

Master’s thesis

Representation learning for trademark
search with limited supervision

Bc. Pavel Šuma

Department of Computer Science
Supervisor: Georgios Tolias, Ph.D.

January 5, 2021

Acknowledgements

I would like to thank my supervisor, Georgios Tolias, Ph.D., for his guidance
and valuable advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on January 5, 2021

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2021 Pavel Šuma. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šuma, Pavel. Representation learning for trademark search with limited su-
pervision. Master’s thesis. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2021.

Abstract

This thesis aims to design methods for recognizing and retrieving similar trade-
mark images from large databases. By embedding the input images into real-
valued vector representations, the most similar trademarks can be derived
with a simple Euclidean search. Acquiring these representations is done with
the help of a deep convolutional neural network. Following a transfer learning
paradigm, several network architectures pre-trained on related domains are
studied and compared. On top of that, the best performing model is further
fine-tuned in a metric learning fashion. A new annotated dataset consisting
of more than two thousand trademark images was created for the purpose
of the network training. Ground truth evidence for conflicting trademarks is
scarce and manually annotating large amounts of data is slow and tedious.
For this reason, the thesis also proposes various semi-supervised approaches
suitable for deep metric learning to reduce the data requirements and better
prepare the solution for possible real-world applications. Both supervised and
semi-supervised methods are evaluated on standard trademark benchmark
datasets.

Keywords deep metric learning, semi-supervised learning, trademark image
retrieval

vii

Abstrakt

Tato práce si klade za ćıl navrhnout metody pro rozpoznáváńı vzájemně po-
dobných obrázk̊u ochranných známek. Zakódováńım vstupńıch obrázk̊u
do vektorových reprezentaćı lze podobné ochranné známky naj́ıt pomoćı jed-
noduchého vyhledáváńı v euklidovském prostoru. Pro źıskáńı těchto reprezen-
taćı se použ́ıvá hluboká konvolučńı neuronová śıt’. S využit́ım paradigmatu
přenosu znalost́ı je v práci prozkoumáno a porovnáno několik śıt’ových archi-
tektur, předem natrénovaných v souvisej́ıćıch doménách. Nejvýkonněǰśı z mo-
del̊u je dále dotrénován pomoćı zp̊usob̊u učeńı metrik. Pro účely trénováńı
śıt́ı byla vytvořen nová anotovaná datová sada, skládaj́ıćı se z v́ıce než dvou
tiśıc obrázk̊u ochranných známek. Prokázané př́ıpady konfliktńıch ochranných
známek jsou vzácné a ručńı anotace velkého množstv́ı dat je pomalá a zdlou-
havá. Z tohoto d̊uvodu práce také navrhuje několik metod pro učeńı s ome-
zenou superviźı, vhodných pro hluboké učeńı metrik, které snižuj́ı požadavky
na data a lépe připravuj́ı řešeńı pro možné aplikace v reálném životě. Všechny
metody jsou vyhodnoceny na standardńıch datových sadách obrázk̊u
ochranných známek.

Kĺıčová slova hluboké učeńı metrik, učeńı s omezenou superviźı, vyhledáváńı
obrázk̊u ochranných známek

viii

Contents

Introduction 1
Problem description and objectives 2

1 Related work 5
1.1 Logo similarity . 5
1.2 Semi-supervised learning . 6

2 Background 9
2.1 Metric learning . 9

2.1.1 Mahalanobis distance 10
2.1.2 Deep metric learning . 11

2.1.2.1 Contrastive loss 12
2.1.2.2 Triplet loss . 12
2.1.2.3 Negative sampling 13

2.2 Fully convolutional models . 14
2.2.1 VGG16 . 14
2.2.2 ResNet . 14
2.2.3 Global pooling . 16

2.3 Whitening . 18
2.3.1 PCA whitening . 18

3 Benchmark 21
3.1 Evaluation measurements . 21
3.2 Test datasets . 22
3.3 Train and validation sets . 23

3.3.1 Data collection . 23
3.3.2 Validation split . 24

4 Supervised baseline 27
4.1 Transfer learning . 27

ix

4.1.1 Shape matching . 29
4.1.2 Multiscaling . 30

4.2 Fine-tuning . 30
4.2.1 Preprocess . 31
4.2.2 Random augmentations 32
4.2.3 Implementation details 35
4.2.4 Whitening . 36

4.3 Results . 36

5 Semi-supervised methods 39
5.1 Semi-supervised setting . 39
5.2 Positive mining . 40

5.2.1 Postprocessed descriptors 40
5.2.2 Voting based . 42
5.2.3 Graph based . 44

5.3 Negative mining . 46
5.4 Evaluation . 47
5.5 Discussion and future work . 50

Conclusion 51

Bibliography 53

A Acronyms 59

x

List of Figures

2.1 Principle of metric learning. 10
2.2 Standard deep metric learning loss functions. 13
2.3 VGG16 architecture. 15
2.4 Bottleneck block in ResNet. 15
2.5 ResNet50 architecture. 16
2.6 Visual representation of global pooling operation. 17

3.1 Two distinct classes of METU queries, each displayed in one row. . 23
3.2 Examples of the collected similar trademarks. 24

4.1 The whole process depicting the embedding of a single input image
into real-valued vector (descriptor). 31

4.2 The influence of input size on both train and test set score. 32
4.3 The effect of random augmentations applied to the same original

logo. 33
4.4 Simplified pseudo code of the main network training loop. 34
4.5 Validation score and network loss per epoch. 35
4.6 Top 9 images retrieved from the whole METU test set for a given

query. 37
4.7 Two retrieval examples from the whole METU provided by the

fine-tuned network. 38
4.8 Retrieved images from NPU-TM test set by the fine-tuned network. 38

5.1 Hit rate of simple euclidean k-NN positive mining. 41
5.2 Influence of optional processing steps on positives’ ranks. 41
5.3 Comparison of voting based mining methods. 44
5.4 Visualization of graph based positive mining. The dashed line illus-

trates the shortest path between two labeled images. The vertices
along this path are chosen to be the new added positives. 45

5.5 Comparison of graph based mining methods. 46
5.6 Top 2 new positives mined for the given labeled pair. 48

xi

List of Tables

3.1 Detailed comparison of all used datasets. 25

4.1 mAP score on both test sets for multiple pre-trained variants. . . . 29
4.2 Test evaluation for concatenated descriptors of EdgeMAC and other

RGB networks. 30
4.3 mAP score of both fine-tuned models and their score prior to train-

ing for comparison. 36
4.4 mAP for baseline model with optional processing methods. 37

5.1 Evaluation score for models trained with a limited train set. 40
5.2 Comparison between proposed semi-supervised methods and re-

stricted baseline models. 49
5.3 Comparison between restricted baselines and the best semi-supervised

method in combination with optional enhancing techniques. 49

xiii

Introduction

Hand in hand with increasing globalization as well as digitalization of all
content created today comes frequent copyright infringement, both intentional
and accidental. There has already been considerable effort to tackle this issue
(DMCA, EU Directive 2019/790). For instance, the YouTube content ID
system is used to find unauthorized uses of original work by producing video
and music fingerprints using deep learning. This system has generated as of
2018 over $3B for copyright holders [1]. There is a great demand for such
automatic systems; the internet is sprawling, and manual checks are no longer
sufficient.

A similar issue exists in the domain of company logos. Very often, new
company tries to imitate the visual looks to boost their sales, while hurting
the brand identity of the established company. Other times, businesses with
no malicious intent create a similar logo by accident, leading to the same
problems.

This thesis proposes different deep learning techniques to identify similar-
looking trademarks, which can be beneficial in finding cases of copyright fraud.
The current workflow is predominantly manual, by categorizing each new logo
into similarly themed groups and finding collisions among them. Utilizing the
strengths of deep learning, which shows exceptional usability for visual tasks,
seems like a great fit for this problem. However, the domain of trademark
logos poses significant challenges to overcome.

Learning logo representations suitable for automated comparison differs
from standard real-life computer vision problems, such as classification or ob-
ject recognition. A boat is always a boat, but ground truth in logo images is
sparse and hard to assess fairly. One difficulty is measuring subjective similar-
ity, as perceived by humans. While the pure visual similarity is computable,
there are other kinds such as semantic or name similarity. Many logos might
seem obviously similar to us because of some artistic intent, but describing
this in an algorithm is non-trivial.

The potential amount of data available is huge by simply scraping the in-

1

Introduction

ternet, as well as utilizing the government’s logo databases (WIPO, USPTO).
On the other hand, manually labeling a dataset of logos is a tedious task, as
deciding which logo images should belong to the same group is uneasy. For
these reasons, the thesis also explores ways of training neural networks in a
semi-supervised learning setup for the task of image retrieval. This area is
well studied in deep classification, but not in the case of deep metric learning.
Moreover, the semi-supervised metric learning approach is also suitable for
real-world applications as legal decisions of conflicting trademark law cases
provide only limited information, i.e., two images are provably similar, but it
tells nothing about other trademarks.

Problem description and objectives

This thesis’s task can be presented as automatizing the currently manual pro-
cess of conflicting trademark assessment. Consider a massive database of logo
images and a new trademark application. In order to prevent infringement,
the reviewer has to visually observe all relevant categories, whether there is
an already existing trademark hardly distinguishable from the application. In
my work, I implement an algorithm, which automatically ranks all of the ex-
isting logo images in the database by their visual similarity to any given image
input.

Generally, the process of searching the database for images based on some
attribute is called image retrieval, or specifically for this instance, trademark
retrieval. Storing and searching images in their original formats (jpeg, png) is
ineffective and supports only limited comparison tools. A partial solution to
this problem is to convert all images into compact representations, typically
real-numbered vectors. One can then employ a distance or similarity measure
to compare these vectors. However, either the representations or the distance
measure have to be tailored to capture the specific aspects that make two
trademarks similar.

To produce high dimensional embedding vectors of the images, I train a
deep neural network in a metric learning setting. Then, to retrieve the most
similar embeddings for a given query, a nearest neighbor search based on cosine
similarity is used. There is typically a large amount of human-annotated data
needed to train a robust neural network. Hence, several methods are proposed
to alleviate the data requirement.

Note that the approach used in this thesis is not tied to trademark images
in particular. It can be utilized for any kind of images, but the trademark
domain is sufficiently difficult and suitable for semi-supervised applications.

The objectives can be summarized into a couple of key points, which
roughly correspond to the contents of each chapter:

1. Review the most relevant work done in the trademark retrieval domain
and approaches in the field of deep semi-supervised learning.

2

Problem description and objectives

2. Study appropriate literature and give a brief summary of the necessary
background.

3. Construct a suitable train and validation set covering realistic trademark
images and define evaluation measure and test environment.

4. Discuss essential parts of convolutional network training pipeline imple-
mentation.

5. Design and compare several semi-supervised methods applicable in deep
metric learning.

3

Chapter 1
Related work

The related work of this thesis can be categorized into two sections. First
section takes a look at past research in the domain of logo similarity. Second
section briefly summarizes some of the most related recent semi-supervised
approaches.

1.1 Logo similarity

Metric learning is a field with vast practical application possibilities. It has
been extensively studied for the task of person re-identification [2, 3, 4], face
recognition [5, 6, 7], 3D shape retrival and matching [8, 9, 10], or in health
related fields [11, 12].

It has also been applied to the domain of trademark similarity. Tursun
et al. [13] have created a large-scale dataset of trademark images and used
it to compare popular methods of image retrieval. The authors utilized both
hand-crafted features such as SIFT or SURF and deep neural networks. In
the subsequent paper, Tursun et al. [14] recognized the text aspects of logo
images to be highly distracting for the deep learning methods. By directing
the attention of CNN to non-textual parts of the image, they achieved state
of the art results in trademark image retrieval.

Lan et al. [15] utilized Local Binary Pattern operator on the feature maps
outputted by five convolution layers of CNN to create improved feature vectors
for logo images. In their more recent work [16], the authors have proposed a
combination of a triplet or contrastive loss with Hinge loss to weaken the oth-
erwise strict label constraints, which are often hard to obtain in the trademark
domain.

Perez et al. [17] used a combination of two deep convolutional networks
for the task of trademark image retrieval. One was trained to recognize visual
similarity, while the other was built to learn conceptual similarity. The final
retrieved images were ranked using the combination of the two individual

5

1. Related work

rankings of computed cosine similarities with the use of feature vectors from
both models.

Some research approaches combine multiple aspects of logo similarities to
form one final assessment. Trappey et al. [18] besides spelling and pronuncia-
tion similarity also considered image similarity by using convolutional network
trained on Cifar10 dataset. The authors employed a so-called multi-input con-
cept, where a single image is processed through (1) the top 3 layers and (2)
the top 7 layers of VGG16. These two feature vectors are concatenated be-
fore coming into the loss layer. The evaluation of the model was done on 100
real-life infringement cases, where the ground truth is the verdict of the court
in the specific case.

Ko et al. [19] specifically focused on the phonetic similarity of trademarks
by utilizing convolutional networks on the 2-grams of International Phonetic
Alphabet transcripts of the original company names.

