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Abstract

Device-to-Device (D2D) communication is a promising technique to increase
the capacity and the spectral efficiency of the future mobile networks. In D2D
communication, two devices (denoted as a D2D pair) communicate directly with
each other without passing through the base station (BS). This direct commu-
nication offloads the data traffic from the BS. The data between the devices
in D2D communication is exchanged using either the conventional band of the
mobile network (in-band) or another band that is not used by the underlying
devices in the mobile network (out-band). The in-band D2D communication
includes two modes: shared and dedicated. In the shared mode, the D2D pairs
reuse the resources allocated to the conventional cellular users while, in the
dedicated mode, the D2D pairs use their own dedicated resources that are not
used by the conventional cellular users. In both modes, the D2D pairs can
mutually reuse the channels of each other to increase the spectral efficiency of
D2D communication.

In this dissertation thesis, a novel principle of allocating shared as well as
dedicated resources to every D2D pair, simultaneously, is proposed. Further,
the resource allocation in both modes is separately optimized. To this end, a
game theoretic approach for the channel allocation in the dedicated mode and a
heuristic channel allocation algorithm for the shared mode are proposed. Both
schemes for the dedicated and shared modes aim to maximize the sum capacity
of the D2D pairs maintaining the minimal capacity requirements of the D2D
pairs and the conventional cellular users in the dedicated and shared modes,
respectively. Moreover, we propose a combination between the conventional
in-band D2D communication that uses radio frequency (RF) and the out-band
visible light communication (VLC) D2D to maximize the sum capacity of D2D
pairs. For this proposed RF-VLC D2D, two schemes selecting between RF
and VLC bands for the individual D2D pairs are designed. While the first
scheme for RF/VLC band selection is an iterative interference-based heuristic
approach, the second one is a quick machine learning-based band selection that
relies only on a limited amount of information related to the channels among
the D2D users in RF and VLC.

The band selection, resource allocation, and other radio resource manage-
ment algorithms in D2D communication require the knowledge of the quality of
the D2D channels among the D2D users. The estimation of the D2D channels
with the conventional reference signals consumes extra radio resources. There-
fore, this dissertation thesis proposes a machine learning-based framework for
the prediction of D2D channel gains by relying only on the commonly-known
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cellular channel gains between the users and the surrounding BSs. This idea
takes advantage of the dependency of both D2D and cellular channels on the
network’s topology and environment. The predicted D2D channel gains can
be used to perform any radio resource management algorithm related to D2D.
Finally, this dissertation thesis shows that the users’ cellular gains can also be
used to predict, directly, the D2D transmission power setting or the association
of users in networks with flying base stations. The results of the performed
simulations confirm the efficiency of all proposed solutions for the different tar-
geted problems in D2D communication. Consequently, this dissertation thesis,
including the different proposed algorithms and the prediction schemes, paves
the way towards the deployment of D2D communication for a massive numbers
of D2D pairs.

Keywords: Device-to-Device communication, resource allocation, radio fre-
quency, visible light communication, channel prediction, mahcine learning, game
theory
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Abstrakt

Př́ımá komunikace mezi zař́ızeńımi (D2D) je slibnou technikou pro zvýšeńı
kapacity a spektrálńı účinnosti budoućıch mobilńıch śıt́ı. D2D komunikace
umožňuje přenos dat mezi dvěma zař́ızeńımi (označované jako D2D pár) př́ımo
mezi sebou bez nutnosti přepośılat data prostřednictv́ım základové stanice.
Data mezi zař́ızeńımi využ́ıvaj́ıćı D2D komunikaci jsou vyměňovány buď po-
moćı pásma určeného pro mobilńı śıtě (tzv. in-band D2D komunikace), nebo
v pásmu, které nepouž́ıvaj́ı žádná zař́ızeńı v mobilńı śıti (tzv. out-band D2D
komunikace). In-band D2D komunikace zahrnuje dva alokačńı módy: sd́ılený
a vyhrazený. Ve sd́ıleném módu, D2D páry využ́ıvaj́ı stejné zdroje, které jsou
přiděleny konvenčńım uživatel̊um buňkové mobilńı śıtě. Na druhou stranu,
ve vyhrazeném módu D2D použ́ıvaj́ı dedikované zdroje, které běžńı uživatelé
buňkové mobilńı śıtě nepouž́ıvaj́ı. V obou přenosových módech D2D páry
vzájemně sd́ılej́ı přenosové kanály, aby se zvýšila spektrálńı účinnost přenosu
prostřednictv́ım D2D komunikace.

V této disertačńı práci je navržen nový princip přidělováńı sd́ılených i vyhra-
zených prostředk̊u v př́ıpadě kdy jsou tyto využ́ıvány v́ıce D2D páry současně.
Dále je ćılem práce optimalizovat alokaci zdroj̊u v obou módech. Za t́ımto
účelem je navržen př́ıstup založený na teorii her pro přidělováńı kanál̊u ve
vyhrazeném režimu a heuristický algoritmus pro přidělováńı kanál̊u pro sd́ılený
režim. Ćılem obou schémat je maximalizovat celkovou kapacitu D2D pár̊u
při zachováńı jejich požadavk̊u na minimálńıch kapacitu , a to jak v př́ıpadě
vyhrazeného módu tak i v př́ıpadě sd́ıleného módu. Dále je navržena metoda
pro maximalizaci kapacity D2D pár̊u založená na kombinaci konvenčńı in-band
D2D komunikace, která použ́ıvá rádiové frekvence (RF), a out-band D2D komu-
nikace, využ́ıvaj́ıćı viditelné světlo (VLC). K tomu jsou navržené dvě schémata
výběru mezi RF a VLC pásmy pro každý D2D pár. Zat́ımco prvńı schéma
je založené na iterativńı metodě potřebuj́ıćı znalosti interference mezi jed-
notlivými D2D páry, druhé schéma je založeno na strojovém učeńı využ́ıvaj́ıćı
pouze minimálńı množstv́ı informaćı o kanálech mezi D2D uživateli v RF a
VLC režimech.

Výběr pásma, alokace zdroj̊u a daľśı algoritmy správy rádiových zdroj̊u pro
D2D komunikaci vyžaduj́ı znalost kvality D2D kanál̊u (tj. kanál̊u mezi D2D
uživateli). Odhad kanál̊u mezi D2D uživateli referenčńımi signály použitými
v klasické mobilńı śıti by vyžadovalo velké množstv́ı rádiových prostředk̊u.
Tato disertačńı práce proto navrhuje metodu pro predikci kvality D2D kanál̊u
založenou na strojovém učeńı využ́ıvaj́ıćı pouze informaćı běžně dostupných
v mobilńı śıti. Konkrétně se jedná o využit́ı znalosti rádiových kanálu mezi
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uživateli a okolńımi základnovými stanicemi, ze kterých jsou následně predikovány
kvality kanál̊u mezi D2D uživateli. Takto predikované D2D kanály lze poté
s výhodou použ́ıt k prováděńı jakéhokoli algoritmu správy rádiových zdroj̊u,
který vyžaduje znalost kvality D2D kanál̊u. Tato disertačńı práce také ukazuje,
že znalost kanál̊u źıskaných predikćı lze využ́ıt nejen ke správě rádiových prostředk̊u
pro D2D komunikaci (např. pro nastaveńı vyśılaćıho výkonu D2D uživatel̊u),
ale také pro asociaci uživatel̊u v mobilńıch śıt́ıch s létaj́ıćımi základnovými
stanicemi. Výsledky provedených simulaćı potvrzuj́ı efektivnost všech navrho-
vaných řešeńı pro r̊uzné ćılené problémy v D2D komunikaci. Tato dizertačńı
práce, včetně r̊uzných navrhovaných algoritmů a predikčńıch schémat, tedy
otev́ırá cestu pro nasazeńı D2D komunikace pro mobilńı śıtě př́ı̌st́ıch generaćı,
a to předevš́ım pro velké množstv́ı uživatel̊u v śıti.

Kĺıčová slova: Př́ıma kommunikace mezi zař́ızeńımi, přidělováńı zdroj̊u, rádiové
frekvence, komunikace ve viditelném světle, predikce kanálu, strojové učeńı,
teorie her
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Chapter 1

Introduction

In future mobile networks, data traffic and network load are expected to increase
dramatically with the increasing number of users and their requirements. To
cope with this increase, a part of the data traffic can be offloaded from the
conventional base stations (BSs) via a Device-to-Device communication (i.e.,
D2D) [1]. The D2D communication is a direct communication between two
user equipment (UEs) composing a D2D pair. Within the D2D pair, the data
is sent directly from one UE (a transmitter) to another UE (a receiver), without
relaying the data through the BS, as in the conventional cellular communication
[2].

The D2D communication can exploit the spectrum allocated to the cellular
operators used for the conventional cellular communications forming an in-
band D2D communication [3]. In the in-band D2D communication, two main
modes are available for the D2D pairs, a shared and a dedicated [4]. In the
shared mode (also known as underlay mode), the D2D pairs communicate over
the same channels used by the conventional cellular users (CUEs) to increase
the spectral efficiency at the cost of interference among the D2D pairs and
the CUEs [2]. In contrast, within the D2D dedicated mode also known as
overlay mode, the D2D pairs exploit their own dedicated frequencies which
are not used by the CUEs [3]. Although the dedicated mode usually reaches
a lower spectral efficiency compared to the shared mode, the dedicated mode
is preferred in scenarios with a very high density of users, as the interference
among the D2D pairs and the CUEs is hard to manage in such scenario [5]. In
both dedicated and shared modes, an efficient resource allocation is required
to enhance the communication quality in terms of the achievable sum capacity
of D2D pairs and/or the spectral efficiency. Designing an optimal resource
allocation scheme is, however, a challenge due to the very high complexity of
unconstrained resource allocation problems in D2D communication [4].

In addition to the in-band D2D communication, there exists an out-band
D2D communication, where the D2D exploits a spectrum that is different from
the one used by the conventional cellular communications [2]. One of the
promising out-band technologies is Visible light communication (VLC). The
VLC systems operate at wavelengths of 380-750 nm (i.e., frequency bands of
400-790 THz) and can achieve high data rates [66]. Taking into account the
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very wide bandwidth and reachable high data rates of VLC, a combination of
VLC and conventional Radio Frequency (RF) bands together for D2D commu-
nication is a promising way to suppress interference in the network, as there
is no interference between the two bands [7]. Nevertheless, in a scenario with
multiple D2D pairs, it is critical to design an efficient algorithm to determine
if a D2D pair should operate in RF or in VLC.

Another essential challenge related to the D2D communication is the re-
quirement on the knowledge of the quality of D2D channels between the D2D
UEs (DUEs) for resource allocation, RF/VLC band selection, or other radio
resource management procedures. Such knowledge can be obtained via con-
ventional approaches based on the transmission of reference signals to estimate
the channel quality [8]. However, such solutions imply a very high amount of
signaling. This high signaling cost motivates to predict the D2D channels from
other information commonly available in the network.

This dissertation thesis aims to optimize the resource allocation in both
D2D dedicated and shared modes and study the RF-VLC combination for the
D2D communication. Moreover, to facilitate D2D communication for a massive
amount of devices, the problem of the D2D channels’ prediction is addressed.
Based on this, the contributions of this dissertation thesis are, shortly, summa-
rized as follows:

• A novel concept of combining shared and dedicated D2D modes is intro-
duced. Then, two new resource allocation schemes in D2D dedicated and
shared modes are proposed, enabling the reuse of multiple channels by
multiple D2D pairs.

• A new combination between VLC out-band D2D with the in-band RF
D2D (denoted as RF-VLC D2D) is introduced. Moreover, two algorithms
for RF/VLC band selection in RF-VLC D2D within a scenario with mul-
tiple D2D pairs are designed.

• A D2D channel prediction framework which relies on the knowledge of
the cellular channel gains between the UEs and the surrounding BSs is
proposed. Then, two additional applications of the prediction scheme,
power control in D2D communication and UEs’ association in networks
with flying BSs (FlyBSs), are presented such that obtaining the knowledge
of the D2D channel gains as an intermediate step is not needed.

The thesis is organized as follows. First, the current state-of-the art is
summarized in Chapter 2. Then, the dissertation objectives are illustrated in
Chapter 3. Chapter 4 presents the results of the dissertation thesis. Finally,
Chapter 5 concludes the thesis, summarizes its contributions with respect to
the state-of-the art, and clarifies the possible future research directions.
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Chapter 2

Literature Review

D2D communication, illustrated in Figure 1, is an emerging paradigm enhanc-
ing spectral and energy efficiencies of the mobile networks [9]. Hence, D2D
has grabbed the attention of many researchers to solve the variety of problems
and challenges related to D2D. This Chapter summarizes the current state-
of-the-art related to D2D communication and aspects of the mobile networks
within the scope of this dissertation thesis. Moreover, the gaps in the state-of-
the-art are outlined to provide a motivation towards the problems addressed
dissertation thesis. The structure of the this chapter is as follows. First, the
work related to the D2D communication modes and the mode selection in D2D
communication is detailed. Then, the existing resource allocation schemes in
D2D communication, including both the shared and dedicated modes, are de-
scribed. Moreover, the current work on the combination between RF and VLC
bands in the mobile networks is presented. Finally, the existing work on the
determination of the channel quality in the mobile networks is summarized.

2.1 D2D Communication Modes

The D2D communication can be classified according to the spectrum utilization
into the in-band D2D (operating over the same spectrum used for conventional

Figure 1. Principle of Device-to-Device (D2D) communication with respect
to conventional communication in mobile networks where the data is relayed
through the BS.
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cellular communications) or the out-band D2D (exploiting another spectrum
that is different from the one dedicated for conventional cellular communica-
tions) [1]-[3].

The D2D pairs operating via the in-band D2D can exploit either the dedicated
mode (i.e., overlay) or the shared mode (i.e., underlay) [10]. The dedicated
mode is distinguished by the fact that the D2D pairs access dedicated resources
with respect to the CUEs communicating conventionally through the BS [11].
Consequently, the interference between the D2D pairs and the CUEs is effi-
ciently avoided, but the system can experience a low spectral efficiency. In case
of the shared mode, the D2D pairs reuse the same resources as the CUEs [12].
Although this mode enables a higher frequency reuse when compared to the
dedicated mode, the mutual interference between the CUEs and the D2D pairs
is a challenge. This interference can be too strong and can vary frequently
and significantly, especially in the case with a dense presence of UEs. Thus,
although, the shared mode offers a higher spectral efficiency than the dedicated
one, the higher efficiency is usually at the cost of highly complex solutions for
the resource allocation and management [13], [14]. The shared and dedicated
modes of the in-band D2D communication are illustrated in Figure 2

In the scenarios with a high density of users, where the interference between
the CUEs and the D2D pairs is strong and hard to manage, the reliability of the
communication cannot be easily guaranteed and the overall quality of services
(QoS) can be impaired [5], [14]. Thus, the D2D pairs with strict requirements
on QoS should prefer the dedicated mode, which is suitable for the services

Figure 2. Communication modes in in-band D2D communication where the
conventional and the D2D communications, both, access the listened spectrum.
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that require a highly reliable communication with a low risk of an unexpected
interference from the CUEs.

Concrete and up-and-coming examples of the use cases for the dedicated
mode are the direct communication of vehicles or public safety communica-
tions [15]. In such use cases, an ultra-reliable communication with a guaran-
teed minimum communication capacity should be ensured. In the shared mode,
however, interference might lead to the situations when such guarantee is sim-
ply not possible and the unreliability of the communication can have grievous
consequences [16]. Hence, the dedicated resources are commonly considered for
the vehicular or public safety communications.

In recent years, a significant effort has been invested to address the problem
of the selection of a suitable mode for the D2D pairs. The research works
related to mode selection can be classified into papers selecting: 1) between
the cellular conventional mode (where the users communicate through the BS
and not directly) and the shared or dedicated mode [17]-[22], 2) between the
dedicated and shared modes [23], [24], and 3) among the cellular, dedicated, and
shared modes [25]-[27]. Most of the existing works focusing on mode selection
for D2D pairs expect that each D2D pair uses just one communication mode
(cellular, dedicated, or shared). Only in [21], the authors propose to allow the
DUEs to access radio resources in the cellular and shared modes at the same
time. The paper addresses the routing problem deciding whether data should
be routed through the BS (cellular mode) or transmitted directly between the
DUEs in the shared mode.

However, none of the existing papers studies the possibility of combining the
shared and dedicated modes, by allowing the DUEs to communicate directly
accessing resources in both, shared and dedicated modes, simultaneously. This
gap in the existing state of the art limits the achievable sum capacity of D2D
pairs.

2.2 Resource Allocation in D2D Communica-

tion

In each of the shared and dedicated modes in the in-band D2D, the resources
should be allocated efficiently in order to improve the sum capacity and the
spectral efficiency of the network [28]. To this end, the D2D pairs reuse the
channels of each others to increase the spectral efficiency of the D2D commu-
nication. However, the channel reuse among a set of D2D pairs leads to an
interference among these pairs. Hence, the channel reuse is highly dependent
on the mutual interference between the D2D pairs in order to decide which
D2D pairs should reuse the same channel(s) [29]. Moreover, the D2D pairs
reusing the same channel(s) can exploit power control to mitigate the resulting
interference [30].

In the current state-of-the-art, most of the papers simplify the channel al-
location problem by: i) restricting the number of D2D pairs that are allowed
to reuse a single channel ([25], [31]-[36] ), and/or ii) restricting the number of
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channels that can be allocated to each D2D pair ([17], [24], [26], [27], [37]-[45]).
These restrictions decrease the achievable sum capacity and, thus, a question
arises about whether enabling the reuse of multiple channels by multiple D2D
pairs would significantly enhance the sum capacity of D2D pairs.

The next two subsections summarize, with details, the state-of-the-art re-
lated to resource allocation in D2D dedicated and shared modes, respectively.

2.2.1 Channel Allocation in D2D Dedicated Mode

In the dedicated mode, one of the key challenges is the allocation of the available
bandwidth to the D2D pairs. The authors in [25] and [31] present channel
allocation schemes that divide the dedicated bandwidth to multiple channels
with different bandwidths so that each D2D pair gets exactly one channel.
In both [25] and [31], the optimal allocation is achieved for the case when
the interference from other neighboring cells is nonexistent. However, in real
networks, the interference from other cells always exists and we can expect that
the level of interference will even increase in the future due to the densification
of mobile networks. Such inter-cell interference impacts the optimal channel
allocation for the D2D pairs in the dedicated mode. Moreover, neither [25] and
[31] assume the reuse of each channel by more than one D2D pair resulting in
a lower spectral efficiency.

A simplified channel reuse in the dedicated mode is presented in [24], [26],
and [37]. Although all these studies consider that either two D2D pairs ([26])
or multiple D2D pairs ([24], [37]) can access the same channel, each D2D pair is
allowed to occupy just one channel at any time. The papers [46]-[48] exploit the
reuse of multiple channels by multiple D2D pairs to guarantee a minimal SINR
for every D2D pair while using the minimal possible number of channels. In
these works, however, the D2D pairs do not benefit fully from the reuse, as only
a limited number of channels is used and the sum capacity is not maximized.
In [49], the authors maximize the sum capacity of D2D pairs in the dedicated
mode considering that the D2D pairs reuse all available channels. Nevertheless,
the authors do not consider the constraint on the minimal capacity Cmin that
should be guaranteed to the individual D2D pairs. Thus, the solution proposed
in [49] can lead to the situation when some D2D pairs end up with zero data
rate as these are forbidden to transmit at any channel due to the interference
caused to other D2D pairs. Note that the ideas presented in [24]-[49] cannot
be easily extended to maximize the sum capacity and, at the same time, to
guarantee Cmin, since the capacity maximization under the constraint on Cmin
for every D2D pair requires completely different solutions.

In summary, the existing resource allocation methods for the dedicated
mode either restrict the number of D2D pairs reusing a single channel (e.g.,
[25] and [31]) or limit the number of channels that can be occupied by a sin-
gle D2D pair (e.g., [24], [26], and [37]). As an exception, the papers [46]-[49]
allow the reuse of multiple channels by multiple D2D pairs in the dedicated
mode. These papers target either the sum capacity maximization ([49]) or the
minimization of the amount of consumed resources in order to guarantee the
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minimal required individual capacity (Cmin) for all D2D pairs ([46]-[48]). How-
ever, none of these papers maximizes the sum capacity while guaranteeing Cmin
to every D2D pair.

2.2.2 Channel Allocation in D2D Shared Mode

In the shared mode, most of the existing channel allocation algorithms assume
a restriction on either the number of D2D pairs that can reuse a single channel
([32]-[36]) or the number of channels that can be occupied by each D2D pair
([17], [24], [26], [27], [38]-[45]). An exception to these restrictions is represented
by [50], where a non-cooperative selfish game for the channel reuse is proposed.
The solution allows the reuse of multiple channels by multiple D2D pairs in the
shared mode. Nevertheless, the designed game does not converge in realistic
scenarios with the presence of strong mutual interference among D2D pairs.
Hence, the solution is applicable only to scenarios with a very low number of
D2D pairs separated by large distances from each other. Except [50], the reuse
of multiple channels by multiple D2D pairs is not allowed by any state-of-the-art
papers in the shared mode. At the same time, extending the existing schemes
to allow the reuse of multiple channels by multiple pairs is not straightforward
if not impossible.

2.3 RF-VLC Combination in Mobile Networks

In addition to the in-band D2D, there is also an option of the out-band D2D,
where the direct communication exploits a different spectrum with respect to
the one used by the conventional cellular communication and, usually, the out-
band D2D adopts other wireless technologies [2]. One of the promising out-
band technologies is Visible light communication (VLC), which exploits visible
light for data transmission. Hence, VLC systems operate in higher frequency
bands and have a much wider spectrum at their disposal when compared to
the conventional radio systems (400-790 THz) [66],[51]. As a consequence,
VLC is able to provide data rates in the order of Gbps [52],[53]. For example,
4.5 Gbps throughput is achieved by the VLC systems employing carrier-less
amplitude & phase modulations and a recursive least square-based adaptive
equalizer as described in [52] and [53], respectively. In [54], the authors show
that a combination of 16–quadrature amplitude modulation and orthogonal
frequency division multiplexing (OFDM) or wavelength multiplex (RGB) allow
to reach 3.4 Gbps throughput.

These above-mentioned advantages of VLC have motivated the researchers
towards studying the possibility of exploiting VLC in parallel with the conven-
tional in-band radio frequencies to improve mobile networks’ performance [55].
Such RF-VLC combination benefits from the fact that there is no interference
between RF and VLC bands [56]. To this end, the combination between the
conventional RF and VLC bands for data transmission is investigated, e.g., in
[57]-[61]. In these studies, the authors focus on indoor downlink exploitation of
the VLC band through VLC access points deployed at the room’s ceiling.
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For the out-band D2D communication, the use of VLC is considered only
in [62] and [63], where the mobile devices are equipped with a Light Emitting
Diode (LED) for the transmission of the light and a photodetector for the
light reception (see Figure 3). In [62], the authors propose a game theory-
based mechanism choosing the optimal mode of VLC communication from three
candidate modes in order to enhance the channel capacity. The first mode is a
direct VLC communication (VLC D2D), the second mode is an indirect VLC
communication through the access point and the third mode represents a mix
of the first two modes. In other words, the paper investigates the behavior of
the conventional D2D deployed in VLC bands. In [63], an optical repeater-
assisted VLC D2D system is presented. The VLC repeater enables VLC for
longer distances and allows to enhance the range of VLC when the direct link
between the users is not available. This is an analogy to D2D relaying [64] as
addressed frequently in the conventional D2D in RF bands. However, even [63]
is focused purely on VLC bands and does not consider any combination of RF
and VLC for the D2D communication.

However, the concept combining the in-band RF and out-band VLC for
the D2D communication is not addressed in the literature. Such combination
is expected to enhance the performance of the D2D communication taking
an advantage of the following facts. First, there is no mutual interference
between RF and VLC bands (see [7] and [56]). Second, the VLC signal is
strongly attenuated with distance and with directional differences [65], thus,
interference to other D2D pairs operating in VLC is naturally suppressed. At
the same time, RF band still enables to preserve the benefits of the common
D2D communication for larger distances at which VLC cannot operate. Of
course, the combination of RF and VLC for D2D communication introduces
new challenges related to the volatility of both sides of the communication
chain and the proximity of users [66]. In detail, the RF-VLC D2D may suffer
from a low scalability of VLC for longer distances in addition to its susceptibility
to the changes of the users’ orientations. In fact, even small turns in the users’

Figure 3. Principle of VLC D2D where a LED (shown in yellow) and a photode-
tector (shown in red) are used for data transmission and reception, respectively.
Note that φ is the irradiance angle and ψ is the incidence angle.
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orientations in terms of irradiance and incidence angles [66], may result in a
sudden decrease in the channel quality. The irradiance and incidence angles,
which are based on UEs’ orientations, are illustrated in Figure 3.

2.4 Determination of Channel Quality in Mo-

bile Networks

In mobile networks, the knowledge of channel state information (CSI), which is
related to the quality of the communication channels between the connected de-
vices, is a key aspect, as the channels’ quality knowledge is required to perform
many essential radio resource management algorithms [67]. Conventionally, the
UEs (or the BS) use dedicated resources to periodically transmit “reference sig-
nals” for the estimation of the communication channel quality [68]. However,
these reference signals consume a lot of resources and the increases the number
of resources consumed by the transmitted reference signals leads to a very high
amount of signaling overhead [68].

To reduce the signaling overhead, several channel prediction schemes are
proposed. These schemes predict the quality of the communication channel
from other channels of known quality and are focused on the prediction of the
channel quality between a single UE and an antenna at the BS at a specific
frequency based on either: i) knowing the channel between this UE and the BS
antenna at another frequency [69]-[78], or ii) knowing the channel between this
BS antenna and another UE that is close to the original UE [79], or iii) knowing

Figure 4. An example with three D2D pairs (six DUEs) showing the D2D
channels that need to be estimated to get a full CSI knowledge.
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the channel between this UE and another close-by antenna at the same BS [80].
In D2D communication, the CSI knowledge is essential for radio resource

management (e.g., mode selection, channel allocation, power control,...etc). A
major part of the existing radio resource management algorithms assume apri-
ori measurement of the D2D channel gains, i.e., channel gains among all UEs
involved in the D2D communication (e.g., [81]). Considering the D2D commu-
nication within a cell with X users in it, there are X(X-1) direct and interference
D2D channels to be measured (see Figure 4). Such a high number of channels
to be measured implies a very high signaling overhead. In some cases, the full
CSI knowledge can be relaxed to a partial knowledge, where only a subset of
the distributed D2D channel gains is required (e.g., in [82]). Nevertheless, even
the partial knowledge of the D2D channel gains implies a substantial cost in
terms of an additional signaling overhead on top of the one generated in clas-
sical cellular communications. Thus, predicting the D2D channels from other
information available at the network (without the measurements and the addi-
tional signaling overhead resulted from the additional D2D reference signals) is
a key challenge, in order to enable D2D communication for a massive amount of
D2D devices. Although solving the D2D channel prediction problem is crucial
and can be even a game-changer in D2D communication, no solution for this
D2D channel prediction problem yet exists in the literature.
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Chapter 3

Dissertation Objectives

The general objective of this dissertation thesis is to optimize the resource al-
location in D2D communication and to study the RF-VLC D2D combination
in addition to solving the CSI knowledge problem. In detail, the thesis aims:

• Objective 1: To study the combination of shared and dedicated com-
munication modes for D2D communication.

• Objective 2: To propose channel allocation schemes in, both, dedicated
and shared modes enabling the reuse of multiple channels by multiple
D2D pairs in order to maximize the sum capacity under the constraints
related to the minimal requirements of the D2D pairs in the dedicated
mode and the cellular users in the shared mode.

• Objective 3: To study the combination of VLC and RF for D2D commu-
nication and, then, propose RF/VLC band selection scheme to efficiently
determine the most suitable band (RF or VLC) for every D2D pair in a
multi-user scenario.

• Objective 4: To propose a solution enabling radio resource management
for a high number of UEs in D2D communication by predicting the D2D
channel gains from other information already available in the network
in order to reduce the signaling overhead making D2D communication
feasible.
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Chapter 4

Dissertation Results

In this chapter, the principle of combining shared and dedicated modes together
for every D2D pair is presented. Then, two resource allocation schemes for the
D2D dedicated and shared modes are, respectively, proposed. Both schemes for
dedicated and shared modes enable the reuse of multiple channels by multiple
D2D pairs maximizing the D2D pairs’ sum capacity while maintaining the min-
imal individual capacity requirements of the D2D pairs in the case of dedicated
mode and the minimal allowed reduction in the capacity of the conventional
cellular users in the shared mode. Moreover, the concept of utilizing VLC to-
gether with RF for D2D communication is studied. Then, two algorithms for
RF/VLC band selection in multi-user scenario are presented. While the first
band selection algorithm is an iterative heuristic interference-based algorithm,
the second algorithm is machine learning-based and requires less channel in-
formation with respect to the first one. In the last section of this chapter, the
CSI knowledge problem in D2D communication is solved by proposing the D2D
channel quality prediction scheme that relies on the knowledge of the cellular
gains between the users and the surrounding base stations. Then, the same
principle is used to show that the cellular gains between the users and the
surrounding base stations can also be used to predict the D2D radio resource
management decisions (e.g., power control decisions) directly with no knowl-
edge of the D2D channels. Finally, the application of the proposed D2D channel
prediction on an example of the UEs’ association in networks with flying base
stations (FlyBSs) is illustrated.

4.1 Combined Shared and Dedicated D2D Com-

munication

In this section, we introduce the principle of combining the shared and dedicated
modes by allowing every D2D pair to access dedicated (not used by the CUEs)
and shared (used by the CUEs) resources at the same time. The aim of this
combination is to improve the sum capacity of D2D pairs. Note that the channel
reuse among the D2D pairs in this section is limited as optimizing the channel
reuse is not the main scope of this section. Nevertheless, later in Section 4.2,
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the channel reuse among the D2D pairs is, further, improved in the dedicated
and shared modes, respectively. This section includes the conference paper
[4C].
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Abstract—Device-to-device (D2D) communication is an ef-
fective technology enhancing spectral efficiency and network
throughput of contemporary cellular networks. Typically, the
users exploiting D2D reuse the same radio resources as common
cellular users (CUEs) that communicate through a base station.
This mode is known as shared mode. Another option is to dedicate
specific amount of resources exclusively for the D2D users in
so-called a dedicated mode. In this paper, we propose novel
combined share/dedicated resource allocation scheme enabling
the D2D users to utilize the radio resources in both modes
simultaneously. To that end, we propose a graph theory-based
framework for efficient resource allocation. Within this frame-
work, neighborhood relations between the cellular users and the
D2D users and between the individual D2D users are derived to
form graphs. Then, the graphs are decomposed into subgraphs
to identify resources, which can be reused by other users so that
capacity of the D2D users is maximized. The results show that the
sum D2D capacity is increased from 1.67 and 2.5 times (depending
on a density of D2D users) when compared to schemes selecting
only between shared or dedicated modes.

Keywords—device-to-device communcation, mode selection, re-
source allocation, shared allocation, dedicated allocation.

I. INTRODUCTION
Device-to-device (D2D) communication is an emerging

paradigm enhancing spectrum and energy efficiency of mobile
communications systems [1]. The D2D enables direct com-
munication of two devices in proximity without involvement
of a base station, which is typically denoted as eNB in
mobile networks. The direct communication allows saving
radio resources by avoiding two-hop transmission of the data
(to eNB and to the user). The D2D can be classified according
to spectrum utilization into an in-band D2D (using license
radio resources allocated to conventional cellular users) or an
out-band D2D (exploiting unlicensed frequency bands, such as
WiFi direct, ZigBee or Bluetooth) [2].

The D2D users (DUEs) accessing license band (i.e., in-
band D2D) can use three communications modes: 1) cellular
mode, 2) dedicated mode, also known as overlay, and 3)
shared mode, also known as underlay. In case of the cellular
mode, the DUEs communicate through the eNB as in a conven-
tional cellular network. The dedicated mode is distinguished
by the fact that the DUEs access dedicated resources with
respect to the cellular users (CUEs). Consequently, interference
between the DUEs and the CUEs is efficiently avoided, but
the system may experience a low spectral efficiency or an
insufficient amount of resources for both types of users. In case
of the shared mode, the DUEs reuse the same resources as the
CUEs. Although this mode enables the highest frequency reuse
when compared to other two modes, interference between the
CUEs and the DUEs is the most challenging aspect here.

In recent years, significant effort has been invested to

address the problem of mode selection, that is, the selection of
the most profitable mode for the DUEs and efficient resources
allocation. The research works related to the mode selection
can be classified into papers selecting: 1) between the cellular
mode and the shared or dedicated mode [3]-[8], 2) between
the dedicated and shared modes [9][10], and 3) among the
cellular, dedicated, and shared modes [11]-[13]. Most of the
existing works focusing on the mode selection and resource
allocation for DUEs expect that each DUE uses just one
communication mode (cellular, dedicated, or shared). However,
in [7], the authors propose to allow the DUEs to access
the radio resources in the cellular and shared modes at the
same time. The paper addresses routing problem deciding
whether data should be routed through eNB (cellular mode)
or transmitted directly between DUEs using shared mode.

In this paper, we propose a Combined Shared/Dedicated
resource allocation scheme labeled as CSD. The key difference
between [7] and CSD is that instead of routing problem we
address resource allocation problem when the DUEs always
communicate directly accessing resources in both shared and
dedicated mode simultaneously. To that end, the main objective
of the proposed CSD is to maximize the capacity of DUEs,
while the performance of the CUEs is not impaired due
to power restriction of the DUEs in the shared mode. To
increase the resource utilization by the DUEs, several DUEs
can access the same resources if they are not neighbors, that
is, if interference among them is below a predefined threshold
(τN ). In this regard, we propose a novel graph theory-based
framework for determination of two neighborhood relations:
i) between the CUEs and the DUEs, and ii) among the
DUEs. The neighborhood relations are then exploited for the
allocation of resources to the D2D pairs.

The rest of the paper is organized as follows. The next
section describes the system model. The graph theory based
framework for the proposed resource allocation is introduced
in Section III. The Section IV explains the proposed resource
allocation. Section V is dedicated for description of the simu-
lation scenario and a discussion of the simulation results. The
last section gives our conclusion and future works.

II. SYSTEM MODEL
This section describes system model. We assume a single

cell scenario with one eNB. Within coverage area of the
eNB, C CUEs and D D2D pairs exploiting uplink cellular
network resources are deployed. Each D2D pair is composed
of one DUE transmitter (DUE-T) sending data to the DUE
receiver (DUE-R). The DUEs of the same D2D pair always
communicate directly, i.e., the cellular is not applied for the
DUEs. The allocation of resources to the DUEs is fully
controlled by the eNB as considered, e.g., in [11][13].

978-1-5386-6355-4/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on August 25,2020 at 12:59:05 UTC from IEEE Xplore.  Restrictions apply. 



We assume general multiple access technology, such as
OFDMA or SC-FDMA, where the available bandwidth is
divided into n channels, represented in our case by resource
blocks (RBs). The whole bandwidth is split into shared and
dedicated regions. The shared region contains ns RBs that
are accessible by both the CUEs and DUEs. Consequently,
interference between the CUEs and the DUEs has to be taken
into consideration in this region. In contrast, the dedicated
region is composed of nd RBs, which are accessible only by
the DUEs and, thus, there is no mutual interference between
the DUEs and the CUEs.

The SINR observed by the eNB at the r-th RB is calculated
as:

γr
e =

grCeP
r
C

NIr +
∑Dr

i=1 grTie
P s,r
i

(1)

where grCe is the channel gain between the CUE and eNB
at the r-th RB, P r

C represents the transmission power of the
CUE at the r-th RB, NIr stands for the thermal noise plus
interference observed by the eNB from adjacent cells at the
r-th RB, grTie

is the channel gain between the i-th DUE-T and
the eNB at the r-th RB, P s,r

i corresponds to the transmission
power of the i-th DUE-T in the shared region at the r-th RB,
and Dr is the number of DUE-Ts transmitting at the r-th RB,
because the proposed scheme allows to reuse the same RB by
more than one D2D pair if interference between the D2D pairs
is below a predefined threshold as explained later.

In the shared region, the transmitting power of the DUE-T
is restricted in order to limit interference caused to the CUEs.
The restriction of the transmission power for each DUE-T in
the shared region is defined by the eNB so that the signal
received by the eNB from the i-th DUE-T (RSSdi) is:

RSSdi =
NIe
τDUE

(2)

where τDUE is the D2D threshold defining the amount of
interference caused by the DUE-T with respect to the noise
plus interference from the adjacent eNBs measured at the
given eNB (NIe). Since we assume τDUE = 10, the level of
interfering signal from the DUE-T received at the eNB is 10
times smaller than the level of interference from other sources.
Hence, the performance of the CUEs can be considered as
unimpaired at all by the proposed algorithm. Then, SINR
observed by the DUE-R of the j-th D2D pair at the r-th RB
in the shared region can be expressed as:

γs,r
j =

grTjRj
P s,r
j

NIr +
∑Dr

i=1
i̸=j

grTiRj
P s,r
i + grCRj

P r
C

(3)

where grTjRj
is the channel gain between the DUE-T and the

DUE-R of the same j-th D2D pair at the r-th RB, grTiRj

stands for the channel gain between the i-th DUE-T and the
j-th DUE-R at the r-th RB, grCRj

represents the channel gain
between the CUE and the j-th DUE-R at the r-th RB, P s,r

j and
P s,r
i are the transmission powers of the j-th and i-th DUE-T

at the r-th RB, respectively. From (3), we can observe that
interference to the D2D pairs in the shared region originates
from other D2D pairs reusing the same resources (similarly as
in (1)) and by the CUEs, which occupy the reused resources.

The SINR observed by the j-th DUE-R at the r-th RB in

the dedicated region is defined as:

γd,r
j =

grTjRj
P d,r
j

NIr +
∑Dr

i=1
i ̸=j

grTiRj
P d,r
i

(4)

where P d,r
j is the transmission power of the j-th DUE-T in

the dedicated region and P d,r
i is the transmission power of

the i-th DUE-T, which causes interference to the j-th D2D
pair. The transmission power of the DUE-Ts in the dedicated
region is not restricted as in the shared region, because the
dedicated resources are not shared with the CUEs. Note that
in the simulation, we consider several P d,r

i values and we
analyze its impact on the performance.

III. GRAPH THEORY-BASED FRAMEWORK FOR PROPOSED
CSD

To allocate resources to the D2D pairs properly by the
proposed CSD and to avoid harmful interference, the eNB has
to be aware of: 1) the list of D2D pairs that can reuse RBs
already assigned to the CUEs, and 2) the list of RBs that can
be reused by more than one D2D pair. Both above-mentioned
aspects are determined by the eNB through the knowledge
of two types of the neighborhood relations: 1) between the
CUEs and the DUEs, and 1) among the DUEs. The following
subsections describe a determination of the CUEs and the
DUEs neighbors and explain exploitation of the neighborhood
relations for the resource allocation to the D2D pairs.

A. Determination of CUE and DUE neighbors
The DUEs may reuse RBs allocated to the CUEs that

are not their neighbors. In the proposed scheme, the CUE is
considered to be a neighbor of the j-th D2D pair if:

γs,r
j < γmin (5)

where γmin is minimal SINR guaranteeing reliable commu-
nication. Notice that the classification whether the CUE is
neighbor or not does not solely depends on signal received
from the CUE at the DUE-R. Even distant CUE can be
considered as the neighbor just because the received signal
quality is low. This situation can happen, for example, if the
D2D-T and the D2D-R are far away from each other or if
the D2D-T is in vicinity of the eNB and its transmission
power is restricted according to (2) to avoid interference to
the eNB. Moreover, the CUE is considered to be a neighbor
even if DUE-R is strongly interfered from the CUEs belonging
to other cells since the D2D pair is not able to reuse these
resources due to interference.

The γs,r
j is obtained by the eNB from channel quality

report, e.g., by means of CSI reports as defined in LTE
[14], sent by individual DUE-R. In this regard, the eNB
dedicates specific intervals when the D2D-R should listen to
the CUEs’ transmissions and determine which RBs can be
reused in the shared region. During these intervals, the D2D-T
cannot use the RBs in the shared region for data transmission.
Nevertheless, the effect on throughput is negligible as these
intervals can be scheduled only sparingly (e.g., one interval
with duration of 1 ms is dedicated for this purpose per one or
several seconds depending on speed of the CUEs).

Besides the CUEs’ neighbors, each D2D pairs may have
several DUE neighbors. The D2D pairs may reuse the same
RBs if they are not mutual neighbors, that is, if interference
among them is below the predefined threshold. In this paper,
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the i-th D2D pair is considered to be the neighbor of the j-th
D2D pair if the received signal strength from the i-th DUE-T
at the side of the j-th DUE-R is:

RSSij >
NIRj

τN
(6)

where NIRj is the thermal noise plus interference observe
at the j-th DUE-R and τN is the threshold distinguishing
neighbors both in the shared and dedicated regions. The
threshold τN allows to adjust the level of interference among
the D2D pairs and the amount of D2D pairs, which are able
to reuse the same RBs. If τN < 1, the i-th D2D pair is the
neighbor of the j-th pair despite the fact that it generates higher
interference than NIj resulting in a higher reuse of the RBs. If
τN > 1, interference among the D2D pairs is lower than NIj ,
but the reuse factor is decreased as well. The proper selection
of τN could be seen as an optimization problem. Hence, if we
define Cs and Cd as capacities in the shared and dedicated
regions, the objective is to find τN,opt so that:

[τopt] = argmax
τN

(Cs + Cd), τN ∈ {τN,min, τN,max} (7)

Due to the limited space, we leave a derivation of τN,opt

analytically for future research and we just investigate its
impact on the performance by simulations.

The D2D pairs can find their neighbors by means of discov-
ery procedure proposed in [15], where the DUE-R measures
experienced SINR of the received discovery messages send
by other DUE-Ts. Then, the D2D-R sends SINR report to
the eNB. Notice that the DUE-R may send reports from
measurement of the CUE and the DUE neighbors at the same
time.

