
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Strategic Games in Adversarial
Classification Problems

Tomáš Kasl
kasltoma@fel.cvut.cz

May 2020
Supervisor: doc. Ing. Tomáš Kroupa, Ph.D

Acknowledgement / Declaration

Firstly, I would like to thank my su-
pervisor, doc. Tomáš Kroupa, for being
patient with me. I would also like to
thank my other teachers for preparing
me for this personal milestone. Next,
I would like to thank my colleagues
for letting me focus on the thesis and
spending a considerable amount of
time working on it. Most importantly,
however, I would like to express my
gratitude towards my friends, family
and fellow CTU students, for they have
been a great support not only along
making this project but also for the
whole study period.

I declare that the presented work
was developed independently and that
I have listed all sources of informa-
tion used within in accordance with
methodical instructions for observing
ethical principles in the preparation of
university theses.

Pilsen, 22 May 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Plzni, 22. 5. 2020

iii

Abstrakt / Abstract

Tato práce se soustředí na strojo-
vou klasifikaci protivníka. Prezentuje
důvody pro použití teorie her v této
klasifikaci a jak takové hry řešit. Dále
se soustředí na jeden specifický model
hry, jenž má základ ve statistickém
testování hypotéz. Kromě rozebírání
modelu, jeho možných nedostatků a
návrhů možných řešení, budu také
zkoumat výsledky, které hra nabízí.
Hlavním bodem práce potom bude ex-
perimentování s řešením tohoto modelu
pomocí tzv. Double oracle algorithm
- algoritmem Dvou proroků. Zatímco
použití tohoto algoritmu pro řešení
her s konečným prostorem strategií je
prokazatelně validní, o jeho použitel-
nosti pro nekonečné hry žádné důkazy
zatím nejsou. Nicméně kvality tohoto
algoritmu, když je použit zamýšleným
způsobem, stojí za pokusy o rozšíření
domény jeho použitelnosti, třeba i do
her se nekonečným prostorem strategií.
Kromě toho se zaměřím na klasifikační
chybovost klasifikátoru, který z vyřešení
této hry plyne.

Klíčová slova: teorie her, spojité hry,
nekonečné hry, strojová klasifikace pro-
tivníka, algoritmus Dvou proroků, tes-
tování hypotéz

This thesis focuses on an adversarial
classification. It presents a motivation
for a game-theoretic approach to the
classification, and how that can be tack-
led. It then focuses on a specific game
model for the classification based on
statistical hypothesis testing. Besides
discussing the model’s possible short-
comings, I will experiment with their
possible solutions and also generally
examine the results it presents. The
main point of interest is experimenting
with solving the model by the Double
oracle algorithm. While the algorithm
has been proved to be a valid solu-
tion to finite strategy-space games, its
usage in a continuous strategy-space
game model is not backed by any exact
proofs. However, its excellent perfor-
mance in common use cases appeals for
experimenting with a possible extension
of its domain, perhaps showing that the
application to continuous-space games
is justifiable. I will also test the classi-
fication error resulting from the game
model.

Keywords: game theory, continuous
games, infinite games, adversarial clas-
sification, Double oracle algorithm, hy-
pothesis testing

iv

Contents /

1 Introduction .1
1.1 State of the art in game-

theoretic adversarial classifi-
cation .1
1.1.1 Adversarial Classification . .1
1.1.2 Game theory1

1.2 Applications .3
1.3 Summary of the thesis4

2 Strategic games .5
2.1 Game Theory .5

2.1.1 Introduction5
2.1.2 Evolution5
2.1.3 Game theory disciplines . . .5

2.2 Basic setup for finite games6
2.2.1 Strategies6
2.2.2 Game outcomes7

2.3 Continuous / infinite space
games .8

2.4 Zero-sum games and why we
can solve them8

2.5 Double oracle algorithm for
continuous games 10
2.5.1 Algorithm presentation . . 10
2.5.2 Continuous-space

games adaptation 10
3 Adversarial hypothesis testing . . 12
3.1 The model . 12

3.1.1 Elementary presenta-
tion . 12

3.1.2 Utility functions 13
3.1.3 Model’s assumptions 13
3.1.4 Neyman-Pearson

adaptation. 14
3.2 Comparison with existing

models . 14
3.2.1 Game theory models 14
3.2.2 Statistical hypothesis

testing models. 15
3.2.3 Anomaly detection

models . 15
3.3 Specific setting 16

3.3.1 Setting presentation 16
3.3.2 Summary 16

3.4 Expected results 17
3.4.1 Convergence 17

3.4.2 Error rate and error
exponent 18

4 Experiments and implementa-
tion . 19

4.1 Basic environment and im-
plementation information,
Bayesian framework 19
4.1.1 Environment and

transformation into
binary setting 19

4.1.2 Implementation confir-
mation . 20

4.2 Deploying the Double oracle . . 21
4.3 Double oracle results 22

4.3.1 Convergence and speed . . 22
4.3.2 Optimal strategies 23
4.3.3 Data classification and

error rates 24
4.4 Influence of γ on the utility

function . 25
4.5 Expanding upon ϕ 26

4.5.1 Argument 26
4.5.2 Results of using the

sigmoid decision func-
tion . 27

4.5.3 Results of using the
linear decision function . . 29

4.5.4 Error exponent com-
parison 31

4.6 Expanding upon the cost
function . 31
4.6.1 Argument 31

4.7 Neyman-Pearson framework . . . 32
4.7.1 Convergence 32
4.7.2 Dependence on the

vector length n 33
4.7.3 Data classification and

error rate 34
5 Conclusion . 36

5.0.1 Adversarial classifica-
tion . 36

5.0.2 Double oracle 36
5.0.3 Model discussion 36

References . 37
A Assignement . 39

v

Chapter 1
Introduction

1.1 State of the art in game-theoretic adversarial
classification

1.1.1 Adversarial Classification
It has always been the case that a certain portion of people is willing to break laws
and rules whenever it allows them to reach some form of personal gain. This statement
applies to a wide range of systems, situations, relations, et cetera.

Naturally, the ability to identify such individuals with malicious intent has been
sought after. Being able to pinpoint these individuals allows responsible supervisors
to limit these malicious activities by appropriate means, whether that is banning the
individual from the system, locking him away, or any other possible way. Doing that,
the general well-being of said system can be protected from unnecessary harm.

The ability to recognize individuals (called adversaries) with harmful intentions is
commonly known as the adversarial classification [1].

The few previous decades have witnessed a rise in computing technology, and with
that, the Internet. That brought with itself an ever-increasing amount of various sys-
tems and environments, which now have to face mentioned adversaries. But as comput-
ing technology brought us an increasing need for the adversarial classification, it also
provided us with more and more powerful tools to do so.

Over the decades, multiple approaches to tackle this difficulty have appeared. While
there were considerable advancements in possibilities to monitor specifically these ma-
licious behaviors, they proved to be insufficient.

That is because the partial actions taken by the adversary do not have to be nec-
essarily perceived as harmful. More general observation of the system, therefore, was
needed. And with that, also more sophisticated approaches to classification of an in-
dividual as an adversary. Naturally, statistical [2] and machine-learning [3] techniques
received much of the interest. While they reached various degrees of success, eventually,
they face similar limitations.

Approaches based on machine learning utilize commonly known classification tech-
niques, which are trained to classify vectors from feature space.

On the other hand, classifiers based on a statistical hypothesis test expect a list of
samples. It is then examined on which probability distribution is it more likely based,
benign or adversarial.

None of these, however, reflects the interests of attackers nor their will to exploit the
defense system.

1.1.2 Game theory
Their limitations are the reason why the game-theoretic approach to attack detection
has seen an enormous increase in popularity in recent years. When discussing adver-

1

1. Introduction .
sarial classification, there is generally a common concern. Once an attacker seeking to
exploit a particular system discovers how the classifier is designed, he can modify his
strategies to avoid detection. He can do so by purposely choosing attacks, which are
likely to be misclassified as harmless.

The idea is to employ the game theory, which models interactions between multiple
entities (formally called agents) in a shared environment. Here, instead of predefining
what attack is and what is not, this method tries to model the system as a game
between two agents: An attacker, who seeks to reach a personal gain by malicious
activities while overcoming the defense, and a defender, whose goal is to discover him
and stop him.

However, there are present also other agents, benign users of the system. While they
are not an explicit part of the mathematical game model, their presence in the system
is essential, as the defender has to classify any agent as either attacker or non-attacker.

To model their interactions within the model, there is usually an estimation of the
cost and utility gained for the agents’ actions and behaviors. They represent the agents’
gain or loss for their chosen strategies in numerical values.

Equipped with these tools, we should be able to compute the optimal strategy for
the attacker. And having that estimation, we can use it also to calculate the optimal
strategy for the defender, which is the ultimate goal.

The solution gained from examining the game model then should reduce the amount
of both false positive and false negative errors when used in a real-world application.
Also, it should provide us with a more general defense strategy when it comes to
constraints, by which is the observed behavior classified.

The topic of adversarial classification is closely related to two other general game
models. One of them is security games, where the defender tries to allocate system
defenses and monitoring sensors optimally.

The second one is the so-called anomaly detection games. The key difference is
that the defender tries to identify, also in the presence of non-attackers, anomalies in
behaviors. Agents, whose behavior is labeled as an anomaly, are then on their own
examined for possibly adversarial intentions (using further techniques), rather than
being proclaimed as adversaries right away.

The study of deploying the game theory to the adversarial classification has been
split into two main directions:

In the first one, there is a game where the attacker chooses an attack vector from a
feature space. The defender then tries to classify the unknown agent based on observing
the vector inside the feature space and estimating an attacker’s possible gain. Here,
more conventional machine-learning algorithms may be used for the defender to learn
individual strategies [1].

The second direction models a game where the attacker (and also the non-attacker)
chooses a probability distribution. Their samples are then chosen from the distribution
independently. This approach leads to more statistical-oriented solving methods, as the
defender is then usually performing a modified hypothesis testing based on a number
of observed samples of the unknown agent [4].

