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České vysoké učení technické v Praze
Fakulta jaderná a fyzikálně inženýrská
Katedra matematiky
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A B S T R A K T

Tato práce se zabývá dvěma aktuálními trendy momentových metod v rozpoznávání
obrazu – momentovými invarianty vektorových polí a momentovými invarianty ke
konvoluci s Gaussovou funkcí.

Vektorová pole jsou speciálním typem dat objevujícím se v mnoha aplikacích, přita-
hujícím v posledních letech stále větší pozornost. Vektorová pole jsou v jistém smyslu
podobná barevným obrázkům, ale některé jejich vlastnosti se výrazně liší. Vektor je
veličina, kterou můžeme popsat velikostí a směrem. V této práci navrhujeme metodu
popisu a vyhledávání ve vektorových polích při neznámé rotaci, respektive afinní trans-
formaci pole. Transformace vektorových polí na rozdíl od obrázků nepůsobí pouze na
prostorové souřadnice, ale ovlivňuje také hodnoty vektorového pole. Prezentujeme in-
varianty vektorových polí vůči totální rotaci z ortogonálních momentů a invarianty
vůči totální afinní transformaci a jejich souvislost s vícevrstvými grafy.

Druhá část práce se věnuje nové teorii invariantů vůči gaussovskému rozmazání,
jehož jádro může být libovolně otočené, protažené a škálované. Předpoklad anizot-
ropní gaussovské funkce nám umožňuje snadno konstruovat kombinované invarianty
vůči gaussovskému rozmazání a afinní transformaci. Navrhujeme nelineární projek-
ční operátor, který extrahuje část obrázku necitlivou vůči šumu. Momenty této části
pak reprezentují invarianty původního obrázku. Metoda nepotřebuje žádnou apriorní
znalost parametrů Gaussovy funkce a nepoužívá dekonvoluci. Tato teorie může být
upravena pro popis vícerozměrných histogramů obrázků necitlivý k aditivnímu gaus-
sovskému šumu.
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A B S T R A C T

The thesis covers two areas of moment-based methods in image processing – moment
invariants for vector field images and moment invariants to convolution with Gaussian
function.

Vector fields are a special type of multidimensional data that comes from numerous
scientific and engineering areas. They have been drawing increasing attention in the
last few years. Although vector fields are similar in a certain sense to color images,
they differ significantly in several ways. A vector is a quantity with a magnitude and
a direction that can be visualized as an arrow. In this thesis, we propose a method
for the description and matching of vector field patterns under an unknown rotation
and affine transformation of the field. In contrast to digital images, transformations
of vector fields may act not only on the spatial coordinates but also on the field val-
ues. Invariants of vector fields w.r.t. total rotation are constructed from orthogonal
moments. Invariants to total affine transformation of vector fields in explicit form are
derived and their connection to multi-layer graphs is shown.

The second part of the thesis presents a new theory of invariants to Gaussian blur.
The blur kernel may be arbitrarily oriented, scaled, and elongated. The assumption
of an anisotropic Gaussian kernel allows the construction of combined invariants to
Gaussian blur and spatial affine transformation. We propose a non-linear projection
operator which extracts blur-insensitive component of the image. The invariants are
formally defined as moments of this component. The method does not require any
prior knowledge of the blur kernel parameters and it avoids the usage of deconvo-
lution. The theory can be modified for the description of multidimensional image
histograms insensitive to additive Gaussian noise in the image.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

“. . . and your tongue will be parched with thirst and your body overcome
by sleep and hunger before you can describe with words what a painter is
able to show you in an instant.”

–Leonardo da Vinci
Excerpt from A Comparison Between Poetry and Painting

From his undated manuscripts

1.1 motivation

The modern equivalent of the da Vinci’s quotation is the English language adage:
“A picture is worth a thousand words”. While in the past pictures were represented
by paintings, currently, the most common source of visual information is a photo-
graph. The number of photographs taken every year is growing rapidly (see Fig. 1)
owing to the boom of smartphones and social networks. Estimates suggest that more
than 1 trillion (1012) photos were taken in 2018.1 These images are not only personal
memories but many of them were acquired for professional purposes in medicine, bi-
ology, astronomy, industry and other areas. All the data has to be stored, processed,
and analyzed. Each photo contains several megabytes of information. There is not
enough human power to do that manually. This is why there is such a dramatic need
for automatic image analysis methods.

Image analysis is the process of extraction, understanding, and interpretation of use-
ful information from an image. Typical examples are detection and counting of cells
in microscopic images in biology or detection of tumors in MRI images of the brain
in medicine. Nowadays, image analysis is an omnipresent component of modern AI
systems and allows for substantial advances in automation. Image analysis pipeline
consists basically of 5 steps – image acquisition, preprocessing, object detection, com-
puting of features, and classification. Figure 2 shows an illustrative example of image
analysis.

Image analysis
pipeline.

1 www.theconversation.com/of-the-trillion-photos-taken-in-2018-which-were-the-most-memorab

le-108815
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Figure 1: Felix Richter: “Smartphones Cause Photography Boom”, Statista, 13 February 2020,
https://www.statista.com/chart/10913/number-of-photos-taken-worldwide/.

Image acquisition

Real imaging systems and imaging conditions are imperfect, as a result, the observed
image is only a degraded version of the original scene. Various kinds of degradations
may be introduced during the acquisition process due to sampling, motion of the imag-
ing device, lens imperfections, defocus, noise, etc. In the general case, the relationship
between the original image f and its degraded version g can be described as g = D( f ),
where D is the degradation operator. In a 2D linear shift-invariant system, D is in the
form

g(τ(x, y)) = ( f ∗ h)(x, y) + n(x, y) , (1)

where n is an additive random noise, h is the point-spread function (PSF) of the system
and τ is a transform of spatial coordinates, ∗ denotes a 2D convolution. However, for
non-image functions and in a higher dimension the degradation model may be highly
complicated. The goal of recognition algorithms is to analyze the unknown image
function f provided we know only the function g.

4
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Figure 2: Example of analysis of a photograph.

Preprocessing

Suppression or removal of these artifacts to enhance the visual quality of the image
is the main goal of the second step – image preprocessing. The resulting image is
easier to analyze and process computationally. This step belongs to so-called low-level
processing, i.e. the input and output are images. Some examples of image enhance-
ment methods are histogram equalization, contrast adjustment, deblurring/sharpen-
ing, noise removal, morphological operations, and many others.

Object detection

Object detection is the process of finding instances of objects in the image – their pre-
cise localization and correct identification of all their pixels (segmentation). Feature-
based object detection (e.g. RANSAC [11]) or state-of-the-art detection using deep
learning methods [12] can be used to produce high-quality results depending on the
specific application. A basic survey of the algorithms for object detection and image
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segmentation can be found in the book [13] or the tutorial article on image segmenta-
tion [14].

Feature description

A feature is a measurable quantitative characteristic of the object. It can be viewed
as a point in a metric space – feature space – which describes the object/image. Their
design belongs to the challenging tasks in image processing. The features should
describe the objects accurately and unambiguously. The following properties of the
features are desirable for image analysis applications.

• Quantity – a single value is in most cases insufficient for the description and
it is necessary to construct an r − D feature vector to improve the recognition
power. However, the dimension of the feature space should be reasonably low to
maintain a low computational complexity.

• Discriminability – the features of objects of one class should differ significantly
from the features of other classes.

• Invariance – the feature vector should remain unchanged regardless of the intra-
class variation.

• Independence – none of the components of the feature vector is a function of the
others. Dependent features are redundant, do not contribute to the discrimina-
tion power, and only increase the dimensionality of the feature space.

• Completeness – a loss-less reconstruction of the object from the features is pos-
sible, i.e. no other independent features exist. In practical applications, e.g.
classification, completeness is often superfluous.

There are plenty of existing features, they always have to be chosen according to the
application area and its objective. There is no single optimal solution that can be used
in all cases.

Classification and class labeling

The last two steps are performed in the feature space. Every object/image is now rep-
resented by a feature vector. Constructing a classifier is equivalent to a partition of the
feature space. The classification result depends solely on the position of the respective
point in the feature space. The classification can be either supervised or unsupervised –
clustering. In the case of supervised classification, the classes are specified beforehand
through a training set – a set of objects with known class membership. In unsuper-
vised classification, the training set is not available and the data with similar features
are grouped to form “clusters”. Because the classification takes place in the feature
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space, it is not restricted to image analysis applications only and can be used in nu-
merous applications – artificial intelligence, decision making, statistical data analysis,
social sciences, and many others. Classification methods are thoroughly discussed in
classical books [15] or [16].

1.2 invariants

In the previous section, invariance was mentioned as one of the desired properties
of the features. As it is the central term of the thesis, we devote this section to the
explanation of this notion.

Invariance is a property of an object which remains unchanged under certain trans-
formations. More precisely, the invariant feature or (absolute) invariant is a functional I
which maps the image space into the feature space such that I( f ) does not depend on
particular appearance of f but only on the class f belongs to.

In other words, the functional I fulfils the condition I( f ) = I(D( f )) for any f and
any admissible degradation D. D is sometimes called the operator of the intra-class
variation.

The functional I defines the relation of equivalence on the image space. We say that
functions f and g are equivalent f ∼ g if and only if I( f ) = I(g). The invariants
stay constant within each equivalence class, while should distinguish any two images
belonging to different classes.

Not all invariants are useful for classification purposes either. For instance, if I is the
same constant for all objects, then it is invariant but useless. Hence, it is important for
I to differ significantly on objects from different classes. The ideal situation is depicted
in Figure 3. The blue points and red points form two compact clusters (invariance) and
at the same time, the clusters are well separated (discriminability).

In practical applications, we have to take into account which degradations can occur.
Invariance and discriminability are opposite properties, i.e. an increase in invariance
leads to a decrease in discriminability. Choosing a suitable compromise between in-
variance and discrimination power is the key task in feature-based object recognition.

Categories of invariants

Invariant features can be divided into various categories depending on the point of
view. The most often used criteria are

• the dimension of objects and the type of data,

• the type of invariance (intra-class variation),

• the part of an object which is necessary for the invariant computation,

• the mathematical tools used for the construction of invariants.
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Figure 3: Invariance and discriminability. The affinely transformed images of a man and a woman
form two compact clusters (invariance) in the feature space which are far enough from each

other (discriminability).

In the following section, we focus on invariants constructed from so-called image
moments.

1.3 image moments and moment invariants

In mathematics, the moment of a function is a specific quantitative measure of the
shape of the function. Moments are often used in statistics as a tool for the description
of a probability density function. They are popular as they have one remarkable prop-
erty. For a function defined on a bounded interval, they are complete features, i.e. the
collection of all the moments of all orders uniquely determines the distribution [17] –
Hausdorff moment problem.

Image moments

Before we proceed to the definition of the central term of the thesis it is necessary
to recall some basic definitions and notations important for the understanding of the
text.

Definition 1. By an image function (or image) we understand any piecewise continuous
real function f : Rd → R defined on a compact support Ω ⊂ Rd.

The image function does not have to be non-negative in general. This simple as-
sumption ensures that mathematical operations on the image are well defined. Some-
times additional constraints, such as non-zero integral or square integrability, are re-
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quired to meet the assumptions of a given mathematical theory. The continuous repre-
sentation of the image function is convenient for the mathematical description because
of its formal simplicity.

Moments can be viewed as “projections” of the image function onto a polynomial
basis. According to the polynomial basis, we can divide moments into several cate-
gories (see Fig. 4 for the overview). Although all of them are theoretically equivalent,
i.e. every element of one basis can be expressed as a linear combination of elements
from any other basis, some of them possess better numerical properties or enable
simple derivation of invariants.

Figure 4: Moment functions taxonomy.

Definition 2. Let {πp(x)} be a d-variable polynomial basis of the space of image functions
defined on Ω and let p = (p1, . . . , pd) be a multi-index of non-negative integers which show
the highest power of the respective variables in πp(x). Then the general moment M( f )

p of
image f is defined as

M( f )
p =

∫

Ω

πp(x) f (x)dx . (2)

The number |p| = ∑d
i=1 pi is called the order of the moment.

It is advantageous sometimes to allow weight functions in the integrand. The most
common choice of the basis is πp(x) = xp which leads to geometric moments

mp =
∫

Rd

xp f (x)dx . (3)

Geometric moments (GM) are popular thanks to their formal simplicity. However, they
suffer from several drawbacks – they transform in a complicated way during rotation,
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the values are growing rapidly with the order, etc. The basis of GM is non-orthogonal
and this property is inherited by the moments. Consequently, the monomials provide
a highly correlated description which can result in the important descriptive infor-
mation being contained within small differences between moments and the need for
high computational precision. To overcome the shortcomings associated with GM, one
should use moments constructed from orthogonal bases – orthogonal (OG) moments –
whenever possible. Although they are theoretically equivalent, OG moments can be
computed via recursions and they need lower computational precision to achieve the
same accuracy as geometric and other non-orthogonal moments.

