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Abstract
This thesis presents an implementation
of a nonlinear model predictive control
(NMPC) strategy for a racing car. The
strategy takes into account the reference
from a human driver (i.e. from the steer-
ing wheel, the accelerator and brake ped-
als) and the current state of the vehi-
cle, and outputs an optimized version
of the driver’s actions on the vehicle
state. In this way, possible mistakes of
the driver, who has only a limited and ap-
proximate knowledge of the vehicle state,
are mitigated. Common mistakes which
might be corrected by this strategy in-
clude driving commands leading to lock-
ing the wheels, traction loss, and loss
of directional control. Although simi-
lar safety systems, such as the anti-lock
braking system (ABS) already exist, the
presented strategy attempts to replace
multiple safety systems by using a sin-
gle full-time-full-authority control system.
The idea of using a full-time-full-authority
control comes from the flight control in-
dustry; it appears that the automotive
industry could advance in this area. For
the purposes of NMPC design, a single-
track model of a car was chosen. The op-
timization problem constraints stem from
a previously defined vehicle driving en-
velope. The resulting computer program
was generated by the FORCESPRO opti-
mization software; it runs in real-time on
a laptop and was tested with the Live for
Speed racing simulator.

Keywords: nonlinear model predictive
control, MPC, drive-by-wire, driving
envelope, FORCESPRO, single-track
vehicle model

Abstrakt
Tato diplomová práce prezentuje imple-
mentaci nelineárního prediktivního řízení
(NMPC) pro závodní auto. Vytvořený
kontrolér přijímá referenci od lidského
řidiče (stav volantu, brzdového a plyno-
vého pedálu) a informaci o stavu vozidla;
na výstupu dává vylepšenou verze refe-
rence od řidiče. Takto vylepšený řídicí
signál má minimalizovat případné chyby
v řízení lidského řidiče, který má pouze
omezenou a přibližnou znalost o stavu
vozidla a jeho dynamice. Obvyklou chy-
bou v řízení auta, které lze takto předejít,
je například uzamčení kol, ztráta trakce
a ztráta kontroly nad směrem vozidla.
Ačkoli bezpečnostní sytémy mající tuto
funkci, tedy protiblokovací systém (ABS),
a další již existují, představený kontro-
lér má za cíl nahradit více takovýchto
bezpečnostních systémů jedním tzv. full-
time-full-authority systémem. Myšlenka
full-time-full-authority systému pochází z
leteckého průmyslu a zdá se, že automobi-
lový průmysl by z ní také mohl těžit. Pro
účely návrhu NMPC byl zvolen jednos-
topý model auta. Omezení optimizační
úlohy pak plynou z nové definice řídicí
obálky. Výsledný počítačový program byl
vygenerován s použitím softwaru FORCE-
SPRO; je schopen běhu na notebooku v
reálném čase, a byl testován na závodním
simulátoru Live for Speed.

Klíčová slova: nelineární prediktivní
řízení, MPC, drive-by-wire, jízdní obálka,
FORCESPRO, jednostopý model auta

Překlad názvu: Vývoj řídicích systémů
pro ochranu jízdní obálky pomocí
nelineárního prediktivního řízení
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Chapter 1
Introduction

In past years, requirements for vehicle passenger safety have significantly
increased. Various sensors are being developed with the goal of safe, eco-
nomic, and ultimately, autonomous cars. Those conditions have led to the
implementation of new and better safety systems. However, these systems
still mostly work separately from each other.

1.1 Driving Envelope

Inspired by a common approach in airplane engineering, a driving envelope
definition was recently stated. The driving envelope of a vehicle, simply said,
is a part of the space of specific vehicle state variables in which the vehicle is
steerable. By steerable, we mean the vehicle’s ability to respond in the way
a driver wants or expects. Opposed to moments of steerability are critical,
possibly dangerous, situations due to the loss of the wheel traction such as
spinning of the vehicle, locking the wheels, or fishtailing. The driving envelope
definition and its protection using model predictive control was suggested
in [1].

The referenced driving envelope definition employs the tire forces and the
variables commonly used to model them. It sets linear bounds on the sideslip
angles and slip ratios and enforces nonlinear inequalities on the tire forces.
By the semantics of the restricted variable or variables, we group these re-
strictions in the lateral envelope, logitudinal envelope, and the combined slip
envelope.

1.2 Control Strategy

In [1], driving envelope protection has been implemented using a linear model
predictive control strategy which demands less computational power, is easier
to formulate, and always converges. Unfortunaly, the linear strategy has
some disadvantages, namely that it forces simplification of both the vehicle

1



........................................ 1.3. Text Structure

model and the constraints, as the model and some of the driving envelope
constraints are nonlinear. Although it is sometimes difficult to formulate
nonlinear model predictive controllers, current computing power makes it
generally possible to do so.

The goal of this thesis is therefore to suggest a nonlinear model predictive
control strategy formulation for the driving envelope protection.

NMPC vehicledriver
reference control input

(optimized reference)

vehicle state

Figure 1.1: Diagram of the control loop

Diagram 1.1 shows a simplified top-level view of the proposed control loop.
A human driver is driving the vehicle in a common way, i.e. using a steering
wheel and the accelerator and brake pedals. (A vehicle with automatic
gearbox is assumed.) The information from the mechanical controllers is
taken as a reference for the NMPC. The state of the vehicle, namely its
velocity, sideslip angle and yaw rate, is also an input of the NMPC block.
The state is assumed to be measured on the vehicle; for the purposes of
this thesis, it is taken from a vehicle dynamics simulator. The NMPC block
estimates the wheel angular velocities the vehicle would gain if there was no
MPC strategy. Taking this information, the proposed controller computes an
optimized version of the reference and outputs it to the corresponding vehicle
actuators.

1.3 Text Structure

Chapter 2 recaps the thesis assignment and explains the workflow. Chapter 3
describes the adopted car model and Chapter 4 provides the driving envelope
definition. As the model inputs do not correspond to the inputs of the
racing simulator, an additional model dealing with wheel dynamics had to be
created (Chapter 5). Further chapters treat the nonlinear model predictive
control (NMPC) itself. First, the available software and existing approaches
are summarized in Chapter 6. Second, the proposed NMPC formulation
is explained in Chapter 7. The closing chapters introduce the simulation
environment (Chapter 8) and demonstrate experimental results (Chapter 9).

2



Chapter 2
Objectives

The initial objectives of this thesis were:..1. To study the driving envelope definition...2. To make use of a tool for nonlinear optimization, namely CasADi...3. To adopt the single-track model of a vehicle...4. To develop a nonlinear model predictive control (NMPC, nonlinear MPC)
strategy which protects the boundaries given by the driving envelope...5. Using the vehicle dynamics simulator Live for Speed, to compare the de-
veloped NMPC:. with existing linear MPC strategy,. with no additional control strategy.

3



Chapter 3
Single-Track Nonlinear Model of a Vehicle

The core of every model predictive control (MPC) is a model of the dynamics
of the controlled system. For this thesis, the single-track model adopted from
[2, 3] and used in [4] was chosen.

Both MPC strategies, the one developed in this thesis, and the one formu-
lated in [1], are originally based on the same model. The difference lies in
discretization — the linear MPC uses a linearized (differential) model in
multiple linearization points, while the nonlinear MPC predicts the states
in discrete time by integrating the continous model given the current states
(which also change between the iterations of the solving process).

The single-track model presented in this chapter is identical to the model
presented in [4] except for the number of steering angles; the simulator used
here only offers cars with steerable front wheels. (Therefore δf is here δ, and
δr is null.) Additional modifications are listed together with their reasoning
in the following section (7.1).