This thesis focuses on the second case.

2

. 1.2 Applications

1.2 Applications

Not surprisingly, wide possibilities for adversarial classification are in the domain of
information technologies, where becoming an attacker is often simple, and price for de-
tection negligible. The amount of attackers is therefore significant. Recall, for example,
a very familiar problem of fake emails and spam-filtering [5].

Another domain is a monitoring system of a social network. Here, attackers might
want to exploit the accessibility and wide audience, as they spread so-called fake news
for personal profit. Either it could be advertising of a product based on false claims, or it
could be a propagation of certain political parties with the vision of altering the election
results. The company behind the social network would, in return, try to identify these
(fraudulent) accounts, whose published content conflicts with the rules or interests of
the company behind the network [6].

One of the frequently suggested applications is a security system of an app store.
While the majority of the apps available there are harmless, a certain number of mali-
cious apps may try to sneak in. When installed, these apps can exploit the device and
possibly even the user. For example, by accessing and sharing the user’s private data,
sending the user’s location to a third party, et cetera. (Proposed, for example, in a
paper [7].)

One of the main conditions for these models to work is having a possibility to es-
timate the cost of different kinds of attacks. That is how much effort there was in
developing and maintaining the attack. It is needed to correctly estimate the attacker’s
gain or loss under chosen strategies. Apparently, this condition tends to limit the ap-
plication of some game theory models. In some models, though, this cost estimate can
be constructed without much struggle [1].

Another possible domain is multimedia forensics. Here, the defender tries to decide
whether a presented image is legitimate, or if it has been purposefully modified. While
the picture modification can be done by an attacker to mislead a living person seeing
the picture, for whichever reason, there is another huge motivation. That is the ability
to alter a decision of a neural network-based classifier (presented, for example, in a
paper [8]).

Yet another domain is checking the values scanned from a set of sensors. Here, the
defender’s goal is again checking that data coming from the sensors were not somehow
altered (also proposed in [7]). Notice that while the real-world situation is quite different
when compared with the multimedia forensics case, the model structure remains similar.
Thus, game-theoretic models for adversarial classification stay in a very general setting.

However, the adversarial classification is not limited to the domain of the Internet.
Imagine a driver on a highway being registered by some of the speed radars as slightly
overspeeding. The police’s time is limited; therefore, not all overspeeding drivers can
be pursued - a strategy for selecting only some of them must be created. Is it beneficial
to somehow classify the driver based on the registered speed values and then decide
whether this driver belongs to the group reasonable drivers facing a serious urge to
reach the destination as soon as possible? Or does the driver actually intends breaking
the rules, either because he is trying to escape the place of more serious crime (or just
because of the thrill), and should, therefore, be pursued?1

1 https://www.youtube.com/watch?v=kI712FeoPSM

3

https://www.youtube.com/watch?v=kI712FeoPSM

1. Introduction .

1.3 Summary of the thesis
In this thesis, I will try to resolve a game model with an infinite action space, which is
suggested in a study paper [9], by a different approach. While the authors of the model
settle for a specific setting of the model and then discretize it, I will experiment with
resolving the model by an iterative algorithm called Double oracle.

More specifically, I am interested in whether this algorithm, which was not purposed
for this use case, can achieve similar results in the same setting of the game, as the
model’s authors did. That means I will examine how does the algorithm perform
when it comes to speed and reliability of convergence, as well as whether the algorithm
converges to correct solutions.

While the algorithm’s convergence is evident in finite-space games, for which it is
designed, its convergence in infinite-space games is only expected intuitively. More
explanation on this is given in Section 2.5.2.

If the Double oracle deployment succeeds, I will examine the classification error for
various values of n, comparing it with the expected error rate proposed in the paper.
Does the error rate actually converge to zero?

I will also try to modify the game slightly in a few ways in order to improve upon its
shortcomings and argue about possible improvements. Those will be tested by cross-
comparing the error rates.

Also, I want to point out that I will use, whenever referring to any abstract agent or
person, masculine form. There is no hidden intention other than making formal things
as simple as possible.

4

Chapter 2
Strategic games

2.1 Game Theory

2.1.1 Introduction
Game theory is a mathematical discipline, which tries to model strategic interactions
between multiple agents (often called players) with varying degrees of rationality. In
the game models, every participating agent tries to maximize his individual gain from
the game among the individuals. This implies that every agent is trying to find his own
best (optimal) strategy, which consequently depends on the strategies of other agents.
The optimal strategies are, therefore, found by optimizing partial functions inside the
model.

Nowadays, game theory is successfully used to explain various phenomena in a range
of areas. Besides defeating humans in actual games [10], it also helps to understand
phenomena in economics [11], biology [12], and even politology [13]. Basically, game
theory can find its place wherever we are interested in multi-agent competition, and
also often when we are interested in multi-agent cooperation. And in recent years, its
use case has also been expanded to the adversarial classification problem.

2.1.2 Evolution
Mathematical examination of games and looking for the best strategies is quite a natural
field of interest. And so with the rise of mathematics, games have been the target of
focus at least since the beginning of the 18th-century [14]. However, game theory as a
separate field of science has been established a bit later, in the early 20th century. It
has been expanded most notably by the research done by John von Neumann and Oskar
Morgenstern [11]. What is important is that they expanded the usability and focus of
the game theory outside classic board games, making the new theory a useful tool for
economics. Also, an important term - an equilibrium (later named Nash Equilibrium -
NE) was defined in this book.

Another crucial point in the game theory development was the year 1951, when
John Forbes Nash Jr. proved the existence of NE in any finite game, along with his
further research done on non-cooperative games [15]. This event commonly marks the
beginning of modern game theory science.

Over the years, game theory as a general approach to solving problems has only seen
an increase in various topics.

2.1.3 Game theory disciplines
The game theory is now split into two main fields of interest:

Cooperative games, where the agents form a coalition. Inside this coalition, agents
aim to maximize their collective utility gain. Here, the basic unit of strategic decision-
making is often the whole group of agents [16][Chapter 12].

5

2. Strategic games .
However, here we focus on the other one, non-cooperative games. Here, the agents

interact with each other, seeking to maximize their own gain. That could mean the
agents’ gain is not correlated with the utility gain of others in any obvious way, or it
could mean they explicitly compete with each other [16][Chapter 3].

2.2 Basic setup for finite games
To define a game, multiple things have to be specified.

Naturally, we are interested in which agents are present in the game. Note that just
the number of agents is not sufficient; we need the whole set of unique agents specified, as
each of them might have different possibilities, objectives, and even rewards associated
with their actions.

That is exactly what needs to be specified next - the so-called action profile of each
agent. That is the set of all the actions each agent can do. These sets might not be the
same for all the agents.

The last thing that is necessarily needed is a mapping from the actions, which the
individual agents could choose, into the utility they gain from selecting it.

The following definitions and principles are roughly based on a textbook [16][Chapters
3 and 4].

Usually, it is clearly stated in the game model whether the game is simultaneous
(also one-shot); that is, each agent chooses his action in the beginning and then just
observes the game outcome. Or whether the game is sequential, that means agents play
in order, turn after turn, while also watching others. Games modeled for the adversarial
classification are usually in the first group. Also, there can be more specific game rules
outside the scope of the three mentioned sets.

The three essential sets give us a tuple:

. N - set of agents denoted ni. A - set of individual strategy profiles denoted Ai, which consist of possible actions
axi. u - set of utility functions giving each players reward/cost for chosen action denoted
as ui

Definition 2.1. (Normal form of a finite game) These three entities together form a tuple
G = (N,A, u), that is known as the normal form of a finite game.

2.2.1 Strategies
As the modeled game proceeds, individual agents provided with their action sets need
to settle on a strategy. Intuitively, said agents could choose to always play one specific
action, perhaps the one that generates the highest average reward. Or they could
choose between two specific actions, based on an arbitrary condition. This intuition
fulfills what is called a pure strategy.

Definition 2.2. (A pure strategy) A pure strategy is an element axi of Ai, under which,
based on the state of the game, a single specific action is deterministically chosen by an
agent ni.

However, pure strategies are often not sufficient for agents’ optimal behavior precisely
because of their deterministic nature. Since the outcome of the game depends on the
chosen actions, whenever any agent settles on a pure strategy, other agents can exploit

6

. 2.2 Basic setup for finite games

it by adjusting their own. What is missing then is some way of unpredictability. That
would be critical, for example, if an agent needed to switch unpredictably between the
action with the highest average reward, and the action with the least possibility to be
countered.

Definition 2.3. (A mixed strategy) A mixed strategy Si is a probability distribution over
the agent’s strategy profile Ai, from which the final action is chosen randomly.

Note that a pure strategy is a special of a mixed strategy, where one action has a
100% probability of being played, while all of the rest have 0%.

Another useful definition, which will be later needed, is a dominating strategy:
Definition 2.4. (A dominating strategy & A dominated strategy) For a player ni, a
strategy Si is called a dominating strategy and a pure strategy S′i is called a dominated
strategy, if ui(Si) > ui(S′i) for every possible state of the game.

Now, when it is clear what a strategy is and how a clear superiority looks... For
which strategies can actually an agent aim? Trivially, an agent can randomly choose a
mixed strategy (dummy agent). Or he can choose a strategy with the potential for the
highest value of utility gain (greedy agent).

For each combination of actions taken by other agents, an agent ni could determin-
istically choose a specific pure strategy with the maximal reward. This pure strategy
is called the best response.

Definition 2.5. (Best response) The Best response is a pure strategy maximizing the
utility against a specific combination of strategies chosen by other agents.

Previously it was stated that an agent could seek to reach some kind of optimal
strategies, perhaps the one which, on average, yields the biggest reward. Defining these
in any useful way, however, proved to be tricky. That is because each utility depends
on strategies picked by other agents. Thus they can be ultimately countered.