B. Forming graphs, graph decomposition into subgraphs, and
determination of maximal cliques

Based on the channel quality reported by the DUE-Rs for
determination of the neighborhood relations, as explained in
previous subsections, two graphs are created: one for shared re-
gion, one for the dedicated region. The graph for shared region
is denoted as Gs = (V s

x , Es
x), where V s

x represents individual
D2D pairs that are able to reuse the RBs in the shared region
(vertices of graph), and Es

x represents interference between
the D2D pairs in the shared region. Analogously, the graph
for dedicated region is denoted as Gd = (V d

x , Ed
x), where

V d
x represents the D2D pairs using the RBs in the dedicated

region and Ed
x shows neighborhood relations (by means of

interference) between the D2D pairs in the dedicated region.
To allow the eNB allocate the RBs to the D2D pairs in both

regions, the eNB further decomposes Gs and Gd into a set of
subgraphs so that each subgraph contains only D2D pairs that
can potentially reuse the same RBs. In case of Gs, the in-
dividual subgraphs (Gs,1, Gs,2, ..., Gs,C) are composed of the
D2D pairs that are able to reuse the RBs assigned to the same
CUE. Consequently, the number of subgraphs in shared region
is exactly the same as the number of the CUEs. Moreover, the
number of RBs available for each subgraph corresponds to the
number of RBs assigned to individual CUEs. In case of Gd,
the individual subgraphs (Gd,1, Gd,2, ..., Gd,D) are composed
of the D2D pairs that can reuse the RBs assigned to other D2D
pairs in the dedicated region (i.e., one subgraph is created for
each D2D pair). Notice that in the dedicated region, the D2D
pairs receives always some RBs allocated to them by default

and the RBs that can be reused from other D2D pairs.
To properly allocate the RBs to the D2D pairs within each

subgraph, the maximal cliques in all subgraphs are found by
the eNB. In general, the clique in G is defined as a subset
of vertices (in our case subset of D2D pairs), C ⊆ V , such
that resulting subgraph is a complete graph. Then, the clique
is called a maximal clique in G if there is no clique C ′ such
that C ′ ⊃ C. In other words, the maximal clique is not a
subset of any other cliques in G. As a consequence, the D2D
pairs in the same maximal clique cannot reuse the same RBs.
The eNB finds all maximal cliques in Gs and Gd subgraphs
by means of Bron-Kerbosch algorithm [16]. The complexity
of the algorithm is in the worst case O(3n/3), where n is
the number of D2D pairs. Despite the fact that Bron-Kerbosch
algorithm is NP-hard, it can be used even in large networks as
demonstrated in [17].

The creation of the graphs Gs and Gd and their further
decomposition into subgraphs and determination of the maxi-
mal cliques is illustrated in Fig. 1. In Fig. 1a, Gs is composed
of the D2D pair 1, 2 and 4 as these can utilize the RBs in
the shared region according to (5). Then, three subgraphs are
created (each for single CUE): Gs,1 indicating that the D2D
pair 1 and 4 can reuse the RBs allocated to the CUE 1, Gs,2

saying that resources used by the CUE 2 can be exploited by
the D2D pair 4, and Gs,3 showing that the D2D pair 1 and
2 can reuse the RBs allocated to the CUE 3. In Fig. 1a, Gd

is decomposed into four subgraphs (each for one D2D pair):
Gd,1 indicating that the RBs assigned to the D2D pair 1 can
be fully reused by the D2D pair 4, Gd,2 showing the RBs
for the D2D pair 2 can be reused by the D2D pair 3 and 4,
etc. Finally, the eNB finds all maximal cliques within each
subgraph (Nmc). For example, there are two maximal cliques
{1} and {4} in Gs,1 (Ns,1

mc = 2), one maximal clique {4}
for Gs,2 (Ns,2

mc = 1), and one maximal clique {1, 2} for Gs,3
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Fig. 1: Example of Gs and Gd determination and their decom-
position into subgraphs and maximal cliques.
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(Ns,3
mc = 1). Analogously, there are two maximal cliques {1}

and {4} in Gd,1 (Nd,1
mc = 2), two maximal cliques {2} and

{3, 4}) exists in Gd,2 (Nd,2
mc = 2), etc.

C. Formulation of objectives for the proposed CSD scheme
The objective of the proposed CSD resource allocation

scheme is to maximize sum D2D capacity (C). The C is a
sum of the capacities in the shared region (Cs) and in the
dedicated region (Cd). As the Cs and Cd are independent, we
can maximize these two capacities separately. Hence, the first
objective is to maximize Cs as:

Cs = max




C∑

z=1




Ns,z
mc∑

k=1




ns,z
mc∑

r=1

Γs,z,r
k










s.t. ns,z
mc ≤ nz

c , ∀z

P s,r
j restricted acc. (2)

(8)

where ns,z
mc is the number of RBs in individual maximal clique,

Ns,z
mc represents the number of maximal cliques found in

the individual subgraphs, Γs,z,r
k is the transmission efficiency

representing the number of bits transmitted in the r-th RB of
the k-th maximal clique of the D2D pairs reusing resources
assigned to the i-th CUE, and nz

c is the amount of RBs
allocated to the z-th CUE. Note that Γs,z,r

k is derived from
γs,r
j in the shared region. The capacity in shared region is

restricted by the number of RBs available in each maximal
clique (ns,z

mc) and by the power constrains according to (2).
The second objective is to maximize Cd as:

Cd = max




D∑

z=1




Nd,z
mc∑

k=1




nd,z
mc∑

r=1

Γd,z,r
k










s.t. nd,z
mc ≤ nz

d ∀z

(9)

where Nd,z
mc is the number of maximal cliques found in indi-

vidual subgraphs, Γd,z,r
k stands for the transmission efficiency

in the dedicated region, and nz
d is the amount of RBs allocated

by default to the z-th D2D pair. The capacity in the dedicated
region is restricted by the amount of RBs available in each
maximal clique (nd,z

mc) analogously to the shared region.

IV. ALGORITHM FOR PROPOSED CSD SCHEME
The allocation of resources according to CSD scheme is

composed of: 1) allocation of RBs to the CUEs as this directly
impacts the amount of RBs in both shared and dedicated
regions, 2) allocation of RBs to the DUEs in the shared
region, and 3) allocation of the RBs available for the DUEs in
the dedicated region. To this end, we propose the algorithm
for allocation of resources that can be divided into seven
subsequent steps:
1) Allocation of ns RBs to the CUEs in the shared region, i.e.,

the region where RBs are accessible by both the CUEs and
the DUEs. The amount of RBs in the shared region depends
on two factors: 1) current requirements of the CUEs and
2) the amount of RBs that can be used by the DUEs in
the shared and dedicated regions. The second factor takes
into account the fact that not all D2D pairs may be able
to reuse the RBs in the shared region due to the power
restriction according to (2). For example, if the eNB would
allocate all the RBs to the CUEs, some D2D pairs may not
be able to communicate at all. In this paper we consider the

same amount of RBs available in both shared and dedicated
regions. A dynamic allocation of the amount of RBs in
individual regions considering two above-mentioned factors
is left for future research.

2) Determination if individual D2D pairs can reuse the RBs
allocated to the CUE(s) in the shared region if (5) is fulfilled
(as explained in Section 3).

3) Determination if multiple D2D pairs can reuse the same
RBs assigned to the same CUE. This is done by finding
all maximal cliques in individual subgraphs Gs,z , where
1 ≤ z ≤ C (see Fig. 1a).

4) Allocation of the resources to individual D2D pairs in the
shared region maximizing Cs. This is done by allocation
of the RBs to the D2D pairs with the highest transmission
efficiency according to (8).

5) Allocation of the default amount of RBs (ni
d) in the ded-

icated region to each D2D pair, where the default number
of the RBs allocated to the i-th D2D pair ni

d is calculated
as:

ni
d = nd

Nd,i
mc∑D

z=1 Nd,z
mc

(10)

The ni
d is proportional to the amount of maximal cliques

as this determines how many times the RBs allocated by
default to the D2D pair can be reused in the dedicated
region by the other D2D pairs.

6) Determination of the RBs, which can be potentially reused
and by whom these can be reused depending on the
allocation of RBs in the previous step and the knowledge
of neighborhood relations among D2D pairs obtained from
subgraphs Gd,z , where 1 ≤ z ≤ D (see Fig. 1b).

7) Allocation of resources to individual D2D pairs in the
dedicated region maximizing Cd. This is done by the
allocation of the RBs to the D2D pairs with the highest
transmission efficiency according to (9).
The example of allocation process according to the pro-

posed algorithm is shown in Fig. 2, where ns = nd = 8 RBs and
neighborhood relations are taken from Fig. 1. The allocation
process is as follows:
1) The eNB allocates RBs to the CUEs in the shared region.
2) The eNB identifies that the D2D pair 1 and 2 can reuse

RBs allocated to the CUE 1 and CUE 3, while the D2D
pair 4 reuses RBs assigned to the CUE 2. The D2D pair 3
is not able to reuse any RBs in the shared region.

3) The eNB determines that the D2D pair 1 and 2 are mutual
neighbors (i.e., orthogonal RBs have to be allocated to them
in the shared region), while the D2D pair 4 has no neighbors
that are able to reuse the RBs of the CUE 2.

4) According to (8), the eNB allocates all RBs assigned to the
CUE 1 to the D2D pair 1 since the D2D pair 1 has higher
transmission efficiency at these RBs than the D2D pair 2.
Contrary, the D2D pair 2 reuses all RBs allocated to the
CUE 3 as it experiences higher transmission efficiency at
these RBs than the D2D pair 1. Finally, the D2D pair 4
reuses all RBs allocated to the CUE 2.

5) The eNB allocates ni
d RBs to individual D2D pairs taken

into account (10). According to Fig. 1b, all subgraphs
contain two maximal cliques. Hence, each D2D pair obtains
ni
d = 2 RBs by default.

6) The eNB determines that the D2D pair 1 can reuse RBs
allocated to the D2D pair 4, the D2D pair 2 can reuse the
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Fig. 2: Example of allocation process according to proposed allocation algorithm.

RBs assigned to the D2D pair 3 and 4, the D2D pair 3 can
reuse the RBs allocated to the D2D pair 2, and the D2D
pair 4 can reuse the RBs assigned to the D2D pair 1 and
2.

7) To meet (9), the eNB decides that the RBs allocated by
default to the D2D pair 1 can be fully reused by the D2D
pair 4 since the D2D pair 1 experiences higher transmission
efficiency than the D2D pair 2 at these RBs. Similarly, the
RBs allocated to the D2D pair 2 should be reused solely by
the D2D pair 3 since it has higher transmission efficiency
at these RBs than the D2D pair 4. Then, the RBs allocated
by default to the D2D pair 3 are available for reuse by the
D2D pair 2, and the RBs of the D2D pair 4 are reused by
the D2D pair 1.

V. SIMULATIONS
This section describes simulation scenario and models used

for evaluation and, then, simulation results are presented and
discussed.

A. Simulation scenario
The performance of the proposed scheme is evaluated in

MATLAB simulator. We assume square simulation area with
size of 500 m. The simulation area contains one eNB deployed
in the middle of the area, 20 CUEs and up to 75 D2D
pairs. Both the positions of the CUEs and the D2D pairs are
generated randomly with uniform distribution. The maximum
distance of the UEs creating D2D pair is set to 200 m. We
assume that D2D pairs always communicate directly as com-
munication through the eNB (i.e., cellular mode) introduces no
benefits. Further, we assume a physical layer data frame with
duration of 10 ms and channel bandwidth of 20 MHz like
in LTE. Each frame is composed of 2 000 RBs used either
for data transmission (75 % of RBs) or for signaling (25 %
of RBs). We consider that the amount of RBs in the shared
and dedicated regions available for the data transmission is
split equally, that is, 750 RBs are intended for shared region
accessible by the CUEs and the D2D pairs and the other 750
RBs in dedicated region is accessed only by the D2D pairs.

TABLE I: Parameters and settings for simulations

Parameter Value
Simulation area 500x500
Number of CUEs 20
Number of D2D pairs 5–75
Max. distance between DUE-T and DUE-R 200 m
Carrier frequency 2 GHz
Channel bandwidth 20 MHz
Signaling overhead 25 %
Number of RBs in shared/dedicated regions 750/750
Transmission power of CUE and DUEs in
dedicated region

10, 15, 20 dBm

τN -30–0
γmin -9.478 dB
τDUE 10 dBm
Number of simulation drops 200
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Fig. 3: Sum capacity depending on number of D2D pairs.
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Fig. 4: Sum D2D capacity depending on τN .

The calculation of path loss for CUE-eNB, DUE-eNB,
CUE-DUE, and DUE-DUE is done according to the models
defined by 3GPP for evaluation of the D2D proximity services
[18].

The simulation results are averaged out over 200 simulation
drops. During each drop, new positions of the CUEs and
the D2D pairs are generated. All simulation parameters are
summarized in Table I.

B. Simulation results
The simulations results compare the proposed CSD with

schemes based on [9][10], which are the only most recent
schemes considering the D2D pairs use solely either dedicated
or shared resources so that the capacity is maximized (labeled
Max S/D).

Fig. 3 shows the sum D2D capacity depending on the
number of deployed D2D pairs. Notice that we do not analyze
the capacity of the CUEs as our objective is to enhance
performance of the DUEs while the CUEs are not affected by
power restrictions in shared region). The proposed CSD allo-
cation significantly outperforms the existing Max S/D scheme
selecting either shared or dedicated resources. If transmission
power of the CUEs and the D2D pairs in the dedicated region
is set to lower values (e.g., 10 dB in our figure), the CSD brings
approximately 2.3 times higher capacity for 75 D2D pairs
deployed in the system when compare to Max S/D scheme.
Even though the gain of the CSD over Max S/D is lowered
if Pt is set to 15 dB (roughly 2 times higher capacity) and 20
dB (roughly 1.67 times higher capacity), the proposed CSD
scheme is superior to Max S/D. The main reason why the
capacity of the CSD is increasing with a decreasing Pt is that
the D2D pairs are more interfered in the shared region by the
CUEs and also interference among D2D pairs in the dedicated
region is increased as well.

The performance of the CSD is influenced by a setting of
the neighborhood threshold τN as already discussed in Section
III. While in Fig. 3 τN = 0 dB is considered, Fig. 4 shows
the impact of τN on the sum D2D capacity. We consider τN
varying between -30 dB and 0 dB. Notice that for better clarity,
we express in the simulations τN in dB while in (6) τN is
without unit . It is seen that the optimal value of τN is depends
on the transmission power Pt and also on the amount of D2D
pairs in the system (see Fig. 4). In general, if the transmission

power Pt is increased, τN should be set to lower values to
achieve the maximal capacity. For example, if there are 25
D2D pairs in the system, the optimal value for τN is -8 dB,
-12 dB, and -16 dB for Pt = 10, 15, and 20 dBm, respectively
(see Fig. 4a). If the number of D2D pairs is increased to 50 or
event to 75, the optimal values of τN are slightly higher (by
2-4 dB) when compared to the case with only 25 D2D pairs
in the system. The reason why, τN should be set to lower
values for higher Pt is that the D2D pairs are able to reuse
resources in shared region more efficiently for lower τN than
for higher τN . Moreover, τN should be set to higher values for
the higher numbers of D2D pairs because an increased ratio
of the resource that can be reused by the D2D pairs (achieved
by lower τN ) is not able to outweigh significant interference
among D2D pairs themselves. As in previous figure, the sum
D2D capacity is degraded for higher Pt since the D2D pairs
are interfered by the CUEs in shared region more significantly.

The optimal setting of neighborhood threshold τN also
leads to a higher gain achieved by the proposed CSD over
the Max S/D scheme. The sum capacity with the optimum
threshold τN is increased by 2.5, 2.3, and 2 times for Pt =
10, 15, and 20 dBm, respectively, for 75 D2D pairs. Note that
appropriate setting of τN in real network can be considered as
future work.

VI. CONCLUSIONS
This paper has proposed the combined shared/dedicated

resource allocation scheme for D2D communications. The pro-
posed CSD scheme allows the D2D pairs to utilize resources in
both shared and dedicated regions simultaneously. In addition,
the same resources can be exploited by several D2D pairs
in order to enhance spectral efficiency of the system and to
increase overall sum D2D throughput. In this regard, we have
introduced graph theory based framework for the purpose of
efficient resource allocation. Within this framework, the eNB
creates graph showing neighborhood relations between the
CUE and D2D pairs and between individual D2D pairs. After
decomposition of the graphs into subgraphs and determination
of the maximal cliques, the eNB is able to allocate resources
maximizing sum D2D throughput. The results indicate that the
D2D capacity can be significantly improved (more than twice)
when compared to the scheme selecting only the shared or the
dedicated region.
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As a future work, we intend to perform in-depth theoretical
analysis for deriving of optimal D2D neighborhood threshold.
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4.2 Resource allocation in In-band D2D Com-

munication

This section deals with the optimization of resource allocation in dedicated and
shared modes, respectively.

4.2.1 Enabling the reuse of Multiple Channels by Mul-
tiple Pairs in D2D Dedicated Mode

In this subsection, the reuse of multiple channels by multiple D2D pairs is
enabled in the D2D dedicated mode to maximize the sum capacity of D2D pairs
under the constraint of guaranteeing a minimal required capacity for every D2D
pair. This subsection includes the journal paper [1J], which is an extension of
the conference paper [2C].

21
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Reuse of Multiple Channels by Multiple D2D Pairs
in Dedicated Mode: Game Theoretic Approach

Mehyar Najla, Student Member, IEEE, Zdenek Becvar, Senior Member, IEEE, and Pavel Mach, Member, IEEE,

Abstract—Device-to-device communication (D2D) is expected
to accommodate high data rates and to increase the spectral effi-
ciency of mobile networks. The D2D pairs can opportunistically
exploit channels that are not allocated to conventional users in
a dedicated mode. To increase the sum capacity of D2D pairs in
the dedicated mode, we propose a novel solution that allows the
reuse of multiple channels by multiple D2D pairs. In the first
step, the bandwidth is split among D2D pairs so that each pair
communicates at a single channel that guarantees a minimal
capacity for each pair. Then, the channel reuse is facilitated
via a grouping of the D2D pairs into coalitions. The D2D pairs
within one coalition mutually reuse the channels of each other.
We propose two approaches for the creation of the coalitions.
The first approach reaches an upper-bound capacity by optimal
coalitions determined by the dynamic programming. However,
such approach is of a high complexity. Thus, we also introduce
a low-complexity algorithm, based on the sequential bargaining,
reaching a close-to-optimal capacity. Moreover, we also determine
the optimal power allocated to each reused channel. Simulations
show that the proposed solution triples the sum capacity of the
state-of-the-art algorithm with the highest performance.

Keywords—Device-to-device; Dedicated mode; Game theory,
Resource allocation, Channel reuse

I. INTRODUCTION

High data rates and low latencies are required to enable new
services and to increase the number of connected devices in
the future mobile networks. To accommodate these demands,
a direct communication between two user equipments (UEs)
in proximity of each other, known as Device-to-Device (D2D)
communication, is considered as a promising technology [1],
[2]. Two D2D UEs (DUEs), a transmitter (DUET ) and a
receiver (DUER), create a single D2D pair, within which the
data is transmitted directly, i.e., without being relayed through
a base station (in this paper, denoted as gNB in line with 3GPP
terminology for 5G mobile networks) [3].

The D2D communication enables two possible modes: 1)
a shared mode in which the D2D pairs reuse the resources
allocated to common cellular UEs (CUEs) communicating via
the gNB and 2) a dedicated mode in which the D2D pairs
use dedicated resources that are not assigned to the CUEs
[4],[5]. Although, the shared mode offers a higher spectral
efficiency than the dedicated one, the higher efficiency is
usually at the cost of highly complex solutions for the resource
allocation and management. Moreover, the shared mode leads
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Science Foundation and by the grant of Czech Technical University in Prague
No. SGS17/184/OHK3/3T/13.
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to a mutual interference among the CUEs and the DUEs.
This interference can be too high and can vary frequently and
significantly, especially in the case with a dense presence of
the UEs. Consequently, the reliability of the communication
cannot be easily guaranteed and overall quality of services
(QoS) can be impaired due to the interference in the shared
mode [6]. Thus, the DUEs with strict requirements on QoS
should prefer the dedicated mode, which is suitable for the
services that require highly reliable communication with a
minimum risk of an unexpected interference from the CUEs.
Concrete and up-and-coming examples of the use cases for
the dedicated mode are the direct communication of vehicles
or public safety communication. In such use cases, an ultra-
reliable communication with a guaranteed minimum commu-
nication capacity should be ensured. In the shared mode,
however, interference might lead to the situations when such
guarantee is simply not possible and the unreliability in the
communication can have grievous consequences. Hence, the
dedicated resources are commonly considered for the vehicular
or public safety communications. Thus, in this paper, we focus
on the dedicated mode for D2D communication.

One of the key challenges in the dedicated mode is the
allocation of the available bandwidth to the D2D pairs. The
authors in [7] and [8] present channel allocation schemes
that divide the dedicated bandwidth to channels with different
bandwidths so that each D2D pair gets exactly one channel.
In both [7] and [8], the optimal allocation is achieved for
the case when the interference from other neighboring cells
is nonexistent. However, in real networks, the interference
from other cells always exists and we can expect the level
of interference will even increase in the future due to the
densification of mobile networks. Such inter-cell interference
impacts the optimal channel allocation for the D2D pairs in
the dedicated mode. Moreover, neither [7] nor [8] assume the
reuse of each channel by more than one D2D pair resulting in
a lower spectral efficiency.

A simplified channel reuse in the dedicated mode is pre-
sented in [9][10][11]. Although all these studies consider that
either two D2D pairs [9] or multiple D2D pairs [10][11] can
access the same channel, each D2D pair is allowed to occupy
just one channel at any time. The papers [12]–[14] exploit the
reuse of multiple channels by multiple D2D pairs to guarantee
a minimal SINR for every D2D pair while using the minimal
possible number of channels. In these works, however, the
D2D pairs do not benefit fully from the reuse, as only a
limited number of channels is used and the sum capacity is
not maximized. In [15], the authors maximize the sum capacity
of D2D pairs in the dedicated mode considering that the D2D
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pairs reuse all available channels. Nevertheless, the authors do
not consider the constraint on the minimal capacity Cmin that
should be guaranteed to the individual D2D pairs. Thus, the
solution proposed in [15] can lead to the situation when some
D2D pairs end up with zero capacity as these are forbidden to
transmit at any channel due to the interference caused to other
D2D pairs. Note that the ideas presented in [12]–[15] cannot
be easily extended to maximize the sum capacity and, at the
same time, to guarantee Cmin, since the capacity maximization
under the constraint on Cmin for every D2D pair requires
completely different solutions.

In summary, the existing resource allocation methods for the
dedicated mode either restrict the number of D2D pairs reusing
a single channel (e.g., [7][8]) or limit the number of channels
that can be occupied by a single D2D pair (e.g., [9][10][11]).
As an exception, the papers [12]–[15] allow the reuse of mul-
tiple channels by multiple D2D pairs in the dedicated mode.
These papers target either the sum capacity maximization
([15]) or the individual minimal capacity (Cmin) satisfaction
([12]–[14]). However, none of these papers maximizes the sum
capacity while guaranteeing Cmin to every D2D pair.

Despite our focus on the dedicated mode in this paper, we
survey also research targeting the shared mode and we also
summarize related works on the channel reuse not considering
D2D communication at all in order to justify the novelty of
our solution from a broader perspective. Most of the existing
channel allocation algorithms in the shared mode assume a
restriction on either the number of D2D pairs that can reuse a
single channel [16]–[20] or the number of channels that can be
occupied by each D2D pair [21]–[29]. An exception to these
restrictions is represented by [30] and [31]. These papers allow
the reuse of multiple channels by multiple D2D pairs in the
shared mode. Nevertheless, the channel allocation approaches
from [30] and [31] depend on the presence of the CUEs. In
other words, the optimized utility function in [30] is convex
only if the interference caused to the CUEs by the D2D pairs
is taken into account. The utility function becomes non-convex
if the dedicated mode is considered and the presented solution
becomes infeasible. Similarly, in [31], the presented solution
adds the D2D pairs sequentially to the channels, which are
already occupied by the CUEs. Hence, the decision of the
D2D pairs whether to communicate over the given channel or
not is based on the interference from/to the CUEs. Moreover,
when the D2D pair reuses the channel according to [31], the
D2D pair sets its transmission power at this channel based
on the allowed interference imposed by this D2D pair to the
corresponding CUE. Considering this, the channel and power
allocations in [31] essentially depend on the existence of the
CUEs that are completely absent in the dedicated mode and
can be absent even in the shared mode with (very realistic)
situation when the CUEs do not occupy all channels.

Besides the work addressing the reuse of channels for
D2D communication, ongoing research is focused also on
multiple links communicating over multiple channels for other
scenarios and concepts. For example, in [32], many-to-many
matching game is exploited to allocate multiple channels to
multiple cellular links (i.e., links from multiple UEs to the
gNB) in non-orthogonal multiple access-based networks. Since

the matching games generally fall into the category of non-
cooperative games, every link aims to selfishly maximize its
own capacity. Consequently, the matching approach does not
guarantee any Cmin to individual links. Although the coopera-
tive ”coalitions’ formation games” are also used widely for the
channel reuse problem, e.g., in cognitive femtocell networks
[33] or in cloud radio access networks [34], these approaches
allow the users in the coalition to reuse a single channel only.
Moreover, both [33] and [34] cannot be simply extended to
the case where the UEs can access multiple channels, because
[33] considers the coalitions’ creation problem in the partition
form (different problem compared to channel reuse problem in
D2D communication) and [34] solves the coalitions’ formation
problem with a predefined final number of coalitions, but this
number is usually not known in advance as it should be an
output of the optimization.

In our paper, we focus on the resource allocation in D2D
dedicated mode and we propose a solution that allows the
reuse of multiple channels by multiple D2D pairs to maximize
the sum capacity while guaranteeing Cmin to individual D2D
pairs. The major contributions of the paper are summarized as
follows:

• We present and solve the problem of reusing multiple
channels by multiple pairs as a coalition structure gener-
ation problem in order to put the D2D pairs into disjoint
coalitions in a way that all D2D pairs in the same coalition
can reuse the channels of each other. We derive the optimal
coalitions by means of the dynamic programming reaching
a theoretical maximum sum capacity while each D2D pair
is still guaranteed to receive at least Cmin.

• Since the dynamic programming is of a high complexity,
we also propose a sequential bargaining game to determine
the coalitions of the D2D pairs mutually reusing mul-
tiple channels. The heuristic sequential bargaining-based
approach is of a low complexity and reaches a close-to-
optimal performance.

• In order to facilitate the channel reuse in an efficient way,
we analytically derive the optimal initial channel bandwidth
allocation for the D2D pairs in the dedicated mode if
interference from other cells is considered.

• Furthermore, we analytically determine the optimal allo-
cation of the DUEs’ transmission power over the reused
channels within the coalitions. Since the defined opti-
mization problem for power allocation is not convex, we
approximate the problem to the convex one and we discuss
the assumptions under which this approximation is realistic.

• We demonstrate that the proposed solution combining the
optimal allocation of the bandwidth available to the D2D
pairs, the novel reuse of multiple channels by multiple D2D
pairs exploiting sequential bargaining game, and the optimal
power allocation significantly outperforms state-of-the-art
solutions and reaches close-to-optimal sum capacity of the
D2D pairs. Moreover, we show that our proposed algorithm
is of a low complexity and exhibits very short convergence
time. This allows its implementation in real networks.

Note that a basic idea of the sequential bargaining solution
for the coalitions’ creation in its simplified version without
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any optimization and also without the optimal bandwidth and
power allocations is presented in our prior conference paper
[35].

The rest of the paper is organized as follows. In Section
II, the system model is described and the targeted problem is
formulated. In Section III, the proposed resource allocation
scheme for D2D communication in the dedicated mode is
presented. The simulations results are discussed in Section
IV. Last, Section V concludes the paper and outlines possible
future research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model and, then,
we formulate the problem, which is solved later in the next
sections of this paper.

A. System model

In our model, N D2D pairs are uniformly deployed within
an area. Each D2D pair is composed of one DUET and
one DUER. The DUET and the DUER in a single D2D
pair are fixed for a specific time interval (such as, e.g., a
communication session during which the transmitter sends
data to the receiver). This assumption is in line with the
common purpose of the D2D communication when a high
amount of data is transmitted from one device to another, as
assumed in, e.g., [36]. The distance d between the DUET

and the DUER creating the D2D pair is at most equal to
a maximal distance dmax (i.e., d ≤ dmax) guaranteeing a
reliable D2D communication similarly as considered, e.g., in
[38]–[40]. Thus, the scenario where the DUET and the DUER

are not able to communicate directly and data is sent in a
conventional way via the gNB (i.e., if d > dmax) is out of the
scope of this paper.

The whole bandwidth B dedicated for D2D communication
is split into K = N channels (as in [7] and [8]) to serve all
N D2D pairs. The capacity of the n-th D2D pair at the k-th
channel (Cn,k) is defined as:

Cn ,k = Bk log2
(
1 + γn ,k

)
= Bk log2

©­«
1 +

pn ,k gn ,n

σoBk +
∑

t∈Nk
t,n

pt ,kgt ,n + Id

ª®®¬
(1)

where Bk is the bandwidth of the k-th channel, γn,k is the
signal to interference plus noise ratio (SINR) of the n-th
D2D pair at the k-th channel, pn,k is the transmission power
of the n-th DUET at the k-th channel, gn,n is the channel
gain between the n-th DUET and the n-th DUER, pt ,k is the
transmission power of the t-th DUET at the k-th channel, gt ,n
is the channel gain between the t-th DUET and the n-th DUER,
Nk represents the set of D2D pairs communicating at the k-th
channel, σo is the white noise power spectral density [41],
and Id stands for the background interference received from
adjacent cells. The background interference is measured by the
receiver of each D2D pair and reported to the gNB. As this
interference represents the sum interference from all sources
(namely the interference from neighboring gNBs and UEs in
other cells), it can be derived from RSRP/RSRQ reported even
in a conventional network according to 3GPP. Note that we

focus on the dedicated mode, where the D2D pairs experience
no interference from the CUEs in the same cell. Consequently,
we leave the CUEs out of the model.

We assume, without loss of generality, that the same min-
imal communication capacity Cmin is guaranteed to all D2D
pairs. Based on [7] and [8], Cmin is defined as the minimal
capacity that can be guaranteed to the D2D pair with the worst
SINR if the total bandwidth (spectrum) is split among the N
D2D pairs proportionally to gn,n (i.e., Bn =

gn ,n∑n=N
n=1 gn ,n

). Then,
Cmin is defined as:

Cmin =
gmin
n,n∑n=N

n=1 gn,n
B log2

©­­«
1 +

Pmax g
min
n,n

σo
gmin
n ,n∑n=N

n=1 gn ,n
B + Id

ª®®¬
(2)

where gmin
n,n is the minimal channel gain among all D2D pairs,

i.e., gmin
n,n = min{gi,i}, ∀i = 1, . . . ,N , and Pmax is the maximal

transmission power that can be used by the D2D pair over
all channels. Note that Pmax in (2) is considered in order to
achieve the highest possible Cmin that can be guaranteed to
each D2D pair.

As in many recent papers (e.g., [16],[17],[42]), we also as-
sume full knowledge of channel state information (CSI) in our
system. Although this assumption can be seen too demanding
due to the high signaling overhead and the impracticality in
real networks, there are already works that relax this problem
and allow to obtain all channel gains among D2D pairs at
a very low cost. For example in [43], deep neural networks
are exploited to predict the D2D channel gains with a very
high accuracy in both line-of-sight and even non-line-of-sight
scenarios with no additional overhead. Moreover, we consider
a fully controlled D2D communication, thus the gNB is aware
of the devices under its coverage in order to manage them [2].

B. Problem formulation

The objective of this paper is to maximize the sum com-
munication capacity of the D2D pairs in the dedicated mode
while the minimum capacity is guaranteed to each D2D pair.
The sum capacity is maximized by an efficient allocation of
the communication channels and their reuse in such a way
that multiple channels can be reused by multiple D2D pairs.
We denote the set of L coalitions of the D2D pairs as CS =
{cs1, cs2, ...csL}. Each coalition csl includes all D2D pairs that
mutually reuse all channels allocated to all D2D pairs in csl .
The coalitions are formed so that the sum capacity of the D2D
pairs is maximized while the minimal capacity Cmin of each
D2D pair is still guaranteed. To improve the sum capacity,
we also determine a vector B of the communication channels
bandwidths for all N D2D pairs, i.e., B = {B1,B2, . . . .,BN }.
To exploit the overall bandwidth allocated to each D2D pair
(including reused channels) efficiently, we further find a set of
vectors P = {P1,P2, ...,PN }, where every vector Pn contains
the transmission powers of the n-th D2D pair at all channels
allocated to this pair. Note that every vector Pn is of |Kn |
length, where Kn is the subset of channels allocated to the
n-th D2D pair. Hence, Kn contains all channels of all D2D
pairs, which are in the same coalition with the n-th pair. The
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optimization problem over B, CS, and P is then formulated
as:

B∗,CS∗,P∗ = argmax
B,CS,P

∑n=N
n=1

∑
k∈Kn

Bk log2
(
1 + γn,k

)
(3)

s.t.
∑
k∈Kn

Bk log2(1 + γn,k) ≥ Cmin ∀n ∈ {1,2, ...N} (a)

0 < Bn ≤ B ∀n ∈ {1,2, ...N} (b)
∑n=N

n=1 Bn = B (c)
∑

k∈Kn
pn,k = Pmax ∀n ∈ {1,2, ...N} (d)

where B∗, CS∗, and P∗ are the optimal B, CS, and P,
respectively. The constraint (a) ensures that the sum capacity
of any D2D pair over all the channels allocated to this pair
(including the reused channels within the coalition) is not
below Cmin, (b) limits the size of each channel with respect
to the maximum available bandwidth B, (c) guarantees that
the sum of all channel bandwidths is equal to B (i.e., that the
dedicated spectrum is fully utilized to maximize the capacity),
and (d) limits the sum transmission power of each D2D pair
over all channels to the maximal allowed transmission power
Pmax .

The problem defined in (3) is a non-convex mixed integer
non-linear programming (MINLP). The problem is MINLP
due to following reasons. First, the objective function and con-
straint (a) are both non-linear. Second, the optimization is done
over mixed integer and non-integer variables. More precisely,
the coalitions’ formation can be seen as an integer program-
ming problem [46] optimizing integer variables (representing
the creation of the coalitions) while the bandwidth allocation
together with the power allocation represent continuous non-
integer variables. The MINLP problems are known to be NP-
hard and, thus, solving all three sub-problems jointly in an
optimal way is very difficult. Thus, in the next section, we
solve the optimization problem from (3) by determining the
bandwidth allocation, the coalitions’ formation and the power
allocation.

III. THE PROPOSED RESOURCE ALLOCATION SCHEME

To solve the optimization problem from (3), we separate
it into three sub-problems. First, we analytically derive the
optimal channel bandwidth allocated to each D2D pair in
the initial phase (i.e., determination of B). Second, we solve
the coalitions’ creation problem allowing the reuse of mul-
tiple channels by multiple D2D pairs (i.e., determination of
CS). The channel reuse problem is solved by the dynamic
programming, which composes the optimal coalition structure
and demonstrates an upper bound performance. However, the
dynamic programming is of a high complexity, which makes
it impractical for real networks. Thus, we propose also a low-
complexity algorithm based on the sequential bargaining to
handle the reuse. Third, we determine the optimal power allo-
cation for the D2D pairs at each channel (i.e., determination
of P). Note that, in the following subsections, the solutions

solving the sub-problems of bandwidth allocation, coalitions’
formation, and power allocation are denoted as B∗∗, CS∗∗, and
P∗∗, respectively.

A. Initial allocation of channel bandwidth for individual D2D
pairs

Before the channel reuse by D2D pairs takes place, each
D2D pair is allocated with a dedicated channel of a certain
bandwidth to guarantee the required channel capacity Cmin

for all D2D pairs. This channel can be then reused by other
pairs in the main phase of the proposed approach (described in
the next subsections). The sub-problem of optimizing B from
the problem defined in (3) is reformulated as:

B∗∗ = argmax
B

∑n=N
n=1 Bnlog2

(
1 + γn,n

)
(4)

s.t. Cnr
n,n = Bnlog2

(
1 + γn,n

) ≥ Cmin ∀n ∈ {1,2, ...N} (a)

(b), (c) taken from (3)

where γn,n =
pn ,n gn ,n

σoBn+Id
is the SINR of the n-th D2D pair at

the n-th dedicated channel with no-reuse and the constraint
(a) ensures that the capacity of every n-th D2D pair at the
n-th dedicated channel with no-reuse (Cnr

n,n) is, at least, equal
to the minimal required capacity Cmin. It is worth to mention
that each D2D pair can transmit with Pmax (i.e., pn,n = Pmax)
at its allocated channel in this initial phase, because only one
channel without reuse is exploited by each D2D pair and the
interference among the D2D pairs is absent in this phase.

The solution of (4) for the case with no interference from
the adjacent cells (i.e., with Id = 0) is derived in [7] and [8].
However, in a realistic case with a dense deployment of cells
and a high density of communicating UEs, the interference Id
is significant with respect to the noise and cannot be neglected.
In such case, the solution proposed in [7] and [8] is not
optimal. Thus, we determine the optimal allocation of the
bandwidth for the channel assigned to each D2D pair initially
(without channel reuse) in the following proposition.

Proposition 1. Considering the background interference from
the adjacent cells Id , the optimal allocation of the bandwidth
Bn to the n-th channel assigned to the n-th D2D pair guar-
anteeing the fulfillment of Cmin for all D2D pairs is:

Bn =
Cmin

log2
©­«
1 + Pmaxgn ,n

σo
gmin
n ,n∑n=N

n=1 gn ,n
B+Id

ª®¬
(5)

Proof. The proof of Proposition 1 is in Appendix A. �

If
∑n=N

n=1 Bn < B after the channel allocation, the rest of
the bandwidth is added to the channel of the D2D pair with
the highest gn,n in order to maximize the sum capacity of
the D2D pairs as defined in (4). Consequently, the highest
capacity in the initial allocation phase is achieved by the D2D
pair with the best channel quality similarly like in [7] and
[8]. Then, with a high probability, this particular D2D pair
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forms a coalition with other pairs during the generation of the
coalition structure (as described in the next subsection). Thus,
the above-mentioned assignment of the rest of the bandwidth
is beneficial for other D2D pairs as their capacity can be
significantly enhanced as well by joining the coalition, which
contains the D2D pair with the highest gn,n.

The initial resource allocation is centrally managed by the
gNB based on the knowledge of the channel quality of all
D2D pairs in a similar way as assumed, e.g., in [16], [17], or
[42].

B. Optimal coalition structure generation for channel reuse

After the initial channel bandwidth allocation to the D2D
pairs, the reuse of channels is implemented. To determine
which D2D pairs should mutually reuse their channels, we
formulate the problem of coalitions’ formation. The problem is
understood as a coalition structure generation problem in game
theory [44]–[46]. For any set of players, the coalition structure
is a set of coalitions CS= {cs1, cs2, . . . , csL} such that each
element csl ∈ CS is the set of players composing one coalition.
Note that each player can belong only to a single coalition.
For our channel reuse case, the problem is to find the coalition
structure over N D2D pairs in such a way that the D2D pairs
in each coalition mutually reuse the channels of each other.
Based on this, our goal is to find the coalition structure that
maximizes the sum capacity of D2D pairs while guaranteeing
the minimal capacity required by each pair. Consequently, the
sub-problem of optimizing CS, from the problem defined in
(3), is written as:

CS∗∗ = argmax
CS

∑n=N
n=1

∑
k∈Kn

Bk log2
(
1 + γn,k

)
(6)

s.t. (a) − (d) taken from (3)
Fig. 1 illustrates the channel reuse problem presented as

a coalition structure generation with an example of three
D2D pairs (i.e., three players’ coalition structure game). The
example represents all possible coalitions created for the
problem of three D2D pairs. Note that the D2D pairs within the
same coalition transmit at the same time over all channels of
all D2D pairs in the same coalition. For example, if three D2D
pairs create one coalition (as in Fig. 1e), all these D2D pairs
transmit over all three channels simultaneously and mutually
interfere with each other. The D2D pairs in different coalitions
are supposed to transmit at the same time, but at different
channel(s), thus no interference occurs among the different
coalitions.

To find the optimal solution for the problem defined in (6)
and to determine the optimal structure of the coalitions, the
dynamic programming [46][47] is a suitable solution. In the
dynamic programming, the values of a gain function V for
each possible coalition csx composed of X D2D pairs (where
X ∈ {1,2, . . . ,N}) should be calculated. However, the problem
defined in (6) is different from the general coalition structure
generation problems due to the constraint (a). Therefore, in
order to solve (6), the gain function should take the constraint
(a) into account to guarantee Cmin for each D2D pair even

Fig. 1: The possible coalitions’ creation for three D2D pairs.
Note that the dashed arrows represent the interference intro-
duced by the channel reuse.

after the channel reuse. Thus, we build up the gain function
V(csx) of the coalition csx , which is composed of X D2D
pairs, as follows:

V(csx) =
{

Ccsx if CDy > Cmin, ∀Dy ∈ csx
0 otherwise

(7)

where Ccsx is the sum capacity of all D2D pairs in the coalition
csx mutually reusing the channels of all D2D pairs in csx ,
and CDy is the sum capacity of the D2D pair Dy over the
communication channels, including the reused channels, in csx
(note that Dy represents the y-th D2D pair from the coalition
csx). Note that to calculate (7), the transmission powers of the
D2D pairs over the reused channels are optimized based on
subsection III-D presented later in this paper.

The dynamic programming-based solution is of a high com-
plexity as the general complexity of dynamic programming
is O(3N ), where N is the number of D2D pairs. Thus, such
solution is not practical for the real networks and we propose
a low-complexity algorithm in the next subsection to solve the
coalitions’ creation problem.

C. Low-complexity channel reuse based on sequential bar-
gaining

In this subsection, we describe the proposed low-complexity
algorithm for the channel reuse to solve (6). The proposed
solution is based on the sequential bargaining allowing multi-
ple D2D pairs to reuse multiple channels simultaneously. This
reuse is enabled by the fact that all D2D pairs in the same
coalition always use all channels allocated to them previously
during the initial allocation phase (as shown in Fig. 1e).
Moreover, all channels in the coalition are used simultaneously
by all D2D pairs in that particular coalition.

Before the proposed sequential bargaining process is initi-
ated, we calculate the utilities for all possible coalitions of any
two D2D pairs (Di and Dj) in the system. The utility function
is defined as:

Ui, j =



−∞ if Ci,i + Ci, j < Cmin

−∞ if Cj ,i + Cj , j < Cmin

Gi, j otherwise
(8)

where Ci,i (Cj ,i) and Ci, j (Cj , j) are the capacities of the i-th
( j-th) D2D pair at the i-th and j-th channels, respectively. If
the reuse would lead to a decrease in the capacity below Cmin
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for any of the D2D pairs, the coalition is not allowed and
the utility function Ui, j is set to −∞, see (8). In contrast, if
both D2D pairs keep the capacity at least at Cmin, a gain Gi, j

introduced by the new coalition of the pairs Di and Dj , even
if it is negative, is calculated as:

Gi, j = (Ci,i + Ci, j + Cj ,i + C j, j) − (Cnr
i,i + Cnr

j , j) (9)

where Cnr
i,i and Cnr

j , j correspond to the capacities of the i-th
and j-th D2D pairs without channel reuse (see Section III-A).
Note that from the structure of the utility function Ui, j and
from (9), we observe that Ui, j = Uj ,i .