3.1 Overview

The single-track model considers only the translation and rotation in a plane,
using three states and three inputs. The model is depicted in Figure 3.1. On
the sides, one can see the rear and front wheels (here on the left and right
side, respectively). Model variables express motion in three points: the rear
wheel, the front wheel, and the car’s center of gravity (mass).

In the figure, angles are green, translational velocities are blue, forces are red,
angular velocities are purple, and the dimensions are drawn in orange.
For tables summarizing the variables and parameters used in this chapter,
please refer to Section 3.10. All single-track model variables are listed in
Table 3.1. General single-track model parameters are listed in Table 3.2.
(In Table 3.2, CG means the center of gravity.) Pacejka coefficients are
in Table 3.3 and the coefficients used in the force scaling algorithm are in
Table 3.4.

4



........................................ 3.2. Characteristics

αr

β
αr

δ

lr lfωr
ωf

r

Fx

Fy

Fxf

Fyf

Fxr

Fyr

v vf

vr

Figure 3.1: Geometric scheme of the single-track model

Model states are the car’s sideslip angle β, velocity v, and yaw rate r. Model
inputs are the steering angle δ, angular velocity of the front wheel ωf and of
the rear wheel ωr.

3.2 Characteristics

The single-track model can be analyzed on the frequency spectrum from 0 to
2 Hz, according to [2].

The model was derived considering the following assumptions:. Lift, pitch, and roll motions are neglected.. All mass is located at a single point..Mass distribution on the axles is constant.. Front and rear axles are represented as a single tire, resembling a bicycle.
The contact points of tires to the surface lie on the same axis as the tires.. Pneumatic trail and aligning torque resulting from the tire sideslip angle
are neglected.

3.3 Model Parts

A block scheme of the model is shown in Figure 3.2. Following the block
diagram from right to left, the vehicle is assumed to be a rigid body, the
dynamics of which are determined by two force components and a rotational
moment (rigid body dynamics). The forces, however, come from each
wheel, and the direction is further influenced by the steering wheel (steering
angle projection).

The source of forces acting upon the wheels is the contact of tires with
the road surface. The tires are commonly modeled using the Pacejka Magic

5



....................................... 3.4. Wheel Kinematics

Formula (tire models) and its help variables (slip ratios, sideslip angles).
All help variables are computed using the velocity components of the wheels
(wheel kinematics).

The wheels themselves are considered dynamic systems. This aspect will be
discussed in Chapter 5 which describes a model of the wheels which provides
the wheel angular velocities for the vehicle model described in this chapter.

wheel
kinematics

sideslip
angles

slip
ratios

tire
models

steering
angle

projection

rigid
body
dy-

namics
β

v

r

ωf
ωr

vxf
vxr
vyf
vyr

αf

αr

λf

λr

Fxf

Fxr

Fyf

Fyr

δ

Fx

Fy

Mz
β̇

v̇

ṙ

Figure 3.2: Block diagram of the single-track model

3.4 Wheel Kinematics

The wheel (translational) velocities depend both on the translational and the
rotational movement of the vehicle body.

Let us assume we know both components of the translational velocity of the
center of mass of the vehicle, vx and vy. Then, only the rotational movement
is left to be expressed.

For the front wheel a circular rotation with radius lf centered in the center of
mass is considered. The vehicle body rotates with yaw rate (angular velocity)
r. The tangential velocity is then lfr. Its direction is in the y-axis of the
vehicle coordinate system, so we can add it to vy. We get the velocity vector
of a point in the location of the front wheel,[

vx

vy + lfr

]
.

As the front wheel can be steered, we use a rotational matrix employing the
angle δ. This gives the first row of equation 3.1.

6



.......................................... 3.5. Slip Ratios

Expressing the vehicle velocity components vx and vy in the terms of the
single-track model states, vx = v · cos β and vy = v · sin β, we have final
expression for the front wheel velocity components.

[
vxf
vyf

]
=

[
cos δ sin δ

− sin δ cos δ

]
·
[

vx

vy + lfr

]
=

=
[

cos δ sin δ
− sin δ cos δ

]
·
[

v · cos β
v · sin β + lfr

]
.

(3.1)

The rear wheel is not steerable, therefore there is no rotational matrix.
The reasoning for the rotational component is the same, except for a different
distance of the wheel center from the center of mass: lf → lr. The same
rotation r acts here in the opposite direction:[

vxr
vyr

]
=

[
vx

vy − lrr

]
= =

[
v · cos β

v · sin β − lrr

]
. (3.2)

3.5 Slip Ratios

Slip ratios are defined here as

λf = ωfp − vxf
max (|ωfp|, |vxf|)

, λr = ωrp − vxr
max (|ωrp|, |vxr|)

, (3.3)

where p is the rolling radius of a wheel.

They represent the relative difference of the actual angular velocity of the
wheel (its rigid part) from the angular velocity it would have in a steady
state, given by its translational velocity and wheel radius.

A slip ratio of a wheel is therefore usually positive when accelerating, in
an extreme case, slipping; and it is usually negative when braking, having
locking as an extreme case.

By used definition,
λf ∈ [−1, 1], λr ∈ [−1, 1]. (3.4)

3.6 Sideslip Angles

A sideslip angle is the angle between the x-axis of a wheel coordinate system
(front direction) and the wheel’s velocity vector (precisely, its projection to
the horizontal plane). In the model, they are expressed as

αf = − arctan
vyf

|vxf|
, αr = − arctan vyr

|vxr|
. (3.5)

7



......................................... 3.7. Tire Models

The sideslip angle is positive when the wheel slips to the right and negative
otherwise. This holds for moving forward and backward.

By definition: αf ∈ [−π
2 , π

2 ], αr ∈ [−π
2 , π

2 ].

3.7 Tire Models

This part computes the forces coming from the tires using twelve Pacejka
coefficients and load forces as parameters.

Load forces are considered constant in this model:

Fz,f = mg
lr

lf + lr
, (3.6)

Fz,r = mg
lf

lf + lr
, (3.7)

where m is the mass of the vehicle and g is the gravitational acceleration.

The lateral Simplified Pacejka Magic Formula determines the lateral forces
as a function of the sideslip angles:

Fyf,raw = cD,yFzf sin
(
cC,y arctan (cB,yαf − cE,y (cB,yαf − arctan (cB,yαf)))

)
,

(3.8)
Fyr,raw = cD,yFzr sin

(
cC,y arctan (cB,yαr − cE,y (cB,yαr − arctan (cB,yαr)))

)
,

(3.9)

where cB,y,cC,y,cD,y,cE,y are constants.

The logitudinal Simplified Pacejka Magic Formula is a function of the slip
ratios determining the longitudinal forces:

Fxf,raw = cD,xfFzf sin
(
cC,xf arctan

(
cB,xfλf − cE,xf

(
cB,xfλf − arctan

(
cB,xfλf

))))
,

(3.10)
Fxr,raw = cD,xrFzr sin

(
cC,xr arctan (cB,xrλr − cE,xr (cB,xrλr − arctan (cB,xrλr)))

)
,

(3.11)

where cB,xf, cB,xr, cC,xf, cC,xr, cD,xf, cD,xr, cE,xf, cE,xr are constants.

Plots employing specific values of the parameters used in this thesis are shown
in Figure 3.3.

8
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Figure 3.3: Force characteristics given by the Simplified Pacejka Magic Formula
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The force components computed using Pacejka Magic Formula are only
approximate. There is a limit on the combined force produced by a wheel,
given by the normal force acting on the wheel, called the traction ellipse:

Ff =

√√√√ F 2
xf

c2
D,xf

+
F 2

yf
c2

D,y

≤ µFzf, (3.12)

Fr =

√√√√ F 2
xr

c2
D,xr

+
F 2

yr
c2

D,y

≤ µFzr, (3.13)

where µ is the friction coefficient of a road.