1.2 Semi-supervised learning

Recently, the research attention shifted from solely fixating on supervised deep
learning with a large amount of labeled data to incorporating some form of
self- or semi-supervised techniques. Chen et al. [20] showed that pre-training
networks with the use of self-supervision before the fine-tuning part on labeled
data can boost the model’s performance. The gap between self-supervised and
semi-supervised learning (SSL) is shrinking, and both perspectives can even
be complementary [21].

Approaches based on consistency regularization are currently regarded as
the state of the art of SSL. Temporal Ensembling [22] enforces consistency
between the accumulated average of previous outputs and the current model
output. Mean Teacher technique [23] instead uses exponentially accumulated
average of network parameters to compute the loss between its output and the
real output. Virtual Adversarial Training [24] directly estimates the smallest
perturbations that affect the prediction of the network the most. The con-
sistency regularization is then applied between the perturbated samples and
their original counterparts.

Another main type of semi-supervision is pseudo-labeling, which assigns
labels to the unlabeled part of the dataset with the help of the labeled samples.
The pseudo-labeled data is then used in training in the same way as the
labeled data. Lee [25] has first applied pseudo-labeling in conjunction with
deep learning by computing classification probabilities for unlabeled data and
regarding the ones with a higher value than a predefined threshold as new
labeled training samples. Iscen et al. [26] utilized label propagation on the
nearest neighbor graph of network output embeddings to obtain new pseudo-
labels. The work of Haeusser et al. [27] defined transition probabilities as
similarities between embeddings of inputs labeled set A and unlabeled set B.

6

1.2. Semi-supervised learning

With these probabilities, they observed round-trips as paths starting from A,
passing through B, and ending back in A. The final loss is combined standard
classification loss with an association loss, which is defined as cross-entropy
between the distribution of correct round-trips, starting and ending in the
representation of the same class and actual round-trips probabilities.

My implementation part utilizing SSL discussed in this thesis can be seen
as a form of pseudo-labeling. However, the new labels in my case are inferred
using proximity relations of learned representations in the metric space.

7

Chapter 2
Background

2.1 Metric learning

Representing data as elements in metric space is often desirable, as we can then
easily cluster, classify, or rank our data by utilizing simple algorithms, such
as k-nearest neighbors (k-NN). Alternatively, in tasks with a large amount
of unlabeled data, we can employ methods using representations to find new
labels based on mutual similarity automatically. Clustering the inputs based
on resemblances is also necessary in cases where the amount of possible classes
is too high, or the class boundaries are broad and standard classification is not
applicable. Obtaining distance function fulfilling the preservation of similarity
relation between inputs is the primary goal of a machine learning branch
called metric learning. In this context, the term metric is interchangeable
with distance and distance function.

More formally, let X = {x1, . . . , xN} be a set of N inputs from an input
space X and additional information about the relations between inputs is
available. In a weakly supervised setting, this information is given by tuples,
typically pairs,

S+ = {(xi, xj) ∈ X ×X : xi is similar to xj},
S− = {(xi, xj) ∈ X ×X : xi is not similar to xj}

(2.1)

with the requirement S+ ∩ S− = ∅. In the terms of standard supervised
learning, the information is given as a list of labels Y = (y1, . . . , yN) of N
classes, each containing usually multiple data points that are mutually similar:

S+ = {(xi, xj) ∈ X ×X : yi = yj},
S− = {(xi, xj) ∈ X ×X : yi 6= yj}

(2.2)

For the semi-supervised setting, the union of sets S+ and S− do not cover
the complete set of tuples over X, and there is only a limited list of labels
|Y | < N . In other words, there is no information about some inputs, which
could potentially be similar to some of the labeled items.

9

2. Background

Figure 2.1: Metric learning aims to represent similar (green) images to have
smaller mutual distances in the embedding space than dissimilar (red).

2.1.1 Mahalanobis distance

The similarity between input data points can be quantified by a distance
function. As there is an infinite amount of such functions, it is important to
choose the most optimal for our data, which enforces the concept of resem-
blance for inputs belonging to the same class. The optimal distance function
d : X ×X → R would fulfill the following:

yi = yj 6= yk ⇒ d(xi, xj) < d(xi, xk) ∀i, j, k ∈ N (2.3)

Having the inputs initially represented as D-dimensional vectors x1 . . . xN ∈
RD, we can use the well-known Euclidean distance to measure the distance
between each point. However, it would not account for the variance and cor-
relations capturing the hidden intraclass relations. To mitigate this problem,
we can apply a linear transformation L rescaling the data and replacing each
point as x̂ = Lx. Such projection would optimally map the original vectors to
new representations, which carry the additional similarity information. After-
ward, we can use Euclidean distance in the standard way. Combining these
two parts gives us distance mapping

dL(xi, xj) = ‖Lxi − Lxj‖2 (2.4)

Taking advantage of the Cholesky decomposition, the previous term can be
also expressed as [28]:

‖Lxi − Lxj‖2 = (L(xi − xj))T (L(xi − xj))

=
√

(xi − xj)TLTL(xi − xj)

=
√

(xi − xj)TM(xi − xj)
= dM (xi, xj)

(2.5)

10

2.1. Metric learning

The matrix M = LTL is always positive semi-definite, thus distance in the
form of dM obeys all four properties required for a valid metric except distin-
guishability [29]:

1. non-negativity d(xi, xj) ≥ 0,
2. symmetry d(xi, xj) = d(xj , xi),
3. triangular inequality d(xi, xj) + d(xj , xk) ≥ d(xi, xk),
4. distinguishability d(xi, xj) = 0⇔ xi = xj

(2.6)

By relaxing the fourth condition to d(xi, xi) = 0, a pseudo-metric is obtained.
The family of pseudo-metrics in the form of dM are called Mahalanobis dis-
tances. To simplify the language, I will refer to pseudo-metrics as metrics in
the rest of the thesis.

Metric learning aims to find either linear transformation L or matrix M
estimated from input data. Solving the problem with respect to M typically
leads to a convex optimization problem, which is often not the case for solving
with respect to L. On the other hand, parametrization with L is less restrictive
and can be learned to project data to a lower-dimensional space [28].

2.1.2 Deep metric learning

Metric learning, from the standard view of Mahalanobis distances, has been
studied for decades. It has been applied to various domains, where the inputs
are represented by feature vectors. Since the recent breakthrough in the field
of deep learning [30], Convolutional Neural Network (CNN) is the current
state of the art for dozens of computer vision problems. One of the main
advantages is the possibility of end-to-end training, which means no other
algorithm is needed in the training pipeline. We do not have to manually
extract feature vectors out of the input images, which typically requires some
kind of human expertise on the specific topic. When talking about metric
learning using CNNs, the methods are often termed as deep metric learning.

Even though convolution is a linear operation, it is followed by a non-linear
activation function, making the whole pass through CNN a non-linear opera-
tion. Hence, utilizing a neural network to transform the input images into D
dimensional space is not completely equivalent to the linear transformation L
introduced in Section 2.1.1. Nevertheless, the core metric learning objective
remains after replacing L with a non-linear transformation f(·, θ) : X → Rd,
where θ are the network parameters.

Now the goal shifts to training a neural network, outputting the best
representations of our input data. This translates to finding optimal network
parameters θ and can be expressed as a non-convex optimization problem.
The usual approach is to utilize a gradient-based iterative method, which
minimizes some loss l ∈ R given by a loss function. Given the set of input
images, their class labels, and a distance mapping between two feature vectors

11

2. Background

df (xi, xj) = ‖f(xi, θ)− f(xj , θ)‖2, the objective can be formulated as:

argmin
θ

l(df , (x1, y1), . . . , (xN , yN)) (2.7)

The topic of applicable loss functions in the deep metric learning setting at-
tracts a great deal of interest in recent years, allowing for many options. Two
of the most widely used loss functions are described in the following sections.

2.1.2.1 Contrastive loss

Contrastive loss [31] is based on an idea of pulling similar inputs closer to-
gether and pushing dissimilar inputs farther in the metric space. An input
argument to this loss function is a pair formed of a single input xa, called
anchor and either a similar sample x+ or a dissimilar sample x− in relation to
the anchor. These two are referred to as positive and negative samples. Using
the parametrized distance df , the contrastive loss for a positive pair and a
negative pair is defined as

lc(xa, x+) = 1
2df (xa, x+),

lc(xa, x−) = 1
2
[
α− df (xa, x−)

]
+

(2.8)

where [·]+ = max(0, ·) and α ≥ 0 defines the minimal distance, beyond which
all negatives should be located. Without this margin, the loss would punish
dissimilar examples forever. The loss for the positive sample does not utilize
such margin for the sake of stability. Otherwise, the points would reside too
close to the margin and the function would be harder to optimize iteratively.
The complete loss for all labeled tuples is computed as an average of individual
losses.

2.1.2.2 Triplet loss

Even though triplet loss [32] is based on a similar idea as contrastive loss, it
differs in a few key points. As before, we wish to pull similar points closer and
push dissimilar ones farther, but this time we aim to do it only by forcing the
positives to keep a predefined distance from the negatives. This specification
should alleviate a restrictive property of contrastive loss, which pushes all
similar inputs to a single point. Now the input to our loss is in the form of
triplets instead of pairs. A set T = {xa, x+, x−)|ya = y+ ∧ ya 6= y−} contains
all such triplets of our input data X, where x+, x− refer to a single positive
and single negative sample with respect to the anchor input xa [33]. The loss
for one such triplet has the following structure:

lt(xa, x+, x−) =
[
df (xai , x+

i)− df (xai , x−i) + α
]

+
(2.9)

12

2.1. Metric learning

Margin scalar α is again present, but in this case, it represents the minimal
distance enforced between the positive and negative points. The difference is
also visualized in Figure 2.2.

xr

x-

easy
negative

margin

x-

hard
negative

x+

(a) Contrastive loss

xr
x-

easy
negative

margin

x-

semi-hard
negative

hard
negative

x-

x+

(b) Triplet loss

Figure 2.2: Standard deep metric learning loss functions. Dashed arrows
indicate the direction in which the samples will be moved according to each
loss.

2.1.2.3 Negative sampling

The set containing all possible pairs for contrastive loss grows quadratically
with the input size, and the set with all triplets can even grow cubically. In
practice, with a high number of input samples, it is not feasible to optimize the
loss function with all of the pairs or triplets. Moreover, most individual losses
will equal zero and contribute nothing to the optimization since the negative
samples are already too distant. Selecting the most relevant pairs/triplets is a
major part of the optimization, and it may be as crucial as choosing the right
distance loss [34].

There are commonly three types of negatives distinguished in the dataset,
relative to a single anchor:

• Hard negative is initially mapped closer than some of the positives.

• Semi-hard negative is correctly mapped beyond positives, but the loss
function is still non-zero.

• Easy negative is already past the margin distance and its loss is equal
to zero.

The technique of selecting suitable negative examples is called negative
sampling. It is also possible to sample optimal positives, however the need for
supervision constrains the size of the positive pool, and it is often preferred

13

2. Background

to use all labeled data available. The idea of algorithmically looking for new
suitable positive or negative samples is firmly connected to the semi-supervised
methods called positive/negative mining.

Semi-hard negatives do not exist in the context of contrastive loss. The
pairs are often selected randomly or with the emphasis on selecting hard ex-
amples, as it usually leads to faster convergence. For the triplet loss, this may
not be the case as hard negative sampling can lead to a collapse of a model,
which maps all inputs to a single embedding [34].

2.2 Fully convolutional models

Selecting the right architecture is an essential part of any deep learning task.
Many of the most innovative networks were designed for classification tasks
as they historically attracted the most attention. Fortunately, we can make
use of the CNNs specifically designed for classification by adapting the model
to output the desired embedding instead of class probabilities. We would
typically omit the last softmax layer and all trailing fully connected (FC)
layers, leaving only convolutional layers. This procedure was first described
in the paper by Long et al. [35], where the denomination Fully Convolutional
Network (FCN) was first coined. Since then, researchers have also designed
new FCN architectures from scratch. The next two sections describe two of
the most used architectures in computer vision tasks.

2.2.1 VGG16

VGG proposed a revolutionary architecture at the time of its introduction in
2015 [36]. There are several types of VGG, varying in the number of weight
layers. This section will only describe the version I use in my implementation,
a 16-layered VGG16.

Each convolutional layer preserves the input size by using 3 × 3 or 1 × 1
kernels with padding and stride equal to 1. Downsampling is only achieved by
five max-pooling layers with 2× 2 kernels and stride 2. By stacking multiple
convolutions with smaller receptive fields instead of traditionally using larger
ones, such as 7 × 7, the authors achieved the same effective receptive field
while decreasing the number of parameters. Moreover, using multiple acti-
vation functions makes the decision function more discriminative [36]. The
network is originally trained on square RGB images of size 224 × 224. How-
ever, the minimal size of an input can be lowered to 25 = 32 to satisfy the five
downsamplings by the factor of 2.

