documentation.

In the case when one considers the framework as a tool for analyzing a
large amount of data, then, first of all, the speed of running the code will be
very important, since data in such an amount can be processed for hours and
days. Also, there are several projects of data analysis (top-top-Higgs, single

23

5. New outlined framework

top-Higgs, axion-like-particle), therefore, it is necessary that the framework
be universal for all projects and the configuration would be as simple and
understandable as possible. Also, given that the configuration often changes,
it is necessary, if possible, to automate the processes for changing it to optimize
the development time. As a result, the following requirements have been
highlighted:

• Documentation

• Stability

• Good architecture

• High performance

• Configurability

• Automatization

This chapter solves all requirements except documentation. For a more
detailed analysis of the documentation, a separate chapter is further high-
lighted. It will analyze the documentation from the developer and user side.
Improved tracking of development progress will also be suggested.

5.2 Stability

The stability of the software is increased with the help of various types of
testing. Every software should be tested, because bugs can greatly delay
development and block scientists who will use this framework. For a data
analysis framework, the following types of testing can be distinguished:

• Unit testing

• Performance testing

• Integration testing

5.2.1 Unit testing

Unit testing - type of tests in programming that allows to check for correctness
individual modules of the source code of a program, sets of one or more pro-
gram modules along with the corresponding control data, procedures for use
and processing. With the right software development process, testing comes
before the implementation of the functionality. Also, during unit testing, it
is necessary to test individual small functions, therefore, in order to fully
cover these requirements, one needs to fulfill the requirements, which will be
described in the section Architecture.

24

5.3. Architecture

5.2.2 Performance testing

In the classical sense, this type of testing is used to check how the software
withstands the load under certain conditions. For example, when testing a
site, performance is checked by emulating user requests to the tested site
at minimum, average, and maximum values. In the case of testing a data
analysis framework, one needs to test productivity for different amounts of
data and monitor so that at least it does not drop with new implementations.
To test performance, one can use Google Benchmark, which was discussed in
the chapter Framework evaluation in the section Performance.

5.2.3 Integration testing

Integration testing is one of the phases of software testing, in which individual
software modules are combined and tested in a group. In our case, the models
are frameworks (GFW1, GFW2, FakeBkgTool ...), and with each new imple-
mentation, especially if it concerns processing incoming or outgoing values,
one needs to check that the framework remains compatible with the rest of
the frameworks.

5.3 Architecture

This chapter describes the current state of the framework and suggests a new
and improved architecture. The architecture described in this chapter is one
of the suggestions for improving the discussed framework.

5.3.1 Current state

At the moment, the framework contains several significant flaws that affect
the stability of the framework. It happened more than once that due to a lack
of tests, a critical error occurred in the development of the framework, which
was noticed only several weeks later. The main disadvantages of the current
state:

• No tests

• Instability

• Difficulties in support

• Difficulty reading and understanding the code

To solve current problems, it is proposed to use a microservice architecture.

25

5. New outlined framework

5.3.2 Microservice architecture

Microservice architecture is used when the individual tasks of the applica-
tion can be easily divided into small functions - independent services. These
services can be written in different programming languages, since they commu-
nicate with each other using the REST API. Thanks to this, it will be possible
to combine GFW1, GFW2 and FakeBkgTool frameworks that are written in
different programming languages. Most often, microservices are launched in
so-called containers. These containers are available over the network to other
microservices and applications, and the orchestration system manages them
all: examples are Kubernetes, Docker Swarm, etc. The microservices archi-
tecture makes it easy to scale applications. To implement a new function,
it is enough to write a new service. If the function is no longer needed, the
microservice can be disabled. Each microservice is a separate project, so work
on them is easy to distribute between development teams.

5.3.3 New framework architecture

The framework will have a microservices-based architecture. The main ser-
vices will be a service for receiving and processing data, which will later be
transferred to the service for data analysis. Data analysis can also be split
into several services. This decision can be made by the head of developers
based on a more detailed analysis of parts of the code and identification of its
interdependent parts. A service will also be introduced to interact and save
information to the database, which, in its current state, has been replaced by
manual saving of the set date to the data folder. The framework will be based
on the OOP paradigm, since the current framework uses this paradigm and
this will simplify the portability of the code, which will speed up the intro-
duction of the new architecture into everyday life. The architecture and each
microservice will be thoroughly tested with unit tests and integration tests in
order to stabilize and determine the work of the framework [21].

