
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Version System for Document
Translations

Maksim Bilan

January 2021
Supervisor: doc. Ing. Daniel Novák, Ph.D.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I wish to acknowledge my supervisor
doc. Ing. Daniel Novák, Ph.D., for
providing such an interesting bachelor’s
thesis topic, guidance, and constructive
criticism. I want to thank my friends for
being supportive of my non-university
interests. I would also like to extend my
gratitude to my girlfriend; she support-
ed me mentally for an extended period
and financially for the last year.

Finally, my special thanks to my fam-
ily. To my parents for their love, help,
and support during my whole life and to
my younger brother Dima for his inter-
est in what I am passionate about.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, January 5, 2021

Signature

v

Abstrakt / Abstract

V této bakalářské práci se zabýváme
implementací verzovacího systému pro
překlady dokumentů. Takový systém
zaručuje konzistenci více instancí doku-
mentu v různých jazycích. Pomáhá řídit
práci překladatelů zavedením verzí a
recenzí. Implementujeme webovou apli-
kaci, která splňuje tyto požadavky po-
mocí webového aplikačního frameworku
Django.

Klíčová slova: systém pro správu
verzí, diff, překlady dokumentů, více-
jazyčné dokumenty, systém pro správu
překladů

Překlad titulu: Verzovací systém pro
překlady dokumentů

In this bachelor’s thesis, we are
dealing with the implementation of a
version control system for document
translations. Such a system maintains
the consistency of multiple instances of
a document in different languages. It
helps to manage translators’ work by
introducing versions and reviews. We
implement the web application which
meets these requirements using the
Django framework.

Keywords: version control system,
diff, document translations, multilin-
gual document production, translation
management system

vi

Contents /

1 Introduction .1
1.1 Glossary .1
1.2 Objectives of the thesis1

2 Existing approaches3
2.1 Version Control Systems.3
2.2 Translation memory3
2.3 Machine translation.4
2.4 Translation Management

Systems. .5
2.4.1 Pairaphrase5
2.4.2 Memsource5
2.4.3 Transifex6
2.4.4 Main differences.6

3 Application design7
3.1 Commits model7
3.2 Database .8

3.2.1 SQLite .9
3.2.2 Database schema.9

4 Implementation 13
4.1 Python and Django 13
4.2 Markdown . 15
4.3 wikEd diff . 15

4.3.1 Key features. 15
4.3.2 Legend. 16

4.4 Naive change detector 16
4.4.1 Implementation 17
4.4.2 Benchmark 17
4.4.3 Possible improvements. . . 18

4.5 Unit tests . 20
5 Usage. 21
5.1 Get started . 21
5.2 Application structure 21

5.2.1 Administrator panel 21
5.2.2 Main menu 22
5.2.3 Document list 22
5.2.4 Edit mutation 23
5.2.5 Mutation changes list

page . 24
5.2.6 Translations page 26
5.2.7 Translation review page . 28

6 Conclusion . 29
6.1 Future work . 29

6.1.1 Commits joining, task
generation 29

6.1.2 Unchanged text hiding . . 30
6.1.3 Frontend testing 31

References . 33
A List of abbreviations 35
B Project files . 37

vii

Tables / Figures

5.1. Page visibility for different
user groups . 22

2.1. Translation memory exam-
ple. Sentence matching and
sentence translation was pro-
vided by https://tatoeba.
org .4

3.1. Commits model7
3.2. General document structure8
3.3. Database schema 11
4.1. Backend web Frameworks

popularity - Stack Overflow
survey 2019 . 13

4.2. Database table: Commit. 15
4.3. Resulting diff for example

text . 16
4.4. Tab symbol, space, and title

for the inserted text block 16
4.5. Prediction error 18
5.1. Main menu . 22
5.2. Documents list page 22
5.3. Mutation change page 23
5.4. Interface of Mutation

changes page 24
5.5. Mutation change list 25
5.6. Commit revert window 25
5.7. New version window 26
5.8. Translations page - Overview . . 26
5.9. Navigation window - commit

before and after translation. . . . 27
5.10. Translation review page. 28

6.1. Tasks model . 30
6.2. Change collapse 30

viii

https://tatoeba.org
https://tatoeba.org

Chapter 1
Introduction

Due to globalization, more and more companies are forced to use documents that must
be translated into different languages. As a result, companies are faced with document
inconsistency problems and translation efficiency. Document inconsistency may result
in the absence of some crucial parts of a document, which is not acceptable when
documents are considered the same up to a different language. Translations delays may
cost a lot of money for the company, e.g., when it is impossible to launch a product
without translated user guides.

The final application called LinGit solves both of these problems by generating a strict
workflow for translators, which guarantees document consistency and gives translators
and moderators essential tools.

1.1 Glossary
Let us introduce definitions of some terms to reduce ambiguity. Document represents a
document from the real world, which may exist in multiple languages, e.g., user man-
ual. The application’s fundamental element is document mutation, which represents the
document in some language (e.g., user manual in the French language). For every doc-
ument mutation source-mutation must exist (usually in English language[1]). Changes
from source-mutation will propagate to other document mutations. For every document
change, such as adding or removing some text, the application generates corresponding
commit. Later, several consecutive commits in a source-mutation are indicated as a
document version. Full list of terms follows.. Document represents a document from the real world.. Document mutation is a text in some language, which corresponds with other mu-

tations covered by one document.. Source-mutation is a document mutation that is a source of changes to propagate
in other mutations.. Commit is a change in some document mutation, e.g., adding or removing text.. Document version is a collection of commits in a source-mutation.. Moderator is a user that checks technical correctness of translations, creates new
versions, and generates text in source-mutations.. Translator is a user that translates source-mutations changes into chosen non-source-
mutations to make text consistent in different languages.. Document consistency is an abstract term that defines translations equality in a
sense that if all non-source-mutations are translated into the source-mutation lan-
guage, they will be equal in every relevant chapter.

1.2 Objectives of the thesis
The thesis’s main objective is to implement a web application that should help orga-
nizations collaborate with translators in order to translate multilingual documents. It

1

1. Introduction .
should help to make changes in a document and propagate them to all document lan-
guages. It should also help a translator find a place where the change should appear in
a resulting text. It should have a possibility of translation review and keep track of the
history of all the changes. Also, it should have a possibility of reverting the document
to a previous version in case of incorrect changes were made.

There should be three user groups to maintain the application:

. Translators should be able to see all the document mutations that need to be trans-
lated. The application should support a translator in the way of creating a list of
changes that should be translated, so after translations, the affected documents are
consistent.. Moderators should be able to review translations in terms of technical characteris-
tics, e.g., to check paragraphs’ location. A moderator should not check translation
correctness. It should also be possible to edit source document mutations, which
will cause the creation of new document versions that will be translated later. A
moderator may want to see all documents in the system and all document mutations
to check changes made by translators or other moderators.. Administrators are taking care of the application. They may add new users, user
groups, add users into user groups and set up translation languages for individual
users.