For each strategy an agent ni can choose, other agents might respond by choosing
strategies, which result in the smallest, minimal gain for ni. Naturally, an agent might
want to suppress this counterplay by choosing the strategy which offers the maximum
of these minimal gains.

Definition 2.6. (Maximin Strategy) A maximin strategy is a strategy that maximizes a
minimal possible reward.

2.2.2 Game outcomes
First, let’s address what exactly is meant by a game outcome:

Definition 2.7. (A game outcome) A game outcome is a tuple (S,U), where S is the set
of all agents final mixed strategies, and U is the set of their individual utility gain.

In other words, how much utility each agent ended with, and which strategies were
needed for reaching such utility redistribution.

It is rational to talk about game outcomes whenever we are interested in what strate-
gies have to be chosen to reach a specific utility redistribution. Another occasion is,
conversely, when we want to observe the final utility distribution after choosing particu-
lar strategies. What happens, for example, if all the agents play the maximin strategy?

Expanding on the idea of defining an optimal strategy, a significant game outcome
exists - the aforementioned Nash Equilibrium (NE). NE is such a state of the game,
where all agents have chosen a strategy and, at the same time, no single agent can choose

7

2. Strategic games .
a better strategy in regards to what has been chosen by others. That is, no agent has
neither incentive nor reason to deviate from the strategy he has already chosen. As a
result, NE is a stable outcome of a game, which, without external influence, will not be
abandoned by participating agents.

Definition 2.8. (Nash Equilibrium (NE)) A game outcome, in which no single agent can
benefit from changing his own strategy, is called a Nash equilibrium.

Nash has also proved such equilibrium exists in every finite-space game. In infinite
games, however, no NE may exist.

While some games may have a single NE, it is more typical that there are infinitely
many of them.

You can imagine the principle of a NE like this. There is a game between 2 agents,
Alice and Bob. Both of them have a two-sided coin, which they (per turns) put on a
table. If both Alice and Bob put the coin with the same side upwards, Alice wins. If
the coins’ orientations differ, Bob wins.

If either of the agents sticks to continuously playing a specific side of the coin, the
other one can adapt, which creates an infinite circle of mutual adaption.

The NE for both agents means choosing their side of the coin randomly with a
50%/50% chance, making the action unpredictable. The best response to the random-
izing, therefore, is also randomizing. Often, the strategies that lead to NE are what is
meant by the label ’optimal’ .

2.3 Continuous / infinite space games
While most of the setup (N,A, u) remains similar, the strategy profiles of individual
agents are now infinite. That means, for example, some subset on Rn.

This presents certain complications in the computation of the game’s outputs. Since
we are now unable to select the best response by comparing the outcomes of all possible
actions, as there is now an infinite amount of them, other mathematical techniques must
be deployed. They have various disadvantages, but a common one is a much higher
computational complexity when compared to a simple finite-space model.

An obvious solution to this complication is the discretization of the strategy space.
If the utility function is predictable, we can sample its values at a certain, finite amount
of points, making the game model finite-space again. The problem is that the actual
game optima most probably are not at the sampled points. The solution found is
only an estimation, with the error depending on the predictability of the function, and
resolution of the sampling.

Another option would be an iterative algorithm based on the gradient descend
method. That one is, however, also dependent on the form of the utility function -
the existence of multiple local minima, as well as points without a clear direction of
descent, present complications.

Therefore, new techniques often have to be used for continuous-space games.

2.4 Zero-sum games and why we can solve them
Zero-sum games are games, where the sum of utility gained by all agents is equal to 0.
This can be interpreted as a competition of participating agents over limited resources.

8

. 2.4 Zero-sum games and why we can solve them

While this idea yields the potential for an arbitrary amount of agents, we are now
interested in two-player zero-sum games only. Notice that as agent n1 receives arbitrary
utility gain or lose u1, the zero-sum constraint implies agent n2 must receive utility value
u2 = −u1.

Clearly, the gain of one agent is equal to the loss of the other.

A crucial result of this equality is that we can focus on utility values of one of the
agents only, as values of the other one can be obtained trivially. Moreover, an equivalent
model can be obtained by changing the second agent’s goal. While agent n1 = nmax
seeks to maximize his gain, agent n2 = nmin seeks only to minimize n1’s gain. That
simplifies the model significantly - for each combination of both agents’ strategies, only
one utility gain value may be considered.

With this modification in mind, a maximin strategy analogy can be defined for the
agent nmin :

Definition 2.9. (Minimax Strategy)

A minimax strategy is a strategy that minimizes a maximal possible reward of his
zero-sum game opponent.

The existence of maximin and minimax strategies is guaranteed by this fundamental
theorem:
Theorem 2.10. (Minimax theorem (von Neumann, 1928))[11] In any finite, two-player,
zero-sum game, in any NE each player receives a payoff that is equal to both his maximin
and his minimax outcome utility value.

This is very important, as we now know that a NE exists, and also that it is achieved
whenever nmax plays his maximin strategy while nmin plays minimax strategy. And since
the utility gain values are the same for both agents, we can compute these strategies
(and therefore the NE) by utilizing linear programming (LP).

The maximin strategy for agent nmax can be solved by LP as:

maximize Umax∗
subject to:

∑
j∈Amax

u1(ajmax, akmin).sjmax ≥ Umax ∗ ∀k ∈ Amin∑
j∈Amax

sjmax = 1
sjmax ≥ 0 ∀j ∈ Amax

Similarly, the minimax strategy for agent nmin is the dual LP program, which can be
written as:

minimize Umax∗
subject to:

∑
k∈Amin

u1(ajmax, akmin).skmin ≤ Umax ∗ ∀j ∈ Amax∑
k∈Amin

skmin = 1
skmin ≥ 0 ∀k ∈ Amin

The two LP’s then enable us to find a NE in zero-sum games. However, their formu-
lation needs to be refined.

We can define a matrix, where each line represents a possible action one agent (Row
agent), and each column represents a possible action the second agent (Column agent).
Usually, nmax is assigned as the row player, and nmin as the column one. Then we can
create a matrix M , where each element in row j and column k represents the utility gain

9

2. Strategic games .
u1(ajmax, akmin). If we also introduce vectors of mixed strategies, the dual LP problem
is simplified into:

Primal task: Dual task:
maximize x0 minimize y0
subject to: MTx− 1x0 ≥ 0 subject to: My− 1y0 ≤ 0∑

j∈Amax
xj = 1

∑
k∈Amin

yk = 1
x ≥ 0 y ≥ 0

For a more general overview of the game-theoretical definitions, see chapters 3 and
4 in the textbook [16].

2.5 Double oracle algorithm for continuous games

2.5.1 Algorithm presentation
McMahan, Gordon, and Blum [17] propose a new algorithm for computing the NE in
two-player zero-sum games defined by a payoff matrix.

It is assumed that both agents have an oracle, an entity that can deduce the best
pure strategy against a chosen mixed strategy of his opponent.

In finite-space zero-sum games, these oracles corresponds to choosing the optimal
column against a distribution over a chosen row of the payoff matrix and vice versa.

The algorithm is initiated by creating a new matrix M* by taking an element at the
intersection of an arbitrary row and column from the original game-defining matrix M .
Then the algorithm iterates over the following steps:

. Compute optimal mixed strategies for both agents in a game defined by a matrix
M*.. The oracle of the column agent chooses the optimal column from M against the
mixed strategy of the row player.. The oracle of the row agent adds a new row analogously.. If both the row and the column proposed in this iteration are already present in M*,
the algorithm terminates and outputs the final optimal mixed strategies.

In the paper, where this algorithm is presented, its main purpose is performance
improvement, as it allows to compute NE strategies by deploying linear programming
on much smaller payoff matrices when compared to the original ones. The worst-case
scenario, obviously, is solving the LP for M .

It is easily shown that the algorithm converges to the optimal solution in finite
strategy-set games. This is true for the very reason that there is only a finite amount
of pure strategy combinations.

2.5.2 Continuous-space games adaptation
We can imagine a zero-sum game with continuous strategy spaces (on subsets of R,
for example) as a payoff matrix with an infinite amount of rows and columns. There,
both row agent and column agent can choose an arbitrary value from their respective
strategy sets, which collide in a specific point. At this point, we can compute the utility
function. A matrix M* consisting of utility function values in chosen pure strategies of
the agents can be maintained. Each newly chosen pure strategy will then be added to
this matrix as a new column or row.

10

. 2.5 Double oracle algorithm for continuous games

Figure 2.1. Creating the Double Oracle payoff matrix (M*) from an infinite one

However, the oracles now have to be able to identify the best response in a continuous
space, rather than a simple comparison of a finite amount of choices. That can be done
by minimizing/maximizing the cross-sections of the utility function. However, this
optimization usually must be done numerically, which raises its own questions about
convergence and accuracy.

While the authors of the Double oracle algorithm justify deploying it in finite-strategy
set games only, the performance of this algorithm in continuous games is worth experi-
menting with. As far as I know, as of now, there has not been a proof of this algorithm
convergence in an infinite strategy set games. Its possible convergence, however, is
intuitively conceivable, as the oracles of both agents gradually learn the possibilities
and dominant strategies of each other, representing the learning processes of the agents.
Both agents then ultimately settle on a strategy withstanding the dominant strategies
of the opponent.

Nonetheless, deploying this algorithm in continuous strategy set games, I believe, is
intuitively superior to some other methods, such as discretizing the strategy sets of the
game. That is because the Double oracle conserves the fundamental continuity of both
players’ pure strategy spaces. Therefore, the exact optimum should not be skipped.

11

Chapter 3
Adversarial hypothesis testing

3.1 The model

3.1.1 Elementary presentation
In the bachelor thesis, I build upon the model and the theory developed in the paper
[9] by Yasodharan and Loiseau.