5.4 Performance

In terms of performance, compared to the current framework, everything could
be left unchanged, because, as it was found in the chapter ”Framework eval-
uation”, the framework has optimal performance thanks to the tool that was
chosen for writing it and the lack of unnecessary complexity of algorithms.
It is only tracking, that needs to be added, so that the performance does
not decrease, which can be done thanks to the test described in the previous
section.

26

5.5. Configurability

5.5 Configurability

The future new framework should be configurable enough to increase its flex-
ibility and there is no need to change the source code for each case. This can
be achieved by using a configuration file. This is currently implemented in the
TRexFitter framework. The config file will contains all the properties that the
framework contains and their values. An example of how a config file can be
put into use:

1. This process is described using the Standard Matrix Method as an
example. The structure of the method is described in the chapter Standard
Matrix Method.

2. In the project, open the file ”ttW applyMM.cxx”, which is located in
the ”utils” directory. Instead of hard-coded initialization of properties, reading
values from the console, add:

string inputfile;
cin >> inputfile;

bool m_convertWhenMissing;
cin >> m_convertWhenMissing;

string m_tightDecoNameAndType;
cin >> m_tightDecoNameAndType;

string m_progressFileName;
cin >> m_progressFileName;

3. After that, it is necessary to create a configuration file in which all
properties will be stored as ”key - value”. It is created in the ”input” directory.

inputfile - /afs/cern.ch/user/a/achomont/public/input_120320.txt
m_convertWhenMissing - false
m_tightDecoNameAndType - tight
m_progressFileName - result_120320.root

4. Next, one needs to parse this configuration file. The values that will be
received will be used when running the ”ttW applyMM.cxx” file.

5. Then, run the script and the Standard Matrix Method will use the
properties declared in the configuration file.

5.6 Automatization

In the modern world, everything strives for automation. CERN systems
should be no exception. The automation will have 2 parts.

27

5. New outlined framework

The first part is to automatically test the pushed code into the GitLab
repository, which will provide instant response to bugs and failed tests. This
can be done using the GitLab CI tool. Each launch requires an initial configu-
ration, which is a series of commands that can be automated. Each command
is a pipeline. Pipeline is a set of tasks organized into stages in which one
can build, test, package the code, deploy the finished assembly to the cloud
service, etc. Since the framework does not need to be deployed anywhere, it
will be enough to leave only 3 pipelines: build, run and test. If at least one
pipeline does not pass, it will not be possible to add a new change to the main
branch of the project.

The second part is to create scripts for deploying each of the framework
services, which will be automatically launched when the Docker container
with the service source code is launched. This will allow the use of frame-
works without the need of acknowledging of additional commands and envi-
ronments. Docker is an open platform for developing, delivering, and oper-
ating applications. Docker is designed to deploy applications faster and run
each independently on other systems and infrastructure. Each application is
launched in the Docker container, which is a separate environment with its
own configuration [22].

5.7 New framework evaluation

5.7.1 Pros

1. System stability. The new framework will be tested in detail. Based
on this, the system will contain fewer errors than in the current one
code, which will lead to greater system stability.

2. Finding errors faster. The framework has an architecture built on
microservices, which allows developers to find bugs faster than with the
current frameworks due to the system connectivity. This will allow to
quickly respond to emergency problems and speed up the work.

3. Possibility to save money. Support, bug fixes and the addition of
new features, thanks to the improved architecture, will be faster than in
the current system, which will save developers and institutions resources.

4. System scalability. The improved architecture is highly scalable as
adding a new service to the system only requires adding a new service
(benefits of microservice architecture) resources.

5. Division of responsibilities. Thanks to the new architecture, each
developer can focus on working on his specific service (a separate project),
without having to understand how the complex system works. This will
increase the efficiency of work on each individual function and the system
as a whole.

28

5.7. New framework evaluation

5.7.2 Cons

1. Time-consuming. Developing a new framework requires operations such
as detailed analysis, development and testing. Each action takes time
and resources of specialists. It will also be necessary to maintain the cur-
rent system until the new framework comes into use, which will require
even more experts time and may slow down work on the new system.

2. Requires detailed testing. A framework of this type requires much
resources for detailed testing, since accuracy, error-freeness and stability
are important.

