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Abstract

This work describes the approach of gesture recognition that uses modifyed Openpose al-
gorithm and PoseNet for pose keypoint extraction and Dynamic Time Warping with 1NN
Classifier for the classification of keypoint sequences.
The proposal of actions for robot control is made, with certain extensions to enlarge the
control possibilities.

Abstrakt

Práce popisuje přístup rozpoznávání gest, který používá modifikovaný algoritmus Openpose a
PoseNet pro extrakci pozic kloubů a Dynamic TimeWarping s 1NN klasifikátor pro klasifikaci
sekvencí pozic kloubů.
Je vytvořen návrh akcí pro řízení robota s určitými rozšířeními.
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Chapter 1

1 Problem research

For computer vision tasks convolutional neural network (a class of deep learning meth-
ods) has become dominant method. The purpose of convolution in case of a convolutional
networks is to extract features from the input image, it preserves the spatial relationship
between pixels by learning image features using smaller pieces of input data. However, CNN
is data intensive because of a large number of parameters to estimate (finding kernels in con-
volution layers and weights in fully connected layers), and therefore is more computationally
expensive, requiring GPUs for model training and inference. Kopuku et al. [7] proposed a
method of gesture recognition using two convolutional networks: a detector which is a 3D
CNN architecture to detect gestures and a classifier which is a deep CNN to classify the
detected gestures using NVIDIA Titan Xp GPU.

Research on human motion detection and gesture recognition has also revolved around
the use of Hidden Markov Models (HMM). HMMs allow for the encoding of continuous
streams of data into perceived gestures and/or behaviours, by identifying the state sequence
associated to the motion represented in the observable events. Their main downside is that
they require large training databases to train the HMM associated to each particular behavior
and are particularly sensitive to segmentation errors. HMM-based clustering is very sensitive
to segmentation errors that can easily provide an inefficient or ill generalization from training
data. They also require large example datasets.

[8] shows an approach of pose estimation from video that uses convolutional network
architecture that is able to benefit from temporal context by combining information across
the multiple frames using optical flow.

Some approaches use body markers or CyberGloves. Also depth data is used to simplify
the gesture recognition task.

The Kinect provides synchronized depth and color images
These approaches might be unsuitable for real world scenarios where the presence of high

performance hardware or mocap systems may be impossible.
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Chapter 2

Approach

Approach is based on the method described in [10], which proposed gesture recognition
method using only RGB data and not requiring resource-intensive learning for adding/re-
moving new gestures.

Retrieving coordinates of pose key points for each frame, Dynamic Time Warping (DTW)
algorithm is then applied to find the closest gesture.

2.1 Pose estimation

For detection of the pose-key points, the Ildoonets tf-pose-estimation [5] based models
and tensorflows PoseNet [12] model is used.

Idoonets tf-pose-estimation implements the Openpose 2D human pose estimation algo-
rithm using Tensorflow framework, with changes to the network structure which enables
decent FPS for real-time processing on the CPU.

PoseNet is an optimized model for mobile and embedded platforms implemented by
tensorflow developers.

2.1.1 Openpose

CMU-Perceptual-Computing-Lab Openpose [1] takes the image, extracts feature maps
F with VGG-19 network. The VGG-19 network is an architecture of convolutional neural
network created by Visual Geometry Group at Oxford, with the depth of 19 layers. The
output of VGG-19 is passed to the Stage 1 of the two-branch multi-stage CNN (shown in
the Figure 2.1) that simultaneously predicts a set of 2D confidence maps S1 of body part
locations for each person (Branch 1) and a set of 2D vector fields L1 part affinities, which
encode the degree of association between body parts (Branch 2). Then stages 2-6 follow,
each stage takes the original image features F concatanated with the outputs of Branches
1 and 2 from the previous stage to produce more refined predictions and eliminate false
part-to-person associations.

The part affinity is a 2D vector field for each limb, which for each pixel belonging to a
person encodes the direction as a unit-vector that points from one part of limb to the other.

3



CHAPTER 2. APPROACH

Figure 2.1: Stages of the two-branch multi-stage CNN used by Openpose, taken from the
Openpose paper.