Moment invariants are functions of moments, they have the same properties as
moments but unlike them allow us to distinguish among images from different classes
without recovering f .
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2
M O D E R N T R E N D S I N I N VA R I A N T T H E O RY

Image analysis is a fast-developing area of computer science and the same applies
to the theory and applications of invariants. There are several directions of state-
of-the-art research – some of them take advantage of the existing theory and try to
improve, generalize or make it more convenient for practical applications, while the
other explore new possibilities and push the current limits.

Invariants have a much longer history than image processing or even computers.
The (algebraic) invariants can be traced back more than 100 years to David Hilbert
who gave an introductory course in invariant theory at the University of Göttingen
in 1897. Since then, the theory of algebraic invariants has been studied exhaustively,
some of the references may be found in [18].

Moment invariants were first introduced in 1962 by Hu [19], who used the theory of
algebraic invariants to derive his 7 famous moment invariants w.r.t. translation, scal-
ing, and rotation of 2D objects. Thousands of articles and books have been published
on moment invariants ever since. While in 2014 Papakostas reported in [20] that about
18 000 research papers relevant to moments and/or moment invariants in image analy-
sis have appeared in SCOPUS, more than 12 000 new articles were published between
years 2014 and 2019 (see Figure 5 for a detailed analysis). This demonstrates that even
in the age of deep learning moment invariants are still attracting attention.

Figure 5: The number of papers about moments and moment invariants published between the years
2014 and 2019 according to the SCOPUS database.
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The evolution of moment invariants in image analysis was summarized in five mono-
graphs. In 1998 Mukundan et al. [21] wrote a short introduction into this area. The
book by Pawlak [17] deals with the numerical aspects of image moments. An overview
of important theoretical results and their practical application in image analysis was
given in 2009 by Flusser et al. [22]. On the occasion of the 50th anniversary of moment
invariants, Papakostas published in 2014 the book [20] summarizing the latest devel-
opment in this area. Each chapter was written by invited researchers specialized in
the field of moments. The latest monograph published two years later by Flusser et
al. [23] reviews the development after 2009, explores thoroughly both the theory and
the practical usage of moment invariants. Currently, Papakostas is preparing a new
monograph [24] summarizing the latest progress in the field of moments. We can also
find specialized monographs, e.g. Rahman et al. [25] devoted to orthogonal moment-
based features in a fingerprint, iris, face and expression recognition.

Moment invariants have become an important tool for shape description, because of
their versatility. Moments can be applied to binary, grayscale, color, or multispectral
images, defined in 2D, 3D, and higher-dimensional space. Currently, even moment
invariants for vector and tensor fields are developed. They can deal with various
degradations such as similarity and affine transformation of objects or image blurring
(see Figure 6 for detailed classification). In what follows, we will briefly summarize
the progress in the design of moment invariants.

Figure 6: Taxonomy of moment invariants.

2.1 topics of current research on moment invariants

Traditional topics that had been intensively studied from the 1970s to 2000s, namely
the design of rotation and affine 2D moment invariants, were resolved successfully in
the turn of the millennium. We can divide the current research in the area of moment
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invariants into five principal categories – invariants for new types of data, invariants to
specific degradations, local invariants, efficient computation of moments, and design
of non-polynomial moments and invariants.

2.1.1 Invariants for new types of data

Since moments of grayscale images have been thoroughly studied for decades, it is
only natural that other types of data are drawing attention.

The rapid development of 3D imaging technologies and scanning devices, such as
Computer Tomography (CT), Magnetic Resonance Imaging (MRI), and Light Detec-
tion And Ranging (LiDAR) caused the need for methods for 3D data. Some of the
algorithms are only modifications of the 2D versions but some of them need a com-
pletely different approach. The majority of the articles for 3D moment invariants
deal with TRS transformation. We can find invariants constructed from geometric mo-
ments [26–29], 3D analogue of complex moments (using spherical harmonics in the basis
functions) [30–34], or from various orthogonal moments [35–41]. The 3D affine trans-
formation [27] is much less common degradation in practice and thus no extensive
research was done in this area.

The 3D moment invariants found practical applications in numerous areas, e.g. test-
ing handedness and gender from brain MRI snaps [42], 3D image registration [43,
44], prediction of rupture of intracranial saccular aneurysms [45], ATS drug identifi-
cation [46, 47], semantic segmentation of outdoor areas recorded by LiDAR [48], liver
segmentation of magnetic resonance images [49].

In the last decade, increasing attention has been paid to vector field (VF) images and
the tools for their analysis. The images of vector fields arise in mechanical engineering,
fluid dynamics, computer vision, meteorology, etc. They may be obtained as a result
of computer processing of standard digital images or video, numerical solution of
Navier–Stokes equation, or from real physical measurements.

The 2D vector field invariants were introduced by Schlemmer et al. [50] and later
further investigated by Yang et al. [4] and Kostková et al. [3, 9]. The invariants of 3D
vector fields were studied by Langbein and Hagen [51] and Bujack et al. [52, 53].

Color images can be viewed as a special case of vector fields or three gray-level
images. The RGB channels should not be handled separately, because the geometric
transform acting on the image is the same for all channels. This leads to the idea of
joint invariants [54–56]. Many authors have used the quaternion formalism for the
description of color images [57–64].

2.1.2 Invariants to specific degradations

When dealing with invariants one should always keep in mind, what degradations
may occur. Considering broader invariance than necessary decreases the recognition

13



power of the features. In the last twenty years, a large amount of effort has been
spent to study invariants to image blurring [65–68]. When analyzing blurred images
the crucial problem is to identify the particular blurring kernel, to which should the
invariance be achieved. The first papers on this subject focused on various symmetric
kernels [69–71]. In this context, Gaussian blur invariants [1, 72, 73] play an important
role among other blur invariants since they are the only ones that have actually used
the parametric form of the point–spread function.

In practice, the degradations are often coupled, which leads to a need for construc-
tion of combined invariants. Unfortunately, the derivation of such features might be
very complicated. In the literature, we can find combined invariants to, e.g. Gaus-
sian blur and rotation [74], Gaussian blur and affine transformation [1], shape and
color affine transformation [56], or circularly symmetric blur and similarity transfor-
mation [75].

2.1.3 Local invariants

Moment invariants are naturally global features, i.e. they are calculated from the
whole image. On the one hand, they have many advantages, e.g. robustness to noise.
On the other hand, a small change in the scene influences all the invariants. Hence,
they are not suitable for applications, where the objects can be partially occluded,
some part of the object is not visible, etc. The main purpose of the local invariants is
to recognize objects, that are visible only partially.

Unlike the other moment families, Krawtchouk moments [76, 77] and dual Hahn
moments [78] can extract local features from any region of interest in an image by
varying the parameters of the polynomials. Some authors noticed that the localization
property is preserved when constructing hybrid (or separable) moments, particularly
as a combination of Chebyshev and Krawtchouk polynomials [79–82]. However, the
choice of the parameters is a difficult task since the position of the object in the image
is usually unknown.

Semi-local invariants combine the best of both global and local invariants and try
to suppress their drawbacks. They divide the object into smaller parts and describe
each part by some kind of global invariants [83, 84]. The main disadvantage of the
semi-local invariants is the ambiguity in the choice of the part size.

2.1.4 Efficient computation of moments

Another remarkable trend in the theory of moments is the development of efficient
algorithms providing high computational speed. One possible way to reduce the com-
putational time is by reducing the number of pixels, where the polynomials are evalu-
ated without loss of information. This includes the decomposition methods of binary
images [85–95] and methods using boundary-based methods [96–110].
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The method of intensity slicing [111] and bit slicing [112] transforms the problem
of calculating gray-level moments to the previous task of calculating binary moments.
The computational speed can be also improved at the expense of accuracy by using
approximation methods, e.g. Chung et al. [113].

Another possibility to speed-up the algorithms is to use the specific properties of
the particular polynomials. In the case of orthogonal polynomials, we can use the
three-term recurrence relation or the symmetry of the polynomials. Such algorithms
were applied to the polynomials orthogonal on a square [114–124] and the polynomials
orthogonal on a disk [125–128].

2.1.5 Non-polynomial moments and invariants

Some authors allow basis functions which are non-polynomial in the Definition 2 of
the moments.

Increasing attention has been paid to so-called fractional-order moments, e.g. frac-
tional Fourier–Mellin [129], Chebyshev [130], Charlier [131], Jacobi–Fourier [132], Leg-
endre–Fourier [133], or discrete Chebyshev moments [134]. Fractional-order moments
were reported to be superior to classical moments in terms of accuracy, stability, noise
resistance, invariance to similarity transformations, recognition rates, and computa-
tional times [133].

In some papers, the polynomial basis was entirely replaced by another, where the
basis functions are products of a polynomial and some other function. We can find
papers on wavelet moments [135–139], radial harmonic Fourier moments [59, 140–
142], log-polar Exponent-Fourier moments [143], Radon odd radial harmonic Fourier
moments [144], Bessel–Fourier moments [145, 146], moments based on polar harmonic
transformation [147–150] and binary step-wise radial function [151].

Furthermore, Hosny et al. [152] proposed a new class of fractional-order radial har-
monic Fourier moments, which combine both fractional-order polynomials with other
basis function.
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3
G O A L S A N D C O N T R I B U T I O N

After a thorough exploration of the state-of-the-art invariant image analysis, we iden-
tified two areas of interest with a high potential – moment invariants to a total trans-
formation of vector fields and moment invariants of scalar images to intensity degra-
dations.

3.1 goals of the thesis

• Invariants for vector fields – designing invariants to total transformation (rota-
tion and affine transformation) and creating stable algorithms for analysis of
vector field data.

• Invariants to convolution with Gaussian function – considering unconstrained
Gaussian kernel, examining the possibility of construction of combined invari-
ants.

3.2 contribution of the thesis

The thesis consists of four papers attached in Part ii covering two areas.

1. Vector field analysis

• B. Yang, J. Kostková, J. Flusser, T. Suk, and R. Bujack, “Rotation invari-
ants of vector fields from orthogonal moments,” Pattern Recognition, vol. 74,
pp. 110–121, 2018

We proposed a stable algorithm for the computation of invariants w.r.t. total
rotation of the vector field from orthogonal moments.

• J. Kostková, T. Suk, and J. Flusser, “Affine invariants of vector fields,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2019. doi: 10.1109

/TPAMI.2019.2951664

We introduced invariants w.r.t. a total affine transformation based on the
moments of the vector field.

2. Scalar image analysis

• J. Kostková, J. Flusser, M. Lébl, and M. Pedone, “Handling Gaussian blur
without deconvolution,” Pattern Recognition, vol. 103, 2020, art. no. 107264
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New invariants w.r.t. arbitrary oriented and elongated Gaussian blur were
presented together with the substitution theorem for the construction of
combined invariants to blur and affine transform.

• J. Kostková and J. Flusser, “Robust multivariate density estimation un-
der Gaussian noise,” Multidimensional Systems and Signal Processing, vol. 31,
pp. 1113–1143, 2020

We introduced a novel approach to the description of a multidimensional
image histogram insensitive with respect to additive Gaussian noise in the
image.
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4
T H E T H E S I S I N B R I E F

4.1 designing invariants for vector fields

Vector fields are a special kind of multidimensional data that appears in many engi-
neering areas. The increasing amount of data goes hand in hand with the increasing
need for automatic processing of the data. In some aspects, they are similar to color
images, but there are some substantial differences. Consequently, the methods for im-
age analysis cannot be used directly but the traditional methods must be either further
generalized or entirely new methods must be developed.

A 2D vector field f can be viewed as a pair of scalar images f(x) = ( f1(x), f2(x))T.
At each point x = (x, y), the value of f(x) shows the magnitude and the orientation of
a certain vector.

Figure 7: Color coded vector fields: gradient VF (left) and wind velocity map (right).

The most significant difference between vector fields and digital images is the behav-
ior under geometric transformation. Unlike images, transformations of vector fields
may act not only on the spatial coordinates but also on the field values. We have to
distinguish four kinds of transformation.

• Inner rotation acts only on spatial coordinates.

• Outer rotation acts only on vector values and does not affect spatial coordinates.

• Total rotation is a combination of an inner and outer transformation of the same
transformation matrices.

• Independent total rotation is the most general rotation. It acts on both spatial
coordinates and vector values but the transformation matrices may differ.
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(a) (b) (c) (d)

Figure 8: Vector field transformations: (a) the original vector field, (b) its inner affine transformation,
(c) its outer affine transformation, (d) its total affine transformation. The green arrows in

(c) and (d) show the vector field without the outer transformation.

In practice, the most common is the total transformation of the field, i.e. if the field
is transformed in the spatial domain, the vector values are transformed by the same
transformation.

To detect singularities such as sinks, vortices, saddle points, or arbitrary patterns of
interest special methods for vector fields must be developed. The problem of invariants
w.r.t. total rotation was first studied by Schlemmer et al. [50] who introduced flow
vector moment invariants. Schlemmer proposed to treat 2D vector field (VF) as a field
of complex numbers f(x, y) = f1(x, y) + i f2(x, y) and use the standard definition of
complex moments. As complex moments change only their phase under total rotation,
the invariance can be reached through phase cancellation by multiplication of proper
moments. To overcome the numerical problems of complex moments Yang et al. [4]
introduced invariants w.r.t. total rotation constructed from orthogonal moments –
Gaussian–Hermite and Zernike moments.