2.2.2 ResNet

The plain architecture of Residual Neural Network (ResNet) [37] is mainly
inspired by VGG nets. Once again, there are multiple variations with up to

14

2.2. Fully convolutional models

224 × 224 × 64

112 × 112 × 128

56 × 56 × 512
28 × 28 × 512 14 × 14 × 512 7 × 7 × 512

convolution + ReLU
max pooling
fully connected

conv1

conv2

conv3
conv4 conv5 fc6 fc7 fc8

Figure 2.3: VGG16 architecture. To obtain a 1-dimensional embedding, the
last FC layers (green) are usually replaced by global pooling. Below each block
of layers are specified their output dimensions.

152 layers.
One of the key differences is that the authors opted for downsampling

only with convolutions besides the single max-pooling layer in the beginning.
The other difference is the implementation of shortcut connections, where the
input to the convolutional block gets also redirected and added to the output.
This should help the non-linear network to approximate identity mappings.
Finally, the deeper version of ResNet also use bottleneck blocks, which is a
stack of 3 convolutions (1× 1, 3× 3, 1× 1). The 1× 1 convolution can be seen
as a simple scalar multiplication in each channel. In this case, it reduces the
number of channels and then restores them once more after the costly 3 × 3
kernel convolution. The reason for this is mainly economic, as it enables to
create very deep networks without losing too much efficiency.

1x1, 64

3x3, 64

1x1, 256

+
relu

256-d

relu

relu

Figure 2.4: Bottleneck block, consisting of three convolutions and ReLU func-
tions, used in deeper ResNet versions. The shortcut connection, on the right,
is added to the output as is. Image taken from the original ResNet paper [37].

It may appear that ResNet50, with many more layers, is larger and com-

15

2. Background

putationally more complex than VGG16. In reality, VGG16 has roughly 138
million parameters, while ResNet50 has only 25.5 million. These numbers
reflect only the network’s physical size, as more parameters do not automat-
ically mean longer training time. Nonetheless, ResNet50 also wins in terms
of speed, with 3.8 billion FLOPs (Floating point operations) in contrast with
15.3 billion FLOPs for VGG16 [37]. Size disparities for the first two layers (in
the case of VGG16 operating on the full image size) play a significant role in
the overall time complexity.

112 × 112 × 64

56 × 56 × 256

28 × 28 × 512
14 × 14 × 1024

conv. + ReLU
max pooling
1×1, 3×3, 1×1 conv. + ReLU

conv1

conv2

conv3
conv4 conv5

7 × 7 × 2048
1 × 1 × 2048

Figure 2.5: ResNet50 architecture. All layers except the first two are the
bottleneck blocks, consisting of three convolutional layers. Below each block
of layers are specified their output dimensions.

2.2.3 Global pooling

On input, the network expects an image with three dimensions W1×H1×C1,
representing width, height, and the number of channels. The number of input
channels is equal to 3 for an image in standard RGB color space. When the
input progresses through the network, the width and height typically shrink,
and the number of channels grows. It can be seen in a simplified way as
the network gradually “zooming out” to see less detail and looking through
more and more different filters. The last n-th convolutional layer will also
yield output in three dimensions Wn×Hn×Cn. While varying in the specific
width and height, depending on the input size and architecture, the amount of
output feature channels Cn is always the same for one particular architecture.
The goal is to obtain a one-dimensional vector for each image to measure
similarities using the predefined metric.

Naturally, we can resize all of our images to the exact size for which the
last convolutional layer output dimensions would be equal to 1 × 1 × Cn.
This is not practical and would cause us to lose detail or the correct image
aspect ratio. Another option would be to flatten the output, i.e., rearrange
the 3-dimensional array into a 1-dimensional sequence of Wn ∗Hn ∗Cn values.

16

2.2. Fully convolutional models

Lastly, the most prevalent method nowadays is called Global Pooling (GP).
It works virtually the same as the standard max-pooling layer with a kernel
size set to the whole input. In other words, global pooling projects the 2-
dimensional Wn × Hn feature (activation) map of values onto a single real
value corresponding to either maximum, sum, or any other operator.

W = 6

H
 =

 6

C = 3

GP

H
 =

 1

W = 1
C = 3

Figure 2.6: Visual representation of global pooling operation, regardless of the
specific implementation. Image inspired by Cook [38].

Let Xc be the set of all activations in the c-th channel, the final feature
vector f has the following form:

f = [f1 . . . fc . . . fC] , (2.10)

where f is the global pooling operator [39]. In this thesis I employ and compare
these four types:

• Maximum Activations of Convolutions (MAC) [40], also max-pooling, is
defined as:

f(m)
c = max

x∈Xc

x (2.11)

• Sum-Pooling of Convolutions (SPoC) [41] is an aggregation of the out-
putted features:

f(s)c =

 1
|Xc|

∑
x∈Xc

α(x)x

 , (2.12)

where α defines a centering prior function, which assigns larger weights
to the center of the feature map. If α = 1, then the equation equals to
the plain sum of all values.

• Generalized mean (GeM) [39] is a generalization between the two previ-
ous cases:

f(g)
c =

 1
|Xc|

∑
x∈Xc

xp

 1
p

(2.13)

17

2. Background

The result is equal to SPoC when p = 1 and equal to MAC when p→∞.
Since the equation is differentiable, the optimal parameter p can be
learned during the training.

• Regional MAC (R-MAC) [40] extends the idea of MAC by utilizing max-
pooling over a set of square regions Rc ⊆ Xc at different scales of each
feature map.

fR = [fR,1 . . . fR,c . . . fR,C] , fR,c = max
x∈R

x (2.14)

The individiual region descriptors are then normalized, whitened (Sec-
tion 2.3), normalized again and summed to form the final descriptor.

It is important to note that global pooling operator is translation invariant.
Since only a single value is outputted from each channel, the important region
in the image can be shifted and the resulting descriptor will be identical.

2.3 Whitening

The final image descriptors obtained from FCN with global pooling may have
a relatively high dimension (2048 for ResNet50). Some of these dimensions will
carry redundant information due to mutual correlations. A common postpro-
cessing method that tackles these problems is Principal Component Analysis
(PCA). When used after global pooling, sum-pooling (SPoC) tends to perform
better when the resulting embedding vectors are PCA-whitened (PCAW), and
max-pooling (MAC) performs better when they are not [41].

2.3.1 PCA whitening

Let X = [x1, . . . , xN] ∈ RD×N be a matrix containing embedding vectors for
all inputs in columns. We can compute covariance matrix of X as

Σ = (X − µ)T (X − µ)
N − 1 , (2.15)

where µ ∈ RD denotes the corresponding vector of means of the rows of X.
Using eigendecomposition Σ = PΛP−1, we obtain eigenvalues as diagonal
elements of Λ = diag(λ1, . . . , λD) and eigenvectors P ∈ RD×D. The final
projection of X is then given by rotating descriptors by P :

X̂ = P TX (2.16)

When using only a subset of rows of P , the transformation is onto lower-
dimensional space. Typically, when we wish to reduce the number of dimen-
sions from D to K, we keep only those eigenvectors corresponding to the top-K

18

2.3. Whitening

eigenvalues. This ensures keeping most of the variance in our data while hav-
ing a more compact representation. After de-correlating and shortening the
final embeddings, the problem of over-counting some of the visual patterns
remain, which could significantly affect the resulting similarity comparison.

Whitening the data should alleviate this problem by down-weighing co-
occurring features in the descriptors [42]. It is attained by scaling the vectors
along each dimension to have unit variance, which is also equivalent to dividing
each eigenvector by the square root of its corresponding eigenvalue:

X̂ = Λ−1/2P TX (2.17)

As the matrix Σ is merely an empirical estimation of covariance of our
input distribution, the eigenvalues may be too extreme or too small, making
the whitening operation unstable. Mukundan et al. [43] propose to reformulate
the eigenvalues as a linear combination of the original value and new parameter
β, which corresponds to i-th eigenvalue. Formally, using

Λ = diag((1− β)λi + β, . . . , (1− β)λd + β) (2.18)

in the Equation 2.17 is called PCA whitening with shrinkage.

PCA whitening projection is a linear operation and can also be modeled
by a single fully connected layer [39]. This way, the postprocessing can be
learned with the network in an end-to-end manner.

19

Chapter 3
Benchmark

For all experiments in this thesis, I use three datasets containing trademark
images. Two of them are already presented in research papers and made
available by the authors, and one of them is created by me. This chapter
defines measurements needed to evaluate the trained models on test sets and
describes the structure of all three datasets along with the process of collecting
train and validation data.

3.1 Evaluation measurements

Following the real life analogy from the introduction of this thesis, consider we
already have an algorithm which returns an ordered sequence of most similar
trademark images to a particular image. Then, to evaluate the uniqueness of
the given query image, the topmost ranked images would have to be visually
examined.

To estimate the performance of a model without human presence, eval-
uation measurements are imitating the exact process automatically by using
a pre-made ground truth with labeled set of query images Q. Each query is
also assigned to a similarity group (class) as in the definition of a supervised
setting (Equation 2.2). Combining Q with unlabeled images forms the whole
test set. These are called distractor images and are present in the test set to
make the problem harder and testing more robust.

An evaluation algorithm can now retrieve top k most similar images to a
query utilizing the model and score it based on the number of correct outputs
from the same class. This technique is known as the Precision@k (P@k) and
is defined for a given query q as:

P@k =
∑k
i=1 [yi = yq]

k
, (3.1)

where yi is the label of the image ranked at i-th position and [·] is the Iverson
bracket notation.

21

3. Benchmark

Recall@k (R@k) represents the ratio of positives in the retrieved top k
items to the total amount of existing images coming from the same class Sq
as the given query.

R@k =
∑k
i=1 [yi = yq]
|Sq|

(3.2)

Ranking positive items as close as possible to the query is a significant at-
tribute of the algorithm. Unfortunately, neither precision nor recall accounts
for the order of the retrieved positive items. For this reason, Average preci-
sion is a frequently used evaluation measure, which exploits the well-known
trade-off between precision and recall and considers both of these measures
simultaneously [44]:

AP =
N∑
k=1

P@k(R@k −R@(k − 1)) (3.3)

By computing mean of APs for each query from Q, we obtain mean Average
Precision (mAP) measure.

3.2 Test datasets

Two independent sources of test datasets are used to evaluate the obtained
models and methods objectively. Having multiple test sets should prove useful,
as different authors create them with slightly different views on the meaning of
logo similarity. Additionally, it increases the fairness of comparison and miti-
gates subconsciously introduced bias when deciding which trademarks should
be considered similar and fall in the same class. Note that this similarity re-
lation constructed in the datasets can only be zero or one, in the sense that
the images are either in the same class or not. Naturally, some of these sim-
ilarities are clearer than others, but this information is lost by using discrete
labels. Having multiple test sets should also help better assess the models’
robustness since the number of queries in each dataset is not too large and
conveys limited variance.

The first test set is METU Trademark Dataset [13]. It consists of 417 query
images and almost 1 million distractors, making it the largest dataset for
trademark retrieval. Even though it is beneficial to have the option to test on
a dataset of such size, the evaluation phase takes a lot of time. Therefore, in
some cases, I also use a random small subset of the original distractors and
all the queries. I will refer to this limited test set as tMETU (tiny METU).

The second test set is NPU-TM [16]. In contrast to METU, this dataset’s
images are already rescaled to a similar resolution and padded with white
background. When visually observing the trademark classes in NPU-TM,
they are often less strict. In some cases, the same class annotated images
are similar only very distantly, which would make them harder to correctly
separate.

22

3.3. Train and validation sets

Figure 3.1: Two distinct classes of METU queries, each displayed in one row.

3.3 Train and validation sets

One of the options for a train set was to use either METU or NPU-TM dataset
described above. Unfortunately, METU has too few classes to use for the
training of the supervised baseline. NPU-TM dataset, on the other hand,
consists of quite a lot of classes, but with only a few unique logo images in each
of them on average. This fact would complicate the semi-supervised setting,
presented later, in Section 5.1. For this reason, I collected new trademark
dataset.

3.3.1 Data collection

To create a diverse training set, I selected four sources of images. Again, the
reason for this is to have a lower bias in my data and higher variance. In order
to effortlessly download large amount of data, I created a script that utilizes
Google Search API and downloads the first 20 images for any given query.
Google already ranks the retrieved images based on some similarity measure,
which helps in finding relevant results even for broad queries, but it already
instigates some prior bias. Still, the collected data contained many unwanted,
identical, or low-quality images and had to be manually sorted. The complete
collection procedure can be summarized as:

(a) Collected logo parodies of famous brands and their originals. An ex-
ample of such query to the search API script would be “Adidas logo
parody”.

(b) Found a dictionary file of day-to-day English nouns and used it in con-
junction with the script to automatically collect the most related logo
images to each of the nouns, as perceived by Google engine. In this case,
the search query was for example “Barbecue logo”.

(c) Manually searched for known examples of similar trademarks and com-
bined few images of both that look the most alike. METU is built in
the similar manner, so some of them had to be skipped.

23

3. Benchmark

(a) Logo and its parody on the right. (b) Two of the many similar results for
“Barbecue logo” API search.

(c) Known examples of similar trade-
marks.

(d) Trademarks registered at USPTO
within the same category (Eiffel
tower).

Figure 3.2: Examples of the collected similar trademarks for each of the four
types.