2

Chapter 2
Existing approaches

Many tools might help translators and customers reduce the cost and time of the
translation process. In this Chapter we discuss some of them. First, we describe what
version control systems are in Section 2.1. In Section 2.2, we review the “translation
memory” approach. In Section 2.3, we talk about machine translation. Finally, in
Section 2.4 we describe “translation management systems” and disassemble some of
them to understand the differences between them and LinGit.

2.1 Version Control Systems

Software developers widely use Version Control Systems (VCS). They are particularly
useful for larger projects where there is a need for developers’ collaboration. Let us
describe them in more detail.

VCS are the systems that enable storing historical versions of the source code and
retrieving them when needed. VCS are thoroughly described in [2]. Those systems
share common terminology. Let us describe it briefly:

. Repository. VCS are saving version information for a set of files, which are usually
stored in the same directory. A repository is a place where the changes are stored.. Commit is a change in the repository.. Branch. Inside one repository might be more parallel development lines. They are
usually called branches.. Tag is a snapshot of a branch. They are used for better recognition and navigation
between significant changes in the repository.

2.2 Translation memory

Translation memory is a database of previous translations. Usually, it works on a
sentence-by-sentence basis, as described in [3]. Translation memory provides a transla-
tion by finding the sentence that matches the source sentence as much as possible.

Almost every TMS utilizes translation memory because it makes translations more
consistent, and it is a relatively easy to use tool. Translation memory is used for quite
a long time from mid 1990s[3], and it is considered reliable, actively maintained, and
field-proven software.

3

2. Existing approaches .

 Jen estas la frazo, kiun mi ne sukcesas traduki.

 I don't know how to translate this sentence.

Translation memory

 This is a sentence that I don't know how to translate.

Sentence to translate

English

Esperanto

English

Figure 2.1. Translation memory example. Sentence matching and sentence translation was
provided by https://tatoeba.org

As we might see in figure 2.1, there is a sentence that needs to be translated from
the English language to Esperanto. Translation memory finds an already translated
sentence that either equal to the original sentence either matches a sentence that is as
similar to the original as possible.

As a consequence of how the Translation Memory is designed, it becomes more ef-
fective for the text with an increasing number of repetitive phrases. It is the case for
technical, legal, or even medical texts. The article [4] confirms our hypothesis. TM
usage rate declining as the repetition levels decrease, e.g., for more general texts and
literary translations.

2.3 Machine translation
Machine translation (MT) is an automatic translation from one language to another
done by a machine. It is also a sub-field of computational linguistics, where MT is
scrutinized. As described in [5], machine translation systems can be divided into 3
main parts:

. Rule-based machine translation (RBMT) consists of two parts, rules and lexicon [6].
RBMT provides high translation accuracy, but this approach is very labor-intensive
because rules must be provided by a human. On the other hand, RBMT might be
used with a relatively small corpus1.. Example-based machine translation (EBMT) utilizes bilingual corpus2 with parallel
aligned texts. The idea is to translate by analogy. This approach is suitable to
translate context-dependent language entities, such as phrasal verbs.. Statistical-based machine translation (SBMT) also as SBMT uses bilingual corpora.
It creates three models: language, translation, and decoder model. SBMT provides
a translation by combining those models, while EBMT provides a translation by
adapting already existing translation.

There are many MT approaches, and every approach is suitable for a different kind
of text.

Nowadays, machine translation still cannot fully replace the translator, as it often
makes mistakes and cannot always get into context. But it might be used as an aid for
1 A corpus is a collection of texts in some language.
2 Bilingual corpus consists of two corpora when texts from one corpus are translations of the texts from

another.

4

https://tatoeba.org

. 2.4 Translation Management Systems

translators, same as translation memory. It is possible to use both of these tools at the
same time. First, try to match sentences from the local TM. For every sentence that
does not have a pair in TM, MT might be used. To achieve more reliable results, it
is better to connect consecutive sentences before passing them to MT engine to give a
context to it.

One of the things to consider before using MT is confidential information. For ex-
ample, according to the Google Privacy & Terms in [7], you give Google a worldwide
license to use, host, store, and produce content provided via Google’s services. That
means that information passed to translation might be used to train the translation
algorithms. To avoid that, it is possible to use MT engines that are more secure from
a confidential perspective. However, they may suffer from a lack of training data,
resulting in less accurate translations.

By using such an approach, a translator will see fully translated text. Some sentences
do not need any corrections. Most probably, it would be the sentences from a translation
memory. Some of them a translator will correct a bit to fit the context, and some will
require a complete rewrite. The last case should dissolve by the constant usage of the
translation memory.

2.4 Translation Management Systems
Translation management systems are described in the patent [8] created by David
Lakritz. He describes them as a computer environment, which detects changes in mas-
ter language and notifies the user which document mutations require translation. Later
TMS coordinates the delivery of a translated document back to the user for translation
installation and optional review.

Let us describe some of the most popular TM systems in the following subsections.

2.4.1 Pairaphrase
Pairaphrase is one of the popular Translate Management Systems. The company was
found in 2014 by Rick Woyde. He founded such a tool to offer more private Google
translate alternative[9]. According to Google Privacy & Terms, you allow Google to
use your content to host, distribute, and publish your content as described in Google
terms of service [7].

It is focused on data security and supporting many document formats. Using so-
called File Translator, Pairaphrase is compatible with 24 file types, e.g., Microsoft
PowerPoint, Excel Spreadsheets, or PDFs.

Microsoft and Google translation engines are used inside Pairaphrase. It helps
Pairaphrase to support over 100 languages for machine translation.

Pairaphrase uses its own Dynamic Machine Learning technology in its TMS to use
translation memory (described in 2.2) more efficiently.

2.4.2 Memsource
Memsource is AI-powered TMS. The company was founded in 2010 in Prague. For 10
years, they have constantly been improving their product, and by the end of 2017, they
had around 80 employees working on Memsource. It is essential to draw on such teams’
experience to discover potential mistakes in our application design.

5

2. Existing approaches .
The main Memsource features are:

. REST API. By using so-called Connectors, it is possible to integrate Memsource into
3rd-party systems. For example, Dropbox to translate file content, GitHub to send
repositories content for translation automatically, and WordPress to translate already
written posts.. Machine translation helps to score different translation engines to chose the best
fitting to the content.. Translation memory (you can read more about it in Section 2.2)

The software utilizes artificial intelligence to identify content that might be translated
automatically before translation needs to be done by a human translator.