In practice, vector field transformation is often more general than rotation. An ac-
ceptable compromise between simplicity and generality is provided by affine transform.
A generalization of the graph method for scalar images [153, 154] can be used for the
derivation of the affine moment invariants of 2D vector fields (VFAMIs). The construc-
tion of VFAMIs was first published in the papers by Kostková et al. in [3, 9].

4.2 designing invariants to image blurring

Another relevant problem in image processing are uniform changes in image inten-
sity function. The most important class of intensity degradations is image blurring.
Blurring can be caused by numerous factors such as out-of-focus and motion of the
imaging device or due to acquiring image through some turbulent medium.

Assuming that the imaging system is linear and space invariant, blurring can be
described by a convolution of the original image f with a point-spread function (PSF).
The degradation model (1) has the form

g(x, y) = ( f ∗ h)(x, y) , (4)
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Figure 9: Examples of space variant out-of-focus blur, motion blur and Gaussian blur.

where * denotes a 2D convolution, and h is the PSF of the system.

Figure 10: Four approaches to the analysis of blurred images. Image restoration via deconvolution
(first branch), description and recognition by blur invariants (second branch), matching by
minimum blur-invariant distance (third branch), and brute-force searching an augmented

database (last branch).

There are several ways of dealing with blurred images (see Figure 10 for an over-
view). They may or may not be convenient depending on the task we are solving. The
invariant description of blurred images is very advantageous and effective if we do
not need to reconstruct the original image but for example, only localize some objects
in it. We need to find the description of the image g independent of the particular
realization of the PSF h which is usually unknown. In other words, we are searching
for the functional I fulfilling I( f ) = I( f ∗ h) for any admissible PSF h.

The invariants cannot be constructed for arbitrary PSF. The necessary (but not suf-
ficient) condition is the closure to composition – convolution is the operator of the
intra-class variation which must be closed. It holds that the more specific the class
of the PSFs is, the higher the recognition power of the invariants. For example, all
centrosymmetric objects are indistinguishable by invariants to centrosymmetric blur,
invariants to circularly symmetric blur are not able to discriminate the circularly sym-
metric objects, etc.

Blur invariants were first introduced in the ’90s in the series of papers by Flusser et
al. [65, 155, 156]. They assumed the PSFs with central symmetry, h(x, y) = h(−x,−y),
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and the majority of the articles published so far adopted this assumption in their
studies [66, 67, 70, 71]. Invariants to convolution with PSFs with circular symmetry, i.e.

Circular symmetric
blur.

Motion blur.

9-FRS blur.

9-fold dihedral blur.

h(x, y) = h(r), from complex moments were proposed in [69]. Other authors expressed
them later equivalently employing orthogonal moments – Zernike moments [74, 75,
157], pseudo–Zernike moments [158], Chebyshev moments [159], and Fourier–Mellin
moments [160]. Invariants to linear motion blur or more precisely symmetric directional
blur were presented in the papers [161, 162]. A substantial generalization of previous
work was made by introducing N-fold rotation symmetric (N-FRS) blur moment invari-
ants [68] and later further generalized to N-fold dihedral blur in [163].

All the above-mentioned invariants can be described by a unified theory regardless
of the particular PSF class. The mathematical approach is based on the theory of pro-
jection operators. The construction of blur invariants is described by the Fundamental
Theorem of blur invariants [23] which is a very strong theorem. However, its applicability
depends on our ability to construct a subspace of all admissible PSFs and a projector
onto this subspace.

The theory can be used with slight modification for the derivation of invariants
to Gaussian blur. These are the only invariants that use the parametric form of the
PSF rather than some of its specific properties. A complete set of moment invariants
w.r.t. Gaussian blur was introduced by Flusser et al. in [72, 73] but it was limited to
PSFs with diagonal covariance matrices. Most recently, Kostková et al. [1] generalized
the theory for Gaussians with general covariance matrices – the blur kernel may be
arbitrary oriented, scaled, and elongated (see Figure 11 for examples). The main con-
tribution of this generalization is that it enables to construct the combined invariants
to both blur and affine transform.

Figure 11: Gaussian blur with diagonal (1–3) and general (4–6) covariance matrices.

The theory of moment invariants to Gaussian blur was adjusted by Höschl et al. [164]
for a noise-robust PDF estimation, which was motivated by histogram-based image
retrieval. Their invariants were based on moments of a histogram of the noisy gray-
level image. The extension of the theory for histograms of color images was proposed
by Kostková et al. in [2].
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a b s t r a c t 

Vector field images are a type of new multidimensional data that appear in many engineering areas. 

Although the vector fields can be visualized as images, they differ from graylevel and color images in 

several aspects. To analyze them, special methods and algorithms must be originally developed or sub- 

stantially adapted from the traditional image processing area. In this paper, we propose a method for 

the description and matching of vector field patterns under an unknown rotation of the field. Rotation of 

a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates 

but also on the field values. Invariants of vector fields with respect to total rotation constructed from 

orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is 

shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real 

world template matching application of rotated vector fields. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

In the last decade, an increasing attention has been paid to vec- 

tor field images and to the tools for their analysis. Vector fields 

arise in mechanical engineering, fluid dynamics, computer vision, 

meteorology, and many other application areas. They describe par- 

ticle velocity, wind velocity, optical/motion flow, image gradient, 

and other phenomena, for instance, flowing water in a pipe, an air 

flow around an aircraft wing or around a coachwork, or a wind ve- 

locity map. Vector fields are obtained as a result of computer pro- 

cessing of standard digital images or videos, numerical solutions of 

the Navier–Stokes equations, or from real physical measurements 

(see Fig. 1 ). 

A 2D vector field f ( x ) can be mathematically described as a pair 

of scalar fields (images) f ( x ) = ( f 1 ( x ) , f 2 ( x )) . At each point x = 

(x, y ) , the value of f ( x ) shows the orientation and the magnitude 

of a certain vector. 

A common task in vector field analysis is the detection of vari- 

ous patterns of interest. It comprises not only detection of singular- 

ities such as sinks, vortices, saddle points, vortex-saddle combina- 

tions, and double vortices, but also detection of patterns which are 

∗ Corresponding author. 

E-mail addresses: bo.yang@hotmail.fr (B. Yang), kostkova@utia.cas.cz (J. 

Kostková), flusser@utia.cas.cz (J. Flusser), suk@utia.cas.cz (T. Suk), bujack@lanl.gov 

(R. Bujack). 

not specific but are similar to the pattern stored in the database. 

For engineers and designers, it is very important to identify these 

patterns of interest in the flow, because they may increase the 

friction, vary the pressure, or decrease the speed of the medium, 

which consequently increases the power and cost necessary to 

transport it through the pipe or the object through the air or wa- 

ter. We also may just look for an appearance of certain pattern 

because it may indicate the presence of the physical phenomenon 

in the fluid we are interested in. The detection of these features is 

typically accomplished by template matching. 1 Sample templates 

of these patterns, obtained from similar fields or as a result of a 

simulation, are stored in the template database and searched in 

the given field. The search algorithm must be primarily rotation in- 

variant , because the particular orientation of the template is un- 

known (see Fig. 2 for illustration). It is further important that the 

algorithm is robust with respect to noise in the measurements. 

Many template-matching techniques have been developed for 

scalar images. The key point to avoid a brute-force search is to 

find rotation-invariant template descriptors. The matching is then 

performed by a search of all possible template locations (which 

may be sped-up by a pyramidal representation of the image) and 

1 If the patterns to be detected were only singularities or other mathematically 

well-described patterns, we could alternatively use other methods. Template match- 

ing is a general method suitable for any pattern which is defined by example rather 

than by mathematical description. 

http://dx.doi.org/10.1016/j.patcog.2017.09.004 
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Fig. 1. Fluid flow behind an obstacle. The flow direction is visualized using line 

integral convolution and the velocity is encoded in the color. 

Fig. 2. Vortex detection in a swirling fluid by template matching. The detection 

method must be invariant to the template orientation. 

the matching position is determined as that one which minimizes 

certain “distance” (usually derived from � 2 -norm) in the high- 

dimensional feature-space of descriptors. The first method of this 

kind was proposed by Goshtasby [1] , who used rotation invariants 

from geometric moments as the descriptors, but in principle any 

invariants from any kind of features [2–7] can be used for this pur- 

pose. 

The methods (or, more precisely, the invariant descriptors) orig- 

inally designed for scalar images cannot be applied directly to vec- 

tor fields, because the behavior of a vector field under rotation is 

substantially different. The rotation of scalar image f by the angle 

α can be described as 

f ′ ( x ) = f ( R −α · x ) , 

where 

R α = 

(
cos α − sin α
sin α cos α

)

is a rotation matrix. This rotation, called inner rotation , affects the 

spatial coordinates only. 

However, when rotating a vector field, the situation is differ- 

ent. The vectors rotate inversely to the in-plane rotation such that 

their relative orientation to the image content stays constant. The 

underlying model, which is called total rotation , is 

f ′ (x ) = R αf ( R −α · x ) . 

The total rotation of a sample vector field is illustrated in Fig. 3 (b) 

for α = 22 . 5 ◦. Each arrow is rotated around the image center to the 

new position and its direction is also rotated by the same angle. 

In order to implement a rotation-invariant template matching 

algorithm, we first need to find descriptors that are invariant with 

respect to the total rotation of a vector field. This problem was 

raised for the first time by Schlemmer et al. [8] , who adapted the 

scalar moment invariants proposed by Mostafa and Psaltis [9] and 

Flusser [3,10] and designed invariants composed of geometric com- 

plex moments of the field. Schlemmer et al. used these invariants 

to detect specific patterns in a turbulent swirling jet flow. Rota- 

tion invariants from geometric complex moments have found sev- 

eral applications. Liu and Ribeiro [11] used them, along with a local 

approximation of the vector field by a polynomial, to detect singu- 

larities on meteorological satellite images showing wind velocity. 

Basically the same kind of rotation invariants were used by Liu and 

Yap [12] for the indexing and recognition of fingerprint images. Bu- 

jack et al. [13,14] studied the invariants of complex moments thor- 

oughly, generalized the previous works, and showed that the in- 

variants can be derived also by means of the field normalization 

approach. These authors demonstrated the use of the invariants in 

several pattern matching tasks including fluid dynamics simulation 

of a Kármán vortex street. 

In all of the above-mentioned papers, despite of certain differ- 

ences, the invariants are essentially based on standard geometric 

moments. It is well known from many studies of scalar images, 

that the geometric (and consequently the complex) moments have 

rather poor numerical properties, in particular they cannot be cal- 

culated in a stable way up to high orders [2] . This is caused by 

the fact that their basis functions x p y q are not orthogonal. In scalar 

image analysis, this finding led to the design of invariants from or- 

thogonal moments and from other orthogonal projections of the 

image (see, for instance, [2] for a survey). However, nothing like 

that has been published for vector fields so far. 

In this paper, we introduce vector field invariants w.r.t. total ro- 

tation composed of orthogonal Gaussian–Hermite moments and of 

Zernike moments. We demonstrate that they have better numeri- 

cal properties than the invariants of geometric/complex moments 

and they can be advantageously used in the vector field template 

matching tasks. 

In the next section, we briefly recall Gaussian–Hermite mo- 

ments. In Section 3 , we show how the Gaussian–Hermite mo- 

ments can be used for designing rotation invariants of vector fields. 

Section 4 introduces vector field invariants based on Zernike mo- 

ments. Finally, numerical experiments and comparison are pre- 

sented in Section 5 . 

2. Gaussian–Hermite polynomials and moments 

Hermite polynomials are popular basis functions introduced by 

C. Hermite [15] . They have been widely used in signal analysis and 

in many other applications. 

The Hermite polynomial of the n -th degree is defined as 

H n (x ) = (−1) n e x 
2 d 

n 

d x n 
e −x 2 . (1) 

Hermite polynomials are orthogonal on ( −∞ , ∞ ) with the weight 

w ( x ) = e −x 2 . For numerical calculations, Hermite polynomials can 

be evaluated in a fast and stable way by means of the three-term 

recurrence relation 

H n (x ) = 2 xH n −1 (x ) − 2(n − 1) H n −2 (x ) (2) 

with the initialization H 0 (x ) = 1 and H 1 (x ) = 2 x . If they are not 

modulated, they have a high range of values and poor localization, 

which makes them difficult to use directly for image description. 

To overcome this, we modulate Hermite polynomials with a Gaus- 

sian function and scale them. This normalization yields Gaussian–

Hermite (GH) polynomials 

H n (x, σ ) = H n (x/σ ) e −
x 2 

2 σ2 . (3) 

In most cases, we work with orthonormal GH polynomials ˆ H n , 

which differ from Eq. (3) just by the scalar factor: 

ˆ H n (x, σ ) = 

1 √ 

n !2 

n σ
√ 

π
H n (x, σ ) . (4) 

As can be seen in Fig. 4 , the GH polynomials have a range 

of values inside (−1 , 1) . Although they are formally defined on 

(−∞ , ∞ ) , they are effectively localized into a small neighborhood 

of the origin controlled by σ . 
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Fig. 3. Vector field transformation: (a) original vector field, (b) its total rotation. 
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Fig. 4. The graphs of the Gaussian–Hermite polynomials up to degree 6 with σ = 1 . 