If necessary, a scaling algorithm is applied on the “raw” forces, originally
described in [5]. First, the raw forces are “descaled”:

µxf,act =
Fxf,raw

Fzf
, µyf,act =

Fyf,raw
Fzf

, (3.14)

µxr,act = Fxr,raw
Fzr

, µyr,act = Fyr,raw
Fzr

, (3.15)

and help variables are computed:

β∗
f = arccos |λf|√

λ2
f + sin2 αf

, β∗
r = arccos |λr|√

λ2
r + sin2 αr

. (3.16)

Taking more precise friction coefficients for each wheel:

µxf = 1√(
1

µxf,act

)2
+

( tan β∗
f

cD,y

)2
, µyf = tan β∗

f√(
1

cD,xf

)2
+

( tan β∗
f

µyf,act

)2
, (3.17)

µxr = 1√(
1

µxr,act

)2
+

(
tan β∗

r
cD,y

)2
, µyr = tan β∗

r√(
1

cD,xr

)2
+

(
tan β∗

r
µyr,act

)2
, (3.18)

the final forces yield

Fxf =
∣∣∣∣∣ µxf
µxf,act

∣∣∣∣∣ · Fxf,raw, Fyf =
∣∣∣∣∣ µyf
µyf,act

∣∣∣∣∣ · Fyf,raw, (3.19)

Fxr =
∣∣∣∣∣ µxr
µxr,act

∣∣∣∣∣ · Fxr,raw, Fyr =
∣∣∣∣∣ µyr
µyr,act

∣∣∣∣∣ · Fyr,raw. (3.20)
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................................... 3.8. Steering Angle Projection

3.8 Steering Angle Projection

The following equation maps the forces acting on the front and rear wheel,
respectively, on the forces and rotational moment acting in the center of mass.
The coordinate frame of the front wheel is shifted and has different rotation
from the coordinate frame of the vehicle, given by the steering angle δ; whereas
the coordinate frame of the rear wheel is only shifted: Fx

Fy

Mz

 =

 cos δ − sin δ
sin δ cos δ

lf sin δ lf cos δ

 ·
[
Fxf
Fyf

]
+

1 0
0 1
0 −lr

 ·
[
Fxr
Fyr

]
= (3.21)

=

 cos δ − sin δ 1 0
sin δ cos δ 0 1

lf sin δ lf cos δ 0 −lr

 ·


Fxf
Fyf
Fxr
Fyr

 . (3.22)

3.9 Rigid Body Dynamics

With rigid body dynamics, we also take into account the aerodynamic drag:

Fair,x = 1
2 · cair · ρ · A · (v · cos β)2 , (3.23)

Fair,y = 1
2 · cair · ρ · A · (v · sin β)2 , (3.24)

where cair is the drag coefficient, ρ is the density of air, and A is the frontal
area of the vehicle.

The expression for the state derivatives contains an inertia matrix, a rotational
matrix employing the sideslip angle β, and a force/torque vector acting on the
center of mass. The vehicle sideslip is also being changed by the yaw rate r:β̇

v̇
ṙ

 =

 1
mv 0 0
0 1

m 0
0 0 1

I

 ·

− sin β cos β 0
cos β sin β 0

0 0 1

 ·


 Fx

Fy

Mz

 −

Fair,x
Fair,y

0


 −

r
0
0

 .

(3.25)
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................................ 3.10. Model Variables and Parameters

3.10 Model Variables and Parameters

As stated earlier, the tables with single-track model variables (3.1, 3.4) and
parameters (3.2, 3.3) are located in this section.

Table 3.1: Variables used in the single-track vehicle model.

Variable Symbol Unit

Sideslip angle β rad
Velocity of the vehicle in the centre of gravity (CG) v m/s
Yaw rate (vehicle angular velocity) r rad/s

Angular velocity of the front wheel/axle ωf rad/s
Angular velocity of the rear wheel/axle ωr rad/s
Steering angle δ rad

Front wheel x-velocity vxf m/s
Front wheel y-velocity vyf m/s
Rear wheel x-velocity vxr m/s
Rear wheel y-velocity vyr m/s

Sideslip angle of the front wheel αf rad
Sideslip angle of the rear wheel αr rad

Slip ratio of the front wheel λf –
Slip ratio of the rear wheel λr –

Logitudinal force acting on the front wheel Fxf N
Lateral force acting on the front wheel Fyf N
Logitudinal force acting on the rear wheel Fxr N
Lateral force acting on the rear wheel Fyr N

Longitudinal force acting on the vehicle Fx N
Lateral force acting on the vehicle Fy N
Rotational torque of the vehicle Mz Nm

Longitudinal aerodynamic drag force Fair,x N
Lateral aerodynamic drag force Fair,y N

12



................................ 3.10. Model Variables and Parameters

Table 3.2: Parameters used in the single-track vehicle model.

Parameter Symbol Value Unit

Distance from the front axle to the CG lf 1.0228 m
Distance from the rear axle to the CG lr 1.3502 m
Wheel radius p 0.2765 m
Mass of the vehicle m 942 kg
Yaw moment of intertia I 2500 kg · m2

Gravitational acceleration g 9.81 m · s−2

Front axle normal force Fzf 5,258 km · m · s−2

Rear axle normal force Fzr 3,983 km · m · s−2

Drag coefficient cair 0.4 –
Density of air ρ 1.2 kg · m−3

Vehicle frontal area A 3 m2

Table 3.3: Parameters for tire modeling used in the single-track vehicle model.

Parameter Symbol Value Unit

Shaping coefficients
for longitudinal dynamics
of the front wheel

cD,xf 1.4 –
cB,xf 16 –
cC,xf 1.3 –
cE,xf −10 –

Shaping coefficients
for longitudinal dynamics
of the rear wheel

cD,xr 0.3 –
cB,xr 100 –
cC,xr 1 –
cE,xr −15 –

Shaping coefficients
for lateral dynamics
(the same for all wheels)

cD,y 1.1 –
cB,y 4 –
cC,y 1.3 –
cE,y −20 –

13



................................ 3.10. Model Variables and Parameters

Table 3.4: Variables used in the force scaling algorithm in single-track vehicle
model.

Variable Symbol Unit

Logitudinal force on front wheel (not adjusted) Fxf,raw N
Lateral force on front wheel (not adjusted) Fyf,raw N
Logitudinal force on rear wheel (not adjusted) Fxr,raw N
Lateral force on rear wheel (not adjusted) Fyr,raw N

Help variables
for the force scaling algorithm

β∗
f –

β∗
r rad

Friction coefficients
for the force scaling algorithm

µxf,act –
µxr,act –
µyf,act –
µyr,act –

Friction coefficients
for the force scaling algorithm

µxf –
µyf –
µxr –
µyr –

14



Chapter 4
Driving Envelope Definition

The driving envelope is a set of boundaries on selected model variables. These
boundaries can be grouped into the lateral, longitudinal, or combined slip
envelope, by the physical meaning of the variables used.

These boundary types can be applied to each wheel. The single-track model
is used in this thesis, therefore the following equations set boundaries on one
front wheel and one rear wheel. Taking a twin-track model, the number of
inequalities for each axle will double, or the average values can be limited
instead.

The boundaries placed divide the values of the selected variables into two
groups: those which are allowed (safe) and those which should be avoided.
The latter group contains values of the envelope variables for which the model
behavior is not well defined, the vehicle is not controllable, or the vehicle
state is unpredictable for the driver.