2.4.3 Transifex
Transifex was originally open-source software, but from mid-2012, there were not added
any major changes. The project is written in Django and Python.

Service core features:

. File & content hosting enables to store content and translation inside the platform.. Team collaboration. Service introduces user roles such as product managers, devel-
opers, and translators, etc.. Translation tools. The service provides many translation tools, such as translation
memory (2.2), glossary, or screenshot text mapping, to bring a translator into the
context of translation.

2.4.4 Main di�erences
The main difference between Translation Management Systems described above and
LinGit is that TMSs are mostly focused on translating the document from one version
to another, e.g., by using translation memory to optimize translation flow. At the
same time, our application provides a continuous translating cycle of every document
without the need for external managing. It means that it is possible to have any number
of newer versions in the source mutation, while LinGit will provide the list of needed
changes in other document mutations, leading to document consistency.

6

Chapter 3
Application design

In Section 1.2, we introduced the thesis objectives. Our primary goal is to be able
to track changes inside multilingual documents that are constantly changing. The
application should indicate to translators the need to make changes in a certain place.
It also must provide a correct workflow for translators to make document mutations
consistent and for moderators to review translations. In Section 3.1 we show how data
are organized inside the application. In Section 3.2, we discuss why a relational database
is used inside the project and its design.

3.1 Commits model
In Section 1.1, we introduced the core concept of the application. Let us narrow it
down.

All changes made by a user after the editing page open (you may see how the editing
page looks like in Subsection 5.2.4) and before the Save button click are stored in the
commit objects.

English Czech

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

v0

v1

Commit

Figure 3.1. Commits model

7

3. Application design .
On the left side of Figure 3.1 we see the English language commits. They are created

one after another. On the right side, there is the Czech language document mutation.
Commits in different mutations are created independently, but we may consider them
equal after some commits in the Czech mutation. It means that they are sharing the
same version tag at this moment.

As changes are created independently, there might be a situation when the source-
mutation is several versions older, e.g., the English mutation has version tag v13, when
the Czech mutation has only v10, supposing that versions are sorted linearly, v1 is older
than v2 and so on. The LinGit system will lead a translator through the versions v11,
v12, v13, by providing relevant version’s commits.

3.2 Database
One of the key objectives at the beginning of the development process is to choose
where to store the data. After longer considerations between NoSQL and relational
databases, an SQLite database was chosen. Let us explain why such a choice was made
and why we considered NoSQL databases to store documents.

One of the possible solutions is to store already parsed document mutations in a
tree, and each time the document is needed to be viewed, generate it from such an
object. This approach was considered because of text natural hierarchy, where there
are different text parts, such as Introduction, Body, and Conclusion (see Figure 3.2).
Every part of the text consists of smaller parts, such as paragraphs, sentences, lists,
etc.

Document

Introduction

Body

Conclusion

#1 Paragraph

#2 Paragraph

#3 Paragraph

#4 Paragraph

#5 Paragraph

#6 Paragraph

#1 Sentence

#2 Sentence

#3 Sentence

#4 Sentence

#5 Sentence

#6 Sentence

#7 Sentence

#8 Sentence

#10 Sentence

#11 Sentence

#9 Sentence

Figure 3.2. General document structure

This approach might help to detect more deep structural changes in the document,
such as paragraph moving. To implement this idea, it is possible to use the approach

8

. 3.2 Database

described in [10]. The algorithm accepts two trees and generates a descriptive list of
changes (edit script) that gives a sequence of actions to make one tree from another.

It turned out that in the natural translation process, most of the features of this
algorithm are irrelevant, as every change is most probably an insert. So we will not
benefit from using the tree structure. That is why we turned to relational databases.

3.2.1 SQLite
As a relational database, we choose between PostgreSQL and SQLite. SQLite is a
better option for application development for the following reasons:

. Django provides SQLite by default. SQLite database is stored in the file. That means that it is effortless to send the
whole database to someone, e.g., to provide example data.. No need to run database server, SQLite is serverless[11].. Migration from SQLite to PostgreSQL is straightforward by using Django framework
(more about Django you may read in Implementation section 4.1). There are two
reasons for that.
. Django provides Object-Relational Mapping (ORM), meaning that we are not

using row SQL commands.
. Django may load database structure and populate it with data by previously con-

nected database dump (SQLite in our case).

The main SQLite strength is its easiness. Migration to PostgreSQL might be con-
sidered when the number of users working simultaneously grows. Because of SQLite
default implementation of atomic commit and rollback, it is impossible to read from
the database during the writing.

By default, SQLite uses the rollback journal to handle concurrent access to a
database. The whole database file is locked with an exclusive lock during the writing to
avoid concurrent reads and writes. To solve such problem, “Write-Ahead Log” (WAL)
was introduced[12]. With WAL database itself becomes much faster, it also provides
more concurrency when writers do not block readers and vice versa.

This means that by using WAL, we may get rid of such a limitation of SQLite.

3.2.2 Database schema
In this Section we will describe the schema of the resulting database. Database schema
contains service tables, among others. Such tables are called auth *, django *, where
asterisk replaces an arbitrary symbols sequence.

Tables names consists of two parts «application-component-name» «database-
table-name». Let us write only database tables’ names to avoid cluttering.

. Document. This table stores all documents. Every document has a name and its
comprehensive description.. Language. All supported languages are stored in this table.. Mutation represents a document mutation, e.g., the Czech version of the User Man-
ual. Every mutation has a description and is main characteristic, which determines
whether a current mutation is source mutation for this document. Document mu-
tation has a reference to some document and language, meaning that there is a
document mutation in some language, e.g., User Manual in the English language.

9

3. Application design .
. User

. The first user field is password. The field contains password hash, which is gen-
erated by default by using PBKDF2 with SHA-256 hash function.

. is superuser and is sta� are the fields that determine access to the Administration
section generated by the Django framework. Superusers can create, read, update,
and delete records on the Administration page. Staff users only have access to the
Administration page.

. is active field denotes whether a user is still active. If a user is not active, the
default function for permission control will return False for each permission for
such user.

. Fields names for last login, username, first name, last name, email, date joined
are self descriptive.

. Language translators. Records in this table determine what languages do translators
know.. Commit. Every commit contains text with a change made by user (committer id).
The change is made for a specific document mutation (mutation id). A field named
translated commit id is a recursive reference to the same table, which defines a com-
mit with translation the chosen commit. Might be empty, meaning, that such commit
is not already translated. Fields description, create date are self descriptive.. Version consists of name, which is intended for short version names such as a v14.
The field contains an ID of a user which was added a version. Fields description,
create date are self descriptive.. Documents review. This table stands for a reviewing process. When a translation
is done, there appears a new record which contains the date (create date) where
the translation was finished, commit id of the last commit from translations, and
version id which shows to what version this mutation was translated. After the
translation is approved the id approved becomes True, approve time is automati-
cally updated and the field approved by id will be updated with ID of a user which
approved current translation.. User permissions. Permissions in Django are given either to the groups either to
users. For example, the Translators group has permission to the translation page,
meaning that every translator has permission for that. But they might be assigned
to a user, e.g., give access to someone to review translations.