2D Gaussian–Hermite moments of a function f ( x, y ) are defined 

as 

ˆ ηpq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

ˆ H p (x, σ ) ̂  H q (y, σ ) f (x, y )d x d y. (5) 

The GH moments were introduced to the image analysis com- 

munity by Shen [16,17] . They were proved to be robust w.r.t. addi- 

tive noise [18,19] and were successfully employed in several appli- 

cations, such as in the detection of moving objects in videos [20] , 

in license plate recognition [21] , in image registration as landmark 

descriptors [4] , in fingerprint classification [22] , in face recognition 

[23,24] , in 3D object reconstruction [25] , and as directional feature 

extractors [26] . 

The main advantage of the GH moments for using in image pro- 

cessing is their simple transformation under a rotation of the spa- 

tial coordinates, as was discovered by Yang et al. [27,28] and em- 

ployed to design GH rotation invariants of scalar images [29] . This 

property of the GH moments has been known as the Yang’s theo- 

rem : If there exists rotation invariant I(m p 1 q 1 , m p 2 q 2 , . . . , m p d q d 
) of 

geometric moments 

m pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

x p y q f (x, y )d x d y, (6) 

then the same function of the corresponding Hermite moments is 

also a rotation invariant (see [28] for the detailed proof). Further- 

more, Gaussian weighting and scaling do not violate this property 

provided that the scale parameter σ is the same for x and y and 

that the normalizing coefficient has been set up as 

ˆ ηpq = 

1 

σ
√ 

π(p + q )!2 

p+ q 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

H p (x, σ ) H q (y, σ ) f (x, y )d x d y. 

(7) 

The Yang’s theorem still holds well and the functional I( ̂  ηp 1 q 1 , 

ˆ ηp 2 q 2 , . . . , ˆ ηp d q d 
) is a rotation invariant of the Gaussian–Hermite 

moments of scalar images [28] . 

In the next section, we adapt the Yang’s theorem for vector 

fields and show how to construct GH invariants w.r.t. total rota- 

tion, which is the main theoretical contribution of the paper. 

3. Gaussian–Hermite rotation invariants of vector fields 

A vector field can be treated as a complex-valued function (or 

matrix in a discrete case) 

f (x, y ) = f 1 (x, y ) + i f 2 (x, y ) , 

which allows us to use the standard definition of moments. It 

holds, for arbitrary moment M pq , 

M 

( f ) 
pq = M 

( f 1 ) 
pq + iM 

( f 2 ) 
pq , 

where M pq may stand for geometric, GH, or any other moment. 

Since the outer rotation (i.e. the rotation of the vector values) can 

be modeled as a multiplication of the vector field by a constant 

factor e −iα, any moment M pq suffices 

M 

′ 
pq = e −iαM pq . 

Hence, the GH moments are transformed exactly in the same way 

as the geometric moments. This allows us to formulate a general- 

ization of the Yang’s theorem to vector fields: 

If there exists invariant to total rotation of a vector field 

I(m p 1 q 1 , m p 2 q 2 , . . . , m p d q d 
) of geometric moments, then the same 
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functional I( ̂  ηp 1 q 1 , ˆ ηp 2 q 2 , . . . , ˆ ηp d q d 
) of the Gaussian–Hermite mo- 

ments is also an invariant. 

Practical applicability of the Yang’s vector-field theorem de- 

pends on our ability to find rotation invariant I composed of ge- 

ometric moments (in practice, a single invariant is not sufficient 

and we are looking for a set providing a sufficient discriminabil- 

ity). That is, however, not easy. Already in the theory of moments 

of scalar images, it was shown [30] that the rotation invariants are 

hard to construct directly from the geometric moments. The same 

applies for vector fields, where the problem is even more difficult. 

In scalar moment invariants, the problem was overcome by using 

complex moments 

c pq = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

(x + iy ) p (x − iy ) q f (x, y )d x d y. (8) 

The complex moments change under the inner rotation by angle α
simply as 

c ′ pq = e −i (p−q ) αc pq (9) 

(see [30] for the proof). Under a total rotation of a vector field, c ( f ) pq 

fulfills 

c ( f 
′ 
) 

pq = e −iαe −i (p−q ) α · c ( f ) pq = e −i (p−q +1) α · c ( f ) pq . (10) 

The link between the geometric and the complex moments 

[30] (which is the same both for scalar and vector images) 

c pq = 

p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j m k + j,p+ q −k − j (11) 

yields the possibility of applying the Yang’s theorem. When replac- 

ing the c pq ’s by the corresponding functions of the GH moments 

d pq = 

p ∑ 

k =0 

q ∑ 

j=0 

(
p 

k 

)(
q 

j 

)
(−1) q − j i p+ q −k − j ˆ ηk + j,p+ q −k − j , (12) 

the behavior under a total rotation must be preserved, which leads 

to 

d ( f 
′ 
) 

pq = e −i (p−q +1) α · d ( f ) pq . (13) 

Now we can cancel the rotation parameter by multiplication of 

proper powers of the d pq ’s. Let � ≥ 1 and further let k i , p i , and q i 
(i = 1 , . . . , � ) be non-negative integers such that 

� ∑ 

i =1 

k i (p i − q i + 1) = 0 . 

Then, 

I = 

� ∏ 

i =1 

d k i p i q i 
(14) 

is invariant with respect to total rotation of a vector field. 

Eq. (14) may generate an infinite number of rotation invariants. 

It is desirable to work with an independent and complete subset 

(basis). The simplest possible basis can be obtained by 

�(p, q ) ≡ d pq d 
p−q +1 
q 0 p 0 

, (15) 

where p 0 − q 0 = 2 and d q 0 p 0 	 = 0 . To get a complete system, we set 

by definition �(q 0 , p 0 ) ≡ | d q 0 p 0 | (note that �( q 0 , p 0 ), if calculated 

from Eq. (15) , would always equal one). 

The choice of the basis is not unique and it is determined by 

the choice of d q 0 p 0 , which is sometimes called the basic moment 

or the normalizer . The normalizer must be nonzero for all vector 

fields in the given experiment. If this condition was not fulfilled, 

the basis would lose its discrimination power. The construction of 

the basis requires special care if the fields in question exhibit cer- 

tain symmetry, as we will see in the next section. 

3.1. Symmetry issues 

In moment-based pattern recognition, symmetric objects re- 

quire special care when we define the invariants. Many moments 

are zero on objects that exhibit a certain symmetry. If they were 

used as a factor in a product, the invariant would become trivial 

on any object with the given type of symmetry. Trivial invariants 

do not provide any discriminability and only increase the dimen- 

sionality of the feature space, which may lead to a drop in perfor- 

mance. When we want to recognize different symmetric objects, 

the vanishing moments must be identified in advance and the triv- 

ial invariants need to be discarded from the system. 

For rotation invariants of scalar images, the systematic analy- 

sis of this phenomenon was first presented in [31] , where the au- 

thors showed the solution based on complex moments for objects 

with N -fold rotation symmetry. Vanishing of Gaussian–Hermite 

moments was studied later in [29] , where the basis construction 

that prevents the use of the vanishing moments was proposed. 

The most general choice of the non-vanishing invariants of com- 

plex moments was proposed by Bujack [32] , who introduced so- 

called flexible basis. 

The problem of vanishing moments appears in case of vector 

fields, too. Unlike scalar images, the symmetry we have to investi- 

gate in the case of vector fields is that one which is related to the 

total rotation of the field. Let us define the notion of total N-fold 

rotation symmetry . The vector field f is said to be totally N -fold 

symmetric if it holds, for α = 2 π/N, 

f ′ (x ) ≡ R αf ( R −α · x ) = f(x) . 

We may extend this definition also to N = ∞ ; then the equality 

must hold for any α. 

If a vector field f is totally N -fold symmetric, then d ( f ) pq = 0 for 

any index pair p, q such that (p − q + 1) /N is not an integer. This 

can be observed immediately from Eq. (13) if we set α = 2 π/N. 

Then, due to the symmetry of field f , we get d ( f 
′ ) 

pq = d ( f ) pq . This 

equality can be fulfilled only if d ( f ) pq = 0 or if (p − q + 1) /N is in- 

teger. 

We should take this proposition into account when designing 

invariants that are supposed to discriminate two vector fields with 

the same total N -fold symmetry. Instead of the basic invariants 

�( p, q ) from Eq. (15) , which may vanish, we create a non-trivial 

basis composed of the invariants 

�N (p, q ) ≡ d pq d 
p−q +1 

N 
q 0 p 0 

, (16) 

where (p − q + 1) /N is an integer and p 0 − q 0 = N + 1 . 

When considering a total radial symmetry N =∞ , the only non- 

vanishing invariants are 

�∞ 

(p, p + 1) ≡ d p,p+1 . (17) 

The described problem of invariants of symmetric fields is not 

marginal as many specific templates we search for often exhibit 

symmetry with respect to a total rotation. The symmetry must be 

identified in advance and the invariant basis should be chosen ac- 

cording to (16) or (17) . 

3.2. Flexible basis 

However, in practice, symmetric patterns may not be exactly 

symmetric due to sampling errors. Even if we do not detect any 

zero moments, certain moments may be very close to zero. This 

may happen also for some non-symmetric patterns. If we choose 

such a numerically zero moment as a basic moment in (15) , the 

resulting invariants may be unstable and vulnerable to noise. To 

overcome that, we may construct a so-called flexible invariant ba- 

sis as follows. We relax the constraint given earlier on the indices 
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p 0 and q 0 by only requiring p 0 − q 0 + 1 	 = 0 . We look for a “signif- 

icantly non-zero” moment d q 0 p 0 satisfying this constraint by cal- 

culating the average magnitude of all d pq ’s up to the given order. 

The lowest-order moment whose magnitude exceeds the average 

is then taken as the normalizer d q 0 p 0 and the basis is constructed 

via 

� f lex (p, q ) ≡ d pq d 
p−q +1 

p 0 −q 0 −1 

q 0 p 0 
. (18) 

There are | p 0 − q 0 − 1 | complex roots, so �flex ( p, q ) is defined with 

a | p 0 − q 0 − 1 | -ambiguity. Since all these solutions are dependent, 

it is sufficient to store a single value only (all of them should be, 

however, taken into account when comparing two patterns). To 

avoid working with the multiple roots, we can alternatively use the 

powers 

�(p, q ) ≡ � f lex (p, q ) p 0 −q 0 −1 = d p 0 −q 0 −1 
pq d p−q +1 

q 0 p 0 
, (19) 

which are defined unambiguously. 

The flexible basis avoids using close-to-zero moments but does 

not require a prior analysis of the symmetry. It may be used in 

any case; however for common non-symmetric and non-singular 

patterns the flexible basis provides the same discrimination power 

as the basis (15) (in many cases the chosen normalizer is exactly 

the same as in (15) ). 

4. Zernike rotation invariants of vector fields 

Zernike polynomials were originally proposed to describe the 

diffracted wavefront in phase contrast imaging [33] and have 

found numerous applications in mathematics, optics, and imaging. 

Zernike moments (ZMs) [5] have become very popular in image 

analysis. They belong to the family of radial moments , along with 

the Pseudo–Zernike, Fourier–Mellin, Jacobi–Fourier, Chebyshev–

Fourier, and other moments (see [2] for a survey)). Their main ad- 

vantage comes from the fact that they are orthogonal on the unit 

disk, they keep their magnitude constant under an image rotation, 

and their phase change is simple and easy to eliminate. The lat- 

ter property ensures a theoretically easy construction of rotation 

invariants of scalar images [6] . 

Zernike moment of degree n with repetition � of vector field f is 

defined as 

A n� = 

n + 1 

π

∫ 2 π

0 

∫ 1 

0 

V 

∗
n� (r, θ ) f (r, θ ) r d rd θ, (20) 

where n = 0 , 1 , 2 , . . . , � = −n, −n + 2 , . . . , n and V n � ( r, θ ) is the re- 

spective Zernike polynomial (see for instance [2] for its complete 

definition). 

Under a total rotation of the field by α, ZMs are transformed as 

A 

′ 
n� = A n� e 

−i (� −1) α. (21) 

The rotation invariants of vector fields are then obtained by phase 

cancellation as 

Z n� = A n� (A n 0 � 0 ) 
−(� −1) / (� 0 −1) , (22) 

where the normalizer should be chosen such that � 0 	 = 1 and 

A n 0 � 0 	 = 0 . If we choose � 0 = 0 or � 0 = 2 , we avoid the complex 

roots and end up with simpler invariants 

Z n� = A n� (A n 0 � 0 ) 
±(� −1) . (23) 

5. Experiments 

The goal of the experimental section is to compare the pro- 

posed orthogonal invariants of vector fields (both GH and ZM) to 

their competitors – the invariants composed of geometric/complex 

moments [2] . These invariants are formally defined by the same 

equation as (15) , but complex moments c pq are used in place of 

d pq : 


(p, q ) ≡ c pq c 
p−q +1 
q 0 p 0 

(24) 

and 
(q 0 , p 0 ) ≡ | c q 0 p 0 | . A few special cases of the invariants 

(24) of low orders, without mentioning the general formula, were 

used in [8] and in the follow-up papers mentioned in the introduc- 

tion. In fact, they perform the only method for template matching 

in vector fields published so far. 