(d) United States Patent and Trademark Office (USPTO) offers Trademark
Electronic Search System [45], which allows listing through existing reg-
istered trademarks. The trademarks are also grouped by categories, e.g.
Animals, with subcategory Lions. The most visually similar images were
selected from multiple suitable categories.

The main time-consuming part was to process the downloaded images manu-
ally and select only those that should truly fall in the same class. On the flip
side, choosing too easy training examples would impair the model’s ability to
learn. The images collected from USPTO are visibly the hardest for the com-
puter to mark as similar and the logo parodies and their original counterparts
are usually the most indistinguishable. Another challenging aspect is to skip
trademarks that overlap with any of the two test sets, even if only distantly,
to avoid leaking information from training to the testing phase. After manu-
ally selecting the best images for the training set, the rest of the downloaded
images are kept aside and utilized in the semi-supervised setting described
later.

3.3.2 Validation split

During the training of a network with multiple hyperparameters, it is vital to
have a validation set to determine the optimal stopping criterion. Tuning the
model (such as network architecture, learning rate, or weight decay) should
be done with the aid of this validation set, and the test set should be used

24

3.3. Train and validation sets

Table 3.1: Detailed comparison of all used datasets. Labeled images are used
as queries during the testing phase and as training images in the training
phase. Likewise, unlabeled images serve as distractors, or a pool for posi-
tive/negative mining in the semi-supervised setting.

METU tMETU NPU-TM Train Validation
Labeled/Query 417 417 2025 2160 267
Number of classes 35 35 643 312 46
Avg. logos per class 11.9 11.9 3.1 6.9 5.8
Unlabeled/Distractors 922927 9480 5113 9401 792
Total count 923344 9897 7138 11561 1059

only for the final evaluation. Since obtaining new labeled images is a tedious
work and the training set is already small, only around 10 % of classes were
selected randomly and put aside as a validation set. As in the case of test
sets, all of the distractors in the validation set have to be strictly negative to
the query images. For this reason, I manually selected only a small amount
of unique distractors.

25

Chapter 4
Supervised baseline

The presented approaches for trademark image retrieval can be separated into
two main parts. In the first one, the focus is on transferring knowledge from
existing models and neural network training with labeled data. The second
part offers ways of taking advantage of the excess unlabeled data in deep
metric learning setting. To show the contributions of proposed methods and
validate their reliability, a solid baseline has to be set. This chapter is devoted
to the process of setting up such baseline, including the reasoning behind the
selection of a particular architecture, neural network training parameters, and
postprocessing techniques.

4.1 Transfer learning

Neural network architecture can be adapted or even tailored specifically for
a given task, but it requires a significant effort and usually some expertise.
A common practice is to choose established networks, which are regularly used
and proven to be a good fit for the particular domain. Moreover, training neu-
ral networks from scratch is expensive and requires a fair amount of training
data. There is a good chance a renowned network architecture was trained
on a relevant large dataset, and its weights are made publicly available. I re-
fer to these models as pre-trained networks. Usually, we would want to use
a network that was trained for the most related application to our problem,
yet robust enough to be still able to generalize. The technique of transfer-
ring knowledge from one domain to another in the form of reusing pre-trained
networks is generally called transfer learning. Furthermore, the process of
additional training of the pre-trained model on more specific dataset is called
fine-tuning.

27

4. Supervised baseline

To select the initial model, I examine networks pre-trained on images from
the three following datasets:

• The ImageNet [46] is probably the most well-known image database in
the field of computer vision. It contains over 14 million images and
around 1000 classes. Most of the big deep learning frameworks offer
frequently used architectures pre-trained on this dataset.

• SfM120k [47] is a dataset of more than 120 thousand images obtained
from the 3D model reconstructions of popular landmarks created by
Structure-from-Motion pipeline. The authors also published multiple
trained networks, along with code repository [48]. The models were
trained for the task of image retrieval, which is almost identical to
my setting. In addition, the repository offers trained weights for final
whitening layer parameters for several global poolings.

• EdgeMAC [8] is a fully convolutional version of VGG16 trained on edge
images extracted from the SfM120k dataset. The original task was also
image retrieval with contrastive loss, which closely relates to my set-
ting. To match the original inputs of EdgeMAC as closely as possible, I
use the same edge detection method by Dollár and Zitnick [49]. More-
over, the outputted edge images are smoothed by the same edge filtering
technique.

I evaluate two types of network architectures – VGG16 and four variations of
ResNet, with 18, 50, 101, and 152 layers, pre-trained on all of the mentioned
datasets. There are also four possible global pooling techniques defined in
Section 2.2.3 and optional whitening layer. Training and tuning all of these
combinations would take too much time. To narrow it down, the networks are
first compared on both test sets prior to any training. The most important
results are listed in Table 4.2.

In all cases, SfM120k pre-trained networks achieve higher mAP score than
their ImageNet counterparts. VGG16 does not come close to ResNet, and
variations with a higher amount of layers are, not surprisingly, dominating the
smaller models. From the global pooling options, SPoC performs substantially
worse, followed closely by R-MAC. GeM and MAC are more comparable,
although the former is slightly better. Models with whitening in the form
of pre-trained, fully connected layer appended after global pooling are also
significantly better.

For EdgeMAC, there is only one available pre-trained architecture and
pooling. On NPU-TM test set, the network outperforms the rest, while on
tMETU, it outperforms only the other VGG16 networks. Nonetheless, the
EdgeMAC model proves to be valuable even in the domain of trademark im-
ages. It is possible that some of the other networks are complementary and
their combination with EdgeMAC will yield further improvements.

28

4.1. Transfer learning

Table 4.1: mAP score on both test sets for multiple pre-trained variants. The
checkmark in whitening column corresponds to the presence of fully connected
layer appended after the global pooling.

Training set Arch Pooling Whiten tMETU NPU-TM
SfM120k ResNet50 GeM 3 40.2 32.1
SfM120k ResNet101 GeM 3 41.8 33.3
SfM120k ResNet152 GeM 3 41.8 32.7
SfM120k VGG16 GeM 3 31.3 31.2
SfM120k ResNet101 GeM 7 32.2 27.8
SfM120k VGG16 GeM 7 30.4 30.2
ImageNet ResNet101 MAC 3 38.9 29.8
ImageNet ResNet101 SPoC 3 31.9 21.1
ImageNet ResNet101 GeM 3 38.9 29.3
ImageNet ResNet101 R-MAC 3 38.0 27.4
ImageNet ResNet101 GeM 7 37.7 27.9
ImageNet ResNet101 R-MAC 7 37.7 26.6
ImageNet VGG16 MAC 3 32.2 25.3
ImageNet VGG16 SPoC 3 22.7 16.5
ImageNet VGG16 GeM 3 30.4 24.5
ImageNet VGG16 R-MAC 3 31.3 24.0
EdgeMAC VGG16 MAC 7 37.7 35.4

4.1.1 Shape matching

Comparison of outline shapes is a significant part of trademark similarity
assessment. Imagine two logos that share the same shape and differ only
in color or texture. In some cases, the similarity may be distant and not
necessarily confusing, e.g., car companies having slightly different cars in their
logo. Still, we would want to see them in the top portion of retrieved images.
On top of that, research has shown that ImageNet pre-trained networks are
biased towards textures [50].

A possible option is to use edge maps as inputs to any pre-trained network
in a standard way. However, the model has been trained on colored images
with different textures and shades. The learned activations for edge image
would not cover the essential distinguishing features of a shape.

Instead, for each input, I obtain a 2048-dimensional descriptor by feeding
it into network pre-trained on RGB images and another 512-dimensional de-
scriptor by feeding the input’s edge map into EdgeMAC. I concatenate these
two vectors, which results in a 2560-dimensional final descriptor. The most
similar trademarks are found as before, by taking the inputs with the highest

29

4. Supervised baseline

mutual cosine similarity of these enhanced descriptors. Combinations with
EdgeMAC provided an additional boost in performance compared to using
RGB networks independently, as reported in Table 4.2.

Table 4.2: Test evaluation for concatenated descriptors of EdgeMAC and other
RGB networks.

Model tMETU NPU-TM
EdgeMAC 37.7 35.4
EdgeMAC + SfM120k ResNet101 GeM-W 46.2 37.0
EdgeMAC + ImageNet ResNet101 GeM-W 44.7 35.1
EdgeMAC + ImageNet VGG16 GeM-W 38.8 31.2

4.1.2 Multiscaling

As humans, we would mark any trademark logo with its rotated self as iden-
tical. The same applies to very similar images. Unfortunately, FCN is not
rotation invariant, and the outputted descriptors would differ almost entirely.
A standard trick to diminish such weakness is to feed the original image and
its altered (rotated) versions to the network, producing multiple vectors of
the same length. These descriptors can be aggregated using a sum function
or element-wise maximum. The alteration can be arbitrary, as long as it pre-
serves the original similarity relations. I have tested rotations, horizontal and
vertical flips, and image scaling. Only the latter consistently improved mAP
score on both test sets.

The chosen multiscaling technique corresponds to resizing an image three
times to facilitate its larger side matches sizes 256, 181, and 362, while preserv-
ing the original aspect ratio. These three images are processed through the
network and the obtained descriptors are summed to form one final descriptor.

Figure 4.1 visualizes the complete process of acquiring a vector represen-
tation for a single input with optional use of EdgeMAC and multiscaling.

4.2 Fine-tuning

Until now, only already trained networks on different types of images were
considered. To better adapt the available models on the trademark image
domain, I have introduced two improvements to accentuate shape importance
and scale invariance. Additional training on the dedicated trademark dataset
should enhance the process even further. Out of the tested pre-trained net-
works, I decided to fine-tune the standard FCN operating with input images in
RGB mode, which corresponds to the oblong box on the left part of Figure 4.1.
Since ResNet with GeM pooling trained on SfM120k images showed the best

30

4.2. Fine-tuning

[x1,...,x512][x1,...,x2048] [x1,...,x2048]

(Optional)

[x1,...,x2048,...,x2560]

[x1,...,x2048,...,x2560]

PCA

(Optional)

[x1,...,x2048]

RGB Fully Convolutional Network

(Optional)

EdgeMAC

Figure 4.1: The whole process depicting the embedding of a single input image
into real-valued vector (descriptor). Utilization of multiple scales, or the edge
image is optional. Whitening and PCA whitening is put in for completeness
and is discussed after the network fine-tuning, in Section 4.2.4.

results and the performance gap between versions with 101 and 152 layers
was marginal, I settle on the smaller version to save on the time requirements
during training.

Deep neural networks are complex models and often viewed as a black box
because even a slight change in one of its many parameters may largely affect
the results in an unforeseeable way. This phenomenon especially applies to
model fine-tuning, where it is desirable merely to enhance the original model
in a small number of training epochs. The configuration of parameters is
usually done in a trial and error manner, although some prior knowledge can
substantially narrow the initial options. The following sections describe the
fine-tuning process and justify the selection of the parameters.

4.2.1 Preprocess

Despite the fact that FCN can cope with arbitrarily sized images, the kernels
inside have a fixed size, meaning the detail the network percepts changes,
and so does the descriptor. Rescaling all inputs to have the same size should
ensure more comparable descriptors. However, downscaling of large images
would cause a loss of valuable information, and upscaling of small images
would have to incorporate some interpolation, adding artifacts. Large image
size also dramatically prolongs the training time, if they ever fit on the GPU

31

4. Supervised baseline

memory. Another thing which has to be considered is the image size on which
the network was pre-trained. Closely matching the original input size should
help achieve the results for which the network was trained. The same applies
to the evaluation phase, as to get the best results, the test set images should
be resized to the original inputs’ size used during training. While my training
images are mostly high resolution and would benefit from lesser compression,
the test sets’ images are much smaller. One could argue that I should not pay
any attention to the test sets, or else the evaluation will be biased. Although,
in this case, the test sets better represent the target domain than my train
set, which was explicitly collected in high resolution to have the option of
downsizing without adding noise. Lastly, the original aspect ratio is preserved
as in multiscaling. The rescaled images only share the same size of their larger
side.

Before training, I have evaluated the pre-trained model on a variety of
scales. As expected, the mAP score on METU is higher for smaller sizes,
and another way around for NPU-TM and the train set. According to these
results, all input images are resized to 256 pixels, which still runs reasonably
fast during training.

128 256 384 512
Input size

15

25

35

45

m
AP

Train
NPU-TM
tMETU

Figure 4.2: The influence of input size on both train and test set score. Input
size corresponds to the length of the longer image side.

4.2.2 Random augmentations

When the training set is limited, its variance is also bounded and it probably
does not contain all possible images of the domain. For example, a model
trained only on colored images might provide unsatisfying representations of
greyscale images. Small train set size also often quickly leads to overfitting.
A common trick alleviating this problem is to alter the input image with
some probability during the training. Such alterations are denoted random
augmentations. The amount of possible augmentations effectively enlarges the

32

4.2. Fine-tuning

(a) (b) (c)

(d) (e) (f)

Figure 4.3: The effect of random augmentations applied to the same original
logo.

input set size by a linear factor. If the augmentations carry any randomness,
then the amount of potential inputs is virtually infinite.