3. High cost. The framework requires large resources. All resources will
cost a certain amount, which can be very large due to the abundance
of requirements. There is also additional overhead for passing messages
between microservices.

29

Chapter 6
Documentation and

development tracking

At the moment, ATLAS has a large amount of undocumented code, as well
as software that lacks documentation for use. In addition, the documentation
that currently exists is not systematized and it is not located in one specific
place to make it easier to find. Part of the documentation is on the ATLAS
Wiki pages, part is saved in presentations from meetings, and part has only
the ReadMe form in the repositories. In addition, ATLAS does not have a
system communication between team members and most issues are resolved
via Skype. Part of the work is not tracked and it is difficult to monitor
the state of development or any other activity. All of this results in slow
development, difficulty of integrating new members and misunderstandings
between specialists. This chapter is devoted to how ATLAS can eliminate
these problems and improve the work processes. Also in this chapter a solution
will be proposed on how to improve communication between ATLAS members.

6.1 Documentation

This section is divided into two subsections. The first subsection describes
what needs to be done to document the existing code without spending much
time. It will also document the existing software for its use and consolidate
the documentation in one location to provide current and potential ATLAS
collaboration members with more understandable access and a clear approach
to familiarization.

6.1.1 API documentation

API documentation is a technical content deliverable, containing instructions
how to effectively use and integrate with an API. This documentation is car-
ried out in such a way that a tool is selected, which, based on comments in the

31

6. Documentation and development tracking

code that corresponds to the syntax specific for this tool, creates documenta-
tion. Most of the modern solutions provide an HTML file that contains this
documentation in the form of a web site, in which there is convenient naviga-
tion, a visual representation of the class hierarchy, etc. The most popular tool
for documenting C++ code is Doxygen. Doxygen generates documentation
from a set of sources and can also be configured to extract program structure
from undocumented sources. It is possible to draw up graphs of dependencies
of software objects, class diagrams and source codes with hyperlinks. Doxygen
is a console program in the spirit of classic Unix. It works like a compiler, pars-
ing source code and generating documentation. The parameters for creating
documentation are read from a configuration file in plain text format. Some
parts of the ATLAS code already contain comments and it will not take long
to change them to fit the Doxygen syntax. Even in the absence of comments,
it is possible to generate simple documentation with graphs of dependencies of
data structures, graphs of inheritance, etc. Even such simple documentation
will simplify the integration of new developers in projects [23].

6.1.2 Software documentation for its installation and
application

The software documentation for its installation and application is quite de-
tailed and understandable in ATLAS. It is also worth noting that in each
documentation there are contacts and the name of the developers who is re-
sponsible for it and in case of ambiguity, there is an opportunity to contact
them and clarify all the questions. The main problem is that all the docu-
mentation is not concentrated in a certain place and it takes a lot of time to
find it. IT firms often have their own Wiki page where one can find answers
to frequently asked questions, read or watch a tutorial on any technology that
is created or used in this company. ATLAS also has such a page, but it does
not contain all the necessary documentation. The solution is to move all doc-
umentation to the Wiki page and use the Wiki page as the main portal for
storing documentation in the future. Achieving this result will take a certain
amount of time, but in the long term this will be compensated for, because
there will be no need to spend extra time looking for answers to questions
about the use of software.

6.2 Development tracking

Improving development tracking will improve the productivity of ATLAS
teams, because in the absence of deadlines and control, development speed
is greatly reduced.

It also partially cover gaps that the documentation does not cover, because
at any moment the developer can find out when a particular function was

32

6.2. Development tracking

implemented, what it depends on, who was the contributor, etc. This section
describes suggestions for improvement.

6.2.1 Jira

Jira is a commercial bug tracking system designed to organize interaction
with users, although in some cases it is also used for project management.
The main accounting element in the system is the task. The task contains
the project name, theme, type, priority, components and content. The task
can be extended with additional fields (also new custom fields can be defined),
applications (for example - photos, screenshots) or comments. The task can
be edited or simply change its status, for example, from “open” to “closed”.
Which state transitions are possible is determined through a custom workflow.
Any changes to the task are logged. Jira has a large number of configuration
options: for each application, a separate task type can be defined with its own
workflow, a set of states, one or several views. In addition, with the help of
so-called “schemes”, one can define own access rights, behavior and visibility
of fields for each individual Jira project, and much more [24].