Therein, Sarath Yasodharan and Patrick Loiseau propose a nonzero-sum continuous-
space game model. Both Bayesian and Neyman-Pearson frameworks are taken into
consideration. Let’s describe the model under the Bayesian framework first:

Suppose there is a finite alphabet set X of actions of an external agent, who is either
a non-attacker (with the probability θ) or an attacker (with the probability 1−θ). Also,
suppose there are two distinctive distributions over X, distribution q for adversaries,
and distribution p for non-attackers. Then q, p ∈ M1(X), which is the space of all
possible probability distributions on X.

The defender is then permitted to observe a realization of a sequence of i.i.d. variables
X1, ..., Xn following an unknown distribution over X. His task is to test a hypothesis:

H0 : X1, X2, ..., Xn ∼ p
H1 : X1, X2, ..., Xn ∼ q

where:

. n ∈ N , that is the size of the random sample.. p(xn) is the probability of observing an n− length word xn under the distribution p.. q(xn) is the probability of observing an n− length word xn under the distribution q.. ϕ : Xn → [0, 1] is the defender’s decision function, which returns a probability the
observed word will be proclaimed as adversarial

Under the classical Bayesian hypothesis testing, where a priori probabilities are
known, the decision criterion would be a likelihood ratio of q(xn)

p(xn) , which is then com-
pared with the found threshold to make a decision. Here, the attacker’s utility gain
also must be considered, the test, however, remains a likelihood ratio and the threshold
comparison [Proposition 4.1][9].

The attacker’s strategy set is
Q ⊂M1(X)

and the defender’s one is the set of all possible decision rules, denoted as

Φn = ϕ : Xn → [0, 1]

Note that even the pure strategies of the attacker are merely probability distributions
over X. Hence considering the mixed strategy of this game means randomizing over
such distributions.

12

. 3.1 The model

3.1.2 Utility functions

The utility function of the attacker is

uAn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn)− c(q)

where c(q) ∈ R+ is the cost for choosing a distribution q ∈ Q.

That is, in other words, the attacks’ probability of being undetected minus the cor-
responding cost.

The utility function of the defender is

uDn (q, ϕ) = −(
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn))

where γ > 0 is a constant representing the penalty balance of false positive/negative
errors as well as the value of θ. So uDn represents the scaled penalty for both false alarms
and false negatives.

It is, however, important to note that adding

γ
∑
xn

ϕ(xn)p(xn)

to uAn (q, ϕ) does not alter the attacker’s choice, since it does not depend on the value
of q. Analogously, subtracting

c(q)

from uDn (q, ϕ) does not change the defender’s choice.
Doing this allows us to define a zero-sum equivalent of this game. The modified

utility function for the attacker then is

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn)− c(q)

and its negation is the defender’s utility function. Following the Theorem 2.10, the NE
can be obtained by solving a LP, for example, using these utility functions.

3.1.3 Model’s assumptions

This model has multiple assumptions [A1-A4, Section 3.1][9]:

. Q is a closed subset of M1(X), and p /∈ Q. p(i) > 0, q(i) > 0; for ∀i ∈ X and ∀q ∈ Q. c(q) is a continuous function on Q, this function must be predefined. there exists unique q* ∈ Q s.t. q* = argminq∈Qc(q). the benign distribution p is distant from the set Q relative to the point q*

The final clarification needed is this: the classification error of the classifier computed
in this framework decreases as n→∞, and n should, therefore, be large.

13

3. Adversarial hypothesis testing .
3.1.4 Neyman-Pearson adaptation

Here the a priori probabilities of an agents’ presence (that is θ) are unimportant. How-
ever, there is a limit for the false positive error rate. This limit is denoted ε, and its
value is fixed. The defender’s strategy set is then modified to reflect this limit as

Φn = {ϕ : Xn → [0, 1] :
∑
xn

ϕ(xn)p(xn) < ε}

While the initial utility function of the attacker remains unchanged, that is

uAn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn)− c(q)

defender’s utility function can be simplified. Because the type I error rate is already
bounded by the strategy set Φn, his utility function can now reflect only the type II
error. Thus:

uDn (q, ϕ) = −(
∑
xn

(1− ϕ(xn))q(xn))

Similarly as in the Bayesian framework, because the expression c(q) does not depend
on the value of ϕ, a zero-sum equivalent game can then be defined - using the attacker’s
utility function

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn)− c(q)

and its negation as the defender’s one.

3.2 Comparison with existing models

3.2.1 Game theory models
The discussed adversarial classification model [9] keeps the more traditional approach
of letting the defender learn in a safe environment, where the attacker is not allowed
to perform so-called poisoning of his learning data set. We can see the learning set as
the distribution p, in this case. Instead, the model’s deployer is responsible for figuring
out the correct value of p.

It also does not handle the defender’s obstructed vision. Instead, it is expected that
he can fully observe all the agents’ actions. However, this can be added as some kind of
module to the game, unlike the previous characteristic, which would need a rework of
the model’s fundamental specifications. Some models, which address these topics, can
be found here[1].

The model, though, addresses two common shortcomings of game-theoretical clas-
sifications models: Both strategy spaces are arbitrary distributions, which makes the
model very general. It does not limit the attacker’s options to a predefined enumeration
of attacks; any action from the continuous space can be taken into consideration. It
does, however, require a robust cost function. Also, the principle of distribution over
distributions feels very un-intuitive.

Another advantage of this specific model is that it also allows agents to have different
utility gains, as their goals do not have to be exactly opposite. The attacker is not
concerned with the defender’s false positive rate, and the defender is not concerned
with the attacker’s action costs. While it does not limit agents’ goals by constraints of
zero-sum models, it is also shown how this model can still be turned into a zero-sum
game equivalent for computation purposes.

14

. 3.2 Comparison with existing models

3.2.2 Statistical hypothesis testing models
As discussed earlier, the adversarial classification game model [9] shares similarities with
classical hypothesis testing [2] in both Bayesian and Neyman-Pearson frameworks.

Under the Bayesian framework, the defender/classifier performs the hypothesis test
very similarly as it is done in the classical setting, which is comparing the likelihood
ratio to a threshold. The big difference, however, is that the vectors to be classified
are not generated by nature. Instead, the defender must reflect on the presence and
strategy of an attacker. The adversarial’s attack cost and his goals push the defender’s
optimal strategy from what it would look like if he were an agent in a single-player
game.

Notice, under the Neyman-Pearson framework, the difference in which error type is
being limited by ε. In classical Neyman-Pearson, classification error done on positive
cases is bounded, that means ε is the limit of false negatives. In this game model,
however, ε limits the false positive error rate.

The rest of the specific characteristics from the Bayesian framework apply.

3.2.3 Anomaly detection models
The attacker, in the presented game model, is concerned only about the chance of being
caught and his attacks’ cost. And his goal is to minimize them both. His ultimate
direction, therefore, is to maintain his attack position stable for as long as possible. In
anomaly detection models, on the other hand, instead of cost, more focus is targeted
at a specific potential reward (amount of the damage done) of individual attacks.

Here, I would like to briefly compare this model to a specific anomaly detection model
called simply Generalized [anomaly] Classification Game [18]. The model is surprisingly
similar to the adversarial classification one.

This paper proposes a zero-sum game model. In this model, an agent (either an
attacker or a non-attacker) chooses one vector from a feature space denoted f ∈ F .
The feature space has dimension n, and each real-valued axis is bounded from both
sides. Vectors chosen by a non-attacker are generated by a probability distribution
denoted PD, and each un-inspected vector chosen by an attacker (denoted fa) yields a
non-negative reward R(fa) ≥ 0.

The defender tries to identify anomalies in agents’ behavior, so their actions can be
put under deeper inspection. He does so, just as in our model, with a decision function
c : F → [0; 1]. However, there is an upper bound on the false-positive error rate,
which corresponds to the definition of our game under the Neyman-Pearson framework.
The defender does not observe the attack vectors directly. Instead, he observes them
transformed by a transformation observation function T , which must be defined. The
probability that vector fa transformed by T , will be classified by c as an anomaly is
denoted by ρc(fa).

The utility function is defined as

ueq(c, fa) = (1− ρc(fa)) ·R(fa)

The anomaly detection model appears to comply with the required assumptions, as
F is a closed subset. Let’s take now into consideration T = identity. A specific setting
could be designed in a way that complies with the rest of the assumptions, too - for
example, having a specific single fa∗ with the highest reward and having a continuous
reward function R. And doing so appears to be reasonably achievable.

15

3. Adversarial hypothesis testing .
Even though not equivalent, the zero-sum utility functions of the agents are very

similar between the models. The utility function from anomaly detection [18] differs
only by multiplying the probability of defense-trigger instead of substracting an attack
cost from it.

This comparison shows how game-theoretic models may, even with different purposes,
become very similar in terms of their mathematical definition.

3.3 Specific setting

3.3.1 Setting presentation
The authors of the model chose a specific setting of this model [9][Chapter 5], in which
experiments were done. I will, therefore, use the same setting, too.

The defender observes a binary vector of various length n, which is the subject of
examination. A non-attacker has a fixed probability p = 0.5 for choosing both 1 and 0.

That can be seen, for example, as making suspicious actions. In the domain of a
social network, an ordinary user might, with some rate (0.5, for example), try to reply
to a deleted post or encounter a time-out when sending a message. And then there
could be a malicious crawler (the attacker), that is trying to click itself through all
URI links it can find to gather as much information as possible. And that would make
him more likely to trigger the social network’s backend exception. This binary vector
setting can be projected onto a wide amount of domains.

Since the alphabet is just binary, the attacker chooses probability for picking 1 from
a range on Q = (p; 1]. More specifically, [0.7, 0.9] is used here. That means q is the
probability the attacker chooses 1, and 1− q is the probability he chooses 0. Recall one
of the requirements of the model is that p is distant from Q relative to the point q*
[9][Assumption A4, Section 3.1].