Remark 1: If the D2D pairs Di and Dj form togther one
coalition, the communication channel ki is reused by the pair
Dj while the pair Di reuses the channel k j . In other words,
both Di and Dj communicate over both channels ki and k j at
the same time.

Remark 2: Since the utility Ui, j in (8) is calculated for
any two D2D pairs Di and Dj creating one coalition and
accessing the two shared channels ki and k j assigned orig-
inally to each of them, the transmission powers pi,i , pi, j ,
pj ,i , and pj , j that are required to derive Ui, j are calculated
as px,y =

By

Bx+By
pmax , where x and y stand for either i or j

to represent all four powers pi,i , pi, j , pj ,i , and pj , j . For more
details on the power allocation, please refer to the optimal
power allocation derived later in Section III-D).

After obtaining the individual utilities Ui, j , these are in-
serted into a bilateral utility matrix U:

U =


−∞ . . . U1,N
...

. . .
...

UN ,1 . . . −∞


(10)

where the diagonal elements are set to −∞ (i.e., Ui,i = −∞).
The reason for setting Ui,i = −∞ is that the diagonal elements
contain the utilities of the i-th D2D pair making a coalition
with itself. Such coalition is automatically disregarded as, in
principal, a D2D pair cannot make any new coalition with
itself. The reason why we do not set the diagonal values simply
to “0” is that in some special cases even the coalitions with
slightly negative utilities can be initially created as long as
Cmin is guaranteed. In contrast, the elements Ui, j equal to −∞
(i.e., the elements for which Cmin is not guaranteed as well
as all diagonal elements) are omitted in the reminder of the
process, because these should not lead to the creation of any
coalition. This way, the complexity of the whole bargaining
process is significantly decreased, as the search space (i.e., the
number of the possible coalition structures among the D2D
pairs) is reduced.

After all the entries in U equal to −∞ are removed, the
rest of the elements are sorted in a descending order taking
into account that every couple of symmetric elements is
considered as one element (Ui, j = Uj ,i). The sorting serves
further to indicate the priorities for coalitions’ creation so
that the coalitions yielding the highest capacity gains are
created preferentially. This ordering is motivated by the fact
that a higher bilateral utility represents, in our case, a lower
interference among two D2D pairs. Thus, these D2D pairs
are expected to end up in the same coalition also in the case

of optimal coalitions created by the dynamic programming.
Hence, it is likely that the proposed low-complexity solution
leads to a close-to-optimal performance.

The sorted elements Ui, j from U represent a vector of sub-
games (denoted as U∗) that are played sequentially over time
in the way that one sub-game is played in every time step.
Consequently, when the sub-game s is played, the coalition
structure CSs is created resulting in the sum capacity CCSs . At
the beginning of the algorithm, the sub-game is played only
between two D2D pairs (e.g., Di and Dj) over their respective
channels (ki and k j) allocated in the initial phase. In this case,
the coalition is simply created if both Di and Dj agree to reuse
their dedicated channels among each other. However, when
some coalitions already exist, the sub-game is extended to all
members of all related coalitions. Thus, if the pair Di wants
to join the coalition csx composed of two or more other D2D
pairs, the sub-game s is played between the pair Di and all
the D2D pairs already included in the coalition csx . The pair
Di joins the coalition csx if and only if the pair Di as well as
all pairs in csx agree. Each D2D pair Dj agrees to accept the
pair Di into csx if the capacity of the pair Dj is not lower than
Cmin and if the sum capacity of the D2D pairs composing CSs
is higher than the sum capacity of the D2D pairs composing
CSs−1 (i.e., if CCSs > CCSs−1 ); where CSs−1 is the coalition
structure created in the previous sub-game s − 1 with the sum
capacity of CCSs−1 .

Furthermore, to get closer to the creation of the optimal
coalitions, we enhance the proposed sequential bargaining
process by testing to create larger coalitions even if the
coalitions of two pairs are not beneficial (i.e., CCSs < CCSs−1 ).
Thus, we try the coalitions of three pairs even if the previous
coalitions with two pairs can lead to a decreased performance.
In other words, if the creation of the coalitions with any
two pairs leads to a negative gain (all bilateral utilities are
negative), the two D2D pairs playing the first sub-game in the
sorted utilities are forced to test the reuse of their channels
even if the sum capacity is decreased. Then, the rest of the
sub-games are played out normally as described before and
the D2D pair is added only if the sum capacity of D2D pairs
is increased. This way, we keep the possibility of making
coalitions with more than two D2D pairs and we prevent the
possibility that the algorithm gets stuck in local optima.

In the last step, the formed coalition structure CSs is
compared with two other coalition structures: i) CSall = cs1
where all D2D pairs create one coalition cs1 and reuse
all the channels; ii) CS0 = {cs1, ..., csN } where each D2D
pair represents a stand-alone coalition and no channel reuse
is exploited (i.e., the initial allocation from Section III-A).
Among the three coalition structures CSs, CSall, and CS0, the
one that reaches the highest sum capacity of D2D pairs is
chosen. Note that the sum capacity of CSall is set to zero if
CSall does not guarantee Cmin for all D2D pairs. There are
two reasons for the inclusion of this last step. The first reason
is a potential consequence of the special case (described in
previous paragraph) when all elements of (10) are negative
and the sum capacity decrement is acceptable in the first
sub-game. This sum capacity decrement makes it necessary
to compare the sum capacity in the final formed coalition
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structure CSs with the sum capacity achieved by the initial
allocation (i.e., CCS0 ), in order to guarantee that CCSs > CCS0 .
The second reason is, generally, the very low probability of
reaching the coalition structure where all D2D pairs reuse
all of the available channels (i.e., CSall) through the played
sub-games. Nevertheless, with a very low density of D2D
pairs, the probability that the D2D pairs can reuse all the
channels and compose one coalition is higher. Thus, selecting
the best-performing coalition structure among CSs and CSall
can further improve the performance.

The above-described algorithm for the sequential
bargaining-based channel reuse is summarized in Algorithm
1. The algorithm is supposed to run centrally at the gNB (as
explained in Section II.A). Thus, no special synchronization
between the D2D links is needed with respect to the common
D2D communication fully controlled by the network [2],
because all the D2D pairs within the coalition use all the
channels of each other at the same time. Note that within
every step from the previously described coalitions’ formation
solution, the capacities are calculated (line 8 from Algorithm
1) with the optimized transmission power allocation derived
in the following subsection III-D.

D. Power allocation to channels

In this subsection, we aim to optimize the power allocation
and set the transmission power of every D2D pair at every
channel allocated to this pair based on the created coalition
structure. We take into account the maximum power budget
for each D2D pair to fulfill the constraint (d) in (3) and (6).
The problem of power allocation is non-convex. Thus, an

Algorithm 1 Sequential bargaining algorithm to solve channel
reuse problem for N D2D pairs

1: Estimate utility matrix U with size N × N
2: Eliminate utilities equal to −∞ from the matrix U
3: Sort remaining utilities in descending order into vector U∗
4: Initialize CS0 = {cs1, . . . , csN }; csi = {Di}, ∀i ∈
{1, . . . ,N}

5: for s = 1 : length(U∗) do
6: Sub-game is played between pairs Di ∈ csx and Dj ∈

csy where Ui, j ≡ U∗(s)
7: Update CSs (i.e., merge csx and csy into one coalition

csz)
8: Estimate all

∑
k∈Kn

Bk log2(1+γn,k) ∀n ∈ {1, ...N} and
corresponding CCSs

9: if ∃n ∈ {1, ...N} :
∑

k∈Kn
Bk log2(1 + γn,k) < Cmin or

CCSs < CCSs−1 then
10: if ∃s : U∗(s) > 0 or s , 1 then
11: CSs = CSs−1
12: end if
13: end if
14: end for
15: if in CSall ∃n ∈ {1, ...N} :

∑
k∈Kn

Bk log2(1+γn,k) < Cmin

then CCSall = 0 end if
16: CSs = {CSs ∈ {CSs,CSall,CS0} : CCSs =

max(CCSs,CCS0,CCSall )}

iterative method is required to solve such problem. However,
any iterative method would increase the time complexity of
the overall resource allocation scheme. Thus, we transform
the problem to a convex one by maximizing the capacity of
each D2D pair separately. In other words, the transmission
power of each D2D pair at each individual channel allocated
to this pair is set in a selfish way so that the sum capacity of
every single D2D pair is maximized.

The problem of maximizing the sum capacity of the D2D
pair Dn over all |Kn | channels reused by this pair Dn is
formulated as:

max(Cn) = max

(∑
k∈Kn

Bk log2

(
1 + pn ,kgn ,k

σoBk+
∑
t∈Nk
t,n

pt ,k gt ,k+Id

))

(11)

s.t.
∑
k∈Kn

pn,k = pmax (a)

The optimization problem (11) is, still, not convex and, thus,
it cannot be solved analytically in a simple way. However, if
the channel between the DUET and the DUER is of a high
quality, we can assume that γn,k =

pn ,kgn ,n

σoBk+
∑
t∈Nk
t,n

pt ,k gt ,k+Id
>>

1 in (11), similarly as in [7]. Note that this assumption can be
justified in most of the cases since: i) the DUET and the DUER

are typically close to each other due to the requirements on
the efficiency of the D2D communication (see Section II-A.),
ii) the transmission power of the DUET is set to Pmax , and
iii) the coalitions are formed to maximize the sum capacity of
D2D pairs leading to a relatively low interference among D2D
pairs in the same coalition (i.e.,

∑
t∈Nk
t,n

pt ,k gt ,k is low). Then,

we can adopt the simplification log2(1 + γn,k) ≈ log2(γn,k).
In the cases with a low SINR, this approximation might not
hold. Nevertheless, if the D2D pairs are interfering with each
other significantly, these are not encouraged to be in the same
coalition as the bilateral utilities of these (in (8)) have a high
probability to be negative. Thus, the problem of maximizing
Cn is simplified to:

max(Cn) = max

(∑
k∈Kn

Bk log2

(
pn ,kgn ,k

σoBk+
∑
t∈Nk
t,n

pt ,k gt ,k+Id

))

(12)
s.t.

∑
k∈Kn

pn,k = pmax

The maximization problem in (12) is convex, thus, the
optimum is determined as:

δ Cn

δ pn,k
= 0; (13)

After solving (13), we get the power allocation to the individ-
ual reused channels as:

pn,k =
Bk∑

k∈Kn
Bk

pmax (14)

By deriving the transmission powers of all D2D pairs over
all the corresponding channels based on (14), a sub-optimal
power allocation (P∗∗) is reached. The transmission power pn,k
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defined in (14) is inserted to (9) for the determination of the
gains Gi, j and to derive the bilateral utilities Ui, j in (8) (see
Remark 2 in Section III-C).

IV. PERFORMANCE EVALUATION

The simulations are carried out in Matlab to evaluate the
performance of the proposed resource allocation scheme and
to compare it with the competitive algorithms. To this end, the
simulation scenario and parameters are presented in the next
subsection. Then, the competitive algorithms and performance
metrics are defined. Last, the simulation results are presented
and discussed.

A. Simulation scenarios

We consider an area of 500×500 m2. The simulation results
are averaged out over 1000 simulation drops. For each drop, N
DUET are uniformly distributed within the area. The position
of the DUER for each D2D pair is generated with respect to the
position of the DUET to guarantee that the distance between
the transmitter and the receiver is not higher than dmax . The
distance between the transmitter and the receiver is randomly
generated with the uniform distribution between 0 and dmax .
The angle of the receiver with respect to the transmitter is
also uniformly generated between 0◦ and 360◦. The number
of D2D pairs remains the same for all 1000 drops, but we run
different 1000 drops for every tested value of N from 5 to 50.
Note that the CUEs are not considered as these operate in a

different band in case of the dedicated mode as explained in
Section II-A.

For the modeling of radio channel, we follow 3GPP recom-
mendation for D2D communication defined in [48]. Hence,
the path loss model is defined as PL = 89.5 + 16log2(d),
where d is the distance between the transmitter and the
receiver. The maximal transmission power for every D2D
pair is set to Pmax = 20 dBm. The background interference
from neighboring cells Id is modeled randomly for each
drop following a normal distribution with a mean value of
−80 dBm and a standard deviation of 15 dB. This level of
interference from neighboring base stations represents a high
interference scenario, which can be expected in future mobile
networks with dense small cells deployment [37]. The detailed
parameters of the simulations are summarized in Table I.

TABLE I: Simulation parameters.

Parameter Value
Carrier frequency fc 2 GHz
Bandwidth B 20 MHz
Noise power spectral density σo −174 dBm/Hz
Interference level from
neighboring cells Id N(−80, 15) dBm
Number of D2D pairs N 5 − 100
Maximal transmission power
of D2D pair Pmax 20 dBm
Default maximal distance between
DUET and DUER dmax 50 m ([38]–[40])

B. Competitive algorithms and performance metrics

To the best of our knowledge, there is no solution targeting
the reuse of multiple channels by multiple D2D pairs in the
dedicated mode with the goal of maximizing the sum capacity
of D2D pairs and guaranteeing the minimal capacity for each
individual D2D pair. Nevertheless, we compare our proposed
algorithm with the schemes that target similar objectives or ad-
dress similar problem. Thus, the proposed resource allocation
algorithm, encompassing the optimal channel bandwidth allo-
cation (derived in Section III-A), the channel reuse algorithm
(Section III-B and III-C), and the optimal power allocation
(Section III-D), is compared with the following state-of-the-
art schemes:
1) No reuse [7],[8]: This scheme, designed for the dedicated

mode, distributes whole available bandwidth B among the
D2D pairs in the way that communication capacity is
maximized while Cmin is guaranteed to each D2D pair.
However, the channels cannot be reused by the D2D pairs
and each channel is occupied by just one pair. Note that the
channel allocation in [7] and [8] is not optimal if there is
the background interference Id as considered in our case.

2) Single reuse [9]: In this algorithm, the total bandwidth is
divided into several channels with equal bandwidths (we
consider six channels as in [9]). Every channel is allocated
to a single D2D pair, i.e., six D2D pairs are served. The
Hungarian algorithm is implemented to solve a matching
problem between the six channels and the unserved D2D
pairs to enable the D2D channel reuse. As defined in [9],
up to two D2D pairs can reuse each channel. Thus, the
solution allows twelve (2×number of channels) D2D pairs
to be served, while the rest of the D2D pairs are provided
with no resources. Even if this leads to an unfairness among
the D2D pairs, it also yields a high capacity for the served
D2D pairs as only those having a high channel quality
between DUET and DUER access the available channels.

3) Empty channel protocol (ECP) [10]: For this case, the
total bandwidth is also divided into several channels with
equal bandwidth (in our case six channels as in [10]).
First, every channel is allocated to a single D2D pair (i.e.,
six D2D pairs are served). Then, empty channel protocol
adds the unserved D2D pairs to the channels so that all
unserved D2D pairs reuse the channels already assigned to
other D2D pairs. Note that the D2D pairs are not allowed
to exploit multiple channels simultaneously and only one
channel can be used by every D2D pair. Still, each channel
can be reused by multiple D2D pairs at the same time.

The performance of the proposed and competitive algo-
rithms is assessed by means of the sum capacity of D2D pairs
defined as C =

∑n=N
n=1

∑
k∈Kn

Cn,k . We also investigate the
percentage of satisfied D2D pairs, that is, the D2D pairs for
which the minimal capacity is granted (i.e., the percentage of
the D2D pairs with C ≥ Cmin).

C. Simulation results

In this section, we first compare the performance of the
proposed resource allocation scheme with the competitive
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state-of-the-art algorithms. Then, we analyze thoroughly the
proposed scheme and we show the added value of the indi-
vidual sub-parts of the proposal.

1) Comparison of the proposed scheme with competitive
algorithms: In this subsection, we compare the performance
of the full proposed resource allocation scheme, containing
optimal bandwidth allocation, channel reuse based on sequen-
tial bargaining (SB), and optimal power allocation (denoted
as “Proposal with SB (Alg. 1)”), with all above-mentioned
competitive algorithms. Also, we show the performance of the
optimal solution, where the optimal bandwidths are allocated
to the channels, the optimal channels are allocated to the
D2D pairs via the dynamic programming (i.e., the optimal
coalitions are created) (Section III-B), and finally, the optimal
powers are allocated to the D2D pairs (denoted as “Proposal
- optimum”). Although the optimal solution is not practical
due to the high complexity of the dynamic programming,
it is used as a benchmark for our scheme as it achieves
the maximal possible sum capacity. In addition, we also
test the performance of the sub-optimal greedy algorithm for
the creation of the coalitions with a complexity equal to
O(N3). The greedy algorithm outlined for a general coalitions’
creation in [49] is modified to guarantee Cmin and we combine
it with the optimal initial channel allocation and the optimal
power allocation of our proposed scheme. Hence, we denote
the algorithm as “Proposal with m-greedy”).

Fig. 2 illustrates the impact of the number of D2D pairs on
the sum capacity of all D2D pairs. The capacity is increasing
for the proposed as well as competitive algorithms with more
D2D pairs in the system despite the fact that the interference
among D2D pairs increases. The reason for this phenomenon
is twofold. First, with the increasing number of D2D pairs,
more options of the D2D pairs’ coalitions are available to
provide a higher benefit from the reuse. Second, with the
increasing number of D2D pairs, these pairs use generally
narrower channel(s) while the total transmission power over
these channels remains the same (the overall transmitting
power across all channels is not changed). Consequently, SINR
at these channels increases with a decrease in the channel

Fig. 2: Sum capacity of D2D pairs over number of D2D pairs
for dmax = 50 m.

bandwidth, because the noise level decreases proportionally
to the channel bandwidth (see (1)). This trend, i.e., increasing
SINR with a narrower channels goes against the trend of a
potential higher interference among the D2D pairs in the same
coalition. In case the interference would be too strong (even
potentially leading to a decrease in the sum capacity), there
would be no benefit to create such coalition and the coalition
is not created. Hence, the positive impact of noise reduction
with a higher number of D2D pairs always overweights the
interference and the sum capacity does not start decreasing
even with a large N .

We see that the sum capacity of all three competitive
schemes saturates quickly and reaches approximately 223
Mbps (ECP), 297 Mbps (Single reuse), and 294 Mbps (No
reuse) for 50 D2D pairs. The proposal with sequential bargain-
ing leads to a significant gain with respect to all competitive
algorithms. The gain ranges from 20% to 200%, from 55% to
297%, from 55% to 295%, when compared to the No reuse,
Single reuse, ECP algorithms, respectively. The gain of the
proposal with respect to the existing solutions increases with
the number of D2D pairs, since a higher number of D2D
pairs leads to more opportunities for the multiple reuse in
case of our proposed scheme. Note that the proposal with m-
greedy, also, outperforms the existing solutions, but its sum
capacity is from 2% to 13% below the sequential bargaining
approach. Besides, Fig. 2 also shows the performance of the
proposal with the optimal coalitions’ creation by the dynamic
programming. Due to the very high complexity, we cannot
show results for more than ten D2D pairs as the results
cannot be obtained in a realistic time frame. The difference
between the optimal coalition structure derived by dynamic
programming and the low-complexity sequential bargaining
approach is negligible (1.2% for 10 D2D pairs) and the low-
complexity solution reaches almost optimal performance. Note
that such a good performance of the proposed sequential
bargaining with respect to the optimum is thanks to the sorting
of the bilateral utilities in descending order and, also, allowing
the creation of the coalitions with negative utilities if no
bilateral utility is positive, see Section III.C.

Fig. 3: Sum capacity of D2D pairs over maximum distance
between DUET and DUER of the same D2D pair (N = 10).
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(a) (b)

Fig. 4: Minimum capacity Cmin that can be guaranteed to all D2D pairs according to (2) (a), and percentage of D2D pairs for
which Cmin is guaranteed (b).

Furthermore, we investigate the impact of the maximum
distance between the DUET and DUER (i.e., dmax) on the
sum capacity in Fig. 3 for N = 10. It is obvious that
the longer dmax is, the lower sum capacity is observed.
The reason for such behavior is that the signal between the
DUET and the DUER is more attenuated for a larger dmax

and the D2D communication becomes less efficient. Figure
3 also shows that the proposal with sequential bargaining
outperforms all competitive algorithms significantly and also
overcomes the proposal with m-greedy. The gain introduced
by the proposed algorithm with sequential bargaining ranges
from 16.4% to 180%, from 53% to 166%, from 73% to
187% in comparison to the No reuse, Single reuse, and
ECP algorithms, respectively. The proposal with m-greedy
reaches from 2% to 10% lower sum capacity with respect
to the sequential bargaining. The gain is less significant for
a larger dmax as the interference among D2D pair is more
significant with respect to the useful signal and the possibility
of sharing communication channels decreases. From Fig. 3,
we further see that the proposed low-complexity algorithm
with sequential bargaining reaches almost the optimal capacity
obtained by the dynamic programming disregarding dmax .

The proposed algorithm is designed to guarantee the min-
imal capacity Cmin to all D2D pairs (see (3)). The minimal
capacity Cmin is derived as the capacity that is guaranteed
to all D2D pairs in the case of no reuse (according to [7]
and [8] as explained in (2) in Section II-A). The minimal
capacity Cmin decreases with the number of D2D pairs N ,
since the bandwidth B is divided among a higher number of
D2D pairs (see Fig. 4a). In Fig. 4b, we verify the fulfillment of
the constraint on Cmin. The proposals with optimal coalitions,
sequential bargaining as well as with m-greedy guarantee Cmin

for every D2D pair over all investigated numbers of D2D
pairs in all simulation drops. Thus, although every D2D pair
is exposed to interference from other D2D pairs in the same
coalition, there is no D2D pair that experiences a capacity
below Cmin. Note that there is no difference between the per-

centage of the satisfied D2D pairs for the proposed algorithm
with optimal coalitions’ creation and sequential bargaining-
based coalitions’ creation. Also No reuse algorithm (proposed
in [7] and [8]) satisfies Cmin for all D2D pairs. In contrast, the
Single reuse algorithm and the EPC do not guarantee Cmin to
all D2D pairs due to the equal channel bandwidth allocation
and limited channel reuse.

2) Analysis of the proposed resource allocation scheme: In
this subsection, we analyze the impact of individual sub-parts
of the proposed scheme on the sum capacity of D2D pairs and
the contribution of individual sub-parts to the gains achieved
with respect to the competitive algorithms. To that end, we
show the impact of the following individual sub-parts of the
proposed algorithm:

1) Proposal - opt. BW: Illustrates the gain of stand-alone
optimal channel bandwidth allocation for scenario with the
background interference (Section III-A) while no channel
reuse is considered. This way we show the impact of
interference on the bandwidth allocation with respect to
[7] and [8], where the authors neglect this interference.

2) Proposal - reuse only: Performance of the stand-alone
proposed channel reuse (Section III-C) is demonstrated
on the top of the channel bandwidth allocation according
to [7], [8], i.e., if the n-th D2D pair has the bandwidth
Bn =

gn ,n∑n=N
n=1 gn ,n

B while the transmitting power among all
channels is distributed equally.

3) Proposal - reuse with opt. BW: One can expect that the con-
sideration of interference for the bandwidth allocation can
influence also the efficiency of the reuse phase. Thus, we
present this scheme in order to demonstrate the contribution
of the derived optimal bandwidth allocation (i.e., combined
Section III-A and Section III-C). As this algorithm also
assumes the equal power allocation over all channels, the
gain of the optimal power allocation over channels is
illustrated by the difference between this algorithm and the
proposal with sequential bargaining.

For the sake of Fig. 5 clarity, we do not show the per-
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Fig. 5: Impact of individual subparts of proposed algorithm
(bandwidth allocation, channel reuse, power allocation) on
sum capacity of D2D pairs (dmax = 50 m).

formance of the optimal coalitions’ creation and we depict
only the No reuse algorithm [7], [8], which serves as a basis
for the bandwidth allocation performance. We see that a high
gain ranging from 19.5% to 106% with respect to No reuse
algorithm is introduced by the reuse of multiple channels by
multiple D2D pairs (as proposed in Section III-C, in Fig. 5
labeled as ”Proposal - reuse only”). The gain is a result of
the proposed reuse of channels by the D2D pairs whenever
it is beneficial. In addition, Fig. 5 also shows that the gain
introduced by the optimal bandwidth allocation considering
the background interference (in Fig. 5 depicted as ”Proposal
- opt. BW” and derived in Section III-A) with respect to the
same approach disregarding the interference (i.e., No reuse
according to [7] and [8]) introduces only a gain of up to 8.1%
for N = 50. However, if the optimal bandwidth allocation
considering interference is applied together with the proposed
reuse (”Proposal - reuse with opt. BW” in Fig. 5), the synergy
effect of both leads to an additional gain of up to 22.5% added
on the top of the reuse gain. The reason for such gain of the
proposed optimal bandwidth allocation applied together with
the reuse is that the bandwidths of the individual channels
are derived with respect to the background interference. If
the interference from the adjacent cells is neglected for the
bandwidth allocation, the reuse phase is impaired by the non-
optimal bandwidth allocation and, consequently, some well-
performing coalitions are not established.

The impact of the optimal power allocation (determined in
Section III-D) is represented by the difference between two top
lines in Fig. 5 (”Proposal with SB (Alg. 1)” and ”Proposal -
reuse with opt. BW”). The additional gain with respect to No
reuse (up to 8.6%) is a result of the power allocation over the
channels assigned to each D2D pair taking into account the
inequality among the bandwidths of these channels.

In addition to the analysis of the impact of individual
subparts of the proposed algorithm, we also give more insight
into the size of the resulting coalitions. Cumulative distribu-
tion function of the number of coalitions resulting from the
proposed sequential bargaining game (see Section III-C) is

Fig. 6: Cumulative Distribution Function (CDF) of number of
coalitions created by the sequential bargaining for different
numbers of D2D pairs.

depicted in Fig. 6. In roughly 40% of the cases, less than ten
coalitions are created disregarding the number of pairs. This
relatively low number of coalitions indicates that there is a
high probability that multiple D2D pairs reuse the channels of
other D2D pairs. The figure shows that at least one coalition
is composed of more than one D2D pair (i.e., the channel(s)
are reused) in 90%, 99%, and 100% of the cases for N = 10,
N = 20, and N > 20, respectively. In other words, almost
always, the number of created coalitions is lower than the
number of D2D pairs N , thus, multiple D2D pairs reuse
multiple channels. Note that each D2D pair represents one
coalition if this D2D pair communicates only at its dedicated
channel without reuse.

3) Feasibility of the proposed scheme: The worst case time
complexity of Algorithm 1 is O(N2logN), since the bilateral
utility matrix U in (10) is of N × N size and its entries
are sorted in descending order (sorting of n elements results
in the complexity O(nlog(n)). Nevertheless, the proposed
algorithm is based on the bargaining sub-games that are played
sequentially over time. Thus, we investigate also the feasibility
of the proposed scheme for real networks by analyzing the
convergence of the proposed algorithm. The number of time
steps of the proposed algorithm over the number of D2D
pairs N to reach 95% and 90% of the maximum capacities
is illustrated in Fig. 7a and Fig. 7b, respectively. The figures
confirm that reaching 95% and 90% of the maximum capacity
is quick even for a high number of D2D pairs. For realistic
scenarios with, for example, 20 D2D pairs, only 14 and 10
steps (bargaining sub-games) are performed in average to
reach 95% and 90% of the maximum sum D2D capacity,
respectively. Even for 50 D2D pairs (which is rather an
extreme case for an area of 500 × 500 m), only 35 and 24
time steps in average are carried out to reach 95% and 90% of
the maximum capacity. Note that the complexity of dynamic
programming is 3N , thus, the complexity of the sequential
bargaining-based solution is negligible.

We also show a step-by-step increase in the sum capacity
of D2D pairs after each sub-game is played out for selected
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(a) (b)

Fig. 7: Number of time steps corresponding to number of bargaining sub-games required to reach 95% (a) and 90% (b) of the
sum capacity of D2D pairs.

(a) (b)

Fig. 8: Example of evolution of sum capacity over time steps in one drop for different number of D2D pairs N . The endpoint
for each line illustrates the step when 95% (a) and 90% (b) of sum D2D capacity is reached.

samples of results in Fig. 8. The capacity is increasing steeply
during the first steps and promptly converges close to the
maximum. Even after very first steps, the gain with respect
to the best performing competitive solution is significant (up
to 281.5 Mbps in average for No reuse [7],[8] as shown in
Fig. 2). The low number of time steps and the steep growth
of the sum capacity over the time steps, demonstrated in Fig.
7 and Fig. 8, confirm the feasibility of the proposed solution
for the real-world mobile networks.

V. CONCLUSION

In this paper we have proposed a new resource allocation
scheme allowing multiple pairs to reuse multiple channels
for the D2D communication in the dedicated mode. The
proposed resource allocation scheme encompasses an initial
bandwidth allocation, channel reuse, and power allocation over
the reused channels. The channel reuse is presented as a
coalition structure generation problem, where the D2D pairs
composing one coalition reuse the channels dedicated to each

other. The coalition structure generation problem is optimally
solved by the algorithm based on dynamic programming.
As the dynamic programming is of a high complexity, we
also develop a low-complexity sequential bargaining algorithm
solving the reuse problem while reaching close-to-optimal sum
capacity of D2D pairs. The performance analysis shows that
the sum capacity of D2D pairs is significantly increased by the
proposed resource allocation scheme compared to the existing
algorithms. In addition, although the interference is imposed
among D2D pairs reusing the same channel, the minimal
required capacity for each D2D pair is still guaranteed after
the channel reuse.

A potential future direction should aim at a power control
among D2D pairs in every coalition in order to further increase
the spectral efficiency. Another topic for further study is the
allocation of resources when the multiple channels are used
by multiple D2D pairs without the requirement on forcing the
D2D pairs to reuse their channels only mutually while still
guaranteeing the minimal capacity to each D2D pair.
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APPENDIX A
To solve the problem of channel bandwidth presented in

(4), we adopt the approximation log2(1 + γn,n) ≈ log2(γn,n)
like in Section III-D and under the same assumptions. By
applying this approximation into sub-problem (4) and after
several simple mathematical operations, the objective function
from (4) is rewritten as:

n=N∑
n=1

Bnlog2

(
1 +

pn,n gn,n
σoBn + Id

)
=

n=N∑
n=1

log2

(
pn,n gn,n
σoBn + Id

)Bn

= log2

n=N∏
n=1

(
pn,n gn,n
σoBn + Id

)Bn

(15)

To accommodate realistic scenarios, adjacent cells with a
high data traffic are considered. Thus, the resulting interference
is high; allowing the assumption: σn + Id ≈ Id . Hence, the
objective function of (4) presented in (15) is simplified to:

log2

n=N∏
n=1

(
pn,n gn,n

Id

)Bn

(16)

By the integration of (16) into (4) and by substituting pn,n
by Pmax in the objective function according to the constraint
(d) in (4), the sub-problem (4) is presented as:

B∗∗ = argmax log2
∏n=N

n=1

(
Pmax gn ,n

Id

)Bn

(17)

s.t. Bnlog2

(
Pmax gn,n

Id

)
≥ Cmin ∀n ∈ {1,2, ...N} (a)

0 < Bn ≤ B ∀n ∈ {1,2, ...N} (b)
∑n=N

n=1 Bn = B (c)

The constraint (a) ensures that the approximated capacity of
every n-th D2D pair on the n-th dedicated channel with no-
reuse is higher than the minimal capacity Cmin. The constraints
(b) and (c) are the same constraints as described in (4).

The maximization of any function f = log2( f ′) can be
solved by maximizing f ′. The problem (17) is in a form
of argmax[(a1)B1 (a2)B2 . . . (aN )BN ], where a1,a2, . . . ,aN are
constants. Thus, taking into account the constraints (b) and
(c), maximizing (17) is achieved by assigning the maximum
possible part of the bandwidth to the D2D pair with the
maximal an. In other words, the D2D pair with the highest
gn,n is granted with the maximal allowed part of the dedicated
bandwidth. However, the constraint (a) should be also satisfied.
We are able to guarantee Cmin if any n-th D2D pair is allocated
with a channel of a bandwidth equal to Bn =

Cmin

log2

(
1+ pmax gn ,n

σmax+Id

) ,

where σmax is the highest possible expected noise at the
channel with the bandwidth Bn. The noise σmax is, then,
estimated as follows. The D2D pair with the lowest channel
quality (i.e., the pair with gmin

n,n ) is allocated with a channel of

a bandwidth gmin
n ,n∑n=N

n=1 gn ,n
B to guarantee Cmin. Thus, any other n-

th D2D pair requires less bandwidth to guarantee Cmin, since

the channel gain of the n-th D2D pair is always higher than
gmin
n,n . Thus, the noise at the channel of the n-th D2D pair

with the bandwidth Bn is at most equal to the noise at the
channel dedicated to the D2D pair with the lowest channel
quality (i.e., σn = σnBn ≤ σo

gmin
n ,n∑n=N

n=1 gn ,n
B = σmax). Hence,

the bandwidth of the channel dedicated for any n-th D2D pair
always guaranteeing Cmin is:

Bn =
Cmin

log2
©­«
1 + pmaxgn ,n

σo
gmin
n ,n∑n=N

n=1 gn ,n
B+Id

ª®¬
(18)

This concludes the proof.
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4.2.2 Enabling the reuse of Multiple Channels by Mul-
tiple Pairs in D2D Shared Mode

In this subsection, the reuse of multiple channels by multiple D2D pairs is
enabled in the D2D shared mode in order to maximize the sum capacity of D2D
pairs under the constraint of guaranteeing that the decrease in the capacity of
the cellular users is below a pre-defined relative threshold. This subsection
includes the journal paper [5J].
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Abstract—In this letter, the goal is to maximize sum capacity
of device-to-device (D2D) communication through a reuse of each
radio channel by multiple D2D pairs while each D2D pair can
access multiple channels. Since existing approaches cannot be
easily extended to enable reuse of multiple channels by multiple
D2D pairs in scenario with a high interference among the D2D
pairs, we propose a novel resource allocation consisting of two
phases. In an initial phase, all available channels are assigned
by the Hungarian algorithm so that each channel is occupied
by just one D2D pair. In a reuse phase, multiple D2D pairs are
sequentially added to the individual channels according to their
priority expressed by channel quality and received interference
from already added D2D pairs. The proposal significantly out-
performs existing solutions and reaches close to theoretical upper
bound capacity despite a very low complexity of the proposed
algorithm.

Index Terms—Device-to-device, channel allocation, capacity,
multiple channels reuse.

I. INTRODUCTION

DEVICE-TO-DEVICE (D2D) communication is a con-
cept enabling a direct communication of user equipments

(UEs) without a need to transmit data through a base station
(BS) [1]. To fully benefit from the D2D concept, multiple D2D
pairs should reuse each available channel and all D2D pairs
should access multiple channels to maximize the spectrum
usage.

The reuse of a single channel by more than one D2D pair
underlying cellular communication is considered, e.g., [2]–[7].
These papers target to maximize the capacity of the D2D
pairs while guaranteeing quality of service to the cellular UEs
(CUEs). However, all these papers assume that each D2D
pair can access at most one channel at a time. Although this
assumption notably simplifies the channel allocation problem,
a capacity gain introduced by the channel reuse is fairly lim-
ited. The use of more channels by single D2D pair is assumed
in [8] and [9]. Still, in these papers, sharing of one channel by
multiple D2D pairs is not possible due to the complexity of the
resulting solution. The reuse of each channel by multiple D2D
pairs while multiple channels can be exploited by each D2D
pair is assumed in [10]. The authors propose a non-cooperative
selfish game for the channel reuse. However, the game does
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not converge in realistic scenarios with the presence of mutual
interference among D2D pairs. Hence, the solution is appli-
cable only to scenarios with a very low number of the D2D
pairs separated by large distances from each other.

As the papers [2]–[10] cannot be easily adapted to allow
the D2D pairs communicating over multiple channels while
reusing each channel by multiple D2D pairs in scenarios with
interference among the D2D pairs, we introduce a novel two-
phase channel allocation scheme. In an initial phase, each
channel is allocated to one D2D pair by a common Hungarian
algorithm. The core part of the proposed channel allocation
scheme is a reuse phase that maximizes a sum D2D capac-
ity through the reuse of multiple channels by multiple D2D
pairs. The allocation of multiple D2D pairs to each channel
is managed by a novel low complexity priority-based sequen-
tial algorithm. The algorithm adds the D2D pairs sequentially
to the channels according to channel quality and interference
from D2D pairs already occupying the channel. We also derive
an optimal power allocation for the D2D pairs to show upper
bound performance.

II. SYSTEM MODEL

Let’s consider a cellular network consisting of one BS, N =
{n1,n2, . . . ,nN } CUEs, and M = {m1,m2, . . . ,mM } D2D
pairs. Without loss of generality the uplink bandwidth is split
into N orthogonal channels of an equal width (bn ) so that
each channel is occupied by just one CUE (i.e., the CUE n
accesses the channel n). The D2D pairs access the channels in
an underlay mode [1] as all available channels are assumed to
be occupied by the CUEs (i.e., heavy loaded BS is assumed).
The channel occupancy by the D2D pair is defined by a binary
parameter �n

m , where �n
m = 1 (�n

m = 0) means that the D2D
pair m occupies (does not occupy) the channel n.

The signal to interference plus noise ratio (SINR) at the BS
and the channel n is defined as:

γn
n =

pn
n gn

n,b

σ2 + I n
b +

∑
m∈M �n

mpn
mgn

m,b

, (1)

where pn
n and pn

m are the transmission powers of the CUE n
and of the D2D transmitter (D2D-Tx) m, respectively; gn

n,b is
the channel gain between the CUE n and the BS at the channel
n; gn

m,b is the channel gain between the D2D-Tx m and the
BS at the channel n; σ2 is the noise; and I n

b represents the
inter-cell interference at the BS from the CUEs and the D2D
pairs in adjacent cells using channel n. Note that we model
the system with a single BS, but we still consider inter-cell
interference from the neighboring cells as in the real networks.
The SINR observed by the m-th D2D receiver (D2D-Rx) is:

γn
m =

pn
mgn

m,m

σ2 + I n
m + pn

n gn
n,m +

∑
k �=m �n

k pn
k gn

k ,m

, (2)
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where gn
m,m is the channel gain between the D2D-Tx m and

the D2D-Rx m at the channel n; gn
n,m represents the channel

gain between the CUE n and the D2D-Rx m at the channel
n; gn

k ,m stands for the channel gain between the D2D-Tx k
and the D2D-Rx m at the channel n, and I n

m is the inter-cell
interference caused to the D2D-Rx m at the channel n.

III. PROBLEM FORMULATION

Our goal is to maximize a sum D2D capacity (defined as
a sum of capacities of all D2D pairs at all channels) while a
certain capacity cc

min is still guaranteed to the CUEs. Thus,
the objective is formulated as:

max
∑

n∈N

∑

m∈M
�n
mbn log2(1 + γn

m)

s.t. a1: bn log2(1 + γn
n ) ≥ cc

min ,∀n ∈ N
a2: pn

n ≤ Pmax ,∀n ∈ N
a3:

∑

n∈N
pn
m ≤ Pmax ,∀m ∈ M, (3)

The constraint a1 guarantees that the capacity of the CUEs is
at least cc

min while the constraints a2 and a3 limit the total
transmission power of the CUEs and D2D pairs, respectively.
The a1 is guaranteed if

∑
m∈M �n

mpn
mgn

m,b ≤ I n
t , where I n

t
is a maximum tolerable interference expressed as [2]:

I n
t =

pn
n gn

n,b

2
cc
min
bn − 1

− σ2 − I n
b ,∀n ∈ N . (4)

Note that if the capacity of CUE n is below cc
min even if no

D2D pair occupies the channel n, I n
t is set to 0.

IV. PROPOSED CHANNEL AND POWER ALLOCATION

The channel allocation for the D2D pairs is managed in
two phases. In the initial phase, each channel is assigned to
one D2D pair (denoted as a primary D2D pair). The purpose
of the initial phase is to prepare a base for the novel reuse
phase. In the reuse phase, multiple D2D pairs (denoted as
secondary D2D pairs) can be added to each channel on top
of the primary D2D pairs. Note that the D2D pair, which is
in the role of the primary D2D pair at a specific channel can
also be the secondary D2D pair at any other channel(s).

A. Initial Phase

In the initial phase, the objective is to assign all available
channels to the D2D pairs so that each channel is occupied by
one primary D2D pair. The allocation in the initial phase is
done by the Hungarian algorithm that maximizes the capacity
if only one D2D pair occupies each channel [11]. To exploit
the Hungarian algorithm, the potential maximal capacity of
all D2D pairs at all available channels (represented by matrix
C = {cn

m}) is calculated. The potential maximal capacity
(cn

m ) of the D2D pair m at the channel n is determined as:

cn
m = bn log2

(
1 +

pn
mgn

m,m

σ2 + I n
m + pn

n gn
n,m

)
, (5)

To achieve the maximal capacity of the D2D pairs at each
channel while guaranteeing a1, we set pn

m in (5) as:

I n
t

gn
m,b

= pn
m ≤ Pmax ,∀n ∈ N ,∀m ∈ M, (6)

After the matrix C = {cn
m} is obtained, the Hungarian algo-

rithm assigns each channel to a single primary D2D pair. If
N>M, the Hungarian algorithm is run �N /M � times, as only
M channels are allocated during each run of the algorithm.
Consequently, some D2D pairs are primary D2D pairs at sev-
eral channels to fully exploit all available radio resources. On
the contrary, if N ≤ M, the Hungarian algorithm is performed
only once, and some D2D pairs may not access any channel
as the primary D2D pair. The pairs that get no channel in the
initial phase can still access channels as the secondary D2D
pairs in the reuse phase.