In the remainder of this paper, we will refer to the invariants 

given by Eq. (24) as the geometric invariants. 2 

In the first experiment, we demonstrate the main advantage of 

the orthogonal invariants – high numerical stability and low preci- 

sion loss even for high-order invariants. The second and third ex- 

periments illustrate the application of the GH invariants in tem- 

plate matching in real vector fields. 

5.1. Numerical precision 

In this experiment, we evaluated numerical properties of GH, 

ZM and geometric moment invariants up to the order p + q = 160 . 

It can be expected that high-order geometric moment invariants 

lose precision because they comprise very high and very low num- 

bers. Since the GH moments can be calculated by the recurrence 

relation (2) , the overflow and underflow effects should be less sig- 

nificant or even not present at all. The same is true for the Zernike 

moments. Due to their popularity, great effort has been made to 

develop efficient and numerically stable algorithms for their calcu- 

lation [34–40] . In this experiment, we used an implementation of 

the recurrent Kintner method [2,34] , which is like a gold standard 

in the ZM computation. 

The evaluation is done by measuring the relative error of each 

invariant. We took a 365 × 451 vector field (obtained as a gradient 

field of the image of a hair, see Fig. 5 ), rotated it by π /4 using the 

total rotation, and calculated the relative error in percents as 

ε �(p, q ) = 100 · | �(p, q ) − �′ (p, q ) | 
�(p, q ) 

, 

where �( p, q ) stands for the geometric/GH/ZM invariant and �′ ( p, 

q ) denotes the same invariant of the rotated field. Theoretically it 

should hold ε = 0 for any p, q , and �; the non-zero values are 

caused by the field resampling and by numerical errors of the mo- 

ment calculations. This is why we used the rotation by π /4 – the 

relative errors are greater than for any other angle and allow to 

observe the differences between the three types of the invariants 

clearly. 

The relative errors of the geometric invariants are visualized in 

Fig. 6 using the color map on the right. It is worth noting that 

the invariants are well defined only in a strip along the diago- 

nal p = q . Outside the colored area, the Matlab code yielded NaN 

values when calculating the invariants. This illustrates the limited 

possibility of working with the geometric invariants if p − q > 20 

and p, q > 80 (the particular numbers depend on the given vector 

field). 

The relative errors of the GH invariants and the ZM invariants 

are visualized in the same way in Fig. 7 and in Fig. 8 , respectively. 

The main difference, which is apparent at first sight, is that all in- 

vestigated invariants are valid, there have been no NaN’s in the 

2 This terminology originates from the fact that the complex moments are simple 

functions of geometric moments, the most elementary moments. Sometimes they 

are called monomial invariants because they are based on the monomial basis func- 

tions. 



B. Yang et al. / Pattern Recognition 74 (2018) 110–121 115 

Fig. 5. Hair image: (a) the original, (b) the gradient field, and (c) the colormap for gradient visualization. The brightness corresponds to the magnitude and the hue to the 

direction of the gradient. 

Fig. 6. Relative errors of the geometric invariants. White area corresponds to NaN 

values of the invariants. 

calculations. To compare the relative errors in the valid region, we 

calculated element-wise the ratios 

 1 (p, q ) = 

ε(geometric) 

ε(GH) 
, 

 2 (p, q ) = 

ε(geometric) 

ε(ZM) 
, 

and 

 3 (p, q ) = 

ε(GH) 

ε(ZM) 
. 

Fig. 7. Relative errors of the Gaussian–Hermite invariants. 

They are visualized in Figs. 9–11 . While the calculation of ϱ1 is 

straightforward, the definition of ϱ2 and ϱ3 may not be unique, be- 

cause the second index of the Zernike moment expresses the an- 

gular repetition factor while both indices of the geometric/GH mo- 

ments are the degrees of the basis polynomials. A reasonable way, 

which we employed here, of comparing the geometric/GH mo- 

ments to the ZMs, is to link the indices p, q of geometric/GH mo- 

ments to the indices p + q, p − q of the ZMs. The yellow-red color 

map is used for ϱ> 1, light green is neutral (  = 1 ) and green-blue 

stands for ϱ< 1 (to keep the same range on both sides, the values 

of ϱ> 1 were displayed as 2 − 1 /). The vast majority of indices 
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Fig. 8. Relative errors of the Zernike moment invariants. 

Fig. 9. The ratio of the relative errors ϱ1 . 

( p, q ) (precisely in 85%), satisfies ϱ1 > 1, which means the relative 

error of the geometric invariants is higher than that of the GH in- 

variants. The mean value of ϱ1 is 7.3 and the median equals 4.3, 

which clearly illustrates the higher stability of the GH invariants. 

The behavior of ϱ2 is similar, although the dominance of the ZMs 

is not as prominent. 

The quantitative comparison between the GH and ZM invari- 

ants is expressed by ϱ3 . In the central strip area, the GH invariants 

are more stable (the mean value of ϱ3 is 0.8, the median is 0.65). 

Outside this area, ϱ3 looks like a close-to-zero-mean random noise, 

which shows there is no significant difference between the GH and 

ZM invariants in this range of the indices. 

Fig. 10. The ratio of the relative errors ϱ2 . 

Fig. 11. The ratio of the relative errors ϱ3 . 

5.2. Template matching in a gradient field 

In this experiment we demonstrate the use of the GH invariants 

for template matching, i.e. in the task they have been designed 

for and where they are supposed to be applied in practice. As the 

test vector field, we again used the gradient of the hair image, see 

Fig. 5 . We chose this particular photograph to make the matching 

challenging. On one hand, the picture is rich in edges so there are 

no large regions of a constant gradient; on the other hand there 

are many patches similar to each other, which makes the match- 

ing non-trivial. 

We randomly extracted 10 0 0 circular templates of the radius 

20 pixels from the gradient field, rotated them by random angles, 

and matched them against the original field. The matching was 

carried out by searching for the minimum � 2 -distance in the space 
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Fig. 12. The Kármán vortex street with the selected template. 

Fig. 13. The matching vortices when only the GH invariants up to the fourth order have been employed. 

of the invariants between the template and all field patches of 

the same size. We encountered two kinds of errors which we call 

”small” and ”gross”. An error is considered ”small” if it is less than 

10 pixels (measured as the Euclidean distance from the ground- 

truth location). These errors are governed by a Rayleigh distribu- 

tion R ( x ; σ ) [41] (provided that the errors in horizontal and verti- 

cal directions are independent, normally distributed random vari- 

ables with the same variance), whose density is 

R (x ;σ ) = 

x 

σ 2 
e −

x 2 

2 σ2 . (25) 

The mean value of the distribution, which we used to quantify the 

small errors, is σ
√ 

π/ 2 . 

The “gross” error means the template was found at a com- 

pletely wrong place, usually because there was a similar patch at 

that position. Since in most applications the errors are considered 

equally serious if they are, let us say, 50 or 500 pixels (in both 

cases, the location found is totally wrong and the position cannot 

be refined by searching within a neighborhood), we only count the 

number of these gross errors to evaluate the matching. 

We matched each template by eight different invariants for 

comparison. We used the vector-field GH invariants up to the or- 

ders four and six to illustrate the contribution of higher orders. To 

show the differences in numerical stability, we did the same with 

the vector-field invariants composed of complex (geometric) mo- 

ments [2] . Finally, we converted the vector values to magnitudes 
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Fig. 14. The matching vortices when also higher-order GH invariants have been used. The higher orders obviously yield less matching results: (a) fifth order, (b) seventh 

order, (c) ninth order, (d) eleventh order, and (e) thirteenth order. 

Table 1 

The number of gross errors (NGE) and the mean small errors (MSE) out of 10 0 0 

trials in the experiment with the template matching in the gradient field. 

Features 4th order 6th order 

NGE MSE NGE MSE 

GH vector 114 0.504 75 0.401 

CM vector 360 1.157 282 0.836 

GH scalar 391 0.748 176 0.624 

CM scalar 745 1.497 647 1.070 

and used traditional scalar image invariants (both GH and CM) act- 

ing on magnitudes only to match the templates. This shows that 

the vector field template matching cannot be reduced to scalar im- 

age matching without a loss of performance. The results are sum- 

marized in Table 1 . It can be seen clearly, that the vector field GH 

invariants outperform the other three methods significantly, both 

in the number of gross errors as well as in the mean value of 

the small ones. At the same time, we can observe an improvement 

of the performance of all methods when the 6-th order moments 

were used. 

5.3. Template matching in a fluid flow field 

In this experiment, we demonstrate the applicability of the pro- 

posed technique in an important problem from fluid dynamics en- 

gineering – vortex detection in a fluid flow vector field. We used 

the field showing the Kármán vortex street, which is a repeating 

pattern of swirling vortices caused by the flow of a fluid around 

blunt bodies. In the Kármán pattern, we can see several vortices 

arranged into two rows. The orientation of the “street” is given 

by the main flow direction and is generally not known a priori. 

A patch with a typical vortex is used as a template. In this task 

we used a vortex from the upper row (see Fig. 12 ), but generally, 

the template may be extracted from another similar field. To sim- 
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Fig. 15. The histogram of absolute errors (in pixels) of the vortex localization (the 

bar graph) with the fitted Rayleigh distribution superimposed (the curve). 

ulate this, we rotated the template by 30 degrees. The task is to 

find all vortices of a similar shape regardless of their orientation. 

The search is performed in the space of the rotation invariants. Un- 

like the previous experiment, we search for all local minima of � 2 - 

distance below a user-defined threshold. 

Such a task definition is rather “soft”, because it specifies nei- 

ther the significance of the vortices to be detected nor the required 

degree of similarity with the template. As we can see, the results 

may be controlled by the number/order of the invariants we use. 3 

In Fig. 13 , we can see the matching results when only the in- 

variants up to the fourth order have been employed. Almost all 

vortices, existing in the field, were detected. The detection of the 

vortices in the bottom row requires special care, because they are 

flipped comparing to the upper row. The GH invariants are trans- 

formed under a mirroring w.r.t. an arbitrary line as 

�̄(p, q ) = �(p, q ) ∗. (26) 

Hence, the real part of �( p, q ) keeps its value, but the imaginary 

part should be taken with an opposite sign. If we want to de- 

tect both kinds, the absolute value of the imaginary part should 

be used. 

As we increased the order of the invariants, we identified only 

those vortices, which are more similar to the template (see Fig. 14 ). 

Note that the results does not necessarily form a nested sequence 

because the degree of similarity may not be monotonic with the 

order. This process terminated at the order 14, where only a single 

vortex, the one identical with the template, was found. 

The previous experiment was carried out on a single vec- 

tor field with a few templates. In order to perform an objective 

error analysis, we used a 300-frame video, showing the time- 

development simulation of the Kármán street. We used the same 

vortex template as before and matched it to each frame individ- 

ually. To ensure independency, no information from the previous 

frames was used. We employed the GH invariants up to the fourth 

order. In each frame, the algorithm identified 21 or 22 vortices, 

which are similar to the template. The video with the vortex track- 

ing is at [42] . To evaluate the accuracy, we measured the localiza- 

tion error of each vortex in each frame. The ground truth posi- 

3 The number of matches may be influenced also by the choice of the threshold. 

To eliminate this influence, we used thresholds of the same significance in each 

moment order and the same thresholds in each run of the experiment. 

tions were deduced from the fluid mechanics theory, which guar- 

antees (under ideal conditions) the equidistant placement of the 

vortices (this assumption, however, works only in the first half of 

the street; the second half behaves differently and the ground- 

truth positions could not be estimated there). The ground-truth 

positions of the first two vortices were detected manually. We 

measured the absolute localization errors of all templates in the 

first half of each frame, so we obtained about 30 0 0 random values, 

which should exhibit a Rayleigh distribution. We estimated its pa- 

rameter σ and, consequently, the mean of the absolute errors (see 

Fig. 15 for the error histogram fitted with the Rayleigh curve). We 

obtained σ = 2 . 138 , which yields the mean m = σ
√ 

π/ 2 = 2 . 68 . 

The actual mean localization error is probably even smaller be- 

cause our Kármán street does not behave exactly as the ideal one 

and the error we have measured contains not only the localiza- 

tion error but also the error between the ideal and actual Kármán 

street. 

6. Conclusion 

The paper introduced rotation invariants of vector fields, which 

are functions of orthogonal moments. Vector fields behave differ- 

ently from graylevel and color images under spatial transforma- 

tions and traditional scalar invariants cannot be efficiently used for 

recognition. 

Although vector-field invariants can be from simple geomet- 

ric moments [2] , in this paper we demonstrated that the use of 

orthogonal moments provides significantly higher numerical sta- 

bility than the stability of geometric/complex moment invariants. 