6.2.2 Improvement of development tracking

ATLAS already uses Jira for its work, but not on all projects and does not do
it effectively. Most of the time ATLAS uses this system to create an issue and
assign it to the developer. Also, the ATLAS issue has only 3 states: ”TODO”,
”In development”, ”Done”. The rest of Jira’s features are not used. In order
to increase efficiency, one can add the following features:

• Add a new state (for example ”Test Passed” or ”Approved”). This is
necessary in order to be sure that the task that should be solved in this
ticket has really been solved. When creating a ticket, there is always a
creator of this ticket. In this process, he takes on the role of the approver
who can close the given ticket. If the ticket does not pass any criteria of
the approver, he must add a description of the problem, why the ticket
was not accepted in the comments and return it back to the ”TODO”
state, after which the developer will complete it. This cycle ends after
the approver closes the ticket. Thanks to this, one can be sure that all
tickets that were closed and removed from the board were resolved and
moved development forward.

• Use the ”Monitor Problem” function. In addition to the developer and
the approver, other members may need to monitor the status of a task,
therefore this function will be very useful. When the state of the ticket
is changed or a comment is added, everyone who follows the problem
would receive an email with a notification about the change in the state
of the ticket. And all members interested in this problem would know

33

6. Documentation and development tracking

its current status and there would be no need to contact the developer
every time.

• The next suggestion is to start using related issues. There are several
types of related tickets and the most important ones are ”depends on ...”
or ”is a blocker for ...”. This should be used to avoid creating blockers
for other developers so that development does not slow down.

• The main possible improvement in development tracking is Jira’s con-
nectivity and repository management system. ATLAS uses GitLab as
the system for managing repositories. GitLab has for example many
more features such as wikis, bug trackers, CI / CD pipelines. And also
it has a function thanks to which one can configure the relationship be-
tween a ticket in Jira and a merge requests and commits in GitLab. In
order to implement this system, one must to follow the convention that
the name of the commit and the name of the branch contains the ID
of the ticket in Jira. Then, configure GitLab so that by the ticket ID,
GitLab can create a link, which, when clicked, leads to a ticket in Jira.

The integration of Jira into GitLab is the most important suggestion for
innovation in development tracking. Thus, in the following example of a test
project in ATLAS GitLab will be described.

Purpose: When one commits to git, one registers a task from Jira by the
name in the comment, after which two things happen:

– In GitLab, the issue name turns into an active link in Jira.

– In Jira, a comment is added to the task with links to the commit and
the user who made it, as well as the mention text itself.

Set up:

1. One needs a GitLab user with administrator rights in each of the projects
that will be connected. Integration is configured separately for each
project.

2. Open the project in GitLab, go to Settings - Integrations. Scrolling
down, one sees “Project services” with a long list of services that can be
connected (Figure 6.1).

34

6.2. Development tracking

Figure 6.1: Integrations tab in Jira

3. In this list one finds Jira, the form appears (Figure 6.2)

35

6. Documentation and development tracking

Figure 6.2: Form for filling in data about Jira

– Put a tick Active to activate the connection.
– Enter ATLAS’s Web URL in Jira:

https://its.cern.ch/jira/secure/Dashboard.jspa

– The following fileds are filled: Username, Email and Password,
Token.

– In transition id field one needs to write the id of the transition to
the closed state. This id is obtained by API:

https://its.cern.ch/rest/api/2/issue/ISSUENAME-123/transitions

where ISSUENAME-123 is the name of some task in the desired
state. JSON with an array of transitions will be received, from
which one can take the desired id.

36

6.2. Development tracking

– As a result, in GitLab in Settings - Integrations, Jira now has a
green indicator (Figure 6.3)

Figure 6.3: Jira connected

– and the Jira item will appear in the project menu, which leads to
the corresponding project in Jira.

Using:
When creating a Merge Request (or creating a commit), one needs to

specify the issue id (Figure 6.4).

Figure 6.4: Merge request title with issue id

As a result, a comment will be added to the corresponding task (Figure
6.5). And an active link will appear in the GitLab.