B. Reuse Phase

The core part of the proposed scheme is the reuse phase.
The objective of this phase is to maximize the sum D2D
capacity through reusing each channel by multiple secondary
D2D pairs. In general, adding new D2D pair(s) to the chan-
nel inevitably reduces the capacity of the D2D pairs already
occupying the channel because of the interference originating
from the newly added D2D pair(s) (see (2)). To guarantee the
capacity of the D2D pairs (similarly as the capacity of the
CUEs), the problem defined in (3) is extended as:

max
∑

n∈N

∑

m∈M
�n
mbn log2(1 + γn

m)

s.t. a1∼a3 as defined in (3)

a4:
∑

n∈N
bn log2(1 + γn

m) ≥ cd
min ,∀m ∈ M, (7)

The constraint a4 ensures that the capacity of the D2D pairs
over all channels is at least cd

min . Thus, no additional D2D
pairs can be added to the channel if the capacity of any D2D
pair already using the channel is lower than cd

min .
The channel reuse is done by the proposed low complexity

Priority-Based Sequential Algorithm (PBSA) that adds sec-
ondary D2D pairs to individual channels sequentially. The
order in which the secondary D2D pairs are added to the chan-
nel n is supposed to play an important role. The reason is that
adding one secondary D2D pair can result in preventing fur-
ther addition of another secondary D2D pair(s) (e.g., due to
high interference generated among the secondary D2D pairs).
The proposed PBSA adds the secondary D2D pairs in an order
determined according to priority metric ωn

m′ defined as:

ωn
m′ = pn

m′gn
m′,m′ −

∑

m∈M\{m′}
�n
mpn

mgn
m,m′ ,∀n ∈ N , (8)

where the first term corresponds to the signal strength received
by the D2D-Rx from the D2D-Tx of the secondary D2D pair
m′ that is supposed to be added at the channel n and the
second term is the sum of interference from the D2D pairs
already assigned to the channel n. Note that the priority of the
secondary D2D pair is higher if ωn

m′ is higher. It is worth to
mention that the D2D-Rx measures the sum interference from
all D2D pairs using the channel. Thus, there is no need to know
channel gains to all D2D pairs and the required signaling to
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manage the reuse phase is the same as if no reuse would be
applied at all.

In order to enumerate ωn
m′ according to (8), the transmis-

sion powers of the D2D pairs at each channel need to be
determined. Since the constraint a1 should be guaranteed dur-
ing the whole reuse phase, the following condition should
hold:

∑
m∈M xn

mI n
t ≤ I n

t , where xn
mI n

t = pn
mgn

m,b is the
interference caused by the D2D pair m to the CUE n. To find
the optimal D2D power allocation (i.e., to find optimal values
of xn

m ), we define the objective function as:

f (Xn) =
∑

m∈M
log2

⎛
⎜⎝1 +

�n
m

xn
m I n

t
gn
m,b

gn
m,m

I n
s +

∑
k �=m �n

k
xn
k I n

t
gn
k,b

gn
k ,m

⎞
⎟⎠,

(9)

where I n
s = σ2 + I n

m +pn
n gn

n,m and Xn = {xn
1 , xn

2 , . . . , xn
M }.

Then, the optimization problem is:

min
Xn

−f (Xn)

s.t. 0 ≤ xn
m ≤ 1, ∀n ∈ N , ∀m ∈ M∑

m∈M
xn
m ≤ 1, ∀n ∈ N (10)

where both constraints ensure that a1 in (3) is fulfilled. We
solve (10) by a sequential quadratic programming (SQP). In
general, SQP solves a quadratic programming sub-problem
at each iteration. During each iteration, an estimate of the
Hessian of the Lagrangian is calculated via the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) formula (see more details
in [12]). Due to relatively high complexity of SQP, we also
propose “equal” power allocation (PBSA-equal) introducing
no additional complexity to the channel allocation process
since the power of the D2D pairs is set so that each D2D
pair causes the same interference to the CUE (i.e., xn

m =
1/
∑

m∈M �n
m ,∀xn

m ∈ Xn).
After acquiring the Xn, transmission power of the D2D pair

m occupying the channel n is:

xn
mI n

t

gn
m,b

= pn
m ≤ Pmax ,∀n ∈ N ,∀m ∈ M, (11)

The allocation of channels in the reuse phase is described in
Algorithm 1. First, Ωn = {ωn

1 , ωn
2 , . . . , ωn

M−1} is determined
for all N channels according to (8). Then, the Ωn is sorted
according to ωn

m′ in descending order (line 4). Subsequently,
the secondary D2D pair with the highest priority at the channel
n (i.e., the D2D pair with max(ωn )) is added to the channel n
by setting �n

m′ = 1 (line 5). Then, the transmission power pn
m

is updated for all D2D pairs occupying the channel according
to (11) (line 6) and a new sum D2D capacity at the chan-
nel (cn

m′) is calculated (line 7). If the sum D2D capacity is
decreased by an inclusion of the secondary D2D pair m′ (i.e.,
if cn

m′ < cn
m′−1) or if a4 is not fulfilled, the secondary D2D

pair is removed from the channel (i.e., �n
m′ = 0). Otherwise,

the secondary D2D pair starts reusing the channel and ωn
m is

updated for the D2D pairs that still can be added to this chan-
nel (line 11). This whole process (lines 2–14) is repeated for
all secondary D2D pairs and for all available channels.

The complexity of the channel allocation in reuse phase
is up to O(N (M − 1)) as (M−1) secondary D2D pairs can

Algorithm 1 Priority-Based Sequential Algorithm
1: determine Ωn ,∀n ∈ N acc. (8)
2: for n=1:N do
3: for m′=1:(M−1) do
4: sort Ωn in descending order (D2D pairs priority)
5: �n

m′ = 1 (add D2D pair m′ at channel n)
6: set pn

m ∀ D2D pairs using channel n acc. (11)
7: cn

m′ =
∑

m∈M �n
mbn log2(1 + γn

m)
8: if cn

m′ < cn
m′−1 or a4 is not satisfied then

9: �n
m′ = 0, cn

m′ = cn
m′−1

10: else
11: update ωn

m for D2D pairs not yet added
12: end if
13: end for
14: end for

TABLE I
PARAMETERS AND SETTINGS FOR SIMULATIONS

be added to N channels. Note that the complexity of chan-
nel allocation process is even lower than in related works
(see [2], [7]). Further, the complexity of the optimal power
allocation is, in the worst case, O(M 3KN ), where M 3 corre-
sponds to the maximal complexity of quadratic programming
and K is the number of iterations of the sequential process.
The complexity of “equal” power allocation is O(1).

V. PERFORMANCE ANALYSIS

The proposed scheme is evaluated by simulations. The BS
is located in the middle of a simulation area. For each simula-
tion drop, the positions of CUEs, D2D-Txs, and D2D-Rxs are
generated randomly with uniform distribution. The maximum
distance between D2D-Tx and D2D-Rx creating one D2D pair
is set to 50 m. Hence, the position of the D2D-Tx is gener-
ated first and, then, the D2D-Rx is randomly dropped within
the allowed maximum radius from the D2D-Tx. Moreover, the
inter-cell interference at the BS (I n

b ) and the D2D-Rxs (I n
m )

is generated randomly according to Gamma distribution [13]
with a mean value of −80 dBm. The channel gains between
individual nodes are derived according to the models defined
by 3GPP. Since our objective does not target an optimization
of the CUEs’ transmission power, we assume fixed transmis-
sion power pn

n of the CUEs at each channel as in [10]. All
major simulation parameters are summarized in Table I.

The results of the PBSA with the optimal power allocation
(PBSA-opt) according to (10) and the PBSA-equal are com-
pared with the proposed “random” algorithm, which exploits
reuse, but does not consider the priority metrics (i.e., the sec-
ondary D2D pairs are added to the channels randomly). The
performance of the proposed PBSA is also compared with
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Fig. 1. System capacity depending on M for cdmin = 0.

channel allocation (CA) based on [2]–[7] allowing to reuse
each channel by multiple D2D pairs while only one channel
can be exploited by each D2D pair. Then, we show a theoreti-
cal upper bound performance obtained by checking all possible
D2D pair allocations to all channels (i.e., the optimal case)
and with the D2D transmission power set to the optimal val-
ues according to (10). The complexity of the theoretical upper
bound is O(N 2M ). Note that we do not compare the proposed
PBSA with the scheme in [10], since the non-cooperative game
exploited in [10] does not converge if interference among the
D2D pairs is high.

Fig. 1 illustrates the system capacity depending on the num-
ber of D2D pairs (M). Increasing cc

min decreases the capacity
of all algorithms. The reason is that the CUEs can tolerate
less amount of interference for a higher cc

min and, hence, I n
t

is decreased (see (4)). Fig. 1 further shows that the proposed
PBSA-opt provides between 1.52 and 3.26 times higher capac-
ity (depending on cc

min and M) than the CA scheme based
on [2]–[7]. These encouraging results demonstrate that the
reuse of multiple channels by multiple D2D pairs results in
a significant gain in capacity comparing to the CA [2]–[7],
where each D2D pair can access only one channel. In addi-
tion, Fig. 1 demonstrates that the PBSA-opt reaches almost
theoretical upper bound capacity (only 0.5% degradation). It
is worth to mention that the performance of the PBSA-equal
is at most 1.6% below that of the PBSA-opt. Thus, the equal
power allocation can be applied in a real system instead of
more complex optimal power allocation at the cost of only a
slight decrease in the sum D2D capacity.

Fig. 1 also reveals an interesting fact: if cd
min = 0 Mbps (no

capacity is guaranteed to the D2D pairs), the order in which
the secondary D2D pairs are added to the channel is not that
critical. Hence, the PBSA does not outperform random adding
of the D2D pairs significantly for cd

min = 0 Mbps (up to 7.1%
for 20 D2D pairs). However, Fig. 2 shows that performance
gap between the random algorithm and the PBSA significantly
increases with cd

min (up to 61.5% for cd
min = 15 Mbps). The

reason is that in the case of random adding of the D2D pairs,
even the D2D pair with the capacity slightly above cd

min can
be added to the channel at the beginning of the reuse phase.
Then, other D2D pairs can be no longer allowed to reuse the
same channel to guarantee cd

min . Although the system capacity
of PBSA (both -equal and -opt.) starts also decreasing for a
higher cd

min , this decrease is only marginal when compared to
the random adding of the D2D pairs.

Fig. 2. System capacity depending on cdmin = 0 for M = 20.

Since our main objective is to maximize the system capacity,
cd

min ≤ 10 Mbps is recommended since the PBSA performance
is still close to the upper bound. A specific cd

min should be
selected according to requirements and/or priority of individual
D2D pairs at each channel.

VI. CONCLUSION

In this letter, we have proposed a novel low complexity
resource allocation scheme maximizing sum D2D capacity.
The scheme allows an efficient reuse of the channels by
multiple D2D pairs while each D2D pair may access multiple
channels. We show that the proposed allocation significantly
outperforms the state-of-the-art approaches (increasing the
sum D2D capacity at up to 3.26 times) and reaches close-
to-optimum performance despite low (linear) complexity.
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4.3 Combination of VLC and RF for D2D Com-

munication

This section introduces the combination of VLC and RF for D2D communi-
cation. Then two algorithms for RF/VLC band selection in a scenario with
multiple D2D pairs are proposed. This section assumes the dedicated mode of
D2D communication, however, the principles of the proposed solutions can be
extended even for the shared mode.

4.3.1 Concept of RF-VLC D2D Communication

First, in this subsection, the principle of combining RF and VLC for D2D
communication is analyzed and the possible advantages as well as challenges
resulted from this combination are defined. This subsection includes the con-
ference paper [6C].
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Abstract—Future mobile networks are supposed to serve
high data rates to users. To accommodate the high data
rates, a direct communication between nearby mobile ter-
minals (MTs) can be exploited. This type of communication
in mobile networks is known as Device-to-device (D2D).
Furthermore, a communication in high frequency bands,
such as, visible light communication (VLC), is also foreseen
as an enabler for the high data rates. In a conventional D2D
communication, pairs of the communicating MTs should
reuse the same frequencies to maximize spectral efficiency
of the system. However, this implies either interference
among the D2D pairs or a need for complex resource
allocation algorithms. In this paper, we introduce a new
concept for D2D communication combining VLC and RF
technologies in order to maximize capacity of the system.
The objective of this paper is to analyze operational limits
of the proposed concept and to assess potential capacity
gains to give motivation for future research in this area.
Thus, we also discuss several practical issues related to
the proposed RF–VLC D2D concept and outline major
research challenges. The performance analysis carried out
in this paper shows that the RF–VLC D2D is able to
improve the capacity in an indoor scenario by a factor
of 4.1 and 1.5 when compared to standalone RF D2D and
VLC D2D, respectively.

Keywords—Device-to-device; Mode selection; Visible
Light Communication; Radio frequency

I. INTRODUCTION

In conventional mobile networks, mobile terminals
(MTs) communicate through a base station, in LTE-A
denoted as an evolved node B (eNB). The concept of a
direct communication among the MTs in proximity of
each other, known as Device-to-Device (D2D) commu-
nication, is considered as a way to enhance the capacity
of mobile networks and to increase spectral efficiency
[1]. Furthermore, D2D enables to decrease packet delay
and to reduce energy consumption of the MTs due to
mutual proximity of the MTs [2].

In general, D2D communication can be used in ei-
ther in-band or out-band fashions. In the case of in-
band D2D, the MTs reuse the same frequency bands
as a conventional cellular communication, e.g., licensed
frequencies allocated for mobile networks. Hence, inter-

ference between D2D and the conventional cellular com-
munication is seen as a critical problem [3]. To address
this problem, many interference mitigation techniques,
such as power control [4], radio resource allocation [5],
scheduling [6], etc., can be applied. Nonetheless, if inter-
ference between the D2D and cellular communications
cannot be sufficiently mitigated by these techniques,
D2D may be forced to operate in a dedicated mode
(also known as an overlay mode). In the dedicated
mode, D2D exploits orthogonal resources to the cellular
communication to avoid interference entirely, however,
this is at the cost of decreased spectral efficiency [7].

In the case of the out-band D2D, the D2D communica-
tion takes place in unlicensed bands through WiFi-Direct
or Bluetooth, as investigated, e.g., in [8]. Nevertheless,
if D2D pairs in close vicinity of each other reuse the
same out-band frequencies, interference among D2D
pairs remains a problem and limits the benefits of D2D.
To minimize interference among D2D pairs, visible light
communication (VLC) can be also considered for the
out-band D2D. The VLC systems operate at wavelengths
of 380-750 nm (i.e., frequency bands of 400-790 THz)
[9] and can result in high data rates. For example, 4.5
Gbps throughput can be achieved by the VLC systems
employing carrier-less amplitude & phase modulations
and a recursive least square-based adaptive equalizer
as described in [10] and [11], respectively. In [12],
the authors show that a combination of 16–quadrature
amplitude modulation and orthogonal frequency division
multiplexing (OFDM) or wavelength multiplex (RGB)
allow to reach 3.4 Gbps throughput. A disadvantage of
VLC can be seen in a low scalability for longer distances
and its sensitivity to a volatility of the MT’s orientation
resulting in a sudden decrease in VLC channel quality
even for small changes of the MTs’ orientation (in terms
of irradiance and incidence angles) [13].

A combination of communication in the conventional
radio frequency (RF) and VLC bands is surveyed in
[14] and further investigated, e.g., in [15],[16],[17],[18].
In all studies, the authors assume that the VLC access
points are deployed at the ceiling and act as an LTE978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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eNB or WiFi access point. These papers do not consider
D2D communication, which introduces new challenges
and opportunities related to a higher sensitivity of the
VLC channel on volatility of both sides of the commu-
nication chain and proximity of the MTs. To our best
knowledge, the VLC for D2D is considered only in [19]
and [20]. In [19], the authors propose a game theory-
based mechanism choosing the optimal mode of VLC
communication from three candidate modes in order to
enhance channel capacity. The first mode is a direct
VLC communication (VLC D2D), the second mode is
a indirect VLC communication through an access point
and the third mode represents a mix of the first two
modes. In other words, the paper investigates behavior
of a conventional D2D in VLC bands. In [20], an optical
repeater-assisted VLC D2D system is presented. The
VLC repeater enables VLC for longer distances and
allows to enhance VLC range when the direct link
between the MTs is not available. This is an analogy to
D2D relaying as addressed frequently in the conventional
D2D in RF bands. However, also [20] is focused purely
on VLC bands and does not consider a combination of
RF and VLC for D2D.

In this paper, we introduce a new concept combining
in-band RF and out-band VLC for D2D communication.
The new RF–VLC D2D concept takes advantage of the
fact that RF and VLC do not interfere to each other and
VLC signal is strongly attenuated with distance, thus,
interference to other D2D pairs operating in VLC is
naturally suppressed. At the same time, RF enables to
preserve benefits of common D2D for larger distances
at which VLC cannot operate. By allowing selection
of either RF or VLC for each D2D pair, overall level
of interference is significantly reduced and the system
capacity is increased. To motivate further research in
the area of combined RF-VLC D2D, we discuss an
applicability of the new concept, analyze key practical
issues, and outline future research challenges. Then, we
investigate limits of the operation and gains introduced
by RF-VLC D2D depending on various parameters, such
as a distance between the MTs of the same D2D pairs, a
distance between the D2D pairs, or irradiance/incidence
angles of the MTs. As this paper is an initial work in
this domain, we limit our investigation to indoor scenario
where we foresee main benefits of the VLC-RF D2D.
Through simulations, we show that the combination of
RF and VLC for D2D allows a significant increase in
the capacity of the communication system.

The paper is organized as follows. In Section II, the
system model for the proposed RF-VLC D2D concept
is defined. In Section III, we discuss potential use-
cases for the proposed concept, contemplate key practical
issues and outline future research challenges for D2D
combining RF and VLC bands. Then, Section IV is
dedicated to a description of the simulation scenarios

Fig. 1: System model for investigation of the proposed
RF-VLC concept.

and to a discussion of the simulation results. The last
section concludes the paper and outlines future research
directions.

II. SYSTEM MODEL FOR RF–VLC D2D

In this section, we describe a general system model
and mode selection for the proposed RF-VLC D2D
concept. We assume N MTs randomly distributed within
a square room with a dimension d (see Fig 1). As VLC
is highly susceptible even to small changes in the angles
between a transmitting MT (MTT ) and a receiving MT
(MTR) [21], we assume varying azimuthal orientation
of both MTs. Note that the varying angles are more
critical in terms of VLC channel quality than the MTs’
mobility, since the mobility leads to a continuous and
slow changes of the angles between the MTT and the
MTR. In contrast, turning the MTs leads to an immediate
and a steep change of the angles. Thus, for sake of
simplicity and clarity, we leave the mobility of the MTs
for further research and we focus on static MTs here.

Among all N active MTs, Np D2D pairs are ran-
domly selected so that every MT is involved in just
one D2D pair (i.e., Np = N/2). The channel gain
between the MTs within one D2D pair is denoted as
gRFT−R and gV LCT−R for RF and VLC modes, respectively.
We assume that the D2D pairs exploit dedicated uplink
resources with respect to the cellular communication
so there is no interference between the D2D MTs and
MTs communicating with the eNBs. Contrary, all D2D
pairs operate in the same RF bands and, thus, interfere
with each other (see Fig. 1 where the MTT1 causes
interference to the MTRN and the MTR1 is interfered
by the MTTN ). Consequently, the available capacity
for RF D2D is significantly influenced by the amount
of interference originating from nearby D2D pairs. The
MTT exploiting VLC does not introduce interference to
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the MTR operating in RF as these operate at different
frequencies.

The communication mode (RF or VLC) is selected
with objective to maximize the capacity, that is:

M =

{
RF : CRF ≥ CV LC
V LC : CRF < CV LC

(1)

where capacities of RF D2D and VLC D2D are derived
according to Shannon-Hartleys theorem:

CRF = BRF log2(1 + SINRRF ) (2)

CV LC = BV LC log2(1 + SINRV LC) (3)

where BRF (BV LC) is the system bandwidth of RF
(VLC) and SINRRF (SINRV LC) stands for the signal
to interference plus noise ratio (SINR) observed by the
MTR in RF (VLC) mode. The SINRRFRn experienced
by the n-th MT (MTRn) is expressed as:

SINRRFRn =
PRFt gRFTn−Rn∑

i6=n(PRFt gRFTi−Ri) + σ2
t,RF

(4)

where PRFt is the RF transmitting power of the MTT ,
gRFTi−Ri is the RF channel gain between the MTTi and
the MTRi of the i-th D2D pair, and σ2

t,RF stands for the
thermal noise in RF. The SINRV LCRn experienced by the
MTRn is defined as:

SINRV LCRn =
PV LCt gV LCTn−Rnγ

2

∑
i6=n(PV LCt gV LCTi−Ri) + σ2

t,V LC + σ2
s
(5)

where PV LCt represents the transmitting optical power
of the transmitting LED, gV LCTn−Rn is the VLC channel
gain between the MTs of the n-th D2D pair, γ is the
responsivity of a photo-diode, and σ2

s is the shot noise.
The VLC channel gain gV LCTn−Rn is strongly dependent

on the irradiance angle (φ), incidence angle (ψ), and on
the parameters of the optical receiver. Thus, the channel
gain gV LCTn−Rn is expressed by the following equation:

gV LCTn−Rn =
(m+ 1)Acosm(φ)Tsg(ψ)cos(ψ)

2πd2TR
(6)

where A is the physical area of a photodetector, Ts stands
for the gain of an optical filter, dTR is the distance
between the MTT and MTR, g(ψ) is the gain of an
optical concentrator, and m corresponds to the order of
Lambertian emission defined as follows:

m =
−ln(2)

ln(cos(φc))
(7)

where φc is the transmitter semi-angle at half power [13].
The gain of the optical concentrator (g(ψ)) depends on
the photodetector view angle (ψc) and it is expressed as:

g(ψ) =

{
n2

sin2(ψc)
if 0 < ψ ≤ ψc

0 otherwise
(8)

The thermal and shot noises for VLC are calculated as:

σ2
t,V LC = (

8πkTkηAI2B
2

G
) +

+ (
16π2kTkΓη2A2I3B

3

gm
)

(9)

σ2
s = (2qIbgI2B) + (2qγPV LCt gV LCTn−RnB) (10)

where k is Boltzmann’s constant, Tk corresponds to the
absolute temperature, η is the fixed capacitance of the
photodetector per unit area, I2 and I3 stand for the noise
bandwidth factors, B represents the equivalent noise
bandwidth, G is the open-loop voltage gain, Γ is FET
channel noise factor, gm corresponds to FET transcon-
ductance, q is the charge, and Ibg is the background
current [13]. We assume the MTs are equipped with the
RGB-based LED and the photodetector at the transmitter
and the receiver, respectively, as assumed in [20].

III. USE CASES, PRACTICAL ISSUES AND RESEARCH
CHALLENGES FOR RF-VLC D2D

In this paper, we target to demonstrate a potential
efficiency of the combined RF-VLC D2D. Still, there
are several research and practical issues need to be taken
care of to bring the propose concept into fruition. Hence,
this section discusses the applicability of the RF-VLC
D2D in real network and also discusses some practical
issues and research challenges of the proposed concept.

The first important aspect regarding the combination
of RF and VLC for D2D is to outline its use-cases
and suitable scenarios. Basically, we can expect that
the combination of RF and VLC for D2D would be
beneficial for future services requiring high throughput
and low latencies. In general, low throughput services
or calls are not seen as the most promising options for
the RF-VLC D2D due to their demands on relatively
low capacity and high sensitivity to sudden connection
degradation. Thus, services and applications requiring
rather high throughput while tolerating a throughput
variation are supposed to be good target for the RF-VLC
D2D. Since the VLC is beneficial especially for short
distances and exhibits superior indoor performance [22],
we can expect that RF-VLC D2D concept should be used
primarily indoor, where the user who wants to transmit
a high amount of data to another user (e.g., exchanging
photos or videos) can direct their MTs towards each
other to enhance capacity by VLC. To this end, we
analyze requirements on angles between MTT and MTR
later in this paper.

The second important aspect related to the proposed
concept is a proper selection of the communication
mode, i.e., a decision if it is more profitable to ex-
ploit VLC, RF, or when to use both simultaneously.
A research challenge here is to exploit combination of
both RF and VLC bands, while taking into account
their specifics, and to develop efficient mode selection
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algorithms suitable for scenarios with multiple D2D pairs
coexisting with conventional cellular MTs.

In terms of control and management of the RF–VLC
D2D, another important question is: Who decides which
communication mode (RF or VLC) should be selected
for data transmission? In general, D2D communication
may be controlled in a centralized or a distributed
manner. In the former case, the selection is done solely
by the eNB. Consequently, the MTs should report the
information regarding the channel quality to the eNB
on regular basis. Since the channel quality can vary
significantly (especially for VLC channel), the delay in
decision at the eNB can result in an incorrect selection of
the communication mode leading even in a degradation
of the capacity. In the latter case, if the selection is
performed directly at the MTs (i.e., in the distributed
manner), the delay of the decision is significantly re-
duced. In general, the mode selection can be carried
out by both, the MTT and the MTR. Nonetheless, we
suggest to make the decision at the MTT rather than at
the MTR as the MTT is aware of the transmission buffer
status and can perform scheduling of the RF and VLC
resources accordingly. To this end, the quality of both
RF and VLC channels has to be reported by the MTR
to the MTT via RF. Then, the MTT can promptly react to
rapid degradation of VLC channel quality and switch to
RF for data transmission immediately. Therefore, there
is no need for any advanced and complex mechanisms
to control the proposed RF-VLC D2D concept.

Regarding resource scheduling, a single scheduler can
serve both VLC and RF communications without any
complication. The scheduler perceives both technologies
from a perspective of scheduling metrics (capacity, delay,
buffer status, etc.), which can be represented in the same
way for both technologies. Inclusion of VLC on the top
of RF increases flexibility in terms of radio resource
scheduling because more communication resources with
wide range of quality and diverse channel variation
pattern and stability are available. Despite the fact that
a common schedulers used in cellular networks can be
applied to RF–VLC D2D, this concept opens space for
a future development of new schedulers tailored for the
RF–VLC D2D to maximize its performance.

Another important aspect regarding the combination
of RF and VLC for D2D is to decide whether the
control signaling can be transmitted also in both trans-
mission modes (RF/VLC), like data transmission, or
not. Although VLC may offer superior capacity for
short distances when compared to RF, this is true only
for optimal or near optimal irradiance and incidence
angles (as further discuss in the next section). As a
matter of fact, the VLC channel is highly susceptible
to these changes and, hence, sudden decrease in channel
quality may occur frequently. Consequently, the control
signaling must be unconditionally transmitted via RF

D2D link during the whole communication. This is
supported by the fact that the amount of the signaling is
incomparably lower than the amount of users data and
the capacity offered by VLC cannot be fully exploited
for the signaling anyway.

IV. PERFORMANCE EVALUATION

This section describes the simulation scenarios, main
simulation parameters and discusses results of the sim-
ulations for individual scenarios.

A. Simulation scenario and models

We assume a scenario representing an indoor area (a
room or a hall) where we foresee main benefits of the
proposed concept as explained in Section III. Further, we
assume the room dimension of d x d m. In the room, four
MTs are deployed within specific distance of MTT and
MTR of the same pair (dTR) and with specific inter-pair
distance dP as shown in Fig 2. We set these distances
manually to understand behavior of the RF–VLC D2D
over various distances in order to assess potential limits
and scalability of the solution.

The orientation (azimuth) of each MT is generated
in one of the following ways: Optimal, Gaussian, and
Random selection. The Optimal selection means that
the MTT and MTR are oriented directly towards each
other (i.e., in Fig. 2, φ and ψ are set to 0◦). This
case shows an upper bound performance as it allows
reaching maximum capacity for VLC mode. In the case
of Gaussian selection, the φ and ψ angles are randomly
generated according to the Gaussian distribution with the
mean (µ) set to 0◦ and the standard deviation (σ) set to
60◦. This situation represents the case when two users
are willing to exchange data and are aware of each other
locations so that we assume they try to direct their MTs
towards each other. Nevertheless, even if the users try
to direct their MTs towards each other, they might not

Fig. 2: Explanation of parameters and deployment sce-
nario considered for performance assessment.
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(a) (b)

Fig. 3: Performance of RF-VLC D2D for various angles φ (subplot (a)) and ψ (subplot (b)) with the capacity
averaged out over 180 values of the second angle (i.e., ψ in subplot a) and φ in subplot b)) ranging from -90◦ to
90◦ with a step of 1◦. Solid lines represent dp = 2 m, dotted lines represent dp = 25 m.

TABLE I: Simulation parameters.

RF Parameters
Parameters Value

Carrier frequency fc 2 [MHz]
Bandwidth BRF 20 [MHz]
Transmission power of MT PRF

t 200 [mW]
Spec. density of thermal noise σ2

t,RF –174 [dBm/Hz]
VLC Parameters

Parameters Value
Bandwidth BV LC 10 [MHz]
Transmission power of MT PV LC

t 200 [mW]
Physical area of photodetector A 1 [cm]2

Background current Ibg 10 [nA]
Noise Bandwidth factors I2-I3 0.562 - 0.0868
Fix. capac. of photodetector η 112×10−8 [F/m]
FET channel noise factor Γ 1.5
FET transconductance gm 0.03 [s]
Responsivity of the photodiode γ 0.53 [A]
Open-loop voltage gain G 10
Optical concentrator gain g(ψ) 3
Optical filter gain Ts 1

General Parameters
Parameters Value

Number of MTs N 4
Irradiance and incidence angle φ,ψ -90 – 90 [◦]
Room dimension d 30 [m]

match the angles in a perfect way so there is a possibility
of a deviation from the optimal angles. The third option,
Random selection, shows one of the worst cases since φ
and ψ angles are selected randomly between 0◦ to 180◦.
This situation can appear when users cannot or do not
want to change orientation of their MTs and keep the
MT in a random direction with respect to the other MT.

The MTT transmit data to the MTR in either RF or
VLC mode depending on which mode provides higher
capacity at the moment as described in the system
model (Section II). For the RF channel, we follow the
channel modeling defined by 3GPP for indoor D2D
communication as defined in [23]. The modeling of VLC

channel is performed according to [13]. All simulation
parameters are summarized in Table I.

B. Simulation results and discussion
This section first analyzes an impact of ψ and φ angles

on the D2D capacity to understand the operational limits
of RF-VLC D2D. Second, we investigate an impact of
the dTR, dP , and φ on VLC usage ratio (i.e., how
often VLC is used instead of RF). Third, we compare
the capacity achieved by the proposed RF-VLC D2D
system with RF D2D (i.e., without VLC) and VLC D2D
(without RF). Note that capacity presented in all figures
is understood as maximum capacity of communication
channel computed according to the system models de-
fined in Section II for both RF and VLC channels.

Fig. 3 demonstrates the impact of angles on the
capacity achieved by the proposed RF-VLC D2D system
for various dTR and dP distances . For irradiance angle
(φ), the change in capacity is continuous as the LED
diode can operate in the whole range of 90◦ while for
incidence angle (ψ), the communication is limited by the
field of view (FOV) of the photodetector (set to 60◦ in
this paper according to [24]). The φ (ψ) is set from -90◦

to 90◦ and depicted on x axis in respective figures. For
each angle on x axis, the capacity is computed as an
average value over corresponding ψ (φ) ranging from -
90◦ to 90◦ with a step of 1◦. This means, the capacity is
defined as C =

∑180
ψ=0 Cψ
180 in Fig. 3a and C =

∑180
φ=0 Cφ
180

in Fig. 3b.
In Fig. 3, we can see that the dTR distance plays a

crucial role for the capacity. For smaller distances, i.e.,
if dTR < 10 m, the capacity rises significantly with
increasing dp. For a larger dTR, i.e., dTR ≥ 10 m, the
impact of dp becomes less significant since the capacity
provided by VLC D2D is often surpassed by the capacity
offered by RF D2D capacity.
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(a) dP = 2 m (b) dP = 10 m (c) dP = 25 m

Fig. 4: The ratio of time when VLC is used for communication instead of RF according to distance between
transmitter and receiver (dTR) and distance between pairs (dp).

(a) dP = 2 m (b) dP = 10 m (c) dP = 25 m

Fig. 5: System capacity for RF D2D, VLC D2D, and RF-VLC D2D over distance between transmitter and receiver
(dTR) and distance between pairs (dp).

From Fig. 3, we can further see that the capacity raises
as the orientation of MTs becomes close to the optimal
(i.e., close to 0◦). An important observation is that for
|φ| ≤ 30◦ and |ψ| ≤ 30◦, a degradation of the overall
capacity is negligible (below 4% with respect to the
optimal angles). Even for |φ| ≤ 60◦ and |ψ| ≤ 60◦,
the degradation of capacity is still below 10%. This
observation confirms suitability of the proposed concept
for practical applications as the orientation of both MTs
is critical aspect in which the RF-VLC D2D concept
differs from the common VLC communication assuming
an access point located at the ceiling. If VLC is not
available or if it provides low capacity (i.e., if |φ| → 90◦

or |ψ| > 60◦), RF band still provides good capacity for
D2D communication. Fig. 3 also shows that the impact
of φ and ψ is getting less important with rising dP
because low interference in RF gives preference to a
use of RF instead of VLC. The wide range of φ and ψ
angles that allow reaching almost the maximum capacity
indicates that RF-VLC D2D can introduce notable gains
even if the MTs are not directed towards each other.

To understand better the impact of both VLC and RF
on the overall capacity of RF-VLC D2D, we analyze the
ratio of time when VLC is used instead of RF. Fig. 4
shows that VLC mode is exploited in about 68% if both
dTR and dP are low. In this case, the capacity offered by

VLC helps to improve the overall D2D performance and,
thus, VLC is used predominantly. With increasing dTR
and dP , the orientation angle of MTs has to be closer to
the optimal angle in order to keep VLC beneficial. If dP
is equal or even longer than 25 m, VLC is not available
and only RF mode can take place. In Fig. 4c, we can
also notice that for dP = 25 m and dTR = 1 m, VLC is
used less often than for dTR = 3 or 5 m. This is due to
the fact that RF can perform very well if the transmitter
and the receiver of the same pair are close to each other
(i.e., low dTR) while the interfering pair is far away (i.e.,
dP is high). The ratio of VLC usage confirms the fact
that an indoor scenario with relatively close MTs is the
most suitable for the proposed RF-VLC D2D concept.

Now, we focus on comparison of the RF-VLC D2D
with common RF D2D and VLC D2D systems as
known today. We provide comparison for various dP in
individual subplots of Fig. 5 and for three different ways
of generation of φ and ψ angles: Optimal, Gaussian, and
Random, as described in Section IV.A. Note that the
results are averaged out over 106 simulation drops. Fig. 5
shows that the proposed RF-VLC D2D outperforms
both competitive schemes significantly and allows to
provide maximum capacity disregarding dTR and dP .
More specifically, while RF D2D suffers in terms of
capacity for low dP , VLC D2D provides only limited
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capacity for high dTR. In contrast, the proposed RF-VLC
D2D performs well disregarding both distances. The
most notable gain introduced by the novel RF-VLC D2D
when compared to RF D2D is observed for low dTR
and dP , where RF-VLC D2D can provide 4.1, 2.6, and
2 times higher capacity for the Optimal, Gaussian, and
Random selection of angles, respectively. Furthermore,
we can see that, even at short distances, RF-VLC D2D
outperforms VLC D2D by 1.2 times (Gaussian selection
of angles) and 1.5 times (Random selection). Note that
for the Optimal selection of angles, VLC D2D and RF-
VLC D2D perform similarly for low dTR because VLC
is used in almost 100% of time due to proximity of
the MTT and MTR. With increasing both dTR and dP ,
the performance of the RF-VLC D2D converges to the
conventional RF D2D since VLC is used only rarely.
Moreover, with increasing dP , the maximum dTR for
which VLC D2D still performs the same as the proposed
RF-VLC D2D is decreasing. This is due to the fact that
interference in RF is decreasing as well with increasing
dP and consequently RF becomes more efficient.

V. CONCLUSION

In this paper, we have presented a novel D2D concept
combining RF and VLC communication with the po-
tential to increase the capacity provided by D2D. The
performance analysis of the proposed RF-VLC D2D
shows the ability to mitigate drawbacks in terms of
limited capacity for very short and medium distances of
the RF D2D and VLC D2D systems respectively. The
proposed RF–VLC D2D increases the capacity by up to
4.1 and 1.5 times with respect to sole RF D2D and VLC
D2D, respectively. The most notable gain in capacity is
observed for low distances (up to 10 m), where VLC
shows its superiority over conventional RF and, thus,
the combination of both is the most beneficial.

As stated in the paper, the proposed RF-VLC opens
many challenges needed to be addressed in the future.
The key future research directions should cover design of
new scheduling and resource allocation schemes taking
advantage of flexibility and different stability of channels
introduced by combining RF and VLC. Furthermore, se-
lection of the communication mode in scenario with mul-
tiple D2D pairs and conventional cellular MTs should
be developed. Also, simulations and practical tests for a
wide range of scenarios and use cases need to be carried
out. In this sense, a challenge is to understand better the
changes of the MT’s angles in a real world and consider
it in all algorithms related to control and management
of the RF–VLC D2D.
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4.3.2 Interference-based Iterative Band Selection in RF-
VLC D2D Communication

This subsection deals with the problem of the RF/VLC band selection within
a scenario with multiple D2D pairs. Hence, an iterative interference-based
algorithm to select RF or VLC for every D2D pair is proposed. This subsection
includes the journal paper [4J], which is an extension of the conference paper
[5C].
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ABSTRACT The concept of device-to-device (D2D) communication, combining common radio frequency
(RF) and visible light communication (VLC), is seen as a feasible way how to cope with spectrum crunch in
the RF domain and how to maximize spectral efficiency in general. In this paper, our objective is to decide
when RF should be utilized or if VLC proves to be the more profitable option. The selection between RF
and VLC is defined as a multi-objective optimization problem targeting primarily to minimize the outage
ratio while the secondary objective is to maximize the sum capacity of D2D pairs, composed by D2D
transmitters and D2D receivers. To solve this problem, we design a centralized low-complexity heuristic
algorithm selecting either RF or VLC band for each D2D pair relying on the mutual interference among
the pairs. For interpretation of the mutual interference among the D2D pairs, we exploit directed weighted
graphs adopted from the graph theory. The simulation results show that the proposed algorithm outperforms
state-of-the-art algorithms in terms of the outage ratio, sum capacity and average energy efficiency. What
is more, despite a very low complexity, the proposed algorithm reaches a close-to-optimum performance
provided by the exhaustive search algorithm.

INDEX TERMS Band selection, device-to-device, radio frequency, visible light communication.

I. INTRODUCTION
The device-to-device (D2D) communication represents a
very alluring technology due to its promise in delivering
exceptionally high data rates and its potential to significantly
decrease the energy consumption of contemporary mobile
networks [1]. As the name suggests, the D2D communication
facilitates a direct communication between any two devices
in the vicinity to each other without a need to communicate
through a base station, referred to in this paper as gNodeB
(gNB), to be in line with 3GPP terminology for 5G mobile
networks. In terms of spectrum usage, the D2D pairs (com-
posed of D2D transmitters and D2D receivers) exploit the
D2D communication in one of two basic operational com-
munication modes: 1) the communication over a licensed

The associate editor coordinating the review of this manuscript and
approving it for publication was Anandakumar Haldorai.

spectrum dedicated for conventional cellular users (known as
in-band D2D communication) or 2) the communication in an
unlicensed spectrum assigned, for example, to WiFi or Blue-
tooth technology (also known as out-band D2D communica-
tion) [2]. Moreover, under the in-band D2D communication,
the D2D user equipments (DUEs) may access the licensed
radio resources in either shared or dedicated mode (more
details can be found, e.g., in [2]–[5]).

In general, the D2D pairs using in-band communica-
tion suffer from high interference either from other D2D
pairs or from conventional cellular users (i.e., users commu-
nicating through gNB) exploiting the same radio frequency
(RF) resources. This mutual interference can partly or fully
scale down the advantages offered by D2D communication
and, in extreme cases, can even result in an outage situation.
To avoid the outage situation, the D2D pairs should be able to
use out-band frequencies, if needed. An interesting way how

168922 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019



M. Najla et al.: Efficient Exploitation of RF and VLC Bands for D2D in Mobile Networks

to exploit out-band frequencies for D2D communication is
presented in [6], where the DUEs within a formed cluster are
allowed to use WiFi-Direct while the conventional in-band
frequency is used only for the communication between the
individual clusters. Even though the paper shows that the
out-band D2D communication is able to enhance the net-
work’s throughput, the interference within the cluster cannot
be easily mitigated since the DUEs share frequencies with
conventional WiFi devices [3]. Another feasible technology
for out-band D2D can be seen in visible light communication
(VLC). VLC is an enticing technology as it addresses many
challenges, such as bandwidth limitation, energy efficiency,
electromagnetic radiation, and safety in the wireless commu-
nication systems in general [7], [8]. The VLC systems operate
in higher frequency bands and have at their disposal a much
wider spectrum when compared to the conventional radio
systems (400-790 THz) [9], [10]. As a consequence, VLC is
able to provide data rates in the order of Gbps [11], [12] while,
at the same time, low power consumption is assured [13].

Hybrid VLC/RF networks have been presented in several
existing papers, such as [14], [15] and [16]. Nevertheless,
these papers focus on indoor downlink exploitation of the
VLC band without any D2D communication. In contrast,
VLC as an out-band D2D technology has been considered in
several recent studies.While [17] and [18] study only a stand-
alone VLC for D2D, a combination of RF and VLC bands
for D2D communication has been initially studied in [19],
where potential benefits and performance limits of the hybrid
RF/VLCD2D are shown. However, the paper focuses only on
a simplified scenario considering just two D2D pairs, which
is not very realistic in future mobile networks with a high
density of users. On top of that, the paper does not address
in any way the problem of the selection between RF and VLC
bands for each D2D pair.

Thus, in this paper, we investigate the problem of the
selecting between RF or VLC for individual D2D pairs in
a multi-user scenario, where the D2D pairs using the same
technology (either RF or VLC) mutually interfere with each
other. Note that the initial idea of this paper has been pre-
sented in our conference paper [20] in a simplified version.
To this end, we extend [20] by formulating the problem in a
more general way as a constrained discrete sum capacitymax-
imization problem that might not always be solvable under
the zero outage constraint. Then, we show that this problem
should be transformed into a multi-objective optimization
problem to guarantee the existence of a solution. In addition,
this paper describes the proposed solution in more details
and shows new results by evaluating the proposed algorithm
in a wider scope and from several additional perspectives
related to specific aspects of VLC (e.g., an impact of radiance
and irradiance angles) and to the energy efficiency of the
whole system, which plays a prominent role in future mobile
networks. To this end, the contributions of this paper can be
summarized as follows:
• We formulate the RF/VLC selection as a constrained
discrete sum capacity maximization problem that might

not always be solvable under the zero outage constraint.
Then, we transform the problem into a solvable multi-
objective optimization problem aiming to achieve a min-
imization of the outage as well as a maximization of the
sum capacity of D2D pairs.