2.1.2 MobileNets

MobileNet [4] is an architecture of efficient CNN models for mobile and embedded vision
applications, created by Google, that uses depthwise separable convolutions and introduces
two simple global hyper-parameters that efficiently trade off between latency and accuracy.

Convolution is an operation that extracts features (such as specific shapes, color, etc.)
performing dot product of kernels (also called filters, typically smaller than image, e.g. of
size 3×3×depth, 5×5×depth) and parts of the input tensor of the same size (as kernel), for
each such tensor part.

Standard convolution takes an hi×wi×di input tensor, and applies convolutional kernel
of size k×k×di×dj to produce an hi×wi×dj output tensor. The computational cost is
hi·wi·di·dj ·k·k.

Depthwise separable convolution is a depthwise convolution followed by a 1×1 convolu-
tion, also called a pointwise convolution.

The depthwise convolution applies a single filter to each input channel. The computa-
tional cost is hi·wi·di·kk (dj is eliminated).

The pointwise convolution applies a standard 1×1 convolution to combine the outputs
the depthwise convolution. The computational cost is hi·wi·di·dj .

Thus, the computation cost of a depthwise separable convolution is hi·wi·di·(k2+dj),
which is k2·dj/(k2 + dj) less operations than the standard one.

The two hyper-parameters: width multiplier and resolution multiplier are further used
to make the model smaller.

The width multiplier α ∈ (0, 1] reduces the number of channels (depth) of each layer.

The resolution multiplier ρ ∈ (0, 1] reduces the width and height of tensors.

4



2.1. POSE ESTIMATION

2.1.3 Idoonet tf-pose-estimation

Ildoonet replaces the VGG-19 network used by Openpose for feature maps F extraction
with the MobileNets shown in table 2.1.

name parameters
MobileNetV2_0.75 α = 0.75, ρ = 0.75
MobileNetV2_1.4 α = 1.4, ρ = 1
MobileNetV1_0.5 α = 0.5, ρ = 0.5

Table 2.1: Different MobileNets used by Ildoonet.

2.1.4 Training the MobileNets

Mobilenet V2 Imagenet Checkpoints [11] are chosen as pre-trained checkpoints for train-
ing on COCO-2017 dataset. Details of person category (pose keypoints) of COCO-2017
dataset are shown in table 2.2.

The weights of the pre-trained checkpoints were obtained by training on the ILSVRC-
2012-CLS dataset for image classification ("Imagenet").

The parameters and performance of this checkpoint is shown in table 2.3. MAC is the
number of multiply-accumulates needed to compute an inference on an image.

Number of training images Number of validation images Number of test images
118287 5000 40670

Table 2.2: Details of COCO-2017 dataset.

name Classification
Checkpoint

MACs
(M)

Parameters
(M)

Top 1
Accuracy

Top 5
Accuracy

MobileNetV2_0.75 float_v2_1.4_224 582 6.06 75.0 92.5
MobileNetV2_1.4 float_v2_0.5_224 97 1.95 65.4 86.4
MobileNetV1_0.5 MobileNet_v1_0.75_224 317 2.59 68.4 88.2

Table 2.3: MobileNet chekpoints.

Training is done on AWS ml.p2.8xlarge instance with details shown in table 2.4.

GPUs vCPUs RAM (GiB)
8x NVIDIA K80 32 (Intel Xeon E5-2686 v4) 488

Table 2.4: AWS ml.p2.8xlarge instance details.

The parameters of training are shown in table 2.5.

5



CHAPTER 2. APPROACH

batch size epochs steps start learning rate image resolution
128 20 37000 0.0001 432× 368

Table 2.5: training parameters.

Heatmap and PAF losses graphs in figures 2.2 2.5 show the process of training
MobileNetV2_1.4. Graphs and images were generated during training and visualised in
Tensorboard.

Figures 2.6 - 2.8 show the evolution keypoint heatmaps and PAF-vactor maps for one of
the validation images during training.

Figure 2.2: Heatmap Loss. Figure 2.3: PAFmap(Part Affinity Field)
Loss.

Figure 2.4: Validation Heatmap Loss. Figure 2.5: Validation PAFmap(Part Affin-
ity Field) Loss.
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2.2. GESTURE CLASSIFICATION

Figure 2.6: Training step
2000.