We tested two popular kinds of orthogonal moments – Gaussian–

Hermite and Zernike moments. Although they are distinct from 

one another in their nature (the GH moments are orthogonal on a 

square, while the Zernike moments are orthogonal on a disk), both 

can be employed as the building blocks of the invariants. The sta- 

bility of the GH invariants was slightly better in our experiments, 

but the difference was not significant and each kind has its own 

pros and cons, implied by their different areas of orthogonality. We 

demonstrated their performance in template matching in a gradi- 

ent field and in a vortex detection in a fluid flow vector field. Com- 

paring to vector-field invariants from non-orthogonal moments and 

to scalar image invariants, the proposed technique achieved signif- 

icantly better results. 

The paper was focused solely on rotational invariance. Trans- 

lational invariance is irrelevant in template matching (it could be 

ensured by using central moments if needed). Invariance to total 

scaling of the vector field is formally not difficult to achieve – we 

can just follow the idea of variable modulation of the GH moments, 

which was proposed for scalar images by Yang et al. [43] and 

which can be modified for vector fields easily. Dealing with scaled 

templates brings, however, another problem. Since it is not clear 

how large the corresponding neighborhood should be, one has to 

test several sizes in a reasonable interval, which increases the com- 

putational time. 
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Affine Invariants of Vector Fields
Jitka Kostková, Tomáš Suk, and Jan Flusser, Senior Member, IEEE

Abstract—Vector fields are a special kind of multidimensional
data, which are in a certain sense similar to digital color images,
but are distinct from them in several aspects. In each pixel,
the field is assigned to a vector that shows the direction and
the magnitude of the quantity, which has been measured. To
detect the patterns of interest in the field, special matching
methods must be developed. In this paper, we propose a method
for the description and matching of vector field patterns under
an unknown affine transformation of the field. Unlike digital
images, transformations of vector fields act not only on the spatial
coordinates but also on the field values, which makes the detection
different from the image case. To measure the similarity between
the template and the field patch, we propose original invariants
with respect to total affine transformation. They are designed
from the vector field moments. It is demonstrated by experiments
on real data from fluid mechanics that they perform significantly
better than potential competitors.

Index Terms—Vector field, total affine transformation, affine
invariants, template matching, vector field moments.

I. INTRODUCTION

ANALYSIS of vector fields has been attracting an increas-
ing attention in last ten years. Vector fields are special

kind of multidimensional data, that appear in numerous scien-
tific and engineering areas, such as in mechanical engineering,
fluid dynamics, medicine, computer vision, and meteorology.
They describe particle velocity, wind velocity, optical/motion
flow, image gradient, and other phenomena.

In fluid mechanics, flow fields and their mathematical
models (mostly based on Navier-Stokes equations) have been
studied for centuries. However, in connection with new de-
vices/techniques producing vector or even tensor field data,
such as diffusion tensor imaging, the tasks appeared which
seem to be better resolved by signal-processing approach
rather than by traditional fluid mechanics.

A typical example of such task is the detection of vari-
ous patterns of interest. It comprises not only detection of
singularities such as vortices, saddle points, vortex-saddle
combinations, and double vortices (these could be found by
traditional techniques as well), but also detection of arbitrary
patterns, which are similar to the patterns stored in the pattern-
of-interest database (these patterns may be extracted from
similar fields or obtained as a result of a simulation). Since
the patterns of interest may not have any special mathematical
properties, their detection by traditional tools is questionable
or even impossible.

The detection of these patterns can be accomplished by
template matching, which is a technique widely applied in
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image processing but relatively new in vector field analysis.
The search algorithm evaluates the similarity between the
template and a field patch and must be primarily invariant
with respect to all possible pattern deformations, which might
be present (for instance, the template stored in the database
may depict a circular vortex, but we want to find also all
elliptic vortices of arbitrary size and orientation, which may
appear near obstacles and boundaries). Fig. 1 schematically
shows the pattern matching in a vector field.

Fig. 1. Vortex detection in a swirling fluid by template matching. The
detection method must be invariant to the template deformation.

The main contribution of this paper is the derivation of
a new class of vector-field invariants, which are suitable for
template matching. We assume the template deformations can
be modeled by so called total affine transformation (TAFT –
see Section II for mathematical description). This assumption
is realistic and the underlaying model is reasonably general,
but still possible to be handled thanks to its linearity. This
problem formulation is original and we are not aware of any
other paper, which would come up with a formulation and/or
a solution of a similar task. We also introduce multilayer
graphs, which can represent the invariants and can be em-
ployed for their automatic generation and for studying their
properties. Showing the connection between the invariants
and the multilayer graphs is another significant theoretical
contribution of the paper.

The paper is structured as follows. After giving a survey
of relevant literature in Section III, we introduce vector field
invariants w.r.t. TAFT, composed of the moments of the field,
in Section IV. In Section V, we introduce the notion of
a multi-layer graph and establish the connection between
the invariants and the multi-layer graphs, which helps to
understand the structure of the set of invariants. Section VI
presents algorithms for generating all graphs that represent
the invariants. Since such set is highly redundant, we propose
a selection of complete and independent set in Section VII.
Finally, in Section VIII we demonstrate the performance and
the advantages of these invariants in affine-invariant template
matching on simulated and real data.
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II. VECTOR FIELDS AND THEIR TRANSFORMATIONS

In this section, we formally define a vector field, introduce
the notion of its total transformation and show how the
transformations of “traditional” images and vector fields differ
from one another, even if both can be understood as particular
cases of total transformations.

Definition 1. A 2D vector field f(x) is an ordered pair of
scalar fields f(x) = (f1(x), f2(x)).

At each point x = (x, y), the value of f(x) shows the
orientation and the magnitude of the measured vector. The
scalar field fi(x) can be understood as a graylevel image which
may contain also negative values.1

By a total transformation we understand any transformation
in the vector field space, which acts simultaneously in spatial
and function domains. Even if this definition can be used for
arbitrary (non-linear) transformations, in this paper we restrict
to linear ones.

Definition 2. Let A and B be regular matrices and f be
a vector field. The transformation f→ f′, where

f ′(x) = Bf(A−1x) (1)

is called independent total affine transformation of the field
f. Matrix A is called inner transformation matrix (or just
inner transformation for short), while matrix B is called outer
transformation matrix.

The above transformation model does not contain a shift,
which is basically for two reasons. The shift in the outer part
might occur as a basic flow in the background and can be
removed by subtracting the background flow from the entire
field. The shift in the inner part, which is independent of the
outer shift, may appear in some applications and captures the
translation of the field in the plane. In such a case, A−1x is
replaced with A−1x + t in the model. However, for pattern
detection via template matching it is irrelevant to include the
shift into the deformation model, because the shift is the key
parameter we want to detect. If, in some other applications,
incorporating the shift was desirable, it would be sufficient to
replace the moments in the invariants (see Section IV) with
central moments related to a properly defined field centroid
and we automatically obtain invariants to inner translation.

In reality, vector fields are mostly transformed by a slightly
simpler transformation than (1) in which A = B. Such a model
is called special total affine transformation and captures one of
the basic properties of vector fields – if the field is transformed
in the space domain, the function domain (i.e. the vector
values) are transformed by the same transformation. The
scenarios where A 6= B are rare, but may happen as well if, for
instance, the measuring device exhibits different calibrations
for inner and outer part. The special transformation can be
understood intuitively. Let us imagine the vector field as
an array of arrows. If we deform spatially the array, the
absolute orientation and length of the arrows must be changed

1Apart from 2D vector fields, there exist also 3D vector fields, matrix fields,
and tensor fields. The study of these more general fields is beyond the scope
of this paper.

accordingly such that their relative orientation and length is
preserved (see Fig. 2 for an example).

This is the principal difference between “true” vector fields
and images. Traditional images can be viewed as particular
cases of vector fields, where the number of components
equals the number of the spectral bands. Most often, they are
transformed with B = I , where I is an identity matrix, and
the transformation is purely spatial. The total transformation
model can also capture the spatial transformation accompanied
by contrast changes of individual channels (when B is diag-
onal different from I) or by spectral mixing (when B is not
diagonal). However, the situations when B is not diagonal are
rare for traditional images and in any case, there is absolutely
no reason why B should be the same as A.

In the theory of invariants, it is well known that the set
of all admissible transformations, with respect to which we
want to design invariants, must form a group or at least
a semi-group (see, for instance, [1] or [2] for explanation).
In particular, the transformations must exhibit the closure
property – the composition of two arbitrary transformations
must be again a transformation within the given set. The set
of all independent total affine transformations is closed under
composition. To see this, consider two such transformations
given by matrices Ai, Bi; i = 1, 2, which have been applied
consecutively to a vector field. The result is equivalent to
applying a single independent total affine transformations with
matrices A = A2A1 and B = B2B1. The closure property is
preserved, if we consider special total affine transformations
only. Both transformations are invertible and contain a unit
element (identity transformation). Hence, both sets are groups
(but not Abelian groups as matrix multiplication is not com-
mutative).

III. LITERATURE SURVEY

Although affine invariants of vector fields have never been
studied, we still found several inspiring papers that formed the
background of our current work. They fall basically into two
categories: papers on rotation invariants of vector fields and
papers on affine invariants of scalar and color images.

The problem of finding vector field invariants to total
rotation was raised for the first time relatively recently by
Schlemmer et al. [3], who adapted the scalar moment in-
variants proposed by Mostafa and Psaltis [4] and Flusser [5],
[6] and designed invariants composed of geometric complex
moments of the field. Schlemmer et al. used these invariants to
detect specific patterns in a turbulent swirling jet flow. Rota-
tion invariants from geometric complex moments have found
several applications. Liu and Ribeiro [7] used them, along with
a local approximation of the vector field by a polynomial, to
detect singularities on meteorological satellite images showing
wind velocity. Basically the same kind of rotation invariants
were used by Liu and Yap [8] for the indexing and recognition
of fingerprint images. A generalization to more than two di-
mensions using tensor contraction was proposed by Langbein
and Hagen [9]. Bujack et al. [10], [11] studied the invariants of
complex moments thoroughly, generalized the previous works,
and showed that the invariants can be derived also by means
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(a) (b) (c) (d)
Fig. 2. Vector field transformations: (a) an original vector field, (b) its inner affine transformation, (c) its outer affine transformation, (d) its special total affine
transformation. The green arrows in (c) and (d) show the vector field without the outer transformation.

of the field normalization approach. Yang et al. improved
the numerical stability of the invariants by using orthogonal
Gaussian-Hermite [12] and Zernike [13] moments instead of
the geometric ones. Most recently, Bujack [14] introduced so-
called flexible basis of the invariants to avoid moments that
vanish on the given templates. In all these papers, the authors
considered the total rotation model only. The gap between total
rotation and total affine transformation is so big that almost
nothing from the referenced papers can be used or adapted to
derive invariants w.r.t. total affine transformation.

Apart of the above methods, which all were more or less
inspired by signal processing and approached a vector field
as a specific multi-valued image, we can find several “non-
image methods in flow analysis for detecting singularities.
Comparing to the signal-based methods, they suffer from
several limitations. The most serious one is that they were
designed for detection of singularities only and cannot detect
arbitrary templates. Majority of the existing methods concerns
with the detection of vortices, other methods are able to
detect foci, stable points or nodes. Vortex detection methods
mostly compute the curl of the flow field, which characterizes
vortices. Almost all methods for detection of other singularities
calculate the gradient of the flow velocity and locally calcu-
late the eigenvalues of the underlying tensor. The criterion
“vortex/focus/node/. . . ” is evaluated from these eigenvalues,
differently in each individual method. They are not affine-
invariant and cannot be easily generalized to this invariance,
because intrinsically assume circular shape of the vortices.
Some of those methods assume (at least implicitly) that the
flow is ruled by Navier-Stokes equations. This is, however, not
generally true for gradient fields and optical flow fields. Many
methods of this kind can be found in the literature. A good
survey of vorticity measures based on the determinant and
trace of the flow velocity gradient tensor is given in [15], where
the method of helicity [16], swirl parameter method [17],
λ2 method [18], Predictor-Corrector method [19], parallel
vectors method [20], and streamline method [21] are reviewed
and compared. Chen [22] describes various criteria (vorticity
measures) for detection of vortices and their simplification in
planar flow – Delta-criterion, λci criterion, Q criterion, and λ2
criterion (we use this method in the experimental section for
comparison).

Comparing to the above group of papers on vector field rota-
tion invariants, affine moment invariants (AMIs) of graylevel

images have been studied in hundreds of papers and books
in the last 100 years.2 They can be traced back to the end
of the 19th century, to the times when neither computers nor
automatic object recognition existed. Probably the first one
who systematically studied invariants to affine transformation
was the famous German mathematician David Hilbert. He
did not work explicitly with moments but studied so called
algebraic invariants [23]. The algebraic invariants are poly-
nomials of coefficients of a binary form, which are invariant
w.r.t. an affine transformation. Hilbert had many followers,
who elaborated the traditional theory of algebraic invariants
in the late 19th and early 20th century, see for instance [24]–
[28]. The algebraic invariants are closely linked with the AMIs
through the Fundamental theorem of the AMIs, formulated
(unfortunately incorrectly) by Hu [29] in 1962. Through this
link, the core of the Hilbert’s work can be adapted to moments
in a relatively straightforward way. The Fundamental theorem
of the AMIs was later corrected by Reiss [30] and Flusser
and Suk [31]. Since then, several new methods of deriving
AMIs have appeared. They differ from each other in the
mathematical tools used. One may use graph theory as was
proposed in [32], [33], tensor algebra [34], direct solution of
proper partial differential equations [35], transvectants [36],
and derivation via image normalization [37]. The resulting
AMIs achieved by all these approaches are theoretically equiv-
alent, because there exists a polynomial one-to-one mapping
between any two AMI sets. However, differences can be found
in complexity of the derivation and in numerical properties of
the respective AMI’s.