• We use a Lexicographic ordering to transform the
multi-objective optimization problem into two single-
objective optimization problems, outage minimization
and sum capacity maximization, taking into account the
higher priority of the outage minimization.

• We derive the optimal solution of the two problems,
outage minimization and sum capacity maximization,
sequentially via an exhaustive search algorithm.

• We propose an iterative two-phase heuristic centralized
algorithm, which switches D2D pairs from RF to VLC
aiming to minimize outage and maximize sum capacity.
The switching itself occurs sequentially based on: 1) the
sum of the interference generated to other D2D pairs in
the vicinity and 2) the sum of the interference received
from other D2D pairs.

• We show that the proposed algorithm introduces a sub-
stantial complexity reduction and reaches a close-to-
optimum performance in terms of outage ratio, sum
capacity and average energy efficiency compared to the
optimal solution derived by the exhaustive search algo-
rithm. In addition, we show that the proposed algorithm
overcomes the state-of-the-art algorithms.

The rest of the paper is structured as follows. Section II
describes the systemmodel and formally defines the objective
of the paper. Then, Section III is allocated for the presentation
of the proposed heuristic algorithm including a description of
the main practical assumptions and introduction of the graph
theory framework for the interpretation of interference among
D2D pairs. The simulation scenario and simulation results are
presented in Section IV. The last section concludes the paper
and further discusses future research direction.

II. SYSTEM MODEL AND OBJECTIVES
This section describes the system model and, then, the objec-
tive of the proposed algorithm is formulated.

A. SYSTEM MODEL DESCRIPTION
The system model assumes N D2D pairs (including N trans-
mitters and N receivers) deployed inside a rectangular area
(as shown in Figure 1, where N = 5 is considered). Any
transmitting DUE (DUET ) is supposed to send data to a
specific one receiving DUE (DUER), thus creating one D2D
pair. The DUEs are assumed to be equipped with an RGB-
based light-emitting diode (LED) and a photodetector for
transmitting and receiving the optical signal in VLC D2D,
respectively. Irradiance angle (φ) and incidence angle (ψ)
(i.e., users’ directions) influencing the VLC performance [10]
are either set to zero (i.e., angles are optimal), or generated
according to Gaussian distribution [19].
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FIGURE 1. System model with an example of five D2D pairs operating in
RF and VLC bands. Note that not all D2D pairs communicating over the
VLC band interfere among each other due to the effect of the irradiance
and the incidence angles.

The D2D pairs communicating over the RF band suffer
from an interference caused by the active users communi-
cating in the neighboring cells. This RF interference from
neighboring cells is denoted as Inoise and presented as a part of
the RF noise in this paper. Contrary, if the D2D pair operates
in the VLC mode, there is no interference from adjacent cells
as VLC signal is significantly attenuated by longer distances
and existing obstacles. Furthermore, to reach the high spectral
efficiency we assume that the D2D pairs operating both in
RF and VLC share the whole available bandwidth. In this
regard, the individual capacity of each D2D pair is strongly
influenced by the interference generated from other D2D
pairs in the vicinity and communicating via the same band.
Note that there is no interference between the group of D2D
pairs exploiting RF to those utilizing VLC at the moment,
as these communicate at different frequencies.

1) CAPACITY MODEL
The capacity of the n-th D2D pair in the RF-VLC D2D
network is calculated according to Shannon–Hartley theorem
as:

Cn = Blog2(1+ γn), (1)

where B is the bandwidth allocated to the D2D pair and γn is
the signal to interference plus noise ratio (SINR) of the n-th
D2D pair. Since every D2D pair can communicate with only
either RF or VLC at the moment, we introduce two binary
variables (indicators), αRn and αVn for every n-th D2D pair
indicating whether the pair communicates via RF or VLC
bands, respectively. More specifically, for every n-th D2D

pair we set αRn = 1 and αVn = 0 if the n-th D2D pair
communicates over the RF band and vice versa αRn = 0 and
αVn = 1 if the n-th D2D pair communicates over the VLC
band. Notice that in the rest of the paper, the upper index
‘‘R’’ always represents RF band while ‘‘V’’ always stands for
VLC. Thus, the bandwidth allocated to the n-th D2D pair can
be expressed as:

B = αRnB
R
+ αVn B

V . (2)

Moreover, the SINR of the n-th D2D pair is calculated as:

γn = α
R
n

pRng
R
n,n

σR +
∑

m 6=n α
R
mpRmgRm,n

+αVn
(µpVn g

V
n,n)

2

σV +
∑

m6=n α
V
m (µpVmgVm,n)2

, (3)

where pn is the transmission power of the n-th DUET , pm
stands for the transmission power of the m-th DUET causing
interference to the n-thDUER, gn,n corresponds to the channel
gain between the n-th DUET and the n-th DUER, gm,n is
the channel gain between the interfering m-th DUET and the
n-th DUER, σ represents the noise, and µ is the responsivity
of the photodetector of any DUER. Note that in this paper,
line-of-sight (LOS) communication is considered for VLC
D2D [10], and thus, the main VLC channel gain (gVn,n) and
the interference VLC channel gain (gVm,n) are LOS channel
gains and can be derived as in [21].

The noises for RF and VLC are calculated differently.
Consequently, the RF noise (σR) is estimated as:

σR = BRσRo + Inoise, (4)

where σRo stands for the RF thermal noise spectral density.
However, the VLC noise σV is composed of a thermal σthermal
and a shot σshot noise [21], as follows:

σV = σ 2
thermal + σ

2
shot . (5)

Both σthermal and σshot , are calculated based on [10].

2) OUTAGE
In our model, we assume that each n-th DUER is able to
receive data with the SINR that satisfies γn ≥ γmin, where
γmin is the minimal SINR. If any n-th D2D pair has γn < γmin,
then, this D2D pair is assumed to be in the outage (i.e., there
is no D2D communication available between the n-th DUET
and the n-th DUER). Therefore, we introduce the outage ratio
2 that represents the ratio of D2D pairs not satisfying above-
mentioned condition as:

2 =
No
N
, (6)

where No ≤ N is the number of D2D pairs in outage.

3) ENERGY EFFICIENCY
Since we also evaluate the system performance in terms of
energy efficiency, the power consumption in both the RF and
VLC bands needs to be calculated. The power consumption
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in RF is derived according to the well established empirical
model [22] that takes into account the power consumed by
both the transmission and the reception of data. Specifically,
the power consumed by transmission and the reception con-
sists of base-band signal processing parts Pbbt and Pbbr , radio
frequency parts Prft and Prfr , and a consumption of commu-
nication parts circuitry Pont and Ponr . The power consumed by
transmission (PRt ) and the power consumed by reception (PRr )
are defined as:

PRt = Pbbt + P
rf
t + P

on
t , (7)

PRr = Pbbr + P
rf
r + P

on
r , (8)

where the values and the calculations of individual parame-
ters are explained in detail in [22].

The power consumption in VLC by transmission (PVt ) is
calculated according to [23] and [24] considering that the
LED-based transmitter circuit is a serial-FET circuit, in which
the consumed power can be derived as:

PVt = Pledt + P
sf
t + P

buck
t , (9)

where Pledt is the illumination power consumption in the
LED, Psft stands for the power consumption in the serial-
FET circuit composed of the modulation power consumption
and the power consumed in the LED because of modulation,
and Pbuckt corresponds to the buck driver power consumption.
All, Pledt , Psft and Pbuckt , are calculated according to [23] and
[24] considering the same electronic components in the VLC
transmitter circuit. To calculate the power spent by the recep-
tion of VLC (PVr ), we consider that this power consumed in
the VLC receiver circuit (in the n-th DUER) is equal to the
power consumed in the VLC transmitter circuit (in the n-th
DUET ), i.e., PVr = PVt .

Based on the capacity and the power consumption of the
n-th D2D pair Cn from (1), the energy efficiency of the n-th
D2D pair is derived as:

EEn =
Cn

αRn (P
R
t + PRr )+ αVn (P

V
t + PVr )

. (10)

B. OBJECTIVE FORMULATION
In general, our objective is to select RF or VLC band for each
D2D pair in order to maximize the sum capacity of D2D pairs
keeping zero outage, formulated as:

αR, αV = argmax(
∑n=N

n=1
Cn)

s.t. (a) αRn ∈ {0, 1} ∀n ∈ {1, . . . ,N },

(b) αVn ∈ {0, 1} ∀n ∈ {1, . . . ,N },

(c) αRn + α
V
n = 1 ∀n ∈ {1, . . . ,N },

(d) γn ≥ γmin ∀n ∈ {1, . . . ,N }), (11)

where αR = {αR1 , . . . , α
R
N } and α

V
= {αV1 , . . . , α

V
N } are

the two sets of the binary indicators for RF and VLC bands,
respectively; constraints (a) and (b) guarantee that every indi-
cator in αR and αV is a binary variable and its value should be
either zero or one as explained in Section II-A; constraint (c)

guarantees that every n-th D2D pair is able to use only either
RF or VLC; and constraint (d) keeps the SINR of all D2D
pairs above the threshold γmin to maintain zero outage. Note
that the problem (11) is an integer (non-linear) programming
which is NP-hard.

However, the constrained discrete optimization problem
(11) seeks for a solution represented by a combination of
RF and VLC band selections for the D2D pairs where, first,
the constraint (d) is satisfied and, second, the sum capacity is
maximized. In other words, constraint (d) reflects the priority
of reaching zero outage before sum capacity is maximized
as it is the case in real network implementations where the
network operators aim to serve as many users as possible.
Nevertheless, there might be no RF/VLC combination that
guarantees no outage (i.e, some n-th D2D pairs may always
experience γn < γmin), especially for a high number of D2D
pairs N and the corresponding high interference over both
bands (RF and VLC). Thus, to guarantee the existence of a
solution, we relax the problem of reaching zero outage to a
problem of minimizing the outage ratio as much as possible.
Hence, we transform the problem (11) into a multi-objective
optimization problem written as:

αR, αV = argmax(1/2,
∑n=N

n=1
Cn)

s.t. (a)–(c) from (11), (12)

where the objective is both to minimize the outage and to
maximize the capacity.

Generally speaking, the multi-objective optimization is
concerned with optimizing multiple parameters where, in our
case, we aim to minimize 2 (achieved by maximizing 1/2)
and to maximize

∑n=N
n=1 Cn at the same time. However,

as mentioned before, minimizing outage has a higher priority
in comparison to the sum capacity maximization in the real
network. Thus, we consider a Lexicographic ordering of the
objectives defined in (12) in a way that the outage ratio min-
imization is assumed to be the objective with higher priority
compared to the capacity maximization, which represents
the objective with lower priority. Taking this Lexicographic
ordering into account, the multi-objective optimization prob-
lem in (12) can be transformed into two sequentially-solvable
single-objective optimization problems: outage ratio mini-
mization, and then, sum capacity maximization. Therefore,
as a higher priority problem, the outage ratio minimization is
formulated as:

αR2, α
V
2 = argmax(1/2)

s.t. (a)–(c) from (11), (13)

where αR2 and αV
2

are two matrices containing the possible
binary indicators for RF and VLC bands, respectively, mini-
mizing the outage ratio. In other words, αR2 and αV

2
represent

the set of solutions (RF/VLC combinations) that reach the
minimal possible outage 2 (i.e., there might be multiple
RF/VLC combinations that achieve the same minimal outage
2). Then, as a lower priority problem, the sum capacity
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maximization is formulated as:

αR, αV = argmax(
∑n=N

n=1
Cn)

s.t. (a)–(c) from (11)

(d) 2 = 2∗, (14)

where 2∗ is the minimal outage ratio achieved by solving
(13) and, thus, the constraint (d) in (14) guarantees that the
outage achieved by solving outage minimization (13) should
be kept while solving (14).

III. PROPOSED BAND SELECTION ALGORITHM
First, we summarize the major assumptions considered in
the developing of the proposed algorithm. Second, based
on graph theory, we illustrate the exploitation of weighted
directed graphs to interpret the interference among the D2D
pairs as this interpretation is used to design the proposed
band selection algorithm. Finally, we describe the proposed
heuristic algorithm in detail.

A. ASSUMPTIONS
In order to implement the proposed heuristic algorithm, sev-
eral assumptions related to practical aspects and design need
to be defined. These are summarized below:
• In the initial phase, before executing the proposed algo-
rithm, all D2D pairs communicate via the RF band as
it is more stable and less sensitive to the minor changes
in the DUEs’ orientations. For this same reason, the RF
band is also assumed to serve the needed signaling and
communication setup even if the data is transmitted over
the VLC band.

• Within every D2D pair, the DUET is assumed to be able
to send a VLC beacon signal on a periodic basis to the
DUER even if the D2D pair communicates over the RF
band. This VLC beacon is needed to evaluate the quality
of the VLC channel. Note that the beacons are equivalent
to the RF common reference signals used for channel
estimation purposes in, e.g., LTE mobile networks (see
[29]). In other words, the beacons represent reference
signals transmitted at specific resources by any DUET
communicating in VLC or willing to switch its commu-
nication band from RF to VLC.

• The gNB centrally controls and manages the proposed
algorithm. Thus, we assume that the estimated RF and
VLC channels (via RF reference signals and VLC bea-
cons, respectively) are reported periodically to the gNB.
Then, based on the assumed full knowledge of these
channels, the gNB is able to decide the D2D pair that
need to switch its communication band from RF to VLC
accordingly.

B. GRAPH THEORY-BASED INTERPRETATION OF
INTERFERENCE
The communication band selection (either RF or VLC) for
each D2D pair is based on the interference relations among
individual D2D pairs over both bands. Thus, in this section,

we introduce the usage of weighted directed graphs adopted
from graph theory for the interpretation of the mutual inter-
ference among the D2D pairs.

A fully connected weighted directed graph is defined as
G = (V ,E), where the set of vertices (V ) stands for the
D2D pairs and the set of edges (E) represents the interference
among them. Then, as the G = (V ,E) is supposed to be a
weighted graph, any edge ei,j, connecting the vertices vi with
the vj, is assigned with a specific weight Ii,j corresponding to
the interference from the vi to the vj (i.e., interference from
i-th DUET to the j-th DUER). Analogously, the interference
from the vj to vi is interpreted as Ij,i, where the j-th DUET
causes interference to the i-th DUER.

In order to select the suitable communication band
(RF or VLC) for every i-th D2D pair, we introduce two
interference-based metrics from G as follows: 1) the sum of
interference caused by the i-th DUET (i.e., by the vi vertex) to
all other D2D pairs; and 2) the sum of interference received
at the i-th DUER (i.e., at the vi vertex) from all other D2D
pairs. The former metric (denoted as d+(vi)) represents the
out-degree of the vertex vi and it is equal to the sum of the
weights of the edges that start from the vertex vi:

d+(vi) =
j=N∑

j=1,j 6=i

(Ii,j) (15)

The latter metric (denoted as (d−(vi))) is the in-degree of the
vertex vi and it is equal to the sum of the weights of the edges
that end in the vertex vi:

d−(vi) =
j=N∑

j=1,j 6=i

(Ij,i) (16)

Together, the sum of the in-degrees of all vertices plus the
sum of out-degrees of all vertices represent the degree of the
graph G (denoted as d(G)) calculated as:

d(G) =
i=N∑
i=1

d−(vi)+
i=N∑
i=1

d+(vi)

= 2
i=N∑
i=1

d−(vi) = 2
i=N∑
i=1

d+(vi) (17)

It is obvious, from (17), that
∑i=N

i=1 d
−(vi) =

∑i=N
i=1 d

+(vi).
This equality between the in-degrees and out-degrees is due
to the fact that every edge ei,j from the vertex vi to the vertex
vj with a weight Ii,j is considered as in-weight with respect
to the vj as well as out-weight with respect to the vi. In other
words, every Ii,j weight is a part of d+(vi) and a part of d−(vj)
as well.

Note that when some D2D pairs communicate over the
RF band while some other D2D pairs communicate over the
VLC band, theD2D pairs can be represented by two separated
weighted sub-graphs. The first sub-graph is a fully connected
weighted sub-graph representing D2D pairs communicating
over the RF band and interfering with each other. In contrast,
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although the second sub-graph is a weighted directed sub-
graph, it does not have to be fully connected as it represents
the D2D pairs communicating over the VLC band where the
interference might be absent between some D2D pairs due
to various orientations of users’ devices. However, there are
no edges between the two sub-graphs due to the absence of
interference among VLC and RF bands.

C. DESCRIPTION OF THE PROPOSED ALGORITHM
The problem (13) can be solved by the exhaustive search
algorithm as all RF/VLC combinations are checked and the
set of the combinations that minimizes the outage ratio (2)
is chosen. Similarly, the exhaustive search can be applied
to solve (14) by choosing the RF/VLC combination that
maximizes the sum capacity of D2D pairs out of the set
of combinations that minimize the outage ratio obtained
from solving (13). However, the exhaustive search algorithm
introduces a time complexity of O(2N ). Thus, even if the
number of D2D pairs is low, e.g., N = 10, the number of
all possible combinations can be seen as too many, making
the exhaustive search algorithm impractical for real networks,
especially that the channel conditions are likely to change
before testing all RF/VLC combinations. Thus, starting from
the conventional initial state when all D2D pairs communi-
cate over the RF band, we develop a low-complexity iterative
algorithm switching the communication band of the D2D
pairs sequentially from RF to VLC and converging to a final
close-to-optimum performance.

Algorithm 1 The Proposed Algorithm
1: Estimation of 2 and

∑
Cn

2: while 2 is not minimized or
∑
Cn is not maximized do

3: if 2 > 0 then
4: First phase: Outage ratio minimization
5: end if
6: Second phase: Sum capacity maximization
7: end while

The high level overview of the proposed algorithm is
depicted in Algorithm 1. In the beginning, Algorithm 1 esti-
mates the initial outage (2) and the initial sum capacity
(
∑
Cn) when all D2D pairs operate in RF (see line 1).

After that, two sequential phases, each solving one part of
the multi-objective optimization problem, follow. More pre-
cisely, the first phase of the algorithm aims to minimize
the outage ratio (line 4) unless the outage ratio is equal to
zero (i.e., no outage); and the second phase maximizes the
sum capacity (line 6). Both above-mentioned phases (covered
by Algorithm 2 and Algorithm 3) are repeated as long as
the performance may be further improved either in terms of
outage ratio or sum capacity.

The first phase targeting to minimize outage ratio is han-
dled by Algorithm 2. First, D2D pairs are sorted in a descend-
ing order according to the out-degree of the vertices, that is,
according to d+(vRi ) calculated in line with (15). In the next
step, the D2D pair with the highest d+(vRi ) is selected as the

Algorithm 2 First Phase (Minimization of Outage Ratio)

1: Sort D2D pairs in descending order acc. to d+(vRi )
2: for i = 1, 2, . . .NR (all sorted D2D pairs in RF) do
3: Check VLC channel for i-th pair (send beacon)
4: Switch i-th D2D pair from RF to VLC
5: Determine 2new

6: if 2new < 2 then
7: Keep i-th D2D pair in VLC
8: 2 = 2new (i.e., update outage)
9: if 2 = 0 then
10: Terminate Algorithm 2
11: else
12: Break and repeat from line 1
13: end if
14: else
15: Switch i-th D2D pair back to RF
16: if i =NR (All D2D pairs in RF are tested) then
17: Terminate Algorithm 2
18: end if
19: end if
20: end for

Algorithm 3 Second Phase (Maximization of Sum Capacity)
1: Get 2 and

∑
Cn from Algorithm 2

2: Sort D2D pairs in descending order acc. to d−(vRi )
3: for i = 1, 2, . . .NR (all sorted D2D pairs in RF) do
4: Check VLC channel for i-th pair (send beacon)
5: Switch i-th D2D pair from RF to VLC
6: Determine 2new and

∑
Cnew
n

7: if 2new
= 2 and

∑
Cnew
n >

∑
Cn then

8: Keep i-th D2D pair in VLC
9:

∑
Cn =

∑
Cnew
n (update Capacity)

10: Terminate Algorithm 3
11: else
12: Switch i-th D2D pair back to RF
13: if i =NR (All D2D pairs in RF are tested) then
14: Finish, 2 is minimized and

∑
Cn is maximized

15: end if
16: end if
17: end for

first candidate for the switching to VLC mode as this pair
in particular generates the highest sum interference to other
D2D pairs in RF. Of course, the D2D pair should change
from RF to VLC only if the VLC channel is of a sufficient
quality. Thus, the VLC channel quality is estimated by means
of a beacon transmitted from the D2DT to D2DR (line 3).
Then, if the D2D pair is able to use the VLC band, it is
switched to the VLC (line 4) and a new outage (2new) is
calculated according to (6) (see line 5). Obviously, if the
outage is decreased by this process (i.e., if 2new < 2),
the D2D pair remains in VLC mode (line 7), as this is the
main objective of this phase, and the outage value is updated
(line 8). If the outage is not decreased by changing from VLC
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to RF, however, the D2D pair goes back to RFmode (line 15).
After that, the other D2D pair with the second highest d+(vRi )
is investigated next and the whole process is repeated. This is
done as long as the outage is higher than 0 (checked in line 9)
or until all D2D pairs in RF have been tested (see line 16).
Notice that the number of D2D pairs in RF is denoted as NR

and as the switching process progress (i.e., be repeating while
cycle in Algorithm 1), NR is gradually decreased since less
amount of D2D pairs need to be checked.

In the second phase, represented by Algorithm 3, the aim is
to improve the sum capacity of D2D pairs without increasing
the outage ratio 2 achieved in the first phase. Thus, Algo-
rithm 3 starts by adopting 2 and

∑
Cn reached in the first

phase (line 1). Then, the D2D pairs are sorted according to
in-degree d−(vRi ) of the vertices corresponding to the D2D
pairs communicating over the RF band (line 2). The first D2D
pair to be checked is the one still in the RF mode and experi-
encing the strongest sum interference from other pairs in RF
(i.e., the pair with the highest in-degree d−(vRi ) calculated
according to (16)). After that, the process is similar to the
one described in Algorithm 2 during which the availability
of VLC connection for this pair is tested (line 4), and then,
the switching to VLC occurs if VLC is available (line 5).
Nevertheless, in this second phase, the new sum capacity∑
Cnew
n is also calculated (besides the2new), as the objective

of this phase is to maximize the sum capacity (line 6). The
D2D pair keeps communicating over the VLC band (line 8)
if

∑
Cnew
n >

∑
Cn while 2new

= 2 (i.e., if conditions
from line 7 are satisfied). The fulfilling of both conditions
also results in the termination of Algorithm 3. In the opposite
case, however, the D2D pair switches back to RF (line 12),
and the second pair from the sorted D2D pairs is tested
(i.e., Algorithm 3 returns back to line 3). Note that if the
Algorithm 3 is terminated in line 10 after a D2D pair switches
to VLC, the first phase (Algorithm 2) is repeated as illustrated
in Algorithm 1 in order to check the possibility of further
reduction in the outage. Nonetheless, if the achieved outage
is already zero, the second phase (Algorithm 3) is repeated
directly without the need to go through the first phase (see
Algorithm 1). After all D2D pairs in Algorithm 3 are tested
(line 13) without any possibility to improve sum capacity,
the whole proposed algorithm finishes (line 14) as changing
any of the D2D pairs fromRF to VLC cannot further decrease
outage or increase sum capacity.

The graphs-based interpretation of an example with five
D2D pairs switching to VLC based on the proposed algorithm
is shown in Figure 2. Figure 2a presents the initial state with
all D2D pairs communicating over the RF band. In such a
case, the D2D pairs mutually interfere with each other leading
to a possible outage. This outage is excluded by switching
D2D pairs 2, 3 and 5 (represented by vV2 , v

V
3 and vV5 , respec-

tively) to VLC as illustrated in Figure 2b.
Although the D2D pairs switched to VLC interfere

among each other, this VLC interference is expected to be
lower than the RF interference due to the higher signal
attenuation over the VLC band in comparison to the RF

FIGURE 2. An example of five D2D pairs represented by two weighted
directed graphs showing: (a) the initial state with all D2D pairs in RF, and
(b) the final state where three D2D pairs are switched to VLC (notice that
the topology of D2D pairs and the resulted RF/VLC combination are taken
from Figure 1).

band and due to the various setting of the irradiance and
the incidence angles of the DUEs belonging to different
D2D pairs.

IV. PERFORMANCE EVALUATION
The performance of the proposed algorithm is evaluated by
means of simulations performed in MATLAB. First, this
section describes in all the details the simulation scenario
and the simulation parameters. Second, the competitive algo-
rithms and the key performance metrics considered for the
comparison to our proposal are introduced. Third, the exten-
sive simulation results showing the impact of the number
of D2D pairs and/or irradiance and incidence angles are
presented and thoroughly discussed.

A. SIMULATION SCENARIO AND MODELS
We assume the scenario, which is identified as the most
beneficial for the whole RF-VLC D2D concept [19]. More
specifically, we consider an indoor area (representing, e.g.,
a room or a hall) without any indoor walls. Within this area,
up to ten D2D pairs are randomly dropped with a uniform
distribution. We assume that the users are aware of each
other and that they are willing to exchange data. Therefore,
the users try to direct their DUEs approximately towards
each other. This assumption is simulated using three different
distributions of angles showing three possible cases. The first
case is represented by optimal angles (φ and ψ are set to
zero), where the users direct their DUEs perfectly towards
each other. The second and the third case are represented by
Gaussian distribution of the irradiance and incidence angles
(φ and ψ) of every DUET and DUER of the same D2D pair
as in [19], with a mean of 0◦ and a standard deviation of 30◦

and 60◦, respectively. The simulation consists of 3000 drops,
where for each drop the positions and the angles of the all
DUEs are generated independently.

For the modeling of RF channel, we follow 3GPP recom-
mendation for indoor D2D communication as defined in [30],
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TABLE 1. Simulation parameters.

i.e., the D2D indoor path loss model is defined as:

PL = 89.5+ 16log10(dTR) (18)

where dTR is the distance between a transmitter and a receiver.
The RF interference from neighbouring cells Inoise is set

to −70 dBm. It is obvious that this selected value represents
a high level of interference which corresponds to the high
density of users expected in the future mobile networks (5G
networks and beyond) [25].

The VLC channel model is in line with [30] and follows the
description from Section II. However, Table 1 summarizes the
parameters of RF andVLC channels in addition to the general
simulation parameters. Notice that we consider the same
fixed pn for any n-th transmitter DUET and the exploitation
of power control techniques is left for future research.

B. COMPETITIVE ALGORITHMS AND PERFORMANCE
METRICS
To the best of our knowledge, there is no algorithm
selecting between RF and VLC for D2D communication.
Thus, our proposed heuristic algorithm (labeled Proposed
RF-VLCD2D) is compared to the following four competitive
solutions:

1) RF D2D: The RF band is used for the D2D communi-
cation and all the D2D pairs reuse the whole bandwidth
[20]. This algorithm illustrates the performance of the
D2D communication in the case where only the RF
band is available (without VLC D2D).

2) VLC D2D: The VLC band is exploited for the D2D
communication according to [31]. Notice that the VLC
D2D in [31] includes the possibility of relaying the
VLC-based data transmission through nearby devices.
Nevertheless, we do not consider any relaying in our
proposed algorithm and, thus, we leave this feature
out also for VLC D2D for a fair comparison. The
VLC D2D demonstrates the performance of the D2D
communication in the case where only the VLC band
is available (without RF D2D).

3) Random RF-VLC D2D: This algorithm randomly
selects either RF or VLC band for each D2D pair.

FIGURE 3. Number of iterations M needed for the proposed algorithm
over number of D2D pairs N .

Note that this simple algorithm is designed only for
comparison purposes.

4) Optimal RF-VLC D2D: The optimal combination of
RF and VLC bands for the D2D pairs is derived by
the exhaustive search algorithm, which checks all pos-
sible combinations (2N combinations) as described in
Section III-C. First, the combinations with the lowest
reachable outage ratio 2∗ are chosen. Then, the algo-
rithm selects the combination with the highest

∑
Cn

among the previously chosen combinations with the
lowest outage ratio. This algorithm is a very high com-
plexity solution that shows the optimal performance of
the RF-VLC D2D in a multi-user scenario; and it can
be seen as a theoretical upper bound used to evaluate
the performance quality of other algorithms.

The performance of the proposed algorithm and all four
competitive solutions are assessed by means of three perfor-
mance metrics: 1) the outage ratio 2 (see (6)), 2) the sum
capacity of D2D pairs

∑
Cn (denoted in figures as C), and

3) the average energy efficiency of D2D pairs EE , calculated
as EE =

∑
EEn
N . Moreover, we show the complexity of

the proposed algorithm presented by the number of needed
iterations of the proposed algorithm (denoted as M ) and we
show the VLC usage ratio calculated as NV

N , where NV is
number of D2D pairs communicating over the VLC band.

C. SIMULATION RESULTS AND DISCUSSION
In this sub-section, we present the results showing that the
proposed algorithm is of low complexity and, at the same
time, achieves a close-to-optimal performance in terms of the
outage, sum capacity and average energy efficiency of D2D
pairs.

Figure 3 analyzes the complexity of the proposed algorithm
presented by the number of needed iterations (M ) averaged
over the simulated drops. It is obvious that the number of
iterations increases with N as more D2D pairs are checked
and switched from RF to VLC. Figure 3 also shows that the
further the irradiance and incidence angles (φ and ψ) are
from the optimal, the less number of iterations are needed.
In other words, when φ and ψ are optimal (equal to zero),
the proposed algorithm needs to go through the highest
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FIGURE 4. Outage ratio 2 over the number of D2D pairs N for φ and ψ distributed as: optimal (zero) angles (a), Gaussian distribution with the mean of 0
and the standard deviation of 30◦ (b) and 60◦ (c). Note that the common legend is shown in Figure 4a for the sake of clarity.

number of iterations in comparison to the cases when φ andψ
are not optimal. This interesting behavior is, however, quite
expected due to the fact that if φ and ψ angles are closer
to optimum there is a higher probability that a D2D pair is
able to communicate over the VLC band. Thus, more D2D
pairs need to be checked and switched from RF to VLC
as explained in Section III-C. However, regardless of the
angular distribution, we see in Figure 3 that the complexity
of the proposed algorithm is much lower than the exhaustive
search algorithm, e.g., for 10 D2D pairs exhaustive search
checks 2N = 210 = 1024 combinations (corresponding to
1024 iterations) while the proposed algorithm needs below
35 iterations.

Figure 4 shows the outage ratio2 depending on number of
D2D pairs and for different distributions of φ and ψ . For all
algorithms, the 2 increases with N , because the interference
is inevitably increasing with the density of D2D pairs as well.
It can be seen in Figure 4 that the RFD2D and VLCD2D lead
to the highest and the second highest outage, respectively,
when angles are optimal (Figure 4a). However, when angles
are not optimal, the VLCD2D shows an increasing2with the
increasing standard deviation of the Gaussian distribution of
φ andψ from 30◦ and 60◦ and, thus, VLCD2D introduces the
highest outage ratio for low number of D2D pairs in Figure 4b
and Figure 4c. Moreover, the increasing outage ratio of VLC
D2D with angles changing from Optimal to N (0, 30) and
then to N (0, 60) impacts all algorithms combining RF and
VLC (i.e., Random, proposed and optimal RF-VLC D2D).
The reason is that if the transmitter and the receiver of the
D2D pair are in the opposite direction of each other, the D2D
pair they compose cannot switch to VLC even if this pair
is exposed to (or causing) high RF interference. However,
Figure 4 shows that combining RF and VLC in a random
RF-VLC D2D introduces unacceptable low gain in terms
of outage ratio reduction. On the contrary, the proposed
RF-VLC algorithm reduces the outage ratio substantially to a
0.03 and less than 0.09 for all values ofN when irradiance and
incidence angles are optimal (Figure 4a) or relatively good
(Figure 4b). Such a low outage ratio is achieved by relying on

the proposed interference-based selection of the candidates
for switching from RF to VLC.

In Figure 4c, where angles might be non-suitable for VLC,
the outage ratio of the proposed algorithm increases up to 0.2
for 10 D2D pairs. However, we can see that when the angles
are not suitable for VLC, even the optimal selection is not
able to fully mitigate outage. What is more, the relatively
small gap between the proposed selection and the optimal
one (in the worst case the gap is roughly 0.07) can be easily
justified by very low complexity of the proposed algorithm
(as demonstrated in Figure 3) in contrast to the optimal
exhaustive search-based solution for which the complexity
increases exponentially (2N ) making this optimal algorithm
impractical for real network implementations.

Moving to the another criteria, Figure 5 illustrates the
sum capacity of D2D pairs over N . The sum capacity of all
algorithms containing a VLC D2D (VLC D2D or RF-VLC
D2D), decreases with irradiance and incidence angles chang-
ing from optimal to Gaussian distribution with a standard
deviation of 30◦ and then 60◦. Still, the bottom line is that the
proposed RF-VLC D2D significantly outperforms RF D2D,
VLC D2D, and random RF-VLC D2D reaching 6.1, 7.1, and
1.1 times higher sum capacity, respectively. At the same time,
the proposed algorithm loses onlymarginally when compared
to optimal RF-VLC D2D (always less than 9.5%). Figure 5
further shows that the behavior of the sum capacity overN for
the optimal RF-VLC D2D and the proposed RF-VLC D2D
is almost similar. To be more precise, when angles are opti-
mal (Figure 5a) or relatively good (Figure 5b), the capacity
increases as long as the increasing N gives more possible
RF-VLC combinations that are able to manage and to limit
the added interference. With further increasing of D2D pairs,
however, the sum capacity starts decreasing due to the fact
that further increment in N leads to a high interference even
if both RF and VLC bands are considered. Note that in Fig-
ure 5c, the sum capacity immediately decreases whenN starts
to increase as adding more pairs raises the RF interference
while most of the D2D pairs are not able to switch to VLC
due to the unfavorable φ andψ . With the continuous increase
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FIGURE 5. Sum capacity C over number of D2D pairs N for φ and ψ distributed as: optimal (zero) angles (a), Gaussian distribution with mean of 0 and
standard deviation of 30◦ (b) and 60◦ (c). Note that the common legend is shown in Figure 5c for the sake of clarity.

FIGURE 6. The average energy efficiencyEE over the number of D2D pairs N for φ and ψ distributed as: optimal (zero) angles (a), Gaussian distribution
with the mean of 0 and the standard deviation of 30◦ (b) and 60◦ (c).

FIGURE 7. The VLC usage ratio over the number of D2D pairs N for φ and ψ distributed as: optimal (zero) angles (a), Gaussian distribution with the mean
of 0 and the standard deviation of 30◦ (b) and 60◦ (c).

of N , however, the capacity starts increasing as well (i.e.,
if N > 7) since more pairs can be switched to VLC and
interference among the pairs is partly mitigated.

Figure 6 provides an analysis of the average energy effi-
ciency of D2D pairs. We can see that the average energy
efficiency of D2D pairs of all algorithms decreases with N
due to the high corresponding increment in the consumed
energy by more D2D pairs. Moreover, Figure 6 shows that
the users’ directions affect all algorithms containing VLC
D2D, where EE generally decreases as φ and ψ are further

from the optimal ones. However, the proposed algorithm
outperforms the RF D2D, VLC D2D, and random RF-VLC
D2D disregarding N and φ and ψ distribution reaching 5.3,
10, and 1.2 times higher average energy efficiency, respec-
tively. In addition, minor losses in EE are introduced by the
proposed algorithm comparing to the optimal RF-VLC D2D
as we see in Figure 6 (always less than 9.5%).

Finally, we show the VLC usage ratio over N in Figure 7.
The first obvious observation is that disregarding N , the VLC
usage ratio decreases with φ and ψ changing from optimal
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to Gaussian with a standard deviation of 30◦ and then to
Gaussian with a standard deviation of 60◦. This outcome
is expected since the VLC links experience lower capacity
if φ and ψ are further from optimal and, thus, RF is used
more often. The second observation is that when φ and ψ are
optimal (Figure 7a) or relatively good (Figure 7b), the VLC
ratio increases withN as long as the increasing interference is
handled by switching more pairs from RF to VLC. However,
after a certain value of N (N = 6 for optimal angles and
N = 5 for a standard deviation of 30◦), the VLC ratio starts
to decrease due to the fact that the number of D2D pairs
switching to VLC is not increasing any longer with N due
to high interference in VLC. In contrast, if φ and ψ are
generally far from optimal (i.e., case in 7c), the VLC usage
ratio is more or less always increasing with N . The reason
for this behavior is the fact that increasing the number of
D2D pairs when UEs’ angles are rarely suitable for VLC
communications leads to a limited increment in VLC usage
ratio and a corresponding relatively low VLC interference.
Thus, VLC usage ratio keeps gradually increasing for all
tested values of N (even when N > 6).

V. CONCLUSION
In this paper, we have proposed the centralized algorithm for
the selection of either RF or VLC band for D2D communica-
tion in amulti-user scenario. The simulation results show that,
compared to the exhaustive search algorithm, the proposed
algorithm costs much lower complexity and, at the same time,
reaches close-to-optimal performance. Moreover, the pro-
posed algorithm outperforms all state-of-the-art algorithms in
terms of capacity by up to 7.1 times and energy efficiency by
up to 10 times while outage is significantly minimized.

As future work, the selection between both communication
bands should be done by exploiting machine learning in order
to further decrease the complexity of the selection.
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4.3.3 Machine Learning for Fast Band Selection in RF-
VLC D2D Communication

In this subsection, another RF/VLC band selection algorithm is proposed. The
algorithm proposed in this sub-subsection relies on machine learning in order
to make a very fast band selection based only on limited channel knowledge.
This subsection includes the journal paper [3J].
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Abstract—This letter focuses on the selection between radio
frequency (RF) and visible light communications (VLC) bands
for users exchanging data directly with each other via device-to-
device (D2D) communication. We target to maximize the energy
efficiency of D2D communication while the outage is minimized.
Since the VLC channel can vary quickly due to the possible
changes in irradiance and incidence angles, we aim to reach a
quick band selection decision in a multi-user scenario based only
on the knowledge of the received power and sum interference
from all D2D transmitters at the individual D2D receivers. The
proposed solution is based on a deep neural network making an
initial band selection decision. Then, based on the DNN’s output,
a fast heuristic algorithm is proposed to further improve the band
selection decision. The results show that the proposal reaches
a close-to-optimal performance and outperforms the existing
solutions in complexity, outage ratio, and energy efficiency.

Index Terms—Device-to-device, visible light communications,
band selection, deep neural networks

I. INTRODUCTION

Future mobile communications are expected to cope with
the continuous increase in the amount of transmitted data
resulting in a lack of available radio spectrum [1]. A suitable
solution for an efficient use of the spectrum is device-to-device
(D2D) communication allowing any pair of nearby D2D user
equipment (DUE) to communicate directly and, hence, to
improve the spectral efficiency and the system capacity [2]. To
further enhance the system capacity, multiple D2D pairs can
reuse the same radio frequency (RF) band [3]. Also, additional
bands besides the RF licensed bands, such as Bluetooth
or WiFi, can be exploited [4]. Another enticing option is
to exploit visible light communications (VLC) operating at
frequency bands of 400-790 THz. This makes VLC suitable
for communicating at short distances, e.g., indoor [5].

Several studies demonstrate the benefits of the D2D com-
munication using only VLC bands (e.g., [6]-[7]). Nevertheless,
the VLC link may suffer from sudden drops in channel quality
as it is highly susceptible to changes in the transmitter’s
(DUEt) irradiance and the receiver’s (DUEr) incidence angles.
Consequently, VLC links should not be implemented without
an option to switch back to RF. An initial study on the
combination of RF and VLC for D2D communication is
presented in [1]. Then, in [8], an iterative two-phase heuristic
algorithm is proposed to minimize the outage and to maximize
the sum capacity of D2D pairs by selecting RF or VLC

This work has been supported by the grant no. GA17-17538S funded by
Czech Science Foundation and the grant no. SGS17/184/OHK3/3T/13 funded
by CTU in Prague. The authors are with the Department of Telecommunica-
tion Engineering, Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague, Prague, 166 27 Czech Republic (emails: najlameh@fel.cvut.cz;
machp2@fel.cvut.cz; zdenek.becvar@fel.cvut.cz).

communication band for each pair. However, the solution in [8]
relies on the assumption that channel gains among all DUEs
in RF and VLC are known. Moreover, the band selection in
[8] is based on an iterative algorithm, which is not suitable in
dynamic scenarios, where a fast band selection is required.

To circumvent the need for the full channel knowledge, we
present the band selection problem as a supervised binary
classification problem targeting the selection of RF or VLC
for every D2D pair. We assume only the knowledge of the
received power and the received sum interference at each
DUEr in RF and VLC to minimize the outage and to maximize
the average energy efficiency of the D2D communication. We
solve this band selection problem via deep neural network
(DNN). We choose DNNs as they make no prior assumptions
on the data sets and give an instantaneous probabilistic output
in a negligible time. Moreover, a trained DNN can be stored
with low memory requirements while it still enables to extract
a complex model/relation connecting its inputs and outputs as
required by the nature of our problem.

To minimize the potential gap between the performance of
the DNN exploiting limited channel knowledge among D2D
pairs and the optimal case when full information is available,
we design a low-complexity heuristic algorithm built upon the
DNN’s output to further improve the accuracy of the band
selection. The algorithm relies on the probabilities of each
D2D pair to communicate via RF (and VLC) obtained by the
DNN, and copes with the inherent uncertainties in the DNN’s
decisions. Despite the proposed solution is of a very low
complexity and requires only a limited knowledge of channels,
the simulations demonstrate its close-to-optimal performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume N D2D pairs uniformly deployed in a square
area. The RF (VLC) channel with a bandwidth BR (BV ) is
exploited by all D2D pairs communicating in RF (VLC). The
D2D pairs using VLC are affected by the DUEt irradiance and
DUEr incidence angles, which are generated randomly. Since
any n-th D2D pair can communicate in either the RF or VLC
band, we define a band indicator zn. If the n-th D2D pair
communicates over the RF band, zn is set to 1, while if the
n-th pair uses VLC, zn is set to 0. Based on this, the energy
efficiency of the n-th D2D pair is expressed as:

EEn =
Cn

zn(P t,nR + P r,nR ) + (1− zn)(P t,nV P r,nV )
(1)

where P t,nR and P t,nV are the powers consumed by the n-th
DUEt during the transmission in RF and VLC, respectively;
P r,nR and P r,nV are the powers consumed by the n-th DUEr



Fig. 1: System model.

during the data reception in RF and VLC, respectively (the
consumed powers in RF and VLC are modeled in line with
[9] and [8], respectively); and Cn denotes the capacity of the
n-th D2D pair defined as:

Cn = Blog2(1 + γn) (2)

where B is the communication channel bandwidth and γn is
the signal to interference plus noise ratio (SINR). Considering
the band indicator zn, the bandwidth B in (2) is:

B = znBR + (1− zn)BV (3)

Similarly, γn is calculated as:

γn = zn
pnRg

n,n
R

NR +
∑
m 6=n z

mpmR g
m,n
R

+(1− zn) pnV g
n,n
V

NV +
∑
m6=n(1− zm)pmV g

m,n
V

(4)

where pn is the transmission power of the n-th D2D pair, gn,n

is the channel gain between the DUEt and the DUEr of the
n-th D2D pair, pm is the transmission power of the m-th D2D
pair that is inducing interference to the n-th D2D pair, gm,n

is the channel gain between the DUEt of the m-th pair and
the DUEr of the n-th pair, and NR and NV are the noises
in RF and VLC, respectively. Note that, in VLC, the channel
gains and the noise are functions of the users’ directions (i.e.,
irradiance and incidence angles) and other parameters related
to the LED and the photodetector in line with [10].