There are many possibilities for random augmentations. Naturally, we do
not want to change the image too drastically so the images coming from the
same class would not share similarities anymore. I consider and test these six:

(a) Grayscale makes the image black and white only.

(b) Horizontal flip along width dimension.

(c) Vertical flip along height dimension.

(d) Rescale the image randomly between given upper and lower bound

(e) Color Jitter randomly changes the brightness, saturation and contrast
up to the given factor.

(f) Edge detection converts the image to 0 to 1 values using any standard
edge detection method. The higher intensity values indicate sharp tran-
sitions between contrasts, i.e., edges.

Due to the translation invariance property of global pooling operation and
the fact that logo images are usually centered, I do not use random cropping
augmentation, which is often utilized in computer vision scenarios.

Most of the augmentations are already available in the PyTorch library.
As the augmentations are applied sequentially with some random probability,
more of them may coincide, which creates even more variations. Trying all
possible combinations and probabilities would take a lot of training runs.

33

4. Supervised baseline

X ← load train data
model← initialize network
best score← 0
if semi-supervised setting then

positives ← mine positives from X
else

positives ← hashmap with labels
end
negatives ← empty hashmap

for epoch ← 0 to 100 do
negatives ← mine negatives from X

foreach anchor ∈ X do
triplets← [anchor, positives[anchor], negatives[anchor]]
apply random augmentations to each triplet
model← train(model, triplets)

end

current score← evaluate(model)
if current score ≥ best score then

best score← current score
save(model)

end
end

Figure 4.4: Simplified pseudo code of the main network training loop.

Instead, I tuned the parameters of each augmentation separately and then
combined those that showed any improvement.

My final selection consists of: (1) rescale, where uniformly sampling from
a range around the image size of 256 was slightly better than a random choice
between three image sizes; (2) color jitter with brightness and contrast values
up to 0.4 times the original and saturation up to 0.1; (3) horizontal flip and
(4) grayscale, both with 0.1 probability. Surprisingly, the vertical flip did not
provide any performance boost.

Similar to Section 4.1.1, I attempted to enforce the model to focus on the
shape information in the form of random augmentation. Unfortunately, the
results were poor, presumably because the network cannot grasp the similarity
relation in a pair of colored input and drastically different edge image.

34

4.2. Fine-tuning

4.2.3 Implementation details

For the implementation of my training and testing scripts, I use Python (ver-
sion 3.7) with PyTorch (version 1.4) as the main deep learning framework.
The examples in cirtorch GitHub repository [48] served as the starting point.
Figure 4.4 portrays a pseudo code of the simplified main training loop.

The negative sampling for training triplets is done at the beginning of
every epoch. For each input image, its negatives are sampled as the most
similar labeled images from other classes. The amount of selected negatives
is equal to the number of labeled positives to form the corresponding triplets.
To secure higher variance, all negatives of a single input are strictly forced to
be from distinct classes, but still in the descending order of similarity.

The model is evaluated by mAP on the validation set after each epoch.
Whenever the score on the validation set surpasses the previously highest
value, the model weights are saved. If the model begins to overfit on the
train set, it also performs worse on the validation set and the optimal model
remains preserved. It is not a robust approach as it might fail if the training is
unstable, but it worked well for my case. An example of validation mAP score
and the average loss of the first 20 epochs is visualized in Figure 4.5. The
model is also evaluated on tMETU every five epochs for sanity check during
training.

I use a standard gradient-based optimizer called Adam, with its two pa-
rameters β set to default values (0.9, 0.999). The learning rate starts at 5−7

and exponentially decays by −0.01 each epoch. GeM global pooling, as de-
fined in Equation 2.13 is either set to the value provided by the pre-trained
network or equal 3 when not. After a couple of trial runs, I have settled on
triplet loss and tested the margin parameter ranging from 0.15 to 0.85, where

5 10 15 20
Epoch

52

54

56

58

60

62

m
AP

(a) mAP score on validation set for
each epoch. The highest value corre-
sponds to the optimal model, which is
obtained after 14 epochs.

5 10 15 20
Epoch

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

(b) Average model loss smoothly de-
creases to zero.

Figure 4.5: Validation score and network loss per epoch.

35

4. Supervised baseline

the best observed results were for the parameter equal to 0.3. A training batch
is comprised of 5 random anchors with all of their triplets.

All networks are trained either on Nvidia 1080Ti GPU or Nvidia Tesla T4.
Some parts of the pipeline are processed on Intel(R) Xeon(R) CPU E5-2620 v4
with 256GB RAM. The total time needed for one training epoch using the
whole labeled dataset (17992 triplets) is around 35 minutes.

4.2.4 Whitening

I utilize both types of whitening, as described in Section 2.3. First during the
training, in the form of a fully connected layer with weights pre-trained on
the SfM120k dataset. In this case, the layer preserved the original dimension.

Second, the PCA whitening on the final descriptors obtained by combining
multiple scales and EdgeMAC with the fine-tuned network. The eigenvectors
are estimated from the whole training set, including the unlabeled data. For
this case, I have compared several output dimensions and the optimal β pa-
rameter for shrinkage. Keeping the number of output dimensions the same
as on input and using shrinkage with β equal to the 64-th largest eigenvalue
has yielded the best results. In each case, every outputted descriptor from the
global pooling layer is (1) L2 normalized, (2) whitened, and (3) L2 normalized
again.

4.3 Results

The results of fine-tuning performed on two most promising pre-trained net-
works are displayed in Table 4.3. After training, the model initially trained
on ImageNet managed to shrink the lead of the second pre-trained model,
but ultimately still performed worse. In the rest of the thesis, I refer to the
fine-tuned ResNet101, pre-trained on SfM120k, as baseline.

Table 4.3: mAP score of both fine-tuned models and their score prior to train-
ing for comparison. Fine-tuning network pre-trained on SfM120k provided the
best results and will be referred to as baseline in the rest of the thesis.

Training set Arch Pooling tMETU METU NPU-TM
ImageNet ResNet101 GeM 38.0 16.0 29.7
SfM120k ResNet101 GeM 40.0 17.1 33.9
ImageNet→ Trademarks ResNet101 GeM 53.3 21.5 42.9
SfM120k → Trademarks ResNet101 GeM 55.6 22.1 43.2

To confirm the contribution of multiscaling and EdgeMAC even after fine-
tuning and in combination with whitening of the descriptors, several ablations
were carried out. Each of these optional processing methods is beneficial on its
own and even in combinations. Using a fine-tuned network with EdgeMAC,

36

4.3. Results

multiscaling, and PCA whitening achieved optimal mAP of 26.7 on METU
and 47.0 on NPU-TM datasets. All results are printed in Table 4.4.

Table 4.4: mAP for baseline model with optional processing methods.

Model + method tMETU METU NPU-TM
Baseline 55.6 22.1 43.2
Baseline + PCAW 56.2 22.9 44.1
Baseline + EdgeMAC + PCAW 61.3 24.4 45.1
Baseline + EdgeMAC + multiscale 64.1 25.8 45.4
Baseline + EdgeMAC + multiscale + PCAW 64.3 26.7 47.0

Besides the quantitative results in tables, visual observations of retrieved
images provide additional validation. The decision-making process of a trained
neural network is typically difficult to explain. However, in some cases, a
common occurrence can be deduced. The Figures 4.6, 4.7, and 4.8 demonstrate
such cases in logo retrieval of both test sets. The query image is depicted in a
black border as the leftmost images. The sequence of the most similar images
to the query is ordered from left to right.

Figure 4.6: Top 9 images retrieved from the whole METU test set for a
given query visualized on the left. The upper row is the result of pre-trained
SfM120k–ResNet101. The bottom rows are provided by the same network but
fine-tuned and combined with EdgeMAC. Despite the expressive colors, the
main similarity is captured primarily by a distinct shape.

37

4. Supervised baseline

Figure 4.7: Two retrieval examples from the whole METU provided by the
fine-tuned network. Simple shapes with solid color are usually well separated
in the representation space. The top example shows that the model does not
put too much attention to the text.

Figure 4.8: Retrieved images from NPU-TM test set by the fine-tuned net-
work. The topmost row shows that the network often finds images with similar
texture or style, even though the content is not necessarily conflicting. The
examples in the second row share the same idea and are correctly grouped. If
the image contains some distinct pattern, then the model frequently puts too
much attention on it, which can be seen in the examples with stripes in the
third row.

38

Chapter 5
Semi-supervised methods

I have established a baseline trained on all labeled data in the previous sec-
tion. Positives for each training anchor were all images from the same class.
Negatives were sampled as the most similar images from different classes. This
section will discuss possible methods for positive and negative mining, which
utilizes both labeled and unlabeled data.

5.1 Semi-supervised setting

During the manual phase of my dataset collection, I had to narrow the down-
loaded selection so the classes would only comprise the most mutually similar
examples. Only around a fifth of the total amount of obtained logos is in the
final train set. I kept the remainder of the images as an unlabeled set, de-
noted XU , without any processing, which means it is quite noisy and contains
duplicate images or images that are not trademarks. Even so, the unlabeled
collection is not very large and probably does not carry many potentially pos-
itive images to most of my classes. It is only my presumption, as the labeling
process is very subjective. In some cases, the network may even benefit more
from the images that I did not regard as similar. All in all, I have decided to
restrict my baseline further to ensure that potential positives are present and
can be mined from the unlabeled set. I randomly selected 100 classes that
have at least three positives. From these classes, I randomly chose positive
pairs and positive triples. Since the restricted baseline contains only n images
per class, the rest of the previously labeled are reckoned as unlabeled.

In Table 5.1, I show the comparison between test scores of networks fine-
tuned with only limited amount of classes and either all labeled images, or
random pairs/triples in each.

Training model with any other number of images per class n, its resulting
mAP would lie between the cases with pairs and all. The two values reported
in the table act as a soft lower and upper bound for the semi-supervised
fine-tuning. My proposed methods start with the same limited n. If they suc-

39

5. Semi-supervised methods

Table 5.1: Evaluation score for models trained with a limited train set. The
architecture and parameters are equivalent, as defined in Section 4.2.3

Model classes n tMETU METU NPU-TM
Baseline all all 55.6 22.1 43.2
Baseline 50 2 45.8 18.7 37.5
Baseline 50 3 48.4 19.2 38.3
Baseline 50 all 51.7 19.7 40.2
Baseline 100 2 48.7 19.2 39.2
Baseline 100 3 51.0 19.7 40.8
Baseline 100 all 54.0 20.8 42.6

cessfully mine new positives, the result should also be between the two. If the
new positives are not mined correctly, then the test score will be significantly
smaller than the lower bound, which I inadvertently empirically verified.

Having prior information about correct labels allows for Precision evalua-
tion measure, which is especially convenient for tuning the parameters of my
methods without the need for time-consuming training.

5.2 Positive mining

The only tools available for additional positive mining are the high-dimensional
descriptors produced by a pre-trained network and the information about the
similarity of a few samples. A first naive approach is to consider the imme-
diate area around each descriptor in the metric space. Utilizing the k-nearest
neighbors algorithm (k-NN) gives us k potential new positives for each sample.
The problem is that having similar trademarks closely represented, meaning
as nearest neighbors out of the whole set of inputs, is the final goal to achieve.
If this were already the case, there would be no need for positive mining or
even training. The pre-trained networks will typically not have a reasonable
precision rate. To see how successful is the current model on finding new
positives in the form of k-nearest neighbors, I show the ratio of true and false
positives for the setting with 100 triples in the Figure 5.1. Even with k equal
only 6, the number of false positives is too high, and training them would
produce an unsatisfying network.

5.2.1 Postprocessed descriptors

The initial vectors for the nearest neighbor search can be arbitrary, as long as
they provide good results. Since the proposed techniques of shape matching
and multiscaling, shown in Sections 4.1.1 and 4.1.2, improved the overall mAP

40

5.2. Positive mining

6 9 12 15 20
K

0

1000

2000

3000

4000

5000

6000

7000

Ne
w

po
sit

iv
es

1527
2308

3132

3978

5399

573 692 768 822 901

False positives
True positives

Figure 5.1: Hit rate of simple euclidean k-NN positive mining.

0 500 1000 1500 2000 2500 3000 3500 4000
Relative rank of positives

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Fr
eq

ue
nc

y

EdgeMAC + multiscale + PCA
Without postprocessing

(a) Probability that input’s positives
will be ranked at a position on x axis,
based on the histogram of measured
counts.

6 9 12 15 20
k

Tr
ue

 p
os

iti
ve

s

709
883

1011 1083
1172

573
692

768 822
901

EdgeMAC + multiscale + PCA
Without postprocessing

(b) The amount of original positives
present in k-NNs of all inputs.

Figure 5.2: Influence of optional processing steps on positives’ ranks.

score on the test set, it means the descriptors are better at conveying similar-
ities. Prior to the mining, I collect the descriptors in the same way as during
the postprocessing phase, including edge detection, multiscaling, and PCA
whitening. Even though the process takes six times the original amount, the
benefits outweigh the additional time complexity. Resulting representations
are less noisy, meaning the actual positives have less variance and are more
closely grouped together. Figure 5.2a shows that positives of any given input
are likely to be ranked at lower positions when the descriptors are postpro-
cessed. The number of true positives found in k NNs of both versions, with
and without postprocessing, can be seen in Figure 5.2b. The precision with
improved representations is still too low for this approach to be considered for
training. Nevertheless, it serves as an unsupervised starting point, which is
improved by the proposed semi-supervised methods in the following sections.
The goal is to drastically reduce the enormous amount of false positives while
keeping most of the true positives. Their values, depicted above columns in
the figure, are upper bounds to all of my methods.