Special AMIs were proposed for color images [38]–[42],
where the between-channel bond and various kinds of linear
color changes were considered together with the spatial affine
transformation.

IV. CONSTRUCTION OF VFAMIS

In this section, we propose vector field moment invariants
w.r.t. total affine transformation (VFAMIs). The invariants,
which we are going to construct, are functions of geometric
moments of the field. In case of a 2D vector field f with the

2There exist also many affine invariants, which are not based on moments,
but they are irrelevant for this work, so we do not mention them here.
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components f1 and f2 we may use standard geometric scalar
moments [1], [2] given as

m(i)
pq =

∞∫

−∞

∞∫

−∞

xpyqfi(x, y) dxdy . (2)

Let us for simplicity assume that f is compactly supported and
both fi are piecewise continuous. Under these assumptions,
all moments m(i)

pq of indices p, q = 0, 1, 2, . . . are well-defined
and completely characterize the field f .

A. Invariants to inner transformation

Let us first construct the VFAMIs for the particular case of
B = I (this is essentially the problem of AMIs for two-band
images). We start by constructing the AMIs for components
f1 and f2 separately. To do so, we use the method proposed
in [32] and further elaborated in [33], which guarantees to
produce a complete set.

Let us consider two arbitrary points x1 = (x1, y1), x2 =
(x2, y2) from the support of f . Let us denote the “cross-
product” of these points as C12:

C12 = x1y2 − x2y1 .
Geometric meaning of C12 is the oriented double area of the
triangle, whose vertices are (x1, y1), (x2, y2), and (0, 0). After
an affine transformation x′ = Ax has been applied, the cross-
product is transformed as C ′12 = JA ·C12, where JA = det(A)
is the Jacobian of the transformation. This proves that C12 is
a relative invariant with respect to inner transformation A.
Now we consider various numbers of points (xi, yi) and we
integrate their cross-products (or some integer powers of their
cross-products) over the support of f . These integrals can
be expressed in terms of moments and, after eliminating the
Jacobian by a proper normalization, they yield absolute affine
invariants.

More precisely, having r > 1 distinct points (x1, y1), · · · ,
(xr, yr), we define functional I of scalar f depending on r
and on non-negative integers nkj as

I(f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj ·
r∏

i=1

f(xi, yi) dxi dyi . (3)

Note that it is meaningful to consider only j > k, because
Ckj = −Cjk and Ckk = 0.

After an inner affine transformation we have f ′(x) =
f(A−1x) and I(f ′) becomes

I(f ′)=

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj ·
r∏

i=1

f(A−1xi) dxi dyi =

=

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

(C
nkj

kj )′ ·
r∏

i=1

f(xi, yi)|JA|r dxi dyi =

=Jw
A |JA|r · I(f) ,

(4)
where w =

∑
k,j

nkj is the weight of the invariant and r is its

degree. Hence, I(f) is a relative affine invariant, too. If I(f)

is normalized by mw+r
00 , we obtain a desirable absolute affine

invariant (
I(f)

mw+r
00

)′
=

(
I(f)

mw+r
00

)
(5)

(if w is odd and J < 0 the sign change occurs in Eq. (5)). If
we expand the integrand in Eq. (3) and integrate term-wise, we
obtain an expression of I in terms of geometric moments of f .
Varying r and nkj , we can generate infinitely many invariants
of all orders. Such a set is complete but highly redundant. The
process of eliminating reducible invariants is described in [33].

The invariants from Eq. (5) can be derived separately for
both field components f1 and f2. In addition to that, we can
further employ the fact that transformation A is the same for
both components, which brings a possibility of constructing
joint invariants (i.e. those containing moments of both f1 and
f2 at the same invariant). This idea was proposed in [38] in the
context of invariants for color images and slightly increases
the number of independent invariants.

For the sake of completeness, it should be mentioned that
Eq. (3) may be formulated in a more general way as

I(f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj ·
r∏

i=1

fvi(xi, yi) dxi dyi , (6)

where vi are arbitrary powers. Eqs. (4) and (5) still hold
(note that the normalization in (5) does not depend on vi).
However, the integration of (3) does not lead to moments of
f but generally to moments of fvi . This is highly redundant,
because the moment uniqueness theorem (see [2] for instance)
assures that all moments of any fvi can be calculated from the
moments of f . Hence, using vi 6= 1 in (3) is generally useless
and we do not follow that approach in this paper (it might be
justifiable only if we confine ourselves to a few low moment
orders, where the redundancy is weak, as for instance did the
authors in [39], [40]).

B. Invariants to outer transformation

If B 6= I , it is not easy to extend the “inner” invariants from
the previous section. The exception is when B is diagonal, so
the components f1 and f2 are not mixed together. This is not
realistic for “true” vector fields, but this model was studied in
the connection with color images of indoor scenes, underlaying
photometric transformation due to a varying illumination [43],
[44]. If B is diagonal, the invariants (3) of the component fi
are just multiplied by Br

ii. This multiplication factor can be
eliminated by taking a ratio of two invariants of the same r
or by a ratios of proper powers of two arbitrary invariants.

Now let us consider arbitrary regular B, but assume for
simplicity that A = I , so only an outer transformation of
the vector field is effective. We proceed analogously to the
previous section. The role of Ckj has been taken over by
“component cross-products” Fkj

Fkj = f1(xk, yk)f2(xj , yj)− f1(xj , yj)f2(xk, yk) .
Fkj is a relative invariant w.r.t. outer affine transformation as

F ′kj = JB · Fkj ,
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where JB = det(B) (see Appendix A for the proof). The
simplest moment invariants are given as

Opqst(f) =
∞∫

−∞

· · ·
∞∫

−∞

xp1y
q
1x

s
2y

t
2F12 dx1 dx2 dy1 dy2 , (7)

which yields, after the term-wise integration, the moment form

Opqst(f) = m(1)
pq m

(2)
st −m(1)

st m
(2)
pq . (8)

The relative invariance property Opqst(f’) = JB · Opqst(f)
follows immediately from the same of F12. Eq. (8) yields
a non-trivial invariant for arbitrary combinations of indexes
except (p, q) = (s, t) (note that Opqpq(f) = 0 for any
p, q, and f). Swapping of the indexes (p, q) ↔ (s, t) just
changes the sign as Opqst(f) = −Ostpq(f) and does not
yield an independent invariant. Hence, using all non-trivial
configurations of indexes p, q, s, t up to the given order R, we
obtain R(R + 1)(R + 2)(R + 3)/8 invariants of the form(8).
Since there exist only (R+1)(R+2) moments, it is clear that
the set of invariants is redundant and must contain dependent
invariants. Since the outer transformation has four degrees
of freedom, the number of independent invariants is at most
(R+1)(R+2)−4. Although the number of the invariants (8))
is higher for any R > 0, it is not automatically guaranteed that
they are complete.

To prove the completeness, we show that from the knowl-
edge of all invariants of the form (8) we can recover all
moment values, except four freely chosen moments the value
of which may be arbitrary. Let us assume there exists at least
one invariant such that Opqst 6= 0 (if this is not the case, then
f1 = αf2, all invariants (8) vanish, and f is called a coupled
field). Choose indexes a, b arbitrary such that (a, b) 6= (p, q)
and (a, b) 6= (s, t) and solve the system

m(2)
pq m

(1)
ab −m(1)

pq m
(2)
ab =Oabpq

m
(2)
st m

(1)
ab −m

(1)
st m

(2)
ab =Oabst

(9)

for m(1)
ab and m

(2)
ab . The determinant of the system equals

Opqst, which means the system is regular and unambiguously
solvable, regardless of particular values of m(1)

pq ,m
(2)
pq ,m

(1)
st ,

and m(2)
st , which may be chosen freely. Keeping their choice

fixed, this process is repeated for all admissible couples (a, b).
In this way we recover all moments of the field from its
invariants, up to the four degrees of freedom due to the
transformation matrix B.

Invariants to outer transformation of a field can also be
obtained in a general form analogous to Eq. (6) as

O(f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

F
vkj

kj ·
r∏

i=1

xpi

i y
qi
i dxi dyi , (10)

which leads to relative invariants given by

O(f’) = Jv
B ·O(f) ,

where v =
∑
vkj . However, in the case of pure outer trans-

formation this is useless. Since Eq. (8) generates a complete
set of invariants by itself, any additional invariant designed

by Eq. (10) is a function of them and does not carry any
independent information.

Summarizing this section, we proved that Eq. (8) constitutes
relative invariants w.r.t. outer transformation of a vector field.
We proved they form a complete system. Absolute invariants
are obtained as a ratio of any two non-trivial relative invari-
ants (8). We also showed that the only vector fields laying in
the joint null-space of the invariants are coupled fields, which
must be handled separately and described by other invariants.

C. Invariants to total transformation

In this section, we go to the core of the problem. We show
how to put the inner and outer invariants together and we
propose vector field invariants w.r.t. total affine transformation.
The key definition, analogous to (6) and (10), is now

V (f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj · F
vkj

kj ·
r∏

i=1

dxi dyi . (11)

V (f) is a relative invariant as

V (f ′) = Jv
BJ

w
A |JA|rV (f) . (12)

To eliminate JA and JB and obtain an absolute invariant, we
have to normalize the relative invariant (11) by proper powers
of other two relative invariants such that both Jacobians get
canceled3.

If used extensively with many various parameters, Eq. (11)
yields a huge number of redundant invariants. The first step
to eliminate the redundancy is to fulfill the constraint that
V (f) must be composed solely of moments of the field f . This
is equivalent to the constraints imposed on the powers vkj .
Considering all possible index pairs (k, j), each of the points
(x1, y1), . . . , (xr, yr) must be involved just once in all Fkj’s
used. Hence, any vkj can only equal 0 or 1, v = r/2 (which
immediately implies that r must be even), and vkj = 0 for all
k ≥ j (this constraint is because Fkj = −Fjk and Fkk = 0,
so it would be useless to include them into the invariant). If
vkj = 1, then vmj = vjm = vkm = vmk = 0 for all index
pairs different from (k, j).

We may notice, that generating VFAMIs from Eq. (11), even
if the choice of vkj has been constrained as mentioned above,
leads to many invariants, which are identically zero or which
are somehow dependent on the other invariants that have been
obtained from Eq. (11)) with other settings of the parameters.
For instance, the simplest ever choice of r = 2, v12 = 1 and
n12 = 0 yields a vanishing invariant; the same is true for r =
2, v12 = 1, n12 = 2 and for many other choices with higher r
(the setting of r = 4, v14 = v23 = 1 and n12 = n13 = n24 =
n34 = 1, nkj = 0 otherwise, is an example leading to another
vanishing invariant). As an example of a simple dependency,
we may choose r = 4, v12 = v34 = 1, n12 = n34 = 1, nkj =
0 otherwise, which leads to invariant V (f) = V 2

a . Another
example is the setting r = 4, v12 = v34 = 1, n12 = 3, n34 =
1, nkj = 0 otherwise, which yields V (f) = VaVb (see below
for explicit forms of Va and Vb). Dependent invariants do not

3Unlike scalar AMIs, we cannot normalize by a power of m00 because
m00 is not a relative invariant w.r.t. the total affine transformation.
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contribute to the recognition power of the system and only
increase the dimensionality of the invariant set. It is highly
desirable to identify them and exclude them from the set. An
algorithm for detection of dependent invariants is proposed in
Section VII.

As an example, we show four simple VFAMIs in ex-
plicit forms below; hundreds of other invariants generated
from Eq. (11) can be found on our webpage zoi.utia.cas.cz/
affine-vector-fields.

The simplest non-trivial choice is r = 2 and n12 = v12 = 1,
which yields

Va = m
(1)
10 m

(2)
01 −m

(2)
10 m

(1)
01 .

The choice of r = 2, v12 = 1 and n12 = 3 yields

Vb = m
(1)
30 m

(2)
03 − 3m

(1)
21 m

(2)
12 + 3m

(1)
12 m

(2)
21 −m

(1)
03 m

(2)
30 .

The parameters r = 2, v12 = 1 and n12 = 5 lead to the
invariant

Vc = m
(1)
50 m

(2)
05 − 5m

(1)
41 m

(2)
14 + 10m

(1)
32 m

(2)
23

−10m(1)
23 m

(2)
32 + 5m

(1)
14 m

(2)
41 −m

(1)
05 m

(2)
50 .

If we choose r = 4, v12 = v34 = 1 and n12 = n13 = n24 =
n34 = 1, nkj = 0 otherwise, we obtain

Vd = −(m(1)
20 )

2(m
(2)
02 )

2 + 4m
(1)
20 m

(1)
11 m

(2)
11 m

(2)
02

+2m
(1)
20 m

(1)
02 m

(2)
20 m

(2)
02 − 4m

(1)
20 m

(1)
02 (m

(2)
11 )

2

−4(m(1)
11 )

2m
(2)
20 m

(2)
02 + 4m

(1)
11 m

(1)
02 m

(2)
20 m

(2)
11 −

(m
(1)
02 )

2(m
(2)
20 )

2 .