Figure 2.7: Training step
9000.

Figure 2.8: Training step
27000.

2.2 Gesture classification

For gesture classification Dynamic Time Warping algorithm is used in conjunction with
One-Nearest-Neighbor classifier, which simply means that the closest gesture is taken.

2.2.1 Dynamic Time Warping

Dynamic Time Warping is an algorithm for measuring similarity between two tempo-
ral sequences, which may vary in speed. Given two sequences X = (x1, x2, ..., xn),Y =
(y1, y2, ..., ym), the algorithm finds optimal warping path and optimal distance between the
sequences. Example on two sequence of 1-dimensional data is shown in Figure 2.9

7



CHAPTER 2. APPROACH

Figure 2.9: Optimal alignment (white graph) found with Dynamic time Warping on two
sequences (red and blue colored), The cost of each step in optimal alignment graph is encoded
as shades of gray: the darkest - the cheapest.

Optimal warping path is a sequence of points p = (p1, p2, ..., pl), with pk = (pi, pj) ∈
[1..n]× [1..m] for k ∈ [1, l], which defines correspondence of an element xpi ∈ X to ypj ∈ Y .
Distance between two sequences is then given by

∑l
i=1 dist(pi).

First, the local cost matrix C is constructed using the distance function:
C(i, j) = dist(xi, yj), i ∈ [1, n], j ∈ [1,m].
Then the accumulation matrix A, based on C:

A(i, j) =


∑j

k=1C(x1, yk), if i =1∑1
k=1C(xk, y1), if j =1

minA(i− 1, j − 1), A(i− 1, j), A(i, j − 1) + C(xi, yj), otherwise

for i ∈ [1, n], j ∈ [1,m]

The cost of an optimal warping path (optimal distance between sequences) is given by
A(n,m).

2.2.2 Dynamic Time Warping application

DTW is applied to sequences of ordered sets of key points yielded by the pose estimator.

8



2.3. ROBOT CONTROL PROPOSAL

To achieve scale and translational invariance all keypoints are shifted so that Neck key-
point is in the origin, further, distance between shoulders is normalized.

Only 6 of 18 key points returned by the pose estimator are relevant in classifying a hand
gesture, namely: left shoulder, right shoulder, left elbow, right elbow, left wrist and right
wrist. Neck keypoint is always in the origin, it gains no additional information about the
gesture. Distance between two elements of sequences is given by the sum of squares of the
Euclidean distances between corresponding key points:

dist(a, b) =

6∑
i=1

‖ai − bi‖22 (2.1)

2.2.3 DTW customisation and result usage

For every gesture threshold is empirically acquired so that no gesture is recognised when
no gesture is performed in reality.

Since after processing frames [n, n+ k], where k is the length of a particular gesture, the
only new information in frames [n+1, n+ k+1] is positions of key points in the last frame,
there is no need to compute cost matrix C for each gesture anew. When receiving a new
frame, cost matrix is obtained by truncating the first row of the old one and adding new
row of distances from the new frame (set of key point positions) to each frame in gesture.
This reasoning speeds up computing of cost matrix C by k − 1 times. Also computation
of the accumulated cost matrix stops in case if minimum value in the current row is above
threshold for a given gesture.

By properties of DTW algorithm, for some number l > 0 of frames, right after particular
gesture recognition in frame n, sequences of frames [n− k+ l, n+ l] (where k is the length of
particular gesture) might be still recognized as this gesture. To avoid this, the feature cost
matrix is erased, so that it will be computed anew from frame n+ 1 and information about
recognition will be given only once.

2.3 Robot control proposal

2.3.1 Proposed gestures

This section describes the proposal for gestures and some extensions that might be used
for the robot control.