4.1 Lateral Envelope

The lateral envelope represents the boundaries on the sideslip angles:

αf,min ≤ αf ≤ αf,max, (4.1)
αr,min ≤ αr ≤ αr,max. (4.2)

Limits are typically chosen around the sideslip angle values for which the
lateral forces given by the Pacejka Magic Formula have their extremes.

The closer the limits are to 0, the more predictable and safe the vehicle
behavior is because Pacejka Magic Formula has very linear behavior around 0.
On the other hand, there is also motivation to set the limits further from 0
(even further than the extremes arguments). This allows the car to slip and go
with “drifty” behavior, which can be beneficial when aiming for high speeds
around a sharp curve (typically in racing).

15



..................................... 4.2. Longitudinal Envelope

4.2 Longitudinal Envelope

The longitudinal envelope bounds the slip ratios,

λf,min ≤ λf ≤ λf,max, (4.3)
λr,min ≤ λr ≤ λr,max, (4.4)

and prevents situations in which too little road contact is maintained — wheel
lockage and wheel slippage, for example — reducing the tire wear.

For the front wheel, the limits on the slip ratios are again set at the outer
neighborhood points of the peaks of the Pacejka Magic Formula function.

For the car used, the rear wheel Pacejka Magic Formula plot does have its
extremes only in the slip ratio extremes itself; the limits for the rear tire are
set equal to the limits of the front tire merely to prevent tire wear.

4.3 Combined Slip Envelope

The combined slip envelope resembles the physical limit mentioned already
in Section 3.7. The force vector generated by a tire cannot be higher than
the normal force acting on the tire.

Therefore, the limit can be different for a different car, but one does not have
to choose it using a guess, it is strictly given. Perhaps, a slightly different
limit can be set to account for inaccuracies of the model, such as assuming
constant load forces. In this work, the default limit is kept.

Unlike in the single-track model description in Chapter 3, the constraints
here are stated using the normalized Pacejka functions Pxf, Pxr, Pyf, Pyr:√

P 2
xf(λf) + P 2

yf(αf) ≤ µ, (4.5)√
P 2

xr(λr) + P 2
yr(αr) ≤ µ, (4.6)

where

Pxf = Fxf
Fzf · cD,x,f

, Pyf =
Fyf

Fzf · cD,y
, (4.7)

Pxr = Fxr
Fzr · cD,x,r

, Pyr = Fyr
Fzr · cD,y

. (4.8)

By the definition of the forces, it is implied: |Pxf| ≤ 1, |Pyf| ≤ 1, |Pxr| ≤ 1,
|Pyr| ≤ 1. The constant µ is the tire-to-road friction coefficient.

The normalized alternative was chosen to keep the order of the slack variables
introduce in Chapter 7 similar.
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Chapter 5
Modeling Acceleration and Braking

The references of the NMPC are the variables which are directly controlled
by the driver: the state of the accelerator pedal, brake pedal, and the steer-
ing wheel. While the state of the steering wheel has its counterpart in the
steering angle of the front wheel in the single-track model, the other two
inputs of the single-track model are the angular velocities of the front and
rear wheel. This leads to the need for a model of the pedals.

Let us denote the state of. the accelerator pedal as a ∈ [0, 1] and. that of the brake pedal as b ∈ [0, 1],

where 0 is the default state and 1 denotes a fully depressed pedal.

This chapter attempts to describe relationships which map the state of pedals
(a, b) to the wheel angular velocities (ωf, ωr) which the car would have at
some point in the future if the information from the pedals is passed without
any changes or delay.

The fundamental source of the following formulas is the technical report [6].
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5.1 Wheel Dynamics

As stated in [6] (and similarly in [2]), front wheel dynamics are governed
by the following differential equation:

ω̇f = τE + τRf − τBf − τDf
J

, (5.1)

where J is the polar moment of inertia of a wheel, τE is the torque on the
wheel from the engine, τRf is the torque cause by the reaction force, τBf is
the braking torque, and τDf is the torque due to friction.

The car used in the simulator is front wheel drive, therefore the engine
torque τE acts on the front wheel only and does not have a subscript. A dy-
namic equation for the rear wheel is simpler:

ω̇r = τRr − τBr − τDr
J

, (5.2)

with τRr being the reaction torque, τBr braking torque, and τDr friction torque
on the rear wheel.

5.2 Engine Torque

In order to calculate the torque applied to the wheels by the engine, the
vehicle powertrain is modeled. The powertrain of a car includes the engine,
a torque converter, a gearbox and final drive differential. The torque converter
is here neglected (assumed to be locked), as well as the servomotor dynamics
of the throttle and brakes and any behavior of the reverse drive.

The car used in simulation has 5 forward gears. They are represented by
five gear ratios: ηg, where g ∈ {1, 2, 3, 4, 5}. The final drive ratio is denoted ηf.

Assuming no clutch slippage and a locked torque converter, the engine rotation
rate is a function of the front wheel’s angular velocity:

ωE =
{

ηg · ηf · ωf if ηg · ηf · ωf > ωE0,

ωE0 otherwise,
(5.3)

where ωE0 is the idling speed.

The torque the engine is able to generate depends on the engine rotation
rate. This relationship was measured in the simulation environment and is
approximated by three second-order polynomials. The resulting engine torque
curve is plotted in Figure 5.1. The maximal engine torque (at the crankshaft)
TE,max = 130 Nm is at the rotation rate of 5,438 revolutions per minute
(RPM).
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Figure 5.1: Engine torque curve

The quadratic approximation function notation follows:

TE = κs,2 · ω2
E + κs,1 · ωE + κs,0, (5.4)

where s ∈ {1, 2, 3} denotes the interval for which is the approximation valid.

Although a car with an automatic gearbox is used, the simulator Live for
Speed does provide the state of clutch. Let us denote the command signal
coming from the clutch pedal in the racing simulator by c ∈ [0, 1], where
c = 0 denotes disengaged disks and c = 1 means the disks are pressed to each
other with maximum available force. In a car (with manual gearbox), the
clutch is placed between the engine and gearbox. It is used to temporarily
separate the engine (crankshaft) from the gearbox.

The model uses a very simple formula similar to the Coulomb friction model
in [7]. For more complex model, the engine dynamics would have to be
introduced. The energy transfer coefficient is:

µE = c · a (5.5)

The torque delivered by the engine to the wheel is a product of the maximal
torque available at the engine:

τE = µE · ηd · ηg · ηf · TE, (5.6)

where ηd is the drivetrain efficiency.
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5.3 Reaction Torque

The reaction torque is caused by the longitudinal force generated by the tire.

As the slip ratio here is defined in opposite way to the one in [6], the sign in
the expression for the reaction torque is also opposite:

τRf = −p · Fxf, τRr = −p · Fxr, (5.7)

where p is the wheel rolling radius.

5.4 Braking Torque

The dynamics of the brakes are neglected. The braking torques are computed
using the linear equations

τBf = b · sign (ωf) · ξf · TB,max, and (5.8)
τBr = b · sign (ωr) · (1 − ξf) · TB,max, (5.9)

where τB,max is the maximal torque which can be applied on one axle by
the brakes. The ratio ξf is the brake force distribution. The torque has to act
against the angular velocity, therefore the presence of ·sign(ωf) and ·sign(ωr).

5.5 Friction Torque

Viscous friction is considered where k is the viscous friction coefficient:

τDf = k · ωf, τDr = k · ωr. (5.10)
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5.6 Variables and Parameters

Table 5.1: Variables used in the model for wheel dynamics.