We consider that every n-th D2D pair requires an SINR
satisfying γn ≥ γth, where γth is the minimal SINR ensuring
a reliable communication between the DUEt and the DUEr.
Thus, if γn < γth, the n-th D2D pair is considered to be in
outage and the outage ratio is, then, calculated as:

φ = No/N (5)

where No represents the number of D2D pairs in outage.
We further assume that all D2D pairs transmit a VLC refer-

ence signal at the same time to measure the VLC communica-
tion quality [8] (similarly to the RF band, where the reference
signals are used to measure the communication quality [11]).
Moreover, the DUEr of every n-th D2D pair measures the
received power from its corresponding transmitter (i.e., pnRg

n,n
R

and pnV g
n,n
V ) and the sum interference induced by all other

transmitters (i.e.,
∑
m6=n p

m
R g

m,n
R and

∑
m 6=n p

m
V g

m,n
V ) based

on existing reference signals in RF and VLC. The reference
signals are conventionally exploited in mobile networks and

our solution requires no additional signaling to obtain the
required information. Also, the assumption on the knowledge
of the received powers and sum interferences is in line with
3GPP recommendations related to the reported RSRP/RSRQ
in the conventional networks [12]. The measured received
power and the sum interference are reported to and processed
in a centralized unit (e.g., a nearby base station).

This letter aims to solve the multi-objective optimiza-
tion problem of minimizing the outage ratio (i.e., φ) and
maximizing the average energy efficiency (i.e., EE =∑n=N
n=1 EEn/N ) by selecting either RF or VLC band for each

D2D pair. The problem is formulated as:

Z∗ = argmax
Z

(−φ,∑n=N
n=1

EEn

N ) (6)

s.t. zn ∈ {0, 1}∀n ∈ {1, ..., N} (a)
The optimization problem in (6) is discrete with multiple
non-linear objective functions and, thus, this problem is hard
to solve. The problem can be solved sequentially by an
exhaustive search if the outage minimization is selected as
the objective with a higher priority than the energy efficiency
maximization. First, a set of solutions achieving the minimal
possible φ is determined. Second, the solution maximizing
EE is selected out of the solutions obtained in the first phase.
However, the exhaustive search is not feasible for practical
implementation due to its very high complexity equal to
O(2N ). Therefore, in the next section, we propose a novel
DNN-based approach to select RF or VLC for each D2D pair.

III. PROPOSED BAND SELECTION SCHEME

DNNs have proven their efficiency in solving various mobile
networks-related problems, such as, binary power control [13],
channel prediction [14], or antenna selection [15], just to
name a few. This efficiency is justified by the ability of the
DNNs to obtain an output (and make a decision) instantly in a
single step. The decision whether RF or VLC should be used
by individual D2D pairs, as targeted in this letter, depends
on the individual channel gains among all DUEs. However,
to alleviate the problem of the high signaling required to
obtain the individual channel gains among all DUEs (as
assumed, e.g., in [8]), we consider that only the received
powers and the received sum interferences in RF and VLC are
known. With such information, it is not possible to determine
individually the level of interference caused by one D2D pair
to another D2D pair. Therefore, there is no possibility to
extract analytically the relation of the received power and
the received sum interferences to the correct band selection
(RF or VLC) for every D2D pair. Hence, we rely on DNNs
due to their ability to extract complex models connecting the
limited available information (in our case received powers
and sum interferences) with the targeted output (selection
of RF or VLC). Moreover, a trained DNN selects the band
instantaneously in one step. Thus, this section describes the
proposed DNN-based framework for band selection. Then, a
low-complexity heuristic algorithm is designed to cope with
the potential uncertainties in the DNN-based band selection in
order to obtain a close-to-optimal performance.



A. DNN-based framework for communication band selection

The band selection (RF/VLC) for every D2D pair from
the N pairs can be seen as N identical binary classification
problems. Thus, we design a DNN with 4 × N input vector
(denoted as X1) containing the received powers measured by
every DUEr from its related DUEt and the sum interference
imposed on every DUEr. Both these values are reported for
VLC and RF, and the DUEr reports its four measurements
within one message. Then, based on X1, the DNN returns
the proper band selection for the n-th D2D pair. Due to the
nature of the defined RF/VLC band selection problem based
on the received powers and sum interferences, the DNN is
required to have a fully-connected architecture without neither
features’ extraction nor feed-back connections. Hence, the
DNN is composed of an input layer (i.e., l0), represented
by X1, L sequential hidden layers (i.e., {l1, l2, ..., lL}), and
an output layer (i.e., lL+1), see Fig. 2. The elements of X1

are fed to l1 and, then, the output vector of each layer is
the input vector of the following layer. Every hidden layer
lj (where j ∈ {1, . . . , L}) is composed of Kj neurons and
the output layer lL+1 is composed of a single neuron for
binary classification. Every layer lj , except the input layer,
inserts each input element i from its input vector Xj to every
neuron u in this layer with a corresponding weight wji,u. Every
neuron in the layer lj : i) performs the dot product between the
input vector Xj and the corresponding weights, ii) adds the
corresponding bias bju, and iii) inserts the resulting value to a
sigmoid activation function. Hence, the output of the layer lj
(i.e., any hidden layer or the output layer lL+1) is:

Yn
j = sigmoid(Wj.Xj + bj) (7)

where sigmoid(.) is the sigmoid function sigmoid(A) =
1

1+exp(−A) which returns output values between zero and one,
Wj contains all weights of the links between the inputs of
lj (i.e., Xj) and all Kj neurons in lj , and bj includes the
biases of all Kj neurons in lj . The output of any hidden layer
Yn

j = Xj+1 for j ∈ {1, . . . , L} is of a length Kj . Similarly,
as the output layer lL+1 contains one neuron (i.e., KL+1 = 1),
the output of lL+1 (i.e., Y nL+1) is a single value that represents
the probability that the n-th D2D pair should select the RF
band. Hence, the DNN’s output represents the band selection
as:

znDNN =

{
1 if Y nL+1 > 0.5

0 otherwise
(8)

To train the DNN, a set of “training samples“ is collected.

Fig. 2: Proposed DNN to select RF or VLC for a D2D pair.

Each training sample contains the measured received powers
and sum interferences from every DUEr in both RF and VLC
(i.e., X1), accompanied with a targeted output, which is the
optimal selection of RF or VLC for the n-th D2D pair derived
by the exhaustive search (zn∗). The collected samples are
fed to the DNN with random weights and biases. Then, the
difference between the predicted and targeted band selection
is evaluated via binary cross-entropy loss function defined as:

δ = −Jzn∗ == 1Klog
(
Y nL+1

)
− Jzn∗ == 0Klog

(
1− Y nL+1

)

(9)
Using scaled-conjugate gradient back-propagation [16], the
weights and the biases in the DNN are continuously and
iteratively updated to minimize the average loss function over
the training samples. The training of the DNN continues until
the maximal number of iterations is reached or the prediction
accuracy improvement becomes negligible.

Note that collecting the training samples and training the
proposed DNN is executed offline, e.g., by simulations. Then,
in the real mobile network, the previously trained DNN is used
to instantly determine the most suitable band (RF or VLC) for
every D2D pair simultaneously. In order to select RF or VLC
for all D2D pairs, the elements of the DNN’s input vector X1

are resorted for each pair in line with the way the DNN is
trained. For instance, let us say that the DNN is trained to
predict the band selection for the first D2D pair (the pair for
which the received powers and the sum interferences in RF
and VLC are put at the beginning of X1). Then, to predict the
band selection for the second D2D pair, we put the received
powers and the sum interference powers (in RF and VLC)
measured at the DUEr of the second pair at the beginning of
X1. Hence, the same DNN is copied N times and the inputs
are inserted to each of the N DNNs in a different order to
extract the band selection of all N D2D pairs simultaneously
and in parallel within a single step (i.e., not sequentially).

B. Proposed heuristic algorithm for DNN’s output adjustment

The received sum interferences in the DNN’s inputs do not
always explicitly express the mutual relations among the D2D
pairs. Thus, potential uncertainties in the DNN’s decision can
appear and a gap can exist between the reachable statistical
prediction accuracy when only the received powers and sum
interferences are known and the accuracy if all channel gains
would be perfectly known. This gap in the prediction accuracy
can impact negatively on the communication quality due to
the fact that our problem is a binary decision problem and
any misclassification (incorrect decision at the DNN’s output)
can lead to an increase in the interference. Thus, we propose
a very low-complexity heuristic approach that deals with the
impact of the DNN uncertainties and minimizes the gap in
the prediction accuracy of the DNN. The proposed heuristic
algorithm builds on the probabilities of RF and VLC resulting
from the DNN and corrects the potential misclassifications
in order to improve the performance of the band selection
and to reach a communication quality that is closer to the
optimum. The DNN’s output Y nL+1 represents the probability
of the n-th pair using RF. Thus, the closer the output is to
0.5, the higher the uncertainty about the band selection is.



Algorithm 1 The proposed band selection scheme

1: for all n ∈ {1, ..., N} (processed in parallel) do
2: derive Y nL+1 via DNN
3: determine znDNN based on (8)
4: set znI−DNN = znDNN (Initial band selection)
5: if Y n

L+1 ∈ [0.5− α, 0.5 + α] then Suc = Suc ∪ {n}
6: determine initial φ and EE
7: sort all pairs in Suc in ascending order acc. to |Y nL+1−0.5|
8: for n ∈ Suc (sequentially acc. to the sorting in line 7) do
9: znI−DNN = 1− znI−DNN (switch band of n-th pair)

10: determine new φ and EE
11: if new φ < old φ then
12: keep znI−DNN (keep new band)
13: else
14: if new EE > old EE & new φ = old φ then
15: keep znI−DNN (keep new band)
16: else
17: znI−DNN = 1−znI−DNN (retrieve initial band)

This uncertainty motivates us to improve the decisions for
less confident situation(s). Thus, we introduce a parameter α ∈
〈0, 0.5〉 considering that the DNN is uncertain about the band
selection if Y nL+1 ∈ [0.5 − α, 0.5 + α]. Hence, the improved
DNN’s decision znI−DNN is expressed as:

znI−DNN

{
znDNN if Y nL+1 < 0.5− α or Y nL+1 > 0.5 + α

znx if 0.5− α ≤ Y nL+1 ≤ 0.5 + α
(10)

where znx indicates the uncertainty in the band decision if the
DNN’s output for the n-th D2D pair is within an uncertainty
domain [0.5− α, 0.5 + α] and the DNN’s decision is revised.
Based on this, we introduce a set Suc that includes all D2D
pairs from the uncertainty domain (Suc includes |Suc|= Nuc
pairs). The proposed heuristic algorithm (see Algorithm 1)
starts after the DNN performs its decision (based on (8)) for
all D2D pairs (lines 1, 2, and 3 in Algorithm 1). Then, the
D2D pairs from Suc are sorted according to |Y nL+1 − 0.5| in
an ascending order (line 7). Following this ascending order,
the D2D pair for which the DNN’s decision is closest to
0.5 switches its communication band to VLC if this pair is
assigned to use the RF band according to the DNN’s decision
and vice versa (line 9). If the outage ratio is decreased by
the switching or if a higher average energy efficiency is
reached without increasing the outage, the D2D pair remains
in the new band (lines 12 and 15). Otherwise, the D2D pair
switches back to its initial assigned band in line with the
DNN’s decision (line 17). This process is done sequentially
for all other sorted D2D pairs in the uncertainty domain. After
checking all pairs in the uncertainty domain, the algorithm
is terminated. Considering Nuc D2D pairs in the uncertainty
domain, the proposed algorithm checks the band switching
Nuc times, where Nuc ≤ N depends on α.

IV. PERFORMANCE ANALYSIS

For simulations, we assume a 30×30 m indoor area with two
to nine D2D pairs deployed uniformly. As in [8], we assume

that every two users are willing to communicate with each
other. Hence, within every pair, the angles of the transmitter
and the receiver with respect to each other are generated with
a zero-mean Gaussian distribution with a standard deviation
of 30◦. In RF and VLC, we set the transmission power to
100 mW and the channel bandwidth to 20 MHz. The VLC
bandwidth is set as in [17],[18] taking into account that LED-
based VLC commonly utilize commercial LEDs which have
a modest bandwidth [19]. The channel models and noise are
based on [20] for RF and [10] for VLC.

For the training, the DNN’s architecture is set by trial and
error approach and the used structure is composed of four
hidden layers with 18, 15, 12, and 6 neurons, respectively. To
this end, many DNN’s architectures have been tested and we
have chosen the most suitable one in terms of the achievable
prediction accuracy as well as the training complexity. The
total number of collected samples for training is 2×106. Some
samples are omitted and not included in the training in order
to keep an equal number of samples that correspond to each of
the possible outputs (RF or VLC) to avoid the class imbalance
problem [21]. The results are averaged out over 20,000 drops,
each with new users’ positions and angles.

Fig. 3a shows the prediction accuracy achieved by the
proposed DNN both without (denoted as DNN) and with the
proposed heuristic algorithm (denoted as I-DNN) for different
values of α. The two cases of α = 0.5 and α = 0 represent
the two extremes when either all or none of the D2D pairs
are checked by the proposed heuristic algorithm. Thus, the
latter case is equivalent to the DNN without the heuristic
algorithm. Fig. 3a demonstrates that the prediction accuracy
increases with α and the heuristic algorithm is able to add an
additional 10% accuracy on top of the accuracy reached by the
proposed DNN when α=0.5. Fig. 3b illustrates that the higher
accuracy achieved by increasing α is at the cost of a higher
complexity (i.e., more D2D pairs need to be checked as more
of them are in the uncertainty domain). Still, even if α=0.5,
the average number of band switching is significantly reduced
(by up to 78%) comparing to the iterative algorithm in [8]. To
analyze the outage and the energy efficiency, we compare the
proposed solution with: 1) the optimal RF/VLC combination
derived by the exhaustive search (denoted as Optimum), 2) a
random band selection (Random), 3) RF only, where all pairs
use RF, 4) VLC only, where all pairs use VLC, and 5) the
iterative algorithm from [8], which reaches a close-to-optimal
performance but requires the knowledge of all channel gains

(a) Prediction accuracy (b) Numb. of band switching

Fig. 3: Statistical results for DNN efficiency evaluation vs N



(a) Outage ratio (b) Energy efficiency

Fig. 4: Evaluation of communication quality vs N

between all DUEs and results in a higher complexity (see Fig.
3b).

As shown in Fig. 4a, the outage ratio increases with the
number of D2D pairs for all algorithms due to the increas-
ing interference. Disregarding whether the proposed heuristic
algorithm is employed or not, the proposal outperforms all
competitive algorithms. Fig. 4a further demonstrates that the
I-DNN improves the DNN and reaches a close-to-optimal
performance. The outage of the I-DNN is higher compared to
the Optimum by only up to 6%, and lower than RF only, VLC
only, and Random by up to 71%, 41%, and 40%, respectively.

The average energy efficiency (Fig. 4b) decreases with
the increasing number of D2D pairs due to the increasing
interference in both bands. Fig. 4b shows that the I-DNN
increases the energy efficiency by up to 18, 2.2, and 2 times
compared to RF only, VLC only, and Random, respectively.
The I-DNN also outperforms the DNN by up to 22% and
reaches almost optimal performance for all numbers of pairs.

We study also the effect of the DNN’s cut-off value, i.e., the
threshold value that represents the edge between the selection
of RF or VLC based on the DNN’s output Y nL+1. Note that the
cut-off value is set to 0.5 in (8) and in the previous figures. Fig.
5 presents the outage ratio (Fig. 5a) and the average energy
efficiency (Fig. 5b) versus the cut-off value. Fig. 5 shows
that increasing the cut-off value improves the performance
of DNN as the VLC usage ratio is higher than RF usage
ratio. Thus, a higher cut-off value increases the accuracy of
VLC selection more significantly than the inaccuracy of RF
selection. Hence, the total prediction accuracy increases. Fig.
5 also demonstrates that with a cut-off value of 0.7, the DNN
reaches the highest performance, but the I-DNN still reduces
the outage by 70% (from 0.1 to 0.03) and achieves 12% gain
in the energy efficiency comparing to the DNN. However, the
I-DNN achieves the same outage and energy efficiency for all
cut-off values between 0.4 and 0.7.

V. CONCLUSIONS

This letter has presented a DNN-based framework to select
RF or VLC for D2D pairs to maximize the energy efficiency
while minimizing the outage. A DNN is designed to give
an initial band selection decision. Then, a low-complexity
heuristic algorithm that copes with the possible uncertainties in
the DNN’s band selection decisions is proposed. The proposed
solution is of a very low complexity and reaches a close-
to-optimal performance and overcomes the existing works in
terms of outage and energy efficiency.

(a) Outage ratio (b) Energy efficiency

Fig. 5: Evaluation of communication quality vs cut-off value

The future research direction should aim at a distributed
solution, where the bands are selected by the users based only
on their local information without sharing any information
centrally.
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4.4 Prediction of channel for radio resource

management in D2D

This section deals with the CSI knowledge problem and proposes prediction
schemes based on machine learning in order to reduce the signaling overhead in
the network. Note that the ideas presented in this section (and covered in the
corresponding attached papers) are also included in the filled US patent [1P].

4.4.1 D2D Channels Prediction

All of the previous algorithms and solutions require the knowledge of D2D
channels (CSI knowledge). This problem is a critical problem in D2D commu-
nication as the number of D2D channels that need to be estimated to achieve
a full CSI knowledge is X(X-1) for X users. We solve this problem by using
neural networks to predict the D2D channel gains from the cellular channel
gains, which refer to the channels between the users and the surrounding BSs.
This idea is motivated by the fact that there exist a hidden non-explicit re-
lation between the D2D and cellular channel gains due to the dependency
of both on the network’s topology, buildings, and environment in a specific
area. Therefore, this subsection introduces the use of machine learning (more
specifically, deep neural networks) to extract this hidden relation between the
cellular and the D2D channel gains. This approach is valid for real mobile
networks implementation as the cellular gains between the users and the sur-
rounding BSs are measured/estimated periodically in the network for handover
and communication-related purposes. This subsection includes the journal pa-
per [2J].
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Abstract—Device-to-device (D2D) communication, which en-
ables a direct connection between users while bypassing the
cellular channels to base stations (BSs), is a promising way
to offload the traffic from conventional cellular networks. In
D2D communication, optimizing the resource allocation requires
the knowledge of D2D channel gains. However, such knowledge
is hard to obtain at reasonable signaling costs. In this paper,
we show this problem can be circumvented by tapping into
the information provided by the estimated cellular channels
between the users and surrounding BSs as these channels are
estimated anyway for a normal operation of the network. While
the cellular and D2D channel gains exhibit independent fast
fading behavior, we show that average gains of the cellular and
D2D channels share a non-explicit relation, which is rooted into
the network topology, terrain, and buildings setup. We propose
a deep learning approach to predict the D2D channel gains from
seemingly independent cellular channels. Our results show a
high degree of convergence between the true and predicted D2D
channel gains. Moreover, we demonstrate the robustness of the
proposed scheme against environment changes and inaccuracies
during the offline training. The predicted gains allow to reach
a near-optimal capacity in many radio resource management
algorithms.

Keywords—Device-to-device, Channel prediction, Deep neural
networks, Supervised machine learning

I. INTRODUCTION

In device-to-device (D2D) communication, data is transmit-
ted over a direct link between a pair of nearby user equipment
(UEs) instead of being relayed via a base station (BS) [1],[2].
Conventionally, the D2D pairs can exploit two communication
modes: shared and dedicated [3]. In the shared mode, the D2D
pairs reuse the same radio resources as cellular users (CUEs)
that send data through the BS [4]. On the contrary, the D2D
pairs in the dedicated mode are allocated with resources that
are orthogonal to the resources of CUEs [5].

An efficient exploitation of the D2D network often entails
challenging radio resource management (RRM) problems,
such as, selection between shared and dedicated modes [5]-[9],
interference management to/from CUEs [10]-[13], channels
and power allocation [14]-[21], to name a few. Conventional
algorithms addressing the above RRM problems in D2D
networks assume a prior estimation of the D2D channel gains
(i.e., channel gains among all UEs involved in D2D). In some
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cases, the full knowledge can be relaxed to a partial knowl-
edge, where only a subset of the distributed D2D channel
gains is required (e.g., in [19]). Nevertheless, even the partial
knowledge of the D2D channel gains implies a substantial
cost in terms of an additional signaling overhead on top of
the one generated in classical cellular communications. In
fact, the cellular channel gains (i.e., channel gains between
the UEs and the BSs) are typically estimated by default as
these are needed for handover as well as user attachment,
authorization, and classical cellular communication purposes.
More precisely, even the users that wish to engage in D2D
communications must be recognized by the network and
thereby their cellular channel gains must be estimated initially.
Thus, these cellular channels are periodically reported to the
BSs, and can be leveraged at no additional signaling overhead.
An interesting question then arises as to whether the by-default
cellular channel gains carry information that is relevant to D2D
communication and could help ”for free” to solve the D2D
resource management problems.

The idea set forth in this paper is that, while the cellular
channel gains should exhibit fading coefficients that are known
to be independent of those measured on the direct channels
among the UEs, there actually exists common information
between these data at the statistical level. In order to build
up the reader’s intuition, consider the following toy example.
Imagine a green-field (free space) propagation scenario, in
which the location of all UEs is made available to the network
(even for those devices not interested in communicating with
the network), then both the cellular and the D2D channel
gains would be easily predictable from the UEs’ locations and
the use of a deterministic free-space channel model with line
of sight (LOS) among all entities. Therefor, in a LOS envi-
ronment, both D2D and cellular channel gains directly relate
to each other via the user location knowledge. In practice,
however, the UEs’ locations may not be known due to privacy
issues or may not be simply available. More importantly, in
non-line of sight (NLOS) scenarios (such as suburban or urban
areas), the D2D channels and the cellular channels may be
obstructed in completely independent manners making the
channel prediction from the UEs’ locations seemingly impos-
sible. For instance, two devices might experience a strong LOS
D2D channel while a building may block the cellular channel
between one of these devices (or more) and a given BS, thus
making the D2D and cellular channel gains seemingly quite a
bit less related than in the pure LOS scenario.

In this paper, we show that, in contrast to initial belief,
a hidden and non-explicit relation between the cellular and
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the D2D channels still exists in the NLOS case, and can be
made even stronger by leveraging cellular measurements from
additional surrounding BSs. The hidden relation is a result
of the dependency of the D2D and cellular channels gains not
only on the network topology, but also on the relative locations
of the users and the obstacles. Thus, this relation is complex
and its derivation is, by its nature, a typical complex model
extraction problem, where machine learning is a suitable and
efficient solution. Therefore, we exploit a deep neural network
(DNN) to extract the complex model for the prediction of the
D2D channel gains from the cellular channel gains.

Another interesting by-product of our prediction scheme
lies in seeing that the set of cellular gains often constitute
an order-of-magnitude smaller dimensional object than the
D2D channels that we are trying to predict (i.e., there are just
X cellular gains for one cell with X users in it, in contrast
to X(X-1) direct and interference D2D gains). Hence, the
proposed approach not only offers to capitalize on easier-to-
get information (cellular channel estimation) rather than on
the harder-to-get D2D channel gains for the optimization of
D2D communications, but it also promises substantial savings
in signaling for the channel estimation.

In the literature, existing channel prediction works related
to this paper typically focus on predicting the channel quality
between a single UE and an antenna at the BS at a specific
frequency based on either: i) knowing the channel between this
UE and the BS antenna at another frequency [22]-[31], or ii)
knowing the channel between this BS antenna and another UE
that is close to the original UE [32], or iii) knowing the channel
between this UE and another close-by antenna at the same BS
[33]. However, the problem presented in this paper, which is
predicting D2D channel gains based on the cellular channel
gains, is of a different nature from the above-mentioned
prediction problems solved in the literature because a strong
commonality of space can’t be relied upon. Note that this paper
builds on and extends our previous work presented in [34],
where we introduced the idea of the DNN-based prediction of
the transmission powers for D2D communication. Instead, in
this paper, we generalize the problem to predicting directly
the D2D channel gains. This allows for a more powerful
framework, which yields applications to various radio resource
management (RRM) related optimization problems in D2D
networks.

The main contributions of this paper are summarized as
follows:

• We present a novel framework for the D2D channel gains
prediction based on the cellular channel gains in order to
solve various problems related to radio resource manage-
ment in D2D communication without incurring the pilot
overhead that is usually expected in D2D communication.

• We design a DNN to build up a regression model connect-
ing the cellular channel gains (as DNN inputs) to the D2D
channel gains (as DNN outputs). The DNN is trained offline
via simulations of the targeted area. Thus, the training
samples (cellular and D2D channel gains) are collected
based on the simulations and, then, used to train the DNN.
Our results show a high convergence between the true and

the predicted D2D channel gains, even in typical urban
NLOS scenarios.

• We demonstrate the efficiency of the proposed framework
by applying the predicted D2D gains to existing channel
allocation and power control algorithms presented [20] and
[21], respectively.

• We analyze the signaling overhead in terms of the number
of channel gains needed to implement the radio resource
management algorithms from [20] and [21] with and with-
out the proposed DNN-based D2D channel gains prediction
scheme to show the benefits of the proposed concept.

• We demonstrate the robustness of the proposed scheme
against the environment changes and possible inaccuracies
in the simulations of the targeted area during the offline
training.
The rest of the paper is organized as follows. In Section

II, we present the system model and formulate the problem
of D2D channel gains prediction. Then, Section III describes
the proposed DNN-based scheme for the prediction of D2D
channel gains. Performance evaluation and simulation results
are illustrated in Section IV. Finally, Section V concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present our system model, and then, we
formulate the problem of the D2D channel gains prediction.

A. System model

In our model, we consider L base stations (BSs) deployed
randomly in a square area together with U UEs as shown
in Fig. 1. The UEs are divided into M CUEs and 2N D2D
user equipments (DUEs) composing N D2D pairs, hence, U =
2N +M . Each D2D pair consists of a transmitter, DUET, and
a receiver, DUER.

The capacity of the n-th D2D pair at the k-th communication
channel is defined as:

Ck
n = Bk log2

©­­­«
1 +

pkn gn,n
Bkσo +

∑q=N
q=1
q,n

pkqgq,n +
∑m=M

m=1 pkmgm,n

ª®®®¬
(1)

where, for the k-th channel, Bk is the channel bandwidth, pkn
is the transmission power of the DUET of the n-th D2D pair,
pkm is the transmission power of the m-th CUE, and pkq is the
transmission power of the DUET of the q-th D2D pair causing
interference to the n-th D2D pair (i.e., q ∈ {1, . . . ,N}/{n}).
Further, gn,n represents the channel gain between the DUET
and the DUER of the n-th D2D pair, σo is the noise density,
gm,n is the interference channel gain between the m-th CUE
and the DUER of the n-th D2D pair, and gq,n is the interference
channel gain between the DUET of the q-th D2D pair and
the DUER of the n-th D2D pair. Note that, without loss of
generality, (1) assumes that the noise is an Additive White
Gaussian Noise similarly as in [35]-[36] and the interference
is treated as Gaussian noise. In this paper, the term “channel
gain” refers to the magnitude of the channel gain (as in, e.g.,
[37]-[38]), as the magnitude is commonly exploited for, e.g.,
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Fig. 1: System model: An example with four DUEs, one CUE
and three BSs. Note that red and blue colors are used for
D2D and cellular channels, respectively, and only part of the
signaling (channel estimation) is shown for sake of clarity.

channel allocation, power control, or to determine the system
capacity.

This paper assumes a complete absence of channel gains
knowledge among the UEs. Thus, the channel between DUET
and DUER of the same D2D pair, interference channels among
DUEs of different D2D pairs, and interference channels among
the CUEs and the DUEs (i.e., gn,n, gq,n, and gm,n in (1)) are
unknown.

The DUEs and the CUEs need to estimate uplink/downlink
channels to manage efficiently resource allocation and for
handover purposes. Thus, although the D2D channel gains are
not known by the network, still, the information on the channel
quality between each UE (CUE or DUE) and its neighboring
BSs are sent periodically to the serving BS in order to update
the network information [39]. The corresponding estimated
channel gain between any i-th (or j-th) UE and the l-th BS is
denoted as Gi,l (or G j ,l). These cellular channel gains (Gi,l and
G j ,l) are assumed to be represented by uplink channel gains
estimated (measured) by the BS using the common way from
the existing reference signals [40]. Nevertheless, it is worth to
mention that even downlink channel gains can also be used
to estimate quality of cellular channels as the downlink gains
can be estimated (measured) by the UEs and fed back to the
BS.

B. Problem formulation

We aim to predict the real (true) channel gain gi, j between
any i-th and j-th UEs, that can be, then, exploited for any ex-
isting RRM algorithms. Our goal is to minimize the prediction
error and we formulate the problem as:

min
g∗i , j
(gi, j − g∗i, j)2 (2)

where g∗i, j is the predicted channel gain between the i-th and
the j-th UEs. To predict the channel gain between any two
UEs, we exploit only the available information about each UE,
i.e., cellular channel gains. In the next section, we propose a
novel DNN-based scheme for the prediction of gi, j relying on
the knowledge of the cellular channel gains of the i-th and the
j-th UEs.

III. PREDICTION SCHEME

This section describes the proposed scheme for predicting
the D2D channel gains. First, we illustrate the principle of the
D2D channel gains prediction. Then, we describe the archi-
tecture of the proposed DNN and clarify the training process.
Moreover, we discuss the signaling overhead reduction reached
by the proposed prediction scheme and its implementation
aspects.

A. Principle of DNN-based prediction of D2D channel gains
exploiting cellular channel gains

In general, it is clear that in a green-field (free space)
propagation scenario, in which the location of all UEs is
made available to the network, both the cellular and the D2D
channel gains are easily predictable from the UEs’ locations.
In the free space area with LOS, the cellular channel from
the UE to at least three BSs corresponds to a single specific
location of the UE. Consequently, the D2D channel gain value
between two UEs can be easily predicted in such (unrealistic)
scenario. However, in practice, the UEs’ locations may not be
known due to privacy issues or may not be simply available.
Moreover, in NLOS (urban or suburban) scenarios, the D2D
channels and the cellular channels may be obstructed in com-
pletely independent manner and the D2D channel prediction
from the UEs’ locations seems to be impossible. For instance,
two devices might experience a strong LOS D2D channel
while a building(s) obstructs the cellular channel between one
of these devices (or more) and the given BS (see Fig. 2).
In such a case, the D2D channel gain between the two UEs
might be hard to predict based on the cellular channel gains.
However, in contrast to this initial belief, a strong relation
between the cellular and the D2D channels is still expected by
accounting for additional surrounding BS. The reason behind
this is that increasing the number of known cellular channel
gains from each UE leads to a higher confidence related to the
UE’s location and provides information about the position (and
shape) of obstructing elements of the terrain. This information
can then, in principle, be mapped into a cartography of D2D
gains.

To put the above-mentioned intuition into more rigorous
terms, given a specific area with certain topology, terrain and
buildings’ setup, there exists a mapping F connecting the
cellular channel gains of the existing UEs (denoted as GC)
and the D2D channel gains among these UEs (denoted as g)
so that:

g = F(GC) (3)

It is obvious that solving the problem (2) can be achieved
by approximating the function F from (3). Nevertheless, this
approximation is hard to be done taking into account the
changeable size of GC and g when the number of UEs
changes. In other words, a different function F needs to
be approximated for every possible number of UEs mak-
ing the solution unrealistic. Therefore, taking into account
the problem defined in (2), we circumvent this problem by
approximating the mapping F between GC

i,j and gi, j where
GC

i,j = {Gi,1, . . .Gi,L,G j ,1, . . .G j ,L} includes the gains of the
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Fig. 2: Illustration of D2D channels prediction based on cellular channels for LOS (left part of figure) and NLOS (right part)
scenarios.

cellular channels from L BSs to any i-th and j-th UEs. In such
a way, regardless of the number of the existing UEs, the D2D
channel between any two UEs can be predicted by knowing
the gains of the cellular channels from these two UEs and the
surrounding BSs. hence, the problem (2) is written as:

min
F
(gi, j − F(GC

i,j))2 (4)

The optimization problem (4) aims, by approximating F,
to minimize the difference between the true (real) and the
predicted gains of the D2D channel between any i-th UE and
j-th UE; based on the knowledge of the cellular channel gains
of these two UEs.

Deep neural networks are typical up-to-date tools for func-
tions approximation and regression models creation. Thus, in
this paper, we exploit the DNN to predict gi, j based on GC

i,j.
Note that, for any UE (DUE or CUE), the cellular channel

gains between this particular UE and the surrounding BSs
are periodically reported to the BSs for purposes related to
the conventional communication and/or handover. In addition,
in the future mobile networks, the network computations are
supposed to be offloaded to powerful computation servers
reducing network’s energy consumption. Thus, even the pro-
posed DNN can be deployed on these computation servers.
The servers collect the estimated cellular channel gains (purple
dash-dotted lines in Fig.2) and perform the prediction of gi, j .
Note that the computation servers can be located at any unit
or entity in the network, such as a base station or in the
core network. For example, an edge computing server can
be exploited. With respect to the conventional architectures
of mobile networks (e.g., 4G), the edge computing brings
the computing power to the edge of the network where the
potential radio resource management algorithms can be run.
However, the specific deployment is up to the service provider
or the network operator and the prediction should be located
as close as possible to the place, where the radio resource

management is performed to avoid any additional delay in the
radio resource management.

B. The architecture of the proposed DNN

The problem of predicting the D2D channel gain between
the i-th and the j-th UEs based on the cellular channel gains
from both the i-th and j-th UEs to the L BSs is a regression
problem, which can be solved by the deep neural network
designed to build the regression model. Fig. 3 shows the
proposed fully-connected DNN for regression. The proposed
DNN is composed of an input layer (X0), H hidden layers
(X1, ...,XH ) and an output layer (XH+1). The input layer con-
tains the cellular channel gains between the i-th UE and the L
BSs and between the j-th UE and the L BSs (i.e., GC

i,j) aligned
as an input vector in the input layer as illustrated in Fig. 3.
Thus, the output of the input layer out0 is the cellular channel

Fig. 3: The proposed DNN to build up a regression model
connecting input variables (cellular channel gains from two
UEs (i and j) to L BSs) and a single output variable (the
D2D channel gain between the i-th and the j-th UE).
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gains vector GC
i,j = {Gi,1, . . .Gi,L,G j ,1, . . .G j ,L} of length

2×L. Then, the DNN contains H hidden layers whereas every
hidden layer Xh is composed of Vh neurons. Every hidden
layer Xh has an input vector inh equivalent to the output of
the previous layer outh−1 (i.e., inh = outh−1,∀h ∈ {1, . . . ,H}).
Each input element z in inh is fed to every neuron v in the
hidden layer Xh with a weight wh−1,h

z,v . Consequently, every
neuron v performs dot product between the input elements
in inh and the corresponding weights. The result of the dot
product is added to a corresponding bias bh−1,h

0,v and processed
by the commonly used sigmoid function giving the output of
the neuron. Hence, the hidden layer Xh with Vh neurons and
input vector inh gives an output vector outh of the length Vh

and this output vector outh is, thus, written as:

outh = Sig(Wh−1,hinh + bh−1,h) = Sig(Wh−1,houth−1 + bh−1,h)
(5)

where Sig is the sigmoid function Sig(Z) = 1
1+exp(−Z) , Wh−1,h

is the matrix of weights of the links between every input
element of Xh (i.e., equivalent to the output of Xh−1) and every
neuron in Xh and bh−1,h is the vector of biases attached to the
neurons.

The output of the last hidden layer outH is followed by
the output layer. The output layer in the DNN for regression
of a single variable is composed of one neuron. The single
neuron of the output layer performs the dot product between
outH and the corresponding weights WH,H+1 (i.e., the vector
of weights dedicated to the links between the outputs of the
last hidden layer XH and the single neuron in the output layer
XH+1). Then, the output layer neuron also sums its attached
bias scalar bH ,H+1 and implements a linear activation function
giving an output as:

g∗i, j = Lin(WH,H+1outH + bH ,H+1) (6)

where Lin is the linear activation function Lin(Z) = Z and the
output g∗i, j of the proposed DNN is the predicted D2D channel
gain between the i-th and the j-th UEs.

C. Offline learning and exploitation of the proposed DNN

We propose an offline supervised learning-based solution to
predict the D2D channel gain between any two UEs from their
cellular channel gains. Actually, the significant benefit of the
offline training is that the measurements for the training phase
are not needed. Instead, the offline training can be performed
by simulations before the channel prediction is adopted for
the real world. This offline training process starts with the
simulation of the targeted area (e.g., a cell). Within the area,
the positions of the UEs, e.g., i and j, are uniformly generated.
The cellular channels between the i-th UE and L BSs as
well as between the j-th UE and L BSs (GC

i,j) are calculated
together with the D2D channels between the i-th and j-th UEs
gi, j based on the statistical models of the channel gains. The
calculated cellular gains (presenting features) and the D2D
gain (presenting the target) compose together a single learning
sample. Then, the process is repeated by generating the new
positions of the UEs and calculating the channels to constitute
new samples. After the samples are collected, the training
process is done offline following the typical way used to train

any supervised learning-based neural network. In detail, the
learning samples are split into a training set and a test set. The
samples from the training set are used to train the proposed
DNN while the samples in the test set are used to test the
accuracy of the trained DNN on a set of samples that is not
used for training to prevent overfitting [42]. During the training
process, a loss function is defined to evaluate the regression
model prediction accuracy. The loss function in the DNN that
builds the regression model predicting a single variable is,
typically, a measurement showing how far is the predicted
value of the variable from the true value of this variable
(g∗i, j and gi, j in our case). Therefore, taking the optimization
problem (4) into account, we consider a mean square error
loss function that can be written as:

ι =
1
S

s=S∑
s=1
(gsi, j − gs∗i, j)2 (7)

where S is the number of the training samples, gsi, j is the
target (true D2D channel gain) of the s-th training sample, and
gs∗i, j is the predicted D2D channel gain based on the cellular
channel gains of the s-th training sample.

To minimize the mean square error loss function, the
weights and biases of the proposed DNN are updated using
Levenberg-Marquardt Backpropagation algorithm, which is an
optimization method designed to solve non-linear least squares
problems [43]. Thus, Levenberg-Marquardt algorithm can be
applied with backpropagation for the neural networks training
when the loss function is a sum of squares [44].

The learning steps are done offline based on the samples
collected from the simulations of the area with randomly
deployed UEs, but without any connection to these specific
UEs. The training is focused on obtaining a ”mapping” from
the cellular channel gains of any two UEs to the channel gain
between these two UEs. Thus, the DNN can learn the general
relation between the cellular channels and the D2D channels
in the targeted area and the built model is not dedicated to any
specific UEs.

After the offline learning is done, the trained DNN is
uploaded to the unit where the radio resource management
takes place and this DNN is ready to be used in the real mobile
network to predict the D2D channel gains between any pair of
UEs in the real area. Thus, for multiple UEs, the trained (and
tested) DNN is utilized to predict all needed channel gains
among every pair of UEs independently and in parallel. To
be more specific, based on the cellular channel gains of the
UEs, we utilize the trained DNN to obtain all D2D channel
gains, such as the channel gains between every two DUEs of
the same D2D pair, interference channel gains between every
couple of DUEs from different D2D pairs and interference
channels between the CUEs and the DUEs. These can be,
then, exploited to solve any RRM problem using the existing
algorithms.

D. Analysis of reduction in signaling overhead

In this subsection, we discuss the signaling overhead in
terms of the number of channel gains that need to be estimated
(measured) in the network.
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In the existing network, the cellular channel gains between
the UEs and the neighboring BSs are commonly estimated
(i.e., for conventional communication and handover purposes).
The number of the commonly estimated cellular gains is
L(2N + M). Note that even the DUEs might need to change
from the D2D communication to the conventional communi-
cation in the case of a sudden D2D communication quality
drop and, therefore, the cellular channels of DUEs are also
periodically estimated and reported.

In the literature, for conventional RRM algorithms related
to the D2D communication (e.g., power control algorithm
from [21]), additional 2N(2N − 1) direct and interference
D2D channels need to be estimated between the 2N DUEs.
Moreover, for the D2D in shared mode, interference channels
between the CUEs and the DUEs have to be estimated and
reported as well. The number of those interference channels
between the M CUEs and the 2N DUES that should be
estimated is 2N M . Thus, the number of estimated channel
gains in the common network with the D2D communication
is:

Σ = L(2N + M) + 2N(2N − 1) + 2N M (8)

In this paper, we predict the D2D channel gains from
the common estimated cellular gains. In other words, in
the network with D2D communication utilizing the proposed
prediction scheme, the number of channel gains need to be
estimated (measured) is limited to the estimation of L(2N+M)
channel gains, which are used to predict the remaining needed
D2D channel gains. Thus, by subtracting L(2N + M) from
(8), we can calculate the reduction in the number of estimated
channel gains. This reduction, in the shared mode, is equal to:

∆Σ = Σ − L(2N + M) = 2N(2N − 1) + 2N M (9)

In the dedicated mode, the CUEs do not affect the D2D
communication as the channels allocated to the CUEs are
orthogonal to those allocated to the D2D pairs. In such
case, the reduction in the number of estimated channel gains
achieved by the proposed prediction scheme is determined by
setting M to zero in (8) and (9), respectively.

E. Implementation and design aspects

In this subsection, we discuss key implementation and
design aspects of the proposed DNN-based prediction of D2D
channels.

The first aspect is the number of samples to be collected
for the training. The proposed DNN is trained offline. Thus,
collecting even a high number of samples (if needed) is
feasible, as the samples can be collected by the simulation of
targeted area before using the trained DNN in the real world
as explained in Section III-C.