10

. 3.2 Database

integerid

varchar(128)password

datetimelast_login

boolis_superuser

varchar(150)username

varchar(30)first_name

varchar(254)email

boolis_staff

boolis_active

datetimedate_joined

varchar(150)last_name

integerid

varchar(50)name

integerid

varchar(300)description

integerdocument_id

integerlanguage_id

boolis_main

integerid

integeruser_id

integerpermission_id

integerid

boolis_approved

datetimeapprove_time

datetimecreate_date

integercommit_id

integerversion_id

integerapproved_by_id

unknownname

unknownseq

integerid

texttext

integercommitter_id

integermutation_id

varchar(2000)description

datetimecreate_date

integertranslated_commit_id

integerid

varchar(255)app

varchar(255)name

datetimeapplied

integerid

varchar(150)name

varchar(300)description

varchar(40)session_key

textsession_data

datetimeexpire_date

integerid

integerlanguage_id

integeruser_id

integerid

varchar(50)name

varchar(1000)description

integermoderator_id

datetimecreate_date

texttype

textname

texttbl_name

introotpage

textsql

integerid

datetimeaction_time

textobject_id

varchar(200)object_repr

textchange_message

integercontent_type_id

integeruser_id

smallint unsignedaction_flag

integerid

varchar(150)name

integerid

varchar(100)app_label

varchar(100)model

integerid

integercontent_type_id

varchar(100)codename

varchar(255)name

integerid

integergroup_id

integerpermission_id

integerid

integeruser_id

integergroup_id

permission_id:id

user_id:id

content_type_id:id

user_id:id

translated_commit_id:id

commit_id:id

version_id:id

approved_by_id:id

user_id:id

moderator_id:id

language_id:id

permission_id:id

group_id:id

language_id:id

mutation_id:id

content_type_id:id

user_id:id

committer_id:id

group_id:id

document_id:id

Figure 3.3. Database schema

11

Chapter 4
Implementation

This chapter shows how the application is organized from the inside. First, we discuss
the choice of the framework in Section 4.1. Then we talk about Markdown language
in Section 4.2, which translators will use inside the application. After this, in Section
4.3, we show the library called wikEd diff, which is used to show the text changes. In
Section 4.4, we describe the implemented change detector, capable of scrolling the text
to the place where the translation is needed. Finally, we describe different methods
used to test the application in Section 4.5.

4.1 Python and Django
Even during the concept development phase, it was clear that the application should
be web-based. It should be easily accessible to every user so that there would not be
any problems with its installation or platform restrictions. The user only needs to have
a web browser.

According to the Stack Overflow website survey, which is based on answers of 63,585
software developers[13], the Django framework is the 8th most popular web framework,
including frontend frameworks like jQuery. By excluding frontend frameworks from the
list, Django is the 4th most popular backend web framework.

ASP.NET

Express

Spring

Django

Flask

Laravel

Ruby on Rails

Drupal

0.00% 10.00% 20.00% 30.00%

Figure 4.1. Backend web Frameworks popularity - Stack Overflow survey 2019[13].

In Figure 4.1 we may see that the Django framework is used by 13% of developers,
which makes it the 4th most popular backend web framework.

13

4. Implementation .
To detect most popular frameworks, Stack Overflow used “select all that apply”

technique. That means, that a developer had a list of different web frameworks and he
might to choose all frameworks that he uses. More about survey methodology you may
read in the last section of [13].

By using Django, we take all benefits from the Python world. Python is easy to learn,
powerful programming language[14] that provides a wide range of different libraries
and is popular in the machine learning field, which might be helpful in the further
development of the app. Django itself provides high-quality documentation, a high-
security level, and a variety of essential tools for development.

Django uses database-abstraction API that helps to make to Update, Read, Update
and Delete (CRUD) objects in database[15]. Such API is called Object-Relational
Mapping (ORM). To use Django ORM, a developer should create data models, which
are Python classes inherited from Django abstract model. As an example of such a
class let us consider Commit model from the application:

class Commit(models.Model):
committer = models.ForeignKey(

settings.AUTH_USER_MODEL,
on_delete=models.DO_NOTHING

)

versions = models.ManyToManyField(Version, through=’Review’)

description = models.CharField(
max_length=2000,
null=False

)

mutation = models.ForeignKey(
Mutation,
on_delete=models.DO_NOTHING

)

text = models.TextField()

create_date = models.DateTimeField(auto_now=True)

translated_commit = models.ForeignKey(
"Commit",
null=True,
on_delete=models.DO_NOTHING

)

This would create a following database table (ignoring the objects associated with
the commit object):

14

. 4.2 Markdown

Figure 4.2. Database table: Commit

A more detailed analysis of the database schema could be found in Section 3.2.

4.2 Markdown

Markdown is a markup language convertible into HTML. This feature is quite useful
for a web application for two reasons: Markdown has understandable and interpretable
syntax so that translators may use some of its features without the need for long
training. Markdown, as a text convertible into HTML, has a tree structure. Such
text property allows us to work with a text as with a mathematical object, e.g., to
detect differences in two document mutations by comparing its structures. Inside the
application, Markdown language is used for text representation, Martor[16] editor for
Django was chosen as a text editor. The Markdown editor provides syntax highlighting
and live preview generation, so the user knows exactly how the output text would look
like.

Markdown usage does not restrict the user because users may still use plain text
without using Markdown-specific tags. The translator does not need to create the
document from scratch, so he could only edit plain text pieces. The rendered text will
still have an identical structure.

4.3 wikEd di�

As a tool to show differences between the two texts, wikEd diff library[17] was chosen.
It is a JavaScript library to show text differences inline, so people who are not familiar
with different kinds of differs would instantly understand what changes were done. This
library is used to show differences between some Wikipedia article versions. It means
that such a tool is used by more than 298,000[18] Wikipedia active users1. This library
was chosen because it is extensively tested and has proven reliability.

4.3.1 Key features

. Detects moved pieces of text. Unchanged pieces of text are omitted, which is particularly useful for longer texts.

1 According to Wikipedia, an active user is a user who makes at least one change or other action on
Wikipedia in a given month

15

4. Implementation .
4.3.2 Legend

WidEd diff has an online demo with different options. We will briefly explain how does
it work from the user perspective.