Variable/Parameter Symbol Value Unit

Accelerator command a [0, 1] –
Brake command b [0, 1] –
Clutch command c [0, 1] –

Front wheel angular velocity ωf – rad · s−1

Rear wheel angular velocity ωr – rad · s−1

Engine torque (front wheel) τE – kg · m2 · s−2

Engine angular velocity ωE – rad · s−1

Maximum available engine torque at
the moment

TE – kg · m2 · s−2

Energy transfer coefficient µE – –

Reaction torque (front wheel) τRf – kg · m2 · s−2

Reaction torque (rear wheel) τRr – kg · m2 · s−2

Braking torque (front wheel) τBf – kg · m2 · s−2

Braking torque (rear wheel) τBr – kg · m2 · s−2

Friction torque (front wheel) τDf – kg · m2 · s−2

Friction torque (rear wheel) τDr – kg · m2 · s−2
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Table 5.2: Parameters used in the model for wheel dynamics.

Parameter Symbol Value Unit

Wheel moment of inertia J 45 kg · m2

Density of air ρ 1.2 kg · m−3

Frontal area of the vehicle A 3 m2

1st gear ratio η1 4.9013 –
2nd gear ratio η2 3.0276 –
3rd gear ratio η3 2.1802 –
4th gear ratio η4 1.7284 –
5th gear ratio η5 1.4000 –

Final drive ratio ηf 3.2000 –

Drivetrain efficiency ηd 0.8500 –

Torque curve coefficients
for ωE ≤ 150 rad/s
⇒ s = 1

κ1,2 −3.1588 · 10−4 –
κ1,1 0.7640 –
κ1,0 −17.6322 –

Torque curve coefficients
for 150 rad/s < ωE ≤ 450 rad/s
⇒ s = 2

κ2,2 −7.6377 · 10−5 –
κ2,1 0.1739 –
κ2,0 61.6104 –

Torque curve coefficients
for 450 rad/s < ωE
⇒ s = 3

κ3,2 −4.6032 · 10−4 –
κ3,1 0.5206 –
κ3,0 −17.4539 –

Idling speed ωE0 99.4500 rad · s−1

22



Chapter 6
MPC Solvers

6.1 Transcription Methods

The following summary of transcription methods is based on [8].

Control problems are typically approached with a combination of the following
options:. indirect or direct,. shooting method or collocation method,. an “h-method”, or a “p-method”.

In the real world, there are typically continuous systems, whereas controllers
are discrete systems. An indirect method means the system is first optimized
as-is (using continuous equations) and then discretized. In a direct method,
the system is firstly discretized, and the optimization is done using a discrete
system description. The latter tends to be less accurate but easier to devise
and solve.

A shooting method is based on simulation. We further divide shooting methods
into single shooting and multiple shooting methods. Using a single shooting
method, the system state at any stage is formulated using the system variables
from only the first stage, which leads to a high level of complexity in further
stages. However, for highly nonlinear systems, a simulation using this method
can represent the system behaviour better. In a multiple shooting method,
there are optimization variables representing the system states for every stage.
Any dependencies bounding the states are defined only between two adjacent
stages.

The shooting methods are based on simulation, while collocation methods
are based on function approximations. For example, instead of integrating
the differential equations of a system, an approximation can be made with a
polynomial function. The system state values are forced to be precise only at
certain points. Unlike shooting metods, collocation methods are better suited
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for problems with more complicated constraints.

An h-method is a low-order method which converges by increasing the number
of segments, whereas p-methods converge by increasing the method order.

6.2 Available Software

The software originally assigned for this thesis, CasADi [9], is an open-source
software tool for gradient-based numerical optimization. CasADi provides
great flexibility for formulation of various optimization tasks, a high level of
comfort for specifying optimal control problems, and an easy approach to
debugging with its Opti class. However, CasADi is not an optimal control
problem (OCP) solver.

By default, CasADi uses the open-source solver Ipopt [10]. It is said to
be a robust code, or even “the state-of-the-art interior-point solver” [11].
The solver is shipped together with CasADi, and uses the open-source linear
solver MUMPS [12] by default.

However, Ipopt recommends using a linear solver other than MUMPS. Using
the MA57, MA27, MA77 and similar linear solvers form the HSL library [13],
it was possible to speed up the solving times by approximately one third
compared to MUMPS (given the relatively small problem size).

The solver SNOPT [14] is said to be the industry standard for nonlinear opti-
mization. Although a free academic license is available, this commercial solver
cannot be distributed with CasADi. The last CasADi version seems to be
incompatible with SNOPT (tried with the MATLAB version of CasADi 3.5.5
and precompiled SNOPT 7.7.5 on Windows).

6.3 Selected Software

The solver finally used is a specifically generated software produced by the
commercial software FORCESPRO by Embotech [11, 15, 16]. The company
provided a time-limited free academic license and support.

For a nonlinear optimization problem, FORCESPRO generates an interior-
point method based solver using the direct multiple shooting method [15].
They claim their solvers are comparable or faster than Ipopt, which was
found to be true in case of the NMPC formulation used in this thesis, with
multiple-shooting transcription in Opti using the MA57 linear solver.
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Chapter 7
MPC Formulation

Using the FORCESPRO high-level interface, it is possible to generate a vari-
ant of their FORCES NLP solver to solve a non-convex finite-time nonlin-
ear optimization control problem in a certain form. This form is stated
in the FORCESPRO user manual [16].

For better correspondence with the source code defining the solver, the for-
mulation of this particular NMPC task is described using the same notation.

7.1 Differences from Previously Defined Models

The MPC formulation uses the results of previous chapters, if not stated
otherwise. This section lists the most important differences.

7.1.1 Raw Reaction Forces

The algorithm from Section 3.7 (Equations 3.14 to 3.19) is not easily approx-
imated as a continuously differentiable function, therefore it is not used in
the solver. As reaction forces, their raw values are taken:

Fxf = Fxf,raw, Fyf = Fyf,raw, Fxr = Fxr,raw, Fyr = Fyr,raw. (7.1)

7.1.2 No Constraint on Combined Slip

Even though the boundaries expressed in Section 4.3, Equation 4.5, resem-
bling the motivation for the algorithm mentioned in the previous paragraph,
are implementable in the solver, they are also not used.

No weights for which would this constraint be beneficial were found. A reason
could be that the function is not trivial, employing a square root of an
expression of the reaction forces, which are represented by nontrivial functions
themselves. This aspect has to be further investigated.
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7.1.3 Sideslip Angles Simplification

An absolute value is not a continuously differentiable function, and so it
can cause problems when using gradient-based optimization solvers. As the
experiments are done in a racing simulator, we assume only forward driving,
and the solver is called only when the vehicle velocity is ≥ 1 m/s. The
longitudinal velocities in the denominators are then assumed to be always
positive and the absolute values can therefore be omitted:

αf = − arctan
vyf
vxf

, αr = − arctan vyr
vxr

. (7.2)

7.1.4 Slip Ratios Approximation

For the same reason, the absolute values are also omitted in the function
definitions for the longitudinal slip rations.

Besides the absolute values, the original Equations 3.3 contain a maximal
value. This function was not omitted, because it limits the resulting slip ratio
in the interval [−1, 1]. Values far from this interval would yield in a dispro-
portionate cost, making it hard or impossible to find suitable weighting factors.

The maximal value is approximated by a smooth function instead, as suggested
in [17]:

λf = ωfp − vxf

1
2 ·

(
ωfp + vxf +

√
(ωfp − vxf)2 + ε2

) ,

λr = ωrp − vxr

1
2 ·

(
ωrp + vxr +

√
(ωrp − vxr)2 + ε2

) ,

where ε is a small constant, here ε = 10−4.