For robot control following gestures can be used, mapped to actions. The proposed
gestures are sufficently diverce to be predcted with the leats miss rate:

• left hand to the side (Figure 2.10) - turn left

• right hand to the side (Figure 2.11) - turn right

• left hand forward (Figure 2.12) - stop/start moving

• right hand forward (Figure 2.13) - stop/start moving

9



CHAPTER 2. APPROACH

• left wrist forward with fixed elbow (Figure 2.14)- stop/start moving

• right wrist forward with fixed elbow (Figure 2.15) - stop/start moving

• right wrist clockwise motion around the elbow (Figure 2.17) - rotate right 90 degrees

• right wrist anticlockwise motion around the elbow (Figure 2.19) - rotate left 90 degrees

• left wrist clockwise motion around the elbow (Figure 2.16) - rotate right 180 degrees

• left wrist anticlockwise motion around the elbow (Figure 2.18) - rotate left 180 degrees

The last two gestures can be mapped to any action, e.g. making photo or end effector
action. Alternatively, one gesture can be used to drive the robot into specific mode e.g.
effector control, in which other gestures are mapped to effector actions, and another one is
used to return the robot to the previous mode.

These gestures are shown in following figures 2.10-2.19 as keypoint movements. Keypoint
positions are normalized, centered and mirrored. Arrows represent the movements of body
keypoints, one arrow per keypoint. Keypoints without the arrows are expected to be still
during the gesture performance. Start position of keypoint locates at the arrow start, the
final potition on its end.

Figure 2.10: Left hand to the side gesture. Figure 2.11: Right hand to the side gesture.

Figure 2.12: Left hand forward gesture. Figure 2.13: Right hand forward gesture.

10



2.3. ROBOT CONTROL PROPOSAL

Figure 2.14: Left wrist forward with fixed
elbow gesture.

Figure 2.15: Right wrist forward with fixed
elbow gesture.

Figure 2.16: Left wrist clockwise motion
around the elbow gesture.

Figure 2.17: Right wrist clockwise motion
around the elbow gesture.

Figure 2.18: Left wrist anticlockwise motion
around the elbow gesture.

Figure 2.19: Right wrist anticlockwise mo-
tion around the elbow gesture.

2.3.2 Gesture holding

Gesture holding can be used to expand the number of possible commands to robot.
After some gesture is recognised, it can be “held” until the “main part” of the gesture is
being performed. For instance, “left arm to the side” gesture can be used to command the
robot to turn left until the left arm - the “main part” of gesture - stays in final position
of gesture. Also, the right arm can be used to control the angle of the rotation: angle is
inversely proportional to the distance of the right arm keypoints (wrist, elbow and shoulder)
to the corresponding keypoints of the final position of “right arm to the side” gesture. “Right
arm forward” gesture can be used to stop robot while the right hand remains extended and
subsequent optional raising of the other hand will stop the robot completely, Then “Right
arm forward” gesture can be used to command the robot to start moving. While the gesture
is being held, distance function (equation 2.1) will be applied separately to the “main” and
“optional” parts of the gesture until the distance from “main” part is below the threshold.

11



CHAPTER 2. APPROACH

2.3.3 Hand shape classification

While gesture is being held, the classification of hand shape is possible to further extend
the control possibilities. For example purposes two shapes from NUS hand posture datasest
[6] where chosen, namely "fist" and "palm", as seen at 2.20

For classification the MobileNetV2 [9] is used. It is trained with transfer learning [13] from
a network, that was previously trained on a large and general dataset (in this case ImageNet
[3]). This method allows to avoid retraining of the entire model, the base convolution layers
already contains features that are useful for images classification.

The NUS dataset contains 274 images of size 160x120 pixels for each hand shape. To
increase the number of images for training, the data augmentation is performed: rotations
and flips for each image.

Testing accuracy of the resulting model is 93.33%.
For model to work correctly the hand must occupy at least 50% of the image as shown

on figure 2.20.

Figure 2.20: Wrist and palm examples from the NUS hand posture datasest.
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Chapter 3

Testing and performance

3.1 Custom dataset

The gestures described in chapter 2.3.1 were performed by 6 people, each gesture 5
times, one person in frame. Gestures are recorded with the resolution of 640x480 pixels and
framerate 30 FPS in a well lit environment.

Tables 3.1 - 3.4 show classification results using CMU original architecture and different
MobileNet architectures for pose keypoint inference. The images are resized to size 432×368
pixels before fed to the network. For each gesture one instance is chosen as base for com-
parrison with the DTW method. Pose keypoints for base gesture and classified gestures are
inferenced by the same network.

Figures 3.3 - 3.3 show gestures confusion.