Figure 4.3. Resulting diff for example text from web1

Let us describe the main text blocks in Figure 4.3:. Inserted piece of text is colored blue.. Removed text is colored in tints of creme brulee2 (let us call it yellow).. Moved blocks of text are colored gray.. Previous text position for moved text is marked as a triangle turned to the side with
a yellow background.
Special characters are shown by pointing the cursor over them.. Newline ¶. Space ·. Tab →
People with colorblindness can also use this tool. WikEd diff uses span classes inside

the HTML document structure (such as wikEdDiffDelete) in order to mark different
parts of a text. For example, special symbols are visible by holding the cursor over the
changed piece of text (+, - and J signs) to distinguish between different colors.

Figure 4.4. Tab symbol, space, and the title for the inserted text block

4.4 Naive change detector
Working with long documents, maybe not very convenient for translators. A translator
may need to scroll hundreds and, in some cases, thousands of rows to find the place
that needs editing. We implemented a naive change detector to solve this problem. It
predicts where the translator should change the language mutation.

Our naive change detector is not complicated. Its algorithm will be described in
Subsection 4.4.1. Then, in Subsection 4.4.2, we will provide some benchmarks to know
if something better must be invented. Finally, in Subsection 4.4.3 we will explain
possible improvement of our algorithm using a converter of Markdown text into a
directed rooted tree.
1 http://cacycle.altervista.org/wikEd-diff-tool.html
2 https://www.htmlcsscolor.com/hex/FFE49C

16

http://cacycle.altervista.org/wikEd-diff-tool.html
https://www.htmlcsscolor.com/hex/FFE49C

. 4.4 Naive change detector

4.4.1 Implementation

The idea behind the detector is relatively simple. To start doing the required changes,
a translator needs to find the first change from the generated text diff.

On translation page described in Subsection 5.2.6, on the right side we may see the
output of the WikEd[4.3] library. Thanks to this library, we may iterate through the diff
fragments to know where the first change occurs and compute the text’s total length.
Knowing this, we may find where potentially the first change was made in the mutation,
which needed to be translated simply by jumping to the corresponding percentage of
the lines.

All the changes are performed on the frontend side:

1. WikEd computes the changes provided by commit which is needed to be translated
(e.g., English language)

2. By iteration through the WikEd object fragments, we find the first change and com-
pute overall text size

3. We compute where the first change occurred as a percentage of the number of rows
in the text

4. Using Ace1 editor we find number of lines in the document mutation which is currently
in edit (i.e. Czech language mutation)

5. We find the row which is located on the same percentage of rows as the first change
6. Ace editor scrolls to the chosen row and highlights it

4.4.2 Benchmark

To know Naive change detector performance, we need to see how it works on larger
texts. To test it, let us take two texts:

. User Manual in the English language, which consists of 1244 rows. A document mutation of the first text in the Czech language with 1004 rows of text

Via LinGit, we will change the English version of the manual in different parts of it.
Let us make eleven changes, located at every ten percent of the text measured in rows.
We will make a change at the beginning of the text, which corresponds to a change
made at 0% of the English text. Then we will make a change at 10% of the text, which
corresponds to the 124th row, and will repeat the process for 20%, 30%, and so on until
100% of the text.

By having these changes in the English language version of the User Manual, we
create a new version in LinGit to be able to “translate” such changes into the Czech
language. Then we open the translation interface which is described in Section 5.2.6.

For every change made in the English version, the Naive change detector scrolls to
some row in the editor on the left side. For example, for the change made in 30%
of the English language document mutation, the Naive change detector predicts that
translation must be done in the 301st row of the Czech language document mutation,
but in fact the change should be done in the 312th row. The difference is 11 rows, as
shown in Figure 4.5.

1 Ace editor (https://github.com/ajaxorg/ace) is used by Martor editor described in 4.2

17

https://github.com/ajaxorg/ace

4. Implementation .

Change position [%]

P
re

di
ct

io
n

er
ro

r

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Figure 4.5. Naive predictor error

In Figure 4.5, the vertical axis shows prediction error, counted in rows. On the
horizontal axis, there is a change position in the original mutation. For example, when
the change was made in 70% of original document mutation, the prediction error was
25 rows, meaning that a translator needs to go 25 rows far from the predicted place.

To better understand the predictor performance, let us compute some common statis-
tics measurements, such as mean and standard deviation.

Mean: 19.18 rows
Standard deviation: 17.53 rows
Minimum error: 0 rows
Maximum error: 47 rows

We can see that most of the time, the error is 19±18 rows. For example, the editor
window size contains 52 rows of text for the 1920 x 1200 screen resolution, which
means that a translator will need to scroll only a little bit from the predicted place.
The prediction error is smaller than the screen height.

The main reason for bigger deviations in 20, 40, and 50% of the text, are the changes
that were not reflected in the translated document. For example, one of the changes
was the feature relevant to the source language but missing in the translation because
of different accessories delivered with phones based on regional legislation.

4.4.3 Possible improvements
During pre-implementation, we created the tool, which can parse a Markdown document
into a parse tree. This tool allows us to find a path to a change, i.e., we may determine
where a change was made in the document structure, which we may see in Figure 3.2.
For example, a description of a change might look like this: “The change was made in
a list which is located Section 3 which is located in Chapter A”. This approach may
be combined with Naive Change Detector. The tool is not built into the application
editor yet, because of the discursiveness of its contribution, which should be further
examined.

Based on a change detector’s prediction, we may find a tree node where the change
was made. One of the main reasons to do that is to find a place for a translator from

18

. 4.4 Naive change detector

which it might start looking for a change. For example, instead of pointing to the
middle of some paragraph inside a section, we may show a translator the first section
line to get the translator an idea of what text part he is currently in.

Let us describe how the tool works. We use the Python-Markdown project[19] to
generate a parsing tree as shown in Figure 3.2. Tree nodes are abstractions over text
parts (sections, paragraphs, lists, etc.). The Python-Markdown project was chosen
because of its high popularity among developers and high extensibility. Our tool’s
core part is Tree Processor from Extension API, which facilitates modifying of internal
Python-Markdown ElementTree object[20]. Python-Markdown converts a Markdown
document to HTML and then provides us with a simple HTML tree structure. We
enrich this structure with additional information about the nodes, such as the node’s
position in the whole document and its level. This information will help to detect the
place where the change was made. Finally, a node of the parsing tree has the following
structure:

. Level. The root node has level 0.. Text. This item contains node real text. For example, if we are in the header node,
we will see the header’s text.. Tag. The tree is generated by rendered HTML from the original Markdown text, so
one of the useful properties is its tag, e.g., header or paragraph and even list tags.
This helps to derive the node’s prototype.. Children nodes. List of the “Node” objects, which might be empty, meaning that we
are working with the leaf.. Parent node. For the root node, it is “None” object.. Start position. The number indicating where the current node’s text starts.. End position. The number indicating where the current node’s text ends. For exam-
ple, the top-level root node will contain the whole text, starting at position 0 and
finishing at a position equal to the text length.