7.2 Minimization Task

The primary goal is to minimize a sum of values of the objective function,

N−1∑
k=1

fk(zk, pk), (7.3)

where N is the length of the prediction horizon (the number of stages), k is
the index of a stage, zk ∈ Rnk is the vector of the optimization variables
in stage k, pk ∈ Rlk is the vector of runtime parameters for stage k, and
fk : Rnk × Rlk → R is the objective/cost function for stage k.

The length of the prediction horizon was chosen to be N = 10. It is equal to
the prediction horizon of the linear MPC in [1], and also empirically proved
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to work well. Together with the timestep Ts = 20 ms, the prediction horizon
is timewise 180 ms long.

Notation. All optimization variables are defined by stage and to be precise,
they should be written with index k. However, this is not necessary, because
the stages do not differ in this aspect. Where is this index missing, it was
likely omitted for simplicity.

7.3 Optimization Variables

Multiple variants of the NMPC formulation were tried. The final one consists
of seventeen optimization variables in each stage. Besides the basic ones for
model states and inputs, there are variables for approximation of absolute
values, one to build a slew of rate constraint, and some used as slacks to
create soft constraints.

All NMPC variables are listed in Table 7.1, together with their units. In the
order used in the source code, there are. 5 slack variables for constraints: sδ, sαf , sαr , sλf , sλr ;. 3 variables representing the absolute values of the deviation from the

references:. da, for the value |aref − a|,. db, for the value |bref − b|,. dδ, for the value |δref − δ|;. 3 control input variables: a, b, δ,. 1 variable to store the control input value computed in the previous
stage, as it is only possible to combine the variables of one single stage
in FORCESPRO: δ′

k = δk−1;. 2 variables representing the state of the wheels: ωf, ωr;. 3 variables representing the state of the vehicle as defined in the single-
track model: β, v, r.

The vector zk is then

zk = [sδ,k sαf,k sαr,k sλf,k sλr,k da,k db,k dδ,k

ak bk δk δ′
k ωf,k ωr,k βk vk rk]>, (7.4)

its length — seventeen elements — is the same for all stages, from k = 1
to k = 10.
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Table 7.1: Summary of NMPC optimization variales

Variable Symbol Unit
Slack for slew rate constraint on δ sδ rad/s2

Slack for envelope protection constraint on αf sαf rad
Slack for envelope protection constraint on αr sαr rad
Slack for envelope protection constraint on λf sλf –
Slack for envelope protection constraint on λr sλr –

Deviation of the accelerator pedal position from ref. da –
Deviation of the brake pedal position from reference db –
Deviation of the steering angle from reference dδ rad

Accelerator pedal position (NMPC output) a –
Brake pedal position (NMPC output) b –
Steering angle (NMPC output) δ rad

Previous value of the steering angle (previous NMPC
output or δ of the preceding stage)

δ′ rad

Front wheel angular velocity ωf rad/s
Rear wheel angular velocity ωr rad/s

Slip angle β rad
Vehicle velocity v m/s
Yaw rate r rad/s

For the variables da, db, dδ, the absolute value approximation is taken in
a different manner than the one of maximal value described in Section 7.1.4.
As these variables are present in the cost function which is minimized, it is
sufficient to set lower bounds for them in the optimization problem constraints.

For example, let us consider da. This variable has to represent the value of
|aref − a|. The lower bounds are then set to aref − a and −(aref − a). As
the solver minimizes the variable da, it becomes close to aref − a when it is
positive and close to −(aref − a) when it is positive, that means, close to
|aref − a|. For more theoretical explanation, please refer to the term epigraph
in [18].

7.4 Runtime Parameters

The vector of runtime parameters, representing the real-time data (those not
available in the time of the solver compilation), consists of five constants
which are independent on the stage:

pk =
[
aref bref δref Tmax αf,max

]>
. (7.5)

The runtime parameters are listed in Table 7.2. There are the three references,
a parameter describing the maximum engine torque which can be applied on
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the front wheel at the moment, and a velocity-dependent limit on the front
sideslip angle.

Table 7.2: Summary of NMPC runtime parameters

Runtime Parameter Symbol Unit

Accelerator pedal position (NMPC input) aref –
Brake pedal position (NMPC input) bref –
Steering angle (NMPC input) δref rad

Maximal available engine torque for the front wheel Tmax Nm
Limit the sideslip angle of the front wheel αf,max rad

Computing αf,max. A low constant limit would unreasonably increase the
minimal cornering radius of the vehicle for lower velocities, e.g., when parking.
A high constant limit would not be sufficient to prevent over-slipping for high
velocities.

Therefore, the current limit on the front sideslip angle is determined using
the vehicle velocity (before calling the solver):

αf,max =


0.8 if v < 5 m/s,
0.35−0.8

20−5 · v + 0.8 − 0.35−0.8
20−5 · 5 if v < 20 m/s,

0.35 otherwise.
(7.6)

7.5 Cost Function

The same holds for the cost function, it is defined identically for all considered
stages, from 1 to (N − 1):

fk(zk, pk) = 5 · 103 · s2
δ,k+

+ 104 · s2
αf,k

+ 104 · s2
αr,k+

+ 2 · 102 · s2
λf,k

+ 2 · 102 · s2
λr,k+

+ 1
(aref + 0.1)2 · da,k + 10

(bref + 0.1)2 · db,k+

+ 200 · dδ,k + 500 · d2
δ,k+

+ β2
k + r2

k.

(7.7)

The vehicle states β, r are lightly weighted to prevent unreasonable shooting
of these states and to prevent spinning of the vehicle.

It is recommended to select weights for slack variables significantly higher than
for any other variable. This is clearly followed for the slacks on sideslip angles.
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The terms for following the references on accelerator and brake pedals posi-
tions as well as the term for following the steering wheel reference use variables
which represent the absolute values of corresponding deviations. An absolute
value (opposed to the square) is selected to also count for low deviations.
The steering angle term employing an absolute value is additionally combined
with a term employing the square.

The weights of the pedal position deviations are divided by their reference
in order to avoid producing nonzero values on both pedals at the same time.
(A zero reference means increasing the weight a hundred times, whereas
a unitary reference divides the weight in the nominator by 1.21.)

7.6 Initial Equality

Some of the optimization variables in the first stage are replaced by a fixed
value:. the previously computed steering angle (eventually, when previous run

of the solver crashed or when starting the simulation, the reference from
the driver);. and the current state of the vehicle received from the vehicle dynamics
simulator (LFS).

Formulas for computing the wheel angular velocities, the vehicle velocity
and the vehicle sideslip angle from values received from the vehicle dynamics
simulator are in Section 8.2.

In the notation of FORCESPRO,

z1(I) = zinit, (7.8)
where I = {12, 13, 14, 15, 16, 17} (7.9)

and zinit =
[
δprev ωf,LFS ωr,LFS βLFS vLFS rLFS

]>
. (7.10)

This notation efficiently translates into equalities

δ′
1 = δprev, (7.11)

ωf,1 = ωf,LFS, (7.12)
ωr,1 = ωr,LFS, (7.13)

β1 = βLFS, (7.14)
v1 = vLFS, (7.15)
r1 = rLFS, (7.16)

where variables with the ‘LFS’ subscript are taken from the vehicle dynamics
simulator.
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7.7 Inter-stage Equality

The inter-stage equality contraint is used. to define the relationship δ′
k+1 = δk,. and to enforce the dynamics of the states.