The defender, on the other hand, can only choose from deterministic (ϕ : xn → {0, 1})
decision functions. That means he chooses a threshold for the number of ones present
in the vector. In the binary setting, that is equal to setting a threshold on q(xn)

p(xn) .
The cost for choosing a specific q is set as |0.8 − q|. That also implies the value of

q*, which is the attack with the lowest cost, is equal to 0.8.
When it comes to the Neyman-Pearson framework, ε = 0.1 is chosen. Note that this

binary setting also simplifies the computation of both p(x) and q(x), which is further
elaborated upon in the implementation section.

3.3.2 Summary

. X = {0, 1} (the alphabet is binary). d = 2 (size of the alphabet). p = 0.5 (a non-attacker has equal probabilities between choosing 0 and 1). Q = [0.7, 0.9] (the attacker’s space is a range of the real axis). q* = 0.8. and c(q) = |q*− q|. ϕ : xn → {0, 1} (only deterministic, threshold based decision functions are consid-
ered). θ = 0.5 for the Bayesian framework. ε = 0.1 for the Neyman-Pearson framework

16

. 3.4 Expected results

3.4 Expected results

3.4.1 Convergence

As mentioned before, it is proven, in the paper, the classification error decreases as
n→∞, when the defender’s strategy is in the NE.

It is also shown that the optimal strategy for the attacker converges to a distribution
more and more resembling q*. In this setting, that means the attacker’s choice converges
to the pure strategy q = 0.8.

Similarly, the defender’s strategy tends to converge to a threshold somewhere near
2
2n. Remember that its precise value is dependent on factors such as the value of γ
(favoring one type of classification error over another), and n (observed vectors represent
better the underlying distribution because of the law of large numbers).

To be exact, this is which best responses the model’s authors found and what we
want to replicate using the Double oracle algorithm. Red crosses are the attacker’s and
blue dots are the defender’s best responses in Figure 3.1. The plots are taken from the
paper [9].

Figure 3.1. Best response plots for c(q) = |0.8 − q| under the Bayesian framework, taken
from the referenced work [9][Appendix B.12]

Under the Neyman-Pearson framework, the threshold tends to be much lower. While,
for this framework, no analogy of plots in Figure 3.1 is provided in the paper, a different
plot is provided - the attacker’s optimal strategy in dependence on the value of n.

Figure 3.2. Attacker’s strategy as a function of n under the Neyman-Pearson framework,
taken from the referenced work [9][Appendix C.2]

17

3. Adversarial hypothesis testing .
We are interested in a question whether, when using the Double oracle algorithm, we

can achieve the same results as the authors of the original paper did (using discretiza-
tion).

3.4.2 Error rate and error exponent
Besides computing the strategies, we are also interested in the question of whether the
solution gained by solving the model leads to a decreasing error rate as n→∞. Authors
of the game model defined error rates in NE’s as en(q, ϕ) = −uDn (q, ϕ), which is basically
the expected, weighted average of both types of errors. The error exponent plots were
constructed by computing the NE under various n, getting the value of en(q, ϕ) and
transforming the value into an error exponent inside the Bayesian framework as

err expBayes = − 1
n
log(en(q, ϕ)) = − 1

n
log(

∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn))

and inside the Neyman-Pearson framework as

err expNeyman = − 1
n
log(en(q, ϕ)) = − 1

n
log(

∑
xn

(1− ϕ(xn))q(xn))

Figure 3.3. Error exponents in the Bayesian framework (left) and the Neyman-Pearson
framework (right), taken from the referenced work [9][Appendix C.2]

Experimenting with the computation of this theoretical error exponent is not inter-
esting, as this expected error rate is not dependent on a solving method. The Double
oracle algorithm, therefore, cannot modify these plots in any way.

Instead, I will classify random data samples to test how the value of n influences the
real-world error rate.

18

Chapter 4
Experiments and implementation

4.1 Basic environment and implementation
information, Bayesian framework

4.1.1 Environment and transformation into binary setting
The project is implemented using the Scipy 1.3.3 and Numpy 1.17.4 inside the environ-
ment of Python 3.8. All of the implementation code is available at Git1.

I have decided to start by implementing the game as a whole unit, and execute the
experiments on it afterwards. That is in contrast to the approach of experimenting
only with a specific section of the game model. Recall that

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn)− c(q)

Because of the binary setting, some parts of the computation model can be consid-
erably simplified (using the NumPy symbolics) like this:

. as q(xn) depends only on the amounts of ones and zeros in the vector, the likelihood
that the vector was generated by q can be implemented as q(xn) = q

∑
xn(1−q)n−

∑
(xn). since p = 0.5, p = (1− p), the likelihood, that the vector was generated by p, can be

implemented as p(xn) = pn = 2−n. ϕ(xn, thr) = 1 if
∑
xn ≥ thr , 0 otherwise, as used in the original paper

Even after unfolding the game model in this way, implementing the game consistent
with the model proved to be problematic. While the basic implementation worked, it
was painfully slow for n > 12. That was mainly because iterating over all possible
xn for large n takes simply far too many steps. Since in every position of the vector
could be either of the two binary values, there exist 2n binary vectors of the length n.
Computing the utility function thus reaches the time complexity O(n · 2n)

A critical realization here, again, is that the expression inside each sum depends on
the number of ones (= k) and zeros (= n− k) only. Thus a vast amount of specific xn
iterations are redundant.

Have a look at the first sum inside ueqn (q, ϕ), that is
∑

xn(1 − ϕ(xn))q(xn). Both
ϕ(xn) and q(xn) depend only on the number of ones and zeros in the vector (or the
vector’s length n, as we can compute any third number from the remaining two).

For all vectors of size n with k ones in it, the member (1 − ϕ(xn))q(xn) equals to
the same number. We can compute the value for just one such vector xnk , and multiply
it by the amount of all vectors xnk , instead of computing the function for all of them.
And as the number represents the amount of possibilities of rearranging k ones in n
positions, that number is

(
n
k

)
, the binomial coefficient.

1 https://gitlab.fel.cvut.cz/kasltoma/bachelorthesis/

19

https://gitlab.fel.cvut.cz/kasltoma/bachelorthesis/

4. Experiments and implementation .
Thus, we can see that:

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn)− c(q) =

=
∑

k=0,...,n

(
n

k

)
(1− ϕ(xn))q(xn) + γ

∑
k=0,...,n

(
n

k

)
ϕ(xn)p(xn)− c(q)

Notice that the game model, in a binary setting like this, is quite in resemblance with
the classical binomial distribution, only expressions representing the agents’ strategies
are added: (

n

k

)
qk(1− q)n−k =

(
n

k

)
q(xn)

Also, instead of computing with the actual binary vectors, we can define a structure,
which holds the information

. n - the length of the vector. k - the count of ones

and iterate over instances of this structure instead.

4.1.2 Implementation confirmation

By reducing the time complexity to O(n) like this, we can look at how these individual
functions look inside this model’s implementation (compared to the reference):

Figure 4.1. Attacker’s cross-section utility function with the defender’s threshold set. Out-
put of this implementation (left), and the reference plot around q* provided in the paper

(right) [9][Section B.12] .

The defender’s threshold for ϕ is set to the expected optimum. As we can see in Figur
4.1, near q* = 0.8, the function resembles the cost function (which is c(q) = |q− 0.8|).
That outcome is consistent with the reference. Notice that as q decreases, the attacker’s
probability to be detected does so too, and that pushes his expected utility up again.
Consistently with an intuition, whenever the defender lowers the threshold too much,
qmin becomes the preferred strategy.

We can also plot the analogous figure (Figure 4.2) for the defender:

20

. 4.2 Deploying the Double oracle

Figure 4.2. Defender’s cross-section utility function with the value of q set to q*. The
output of this implementation (left) and zoomed plot of the maximum (right).

The expected utility remains constant outside the range between p · n and qmax · n,
reaching the maximum at, as expected, 99, that is 0.66 · 150. Notice that this is almost
exactly the average value of p and q*. Recall that the model has set γ = 1, which
makes both types of errors equally costly. That raises a question of how big influence
γ has on the defender’s strategy and if, potentially, could his strategy be simplified to
a (possibly linear) function of γ. This question will be addressed in Section 4.4.

4.2 Deploying the Double oracle
The algorithm is implemented, as it is explained in Section 2.5.

Finding the optimal pure strategies is done by appropriate SciPy optimization func-
tions, depending on the number of variables and whether boundaries are needed. Brent’s
method is used for single-variable optimization, as it reliably finds optimum within
specified boundaries (even when there are multiple local minima). For unbounded op-
timization, the Nelder-Mead method is used. Sequential Least Squares Programming is
used for multi-variable optimization, as its NumPy implementation provides convenient
optimization performance. Also, finding optimal mixed strategies from M* is done by
SciPy LP-solving function linprog, using the interior-point algorithm.

An important question here is a floating-point machine precision: These optimization
functions might return slightly different values, because of numerical reasons, for the
same problem and its solution. The algorithm could then endlessly iterate, with no jus-
tifiable reason, over strategies with ridiculously small differences. How many decimals
must two numbers share to proclaim them as identical?

Since nothing specific is known about the Double oracle’s convergence and its depen-
dence on the machine precision, I chose these, as they are sufficient and also beyond a
border of precision-consideration of individual agents:

. threshold for ϕ has precision set to 0.1. q has precision set to 10−6. for Chapter 4.5, the precision is set to 0.01 for sigmoid ϕ and 0.1 for linear ϕ

More information about the impact of changing the machine precision can be found
in Section 4.3.1.

Even then, the optimizing functions occasionally (depending on the initial randomly
chosen strategies) output an error, stating that no definitive solution can be found,
because of numerical reasons. Results are found most of the time, though.

21

4. Experiments and implementation .
We can now test whether, in this setting, these optimizing functions give the expected

results for agents’ best responses (Figure 4.3):

Figure 4.3. Mutual best responses: my implementation (left) and the original implemen-
tation [9] (right) - the same picture as in Figure 3.1

4.3 Double oracle results

4.3.1 Convergence and speed

Let’s answer the essential question: Does the Double oracle algorithm, applied to this
particular setting, converge?