41

5. Semi-supervised methods

5.2.2 Voting based

In my setting, all labeled images in one class are regarded as equally similar.
During the creation of my train dataset, adding a new image into a specific
class meant to observe whether it is sufficiently similar to all others visually.
Making the mining algorithm imitate said procedure means the new positives
should be decided collectively by the whole class.

The first considered possibility is to extend every class by descriptors that
appear in the k-NN of each image descriptor belonging to it. The original
positives are always honored; if Si is the i-th class, initially consisting of two
labeled images, then its extended equivalent

Ŝi = Si ∪
⋂
x∈Si

NNe
k(x) (5.1)

has 2 ≤ |Ŝi| ≤ 2 + k elements after one run of this positive mining.

This method’s strictness can be moderated only by k, i.e., the size of the
individual nearest neighbor sets. While having more original positives secures
more confidence in the newly mined positives, it may be too uncompromising.
The true labels are not homogenous and often contain significant variance.
Having a large number of samples to all agree on the same image would
either be rare or require large k. Instead, the consensus can be made by
using majority voting. The descriptor has to occur in a predefined portion of
the NNs of the original group to be considered a new positive. This can be
summarized as:

Ŝi = Si ∪

p ∈ XU |
∑
x∈Si

[p ∈ NNe
k(x)] ≥ |Si|2

 , (5.2)

where [·] equals 1 when the condition inside is met and 0 otherwise.

Sometimes, one class’s descriptors may form even smaller subgroups in the
representation space due to the uneven decision boundary during labeling. An
unlabeled image mapped as the proximate NN of a few class members may
be a better candidate than an image represented somewhere in between all of
them. The former would not pass the majority rule while the latter would.
Taking into account both majority and the actual order of NNs could provide
a decent trade-off.

I utilize another voting method for this problem, called Borda count. It
assigns a decreasing amount of points to each preference candidate based on
its position. The ordering is then achieved by summing all such points of all
voters.

In my setting, the voters are the original labeled images x ∈ Si, and the
preference candidates are their ordered k-nearest neighbors sets NNe

k(x). The
first NN of x, i.e., the closest descriptor, receives k points, the second receives

42

5.2. Positive mining

k−1, and so on. The majority vote is achieved by allowing only the candidates
with a certain amount of points b. For instance, when the class consists only
of two labeled inputs and k = 10, setting b > 10 yields the same output as
the majority rule above. On top of that, the resulting candidates are ordered.
Instead of all class members sharing the same positives, the mining can be
done separately per input by weighing others’ preferences while favoring its
own choices slightly more. An input may achieve this by assigning more points
to its candidate neighbors. Let Bx(·) → N0 be a mapping assigning integer
points to an argument as k minus its zero-indexed position in the ordered
sequence of NNe

k(x), then the expanded class is

Ŝi = {p ∈ XU |
∑
x∈Si

Bx(p) ≥ b}. (5.3)

Regulating the number of potential candidates by either intersection, ma-
jority vote, or Borda count, the total amount of mined positives is greatly
reduced compared to the starting k-NN approach. Although it still could
have happened that some classes have individually too many positives. The
maximal desired number of mined positives per class depends on multiple
things, such as the specific domain, size of unlabeled inputs’ pool, or the por-
tion of labeled classes. After experiencing the difficulty of obtaining multiple
tightly similar images many times while collecting my train set, it does not
make sense to mine more than a single digits of new positives per class. When
the chosen method is either majority or Borda voting, keeping only the can-
didates with the highest counts should further improve the quality of mined
positives.

In some cases, even the k-nearest neighbors of a sample x are too dissimi-
lar. It is beneficial to bound the potential positives not only by the absolute
amount k, but also by some minimal allowed cosine similarity. It is typically
difficult to apply a fixed threshold to a similarity measure and cut-off the neg-
atives, as it will not work equally well for all anchors. Therefore, I am using
the average similarity between anchor and its original positives p ∈ Si \ {x}
as a guide to set a threshold λ.

In total, the first two methods, intersection and majority vote, utilize
three parameters: the k in the k-NN algorithm, maximal desired amount of
new positives per class m and the coefficient λ. Borda count additionally
uses the threshold amount of required points b and the optional multiplier of
anchor’s own preferences. I have tested extensive amount of these parameters’
combinations for all three methods. It is not possible to firmly choose their
optimal values, as I cannot reliably assess whether it is worth adding more
positives at the expense of precision. Borda count dominated majority vote in
all settings, while the approach with intersection was almost on par. Hit rates
of the two methods with comparable parameters are depicted in Figure 5.3.
As expected, the strict intersection works better when the total amount of

43

5. Semi-supervised methods

mined positives is small and vice-versa. I tried four coefficients for weighing
the anchor’s own preferences during Borda count – 0.5, 1, and 1.5; none of
them yielded better results.

6 9 12 15 20
K

0

50

100

150

200

250

300

350

400

450

Ne
w

po
sit

iv
es

117

177
210

231
261

6
36

60 78 93

True positives
False positives

(a) Intersection with λ = 0.7, m = 6

6 9 12 15 20
K

0

50

100

150

200

250

300

350

Ne
w

po
sit

iv
es

51
90

141
177

240

3 15 18
42

63

True positives
False positives

(b) Borda count with λ = 0.7, m = 6,
b = 5

2k

Figure 5.3: Comparison of voting based mining methods.

All three techniques operate in linear complexity with the size of labeled
inputs, which makes the added time requirement neglibile in comparison with
the whole training.

5.2.3 Graph based

The previous methods exploited the decisive power of a whole class but ignored
any other information besides its proximal samples. The space of all repre-
sentations produced by the FCN is extremely high-dimensional and sparse.
As the k-NN algorithm works with only the relative distances, the nearest
neighbors of an image will most probably lie in various directions. Even if all
inputs of a single class share a common nearest neighbor, it may be located in
the wrong direction compared to the rest of the original positives. Besides, the
neighbors that are not shared only take the spot of potentially better candi-
dates. Possibly because of these distracting neighbors in the wrong directions,
weighing the individual preferences more in the Borda count method did not
work. I will introduce a method where the original images take an individual-
istic approach to finding new positives. By imitating the representation space
with a simplified version, I can employ a standard algorithm that searches for
new positives in a directed way.

As before, I start with the k-nearest neighbor sets NNe
k, but this time of

all inputs, including the unlabeled images. I construct a graph where nodes
are all inputs’ descriptors. Undirected edge is present between two nodes if
the two inputs are reciprocal nearest neighbors. All edges are weighted by the
Euclidean distance between the nodes they are connecting. Thus, every node
has a degree of at most k and at least zero. Such graph can be represent by

44

5.2. Positive mining

Figure 5.4: Visualization of graph based positive mining. The dashed line
illustrates the shortest path between two labeled images. The vertices along
this path are chosen to be the new added positives.

symmetric adjacency matrix A = (aij) ∈ Rn×n [51] as

aij =
{
‖xi − xj‖2 , if xi ∈ NNe

k(xj) ∧ xj ∈ NNe
k(xi),

0, otherwise.
(5.4)

Having this adjacency matrix allows for the use of a graph searching al-
gorithm. The representations provided by the pre-trained network should
already be somewhat clustered by class with additional noise. My idea is that
a path-finding algorithm between two good representatives of a class will visit
more positive nodes on the way. On the other hand, if the labeled pair is not
similar enough, the path is going to be too long.

To further enforce the correct search direction, I incorporate the edge
weights and use a variation of the A* search algorithm. Typically, the algo-
rithm starts from a node, traverses closest nodes first, and ends when the goal
node is visited.

In my situation, the search is, in total, performed x-times. For each of the
labeled inputs x ∈ X, the start node is x, and the goals are its original positives
from the same class Si\{x}. When the goal node is visited, all nodes along the
path are collected and regarded as new positives. Additionally, if the amount
of new positives is below the desired amount m, the goal node is removed
from the set of visited nodes, and the search continues. The assumption that
nodes along shortest paths should be related to both start and goal node
will not hold for longer paths. For this reason, I limit their length with a
hop count parameter. I keep the original positives as before; due to n and the
finite number of paths with hop count length, the possible size of the extended
class Ŝi initially having two images is 2 ≤ |Ŝi| ≤ 2 + n. A scenario where two
original positives do not share any of their 5-NN is shown in Figure 5.4.

Since classes may contain more than two images, A* searches for multiple
goals, where its heuristic estimating the right direction for multiple goals can
be set in several ways. Two simple options for such heuristic are:

45

5. Semi-supervised methods

• min heuristic as the euclidean distance to the nearest goal

hm(x) = min
g∈G

d(x, g). (5.5)

• sum heuristic as the sum of distances to all goals

hs(x) =
∑
g∈G

d(x, g). (5.6)

When there is just a single searched goal, then these heuristics are equal. Oth-
erwise, they mostly differ when the goals are located in orthogonal directions.
The min heuristic will prefer straight paths to the nearest goal, while the sum
heuristic will proceed to space located between the goals.

Same as in the voting methods, I use a threshold value to discard the
graph edges with a weight higher than a predefined number λ to filter out
overly remote representations. Unfortunately, I cannot set the threshold to
depend on the original positives’ distance because the graph also contains
nodes from the unlabeled set. Also, the edge weights are raised to the power
of a parameter p, to force the A* algorithm to prioritize paths with more
nodes but lower distances in between.

I have tested the three mentioned parameters and both heuristics to ob-
serve the impact on the amount of true and false positives found. The results
for the most promising parameters m = 12, λ = 0.3 and p = 2 and various
values k are shown in Figure 5.5.

6 9 12 15 20
K

0

100

200

300

400

500

600

Ne
w

po
sit

iv
es

163

246

348
382

433

30 53
97

140
209

True positives
False positives

(a) Hop count equal 1 and λ = 0.1.

6 9 12 15 20
K

0

100

200

300

400

500

600

Ne
w

po
sit

iv
es

255
316

364 363 368

59
115

145 161 179

True positives
False positives

(b) Hop count equal 2 and λ = 0.3.

Figure 5.5: Comparison of graph based mining methods.

5.3 Negative mining

Selecting hard negatives is a crucial part of any deep metric learning pipeline
using contrastive or triplet loss. In the supervised part, finding the hardest
negatives was straight forward. With the assumption the labeled set can be

46

5.4. Evaluation

completely trusted, selecting the most similar images from different classes
will yield precisely the hardest negatives.

By incorporating the unlabeled set, the pool of potential negatives has
increased; however, there is no strict class boundary between similar repre-
sentations that are mined as positive and those that should be negative as
both rely only on the relative closeness. With some additional filtering meth-
ods discussed in Section 5.2, the k-nearest neighbors of an image are regarded
as the new positives.

For each anchor descriptor xa of a training triplet, the rest of the inputs
is ordered by decreasing cosine similarity. The anchor’s positives are mined
from the first k descriptors using any of the proposed methods. However,
the original positives may be positioned much farther, especially when the
descriptors are obtained before any training, as was shown in Figure 5.2a.
While some classes are well separated, and the positives are closely clustered
in the first ten or twenty positions, most are not. My goal is to find the optimal
gap between the positions of positives and the starting position r, where the
hard negatives are selected.

If the positives are relatively far from the first position, then the model
does not represent this class well, and the inputs ranked at frontal positions
are probably negatives. Conversely, when most of the positives are represented
close to the anchor, the model already successfully separates this class. I im-
plement this idea as a two-branched condition statement. If the mean position
of the anchor’s positives p̄ is higher than 100, I select r to be relatively close to
zero. Otherwise, the gap is defined as a multiple of p̄. Naturally, the position
r should not be too small to interfere with positive mining, so I offset it with
a constant value. The whole approach can be summarized as:

r =
{

2p̄+ 20, p̄ ≤ 100,
50, otherwise.

(5.7)

5.4 Evaluation

True and false positive numbers shown in the figures are only indications of the
real performance. The total mined amount does not reflect the quality of the
positives. If they are too easy, then they hardly contribute to the training. On
the other hand, the unlabeled set most probably contains some images that are
similar and beneficial for the training, but they cannot be counted towards
true positives, as there is no available information about them. Figure 5.6
shows an example of four such positives. The ones found by Borda count
method are more conservative, since they have to be agreed upon by both
samples in the labeled pair. In contrast, the shortest path from labeled image
on the left, to the image on the right, may be traversing through much harder
positives.

47

5. Semi-supervised methods

Graph
Positives Negatives

Borda count

Labeled pair

Figure 5.6: Top 2 new positives mined for the given labeled pair according
to Borda count and Graph based methods. Mined negatives on the right for
comparison.