The dynamics are given by the differential equations implemented as MAT-
LAB functions, namely the equations 5.1 and 5.2 for the wheel angular
velocites, and the matrix equation 3.25 for the single-track vehicle states.
The functions representing the right-hand sides of corresponding differen-
tial equations are taken as an argument of a FORCESPRO integrator function.

Although it is noted in [19] that vehicle dynamics can be relatively stiff
(unstable when solving numerically) and suggests using an implicit integration
scheme, it was found out that the solver is able to converge fast when a simple
1st order explicit Euler integration scheme is used.

7.8 Final equality

The final equality is unused, there are no final conditions.

7.9 Static Parameters Selection

More imporant constant limits were given a notation and are listed in Ta-
ble 7.3. Those “static” parameters are used for the upper-lower bounds
on optimization variables and also for the nonlinear constraints.

Table 7.3: Summary of NMPC static parameters

Variable Symbol Value Unit
Time step (sampling time) Ts 0.02 s

Maximal steering angle δmax +0.5236 rad
Minimal steering angle δmin −0.5236 rad
Maximal wheel angular velocity ωmax 180 rad/s

Maximal rear sideslip angle αr,max +0.20 rad
Minimal rear sideslip angle αr,min −0.20 rad
Maximal slip ratio λmax +0.15 –
Minimal slip ratio λmin −0.15 –
Maximal slew of δ δslew 0.0419 rad/s
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Constants for the upper-lower bounds. The minimal and maximal steering
angles (δmin, δmax) are given by the maximal lock of the default XF GTI car
in the simulator (see Chapter 8) which is equal to 30◦. The maximal wheel
angular velocity (ωmax) is connected to the maximal velocity the car is able
to develop in the simulator.

Constants for the nonlinear constraints. The limits on the rear sideslip
angle (αr,min, αr,max), in addition to the limits on both slip ratios (λmin,
λmax), are set to be in the outer neighborhood of the force/sideslip angle and
force/slip ratio characteristics (discussed in Chapter 4).

The maximal slew of δ is the limit on the change in δ between two stages.
In [20], the value selected is given by the characteristics of the actuator they
use in their vehicle. Although the vehicle dynamics simulator used here does
not have this internal restriction, the slew is limited not to disturb the driver.
In this thesis, a similar value was chosen: 120◦ per second. Taking the time
step Ts = 0.02 s, it leads to the value δslew = (0.02 · 120)◦/s = 0.0419 rad/s.

7.10 Upper-lower Bounds

Upper-lower bounds are acting directly on the optimization variables:

zk ≤ zk ≤ z̄k, (7.17)

where zk and z̄k are constant vectors.

These bounds cannot be slacked, therefore an initial guess of variables outside
of the bounds can lead to an infeasibile optimization problem. The bounds
should not be too strict, in fact, most of them can be filled with infinite
values. However, the solver could work better with finite values.

Slack variables and the variables substituting the absolute values have to be
positive. Very low but nonzero lower bounds for those variables were set to
improve the solver performance.

For the rest of the optimization variables, the knowledge about their minimal
and maximal possible values was used, and somewhat extended.
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Resulting bounds are:

zk =



10−8

10−8

10−8

10−8

10−8

10−6

10−6

10−6

0
0

δmin
δmin
−10
−10
−π

−100
−15



≤ zk =



sδ

sαf

sαr

sλf

sλr

da

db

dδ

a
b
δ
δ′

ωf
ωr
β
v
r



≤ z̄k =



10
10
10
100
100
1.1
1.1
1.1
1
1

δmax
δmax
ωmax
ωmax

π
100
15



. (7.18)

7.11 Nonlinear Constraints

The slack variables are defined for the purpose of making some of the con-
straints soft, that is, to allow prospective breach of the limits they set. This
is beneficial when the vehicle gets out of the driving envelope, not able to
return back immediately, and to increase the solver robustness.

There are sixteen nonlinear inequalities which are equal to eight slacked
constraints. Of this eight slacked constraints, four serve as soft constraints
on the driving envelope, one serves as the steering angle slew protection, and
three are used for the absolute value approximation.

The boundaries on the front wheel sideslip angle are set using a runtime
parameter, therefore the inequality format is slightly different,

−10 ≤ −sαf,k + αf − αf,max ≤ 0, (7.19)
0 ≤ +sαf,k + αf + αf,max ≤ 10, (7.20)

from inequalities implementing the boundaries on other driving envelope
variables:

−10 ≤ −sαr,k + αr ≤ αr,max, (7.21)
αr,min ≤ +sαr,k + αr ≤ 10, (7.22)
−100 ≤ −sλf,k + λf ≤ λmax, (7.23)
λmin ≤ +sλf,k + λf ≤ 100, (7.24)

−100 ≤ −sλr,k + λr ≤ λmax, (7.25)
λmin ≤ +sλr,k + λr ≤ 100. (7.26)
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The slew protection:

−100 ≤ −sδ,k + δ ≤ δslew, (7.27)
−δslew ≤ +sδ,k + δ ≤ 100. (7.28)

The deviations from references:

10−6 ≤ da,k − aref + ak ≤ 10, (7.29)
10−6 ≤ da,k + aref − ak ≤ 10, (7.30)
10−6 ≤ db,k − bref + bk ≤ 10, (7.31)
10−6 ≤ db,k + bref − bk ≤ 10, (7.32)
10−6 ≤ dδ,k − δref + δk ≤ 10, (7.33)
10−6 ≤ dδ,k + δref − δk ≤ 10. (7.34)

7.12 Other Settings

A time limit of 15 ms is set for the solver to provide a solution.

The linear solver selected is symm_indefinite, which should be a more robust
alternative to the default normal_eqs. It solves the Karush-Kuhn-Tucker
system in augmented / symmetric indefinite form, using block-indefinite
factorizations; opposed to the normal equations form [16].

The CasADi version 3.5.1 is used as a tool for automatic differentiation.

When possible, the solver is provided with an initial guess from its previous
output (shifted by one stage).
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Chapter 8
Simulation Environment

This chapter provides a quick overview of the testing simulation environment.
The environment was developed in [21], which offers more detailed description.

Following paragraphs explain the dataflow depicted in Figure 8.1.

racing
wheel
and

pedals

Simulink
program

with
solver

routing
layer
via

vJoy

Live
for

Speed
reference control

input
control
input

vehicle state

Figure 8.1: Diagram of the experimental setup

Hardware. The system was developed on a laptop with the Intel Core i7-
10750H processor (6 cores, 5 GHz maximum frequency) and 16 GB of physical
memory (RAM), running on the Windows 10 operating system.

User Input. In this particular setup, a Thrustmaster racing wheel1 with
physical pedals without a force feedback was used, but any game controller
including gamepads should have similar performance.

Data Processing. MATLAB2 (version R2020b) serves as programming
environment. In a Simulink3 model, an input block receives the data from
the game controllers and data from the simulator (below). Simulink calls
the optimal control solver generated by FORCESPRO4 and broadcasts its
solution using network communication.

1http://www.thrustmaster.com/en_US/products/ferrari-racing-wheel-red-legend-edition
2https://ch.mathworks.com/products/matlab.html
3https://ch.mathworks.com/products/simulink.html
4https://www.embotech.com/products/forcespro/overview/
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......................................... 8.1. Selected Car

Data Forwarding. The communication from Simulink is processed by a helper
program from [21] and redirected to vJoy5 which creates a virtual game
controller.

Simulator. The virtual game controller serves as an input for the Live
for Speed6 (LFS), version 0.6U11, which is a computer racecar simulator
(a computer game with realistic car physics). For part of the control settings,
see Figure 8.2. The simulator broadcasts the vehicle state using an UDP
communication, being an input for the Simulink model.