Our parser is located in the “markdown change detector” module. To show extension
possibilities, the module provides the class “MarkdownChangeDetector”, which accepts
two texts. The first text is the original text, and the second text is the same text with
some changes. Let us call them “start document” and “final document”. To generate
the parse tree we need to use “run()” method on “MarkdownChangeDetector” instance.
This module has two possibilities:

. Generate parsing trees for a start and final documents. Generate the path where the change is located in a human-friendly manner

Inside the extension, we use Google’s open-source library called Diff Match Patch[21].
It is used to generate an object with text differences. Previously it was used to generate
an HTML version of the differences to the application’s frontend, but it was replaced
by the WikEd diff tool, described in detail in Section 4.3.

As we mentioned before, this module generates a path to the change, which is
stored in the “changes with description” attribute of the “MarkdownChangeDetector”
instance. It may look as follows:

There is a change under the header ’Aer deus deiectam auferat’
=> ’Mihi hanc iussit timorem te mille’ in ordered list

19

4. Implementation .

4.5 Unit tests
To test vital application parts, we use the Python built-in unittest module[22]. Tests
are stored with test * filenames in test module and in each application part folder (in
Django terminology, they are applications).

Because we test the web application, many tests might need to use some data from
a database. To do that, we need to isolate test environment data and our production
data. The Django framework creates a temporary test database before tests run and
destroys it after, regardless of whether the tests were passed or failed.

To fill up the temporary database setUp() method is used inside a test object. The
ORM is used to populate the database, as we may see on the code snippet below.

class TestDocumentServices(TestCase):
def setUp(self):

self.user = create_stuff_user()

self.v1 = Version.objects.create(
name=’v1’,
description=’First test version’,
moderator=self.user,
create_date=datetime(2020, 7, 23, 15, 0, 0, 0,

pytz.timezone("Europe/Prague"))
)

The objects user and v1 might be in all the tests which belong to the DocumentSer-
vices tests. Another possibility is to get every document by using ORM.

v1 = Version.objects.get(name=’v1’)

20

Chapter 5
Usage

In this Chapter we talk about application usage. In Section 5.1, we show how to run
the application. In Section 5.2, we describe the application’s main parts.

5.1 Get started
Since our application is web-based, we need to create a server that will respond to
requests. To do so, perform the following steps.
1. Open terminal at the project root (lingit folder)
2. Create and activate the virtual environment

virtualenv venv -p python3 # creates new virtual environment
source venv/bin/activate # activates virtual environment

3. Install requirements
pip3 install -r requirements.txt

4. Make database migrations
python3 manage.py makemigrations

5. Apply database migrations
python3 manage.py migrate

6. Create superuser
python3 manage.py createsuperuser

Enter login, email, and password.
7. Run server

python3 manage.py runserver

8. Open login page
http://127.0.0.1:8000

5.2 Application structure
This Section shows the application’s main parts. This should help to understand the
application’s logic better.

5.2.1 Administrator panel
The Django framework generates this part of the application automatically. The page is
protected from being accessed by users who are not in the administrators’ user group.
In Section 5.1, we ran a webserver to run the application. One of the main steps
was to create a superuser. Superuser[15] is the first application user. It does have
administrator access, so we may use it to access the administrator panel.

21

5. Usage .
5.2.2 Main menu

The main menu is shared by every page with two exceptions: login page and Adminis-
tration page, which is generated by the Django Admin application by registered data
models[23].

Figure 5.1. Main menu

As we may see in Figure 5.1, the menu comprises the application logo, navigation
panel, and user menu. The navigation panel is dynamic. Depending on the user group,
elements are filtered to show relevant application parts. Default menu items visibility
is shown in Table 5.1.

Page Translator Moderator Super Admin
Documents No Yes Yes
Translate document Yes No Yes
Review translations No Yes Yes
Administration No No Yes
Change password Yes Yes Yes

Table 5.1. Page visibility for different user groups

5.2.3 Document list
This page (in Figure 5.2) is the main application page. Here we may find all documents
and their mutations, which are stored in the application.

Figure 5.2. Documents list page

22

. 5.2 Application structure

Let us describe every marked zone of the document list page:
1. Main menu
2. New document button redirects a user to the page where it is possible to create a

new document. After the document is created, it will appear on the document list
page.

3. Document header and document consistency tag. Headers of all documents are click-
able. For example, the user guide for the Phone 216 is expanded, but after the header
is clicked, it will be in the compact form, same as Phone 216 Dual and Lorem Ipsum
documents. The tag shows if the document is in a consistent state. If the tag is hid-
den, some document mutations have older versions that still need to be translated.
As we may see on the highlighted areas #3 and #7 in Figure 5.2, the first document
has a consistency tag because all its mutations have the same v14 version.

4. Document description
5. New document mutation button redirects a user to the page for creation of a new doc-

ument mutation, e.g., to create German mutation of the Phone 216 - User Guide
document.

6. Document mutations table consists of 5 columns. The first column is the mu-
tation language. The second column shows whether a mutation is a source
document, e.g., changes from the English version will be translated to other
Phone 216 - User Guide documents because it is a source mutation. The version
column shows the current document mutation version. There is a detailed document
mutation change list under the version tag described in detail in Subsection 5.2.5.

7. Collapsed documents
All tables on the page are generated by the django-tables2 library. More informa-

tion might be found in [24].

5.2.4 Edit mutation

Figure 5.3. Mutation change page

This page is one of the most used pages in the application. It designed to do changes
to the source mutation (e.g., English), but may be used to make some changes into

23

5. Usage .
non-source document mutations if needed. In Figure 5.3, we may see that the page
header with a document name combined with its language. Below them, there is a
commit description window and Markdown editor in preview mode.

5.2.5 Mutation changes list page

Figure 5.4. Interface of Mutation changes page

In Figure 5.4 we may see the page with the mutation changelog. On the left side,
there is WikEd editor (described in Section 4.3) with the new text, which is colored in
blue. On the right side, there is a button Edit last change and the list of changes,
which are called commits.

The change list consists of a commits list and the special option «Compare with last
version». When this special option is active, the application compares the most actual
commit of document mutation with the last commit, which has a version tag.

The button «Edit last change» allows a user to change the top commit without
creating a new one.

24

. 5.2 Application structure

Figure 5.5. Mutation change list

Every commit from the change list (could be seen in more detail in Figure 5.5)
contains a commit description when the commit was created (e.g., 2 hours ago, 1 day
ago) and the commit author. Some commits may have special tags and a menu button.