All of the proposed methods exhibit similar behavior of progressively de-
creasing precision with the increase of total mined positives. It raises a com-
mon trade-off dilemma between precision and recall. It is not easy to assess
whether false positives are more harmful than a smaller train set in metric
learning. Moreover, the triplet loss does not necessarily punish wrong posi-
tives, as long as their corresponding triplet’s negative is not genuinely similar.

The positives are mined using the representations provided by the concate-
nated pre-trained FCN and EdgeMAC descriptors for three scales of image.
However, training with a limited train set of two or three positives per class
allows for even more precise mining in subsequent epochs. Thus, I select the
parameters that result in a small but reliable number of mined positives before
the first epoch. The mining is then redone every 5 epochs, which progressively
finds more positives, resulting in additional improvement of precision and re-
call ratio.

The influence of mined positives is limited by the anchor and also by the
mined negatives. For instance, adding a single positive to a class Si of n
manually labeled images would only add n more training triplets. In contrast,
considering the pseudo-labeled input as an anchor of class Si would provide n2

new triples. If it is guaranteed the unlabeled set contains potential positives
and the model is already trusted to be representing the images decently, then
it might be beneficial to regard the mined samples as equivalent to the original
labeled inputs.

Table 5.2 presents mAP scores of all three designed methods. The tech-
nique of mining new positives as anchors is marked with an asterisk. As dis-

48

5.4. Evaluation

cussed in Section 5.1, the performance of the restricted baseline trained with
only labeled pairs serves as a lower bound (row 1) for the semi-supervised
methods. Conversely, the restricted model trained with all available labels
serves as an upper bound (row 3). Ideally, none of the semi-supervised meth-
ods should perform worse with additional mined positives or anchors. This
requirement is fulfilled in all cases. Whether the method’s final mAP score is
closer to the lower bound or to the upper bound depends on the test set. The
test score is slightly higher for the rows with pseudo-labeled anchors, which
confirms the correctness of the mined samples. The best overall is the intersec-
tion method, which is also fairly simple to implement, making it the optimal
choice of the three. However, the graph based method performs surprisingly
well on the large METU dataset, where it almost catches up with the upper
bound baseline.

Table 5.2: Comparison between proposed semi-supervised methods and re-
stricted baseline models. The rows marked with a star correspond to the
training with pseudo-labeled anchors, while the same methods without a star
used the pseudo-labeled inputs only as positives in the training triples.

Method k classes n tMETU METU NPU-TM
Baseline 100 2 48.7 19.2 39.2
Baseline 100 3 51.0 19.7 40.8
Baseline 100 all 54.0 20.8 42.6
Baseline all all 55.6 22.1 43.2
Intersection 6 100 2 51.9 19.9 40.4
Borda count 20 100 2 50.9 19.5 40.2
Graph 9 100 2 51.1 19.8 40.0
Intersection* 6 100 2 52.3 20.4 40.4
Borda count* 20 100 2 51.7 19.8 39.6
Graph* 9 100 2 51.3 20.6 39.5

Lastly, I combine the model trained by the intersection approach with
EdgeMAC, multiscaling, and PCA whitening, to verify the improvement is
not mitigated. The results are visible in Table 5.3.

Table 5.3: Comparison between restricted baselines and the best semi-
supervised method in combination with optional enhancing techniques de-
scribed earlier.

Method classes n tMETU NPU-TM
Baseline + EdgeMAC + ms + PCAW 100 2 58.8 43.9
Intersection* + EdgeMAC + ms + PCAW 100 2 61.0 44.7
Baseline + EdgeMAC + ms + PCAW 100 all 63.1 45.9

49

5. Semi-supervised methods

5.5 Discussion and future work

Even though the proposed semi-supervised methods boosted the baseline per-
formance in this setting, they would have to be adequately tested on other
datasets and domains to verify their robustness.

There is a lot of possible improvements to my methods. Both graph and
voting rule approaches used heuristics in search of new positives. The heuris-
tics were relatively simple; more options should be tested. For instance, during
the A* shortest path search, any information about the graph’s density is ig-
nored. Besides the minimal distance, a degree of a node could be incorporated
to force the algorithm to search first in populated areas. In the Borda count
method, the scoring could be improved by considering the similarity value
along with the position.

I have already mentioned the difficulties of labeling images into discrete
classes. The newly found positives and negatives are also varying in quality.
One way of reducing the strictness of training with discrete labels is to weigh
the metric learning losses with the confidence of similarity between anchor,
positive, and negative sample [51]. That way, the key factor would not be
the quantity ratio of true and false positives but rather the quality of mined
samples.

State of the art practice in semi-supervised learning uses a consistence
regularization, which is completely orthogonal to my approach. In addition,
both techniques can be combined, which could potentially further improve the
results.

The mining of positives is done utilizing similarities between the global
descriptors. There is frequently only a single distinct aspect that distinguishes
the specific trademark. In theory, using local descriptors for the search of
positives could prove beneficial.

50

Conclusion

I have verified a common theme occurring in the related research that the
task of trademark image retrieval is dependent on multiple distinct image as-
pects, such as color, text, or shape. Obtaining a general model sufficiently
differentiating trademarks according to all of these at once is a challenging
task. A viable approach is to combine several models trained specifically for
the individual subtasks. In my work, I have explored this approach by incor-
porating neural network pre-trained on edge images to better infer the shape
information. Presented results, both quantitative and qualitative, proved the
network’s ability to transfer knowledge to the domain of trademark images
even without fine-tuning.

Combining the edge oriented network with a network pre-trained on stan-
dard RGB images further improves the model performance. I have compared
several network architectures and selected ResNet101, which provided optimal
results while being reasonably fast. To adapt the RGB network to this partic-
ular domain, I have fine-tuned it on a self-collected and annotated trademark
image dataset, consisting of more than two thousand images. Concatenating
the embeddings obtained from both edge and RGB networks achieved mAP
of 26.7 on METU, the largest trademark dataset available.

Acquiring additional data is relatively straightforward in today’s world.
However, the manual labeling part is a major complication, especially in do-
mains where the class boundaries are not exact and highly subjective, such as
logo images. In the second part of this thesis, I designed and evaluated three
semi-supervised methods operating in the deep metric learning setting. All of
them take advantage of the similarity relations in the learned representation
space. Starting with only a small fraction of original labels, the best perform-
ing method managed to almost catch up to the model trained with the whole
labeled set.

51

Bibliography

1. GOOGLE, LLC. How Google Fights Piracy [online] [visited on 2021-01-
04]. Available from: https://www.blog.google/documents/25/GO806_
Google_FightsPiracy_eReader_final.pdf.

2. AHMED, Ejaz; JONES, Michael; MARKS, Tim K. An Improved Deep
Learning Architecture for Person Re-Identification. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) [online].
Boston, MA, USA: IEEE, 2015, pp. 3908–3916 [visited on 2020-12-30].
ISBN 978-1-4673-6964-0. Available from DOI: 10.1109/CVPR.2015.
7299016.

3. HERMANS, Alexander; BEYER, Lucas; LEIBE, Bastian. In Defense of
the Triplet Loss for Person Re-Identification [online]. 2017 [visited on
2020-12-30]. Available from arXiv: 1703.07737 [cs].

4. YI, Dong; LEI, Zhen; LI, Stan Z. Deep Metric Learning for Practical
Person Re-Identification [online]. 2014 [visited on 2020-12-30]. Available
from arXiv: 1407.4979 [cs].

5. SCHROFF, F.; KALENICHENKO, D.; PHILBIN, J. FaceNet: A Uni-
fied Embedding for Face Recognition and Clustering. In: [online]. 2015,
pp. 815–823 [visited on 2020-12-30]. Available from: https://www.cv-
foundation.org/openaccess/content_cvpr_2015/html/Schroff_
FaceNet_A_Unified_2015_CVPR_paper.html.

6. HU, Junlin; LU, Jiwen; TAN, Yap-Peng. Discriminative Deep Metric
Learning for Face Verification in the Wild. In: [online]. 2014, pp. 1875–
1882 [visited on 2020-12-30]. Available from: https : / / openaccess .
thecvf.com/content_cvpr_2014/html/Hu_Discriminative_Deep_
Metric_2014_CVPR_paper.html.

53

https://www.blog.google/documents/25/GO806_Google_FightsPiracy_eReader_final.pdf
https://www.blog.google/documents/25/GO806_Google_FightsPiracy_eReader_final.pdf
https://doi.org/10.1109/CVPR.2015.7299016
https://doi.org/10.1109/CVPR.2015.7299016
https://arxiv.org/abs/1703.07737
https://arxiv.org/abs/1407.4979
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Hu_Discriminative_Deep_Metric_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Hu_Discriminative_Deep_Metric_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Hu_Discriminative_Deep_Metric_2014_CVPR_paper.html

Bibliography

7. LIU, Jingtuo; DENG, Yafeng; BAI, Tao; WEI, Zhengping; HUANG,
Chang. Targeting Ultimate Accuracy: Face Recognition via Deep Em-
bedding [online]. 2015 [visited on 2020-12-30]. Available from: https:
//arxiv.org/abs/1506.07310v4.

8. RADENOVIĆ, Filip; TOLIAS, Giorgos; CHUM, Ondřej. Deep Shape
Matching [online]. 2018 [visited on 2020-11-27]. Available from arXiv:
1709.03409 [cs].

9. WANG, Fang; KANG, Le; LI, Yi. Sketch-Based 3D Shape Retrieval Us-
ing Convolutional Neural Networks. In: [online]. 2015, pp. 1875–1883
[visited on 2020-12-30]. Available from: https://www.cv-foundation.
org/openaccess/content_cvpr_2015/html/Wang_Sketch-Based_3D_
Shape_2015_CVPR_paper.html.

10. DAI, Guoxian; XIE, Jin; FANG, Yi. Deep Correlated Holistic Metric
Learning for Sketch-Based 3D Shape Retrieval. IEEE transactions on
image processing: a publication of the IEEE Signal Processing Society.
2018, vol. 27, no. 7, pp. 3374–3386. ISSN 1941-0042. Available from DOI:
10.1109/TIP.2018.2817042.

11. NI, Jiazhi; LIU, Jie; ZHANG, Chenxin; YE, Dan; MA, Zhirou. Fine-
Grained Patient Similarity Measuring Using Deep Metric Learning. In:
2017, pp. 1189–1198. Available from DOI: 10.1145/3132847.3133022.

12. ANNARUMMA, Mauro; MONTANA, Giovanni. Deep Metric Learning
for Multi-Labelled Radiographs. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing [online]. New York, NY, USA: Asso-
ciation for Computing Machinery, 2018, pp. 34–37 [visited on 2020-12-
30]. SAC ’18. ISBN 978-1-4503-5191-1. Available from DOI: 10.1145/
3167132.3167379.

13. TURSUN, Osman; AKER, Cemal; KALKAN, Sinan. A Large-Scale Dataset
and Benchmark for Similar Trademark Retrieval [online]. 2017 [visited
on 2020-11-27]. Available from arXiv: 1701.05766 [cs].

14. TURSUN, Osman; DENMAN, Simon; SIVAPALAN, Sabesan; SRIDHA-
RAN, Sridha; FOOKES, Clinton; MAU, Sandra. Component-Based At-
tention for Large-Scale Trademark Retrieval. IEEE Transactions on In-
formation Forensics and Security [online]. 2020, pp. 1–1 [visited on 2020-
12-28]. ISSN 1556-6013, 1556-6021. ISSN 1556-6013, 1556-6021. Available
from DOI: 10.1109/TIFS.2019.2959921.

15. LAN, Tian; FENG, X.; XIA, Zhaoqiang; PAN, Shijie; PENG, Jinye.
Similar Trademark Image Retrieval Integrating LBP and Convolutional
Neural Network. In: ICIG. 2017. Available from DOI: 10.1007/978-3-
319-71598-8_21.

54

https://arxiv.org/abs/1506.07310v4
https://arxiv.org/abs/1506.07310v4
https://arxiv.org/abs/1709.03409
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Wang_Sketch-Based_3D_Shape_2015_CVPR_paper.html
https://doi.org/10.1109/TIP.2018.2817042
https://doi.org/10.1145/3132847.3133022
https://doi.org/10.1145/3167132.3167379
https://doi.org/10.1145/3167132.3167379
https://arxiv.org/abs/1701.05766
https://doi.org/10.1109/TIFS.2019.2959921
https://doi.org/10.1007/978-3-319-71598-8_21
https://doi.org/10.1007/978-3-319-71598-8_21

Bibliography

16. LAN, T.; FENG, X.; LI, L.; XIA, Z. Similar Trademark Image Retrieval
Based on Convolutional Neural Network and Constraint Theory. In: 2018
Eighth International Conference on Image Processing Theory, Tools and
Applications (IPTA). 2018, pp. 1–6. ISSN 2154-512X. Available from
DOI: 10.1109/IPTA.2018.8608162.

17. PEREZ, C. A.; ESTÉVEZ, P. A.; GALDAMES, F. J.; SCHULZ, D. A.;
PEREZ, J. P.; BASTÍAS, D.; VILAR, D. R. Trademark Image Re-
trieval Using a Combination of Deep Convolutional Neural Networks.
In: 2018 International Joint Conference on Neural Networks (IJCNN).
2018, pp. 1–7. ISSN 2161-4407. Available from DOI: 10.1109/IJCNN.
2018.8489045.