Gesture True positives False positives False negatives
Right hand forward 29 - 100% 0 0
Right hand to the side 29 - 100% 0 0
Right hand half forward 29 - 100% 0 0
Right hand clockwise 29 - 100% 1 0
Right hand anticlockwise 28 - 96% 0 1
Left hand forward 26 - 100% 0 0
Left hand to the side 28 - 100% 0 0
Left hand half forward 27 - 100% 4 0
Left hand clockwise 28 - 100% 0 0
Left hand anticlockwise 22 - 84% 0 4

Table 3.1: Testing chosen gestures with CMU original network for
keypoints position inference.
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Gesture True positives False positives False negatives
Right hand forward 28 - 96% 0 1
Right hand to the side 29 - 100% 0 0
Right hand half forward 29 - 100% 1 0
Right hand clockwise 29 - 100% 1 0
Right hand anticlockwise 28 - 96% 0 1
Left hand forward 25 - 96% 0 1
Left hand to the side 28 - 100% 0 0
Left hand half forward 27 - 100% 5 0
Left hand clockwise 28 - 100% 0 0
Left hand anticlockwise 22 - 84% 0 4

Table 3.2: Testing chosen gestures with MobileNetV2_1.4 network for
keypoints position inference.

Gesture True positives False positives False negatives
Right hand forward 23 - 79% 2 6
Right hand to the side 28 - 96% 5 1
Right hand half forward 25 - 86% 7 4
Right hand clockwise 26 - 89% 3 3
Right hand anticlockwise 23 - 79% 0 6
Left hand forward 23 - 88% 0 3
Left hand to the side 27 - 96% 3 1
Left hand half forward 24 - 88% 19 3
Left hand clockwise 26 - 92% 1 2
Left hand anticlockwise 15 - 57% 0 11

Table 3.3: Testing chosen gestures with MobileNetV1_0.75 network for
keypoints position inference.

Gesture True positives False positives False negatives
Right hand forward 18 - 62% 0 11
Right hand to the side 28 - 96% 0 1
Right hand half forward 26 - 89% 69 3
Right hand clockwise 1 - 3% 1 28
Right hand anticlockwise 2 - 6% 2 27
Left hand forward 4 - 15% 1 22
Left hand to the side 3 - 10% 1 25
Left hand half forward 26 - 96% 51 1
Left hand clockwise 26 - 92% 0 2
Left hand anticlockwise 21 - 80% 0 5

Table 3.4: Testing chosen gestures with MobileNetV2_0.5 network for
keypoints position inference.
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3.1. CUSTOM DATASET

Figure 3.1: Confusion matrix for
classification based on MobileNetV2_1.4.

Figure 3.2: Confusion matrix for
classification based on MobileNetV1_0.75.

Figure 3.3: Confusion matrix for classification based on MobileNetV2_0.5.

Table 3.5 shows result of classification with DTW on images resized to 208×176 pixels.

Given this data it is clear that MobileNetV2_1.4 architecture for feature extraction
is sufficient for successful classification of chosen gestures, while taking less time on pose
keypoints inference (see Tables 3.8 and 3.8 in section 3.2.1 Performance)
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Gesture True positives False positives False negatives
Right hand forward 29 - 100% 0 0
Right hand to the side 29 - 100% 0 0
Right hand half forward 29 - 100% 0 0
Right hand clockwise 29 - 100% 0 0
Right hand anticlockwise 29 - 100% 0 0
Left hand forward 26 - 100% 0 0
Left hand to the side 28 - 100% 0 0
Left hand half forward 27 - 100% 0 0
Left hand clockwise 28 - 100% 0 0
Left hand anticlockwise 26 - 100% 0 0

Table 3.5: Testing chosen gestures with MobileNetV2_1.4 network for
keypoints position inference. Images are resized to 208×176 pixels.

3.2 Multimodal Human Action Dataset

Gesture classification is tested on publically available dataset UTD-MHAD (Multimodal
Human Action Dataset) [2] on chosen gestures that differs from each other the most. One
recording from each gesture type is taken as reference - it is compared with all the other
gestures.