37

6. Documentation and development tracking

Figure 6.5: Jira page with link to merge request in comments

6.3 Communication

At the moment, ATLAS uses two main tools for communication: email and
Skype. Skype has a list of disadvantages, such as:

• Many bugs

• No group video calls on Linux (many ATLAS members use Linux as
their main operation system)

• Not a feasible alternative to professional team chat

These disadvantages can be ignored when used in everyday life, but as a
mean of communication in a large collaboration like ATLAS, Skype is a quite
bad choice. It is suggested to use Microsoft Teams as an alternative.

Microsoft Teams is an enterprise platform that brings chat, appointments,
notes and attachments together in a workspace. This platform eliminates the
disadvantages that Skype has, and also has the following advantages [25]:

• File storage for work

• It is possible to quickly organize an online conference

• Each participant groups in the course ongoing changes

• Integration of results group work

38

Conclusion

This thesis addresses improvements in the ATLAS software development. It
contains a strategy for documentation and tracking the development progress.
Specific suggestions for implementation are supported by practical examples.

The CERN chapter contains basic information about LHC and ATLAS,
the projects and their goal.

The Data flow chapter explains the data flow in ATLAS from the moment
it is recorded in the detector to final analysis result.

The Standard Matrix Method chapter gives an example of one of the tools
of the analysis framework and gives specifics on the workflow and how it is
possible to achieve an analysis result.

The Framework Evaluation chapter evaluates frameworks by software en-
gineering criteria. This was done so that the pros and cons of the current
frameworks could be highlighted for the next chapter. This chapter also in-
cludes the performance testing of the Standard Matrix Method tool.

In the chapter New Framework, the main points that a new framework
should have are highlighted. Furthermore, solutions are proposed to improve
the workflow. Testing strategy of the new framework is also described in
detail. In addition, pros and cons of switching to a new framework from the
existing one are described.

In the Documentation and development tracking chapter, a strategy is out-
lined for documentation as well as improvements in tracking the development
progress. One of the suggestions for improving the tracking of development is
the integration of Jira with GitLab and detailed instructions are given using
the example of integrating a test project from GitLab ATLAS with one of the
real boards in Jira.

This thesis serves as a detailed proposal for the implementation of future
frameworks. It has been determined that the implementation of the sug-
gestions, as well as ideas for documentation, will improve the workflows in
ATLAS, as in particular for new software developers.

[]

39

Bibliography

[1] CERN. CERN’s mission. [online], 2020, [cit. 2020-06-10]. Available from:
https://home.cern/about/who-we-are/our-mission

[2] CERN. Higgs Boson. [online], 2020, [cit. 2020-06-10]. Available from:
https://home.cern/science/physics/higgs-boson

[3] Rincon, P. Large Hadron Collider turns on ’data tap’. [online], 2020,
[cit. 2020-07-21]. Available from: https://www.bbc.com/news/science-
environment-32976838

[4] CERN. Expirements. [online], 2020, [cit. 2020-06-10]. Available from:
https://home.cern/science/experiments

[5] CERN. LHC. [online], 2020, [cit. 2020-06-10]. Available from: https:
//home.cern/science/accelerators/large-hadron-collider

[6] Particle Data Group. Towards the discovery of the Higgs boson. [on-
line], 2020, [cit. 2020-09-11]. Available from: https://pdglive.lbl.gov/
Particle.action?node=S126&init=0

[7] Rubakov, V. Towards the discovery of the Higgs boson. [online],
2012, [cit. 2020-09-11]. Available from: https://elementy.ru/nauchno-
populyarnaya_biblioteka/431961

[8] CERN. CERN. Software and Computing. [online], 2020, [cit. 2020-06-10].
Available from: https://atlas.cern/node?page=10

[9] ATLAS Collaboration. ATLAS. Derivation Framework. [online], 2020,
[cit. 2020-08-21]. Available from: https://twiki.cern.ch/twiki/bin/
viewauth/AtlasProtected/DerivationFramework

[10] CERN. ATLAS. N-tuple and Event Collection facilities. [online], 2020,
[cit. 2020-08-28]. Available from: http://lhcb-comp.web.cern.ch/
Frameworks/Gaudi/Gaudi_v9/GUG/Output/GDG_Ntuple.html