18. TRAPPEY, Charles V.; TRAPPEY, Amy J. C.; LIN, Sam C. -C. Intel-
ligent Trademark Similarity Analysis of Image, Spelling, and Phonetic
Features Using Machine Learning Methodologies. Advanced Engineering
Informatics [online]. 2020, vol. 45, pp. 101120 [visited on 2020-12-28].
ISSN 1474-0346. Available from DOI: 10.1016/j.aei.2020.101120.

19. KO, Kyung Pyo; LEE, Kwang Hee. 2-Gram-Based Phonetic Feature
Generation for Convolutional Neural Network in Assessment of Trade-
mark Similarity, pp. 10.

20. CHEN, Ting; KORNBLITH, Simon; SWERSKY, Kevin; NOROUZI,
Mohammad; HINTON, Geoffrey. Big Self-Supervised Models Are Strong
Semi-Supervised Learners [online]. 2020 [visited on 2020-12-29]. Available
from arXiv: 2006.10029 [cs, stat].

21. BEYER, Lucas; ZHAI, Xiaohua; OLIVER, Avital; KOLESNIKOV, Alexan-
der. S4L: Self-Supervised Semi-Supervised Learning. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) [online]. Seoul,
Korea (South): IEEE, 2019, pp. 1476–1485 [visited on 2020-12-28]. ISBN
978-1-72814-803-8. Available from DOI: 10.1109/ICCV.2019.00156.

22. LAINE, Samuli; AILA, Timo. Temporal Ensembling for Semi-Supervised
Learning [online]. 2017 [visited on 2021-01-04]. Available from arXiv:
1610.02242 [cs].

23. TARVAINEN, Antti; VALPOLA, Harri. Mean Teachers Are Better Role
Models: Weight-Averaged Consistency Targets Improve Semi-Supervised
Deep Learning Results [online]. 2018 [visited on 2020-12-29]. Available
from arXiv: 1703.01780 [cs, stat].

24. MIYATO, Takeru; MAEDA, Shin-ichi; KOYAMA, Masanori; ISHII, Shin.
Virtual Adversarial Training: A Regularization Method for Supervised
and Semi-Supervised Learning [online]. 2018 [visited on 2020-12-29]. Avail-
able from arXiv: 1704.03976 [cs, stat].

55

https://doi.org/10.1109/IPTA.2018.8608162
https://doi.org/10.1109/IJCNN.2018.8489045
https://doi.org/10.1109/IJCNN.2018.8489045
https://doi.org/10.1016/j.aei.2020.101120
https://arxiv.org/abs/2006.10029
https://doi.org/10.1109/ICCV.2019.00156
https://arxiv.org/abs/1610.02242
https://arxiv.org/abs/1703.01780
https://arxiv.org/abs/1704.03976

Bibliography

25. LEE, Dong-Hyun. Pseudo-Label : The Simple and Efficient Semi-Supervised
Learning Method for Deep Neural Networks. ICML 2013 Workshop :
Challenges in Representation Learning (WREPL). 2013.

26. ISCEN, Ahmet; TOLIAS, Giorgos; AVRITHIS, Yannis; CHUM, On-
drej. Label Propagation for Deep Semi-Supervised Learning. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) [online]. Long Beach, CA, USA: IEEE, 2019, pp. 5065–5074
[visited on 2020-12-29]. ISBN 978-1-72813-293-8. Available from DOI:
10.1109/CVPR.2019.00521.

27. HAEUSSER, Philip; MORDVINTSEV, Alexander; CREMERS, Daniel.
Learning by Association — A Versatile Semi-Supervised Training Method
for Neural Networks. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) [online]. Honolulu, HI: IEEE, 2017,
pp. 626–635 [visited on 2020-12-29]. ISBN 978-1-5386-0457-1. Available
from DOI: 10.1109/CVPR.2017.74.

28. SUÁREZ-DÍAZ, Juan Luis; GARCÍA, Salvador; HERRERA, Francisco.
A Tutorial on Distance Metric Learning: Mathematical Foundations, Al-
gorithms, Experimental Analysis, Prospects and Challenges (with Appen-
dices on Mathematical Background and Detailed Algorithms Explanation)
[online]. 2020 [visited on 2020-12-02]. Available from arXiv: 1812.05944
[cs, stat].

29. WEINBERGER, Kilian Q.; SAUL, Lawrence K. Distance Metric Learn-
ing for Large Margin Nearest Neighbor Classification. Journal of Machine
Learning Research. 2009, vol. 10, no. 9, pp. 207–244. Available also from:
http://jmlr.org/papers/v10/weinberger09a.html.

30. KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Im-
ageNet Classification with Deep Convolutional Neural Networks. Com-
munications of the ACM [online]. 2017, vol. 60, no. 6, pp. 84–90 [visited
on 2021-01-04]. ISSN 0001-0782, 1557-7317. ISSN 0001-0782, 1557-7317.
Available from DOI: 10.1145/3065386.

31. HADSELL, R.; CHOPRA, S.; LECUN, Y. Dimensionality Reduction
by Learning an Invariant Mapping. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 2
(CVPR’06) [online]. New York, NY, USA: IEEE, 2006, vol. 2, pp. 1735–
1742 [visited on 2020-12-02]. ISBN 978-0-7695-2597-6. Available from
DOI: 10.1109/CVPR.2006.100.

32. SCHROFF, F.; KALENICHENKO, D.; PHILBIN, J. FaceNet: A Uni-
fied Embedding for Face Recognition and Clustering. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 815–823. ISSN 1063-6919. Available from DOI: 10.1109/CVPR.2015.
7298682.

56

https://doi.org/10.1109/CVPR.2019.00521
https://doi.org/10.1109/CVPR.2017.74
https://arxiv.org/abs/1812.05944
https://arxiv.org/abs/1812.05944
http://jmlr.org/papers/v10/weinberger09a.html
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682

Bibliography

33. YU, Baosheng; LIU, Tongliang; GONG, Mingming; DING, Changxing;
TAO, Dacheng. Correcting the Triplet Selection Bias for Triplet Loss.
In: FERRARI, Vittorio; HEBERT, Martial; SMINCHISESCU, Cristian;
WEISS, Yair (eds.). Computer Vision – ECCV 2018. Cham: Springer
International Publishing, 2018, pp. 71–86. Lecture Notes in Computer
Science. ISBN 978-3-030-01231-1. Available from DOI: 10.1007/978-3-
030-01231-1_5.

34. WU, C.-Y.; MANMATHA, R.; SMOLA, A. J.; KRÄHENBÜHL, P. Sam-
pling Matters in Deep Embedding Learning [online]. 2018 [visited on 2020-
12-02]. Available from arXiv: 1706.07567 [cs].

35. LONG, Jonathan; SHELHAMER, Evan; DARRELL, Trevor. Fully Con-
volutional Networks for Semantic Segmentation. In: [online]. 2015, pp. 3431–
3440 [visited on 2021-01-04]. Available from: https://www.cv-foundation.
org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_
Networks_2015_CVPR_paper.html.

36. SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional
Networks for Large-Scale Image Recognition [online]. 2015 [visited on
2020-12-03]. Available from arXiv: 1409.1556 [cs].

37. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Resid-
ual Learning for Image Recognition [online]. 2015 [visited on 2020-11-24].
Available from arXiv: 1512.03385 [cs].

38. COOK, Alexis. Global Average Pooling Layers for Object Localization
[online] [visited on 2020-12-06]. Available from: https://alexisbcook.
github.io/2017/global- average- pooling- layers- for- object-
localization/.

39. RADENOVIĆ, Filip; TOLIAS, Giorgos; CHUM, Ondřej. Fine-Tuning
CNN Image Retrieval with No Human Annotation [online]. 2018 [visited
on 2020-12-06]. Available from arXiv: 1711.02512 [cs].

40. TOLIAS, Giorgos; SICRE, Ronan; JÉGOU, Hervé. Particular Object
Retrieval with Integral Max-Pooling of CNN Activations [online]. 2016
[visited on 2020-12-06]. Available from arXiv: 1511.05879 [cs].

41. BABENKO, Artem; LEMPITSKY, Victor. Aggregating Deep Convolu-
tional Features for Image Retrieval [online]. 2015 [visited on 2020-12-06].
Available from arXiv: 1510.07493 [cs].

42. JÉGOU, Hervé; CHUM, Ondrej. Negative Evidences and Co-Occurrences
in Image Retrieval: The Benefit of PCA and Whitening. In: [online]. 2012
[visited on 2021-01-04]. Available from: https://hal.inria.fr/hal-
00722622.

57

https://doi.org/10.1007/978-3-030-01231-1_5
https://doi.org/10.1007/978-3-030-01231-1_5
https://arxiv.org/abs/1706.07567
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
https://arxiv.org/abs/1711.02512
https://arxiv.org/abs/1511.05879
https://arxiv.org/abs/1510.07493
https://hal.inria.fr/hal-00722622
https://hal.inria.fr/hal-00722622

Bibliography

43. MUKUNDAN, Arun; TOLIAS, Giorgos; BURSUC, Andrei; JÉGOU,
Hervé; CHUM, Ondřej. Understanding and Improving Kernel Local De-
scriptors [online]. 2018 [visited on 2020-12-09]. Available from arXiv:
1811.11147 [cs].

44. ZHU, Mu. Recall, Precision and Average Precision [online]. 2004 [vis-
ited on 2020-12-28]. Available from: https://web.archive.org/web/
20110504130953/http://sas.uwaterloo.ca/stats_navigation/
techreports/04WorkingPapers/2004-09.pdf.

45. Trademark Electronic Search System (TESS) [online] [visited on 2020-
11-28]. Available from: http://tmsearch.uspto.gov.

46. DENG, J.; DONG, W.; SOCHER, R.; LI, L.; KAI LI; LI FEI-FEI. Ima-
geNet: A Large-Scale Hierarchical Image Database. In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.
ISSN 1063-6919. Available from DOI: 10.1109/CVPR.2009.5206848.

47. RADENOVIĆ, Filip; TOLIAS, Giorgos; CHUM, Ondřej. CNN Image
Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Ex-
amples. In: LEIBE, Bastian; MATAS, Jiri; SEBE, Nicu; WELLING, Max
(eds.). Computer Vision – ECCV 2016 [online]. Cham: Springer Inter-
national Publishing, 2016, vol. 9905, pp. 3–20 [visited on 2020-12-13].
Lecture Notes in Computer Science. ISBN 978-3-319-46447-3 978-3-319-
46448-0. Available from DOI: 10.1007/978-3-319-46448-0_1.

48. RADENOVIĆ, Filip; TOLIAS, Giorgos. CNN Image Retrieval in Pytorch
[online] [visited on 2020-12-13]. Available from: https://github.com/
filipradenovic/cnnimageretrieval-pytorch.

49. DOLLAR, Piotr; ZITNICK, C. Lawrence. Structured Forests for Fast
Edge Detection. In: 2013 IEEE International Conference on Computer
Vision [online]. Sydney, Australia: IEEE, 2013, pp. 1841–1848 [visited
on 2020-12-15]. ISBN 978-1-4799-2840-8. Available from DOI: 10.1109/
ICCV.2013.231.

50. GEIRHOS, Robert; RUBISCH, Patricia; MICHAELIS, Claudio; BETHGE,
Matthias; WICHMANN, Felix A.; BRENDEL, Wieland. ImageNet-Trained
CNNs Are Biased towards Texture; Increasing Shape Bias Improves Ac-
curacy and Robustness [online]. 2019 [visited on 2021-01-04]. Available
from arXiv: 1811.12231 [cs, q-bio, stat].

51. ISCEN, Ahmet; TOLIAS, Giorgos; AVRITHIS, Yannis; CHUM, Ondrej.
Mining on Manifolds: Metric Learning without Labels [online]. 2018 [vis-
ited on 2020-12-21]. Available from arXiv: 1803.11095 [cs].

58

https://arxiv.org/abs/1811.11147
https://web.archive.org/web/20110504130953/http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
https://web.archive.org/web/20110504130953/http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
https://web.archive.org/web/20110504130953/http://sas.uwaterloo.ca/stats_navigation/techreports/04WorkingPapers/2004-09.pdf
http://tmsearch.uspto.gov
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-319-46448-0_1
https://github.com/filipradenovic/cnnimageretrieval-pytorch
https://github.com/filipradenovic/cnnimageretrieval-pytorch
https://doi.org/10.1109/ICCV.2013.231
https://doi.org/10.1109/ICCV.2013.231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1803.11095

Appendix A
Acronyms

DMCA Digital Millenium Copyright Act

WIPO World Intellectual Property Organization

USPTO United States Patent and Trademark Office

CNN Convolutional Neural Network

FCN Fully Convolutional Network

k-NN k-Nearest Neighbors

FLOPs Floating Point Operations

FC Fully Connected

GP Global Pooling

SPoC Sum-Pooling of Convolutions

MAC Maximum Activations of Convolutions

GeM Generalized Mean

R-MAC Regional Maximum Activations of Convolutions

PCA Principal Component Analysis

mAP mean Average Precision

DL Deep Learning

59