Figure 8.2: Screenshot of settings for the virtual game controller in LFS

8.1 Selected Car

The vehicle selected for the simulation is the XF GTI with default parameters,
see Figure 8.3.

The XF GTI is Live for Speed’s default car. It is a front wheel drive, stati-
cally understeering car with automated transmission. It is targeted for the
beginners on racing platforms.

Its parameters are listed in Section 3, Table 3.2 and 3.3. Some other pa-
rameters, relevant for wheel dynamics modeling, are also listed in Table 5.2.
Most of the parameters are provided with the game, some were determined
experimentally (in the simulation).

5http://vjoystick.sourceforge.net/site/
6https://www.lfs.net/
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Figure 8.3: Screenshot of a “garage” with the XF GTI car in LFS

8.2 Vehicle State Transformation

The single-track model system states are the sideslip angle β, the translational
velocity v, and the yaw rate r. (All the states are scalars.) However, the Live
for Speed outputs in the same format only the yaw rate.

The sideslip angle is therefore computed using velocities vx, vy:

βLFS =

− arctan
(

vy

vx

)
if |vx| ≥ 5,

0 otherwise,
(8.1)

moreover, β ∈
[
−π

2 , π
2

]
.

The velocity v is computed as the size of the velocity vector represented by
its elements vx, vy:

vLFS =
√

v2
x + v2

y . (8.2)

As LFS simulates a twin-track vehicle, the front and rear wheel angular
velocities are the arithmetical average:

ωf,LFS =
ωf,left + ωf,right

2 , (8.3)

ωr,LFS =
ωr,left + ωr,right

2 . (8.4)
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Chapter 9
Simulation Experiments

The experiments aim to show differences of the vehicle behavior with different
control strategies:. using the developed nonlinear MPC;. using the previously existing linear MPC;. using exact reference from the human driver;

and possibly to prove benefits of the nonlinear MPC.

The linear MPC strategy used for the comparison is formulated in [1]. It was
set to resemble the prediction horizon (N = 10) and timestep (Ts = 0.02 s)
of the nonlinear MPC. Its boundaries for the front sideslip angle are ±0.6.
Besides the MPC solver, there are proportional–integral–derivative controllers
computing the setpoints for the pedal position from the wheel angular valoci-
ties which are outputs of the linear MPC solver.

In the experiments, a driver (the brother of the author of this thesis) was
asked to drive a selected track with each control strategy ten times (ten laps,
without a break between them). From each ride, three basic numbers are
noted:. best lap time,.mean lap time,. and mean number of contacts with obstacles (bumps).

The track selected is South City, Town Course, which was chosen because
it contains sharpe curves. However, this track is not flat, which can cause
additional inaccuracies due to the assumtion of constant load forces.

The results, shown in Table 9.1, do not provide a clear conclusion. Timewise,
the nonlinear MPC appears better than no control strategy. To prove this
possible benefit, however, experiments with more drivers would have to be
carried out.
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Table 9.1: Ride test results.

Control Strategy Mean Time [s] Min. Time [s] Bumps [–]

No control 116.74 114.15 5
Linear MPC 117.88 113.63 6
Nonlinear MPC 116.23 113.71 5

It was observed that the fatigue, motivation, and experience of the driver
have significant influence on the results. Besides these factors, each driver
first has to adopt to the behaviour of a vehicle with control strategy.

Subjectively, the vehicle dynamics simulator without any control strategy
gave the impression of smoother (not disturbing) but slower ride than when
employing on of the controllers.

The linear MPC strategy influences the pedal positions more often than the
nonlinear MPC strategy, whereas the nonlinear MPC relies more on influenc-
ing the steering wheel position.

The following sections investigate the differences on the data recorded, in three
distinct situations:. cornering,. acclererating,. and braking.

9.1 Cornering

The investigated curve is located in the South City, Town Course track and
is delimited by the lap distance: from 1200 to 1340 meters.

The tire utilization is defined as ∣∣∣∣∣ Fyf
cD,y · Fzf

∣∣∣∣∣ (9.1)

for the front tire and as ∣∣∣∣∣ Fyr
cD,y · Fzr

∣∣∣∣∣ (9.2)

for the rear tire. It is a dimensionless quantity which can be used as a gener-
alization for the sideslip angles.

Higher tire utilization is correlated with higher sideslip angle. As a high
sideslip angle generally leads to higher force generated on the tire, and is
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Figure 9.1: Tire utilization when cornering

therefore desirable (unless the traction is lost, which would manifest the num-
ber of bumps). See Figures 9.1 and 9.2.

All the histograms, except for the ones for acceleration behavior, are com-
puted from mean values over the ten laps. The plots of the sideslip angles
(Figure 9.3, Figure 9.4) show the data of a single lap with the minimal lap time.

Figure 9.2 shows an improvement of the nonlinear MPC for the front tire
utilization.

9.2 Accelerating

The acceleration data show the first 70 m of the first lap. See Figures 9.5
and 9.6.

9.3 Braking

As a section of the track where is common braking, was chosen a part be-
fore a curve with higher radius but with common high speed, from 2,550 m
to 2,650 m. The corresponding histograms are shown on Figures 9.7 and 9.8.

The tire utilization appears to be improved, however, the distribution of the
slip ratios is unchanged from the data with no control strategy.
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Figure 9.2: Slip ratios when cornering (the no control strategy, linear MPC, and
nonlinear MPC are shown in blue, green, and red, respectivelly)
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Figure 9.3: The front wheel sideslip angle when cornering. No control strategy
is in blue, red the linear MPC, yellow the nonlinear MPC. The dashed line
represents the velocity-dependent boundaries on the fron sideslip angle in the
nonlinear MPC
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Figure 9.4: The rear wheel sideslip angle when cornering
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Figure 9.5: Tire utilization when accelerating
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Figure 9.6: Slip ratios when accelerating
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Figure 9.7: Tire utilization when braking
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Figure 9.8: Slip ratios when braking
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Chapter 10
Results

In this work,. the driving envelope is employed as it is defined in [1], except for omitting
the combined force restrictions for their high computational complexity
and little effect, and except for loosening the limits on αf for low velocities.. The assigned numerical optimization tool CasADi was not used directly, as
the FORCESPRO solution was selected to create the final solver. CasADi
is actually used by FORCESPRO itself as an automatic differentiation
tool, but FORCESPRO’s architecture does rather motivate to use its
own interface, so the user does not use CasADi’s syntax. CasADi was
used in earlier development for debugging purposes and trying other
nonliear problem solvers such as Ipopt, though.. The single-track model was adopted into the controller, creating approxi-
mations for some of its variables.. A nonlinear model predictive controller was formulated which runs in
real time.. The controller was tested with the Live for Speed racing simulator and
proved to help to mitigate some of driver’s mistakes.
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Chapter 11
Conclusion

This thesis presents a nonlinear model predictive control strategy which runs
in real time, in the order of a few miliseconds. To be precise, the solver safely
converges in 15 ms, up to exceptions such as bumping into an obstacle.

The (missing) implementation of the combined force is often a source of inac-
curacies in MPCs for cars, as mentioned in [19]. Further work can investigate
this aspect, and implement an alternative way of restricting the reaction
forces. (The approach on the mind is introducing new optimization vari-
ables to represent the reaction forces in the computation of the vehicle states.)

Although the original control strategy — the linear MPC connected with
experimentally adjusted PID controllers — can be considered more “prim-
itive,” it is better adjusted for control of the accelerator and bake pedal
positions. This can be a result of the omitted combined force restriction, or
of an inaccuracy in the model for predicting the wheel angular velocities.
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