Commits might have two types of tags: version tag and «Comparing with» tag. As
we may see, in the Figure 5.5 there are only two versions tags (yellow ones) «v13» and
«v14», from that we may infer that the version «v14» contains this tree commits:

. Added ”Minute timer” sub-section. Added congratulations. Added ”Quick help” section

Version tag «v13» on the last commit means that it is the end of the 13th version.

Commit with «Comparing with» tag shows the commit with which the currently
chosen commit is compared.

The menu is available for commits without version, that is version under development.
There are two options here: Revert and New version.

The Revert option helps to remove commits that are newer than the chosen one. As
we may see in Figure 5.6, where we want to revert all changes to the second commit
from Figure 5.5.

Figure 5.6. Commit revert window

25

5. Usage .
The logic of adding a new version is opposite to the Revert option. On the chosen

(e.g., Added ”Calculator” section from Figure 5.5) commit, we will add a new version
tag, meaning that the new version will end on the chosen commit. Result of choosing
New version option is in Figure 5.7. In order to create a new version, you need to fill
out the ”Version name” field, e.g., v13.

Figure 5.7. New version window

5.2.6 Translations page

This page is created to be used by translators. It consists of three main parts:

. Text editor which is described in Section 4.2. Navigation window. Commit to translate

The whole page overview may be found in Figure 5.8.

Figure 5.8. Translations page - Overview

26

. 5.2 Application structure

Figure 5.9. Navigation window - commit before and after translation

In Figure 5.9, we may see the navigation window in more detail. There are two
images; the first one shows how the navigation window looks before translation, and
the second one is after the translation was done.

The navigation window consists of four parts:

1. On the left upper corner commit number and overall commits count to translate are
displayed. In Figure 5.9, the first commit out of two is opened. After the commit is
translated, near the commit number appears a yellow Translated tag.

2. The next part is a commit description required when any document mutation is
changed (more in Subsection 5.2.4). This description might help a translator under-
stand what change was done in the main mutation and react accordingly.

3. The author section shows the name of the person who created the currently opened
commit. In case the translator has some questions about the current change, he
might want to contact this person.

4. The last part is the button section, where you may navigate between commits to
translate. The Previous button is always presented but may be disabled when the
first commit is open. The second button for non-translated commit saves changes.
This button appears like the Next button for an already translated commit, which
moves forward to the next commit.

27

5. Usage .
5.2.7 Translation review page

Figure 5.10. Translation review page

Translation review page title consists of four parts corresponding to following pattern:
Translation review for «document-name» [«translated-document-language»] - «reached-
version».

The page is intended to review translation changes. On the left side, there is a text
with changes from the source mutation version which was translated. On the right side
of the window, there is a translation itself.

After the “Approve translation” button is clicked, a non-source document mutation
receives the desired version tag.

28

Chapter 6
Conclusion

In this thesis, we developed the version control system for multilingual documents.
It provides a whole workflow for the companies which need to employ multilingual
documents in their work. This application covers all requirements to make translations
consistent. It generates a list of changes that they must finish to align document
versions for translators. It provides a review tool for moderators, where it is possible to
see all changes for the translated version. Our application supports multiple constantly
changing multilingual documents, providing a whole system where all the documents
are stored and changed. This way, it covers the whole translations’ workflow, so no
other tool is needed.

Our application’s main advantage is a VCS-like structure of changes, where instead
of one huge change is used commits model to divide work into atomic pieces naturally.

For such a system, there is always a lot of possible changes. More information about
planned changes might be found in Section 6.1.

6.1 Future work

In this Section we will describe all planned changes to be done in the LinGit system.
In Subsection 6.1.1, we introduce the task generation, where multiple commits might
be joined. In Section 6.1.2, we show unchanged text hiding to display changes more
clearly. In Section 6.1.3, we introduce the Cypress framework, which should provide a
test environment for our application’s frontend.

6.1.1 Commits joining, task generation

In this Subsection, we will discuss the task generation. The idea behind task generation
is when the source-mutation is changed rapidly, some commits are changing the text
nearly in the same place. This means that we may join such commits.

Comparing Figures 3.1 and 6.1 we see, that task generation potentially reduces num-
ber of translation commits. It will probably be reflected in commit sizes but should not
interfere with the translator’s work because the changes from one task should be near
one place in the text.

29

6. Conclusion .

Ta
sk

Ta
sk

English Czech

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Commit

Ta
sk

Commit

v0

Commit

Commit

Commit Ta
sk Commitv1

Figure 6.1. Tasks model

6.1.2 Unchanged text hiding

One of the possible improvements is to hide parts of the text without changes. This
change will help to work with large texts where there is a small change only. It is
immediately apparent how many text blocks were changed.

Pellentesque pulvinar pellentesque habitant morbi tristique senectus et. Et leo
duis ut diam quam nulla porttitor massa enim nec dui massa id. Arcu dictum
varius duis at consectetur lorem donec massa sapien.

+ 40 lines hidden

- Dui accumsan sit amet nulla. Nunc scelerisque viverra mauris in aliquam sem
fringilla. Sed vulputate odio ut enim blandit. Viverra nam libero justo laoreet sit
amet cursus sit amet.

Faucibus in ornare quam viverra. Sit amet cursus sit amet dictum sit amet justo
donec. Hac habitasse platea dictumst quisque sagittis purus sit amet.

Figure 6.2. Change collapse

As we may see in Figure 6.2, there are tree text parts. The first one is hidden and
consists of 40 lines of text. There is a plus sign button on the left side of the text block,
which expands the hidden text block. The second is a difference between the texts
themselves. The last block of text is another unchanged piece of text. The button’s

30

. 6.1 Future work

text is changed on the minus sign, which means that this button may hide unchanged
text. By default, all unchanged text blocks must be hidden.

It is possible to use HTML5 “details-summary” tags pair, which creates a small title
which hides larger piece of text:

<details>
<summary>TEXT SUMMARY</summary>
<p>TEXT TO HIDE</p>

</details>

6.1.3 Frontend testing
In Section 4.5, we described how the backend application part is tested. The LinGit
frontend is not tested at all, and that is a problem during development because it is
easy to break something up without noticing it.

One of the possibilities to test the frontend side of the application is to use the Cy-
press, which is a JavaScript testing framework. It is independent of the web application
development framework. This means that there is no difference if the application’s fron-
tend framework will be changed to another, such as React, Angular, or Vue.js. Cypress
tests will remain the same.

31

References

[1] Pariyar, A., D. Lin, and T. Ishida. Tracking Inconsistencies in Parallel Multi-
lingual Documents. In: 2013 International Conference on Culture and Computing.
2013. pp. 15-20.