Gesture True positives out of 32 True positives percentage
Arm cross 28 87.5
Swipe left (left hand) 21 56.6
Swipe right (right hand) 26 81.3
Catch (left hand) 21 25.6
Catch (right hand) 17 56.1
Draw X 15 46.8
Push 13 50.6

Table 3.6: Testing 7 gestures from UTD-MHAD on tf-pose-estimation MobileNetV2_1.14.

"Draw X" was confused the most with "Catch left hand" gesture (13 False Positives).
"Push" gesture was confused the most with "Draw X" (11 False Positives ).

After adding "Throw (left hand)" and "Throw (right hand)" gestures, which are similar
to "Catch" and "Draw X" gestures, TP of this gestures has reduced, while FP with "Throw"
gestures has increased, as shown in the next table.
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Gesture True positives out of 32 True positives percentage
Arm cross 28 87.5
Swipe left (left hand) 20 56.6
Swipe right (right hand) 25 78.1
Catch (left hand) 20 62.5
Catch (right hand) 10 31.25
Draw X 6 18.75
Push 13 40.6
Throw (left hand) 6 18.75
Throw (right hand) 6 40.6

Table 3.7: Testing 9 gestures from UTD-MHAD on MobileNetV2_1.14.

3.2.1 Performance

Perforamnce is tested on which supports AVX-512 and FMA3. FMA (fused multi-
ply–add) can speed up linear algebra computations such as dot-product, matrix multiplica-
tion, convolution, etc. Tenforflow 1.15 for tf-pose-estimation and Tensorflow 2.4 for PoseNet
was built from source with bazel - opensorce build tool with -march=native for gcc which
enables the instruction subsets supported by the local machine.

The performance of chosen models is summarized in Tables 3.8 and 3.9.

model input image
resolution

inference time resulting FPS
potential

CMU original 432x368
208x176

1s
0.5s

1
2

MobileNetV1_0.75 432x368
208x176

0.2s
0.04s

5
25

MobileNetV2_1.4 432x368
208x176

0.3s
0.05s

3
20

MobileNetV2_0.5 432x368
208x176

0.15s
0.04s

6
25

PoseNet 257x257 0.013 76
moilenetV2 for hand estimation 160x160 0.02 50

Table 3.8: Performance on Intel(R)Core i7-1065G7 CPU.
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model input image
resolution

inference time resulting FPS
potential

CMU original 432x368
208x176

0.43s
0.1s

2
10

MobileNetV1_0.75 432x368
208x176

0.12s
0.05s

8
20

MobileNetV2_1.4 432x368
208x176

0.15s
0.07s

6
14

MobileNetV2_0.5 432x368
208x176

0.1s
0.06s

10
17

PoseNet 257x257 0.013 76
moilenetV2 for hand estimation 160x160 0.02 50

Table 3.9: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
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Chapter 4

Conclusion

MobileNets enables the pose recognition to be performed without GPUs, on which most
of approaches shown in papers rely. DTW showed good results (96%-100% on custom data)
for recognising a small number of dissimilar gestures. New gestures could be added simply
by adding an example of it, it does not require relearning after adding/removing the gesture.
Also DTW is not computationally expensive.

However, adding more gestures could be a problem. For overlapping gestures, e.g. ‘arm
forward’ and ‘arm up’, without explicitly declaring the dependency between gestures and
special handling the approach will not work, ‘arm forward’ gesture will be recognized, leaving
out the longer gesture. Also the problem of slow and noisy pose estimation from RGB images
in dark environment remains.
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Chapter 5

Attachments

dataset.tar.gz contains inferenced keypoints used for testing on custom dataset in
section 3.1. Image data is included on CD.

Script test_dtw.py compares gestures using DTW method and plots the confusion ma-
trix. It takes path to the data (e.g. dataset/cmu) as first argument. Add -v as second
argument for verbose output.

Script animate_gesture.py animates gesture from dataset. Path to gesture shall be
passed as first argument (e.g. dataset/cmu/1_1_1.p).

Folder tf_gesture_recognition contains code for gesture recognition, is uses tf-pose-
estimetion [5] (which shall be installed onto the system with all its dependencies).

Folder tf2_posenet contains example of pose estimation using posenet, uses Tensorflow
v2.4, to run execute main.py

Folder hand_estimation contains hand shape estimation (fist of palm), uses Tensorflow
v2.4, to run execute main.py
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