We can illustrate the behavior of DO algorithm with the following Figure 4.4:

Figure 4.4. Speed of convergence expressed by iteration steps required for different n.
Sampled from 100 game runs for each value of n.

As we can see, the algorithm converges to a solution in just a few steps, most of the
time under only five iterations. And practically always under 15 iterations, making it
a surprisingly reliable and fast method.

An interesting note here is that the convergence time (on average) drops down as n
increases. The law of large numbers can explain that: As n increases, the percentage of
ones inside a vector generated by the probability distribution q more and more resemble
the actual value of q, and less oscillation happens.

As an example, I have also compared, on my personal computer, the runtime of
solving the game by the Double oracle for different floating-point precision of the agents’
pure strategies. For each amount of decimals, the DO algorithm was initiated 100 times
(with a value of n set to 150).

22

. 4.3 Double oracle results

Decimals (attacker;defender) (2;0) (6;1) (8;3) (10;5) (14;14)
Time [s] 17 25 38 111 239
Threshold 99 99.4 99.375 99.375 99.375

Table 4.1. Time of convergence for different amounts of rounding decimals, n = 150.

By settling for the precision proposed in Section 4.2, the same outcome of the game
is computed in just a fraction (on average) of the time needed when compared to the
maximal precision the 64-bit machine can provide.

4.3.2 Optimal strategies

Another question is whether the claim, that both optimal mixed strategies (in NE)
converge to pure strategies (Section 3.4.1), holds. The expected pure strategies are, as
already stated, q* for the attacker, and around 2

3n as the threshold for the defender.

Figure 4.5. Optimal mixed strategies, to which both agents converge - using the Double
oracle, n = 150

Indeed, both agents converge to always choosing a pure strategy when using the
Double oracle. Moreover, they converge to the values stated in the paper.

Now, when it has been shown that the algorithm converges to pure strategies, the
question remains whether the algorithm actually converges to the expected value even
for different values of n.

Figure 4.6. Defender’s optimal strategy as a function of n.

23

4. Experiments and implementation .
In the case of this game, the Double oracle algorithm reaches the correct optima. It

shows that the Double oracle algorithm can perform reasonably well for this continuous
game.

4.3.3 Data classification and error rates
The original definition of error rate as en(q, ϕ) = −uDn (q, ϕ) cannot be used for exam-
ining the real error rate of real-world data classification. Recall that

uDn (q, ϕ) = −(
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn))

Since the error rate is defined as a weighted sum of expected average error rates of
both error types, it cannot be used for measuring the error rate of real-world classifi-
cation. Therefore, I will redefine it (for real-world classification) as the weighted sum
of occurrences of the classification errors:

False negative rate is

FN(Xn, labels) =
∑

xn∼q[[ϕ(xn) == 0]]∑
xn∼q 1

and analogously false positive rate is

FP (Xn, labels) =
∑

xn∼p[[ϕ(xn) == 1]]∑
xn∼p 1

which gives the final, balanced error rate:

EBayes
n (Xn, labels, γ) = FN(Xn, labels) + γFP (Xn, labels)

1 + γ

Naturally, the classification error exponent then is

Err ExpBayes = − 1
n
log(EBayes

n (Xn, labels, γ))

Recall that we have set γ = 1, i.e., the prior probability of an adversary’s presence
is θ = 0.5, and both kinds of errors have the same weight.

Values of n are between 10 and 300, and its value is always increased by 10. For each
value of n, NE strategies are computed. The resulting classifier then classifies 5 · 105

vectors, of which 2.5 · 105 generated under q* and 2.5 · 105 generated under p.

Figure 4.7. Error rate for different values of n: classification error rate (left), classification
error exponent (middle) and expected error exponent (right). The last plot is taken from

the paper [Section 6][9].

24

. 4.4 Influence of γ on the utility function

The classification error rate, as shown (Figure 4.7), goes to 0 as n → ∞. Also, the
error exponent converges to a value of around 0.06, exactly as it was proposed. Error
exponent for n > 200 is missing from the plot because the error rate was exactly 0,
which renders the logarithm uncomputable. The Double oracle algorithm, therefore,
can provide us with a reliable classifier.

4.4 Influence of γ on the utility function
An objection might be raised that γ (which is the scalar used for balancing the defender’s
cost for making either of the two types of classification error) might have an overly
strong influence on the defender’s optimal strategy. Could this game model possibly
be simplified to a simple function of γ? To answer this, let’s see the defender’s utility
function (with q set to q*) when the value of γ is changed (Figure 4.8).

Figure 4.8. Defender’s utility function when γ is changed from 1 to 0.1 (left) and 10 (right)

The value of γ has a noticeable influence on the utility function outside the essential
range of (0.5n; 0.9n). However, changing its value, and thus rebalancing the cost of
the two types of error, has just a minor effect on the optimal defense strategy, and the
optimal attack strategy does not change at all.

As the change to the optimum is negligible, we might abandon the idea. It is not
possible to simplify the defender’s optimal strategy as just a function of γ, (therefore
skipping the attacker’s role in the game model) in a reasonable manner.

25

4. Experiments and implementation .

4.5 Expanding uponϕ

4.5.1 Argument

One of the design choices of the model is the decision function ϕ. The threshold-based
binary function is the reason why utility functions look as piece-wise constant. More
importantly, when the attacker knows the trigger threshold, he can choose appropriate
q and just cap the percentage of ones in the binary vectors (by delaying the next action
whenever the cap has been reached, for example). This would let him exploit the system
as well as remain undetectable by such a defense system.

Recall that the initial model specifies the function ϕ as a map to the range [0; 1],
that is to a probability to classify the agent as an adversary. Here, for modifying the
decision function, two options naturally arise:

. a sigmoid function, that is ϕ(xn) = 1
1+exp(−α p(xn)

q(xn) +β)
, α, β ∈ R

. a linear function α k
n + β, that is

ϕ(xn) = α k
n + β, if (α k

n + β) ∈ [0; 1],

ϕ(xn) = 0, if (α k
n + β) < 0,

ϕ(xn) = 1 otherwise, α, β ∈ R

An important implication of modifying the game model this way is that, while there
is no change for the attacker, the algorithm must now optimize the defender’s strat-
egy by iterating over the two new variables. That means the defender now looks for
the best tuple (α;β) instead of threshold ∈ N . Since we moved from optimizing a
single-input function into optimizing a two-input function, the model is now far more
computationally demanding.

Surely enough, the algorithm (after modifying the implementation accordingly) con-
verges for both of these modifications. Let’s compare the plots of these different ϕ with
their respective optimal values:

Figure 4.9. decision function ϕ functions: original (left), sigmoid (middle) and linear
(right)

These are the plots (Figure 4.9) for the different possible ϕ functions when their
parameters are set to the values the Double oracle algorithm converges to.

Observe that both the sigmoid and linear functions are very close in shape to what
the threshold-based ϕ, which might not be quite intuitive.

26

. 4.5 Expanding upon ϕ

4.5.2 Results of using the sigmoid decision function
Firstly, this model also converges to playing pure strategies only, as shown here.

Figure 4.10. Optimal distribution for ϕ(xn) = 1
1+exp(−α p(xn)

q(xn) +β)

Final attacker’s strategy ends up being identical when compared to the original
model. The optimal defense strategy converges to (α;β) = (1 ; 11.23). That means his
optimal decision function is ϕ(xn) = 1

1+exp((−1) p(xn)
q(xn) +11.23)

. Let’s see how that translates

into the actual mapping xn → [0; 1]. For that have a look at the zoomed ϕ plot again:

The mapping remains almost the same, as huge majority of xn ends up (with neg-
ligible rounding) in the binary set {0; 1}. Three only exceptions, in our case (where
n = 150), are:. ϕ(xn=150

k=99) = 0.00003. ϕ(xn=150
k=100) = 0.00035. ϕ(xn=150
k=101) = 0.8657

Therefore, k = 100 is still practically allowed for the attacker by this new model in
comparison with the original. That is redeemed by the fact that the unknown agent’s

27

4. Experiments and implementation .
classification as an adversary is uncertain for the higher value of k = 101. Nonetheless,
an adversary cannot stay undetected while choosing these distributions, indefinitely
- even when settling for k = 100, the attacker will (eventually) be classified as an
adversary.

Since we have now moved (in the defender’s case) from optimizing over one variable
into optimizing two variables, we might also be interested in how the speed convergence
changes. A natural expectation would be, in this modified model, that the number of
steps needed for convergence increases.

Figure 4.11. Speed of convergence, with the sigmoid decision function, expressed by it-
eration steps required for different values of n. Sampled from 100 game runs for each

n.

As shown in Figure 4.11, while the convergence speed for a lower value of n = 50
decreased drastically, as the majority of samples needed over ten iteration steps to
converge, it did not decrease for the case of higher n. Actually, for n = 200, the
convergence appears to be faster than when using the threshold-based ϕ.

Another interesting thing to note then is that as the value of n increases, not only
does the classifier become more precise, the convergence speed increases as well. One
would then think increasing n is a win-win situation. However, it proved not to be
the case, as ever-increasing n is also met with growing numerical difficulties, and the
chance of encountering an optimization error rises.

Should you, therefore, find a way of mitigating these numerical issues, increasing
the value of n as high as possible appears to be optimal. Remember, however, that
classification of the unknown agent should be performed fast enough so that an attacker
does not have much time to cause harm before he is inspected.

Also, we can compare the classification error rate of the model with a sigmoid decision
function with the original, threshold-based one. Specifics of the classification are the
same, n is between 10 and 300, and it is always increased by 10. For each value of n,
exactly 5 · 105 samples are classified.

28

. 4.5 Expanding upon ϕ

Figure 4.12. The classification error rate with a sigmoid decision function (left) and cor-
responding classification error exponent (right).