Another aspect related to the practical implementation of the
prediction scheme is the computational complexity of DNN. In
general, the computational complexity of the DNN depends on
the number of multiplications done by every neuron in every
layer between the inputs of this layer and the corresponding
weights. In detail, considering that: 1) the DNN contains H
hidden layers with XH neurons in each layer, 2) the number
of DNN inputs is 2L (cellular gains between two UEs and L

BSs), and 3) the number of DNN outputs is one (the D2D gain
between two UEs), then, the number of the multiplications
performed for the D2D channel prediction is:

ρ = 2LX1 +

h=H−1∑
h=1

XhXh+1 + XH (10)

This computational complexity affects the latency with
which the channels are predicted in the network. Considering a
reasonable number of hidden layers and neurons per each layer
(i.e., our DNN includes five hidden layers with 20, 18, 15, 12
and 8 neurons); the number of the performed multiplications
(i.e., ρ = 1034 multiplications in our DNN when L = 3
BSs), consumes a negligible computing time. Hence, we can
claim that the latency introduced by the DNN is negligible
and the overall delay is (at most) the same as the latency of
any other existing centralized approach, within which the D2D
channel gains need to be estimated via reference signals, and
then reported to the same unit where the DNN is running.
Note that with a high number of users, the high signaling in
the conventional centralized approaches leads to the need of
a high number of reference signals transmitted/received. The
high number of the reference signals requires to reserve a lot
of resources and can lead to an additional delay due to the
channel measurement scheduling. In our case, however, such
delay is avoided and the overall delay is reduced to simple
multiplications executed by the DNN.

The last practical question is how the proposed predic-
tion scheme copes with RRM algorithms in dynamic envi-
ronments or scenarios (e.g., moving users, users becoming
active/inactive, etc). In such scenarios, disregarding whether
our prediction scheme is exploited or not, the RRM algo-
rithm (e.g., channel allocation, power control, etc.) should
be performed periodically. Thus, also the proposed prediction
scheme is expected to be repeated periodically to update the
predicted D2D channel gains. The predicted D2D channels at
each time instant are just inserted as the inputs to the RRM
algorithms and every DUE is told to change its communication
parameters (e.g., the channels the DUE is occupying, the
DUE’s transmission power at every channel, etc).

IV. PERFORMANCE EVALUATION

In this section, we describe the simulation scenarios and
parameters, and then, we discuss simulation results from
three different perspectives as follows. First, we analyze the
accuracy of the prediction scheme statistically showing how
close the predicted D2D channel gains are to the true gains
of the D2D channels. Second, we illustrate the performance
of the proposed prediction scheme on selected examples of
existing algorithms for D2D RRM in the mobile network,
and we show how this prediction scheme affects the D2D
communication quality and network’s signaling overhead. The
proposed prediction scheme aims to reduce the signaling
overhead needed for D2D communication without significant
losses in the communication quality. Last, we evaluate the
robustness of the proposed scheme against the environment
changes and the potential inaccuracies in the simulations
during the training phase.
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(a) Urban1 (b) Urban2

Fig. 4: Example of simulation deployment with N = 4, M = 10 and L = 5 and several buildings (fixed obstacles) represented
by the pink rectangles. Note that the Rural area is of the same size as Urban1/Urban2 without any buildings or obstacles.

A. Simulation scenarios and performance metrics

We consider up to 20 DUEs (composing up to 10 D2D pairs)
and 10 CUEs deployed uniformly within an area of 250×250
m2 covered by up to 5 BSs. Although the DUEs are uniformly
distributed, the maximum distance between the DUET and the
DUER of the same D2D pair is upper-bounded by a maximal
distance of dmax = 50 m as in [45]-[46] to guarantee the
availability of D2D communication. For any D2D transmitter,
the maximal and the minimal transmission powers are set to
pmax = 24 dBm and pmin = 1 dBm, respectively, like in [34].

We consider three different scenarios according to the signal
propagation between the UEs and the BSs and among all
UEs. The first scenario assumes an open rural area denoted
as Rural with a full availability of line-of-sight (LOS) for all
channels (D2D channels and cellular channels). The other two
scenarios, illustrated in Fig. 4a and Fig. 4b, correspond to two
different urban areas (such as scenario C2 in [47]) with fixed
obstacles (FOs) representing e.g., buildings, and we denote
these two urban areas as Urban1 and Urban2. In Urban1 and
Urban2, the buildings lead to a certain probability of non-line-
of-sight (NLOS) for both the D2D and cellular channels. Note
that two different urban areas are simulated to validate our
prediction approach for different buildings topologies without
any changes in the DNN architecture.

In all areas, Rural, Urban1 and Urban2, the LOS path loss
is generated in line with 3GPP recommendations [48]. In
the urban areas, we assume that the communication channel
intercepted by a single or more building walls is exposed
to an additional loss of 10 dB per wall as in [34]. Note
that Fig. 4 presents a 2D projection of the simulated urban
areas, nevertheless, in our simulations, the building heights
are distributed uniformly between 20 and 30 m to randomly
affect NLOS and LOS probabilities. Simulation parameters are
summarized in Table I.

For the learning process, we collect 1 000 000 samples.
Note that obtaining such a number of samples is feasible, as
the training process is done offline by the simulations. Still,
we also study the impact of the number of learning samples

on the prediction accuracy in the next subsection. The samples
are then divided into samples used for DNN training (70% of
samples are used as the training set) and 30% of samples are
for the testing (i.e., the test set).

The proposed DNN exploits five hidden layers composed
of 20, 18, 15, 12, and 8 neurons, respectively. The number of
hidden layers and the number of neurons in each layer are set
by trial and error approach. These specific numbers of hidden
layers and neurons are tested for the case when the number of
the DNN inputs is 2 − 10 (i.e., the cellular channels between
two UEs and 1 − 5 BSs); and for three areas (Rural, Urban1,
and Urban2). Thus, as the number of DNN’s outputs is always
fixed to one (a single D2D channel gain is being predicted),
this number of hidden layers and neurons is expected to be
suitable for learning the relation between the cellular gains
and the D2D channel gains in different areas.

TABLE I: Simulation parameters.

Parameter Value

Carrier frequency fc 2 GHz

Bandwidth B 20 MHz

Number of D2D pairs N 2 − 10

Number of CUEs (shared mode only) M 10

Number of channels (shared mode only) K 10

Bandwidth per any k-th channel Bk 2 MHz
(shared mode only)

Maximal distance between DUET and dmax 50 m
DUER of the same pair

Number of BSs L 1 − 5

Maximal transmission power pmax 24 dBm [34]

Minimal transmission power pmin 1 dBm [34]

Noise power spectral density σo −174 dBm/Hz
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In this paper, we evaluate the proposed prediction scheme
from following perspectives:
i) Statistical evaluation of the prediction accuracy before im-

plementing the prediction scheme in the mobile network.
For the statistical evaluation, we consider the well-known
Pearson correlation coefficient as a performance metric
to show the accuracy of the predicted D2D channel
gains with respect to the true channel gains. The Pearson
correlation coefficient values range between zero and one
where the value of one represents a complete matching
between the predicted and the true values of the D2D
channel gains.

ii) Performance of the D2D communication with the proposed
prediction. The performance is represented by the sum
capacity of the D2D pairs: C =

∑n=N
n=1

∑k=K
k=1 Ck

n and by
the signaling overhead corresponding to the number of
channel gains to be estimated/reported in the network.

iii) Robustness of the proposed scheme to identify the im-
pact of potential inaccuracies between the simulations of
the targeted area for training and the actual real-world
area and the resistance to the changes in the real-world
environment.
The three above-mentioned evaluation perspectives are
presented in the next subsections.

B. Statistical analysis of the prediction scheme

In this subsection, we analyze the results related to gi, j
prediction statistically. In other words, as the training is done
offline before its usage in the mobile network, we aim to
study the prediction accuracy from the statistical point of view
showing how close we expect the predicted gain of a D2D
channel to be compared to the true gain of this channel. We
show the statistical results of predicting a single D2D channel
gain by testing the trained DNN on the test set.

Fig. 5 shows Pearson correlation coefficient between true
and predicted D2D channel gains over different number of
BSs. As expected, the Pearson correlation coefficient increases
with the number of BSs in all areas. In detail, for the Rural
area, a single BS is not enough to extract a well-performing
relation between the cellular and the D2D gains (i.e., the Pear-
son correlation coefficient is around 0.64 for the Rural area
when one BS is available). Then, when two or more BSs exist,
the Pearson correlation coefficient in the Rural area reaches
almost a perfect value (i.e., 0.999). For the urban areas, the
Pearson correlation coefficient values are, in general, similar
and the difference between Urban1 and Urban2 decreases for
a higher number of the BSs. For only one BS, the correlation
coefficients for both urban areas vary by about 0.09 due to
the effect of the BSs location and the fixed obstacles’ (i.e.,
buildings) locations. Then, already for two BSs, the difference
is only below 0.03, and for three BSs, the Pearson correlation
coefficients are almost the same for both areas (the difference
is less than 0.01). We see, in Fig. 5, that for three or more
BSs the correlation coefficient almost saturates for both urban
areas reaching, approximately, their maximal values. Note that
the Pearson correlation coefficient achieved by the urban areas
(i.e., around 0.95) is lower compared to the Rural area (i.e.,

0.999) because the cellular channel gains are less random in
the Rural area where the buildings are absent and only LOS
channels are present.

Fig. 6 shows the regression plot for Rural (Fig. 6a), Urban1
(Fig. 6b), and Urban2 (Fig. 6c) with L = 3 BSs and con-
sidering 1 000 testing samples from the test set. In general,
we see that the values of the path loss in the urban areas are
spread in a wider domain compared to the Rural area. This is
because of the presence of the FOs and, thus, also NLOS links
as explained in Section IV-A. Note that the path loss values
in the Urban2 area are spread a little bit more (up to 220 dB)
comparing to the Urban1 area (up to 200 dB) as the former one
contains more FOs than the latter one. We can also see, in Fig.
6a, that the predicted path loss (i.e., 10log10(1/g∗i, j)) matches
almost perfectly the true path loss (i.e., 10log10(1/gi, j)) for
the Rural area. However, some deviation of the predicted path
losses from the true values can be seen in Fig. 6b and Fig. 6c
in both urban areas. This deviation is a result of the existence
of the FOs producing some randomness and uncertainty in
the values of the estimated channel gains. Nevertheless, the
predicted and the true path losses are, still, highly correlated
and Pearson correlation coefficient equals 0.94 and 0.934
for the Urban1 and Urban2 areas, respectively. Actually, the
reached Pearson correlation coefficient in the Urban2 area is
almost the same as that for Urban1 area(the difference is about
0.006).

Note that results presented in Fig. 5 and Fig. 6 are based on
learning with 1 000 000 samples. Consequently, to illustrate
the influence of the number of samples on the learning
accuracy, Fig. 7 shows Pearson correlation coefficient over
number of samples for the Rural and both of the urban areas. In
all areas, the correlation coefficient increases with the number
of samples rapidly at the beginning for lower numbers of
the samples. Then, the correlation coefficient increment with
the number of learning samples becomes negligible and the
Pearson correlation coefficient saturates to (almost) a fixed
maximal value. We further see that, in the Rural area, 10 000
samples are sufficient to reach almost a perfect matching
between the predicted and the true D2D channel gains. For
both urban areas, more samples should be collected due to

Fig. 5: Pearson correlation coefficient between the true and
the predicted D2D channel gains versus number of BSs L.
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(a) Rural (b) Urban1 (c) Urban2

Fig. 6: Regression plot for L = 3 BSs.

the higher difficulty of constructing the regression model that
connects the cellular channel gains to the D2D channel gains
if the FOs are present and randomize the path loss. In detail,
Fig. 7 illustrates that the values of the Pearson correlation
coefficient in the Urban2 area are higher compared to the
Urban1 area for low number of samples. This is explained
by the fact that the outdoor space is smaller in the Urban2
and, thus, fewer learning samples (compared to the Urban1)
can give a clearer idea about the general relation between
the cellular and the D2D gains. Thus, the Pearson correlation
coefficient is closer to the saturation value in the Urban2 area
with respect to the Urban1 area for low number of samples.
However, with the increasing number of samples, the DNN
used for the Urban1 starts to learn the topology of the area
and the Pearson correlation coefficient increases and saturates
to a final value that is slightly higher than the one reached in
the Urban2 area. The reason is that the higher number of FOs
in the Urban2 makes it harder for the DNN to memorize the
corresponding network topology and to extract the relation

Fig. 7: Pearson correlation coefficient between the true and
the predicted D2D channel gains versus number of learning
samples for L = 3 BSs.

between the cellular and the D2D gains. Notice that, for
both urban areas, even 10 000 samples are enough to reach
correlation coefficients above 0.88.

In Fig. 8, we show the effect of the possible noise and
inaccuracy in the estimation (measurement) of the conven-
tional cellular channels by the BSs. To this end, we define
SNRG as zero-mean Gaussian noise (i.e., the error) added to
the modeled cellular channel gain estimation. Hence, SNRG

represents the cellular channel gain estimation accuracy and it
is expressed as the ratio between the true cellular channel gain
(UE to BS) and the noise representing an error in estimation
of the UE to BS channel. Thus, we add the noise of N(0, e)
(where SNRG = 10log10(Gi ,l

e ) dB) to the estimated cellular
channel gain Gi,l . Fig. 8 shows that, with the increasing
accuracy of the estimated cellular channels, the correlation
coefficient between the true and predicted D2D channel gains
increases gradually until the saturation is reached when SNRG

is equal to 25 dB, 20 dB, and 17.5 dB for the Rural, Urban1,
and Urban2 areas, respectively. This is, however, an interesting

Fig. 8: Pearson correlation coefficient between the true and the
predicted D2D channel gains versus the cellular channel esti-
mation accuracy represented via estimation SNR (L = 3BSs).
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(a) Channel allocation (b) Power control

Fig. 9: Sum capacity of D2D pairs versus number of D2D pairs when channel allocation scheme from [20] for D2D shared
mode (a), and binary power control algorithm from [21] for D2D dedicated mode (b), are implemented on the true and the
predicted D2D channel gains (L = 3 BS and M = 10 CUEs)

behaviour where a higher probability of LOS leads to a higher
sensitivity of the prediction scheme to the channel estimation
noise. Consequently, the trained model for the D2D channel
prediction in the Rural area is more sensitive to the channel
estimation noise than the trained model for the Urban1 area.
Similarly, the trained model for the D2D channel prediction
in the Urban1 area is more sensitive to the channel estimation
noise than the trained model for the Urban2 area. The reason
is that, in the Urban2 area, more space is occupied by the
FOs (i.e., buildings) compared to the Urban1 area, while the
Rural area contains no FOs (i.e., the LOS probability in the
Rural area is higher than in the Urban1 area, and the LOS
probability of the Urban1 area is higher than in the Urban2
area).

C. Performance of D2D communication aided by the predic-
tion scheme

In this subsection, we show the impact of exploiting the
proposed D2D channel prediction scheme based on machine
learning for the D2D communication in the mobile network.
For this purpose, we adopt two up-to-date RRM algorithms,
one for the channel allocation in the D2D shared mode [20]
and one greedy algorithm for a binary power control in the
D2D dedicated mode [21]. For both algorithms, we compare
the performance (i.e., sum capacity of D2D pairs and the
number of channels need to be estimated) in the case when
these algorithms are supported by our proposed D2D channel
prediction scheme with the case when these algorithms are
implemented without the machine learning-based prediction
approach according to the respective original papers [20] and
[21]. The purpose of this comparison is to show that the
performance of the existing RRM schemes reached with the
proposed prediction scheme is not impaired while a substantial
reduction in signaling overhead is achieved. Note that, in the
legend of this subsection’s figures, CA and PC are used to
denote channel allocation scheme from [20] in the shared
mode and binary power control from [21] in the dedicated
mode.

Fig. 9a shows the sum capacity of D2D pairs over the
number of D2D pairs communicating in the shared mode and
with the channel allocation scheme from [20] implemented
on the true and the predicted D2D channel gains. Fig. 9a
illustrates that, by comparing the sum capacity reached when
the true D2D gains are known and when the predicted D2D
channel gains are used, the capacity loss induced by the
prediction scheme reaches 0%, 4%, and 6% for the Rural,
Urban1, and Urban2, respectively. This behavior is expected
as the Rural area contains no FOs and our prediction scheme
reaches a higher Pearson correlation coefficient in this Rural
area comparing to the Urban1 and Urban2 areas. Moreover,
the Urban1 area contains less FOs and our prediction scheme
reaches a slightly higher Pearson correlation coefficient in the
Urban1 than in the Urban2, thus a lower gap in the sum
capacity between the true and the predicted gains is achieved
in the Urban1 area.

Note that, In Fig. 9a, the changes of the sum capacity of
D2D pairs over different numbers of D2D pairs, in all areas,
follows the behavior described in [20].

The performance of the greedy algorithm for binary power
control in D2D dedicated mode from [21] is shown in Fig.
9b, where the D2D pairs are considered to reuse the whole
bandwidth. Then, the greedy algorithm is implemented to
make a binary transmission power decision for each D2D
pair with true and predicted D2D channel gains. In the Rural
area, a perfect matching between the binary power control
implemented on true and on predicted gains is achieved due
to the very high accuracy in the prediction of the D2D channel
gains. In the urban areas, only a small loss in the sum capacity,
ranging from 1% (for two pairs) to 9% (for ten pairs) in
both the Urban1 and the Urban2 areas, is introduced by
implementing the binary power control on the predicted D2D
channel gains comparing to the binary power control based
on the true gains. However, such a loss can be expected by
the fact that making a binary decision about the transmission
power of each D2D pair is critical and highly sensitive to the
accuracy of the predicted D2D channel gains. Nevertheless, ten



11

Fig. 10: Signaling overhead in terms of number of channels
need to be estimated by the network versus number of D2D
pairs; when channel allocation scheme from [20] or binary
power control from [21] is implemented on true and predicted
D2D channel gains (L = 3 BS and M = 10 CUEs).

D2D pairs in proximity reusing a single channel is an extreme
case that is not expected to occur often in the real network. In
contrast, a reasonable case is when, approximately, four or six
D2D pairs reuse a single channel. For instance, with four D2D
pairs, the binary power control implemented on the predicted
D2D channel gains loses only 2.9% and 3.9% in the Urban1
and Urban2 areas, respectively, comparing to the binary power
control with full knowledge of the true D2D channel gains.
Such small difference between the Urban1 and the Urban2
areas is understandable as the Urban1 area contains less FOs,
and our prediction scheme reaches a slightly higher Pearson
correlation coefficient in the Urban1 area than in the Urban2
area.

Note that, In Fig. 9b, the changes of the sum capacity of
D2D pairs over different numbers of D2D pairs, in all areas,
follow the behavior described in [21].

In Fig. 10, we show the signaling overhead in terms of the
number of channels estimated by the network if the channel
allocation scheme from [20] and the greedy algorithm for
binary power control from [21] are implemented on true and
predicted D2D channel gains. As shown in Fig. 10, for both
the channel allocation scheme from [20] and the power control
algorithm from [21], the number of estimated channel gains
with the proposed prediction scheme is significantly lower than
when all the channel gains would need to be estimated. More
specifically, we need to estimate/report up to approximately
seven times less channel gains if the proposed DNN-based
prediction is used for the channel allocation scheme from [20]
or the power control algorithm from [21] comparing to the case
when the knowledge of all gains would be required.

D. Robustness of the proposed scheme

In this subsection, we analyze the robustness of the proposed
scheme when the offline simulation-based trained DNN is used
to predict the D2D channel gains in the real-world environment
that differs from the simulated area used for training or if the
real-world environment changes.

First, we study the impact of moving obstacles’, MOs,
presence in the real-world urban area(s) on the proposed
prediction scheme as the presence and the movement of these
MOs is not captured during the offline training by means
of simulations. In this respect, up to 30 MOs representing,
e.g., vehicles or position-changing obstacles, are uniformly
distributed outdoor in both urban areas (see Fig. 11). The
dimensions of each MO and its attenuation are also uniformly
generated such that the length of the MO is between 2 and 6
m, the width varies from 0.5 to 2 m, the height is from 1.5
to 3 m, and the attenuation varies between 1 and 5 dB. Note
that all above-mentioned values are regenerated randomly in
every simulation drop.

In Fig. 12, we analyze the effect of the MOs on the channel
allocation algorithm from [20] and the binary power control
algorithm from [21] while four D2D pairs are considered. As
expected, the difference between the sum capacity when the
D2D true channel gains are known and the case when the
prediction scheme is exploited, increases with the number
of MOs in the area. This is due to the signal attenuation
differences induced by the MOs’ presence in the environment
with respect to the training one simulated without those MOs.
Particularly, for the channel allocation and with 30 MOs in the
area, the additional capacity losses are 2.4% (5.7% − 3.3%)
and 0.6% (3.8% − 3.2%) for the Urban1 and Urban2 areas,
respectively (see Fig. 12a). In the case of power control
(Fig. 12b), the additional capacity losses for 30 MOs in
the area are 2% (5% − 3%) and 0.4% (4.4% − 4%) for the
Urban1 and Urban2 areas, respectively. Such low losses are
acceptable considering the fact that no specific D2D channel
measurements are required and, still, the D2D communication
can be enabled due to our proposed channel prediction.

Fig. 12 also shows that the prediction scheme is more
sensitive to the MOs’ existence in the Urban1 area compared to
the Urban2 area. In fact, this is in line with Fig. 8, which shows
that the higher ratio of LOS communication in the area (i.e.,
the lower number of obstacles) leads to a higher sensitivity
to the noise in the channel gains estimation. Note that the
attenuation added by the MOs can be considered as noise
because its unpredictable. Hence, the MOs presence affects
the Urban1 area more than the Urban2 area, as the Urban1
contains a larger area where LOS communication is possible
due to the smaller space occupied by the buildings.

Second, we test the case when the trained DNN is utilized
in the urban areas with changed volumes of the buildings (i.e.,
the fixed obstacles, FOs), see Fig. 13. In our evaluation, the
volume of every FO can either increase (the probability of this
is set to 0.5) or decrease (the probability of this is also set to
0.5). Then, the percentage of the changes in the volume of
every FO is randomly generated so that the average change
in the FOs’ volume is fixed and corresponds to the targeted
value of the change in order to present the results in the figures
(i.e., the x axis in Fig. 14 represents the average change in the
volumes of the FOs). We consider that the average percentage
of FO’s change is up to 25% and, without loss of generality,
the change in the volume of any FO is divided equally over its
three dimensions (i.e., length, width, and height). For instance,
if the FO’s volume decreases by 25%, every dimension of
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(a) Urban1 (b) Urban2

Fig. 11: Example of simulation deployment with 30 vehicles (moving obstacles) represented by the orange elements, in addition
to the buildings (fixed obstacles) represented by the pink rectangles. Note that the red triangles represent the BSs.

(a) Channel allocation (b) Power control

Fig. 12: Effect of the vehicles (moving obstacles) for four D2D pairs, N = 4.

this FO is decreased by approximately 9%. Fig. 13 shows an
example of the real Urban1 and Urban2 areas after the changes
in the volumes of FOs’ with respect to the simulated volumes
of the FOs that are used for training.

In Fig. 14, we show the effect of the changes in the volumes
of the FOs on the channel allocation algorithm from [20] and
the binary power control algorithm from [21] in both urban
areas and with four D2D pairs. Similar to the MOs case, the
sum capacity reached when the proposed prediction scheme is
exploited modestly decreases comparing to the case when the
D2D true channel gains are known. This decrease is slightly
more notable for larger changes in the volumes of the FOs as
expected. However, the capacity decrease induced by the FOs’
volume changes is only up to 2.1% (5.5% − 3.4%) and 1.4%
(5%−3.6%) in the case of channel allocation (Fig. 14a) for the
Urban1 and Urban2 areas, respectively. Similarly, the power
control (Fig. 14b) is affected only negligibly by up to only
1.8% (5%−3.2%) and 1.1% (4.9%−3.8%) for the Urban1 and
Urban2 areas, respectively. Comparing the sensitivity of the
Urban1 and Urban2 areas to the changes in the volume of FOs,
we see that the Urban1 area is slightly more sensitive to the

changes in the FOs’ volumes. This is, however, expected due
to the higher influence of the channel estimation noise on the
Urban1 area, which is a result of the higher LOS probability
compared to the Urban2 area as explained for the MOs.

These encouraging results, confirm the robustness of the
proposed prediction scheme against the changes in the real-
world environment and the potential inaccuracies in the train-
ing phase.

V. CONCLUSION

In this paper, we have proposed a novel D2D channel gains
prediction scheme based on the cellular channel gains between
the UEs and multiple BSs. The proposed prediction scheme
takes the advantage of the network topology-related correlation
between the cellular and D2D channel gains. Supervised
learning-based approach exploiting deep neural networks has
been implemented to extract the mapping between the cellular
channel gains of any couple of the UEs (i.e., gains of channels
between these two UEs and multiple BSs) and the gain of
the D2D channel between these two UEs. The proposed
prediction scheme achieves a high Pearson correlation coeffi-
cient between the true and the predicted D2D channel gains.
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(a) Urban1 (b) Urban2

Fig. 13: Example of simulation deployment with a 25% average change in the volumes of the buildings (fixed obstacles)
represented by the pink rectangles, compared to their volumes in Fig. 4. Note that the red triangles represent the BSs.

(a) Channel allocation (b) Power control

Fig. 14: Effect of the changes in the volumes of the buildings (fixed obstacles) for four D2D pairs, N = 4.

In addition, we show that the proposed prediction scheme
significantly reduces the networks’ signaling (represented by
channel state information) overhead if applied to realistic radio
resource management algorithms. This saving of the channel
information is at the cost of only a negligible performance
losses in terms of communication capacity comparing to the
conventional implementation of these algorithms with knowl-
edge of all channels. We have also demonstrated that the
proposal is robust and resilient to the possible changes in the
environment induced by various moving obstacles or potential
changes in the fixed obstacles (e.g., the buildings) that exist
in the area.

The future work should focus on improving the prediction
scheme performance (prediction accuracy) for scenarios with
buildings and obstacles existence. Moreover the future work
should include studying the proposed prediction scheme per-
formance for more RRM algorithms and in different possible
scenarios and cellular cell types.
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4.4.2 Prediction of D2D Transmission Power Setting

As a continuation of the previous subsection, this subsection shows that the
cellular channel gains can be used to predict the D2D resource allocation deci-
sions immediately (without predicting the D2D channels as a middle step). In
this subsection, we use the cellular channels to set the transmission power that
should be used by every D2D pair. This subsection includes the conference
paper [3C].
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Abstract—We consider a mobile network with users seeking
to engage in a device-to-device (D2D) communication. Two D2D
users (DUEs), a transmitter and a receiver, compose one D2D
pair. We assume that the D2D pairs reuse a single communication
channel to increase the spectral efficiency. Thus, a power control
is needed to manage interference among the D2D pairs and
to maximize capacity. We address the problem of D2D power
control in the case when only standard cellular channel gains
between the DUEs and base stations (BSs) are known while
channel gains among DUEs are not available at all. We exploit
supervised machine learning to determine transmission powers
for individual D2D pairs. We show that the cellular channel
gains can, in fact, be exploited to predict the transmission power
setting for D2D pairs and, still, close-to-optimum sum capacity of
the D2D pairs is reached. Moreover, even if our proposed power
control requires no knowledge of the channel gains among DUEs
and, thus, introduces no additional signalling, the sum capacity
can be increased by 16% to 41.9% with respect to no power
control, as demonstrated via simulations.

Index Terms—Device-to-device; Power control; Deep neural
networks; Supervised machine learning

I. INTRODUCTION

Device-to-Device (D2D) communication is one of the
promising technologies to provide higher data rates and
spectral efficiency in future mobile networks [1]. In D2D
communication, data is transmitted directly between two user
equipment (UEs) in proximity of each other to offload the
legacy cellular links relayed via a base station (BS) [2].
Each pair of D2D UEs (denoted as DUEs) is composed of a
transmitter (DUET) and a receiver (DUER).

Various important problems arise when considering the use
of D2D communication, including the question of resource
allocation across both D2D pairs and legacy cellular links to
maximize D2D capacity or to minimize negative impact to the
cellular links [3]-[4]. Pursuing the goal to increase the spectral
efficiency of the system, multiple D2D pairs can reuse the
same channel [3]-[4]. However, mutual interference among
the D2D pairs accessing the same channel occurs inevitably.
The mutual interference can be, fortunately, efficiently sup-
pressed by a power control [3].

The power control as a resource allocation problem to
maximize spectral efficiency of D2D (or ad-hoc) networks
has been considered extensively [5]-[14]. In general, sum
capacity-oriented power control over D2D pairs is a non-
convex optimization problem. Thus, various iterative meth-

ods with different levels of complexity are presented in
the literature such as, binary power control [5], weighted
minimum mean square error [6], or water-filling algorithm [7],
to name a few. However, iterative methods can pose latency
issues. As an alternative, researchers have focused recently
on exploiting deep neural networks (DNN) for instantaneous
power control in D2D communication [8]. The DNN highly
reduces power control complexity via either supervised [9]-
[10] or unsupervised [11]-[14] learning, which is based on
offline training (i.e., the DNN is firstly trained offline and
then exploited for power control). Crucially, power control
techniques utilizing the DNN with unsupervised learning are
able to outperform the existing iterative methods in terms of
sum capacity. However, the unsupervised learning needs a
DNN loss function that connects the input and the output of
the DNN, e.g., the sum capacity as a function of channel gains
among DUEs and DUEs transmission powers.

A significant drawback of all above-mentioned, both con-
ventional and DNN-based approaches is that they typically
consider full (centralized) knowledge of all the D2D channel
gains (i.e., channel gains among all DUEs). In machine learn-
ing methods, the D2D channel gains are placed as an input for
the neural network in order to set the transmission powers.
In some cases, the full knowledge can be relaxed to limit
the channel state information (CSI) requirement to a subset
of distributed D2D channel gain values. Still, even partial
knowledge of the D2D channel gains implies a substantial
cost in terms of additional channel estimation and signaling
compared with the signaling involved in classical cellular
communications. In contrast, the channel gains over the
cellular links (i.e., linking DUEs to BSs) are typically de-facto
estimated by a default design of the network. An interesting
question then arises as to whether the cellular channel gains
(i.e., channel gains between DUEs and BSs) carry information
that somehow relates to the D2D channel gains themselves
and could be exploited as a low-cost replacement of the
D2D channel gains for the D2D power control prediction.
The intuition behind this idea is that, while cellular channel
gains exhibit fading coefficients that are independent of those
measured among the DUEs, and also constitute a far smaller
dimensional object (only M cellular gains for one cell with M
users, in contrast with M(M −1) direct and interference D2D
gains), there is actually much common information between
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these data at the statistical level. In fact, it is clear that both
statistical cellular gains and statistical D2D gains could be
predicted from DUEs’ location information if this information
would be assumed available (which is not the case here).
Hence, the existence of common information between the
cellular and D2D gains suggests the use of a machine learning
approach so as to implicitly extract the D2D channel gains
and exploit it for the power control.

This is the core idea of this paper, where we propose a
novel DNN learning-based power control scheme for the D2D
communication that needs absolutely no additional knowledge
of the D2D channel gains. Hence, no signaling overhead is
generated at all, since the channel quality to all BSs in the
user vicinity is reported during a common network operation
notwithstanding [15]. First, our proposed DNN aims to find
a relation between the cellular and D2D channel gains. This
relation is, then, exploited for the transmission power setting
of the D2D pairs to maximize the sum capacity. It is worth
to mention that there is no known function that captures
the relation between the cellular channel gains and the sum
capacity of D2D pairs. Thus, it is difficult to propose a proper
loss function for an unsupervised learning-based DNN. Due
to this fact, we follow a supervised learning approach, where
the targeted DUEs transmission powers maximizing the sum
capacity are derived first. Subsequently, the DNN is trained
to build a mapping between cellular channel gains and the
targeted transmission powers with an aim to reach targeted
power setting. The whole training process is done offline and
the trained DNN is used for immediate power control decision
in the real network without any training needed during the
communication.

The rest of the paper is organized as follows. First, in
Section II, system model is described and optimization prob-
lem is formulated. Then, Section III presents the principle of
power control based on cellular channel gains, illustrates the
architecture of the proposed DNN for power control, and gives
detailed description regarding training process. In Section IV,
simulated scenarios are described and results are discussed.
Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model is described and the
optimization problem is formulated.

A. System model

We consider a model with L BSs and M DUEs forming
N D2D pairs (i.e., N = M/2 assuming M is even number)
deployed within a square area. The distance between the
transmitter DUET and the receiver DUER composing the D2D
pair is limited by a maximum distance dmax to guarantee fea-
sibility of the D2D communication similarly as in [16],[17].
The D2D pairs are assumed to share the same channel. As the
channel is occupied by multiple D2D pairs, the pairs interfere

mutually with each other. Thus, the capacity of the n-th D2D
pair is defined as:

Cn = B log2

⎛
⎜⎝1 +

pngn,n

σoB +
∑j=N

j=1
j �=n

pjgj,n

⎞
⎟⎠ (1)

where B is the channel bandwidth, pn is the transmission
power of the n-th DUET, gn,n is the channel gain between the
n-th DUET and the n-th DUER of the n-th D2D pair, σo is the
noise power spectral density on the carrier frequency, pj is the
transmission power of the j-th DUET, and gj,n is the channel
gain between the j-th DUET and the n-th DUER. Note that
contrary to state-of-the-art works (e.g., [9]-[14]), a channel
between any DUET and DUER (gn,n and gj,n) is supposed
to be unknown due to the difficulty of D2D channel gains
estimation and its high cost in terms of signaling overhead.

Since the DUEs continuously monitor channels to the
serving BS (for estimation, decoding, etc.) and to the neigh-
boring BSs (for handover, interference management, etc.), the
information on channel quality between each DUE and the
surrounding BSs is assumed to be measured and reported
periodically to the serving BS [15]. The corresponding es-
timated channel gain between the m-th DUE and the l-th BS
is denoted as Gm,l.

B. Problem formulation

The objective of this paper is to set the transmission power
pn for each n-th D2D pair in such a way that the sum capacity
of D2D pairs is maximized. In [5], it has been proven that a
binary power control, in which every D2D pair transmits at
either maximal or minimal transmission power level, reaches
close-to-optimal performance. Therefore, we also adopt the
binary power control so that pn ∈ {pmin, pmax}, where
pmin and pmax are the minimal and maximal transmission
powers, respectively. Consequently, the problem of setting the
transmission power of the D2D pairs to maximize the sum
capacity of D2D pairs is written as:

P = argmax
∑n=N

n=1 Cn (2)

s.t. pn ∈ {pmin, pmax}, ∀n ∈ {1, 2, ...N} (a)

where P = {p1, . . . , pN} is the vector containing the
transmission powers of all D2D pairs maximizing the sum
capacity of D2D pairs and constraint (a) guarantees that the
transmission power of each D2D pair is set either to pmin or
pmax.

The optimization problem in (2) aims to maximize the
sum capacity of D2D pairs. However, from (1), we see that
Cn depends on D2D channel gains. Unlike existing schemes,
where the authors assume full or at least partial knowledge of
the D2D channel gains, we focus on the case when these gains
are not known at all. Thus, in the next section we propose a
power control scheme based solely on the common knowledge
of the cellular channel gains while no knowledge of the D2D
channels among the DUEs is required whatsoever.
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III. POWER CONTROL FOR D2D PAIRS BASED ON
CELLULAR CHANNEL GAINS

The optimization problem in (2) relies on the fact that a
mathematical relation exists between the D2D channel gains
and the cellular channel gains. However, the relation between
D2D channel gains and cellular channel gains is not known
for mobile networks and cannot be even analytically derived
from any known parameters of the mobile network. Thus,
we propose to use a Deep Neural Networks (DNN) to learn
this relation on its own and to set transmission power of the
D2D pairs accordingly. More to the point, the DNN can be
seen as a ‘black box’, which is able to set transmission power
of the D2D pairs based simply on the knowledge of cellular
channel gains from the DUEs to the BSs. The proposed DNN
architecture and the learning process itself are thoroughly
described in the following subsections.

A. Architecture of DNN for power control

Considering the binary power control, the optimization
problem in (2) is to set the transmission power of each D2D
pair either to pn = pmin or to pn = pmax. Thus, setting the
transmission power for N D2D pairs can be presented as N
identical binary classification problems. Hence, we propose
a fully-connected DNN to build up the mapping between
the cellular channel gains and the proper binary transmission
power setting for any n-th D2D pair maximizing the sum
capacity of D2D pairs.

Fig. 1 shows the proposed fully-connected DNN for binary
classification. The proposed DNN is composed of an input
layer (X0), H hidden layers (X1,. . . ,XH ), and an output
layer (XH+1). The DNN input layer contains an input vector,
and thus, the cellular channel gains from the DUEs to the
BSs are aligned as an input vector in the input layer of the
proposed DNN (see Fig. 1). The output of the input layer
out0 is a vector of the cellular channel gains between the
DUEs and the BSs out0 = {G1,1, G1,2, . . . , GM,L} with a
length of M × L. Every hidden layer Xh has an input vector
inh equivalent to the output of the previous layer outh−1

(i.e., inh = outh−1, ∀h ∈ {1, . . . , H}). Each hidden layer
Xh is composed of Vh neurons. In this respect, each i-th
input element in inh is fed to every neuron v in the hidden
layer Xh with a weight wh−1,h

i,v . Consequently, every neuron
v performs dot product between the input elements in inh

and the corresponding weights. The result of the dot product
is added to a corresponding bias bh−1,h

0,v and processed by
commonly used sigmoid activation function, giving the output
of the neuron. Hence, the hidden layer Xh (with Vh neurons)
and its input vector inh serve to determine the hidden layer
output vector outh of the length Vh as:

outh = Sig(Wh−1,hinh + bh−1,h)

= Sig(Wh−1,houth−1 + bh−1,h)
(3)

where Sig is the sigmoid function Sig(Z) = 1
1+exp(−Z) ,

Wh−1,h is the matrix of weights of the links between every
input element of Xh (i.e., equivalent to the output of Xh−1)

Fig. 1: Proposed architecture of DNN for binary classification
corresponding to the transmission power of a single D2D pair.

and every neuron in Xh, and bh−1,h is the vector of biases
attached to the neurons in the layer Xh.

The output of the last hidden layer outH is followed
by the output layer. The output layer in a DNN for binary
classification is composed of one neuron. The single neuron
of the output layer performs the dot product between outH
and the corresponding weights WH,H+1 (i.e., the vector of
weights related to the links between the outputs of the last
hidden layer XH and the single neuron in the output layer
XH+1). Then, the output layer neuron also sums its attached
bias scalar bH,H+1 and implements the sigmoid function
defining the output of the DNN as:

outH+1 = Sig(WH,H+1outh + bH,H+1) (4)

Note that the sigmoid function value is between 0 and
1, and thus, the output of our DNN is outH+1 ∈ [0, 1]
which presents the probability of pn = pmax. Hence, the
transmission power of the n-th D2D pair is set as:

pn =

{
pmax if outH+1 > 0.5

pmin otherwise
(5)

B. Offline learning and exploitation of the proposed DNN

There is no direct analytical function connecting the cellular
channel gains and the sum capacity of D2D pairs in order
to set the transmission power of the D2D pairs. Therefore,
we propose an offline supervised learning-based solution in
which the optimal binary transmission powers are derived by
an exhaustive search to maximize the sum capacity of D2D
pairs. Then, the transmission power of the n-th D2D pair
is fed to the proposed DNN as a targeted class attached to
the set of the cellular channel gains as features. The features
(i.e., cellular channel gains) and the targeted class (i.e., the
transmission power of the n-th D2D pair) compose together
a single learning sample. The learning samples are collected
and, then, split into a training set and a test set. While the
former is used to train the DNN the latter is run over the
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trained DNN to show the accuracy on a set of cellular channel
gains samples that are not used for training.

During training process of the proposed DNN, a loss func-
tion is defined to evaluate the misclassifications between the
targeted transmission powers and the predicted transmission
powers (from (5)) after every training iteration. Our DNN
considers binary cross-entropy loss function written as:

ι = −�pT == pmax�log (outH+1)

− �pT == pmin�log (1 − outH+1)
(6)

where pT is the targeted transmission power for the corre-
sponding sample.

The binary cross-entropy loss function is averaged out over
all training samples at the end of each iteration. Then, the
weights and biases of the proposed DNN are updated using
scaled-conjugate gradient backpropagation [18].

It is worth to mention that the whole learning phase
(i.e., including collecting samples, training, and testing the
proposed DNN) is done offline, i.e., before its application to
the real network (or before its testing by means of simula-
tions). Therefore, the cellular channel gains derived from the
simulations can be used for the offline training and testing of
the DNN, and then, the trained DNN is exploited directly in
the real network. The proposed DNN is able to predict the
transmission power of a single D2D pair in order to maximize
the sum capacity of D2D pairs. Thus, for N D2D pairs, the
trained and tested DNN is utilized to predict the transmission
power for each D2D pair independently maximizing the sum
capacity of D2D pairs.

IV. PERFORMANCE EVALUATION

In this section we describe simulation scenarios and param-
eters. Then, simulation results are discussed including offline
learning results and performance analysis related to D2D
communication with the proposed power control scheme.

A. Simulation scenarios

We consider six DUEs composing three D2D pairs (like in
[10]) deployed uniformly within an area of 250 × 250 m2.
Although the DUEs are uniformly distributed, the maximum
distance between the DUET and the DUER of the same D2D
pair is upper-bounded by a maximal distance of dmax = 50
m as in [16],[17]. Nevertheless, we also show the effect
of different values of dmax on the performance of our
proposal. Without loss of generality, we set the bandwidth
of the channel reused by the D2D pairs to 1 Hz [10] as
the capacity scales with the bandwidth (see (1)). Moreover,
for any D2D transmitter, the maximal transmission power
pmax is considered to be 24 dBm like in [3]; while the
minimal transmission power pmin is set to 1 dBm to guarantee
existence of data transmission.

We consider two different scenarios according to the signal
propagation between the DUEs and the BSs and among all
DUEs. The first scenario assumes an open rural area with
full availability of line-of-sight (LOS) for all channels (D2D
channels and channels to BSs). The second scenario, shown

Fig. 2: Example of simulation deployment with buildings
(pink rectangles) for urban area. Note that no buildings are
present in rural area.

in Fig. 2, presents an urban area (such as scenario C2 in
[19]) with building blocks forming a regular Manhattan-like
grid (see the pink rectangular building blocks in Fig. 2). The
BSs are deployed on the roof tops serving outdoor DUEs at
the street level. In the second scenario, the buildings lead
to a non-line-of-sight (NLOS) D2D and cellular channels. In
both rural and urban areas, the LOS path loss is generated
in line with 3GPP recommendations [20]. However, in the
urban scenario, we assume that the communication channel
intercepted by a single or more building walls is exposed to an
additional loss [21]. We set the value of the signal attenuation
induced by a single wall to 10 dB. Note that Fig. 2 presents
a 2D projection of the simulated urban area, while in our
simulations, building heights range uniformly from 20 to 30
m and, thus, affect NLOS and LOS probabilities.