[2] Ruparelia, Nayan B. The History of Version Control. SIGSOFT Softw.
Eng. Notes. New York, NY, USA: Association for Computing Machinery,
jan, 2010, Vol. 35, No. 1, pp. 5–9. ISSN 0163-5948. Available from DOI
10.1145/1668862.1668876.
https://doi.org/10.1145/1668862.1668876.

[3] Somers, Harold. Translation memory systems. Benjamins Translation Library.
JOHN BENJAMINS BV, 2003, Vol. 35, pp. 31–48.

[4] Lagoudaki, Elina. Translation memories survey 2006: Users’ perceptions around
TM use. Proceedings of the ASLIB International Conference Translating & the
Computer . London: Imperial College London, 2006, Vol. 28, pp. 12–13.

[5] Xia, Ying. Research on statistical machine translation model based on deep neural
network. Computing. Springer, 2020, Vol. 102, No. 3, pp. 643–661.

[6] Kituku, Benson, Lawrence Muchemi, and Wanjiku Nganga. A Review on
Machine Translation Approaches. Indonesian Journal of Electrical Engineer-
ing and Computer Science. 01, 2016, Vol. 1, pp. 182. Available from DOI
10.11591/ijeecs.v1.i1.pp182-190.

[7] Google. Terms of Service [Online]. [cit. 2020-12-25].
https://policies.google.com/terms?hl=en-US#toc-what-you-expect.

[8] Lakritz, David. Translation management system. US Patent 8,489,980.
[9] Schmid Stevenson, Sarah. Pairaphrase Pushes Smart, Secure Language Trans-

lation Software [Online]. [cit. 2020-12-25].
https://xconomy.com/detroit-ann-arbor/2016/07/07/pairaphrase/.

[10] Chawathe, Sudarshan S., and Hector Garcia-Molina. Meaningful Change De-
tection in Structured Data. SIGMOD Rec. New York, NY, USA: Association for
Computing Machinery, jun, 1997, Vol. 26, No. 2, pp. 26–37. ISSN 0163-5808. Avail-
able from DOI 10.1145/253262.253266.
https://doi.org/10.1145/253262.253266.

[11] SQLite Is Serverless [Online]. [cit. 2020-12-26].
https://www.sqlite.org/serverless.html.

[12] Write-Ahead Logging [Online]. [cit. 2021-1-2].
https://sqlite.org/wal.html.

[13] Developer Survey Results - 2019 [Online]. [cit. 2020-12-19].
https://insights.stackoverflow.com/survey/2019#technology-_-web-frameworks.

[14] Rossum, Guido van, and Python Development Team. Python Tutorial: Re-
lease 3.6.4 . 2018. ISBN 1680921606.

33

http://dx.doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/1668862.1668876
http://dx.doi.org/10.11591/ijeecs.v1.i1.pp182-190
https://policies.google.com/terms?hl=en-US#toc-what-you-expect
https://xconomy.com/detroit-ann-arbor/2016/07/07/pairaphrase/
http://dx.doi.org/10.1145/253262.253266
https://doi.org/10.1145/253262.253266
https://www.sqlite.org/serverless.html
https://sqlite.org/wal.html
https://insights.stackoverflow.com/survey/2019#technology-_-web-frameworks

References .
[15] Django Software Foundation. Django documentation [Online]. [cit. 2020-08-

05].
https://docs.djangoproject.com/en/3.1/.

[16] agusmakmun. Django Markdown Editor [Online]. [cit. 2020-08-04].
https://github.com/agusmakmun/django-markdown-editor.

[17] Cacycle. WikEd diff [Online]. [cit. 2020-08-04].
https://en.wikipedia.org/wiki/User:Cacycle/diff.

[18] Wikimedia Foundation. List of Wikipedias [Online]. [cit. 2020-08-03].
https://en.wikipedia.org/wiki/List_of_Wikipedias#Grand_total.

[19] The Python Markdown Project. A Python implementation of John Gruber’s
Markdown. [Online]. [cit. 2020-12-13].
https://github.com/Python-Markdown/markdown.

[20] The Python Markdown Project. Writing Extensions for Python-Markdown
[Online]. [cit. 2020-11-29].
https://python-markdown.github.io/extensions/api/.

[21] Fraser, Neil. Diff Match Patch [Online]. [cit. 2020-12-16].
https://opensource.google/projects/diff-match-patch.

[22] Python Software Foundation. Python documentation. Unit testing frame-
work [Online]. [cit. 2020-12-19].
https://docs.python.org/3/library/unittest.html.

[23] Django Software Foundation. Documentation. The Django admin site [On-
line]. [cit. 2020-12-13].
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/.

[24] Waagmeester, Jan Pieter. Django-tables2 - An app for creating HTML tables
[Online]. [cit. 2020-12-28].
https://django-tables2.readthedocs.io/en/latest/index.html.

34

https://docs.djangoproject.com/en/3.1/
https://github.com/agusmakmun/django-markdown-editor
https://en.wikipedia.org/wiki/User:Cacycle/diff
https://en.wikipedia.org/wiki/List_of_Wikipedias#Grand_total
https://github.com/Python-Markdown/markdown
https://python-markdown.github.io/extensions/api/
https://opensource.google/projects/diff-match-patch
https://docs.python.org/3/library/unittest.html
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/
https://django-tables2.readthedocs.io/en/latest/index.html

Appendix A
List of abbreviations

API . Application Programming Interface
CRUD . Create, Read, Update and Delete operations
EBMT . Example-based machine translation
HTML . Hypertext Markup Language
MT . Machine translation
ORM . Object-Relational Mapping
PBKDF2 . Password-Based Key Derivation Function 2
RBMT . Rule-based machine translation
REST . Representational State Transfer
SBMT . Statistical-based machine translation
SQL . Structured Query Language
TMS . Translation Management Systems
VCS . Version Control Systems
WAL . Write-Ahead Log

35

Appendix B
Project files

vcs-for-translations.pdf Contains this bachelor’s thesis in PDF format.

lingit Folder with the LinGit application files.

37

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Glossary
	Objectives of the thesis

	Existing approaches
	Version Control Systems
	Translation memory
	Machine translation
	Translation Management Systems
	Pairaphrase
	Memsource
	Transifex
	Main differences

	Application design
	Commits model
	Database
	SQLite
	Database schema

	Implementation
	Python and Django
	Markdown
	wikEd diff
	Key features
	Legend

	Naive change detector
	Implementation
	Benchmark
	Possible improvements

	Unit tests

	Usage
	Get started
	Application structure
	Administrator panel
	Main menu
	Document list
	Edit mutation
	Mutation changes list page
	Translations page
	Translation review page

	Conclusion
	Future work
	Commits joining, task generation
	Unchanged text hiding
	Frontend testing

	References
	List of abbreviations
	Project files