We can see (Figure 4.12) that the classification error rate converges to zero faster
with the sigmoid decision function than the original game model. Nonetheless, it does
converge to zero, as well as the error exponent converges to 0.06.

4.5.3 Results of using the linear decision function

Perhaps surprisingly, the algorithm still successfully converges to a strong resemblance
with the threshold-based function. And also this time, both agents settle on always
playing a specific pure strategy.

Figure 4.13. Optimal strategy distributions for bounded ϕ(xn) = α kn + β

As shown in Figure 4.13, the optimal strategy of the attacker is again unchanged.
When it comes to the defender, the optimal strategy now is (α;β) = (103.6;−69.2).
The decision function in this case (for n = 150) then is ϕ(xn) = 103.6·101

150 − 69.2.

An important note here is that this time, the algorithm does not always converge to
the same value. Instead, depending on the random initial pure strategies chosen, the
DO algorithm converges to a value of α in the range [103, 104], and value of β in the
range [−69.5,−68.5]

Let’s now have a look at the zoomed linear ϕ (where the values are (103.6;−69.2))
plot again: (Figure 4.14)

29

4. Experiments and implementation .

Figure 4.14. Plot of bounded ϕ(xn) = α kn + β

On closer inspection, however, the slight changes in values of variables α and β do
not change the final shape of the function at all. With the exception of k = 101, all
values of k lead to output 0 or 1, only ϕ(xn=150

k=101) ∼ 0.5 . Multiple different tuples of
(α;β) lead to the same mapping of the finite vector set.

As it seems, this simpler model (when compared to the sigmoid) is perhaps the closest
to fulfilling the basic adversarial classification intuition. That is, there should not be
an attacker’s sweet spot right below the threshold, in which he is undetectable by the
system. But while the value of k = 101 is 50/50 on par, lower values of k again lead to
the certainty of labeling the vector as not harmful.

Here, we can also compare the classification error rate of the classifier gained from the
model with a linear decision function with the other ones. Specifics of the classification
are the same:

Figure 4.15. The classification error rate with a linear decision function (left) and corre-
sponding classification error exponent (right).

Also this time, the error rate converges to zero, and the error exponent converges to
a value close to 0.06. It appears to converge slightly faster in comparison to the sigmoid
function, but the difference is negligible. The two missing parts of the second plot in
Figure 4.15 are caused by the fact that no incorrect classification was encountered for
the specific values of n. It should be noted that this specific model faces a bit more
numerical difficulties.

30

. 4.6 Expanding upon the cost function

4.5.4 Error exponent comparison
Here, we can compare the classification error rates of all three models side by side
(Figure 4.16).

Figure 4.16. The classification error rate with a threshold-based decision function (left),
sigmoid-based (middle) and linear (right) decision function

Perhaps unexpectedly, the game model with a linear decision function appears to
perform the best, and also (for k = 101) is the only one to truly provide uncertainty.
Nonetheless, the optimal non-deterministic decision functions converge to a form, which
oddly resembles the deterministic one.

It seems clear, however, that continuous decision functions can provide considerably
better accuracy if chosen reasonably.

4.6 Expanding upon the cost function

4.6.1 Argument
Let’s start by reminding the utility function:

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn) + γ
∑
xn

ϕ(xn)p(xn)− c(q)

The authors of this model propose multiple various definitions of c, for example
c(q) = (q − 0.8)2. All of them are constrained by the prerequisite that there is a single
optimum denoted as q*. But since around q* is the utility function indistinguishable
from −c(q), the local minimum will always be at q*. Therefore, I think experimenting
with the definition of the cost function itself is not interesting.

There might be, however, a different topic to be addressed. Notice that the attacker’s
cost for choosing a specific q does not depend on the length of the observed vector. That
can be interpreted as considering only the initial cost of inventing an attack, while its
usage is regarded as free.

Figure 4.17. Dependence of (attacker’s) utility function with various values of n, n = 150
(left), n = 50 (middle) and n = 250 (right).

31

4. Experiments and implementation .
These plots (Figure 4.18) of the attacker’s cross-sections of the utility function shows

how much the value of n affects the influence of c on the (attacker’s) utility function.
The reason, why under higher values of n the utility function resembles −c more and
more, is again the law of large numbers. More confidence can be put by the defender
into the selected threshold.

The optimal strategy for both agents is not affected by n at all.

Intuitively, one would think that except for an initial cost for choosing a specific
distribution q, there could be a cost for maintaining this q, too. However, since the
value of n is set for the game, adding or multiplying the cost function by any function
of n would always be the same, as if it was only a constant. Thus, the shape of the
function nor the outcome would change, and no alteration of it is worth experimenting
with.

4.7 Neyman-Pearson framework

4.7.1 Convergence

In the paper, there is also examined the classification model under the Neyman-Pearson
framework.

The Neyman-Pearson framework implies limiting the false positive error count by
the value of ε. That is in our case:

ueqn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn)− c(q)

subject to:
Φn = {ϕ : Xn → [0, 1] :

∑
xn

ϕ(xn)p(xn) < ε}

Recall that we have set the value of ε = 0.1.

Also in this framework the Double oracle converges to pure strategies (Figure 4.18):

Figure 4.18. Optimal distributions under the Neyman-Pearson framework for the attacker
(left) and defender (middle). Also the mutual best responses (right)

While the attacker’s optimal strategy stays the same as in the Bayesian framework,
the defender’s threshold decreases. It is now much closer to 1

3n.

32

. 4.7 Neyman-Pearson framework

4.7.2 Dependence on the vector lengthn

Naturally, the interest then shifts onto the question, how the optimal strategies depend
on the vector length n. Remember, that one of the original questions was whether the
Double oracle algorithm could replicate the relation between n and optimal q. The
direct comparison is shown in Figure 4.19:

Figure 4.19. Optimal attacker strategies: in this model implementation (left) and reference
(right) - the same picture as in Figure 3.2. Taken from the paper [9]

The basic plot structure is the same, and for the lowest possible values of n, the
attacker chooses qmin. However, in contrast to the reference, the optimal q rises, in
my implementation, to the value of q* much faster. I am not sure what the reason for
this is. But since the algorithm converges to the correct q for reasonable values of n, it
doesn’t impose a problem.

Figure 4.19 looks very reasonable when the attacker’s utility function (Figure 4.20)
is also considered, as it is indistinguishable from −c here.

Figure 4.20. Attacker’s (left) and defender’s (right) utility cross-section functions under
the Neyman-Pearson framework, n = 150.

We can also have a look at how the optimal defense strategy evolves as n increases.
(Figure 4.21)

33

4. Experiments and implementation .

Figure 4.21. Optimal defender strategies for varying n

The optimal threshold happens to be a fraction of n this time, too. This time quite
smaller, however, which appears to be fairly reasonable. In order to keep the false-
positive count under a limit, the defender has to behave with much bigger caution,
forcing his trigger threshold much lower.

4.7.3 Data classification and error rate

We are also interested in the error rate of a classifier created by solving this game model.
First, let’s start again by defining the error rate and error exponent. The expected error
rate once again is en(q, ϕ) = −uDn (q, ϕ).

In the Neyman-Pearson framework that means

en(q, ϕ) = −uDn (q, ϕ) =
∑
xn

(1− ϕ(xn))q(xn)

To create its real classification error rate adaptation, we remind the definition of false
negative error rate:

FN(Xn, labels) =
∑

xn∼q[[ϕ(xn) == 0]]∑
xn∼q 1

Since the false-positive error type does not figure in the defender’s utility function,
it is not included in the classification error rate either. The classification error rate
therefore is

ENeyman
n (Xn, labels) = FN(Xn, labels) =

∑
xn∼q[[ϕ(xn) == 0]]∑

xn∼q 1

Naturally, the classification error exponent then is

Err ExpNeyman = − 1
n
log(ENeyman

n (Xn, labels))

34

. 4.7 Neyman-Pearson framework

Values of n are again between 10 and 300, and its value is always increased by 10.
For each value of n, NE strategies are computed. And 250000 adversarial vectors are
again classified:

Here, we can see (Figure 4.22) the classification error rate of the model under the
Neyman-Pearson framework, with the modified definition of what error rate is.

Figure 4.22. The classification error rate (left) and error exponent reference plot (right)
in the Neyman-Pearson framework, from [9][Appendix C.2]

The error rate converges to zero with the increasing value of n this time, too. Because
only one error type (the less likely one, actually, given the lower threshold) is considered,
the error rate converges much faster. No reasonable error exponent plot can be provided
for comparison with the reference. The speed of convergence renders the error exponent
plot uncomputable, and so we cannot say the error exponent converges to the expected
value. Perhaps, the real-world classification performs better than what the expected
error rate suggests.

35

Chapter 5
Conclusion

5.0.1 Adversarial classification
The so-called adversarial classification is a domain that, along with the evolution of the
Internet, is now graced with ever-increasing importance. New and more sophisticated
ways of exploiting online environments are found continually, and so novel approaches to
identifying adversaries are needed too. Because of the exploitative nature of attackers,
static and artificial classifiers are increasingly difficult to justify, and so game-theoretic
models gain popularity. As discussed in the thesis, though, they still have much of the
needed progress ahead.

Together with the game-theoretic approach to the adversarial classification, game
theory is gaining popularity also in related fields, like security games and anomaly
detection games. These games are solved for optimal outcomes using similar methods
and can be used together to construct complex online security systems.

5.0.2 Double oracle
It has been shown that using the Double oracle algorithm for continuous/infinite-space
games is a reasonable and justifiable approach. The algorithm quickly converges to the
correct solutions. Most of the time, only a few iterations are needed. The LP solved
in each iteration is calculated fast, because its time complexity is bounded, and the
matrices are small. The only difficulty, therefore, is optimizing over a section of the
utility function to find the best responses.