41

https://home.cern/about/who-we-are/our-mission
https://home.cern/science/physics/higgs-boson
https://www.bbc.com/news/science-environment-32976838
https://www.bbc.com/news/science-environment-32976838
https://home.cern/science/experiments
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://pdglive.lbl.gov/Particle.action?node=S126&init=0
https://pdglive.lbl.gov/Particle.action?node=S126&init=0
https://elementy.ru/nauchno-populyarnaya_biblioteka/431961
https://elementy.ru/nauchno-populyarnaya_biblioteka/431961
https://atlas.cern/node?page=10
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/DerivationFramework
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/DerivationFramework
http://lhcb-comp.web.cern.ch/Frameworks/Gaudi/Gaudi_v9/GUG/Output/GDG_Ntuple.html
http://lhcb-comp.web.cern.ch/Frameworks/Gaudi/Gaudi_v9/GUG/Output/GDG_Ntuple.html

Bibliography

[11] Gillam, T. P. S.; Lester, C. G. Improving estimates of the number of ‘fake’
leptons and other mis-reconstructed objects in hadron collider events. [on-
line], 2020, [cit. 2020-08-28]. Available from: https://arxiv.org/pdf/
1407.5624.pdf

[12] ATLAS Collaboration. Expected electron performance in the ATLAS
experiment. [online], 2011, [cit. 2020-11-12]. Available from: https:
//cds.cern.ch/record/1345327

[13] ATLAS Collaboration. Measurements of the electron and muon inclu-
sive cross-sections in proton-proton collisions at s = 7 TeV with the AT-
LAS detector. [online], 2012, [cit. 2020-11-12]. Available from: https:
//cds.cern.ch/record/1379865

[14] Mashishi, L. W + jets background estimation using the fake fac-
tor method for the H → Sh → e±µ∓+ ≥ 2jets search with the
ATLAS detector. [online], 2020, [cit. 2020-08-28]. Available from:
https://indico.cern.ch/event/779076/contributions/3275609/
attachments/1788448/2912704/Fake_factor_estimation_using__Z_
_jets_control_sample___Dilepton_Analysis__3.pdf

[15] CERN. Search for charged lepton-flavour violation in top-quark decays
at the LHC with the ATLAS detector. [online], 2018, [cit. 2020-09-30].
Available from: https://cds.cern.ch/record/2638305/files/ATLAS-
CONF-2018-044.pdf

[16] Bjørnstad, J. F. On the Generalization of the Likelihood Function and
the Likelihood Principle. [online], 1996, [cit. 2020-09-29]. Available from:
https://www.jstor.org/stable/2291674?seq=1

[17] CERN. Documentation for ttWMatrixMethod. [online], 2020, [cit.
2020-09-01]. Available from: https://gitlab.cern.ch/nbruscin/
ttWMatrixMethod

[18] CERN. Documentation for TRExFitter. [online], 2020, [cit. 2020-09-15].
Available from: https://trexfitter-docs.web.cern.ch/trexfitter-
docs/

[19] CERN. Documentation for ttHMultiGFW2. [online], 2020, [cit.
2020-09-15]. Available from: https://gitlab.cern.ch/atlasHTop/
ttHMultiGFW2

[20] Stanford. Ntuples vs. TTrees. [online], 2005, [cit. 2020-09-15]. Available
from: https://www.slac.stanford.edu/exp/glast/wb/test/pages/
rootPages/ntuplesVsTTrees.htm

42

https://arxiv.org/pdf/1407.5624.pdf
https://arxiv.org/pdf/1407.5624.pdf
https://cds.cern.ch/record/1345327
https://cds.cern.ch/record/1345327
https://cds.cern.ch/record/1379865
https://cds.cern.ch/record/1379865
https://indico.cern.ch/event/779076/contributions/3275609/attachments/1788448/2912704/Fake_factor_estimation_using__Z__jets_control_sample___Dilepton_Analysis__3.pdf
https://indico.cern.ch/event/779076/contributions/3275609/attachments/1788448/2912704/Fake_factor_estimation_using__Z__jets_control_sample___Dilepton_Analysis__3.pdf
https://indico.cern.ch/event/779076/contributions/3275609/attachments/1788448/2912704/Fake_factor_estimation_using__Z__jets_control_sample___Dilepton_Analysis__3.pdf
https://cds.cern.ch/record/2638305/files/ATLAS-CONF-2018-044.pdf
https://cds.cern.ch/record/2638305/files/ATLAS-CONF-2018-044.pdf
https://www.jstor.org/stable/2291674?seq=1
https://gitlab.cern.ch/nbruscin/ttWMatrixMethod
https://gitlab.cern.ch/nbruscin/ttWMatrixMethod
https://trexfitter-docs.web.cern.ch/trexfitter-docs/
https://trexfitter-docs.web.cern.ch/trexfitter-docs/
https://gitlab.cern.ch/atlasHTop/ttHMultiGFW2
https://gitlab.cern.ch/atlasHTop/ttHMultiGFW2
https://www.slac.stanford.edu/exp/glast/wb/test/pages/rootPages/ntuplesVsTTrees.htm
https://www.slac.stanford.edu/exp/glast/wb/test/pages/rootPages/ntuplesVsTTrees.htm