For the training of DNN, 500 000 samples are collected and
70% of these samples are used for training (i.e., the training
set), while the remaining 30% are left for testing (i.e., the test
set). The proposed DNN exploits six hidden layers composed
of 24, 20, 18, 15, 12, and 8 neurons, respectively. Note that
the number of hidden layers and number of neurons in each
layer are set by trial and error approach.

For the evaluation of D2D communication with the pro-
posed power control scheme, the sum capacity of D2D pairs
(i.e., C =

∑n=N
n=1 Cn ) is averaged out over 1 000 drops.

Simulation parameters are summarized in Table I.

TABLE I: Simulation parameters.

Parameter Value
Carrier frequency fc 2 GHz
Bandwidth B 1 Hz [10]
Noise power spectral density σo −174 dBm/Hz
Number of D2D pairs N 3 [10]
Number of BSs L 3 − 9
Maximal transmission power pmax 24 dBm[3]
Minimal transmission power pmin 1 dBm

B. Simulation results

In this subsection, we present first the offline learning
results, i.e., the accuracy of the learning process. Then, we
show the impact of the proposed power control scheme on
the performance of D2D communication.
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Fig. 3: Classification accuracy on the test set over number of
BSs L for dmax = 50m.

Rural

pmin pmax
������pT

pn

46.7% 5.4% pmin

3.6% 44.3% pmax

Acc. on Acc. on Total
pmin pmax accuracy
92.9% 89.2% 91.1%

Urban

pmin pmax
������pT

pn

44.4% 8.8% pmin

5.8% 41.0% pmax

Acc. on Acc. on Total
pmin pmax accuracy
88.4% 82.4% 85.4%

TABLE II: Confusion matrices for rural and urban areas for
9 BSs and dmax = 50m, showing learning accuracy.

1) Learning results: The proposed DNN is trained via
samples of cellular channel gains from the training set and
their corresponding targeted transmission powers. Then, the
trained DNN is tested on the test set to show the classification
accuracy on the set of samples with cellular channel gains that
are not used for the training to prevent overfitting.

Fig. 3 shows the total accuracy of the transmission power
prediction on the test set for the rural and urban areas over dif-
ferent numbers of BSs L. As expected, the prediction accuracy
increases with the number of BSs. This accuracy improvement
with more BSs is a result of knowing more information about
each DUE (i.e., knowing cellular channel gains to more BSs).
Furthermore, we can see that the prediction accuracy on the
test set for the rural area is higher than for the urban area.
This can be explained by the fact that the cellular channel
gains to the BSs are less random in the rural area with LOS
comparing to the urban area where the probability of NLOS
is high. Therefore, in the rural area, our proposed DNN is
able to build a better-performing mapping between the cellular
channel gains of the DUEs and the proper transmission power.

Table. II shows the confusion matrices for rural and urban
areas with L = 9 BSs. Considering that pT is the targeted
transmission power and pn is the transmission power pre-
dicted by the proposed DNN, there are four possible outcomes
of prediction result as the binary power control is applied.
Each confusion matrix in Table. II shows the probability of
each of the four possible cases. For rural area, the accuracy of
the correct prediction on pmin and pmax is 92.9% and 89.2%,
respectively. For urban area, the accuracy of correct prediction
is 88.4% and 82.4% for pmin and pmax, respectively. We can

also see that the total accuracy on both pmin and pmax is
91.1% and 85.4% for the rural and urban areas, respectively.

It is worth to remember that the proposed DNN predicts
the transmission power of a single D2D pair as explained
in Section III-A, and based on this predicted transmission
power, the shown accuracy is calculated. However, in the
next subsection, the trained DNN is exploited to predict the
transmission power of multiple D2D pairs (three D2D pairs
in this paper), each independently, aiming to maximize the
sum capacity of D2D pairs as clarified in Section III-B. Note
that as the DNN is trained to predict pn of the n-th D2D
pair, every D2D pair is considered to be the n-th D2D pair to
predict its transmission power, and the cellular channel gains
at the input of the DNN are sorted accordingly.

2) Evaluation of the proposed power control scheme: In
this subsection, we analyze the performance of D2D commu-
nication when the proposed DNN predicts the transmission
power of each D2D pair. Up to our best knowledge, there is no
work in the literature exploiting the cellular channel gains of
the DUEs for D2D power control. Thus, the proposed power
control scheme (denoted as proposal) is compared with two
other existing schemes. The first one is the optimal binary
power control derived by the exhaustive search. The optimal
binary power control (denoted as Target) corresponds to the
targeted transmission powers, which are used as the proposed
DNN benchmark and which the DNN tries to reach (see
Section III-B). The second scheme assumes that each D2D
pair transmits with the full power without power control
(denoted as No-PC). The perfect estimation of the cellular
channel gains is considered for the rural area. In the urban
area, an error in the estimation of the cellular channel gains
might occur in the real network. Thus, for any channel gain
between the m-th DUE and the l-th BS Gm,l, we add an
estimation error em,l as a percentage of the real channel gain
in the urban area. The error percentage for cellular channel
gain estimation is generated via the Gaussian distribution with
a mean of 0% and a standard deviation of 5%.

Fig. 4 shows the sum capacity of D2D pairs over the
number of BSs L for the rural and urban areas. Comparing
to the No-PC, our proposed DNN-based solution achieves a
gain ranging from 18.7% to 21.4% and from 16% to 18.7% for
the rural and urban areas, respectively. Moreover, we observe
that the sum capacity of D2D pairs of the proposal reaches
close-to-optimal sum capacity (i.e., close to Target) even for
a low number of BSs. The small loss of our proposal with
respect to the Target further decreases with the availability
of the cellular channel information to more BSs. To be more
specific, increasing the number of BSs from 3 to 9 decreases
the loss comparing to the Target from 3.5% to 1.6% and from
5.4% to 3.2% for rural and urban areas, respectively.

In Fig. 5, the effect of different values of dmax on the
sum capacity of D2D pairs is illustrated for L = 9 BSs.
The sum capacity of D2D pairs for all schemes decreases
with increasing dmax due to the corresponding increment in
the attenuation of signal between DUET and DUER. Fig. 5
shows that when compared to No-PC, our proposal introduces
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a gain up to 41.9% and 28.8% for rural and urban areas,
respectively. In addition, comparing to the Target, the loss in
the performance of the proposal ranges from 2.7% to 5.2% for
the urban area. Nevertheless, for the rural area, our proposal
loses only between 0.7% and 3.7%, depending on dmax, in
terms of the sum capacity.

It is worth to remind that with respect to existing schemes
that rely on the knowledge of the D2D channel gains, our
proposed scheme requires no additional signaling to set the
transmission power of the D2D pairs except the signaling that
is anyway available for classical communication via BS.

V. CONCLUSION

In this paper, we have proposed a new power control
scheme for D2D communication requiring absolutely no
knowledge of the D2D channel gains. The proposed scheme
relies on a deep neural network that exploits solely the cellular
channel gains between DUEs and neighboring BSs to set the
transmission power of each D2D pair. The key benefit of
the proposed scheme, comparing to existing works, is that
there is no additional signaling overhead to the network. Only
the cellular channel gains, reported anyway periodically for
multiple purposes related to conventional communication and
handover, are needed to be known. The proposed scheme
reaches close-to-optimal sum capacity of D2D pairs and
outperforms the case with no power control by 16% to 41.9%.

The future work should focus on generalization of the
proposed solution towards prediction of the D2D channel
gains that can be, then, exploited for any radio resource
management problem (e.g., power control, channel allocation,
D2D relay selection, etc.).
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4.4.3 Prediction of UEs’ Association in Networks with
FlyBSs

In the mobile networks, two devices communicating directly with each other do
not have to be mobile terminals. The principle of the D2D channel prediction
can be also applied to mobile networks with FlyBSs, which relays data between
the static base stations (SBSs) and the users. This subsection shows that the
cellular gains between the users and the SBSs can be used to predict the users’
association (e.g., to which FlyBS every user should be associated) without
any knowledge related to the D2D channel quality between the users and the
FlyBSs. This solution enables the deployment of light-weighted FlyBSs acting
as transparent relays [83] with reduced energy consumption. This subsection
includes the conference paper [1C].
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Abstract—Since flying base stations (FlyBSs) are energy con-
strained, it is convenient for them to act as transparent relays with
minimal communication control and management functionalities.
The challenge when using the transparent relays is the inability
to measure the relaying channel quality between the relay
and user equipment (UE). This channel quality information is
required for communication-related functions, such as the UE
association, however, this information is not available to the
network. In this letter, we show that it is possible to determine
the UEs’ association based only on the information commonly
available to the network, i.e., the quality of the cellular channels
between conventional static base stations (SBSs) and the UEs.
Our proposed association scheme is implemented through deep
neural networks, which capitalize on the mutual relation between
the unknown relaying channel from any UE to the FlyBS and the
known cellular channels from this UE to multiple surrounding
SBSs. We demonstrate that our proposed framework yields a
sum capacity that is close to the capacity reached by solving the
association via exhaustive search.

Index Terms—Unmanned Aerial Vehicles, transparent relays,
users’ association, deep neural networks

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are expected to be inte-
grated in future mobile networks as flying base stations (Fly-
BSs) complementing conventional static base stations (SBS) in
some areas of the network, at the time when the high density of
users and the dynamicity of the network are difficult to adapt
to with a purely fixed infrastructure [1]. In such scenarios,
the FlyBS relays the communication between the conventional
SBS and the user equipment (UE).

The relays can be classified into non-transparent and trans-
parent [2]. The non-transparent relays are distinguished by
their high complexity as these are supposed to perform all
the communication-related functions, such as data processing,
radio resource management, or signaling, in a similar way as
the conventional SBSs [3]. In contrast, the transparent relays
represent a simplified and a lightweight version of the relays,
for which the majority of the communication functions are
managed centrally by the conventional SBS [4]. Consequently,
the transparent relays are significantly cheaper and less energy

This work has been supported by Grant No. P102-18-27023S funded by
Czech Science Foundation and by the project of Czech Technical University
in Prague no. SGS20/169/OHK3/3T/13.

demanding in comparison to the non-transparent relays as that
transparent type requires less complex hardware [2]. Since
the energy consumption of the FlyBSs is directly proportional
to their operational time, the transparent relays are seen as
suitable and convenient candidates for the FlyBSs.

To this end, the main obstacle facing the deployment of the
FlyBSs acting as transparent relays arises from the fact that the
transparent relays are not able to obtain the information about
the quality of the channels between the UEs and the FlyBSs
due to their simple nature. The reason is that the transparent
relays do not transmit their own reference signals, which are
required to determine the channel quality (see, e.g., [4], [5]).
To solve this problem, the statistical channel gains between
the UEs and the FlyBSs can be derived based on the existing
path loss models. Nevertheless, these statistical channel gains
rely on the knowledge of UEs’ locations [6]-[8] or, at least,
on the knowledge of the spatial distribution of UEs [9]-[10].
However, the information about the UEs’ locations might not
be available to the network due to the privacy preferences or
the specific location of the user (e.g., the UE is at a place
where no localization system is available). In such case, it is
hard to decide whether to associate the UEs to a specific FlyBS
or directly to the SBS.

In this paper, we focus on the case where the FlyBSs
represent transparent relays, and we target the problem of the
inability of the transparent FlyBSs to measure the channel
gains between the UEs and the FlyBSs for the UEs’ associa-
tion. We also consider a practical scenario where an arbitrary
part of the UEs makes their locations available to the network
while another part of the UEs do not disclose their locations.
To this end, we propose a deep neural network (DNN) that
is able to predict the association of the UEs not disclosing
their locations neither to the SBS nor to one of the FlyBSs.
The objective is to maximize the sum capacity of these UEs.
The UEs’ association is predicted by the DNN based only
on the knowledge of information commonly available to the
network: 1) the quality of cellular channels between the UEs
and the surrounding SBSs (note that the qualities of cellular
channels are reported periodically in common networks [11],
e.g., for handover purposes), 2) the FlyBSs’ positions, which
are known for the FlyBSs’ navigation purposes, and 3) the
number of the UEs already attached to each base station978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



(BS) as this number affects the resource allocation at the BSs
(this information is known a priori for general radio resource
management purposes). The DNN is trained offline and, then,
exploited to associate the UEs. The DNN ability to make the
association decision instantaneously is a significant asset of
the proposed scheme from the practical implementation point
of view in the real mobile network.

The rest of the paper is organized as follows. In Section II,
the system model is presented and the targeted optimization
problem is formulated. Then, in Section III, the proposed
DNN-based scheme for UEs’ association is described in detail.
Section IV presents the simulation scenarios and discusses the
results. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set N containing |N | uniformly deployed
UEs with their locations known to the network. In addition,
there exist another set M of |M| uniformly deployed UEs
for which the locations are not known. All UEs are deployed
within a single cell and belong to a set U of |U| UEs where
U = N ∪M, N ∩M = ∅, and |U|= |N |+|M|. The UEs
are served by |L| BSs included in a set L, encompassing
one SBS and |L|−1 FlyBSs acting as the transparent relays
(note that, in this paper, the BS denotes arbitrary type of
base station including SBS as well as FlyBS). Without loss
of generality, we assume that all UEs communicate in the
downlink direction. As in [12], the 2D positions (i.e., with
fixed altitude) of the FlyBSs are determined with respect to
the known locations of the UEs from N via K-means. Note
that, while the association of the UEs from N is done based on
their known locations (as in [12]), the association of the UEs
with unknown locations fromM is the targeted problem in this
paper. Although we focus specifically on a single cell, there is
also a set K of |K| SBSs in the vicinity. The qualities of the
channels between every UE and all the |K| neighboring SBSs
are measured and reported periodically as in conventional
mobile networks, e.g., for mobility management and handover
purposes.

Without loss of generality, we assume that the deployed
|K|+1 SBSs use orthogonal bandwidths (i.e., every SBS
exploits its own dedicated bandwidth). In contrast, all FlyBSs
reuse the same bandwidth B of their serving SBS to ensure a
high spectral efficiency (see Fig. 1). The serving SBS divides
the whole bandwidth B equally among all served UEs. The UE
communicates either directly with the SBS (via direct channel
from the SBS to the UE) or via the FlyBS (occupying the
backhaul channel from the SBS to the FlyBS and the channel
from the FlyBS to the UE). Note that the bandwidth allocation
to individual UEs for the communication from the FlyBS to
the UE is determined by the SBS as the FlyBSs represent
transparent relays with limited functionalities. Further, every
FlyBS is able to receive and transmit data at the same time.
Since the same bandwidth is reused by all BSs, communication
of each FlyBS with the SBS over backhaul is exposed to
an interference induced by other FlyBSs. Similarly, each UE

Fig. 1: System model.

experiences an interference from all BSs (either SBS or FlyBS)
except the serving one.

If the m-th UE from M is served directly by the SBS, its
capacity CDl,m is defined as:

CDl,m =
B

|U| log2(1 +
p1
|U|g1,m

B
|U|σ +

l=|L|∑
l=2

pl
|U|gl,m

)
(1)

where pl is the transmission power of the l-th BS over the
whole allocated bandwidth, gl,m is the channel gain between
the l-th BS and the m-th UE, and σ is the noise spectral
density. Note that l = 1 refers to the serving SBS and, thus, p1
and g1,m are the transmission power of the serving SBS and
the channel gain between this SBS and the m-th UE. Moreover,
in (1), we see that all FlyBSs cause interference to the m-th
UE if this UE is associated directly to the serving SBS.

If the m-th UE is attached to the SBS through an intermedi-
ate FlyBS, the backhaul capacity CBl,m (between the SBS and
the relaying FlyBS) is calculated as:

CBl,m =
B

|U| log2(1 +
p1
|U|g1,l

B
|U|σ +

i=|L|∑
i 6=l
i=2

pl
|U|gi,l

) (2)

where g1,l is the channel gain between the serving SBS and
the l-th FlyBS to which the m-th UE is attached, and gi,l is the
interference channel gain between the i-th FlyBS inducing the
interference and the l-th FlyBS through which the m-th UE
is served. Similarly, the capacity CFl,m of the channel between
the l-th FlyBS and the m-th UE is derived as:

CFl,m =
B

nl
log2(1 +

pl
nl
gl,m

B
nl
σ +

i=|L|∑
i6=l
i=1

pl
nl
gi,m

)
(3)

where nl is the number of all UEs from U associated to the
l-th FlyBS (i.e., nl ≤|U|), gl,m is the channel gain between
the l-th FlyBS and the m-th UE attached to it, and gi,m is the
interference caused by the i-th BS to the m-th UE.

Then, the capacity of the m-th UE associated to the l-th



FlyBS is derived as:

Cl,m =

{
CDl,m if l = 1

min(CBl,m, C
F
l,m) if l > 1

(4)

In order to define whether the m-th UE is associated to the
SBS or to one of the FlyBSs, we introduce the association
matrix ααα expressed as:

ααα =




α1
1 . . . α

|L|
1

...
. . .

...
α1
|M| . . . αL|M|


 (5)

where αlm = 1 indicates that the m-th UE is associated to the l-
th BS, otherwise αlm is set to 0. Taking this into consideration,
nl in (3) is calculated as:

nl = Nl +

m=|M|∑

m=1

αlm (6)

where Nl is the number of the UEs from N that are attached

to the l-th FlyBS and
m=|M|∑
m=1

αlm represents the number of UEs

from M that become attached to the l-th FlyBS.

Based on (1)-(6), the mathematical formulation of the prob-
lem of maximizing the sum capacity of the UEs with unknown
locations (i.e., the |M| UEs from M), is written as:

ααα∗ = argmax
ααα

(
∑m=|M|
m=1

∑l=|L|
l=1 αlmC

l
m) (7)

s.t.
∑l=|L|
l=1 αlm = 1 ∀ m ∈M (a)

where ααα∗ represents the targeted ααα that maximizes the sum
capacity of the |M| UEs, and the constraint (a) guarantees
that each UE is associated to only one BS at a time.

The solution of the problem presented in (7) is not only
affected by the quality of the channels between the |M| UEs
and the |L| BSs, but it is also influenced by the bandwidth
allocation for each UE at individual BSs as the bandwidth allo-
cation changes with the association. In addition, the bandwidth
splitting is also affected by the number of UEs attached to each
BS. Moreover, Clm is a function of nl, which is a function of
ααα as shown in (6). Thus, the problem in (7) is an integer
non-linear programming problem that is known to be NP-
hard. Such problem can be generally solved by an exhaustive
search. Nevertheless, the absence of the information on the
locations of the |M| UEs as well as the FlyBSs’ inability
to measure the channel quality between themselves and the
|M| UEs make the problem unsolvable in real networks even
with the exhaustive search. Thus, in the next section, we rely
only on the commonly known and periodically measured (and
reported) cellular channel gains between the |M| UEs and the
serving SBS together with K surrounding SBSs to design the
DNN that is able to make an instantaneous decision on the
association of the |M| UEs whose locations are not known.

III. PROPOSED ASSOCIATION OF UES IN NETWORKS WITH
TRANSPARENT RELAYS

In this section, we, first, explain the principle of the pro-
posed UEs’ association scheme based on the cellular channels.
Then, the proposed DNN architecture, training and exploitation
in real mobile networks are explained.

A. Principle of cellular channels-based UEs’ association

Generally, when the FlyBSs act as the transparent relays, the
relaying channels between the UEs and those FlyBSs cannot
be estimated as explained in Section I. Hence, to associate the
UEs from M, an exploitation of the statistical channel gains
derived based on existing channel models is the only known
solution. Still, the statistical channel gain between any UE and
the FlyBS with the existing channel models can be determined
only if the locations of both the UE and the FlyBS are known.
However, the locations of the UEs from M are not available
and the problem should be circumvented by an exploitation
of another available information about these UEs. In fact, the
cellular channels between any UE and the surrounding SBSs
are commonly known as these cellular channels are measured
and reported periodically for, e.g., mobility management and
handover purposes. In an open field, a single UE can be
distinguished by the cellular channels from this UE to the
surrounding (neighboring) SBSs. Therefore, for the UEs with
unknown locations from M, the cellular channels between
these UEs and multiple surrounding SBSs are seen as a proper
substitution of the missing information on the channels to the
FlyBSs taking into account that the positions of these FlyBSs
are known.

Based on this principle, the problem presented in (7), can
be solved knowing: i) the cellular channels between the UEs
and multiple neighboring SBSs (reported periodically), ii) the
FlyBSs’ positions (known for the FlyBSs’ navigation), and
iii) the number of UEs from N attached to every BS, i.e.,
every Nl ∀l ∈ L from (6) (this information affects the
bandwidth splitting at the BSs and it is known by network
operator as the resource allocation for all FlyBSs is done
by the serving SBS). Nevertheless, the mapping between this
available information (UEs’ cellular gains, FlyBSs’ locations,
the number of the UEs attached to every BS) and the optimal
association of the UEs from M is not known and cannot
be analytically derived. Hence, we train the DNN to build
the mapping between the pre-mentioned available information
and the optimal association of the |M| UEs with unknown
locations. This trained DNN is stored at the serving SBS,
which decides and controls the association of all |M| UEs
to the SBS or to one of the FlyBSs.

B. Architecture of proposed DNN

The association of every UE fromM to one of the |L| BSs
can be seen as |M| identical classification problems. Thus,
we train one DNN for multi-class classification in order to
predict the association of any m-th UE from M to either
the serving SBS or to one of the FlyBSs. Then, the trained
DNN is exploited to predict the association of every UE at the



same time in parallel (details are explained later in Section
III-C). The architecture of the DNN includes one input layer,
H hidden layers, and finally a SOFTMAX layer serving as the
output layer (see Fig. 2).

The input vector I1, which represents the input layer, is
composed of three parts I11, I21 and I31. The first part provides
the DNN with the information regarding the cellular channel
gains of all |M| UEs to every SBS in proximity to these UEs.
Thus, the length of the first part I11 of the DNN’s input is equal
to the number of the reported/known UEs’ cellular gains, i.e.:

|I11|= (|K|+1)|M| (8)

The second part I21 of the input expresses the locations of
individual FlyBSs under the SBS coverage, thus, the length of
this second part is:

|I21|= 3(|L|−1) (9)

where the number ”3” represents three coordinates of each
FlyBS in 3D space. The third part I31, constituting the DNN
input, corresponds to the number of the UEs from N already
attached to each BS. Hence, the length of this third part is:

|I31|= |L| (10)

As a result, the input vector of DNN is of a length:

|I1|= |I11|+|I21|+|I31|= (|K|+1)|M|+3(|L|−1) + |L| (11)

The DNN input I1 is followed by H sequential hidden
layers. Consequently, I1 is the input of the first hidden layer
h1. Then, the input of any other hidden layer is, at the same
time, the output of the previous hidden layer. Every hidden
layer hj is composed of Xj neurons, where each input element
from the inputs of hj is fed to each of these Xj neurons with
a corresponding weight. In every neuron in the layer hj , the
dot product between the inputs of hj and the corresponding
weights is performed. Then, the neuron adds its bias to the
result of the dot product and implements the sigmoid activation
function resulting in the neuron’s output (i.e., a single value).
Thus, the output of any hidden layer hj with Xj neurons is a
vector of a length Xj , and this output is calculated as:

Oj = sig(Wj.Ij + bj) (12)

where sig(.) is the sigmoid function such that sig(γγγ) =
1

1+exp(−γγγ) , Ij is the vector that contains the inputs of the
hidden layer hj , Wj is the matrix containing the weights of
the links connecting every input in Ij and every neuron in hj ,
and bj represents the vector that includes the biases of the Xj

neurons in hj .
The output vector of the last hidden layer (i.e., the vector

OH from (12) with j = H representing the last hidden layer)
is the input of the SOFTMAX output layer. The SOFTMAX
layer is composed of |L| neurons as the number of classes in
our problem is also |L| (i.e., the number of available options
for the association of the m-th UE). Every neuron l in the
SOFTMAX layer implements the dot product between OH and

Fig. 2: Proposed DNN to predict the association of a single
UE from M.

the corresponding weights and adds the corresponding bias,
resulting in the value Zl. Hence, considering all the |L| neurons
in the SOFTMAX layer, we get the vector Z of a length |L|,
such that Z = {Z1, Z2, ..., Z|L|}. Finally, the elements in Z are
inserted to the SOFTMAX function giving, for every element
Zl with l ∈ L, a final single output P (αlm). Note that P (αlm)
represents the probability of the m-th UE being associated to
the l-th BS (the probability that αlm = 1). This probability is
calculated as:

P (αlm) =
exp(Zl)∑l=|L|

l=1 exp(Zl)
(13)

From (13), we see that
∑l=|L|
l=1 P (αlm) = 1. Hence, the final

chosen association for the m-th UE is:

αlm =

{
1 if P (αlm) > P (αqm) ∀ q ∈ L/{l}
0 otherwise

(14)

C. Training and exploitation of proposed DNN for UEs’
association

The proposed DNN utilizes supervised learning approach
trying to reach a specific target. In our case, the target is
derived by the exhaustive search when all possible association
combinations for |M| UEs (i.e., |L||M| combinations) are
checked and the one yielding the highest sum capacity is
selected as the optimal association combination. Then, for any
m-th UE from the |M| UEs (e.g., the first UE in M), the
index of the chosen BS (i.e., l∗ where l∗ ∈ L) is considered
as the target that the DNN aims to predict. To that end, the
learning process starts with collecting a set of training samples,
e.g., by simulating the targeted area and scenario. Each sample
represents a single simulation drop and includes the set of
available information (i.e., the information feed to the input
of the DNN described in Section III-B) as features and the
corresponding target. Then, the features of each sample are
inserted to the DNN with randomly set weights and biases
giving, at its output, the association of the m-th UE. Next, the
comparison between the DNN output and the targeted output
for each sample is performed via cross-entropy loss function



written as:

δ = −
l=|L|∑

l=1

Jl∗ == lKlog
(
P (αlm)

)
(15)

The cross-entropy loss function averaged over the training
samples is minimized by subsequent updating of the weights
and the biases of the DNN via the scaled-conjugate gradi-
ent back-propagation [13]. Then, a new training iteration is
performed with the updated weights and biases. The training
process is terminated if the number of iterations exceeds the
maximal number of iterations or if the prediction accuracy
increment from one iteration to another becomes very small.

Key benefit of the proposed solution is that the training
process is performed offline and there is no training needed
online in the real mobile network. Then, in the real mobile net-
work, the same already trained DNN is exploited to instantly
determine the optimal association of every UE from the |M|
UEs simultaneously. For example, consider that the DNN is
trained to predict the optimal association for the first UE from
M (the UE for which the cellular gains are put at the beginning
of I1). In such case, to predict the optimal association for the
second UE, we put the cellular gains of this second UE at the
beginning of I1.

IV. PERFORMANCE ANALYSIS

The simulations are done in MATLAB considering a 500×
500 m area within which |N |= 10 UEs with known locations
and up to |M|= 5 UEs with unknown locations are uniformly
deployed. The area contains also one serving SBS deployed in
the middle of the area and two FlyBSs acting as transparent
relays (as shown in Fig. 1). In addition to the serving SBS,
we assume |K|= 2, 3, or 4 additional SBSs in the neighboring
areas with fixed uniformly generated locations. We consider
that the |N | UEs with known locations are already associated
to the serving SBS either directly or through one of the two
available FlyBSs, while the |M| UEs with unknown locations
are, then, associated based on the proposed scheme illustrated
in Section III. The height and the transmission power (over

Fig. 3: Classification accuracy vs |M|.

all channels) pl of each BS are set to 30 m and 27 dBm,
respectively. The total bandwidth B reused by every BS is set
to 20 MHz. The gains of the channels between the FlyBSs and
the UEs, between the SBS and the UEs, and between the SBS
and the FlyBSs are generated in line with path loss models
from [14] with 2 GHz carrier frequency.

Note that the DNN is trained for each value of |M|
separately, and with a total number of collected samples equal
to 3 × 105. Note that the number of samples is set by trial
and error approach and the learning accuracy increment is
negligible for larger numbers of samples.

Fig. 3 shows the DNN prediction accuracy (the percentage
of the DNN’s outputs that match the optimal targeted associa-
tion) versus different numbers of UEs in M and for different
numbers of available neighboring SBSs (i.e., |K|). As expected,
with the increasing number of SBSs the prediction accuracy
is increasing as the DNN is able to better learn the scenario
layout. Thus, if four SBSs are in vicinity (in addition to the
serving one), the accuracy varies between 92.5% (for |M|= 1)
and 96.7% (for |M|= 5). Still, even for a lower number of
SBSs (i.e., |K|= 2 or |K|= 3), the prediction accuracy is
always higher than 90%. Fig. 3 further demonstrates that the
prediction accuracy decreases with the increasing |M| due to
the growing complexity of the association problem (more UEs
need to be associated with different channels and bandwidth
splitting options).

Fig. 4 illustrates the sum capacity of the |M| UEs if |K|= 2.
To the best of our knowledge, there is no existing work that
solves the UEs’ association for the case when both the UEs’
locations as well as the relaying channels between the FlyBSs
(acting as the transparent relays) and the UEs are absent. Thus,
the proposed DNN is compared to the following association
schemes: 1) Optimal association derived by the exhaustive
search (in the figure denoted as Optimum), 2) Random
association where each UE is associated with equal probability
to the serving SBS or one of the FlyBSs (denoted as Random),
3) all UEs are associated to one of the FlyBS (denoted as Only
F lyBS), and 4) all UEs are associated to the serving SBS
(denoted as Only SBS). Note that Optimum is not derivable

Fig. 4: Sum capacity of the |M| UEs for |K|=2.



in real networks with the FlyBSs acting as transparent relays
and the locations of the |M| UEs being unknown. In this paper,
we depict Optimum only for benchmarking purposes.

Fig. 4 demonstrates that the proposed scheme, with only
three SBSs (|K|= 2 neighboring SBSs plus the serving SBS),
reaches a close-to-optimal sum capacity with a loss with
respect to the optimum always below 2.4%. Moreover, the sum
capacity reached by the proposed scheme with respect to the
capacity of the other three association schemes is increased
by up to 91%, 103%, and 280% when compared to Random,
Only F lyBS and Only SBS, respectively.

V. CONCLUSIONS

In this paper, we have proposed a novel DNN-based frame-
work to determine the association of the UEs with unknown
locations either to the serving SBS or to one of the FlyBSs
acting as the transparent relays. The transparent relay mode
for the FlyBSs is selected as the transparent relays are lighter,
less expensive, and consume less energy comparing to the non-
transparent ones. This makes the transparent relays suitable for
FlyBSs. To this end, we exploit the knowledge of cellular chan-
nels between the UEs and the surrounding SBS to overcome
the problem of the transparent relays’ inability to measure
the quality of the channels between themselves and the UEs
as well as the absence of the UEs’ location information. By
knowing the UEs’ periodically reported cellular channels, our
proposed DNN determines the UEs’ association maximizing
their sum capacity. The results confirm the close-to-optimal
performance of our proposal.
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Chapter 5

Conclusion and Future Research
Directions

This dissertation thesis has addressed the optimization of three aspects related
to the D2D communication. First, the resource allocation in D2D commu-
nication have been optimized. In detail, a combined shared/dedicated (CSD)
resource allocation scheme for the D2D communication has been proposed. The
proposed CSD scheme allows the D2D pairs to utilize resources in both shared
and dedicated regions simultaneously. In addition, the same resources can be
exploited by several D2D pairs in order to enhance the spectral efficiency of the
system and to increase the sum capacity of D2D pairs. In this regard, a graph
theory-based framework has been proposed for an efficient resource allocation.
Within this framework, the BS creates a graph showing neighborhood relations
among the CUEs and the D2D pairs and among the individual D2D pairs. Af-
ter the decomposition of the graphs into sub-graphs and the determination of
the maximal cliques, the BS is able to allocate the resources maximizing the
D2D pairs’ sum capacity. The results show that the D2D capacity is signifi-
cantly improved (typically by roughly 2 times) when compared to the scheme
selecting only the shared or the dedicated region. This proposed combined
shared/dedicated resource allocation scheme satisfies Objective 1 from the list
of the objectives of this dissertation thesis.

The resource allocation and the channel reuse have been further optimized
in each D2D communication mode separately in the thesis. In the dedicated
mode, a new resource allocation scheme allowing multiple pairs to reuse multiple
channels for the D2D communication has been designed in order to maximize
the sum capacity of D2D pairs while maintaining the minimal individual ca-
pacity required by every D2D pair. The proposed resource allocation scheme
encompasses an initial bandwidth allocation, channel reuse, and power alloca-
tion over the reused channels. The channel reuse is presented as a coalition
structure generation problem, where the D2D pairs composing one coalition
reuse the channels originally dedicated to each other. The coalition structure
generation problem has been optimally solved via dynamic programming. As
the dynamic programming is of a high complexity, we have also developed a
low-complexity sequential bargaining algorithm solving the reuse problem while
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reaching close-to-optimal sum capacity of the D2D pairs. The performance
analysis shows that the sum capacity of D2D pairs is significantly increased
(up to 300 % gain) by the proposed resource allocation scheme compared to the
existing algorithms. In addition, although the interference is imposed among
the D2D pairs reusing the same channel, the minimal required capacity for each
D2D pair is still guaranteed after the channel reuse. In the D2D shared mode,
this dissertation thesis has proposed a novel low complexity resource allocation
scheme that allows an efficient reuse of the channels by multiple D2D pairs
while each D2D pair can access multiple channels. Such solution maximizes
the sum capacity of D2D pairs keeping the percentage of the reduction in the
capacity of the cellular users below a pre-defined relative threshold. The results
has shown that the proposed allocation significantly outperforms the state-of-
the-art approaches and reaches a close-to-optimum performance despite a low
(linear) complexity. These two proposed resource allocation schemes for ded-
icated and shared modes respectively satisfy Objective 2 from the list of the
objectives of this dissertation thesis.

Second, this dissertation thesis has introduced the novel concept combining
RF and VLC communication to increase the communication capacity provided
by the D2D communication. The performance analysis of the proposed RF-
VLC D2D has shown the ability to mitigate the drawbacks in terms of limited
capacity for very short distances (few meters) in the RF D2D and medium
distances (few tens of meters) in VLC D2D systems. The proposed RF-VLC
D2D improves the achievable capacity with respect to sole RF D2D and VLC
D2D. The most notable gain in the capacity is observed for low distances, where
VLC shows its superiority over the conventional RF and, thus, the combination
of both is the most beneficial. However, the analysis indicates that the key
challenge in RF-VLC D2D is an efficient selection of the communication band
for individual D2D pairs in a scenario with multiple D2D pairs. To this end, two
RF/VLC band selection algorithms have been proposed. The first algorithm
is a centralized low-complexity heuristic algorithm selecting either RF or VLC
band for each D2D pair relying on the mutual interference among the pairs. For
interpretation of the mutual interference among the D2D pairs, the algorithm
exploits directed weighted graphs. The simulation results demonstrate that
the proposed algorithm outperforms state-of-the-art algorithms in terms of the
communication capacity by up to 7.1 times and in terms of the energy efficiency
by up to 10 times while the outage is significantly suppressed. Moreover, despite
its very low complexity, the proposed algorithm reaches a close-to-optimum
performance obtained by the exhaustive search. Then, for the scenarios with a
limited channel knowledge information and for the cases when a very fast band
selection is required, a second band selection scheme that relies only on the
knowledge of the received power and sum interference from all D2D transmitters
at the individual D2D receivers has been proposed. This second proposed
solution is based on a deep neural network making an initial band selection.
Then, based on the neural network’s output, a fast heuristic algorithm has
been designed to further improve the band selection. The results show that the
proposal reaches a close-to-optimal performance and outperforms the existing
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solutions as well as the former proposed algorithm in terms of the complexity,
outage ratio, and energy efficiency. The study related to the concept and the
benefits of RF-VLC D2D as well as the two proposed RF/VLC band selection
algorithms fulfill Objective 3 from the list of the objectives of this dissertation
thesis.

Finally, a novel D2D channel gains prediction based on the cellular chan-
nel gains between the UEs and multiple neighboring BSs has been proposed.
The proposed prediction takes the advantage of the network topology-related
correlation between the cellular and D2D channel gains. A supervised learn-
ing, exploiting deep neural networks, extracts the mapping between the cellular
channel gains of any couple of the UEs (i.e., gains of channels between these two
UEs and multiple BSs) and the gain of the D2D channel between these two UEs.
The proposed prediction achieves a very high Pearson correlation coefficient
(above 94%) between the true and the predicted D2D channel gains. The sim-
ulations results have shown that the proposed prediction scheme significantly
reduces the amount of signaling (represented by channel state information) for
a determination of the channel quality if applied to realistic radio resource
management algorithms. This saving of the channel information is at the cost
of only negligible performance losses in terms of the communication capacity
comparing to the conventional implementation of these algorithms with full
knowledge of all channels. The simulations results, further, demonstrate that
the proposed prediction scheme is robust and resilient to the possible changes
in the environment induced by various moving obstacles or potential changes in
the fixed obstacles (e.g., the buildings) that exist in the area. In addition, this
dissertation thesis has confirmed that the cellular gains between the UEs and
the surrounding BSs can be also used to predict communication-related deci-
sions directly, with minimal capacity losses compared to optimum, and without
the need to predict the D2D channels as an intermediate step. This finding
has been confirmed for D2D binary power control as well as UEs’ association
problem in the mobile networks with flying base stations acting as transparent
relays. The proposed novel D2D channel gains prediction framework as well
as the proposed immediate prediction of radio resource management decisions
fulfill Objective 4 from the list of the objectives of this dissertation thesis.

5.1 Summary of Contributions

The research contributions of the work within the dissertation thesis are sum-
marized as follows:

• A novel concept of combining shared and dedicated D2D modes has been
introduced. In detail, a resource allocation scheme for D2D communi-
cation allowing shared as well as dedicated resources to be allocated,
simultaneously, to every D2D pair has been proposed. This combination
between the shared and the dedicated modes notably improves the sum
capacity of D2D pairs compared to the classical case when a D2D pair
can access a single mode only. This is presented in the conference paper
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[4C].

• A game-theoretic resource allocation scheme for D2D dedicated mode
has been proposed, enabling the reuse of multiple channels by multiple
D2D pairs. The proposed scheme maximizes the sum capacity of D2D
pairs while still guaranteeing the minimal individual capacity required by
every D2D pair. The proposed scheme overcomes the existing approaches
from the literature and increases the reachable communication capacity
significantly. This is, partially, presented in the conference paper [2C] and
fully detailed in the journal paper [1J].

• A heuristic low-complexity algorithm for the resource allocation in D2D
shared mode, allowing the reuse of multiple channels by multiple D2D
pairs has been proposed. The designed solution maximizes the sum ca-
pacity of D2D pairs under a constraint related to the maximal allowed
reduction in the capacity of the CUEs. The proposed algorithm outper-
forms the existing approaches and improves the achievable communication
capacity dramatically. This is presented in the journal paper [5J].

• A new combination between VLC out-band D2D with the in-band RF
D2D (denoted as RF-VLC D2D) has been introduced. The benefits and
the challenges facing the proposed RF-VLC D2D have been studied. This
was, however, the first study on combining RF and VLC for D2D and the
performed analysis pave the way to understand and properly deploy RF-
VLC D2D in future mobile networks. This is included in the conference
paper [6C].

• For RF-VLC D2D, an iterative interference-based algorithm to select RF
or VLC for every D2D pair in a scenario with multiple D2D pairs has
been proposed. The proposed algorithm significantly increases the sum
capacity of D2D pairs compared to the case when only RF or only VlC
is used. This is included, partially, in the conference paper [5C] and fully
detailed in the journal paper [4J].

• A second machine learning-based algorithm for a quick band selection
in RF-VLC D2D communication has been presented. This solution re-
quires only limited information related to the quality of the D2D channels
compared to the former band selection algorithm. Hence, this approach
facilitates the RF/VLC band selection in more realistic scenarios with
limited channel information and, still, overcomes the existing schemes.
This is presented in the journal paper [3J].

• A D2D channel prediction framework has been proposed. The framework
relies on the knowledge of the cellular channel gains between the UEs and
the surrounding BSs. Deep neural networks (DNNs) are exploited to per-
form the D2D channel prediction. This prediction scheme highly reduces
the number of reference signals saving more resources for data transmis-
sion. Moreover, the idea of predicting the D2D channel gains from the
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cellular channel gains might be a game-changer in D2D communication
enabling its practical implementation even with massive number of D2D
pairs in future mobile networks. This is presented in the journal paper
[2J] and included in the filled US patent [1P].

• The prediction of power control decisions for D2D communication imme-
diately from the cellular channel gains of the UEs (without the need to
predict the D2D channels as an intermediate step) has been presented.
This is included in the conference paper [3C] and included in the filled
US patent [1P]. Moreover, the dependency on the cellular gains to make
immediate radio resource management decisions has been also exploited
for networks with flying BSs (FlyBSs). In detail, considering that the
communication between the UEs and the FlyBSs as a type of D2D com-
munication, the prediction of UEs’ association based on the cellular gains
of the UEs (without the need to know the D2D channel quality between
the UEs and the FlyBSs) has been proposed. This is presented in the
conference paper [1C] and included in the filled US patent [1P]. Both,
power control and users’ association are implemented to confirm that the
cellular channel gains of the users can be used for immediate D2D-related
radio resource management decisions. This approach highly reduces sig-
naling overhead and, further, facilitates the practical implementation of
radio resource management in future mobile networks compared to other
approaches in the literature.

5.2 Future Work

The main direction for further research is related to the practical implementa-
tion and testing of the proposed approaches in a testbed. Based on this, real
training data can be collected and used to practically test the D2D channel
gains prediction scheme proposed in this dissertation thesis. This goes in par-
allel with further practical exploitation of all machine learning-based prediction
schemes presented in this dissertation thesis. In detail, distributed and feder-
ated learning should be tested and investigated. Moreover, in the real mobile
network, the possible future research directions include studying the possibility
of collecting real measurements to train neural networks in order to make the
decisions related to D2D communication as shown in this dissertation thesis.
To this end, another aspect for further research is related to answering the
open question about whether it is possible to merge artificial simulation-based
training data with real measurements to build larger and more realistic data
sets for achieving a higher performance in terms of D2D communication quality
in the real mobile network.
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