It is also shown that the algorithm can handle optimizing over multi-variable strategy
spaces when it is provided with a finely tuned optimization function.

One does, however, need to choose the right floating-point machine precision carefully.
Otherwise, the algorithm might lose its efficiency.

5.0.3 Model discussion
Even though the basic principle of the model, the definition of strategies as distributions
over distributions, is very unintuitive, it can provide us with a well-performing classifier.
As tested, continuous decision function (and the uncertainty it presents) yields much
better results when compared to deterministic ones.

Also, pairing this model with the Double oracle algorithm appears to favor high
values of n for both classification accuracy and computation time.

An implementer of this model, however, is still required to come up with a robust
cost function for an arbitrary attack, which can be a difficult task.

36

References

[1] Prithviraj Dasgupta, and Joseph B. Collins. A Survey of Game Theoretic Ap-
proaches for Adversarial Machine Learning in Cybersecurity Tasks. 2019.
https://arxiv.org/pdf/1912.02258.pdf. In: AI Magazine, Vol. 40, No. 2, pages
31-43.

[2] Micaela Troglia Gamba, Minh Duc Truong, Beatrice Motella, Emanuela Falletti,
and Tung Hai Ta. Hypothesis testing methods to detect spoofing attacks: a test
against the TEXBAT datasets. 2017.
https://doi.org/10.1007/s10291-016-0548-7. In: GPS Solut 21, pages 577–589.

[3] Antoine Delplace, Sheryl Hermoso, and Kristofer Anandita. Cyber Attack Detection
thanks to Machine Learning Algorithms. 2019.
https://arxiv.org/pdf/2001.06309.pdf. May 17.

[4] Mauro Barni, and Benedetta Tondi. Binary Hypothesis Testing Game with Train-
ing Data. Aug. 2014.
https://arxiv.org/pdf/1304.2172.pdf. In: IEEE Transactions on Information
Theory, Vol. 60, No. 8, pages 4848-4866.

[5] Ion Androutsopoulos, Evangelos F. Magirou, and Dimitrios K. Vassilakis. A Game
Theoretic Model of Spam E-Mailing. 2005.
http://nlp.cs.aueb.gr/pubs/ceas2005_paper.pdf. Conference: CEAS 2005 - Sec-
ond Conference on Email and Anti-Spam, July 21-22, 2005, Stanford University,
California, USA.

[6] Sixie Yu, Yevgeniy Vorobeychik, and Scott Alfeld. Adversarial Classification on
Social Networks. July 2018.
https://arxiv.org/pdf/1801.08159.pdf. Conference: Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems(AAMAS
2018), Pages 211–219.

[7] Lemonia Dritsoula, Patrick Loiseau, and John Musacchio. A Game-Theoretic Anal-
ysis of Adversarial Classification. 2017.
https://arxiv.org/pdf/1610.04972.pdf. In: IEEE Transactions on Information
Forensics and Security, Vol. 12, No. 12, pages 3094-3109.

[8] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial Machine Learning
at Scale. 2017.
https://arxiv.org/pdf/1611.01236.pdf. Conference: Published as a conference
paper at ICLR 2017.

[9] Sarath Yasodharan, and Patrick Loiseau. Nonzero-sum Adversarial Hypothesis
Testing Games. 2019.
https://arxiv.org/pdf/1909.13031.pdf. In: Advances in Neural Information Pro-
cessing Systems, pages 7310− 7320.

[10] David Silver, Thomas Hubert1, Julian Schrittwieser, Ioannis Antonoglou1,
Matthew Lai1, Arthur Guez, Marc Lanctot, Laurent Sifre1, Dharshan Kumaran,

37

https://arxiv.org/pdf/1912.02258.pdf
https://doi.org/10.1007/s10291-016-0548-7
https://arxiv.org/pdf/2001.06309.pdf
https://arxiv.org/pdf/1304.2172.pdf
http://nlp.cs.aueb.gr/pubs/ceas2005_paper.pdf
https://arxiv.org/pdf/1801.08159.pdf
https://arxiv.org/pdf/1610.04972.pdf
https://arxiv.org/pdf/1611.01236.pdf
https://arxiv.org/pdf/1909.13031.pdf

References .
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A gen-
eral reinforcement learning algorithm that masters chess, shogi, and Go through
self-play. 2018.
https://arxiv.org/pdf/1712.01815.pdf. In: Science 07 Dec 2018: Vol. 362, Issue
6419, pages 1140-1144.

[11] John von Neumann, and Oskar Morgenstern. Theory of Games and Economic
Behavior . Princeton University Press, 1953. ISBN 9780691041834.
http://jmvidal.cse.sc.edu/library/neumann44a.pdf.

[12] Jonathan Newton. Evolutionary game theory: A renaissance. 2018.
http://dx.doi.org/10.3390/g9020031. In: Games, ISSN 2073-4336, MDPI, Basel,
Vol. 9, Iss. 2, pages 1-67.

[13] Nolan McCarty, and Adam Meirowitz. Political Game Theory. Princeton Univer-
sity Press, 2008. ISBN 9780521841078.
http://www.princeton.edu/˜nmccarty/Political_Game_Theory.pdf.

[14] David Bellhouse. The Problem of Waldegrave. 2007.
http://www.jehps.net/Decembre2007/Bellhouse.pdf. In: Electronic Journal for
History of Probability and Statistics, Vol. 3, No. 2, December 2007.

[15] John Nash. Non-Cooperative Games. September 1951.
https://www.cs.vu.nl/˜eliens/download/paper-Nash51.pdf. In: Annals of Mathe-
matics, Second Series, Vol. 54, No. 2 , pages 286-295 .

[16] Yoav Shoham, and Kevin Leyton-Brown. Multiagent systems. Cambridge Univer-
sity Press, 2008. ISBN 9780521899437.

[17] H. Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the
Presence of Cost Functions Controlled by an Adversary. 2003.
https://www.aaai.org/Papers/ICML/2003/ICML03-071.pdf. In ICML, pages
536–543.

[18] Olga Petrova, Karel Durkota, Galina Alperovich, Karel Horak, Michal Najman,
Branislav Bosansky, and Viliam Lisy. Discovering Imperfectly Observable Adver-
sarial Actions using Anomaly Detection. 2020.
https://arxiv.org/pdf/2004.10638.pdf. Conference: Proc. of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems(AAMAS 2020),
Auckland, New Zealand.

38

https://arxiv.org/pdf/1712.01815.pdf
http://jmvidal.cse.sc.edu/library/neumann44a.pdf
http://dx.doi.org/10.3390/g9020031
http://www.princeton.edu/~nmccarty/Political_Game_Theory.pdf
http://www.jehps.net/Decembre2007/Bellhouse.pdf
https://www.cs.vu.nl/~eliens/download/paper-Nash51.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-071.pdf
https://arxiv.org/pdf/2004.10638.pdf

Appendix A
Assignement

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474747Personal ID number:Kasl TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Strategic Games in Adversarial Classification Problems

Bachelor’s thesis title in Czech:

Strategické hry v problémech strojové klasifikace s protivníkem

Guidelines:
1. The student will study the elements of game theory [4] with particular attention to the computation of Nash equilibria in
two-person games over possibly infinite strategic spaces.
2. The main goal of the thesis is to investigate selected game-theoretic approaches to adversarial machine learning
problems; see [1] and [3] for a recent survey. The main emphasis will be on adversarial hypothesis testing games developed
in [2]. The student will investigate this model and evaluate its performance using simulations. Specifically, he will:
a) Compare the game-theoretic model of adversarial attacks with the usual Neyman-Pearson or Bayesian framework for
hypothesis testing.
b) Run a series of experiments showing the convergence to equilibria for large sample sizes.
c) Evaluate the behavior of error exponents.

Bibliography / sources:
[1] P. Dasgupta and J. Collins. A survey of game theoretic approaches for adversarial machine learning in cybersecurity
tasks. AI Magazine, 40(2):31–43, 2019.
[2] S. Yasodharan and P. Loiseau. Nonzero-sum adversarial hypothesis testing games. In Advances in Neural Information
Processing Systems, pages 7310–7320, 2019.
[3] L. Dritsoula, P. Loiseau, and J. Musacchio. A game-theoretic analysis of adversarial classification. IEEE Transactions
on Information Forensics and Security, 12(12):3094–3109, 2017.
[4] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press, New York, NY, USA, 2008.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Kroupa, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 08.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Ing. Tomáš Kroupa, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

39

A Assignement .

40

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introduction
	State of the art in game-theoretic adversarial classification
	Adversarial Classification
	Game theory

	Applications
	Summary of the thesis

	Strategic games
	Game Theory
	Introduction
	Evolution
	Game theory disciplines

	Basic setup for finite games
	Strategies
	Game outcomes

	Continuous / infinite space games
	Zero-sum games and why we can solve them
	Double oracle algorithm for continuous games
	Algorithm presentation
	Continuous-space games adaptation

	Adversarial hypothesis testing
	The model
	Elementary presentation
	Utility functions
	Model's assumptions
	Neyman-Pearson adaptation

	Comparison with existing models
	Game theory models
	Statistical hypothesis testing models
	Anomaly detection models

	Specific setting
	Setting presentation
	Summary

	Expected results
	Convergence
	Error rate and error exponent

	Experiments and implementation
	Basic environment and implementation information, Bayesian framework
	Environment and transformation into binary setting
	Implementation confirmation

	Deploying the Double oracle
	Double oracle results
	Convergence and speed
	Optimal strategies
	Data classification and error rates

	Influence of $gamma $ on the utility function
	Expanding upon $varphi $
	Argument
	Results of using the sigmoid decision function
	Results of using the linear decision function
	Error exponent comparison

	Expanding upon the cost function
	Argument

	Neyman-Pearson framework
	Convergence
	Dependence on the vector length n
	Data classification and error rate

	Conclusion
	Adversarial classification
	Double oracle
	Model discussion
	References
	Assignement