Bibliography

[21] 1Cloud. Briefly about types of software architectures. [online], 2018, [cit.
2020-09-15]. Available from: https://habr.com/ru/company/1cloud/
blog/424911/

[22] Habr. Understanding Docker. [online], 2015, [cit. 2020-09-15]. Available
from: https://habr.com/ru/post/253877/

[23] Doxygen. Doxygen. [online], 2020, [cit. 2020-12-15]. Available from:
https://www.doxygen.nl/index.html

[24] Atlassian. Jira. [online], 2020, [cit. 2020-12-15]. Available from: https:
//www.atlassian.com/ru/software/jira

[25] Microsoft. Microsoft Teams. [online], 2020, [cit. 2020-12-15]. Avail-
able from: https://www.microsoft.com/en-us/microsoft-365/
microsoft-teams/group-chat-software

[26] ATLAS Collaboration. ATLAS. HSG8DerivationFramework. [online],
2020, [cit. 2020-08-20]. Available from: https://twiki.cern.ch/twiki/
bin/viewauth/AtlasProtected/HSG8DerivationFramework

[27] CERN. Documentation for ttHMultiGFW1. [online], 2020, [cit.
2020-09-15]. Available from: https://gitlab.cern.ch/atlasHTop/
ttHMultiGFW1

43

https://habr.com/ru/company/1cloud/blog/424911/
https://habr.com/ru/company/1cloud/blog/424911/
https://habr.com/ru/post/253877/
https://www.doxygen.nl/index.html
https://www.atlassian.com/ru/software/jira
https://www.atlassian.com/ru/software/jira
https://www.microsoft.com/en-us/microsoft-365/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-365/microsoft-teams/group-chat-software
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HSG8DerivationFramework
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HSG8DerivationFramework
https://gitlab.cern.ch/atlasHTop/ttHMultiGFW1
https://gitlab.cern.ch/atlasHTop/ttHMultiGFW1

Appendix A
Acronyms

CERN European Organization for Nuclear Research

GW1 Group Framework 1

GW2 Group Framework 2

MC Monte Carlo

DTO Data transfer object

MM Matrix Method

LHC Large Hadron Collider

XML eXtensible Markup Language

GB Gigabyte

MB Megabyte

PB Petabyte

FF Face Factor

ATLAS A Toroidal LHC Apparatus

CMS Compact Muon Solenoid

OOP Object Oriented Programming

CI Continious Integration

CD Continious Delivery

ID Identifier

JSON JavaScript Object Notation

45

A. Acronyms

API Application Programming Interface

IT Information Technology

46

	Introduction
	CERN
	ATLAS
	Large Hadron Collider
	Higgs boson

	Data flow
	xAOD, DxAOD
	Group Frameworks
	FakeBkgTool
	Fake Factor Method
	Standard Matrix Method
	Likelihood Matrix Method

	Output

	Standard Matrix Method
	Installation and set up
	Structure
	Result visualization
	TRExFitter
	TRExFitter configuration file
	Result

	Framework evaluation
	Usability
	Group framework 2
	FakeBkgTool

	Performance
	Group framework 2
	FakeBkgTool
	Testing performance

	Flexibility
	Data structures
	Group framework 2
	FakeBkgTool

	New outlined framework
	Requirements
	Stability
	Unit testing
	Performance testing
	Integration testing

	Architecture
	Current state
	Microservice architecture
	New framework architecture

	Performance
	Configurability
	Automatization
	New framework evaluation
	Pros
	Cons

	Documentation and development tracking
	Documentation
	API documentation
	Software documentation for its installation and application

	Development tracking
	Jira
	Improvement of development tracking

	Communication

	Conclusion
	Bibliography
	Acronyms