If the vector field in question is a coupled field, all invariants
generated from Eq. (11) obviously vanish. In such a case, we
use only the first component of the field and treat it as a scalar
image undergoing spatial affine transformation and contrast
stretching. Any ratio of absolute scalar AMIs (5) of the same
degree r and weight w yields a desired invariant.

D. Invariants to special total transformation

As we already explained, the inner and outer transforma-
tions of a vector field are often the same, i.e. A = B and
Eq. (12) is simplified to the form

V (f ′) = J
w+r/2
A |JA|rV (f) . (13)

The normalization can be accomplished just by one invariant,
while the other one, which was needed to cancel JB before,
can be saved for recognition. This is, however, not the only
difference. Since the number of degrees of freedom of the
transformation has been reduced from eight to four, one may
expect the existence of four additional independent invariants.

For a special total transformation, there exists yet another
possibility how to generate invariants. We can replace the
“intensity cross-product” Fkj by the “mixed cross-product”

Dkj = yjf1(xk, yk)− xjf2(xk, yk) .

Dkj is a relative invariant w.r.t. special total transformation as

D′kj = JA ·Dkj

(see Appendix B for the proof). Unlike the previous case, here
generally Dkj and Djk are independent, and Dkk 6= 0.

Similarly to Eq. (11), we define functional

W (f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj ·D
ukj

kj ·
r∏

i=1

dxi dyi , (14)

which is a relative invariant because

W (f ′) = Jw+u
A |JA|rW (f) . (15)

Eq. (14) leads to moments only under certain restric-
tions, imposed on exponents ukj . Each of the points
(x1, y1), . . . , (xr, yr) must be involved just once as a field
argument in all Dkj’s used. Hence, any ukj can only equal 0
or 1 and u ≡∑ukj = r.

We may go even further and generate invariants of the form

Z(f) =

∞∫

−∞

· · ·
∞∫

−∞

r∏

k,j=1

C
nkj

kj ·F
vkj

kj ·D
ukj

kj ·
r∏

i=1

dxi dyi . (16)

In this case, however, the constraints on v and u are different
from the previous cases and are linked together. It still holds
that each point (xi, yi) must appear just once as a field
argument in the integrand. Hence, 2v+u = r. Any vkj and ukj
can only equal 0 or 1 as before, but they are further constrained
as follows. If vkj = 1, then vmj = vjm = vkm = vmk = 0 for
all index pairs except (k, j) and ukm = ujm = 0 for any m.
If ukj = 1, then ukm = 0 for any m 6= j and vkm = vmk = 0
for any m.
Z is again a relative invariant, since

Z(f ′) = Jw+v+u
A |JA|rZ(f) . (17)

It should be, however, noted, that each of the sets generated
by Eqs. (11), (14), and (16) is highly redundant even on
its own, and this redundancy increases, if two or all three
sets are used together. Actually, the invariants obtained from
Eqs. (11) and (14) are nothing but a subset of those obtained
from Eq. (16). Careful selection of independent (or at least
irreducible) invariants is highly recommended for practical
applications. Section VII presents a selection algorithm.

V. VFAMIS AND MULTI-LAYER GRAPHS

In this section, we establish the correspondence between
VFAMIs generated by Eqs. (11), Eq. (14) and (16) and multi-
layer graphs. The representation by multi-layer graphs helps to
understand the structure of the VFAMIs and is also useful for
elimination of reducible invariants. We start with the definition
of multi-layer graphs.

Definition 3. Let V be a set of vertices (nodes) and
E1, E2, . . . , Em be sets of edges. An ordered (m + 1)-tuple
G = (V;E1, E2, . . . , Em) is called a multi-layer graph on V .
Graph Gk = (V;Ek) is called the k-th layer of graph G. If
m = 2, G is called a bi-layer graph. If there exists a layer
Gk, which is a multigraph (i.e. which contains multiple edges),
then G is called multi-layer multigraph.

Definition 4. Let G = (V;E1, E2, . . . , Em) be a multi-layer
(multi)graph. Ordinary (multi)graph UG = (V;E1∪E2∪ . . .∪
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(a) (b)

(c) (d)

Fig. 3. The graphs representing invariants Va, Vb, Vc, and Vd. The edges
belonging to E1 are shown in black, magenta edges belong to E2.

Em) is called a union of G. G is called connected multi-layer
graph if UG is a connected graph.

Multi-layer graphs serve in many areas for modelling dif-
ferent network layers on the same set of nodes. The edges of
different layers may be totally independent or there may be
a kind of band among them.

An arbitrary invariant generated by Eq. (11) can be repre-
sented by a bi-layer graph as follows. Each point (xk, yk)
corresponds to a graph node, so we have r nodes. Each
cross-product Ckj corresponds to nkj edges of the first layer
connecting the kth and jth nodes (generally, the first layer is
a multigraph). The second layer is constructed in a similar way
– each intensity cross-product Fkj corresponds to vkj edges
(note that vkj can only be zero or one). In Fig. 3, we can
see the graphs representing invariants Va, Vb, Vc, and Vd from
Section IV.C. More examples of representation graphs can be
found in Appendix C.

We can immediately make several simple statements about
the bi-layer graphs than represent VFAMIs from Eq. (11).

1) The number of nodes is even.
2) In G2, all nodes have degree one. If r > 2, then G2 is

not a connected graph.
3) Neither layer is a directed graph.
4) Neither layer contains self-loops.
5) If G is not connected, then the corresponding invariant is

a product of several simpler invariants, which correspond
to each connected component of G.

6) Any invariant of the form (11) is in fact a sum, where
each term is a product of r moments. The order of the
moments is preserved in all terms (for instance in V4,
there are always four moments of the second order in
each term). The moment orders contained in a single
term are the same as the degrees of all vertices in G1.

The proof of all above statements follows immediately from
Eq. (11) and from the definition of the corresponding graphs.
We can see that the problem of generating all invariants is
equivalent to finding all connected bi-layer graphs, satisfying
the constraints 1–4.

Now let us assume the affine transformation is special one
and consider the mixed invariants generated by Eq. (16). They
can be represented by three-layer graphs, where the first two
layers correspond to cross-products Ckj and Fkj , respectively,

as before. The third layer G3 corresponds to mixed cross-
products Dkj . G3 is a directed graph because Dkj and Djk

are different and we have to distinguish between them. We
define the “direction” of the edge corresponding to Dkj as
from (xk, yk) to (xj , yj). It is easy to prove the following
simple statements, they follow from Eq. (16) and from the
way how the graph has been constructed.

1) The number of nodes may be arbitrary.
2) G3 may contain loops, self-loops and double edges (with

reverse direction).
3) In G3, we define the outdegree of the vertex as the

number of “tail” edge ends adjacent to this vertex. The
indegree is the number of “head” edge ends adjacent to
the vertex. The outdegree of any vertex is less or equal
one. The indegree of any vertex may be arbitrary from
zero to u.

4) Consider graph (V;E2 ∪E3). For each vertex, the sum
of its degree in E2 and its outdegree in E3 is called the
cumulative degree. The cumulative degree always equals
one.

5) If there are two or more edges in E2, then (V;E2∪E3)
is not a connected graph. If there is one or no edge in
E2, then (V;E2 ∪ E3) may or may not be connected.

Examples of representation graphs of this kind can be found
in Appendix D.

The established correspondence between the invariants and
the graphs can be efficiently used to generate the invariants.
Instead of working directly with Eqs. (11) and (16) all trying
all possible point pairs and parameter combinations, it is
sufficient to generate all multi-layer graphs satisfying the
constraints presented above. In the next section, we present
an algorithm for a systematic graph generation.

VI. GENERATING THE REPRESENTATION MULTI-LAYER
GRAPHS

The algorithms for generating the graphs, which represent
invariants Vi (11) and Zi (16) are similar in main principles
and differ from one another in details (yet important ones)
only. We start with an algorithm that generates invariants
Vi (11).

The task is to generate all bi-layer graphs satisfying the
constraints. Each layer is generated separately. The graph
nodes are numbered from 1 to r. The main idea is to begin
with a graph that have the node labels as low as possible
and then successively increase the node labels until the last
possible graph has been reached.

To generate all possible first layers with w edges, we
start with the graph on two nodes with a w-multiple edge
connecting them. Matrix representation of such graph is

(
1 1 . . . 1 1
2 2 . . . 2 2

)
, (18)

where the column
1
2

means an edge connecting the nodes 1

and 2. The “last” graph, on which the algorithm should stop,
is (

1 2 3 4 . . . w − 2 w − 1 w − 1
2 3 4 5 . . . w − 1 w w

)
. (19)
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Starting from the first graph, we iterate the algorithm shown
in Fig. 4.

To generate the second layer, we proceed analogically with
some modifications. The first graph is now

(
1 3 . . . r − 3 r − 1
2 4 . . . r − 2 r

)
, (20)

As we already explained, r must be even and the representation
matrix has r/2 columns. The inner loop of the algorithm must
be modified, too. The criterion, if a matrix element can be
increased, is not its comparison with the final graph, but the
test, if there is a non-used node.

1) Set k to r − 1, it is the last but one edge.
2) Test the second node of the kth edge. If there is a node

with higher label, set it; otherwise decrease k by one.
3) If k is zero, no other graph can be generated. Stop.
4) Assign the free nodes to the edges behind k.
5) got to 2).
The generating algorithm of Zi is in principle analogical to

the previous one. Modifications are required when generating
E3 edges because the third layer is a directed graph, self-loops
are allowed and there is a strong constraint on a cumulative
E2 −E3 degree of each vertex. Since these modifications are
rather technical ones, we do not describe this algorithm in
detail.

A complete description of the algorithms for generating of
both Vi and Zi, including commented codes, can be found on
http://zoi.utia.cas.cz/affine-vector-fields. On the same website,
the reader may find extensive collections of the invariants
(explicit formulas along with the representation graphs) –
6323 invariants of type Zi and 1890 invariants of type Vi.
On http://zoi.utia.cas.cz/Afintensors, we made available the
software by means of which these invariants were generated.
The software is in C++, has a user-friendly GUI and a detailed
manual, so the readers may generate their own collections of
the invariants with various parameters.

VII. SELECTION OF A COMPLETE AND INDEPENDENT SET
OF THE INVARIANTS

In an ideal case, any feature set for object recognition should
be complete and independent. The completeness means that
the object can be precisely reconstructed (modulo the intra-
class transformation group) from the values of the invariants
and guarantees the maximum possible discrimination power.
The independence ensures that the invariants do not contain
any redundant information. The features are called dependent,
if some of them is a function of the others; otherwise they are
independent. While the independence is always desirable to
keep the feature space dimensionality low, the completeness
may not be necessary. In most practical cases, the objects
in question can be discriminated from each other by a small
incomplete subset.

Both the invariants Vi (11) and Zi (16) form theoretically
complete sets, if all possible parameter settings have been
used. In reality, when the invariants are generated by the
algorithms described in the previous section, we are always
limited by the maximum number of edges w and that of

Current graph

Search the second
matrix row from behind

Can we increase
any node label?

Set the label to v2

a1:=element above

Fill the rest of the
2nd row with

max(v2,a1 + d)

Search the first matrix
row from behind

Can we increase
any node label?

Set the label to v1

Fill the rest of the
1st row with v1

Fill the rest of
the 2nd row with

v1 + d
Next graph

Stop

yes

no

yes

no

Fig. 4. Algorithm for the next graph generation. d = 1 for invariants Vi and
d = 0 for invariants Zi.

nodes r, which leads to an incomplete set. This is, however,
not a principal problem in practice. For any given database
of sampled and quantized objects, we can find finite w and r
such that the objects are distinguishable.

If used extensively, the algorithm generates a huge number
of dependent invariants. We distinguish two kinds of de-
pendencies among the invariants. The “simple” ones, which
comprise linear combinations and products, can be found in
the same way as in the case of graylevel AMIs (see [2],
Chapter 5). The main idea is that a linear dependency may
occur among invariants, whose representation graphs have the
same numbers of nodes and the same numbers of edges going
from individual nodes. We assemble a matrix of coefficients
of all invariants generated by these graphs; the dependent
invariants can be identified by singular value decomposition
of this matrix. The eliminated invariants are called reducible,
the remaining linearly and product independent invariants are
called irreducible.

After the reducible invariants have been eliminated, there
may still be polynomial dependencies among remaining in-
variants. The only method, which guarantees identifying all
these dependencies is a kind of full search, but it is not
computationally feasible. Instead, we propose two heuristics.
No one guarantees to find all polynomial dependencies, but
both are close to this optimum.

The first heuristics is based on the idea that the number
of independent invariants ni should equal the number of
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independent variables (moments) nm minus the number of
free parameters of the transformation group np (which is 8
for invariants Vi (11) and 4 for Zi (16), if no translation is
considered; otherwise it increases by two). We can take the
generated irreducible invariants order by order, calculate the
number ni for each order separately and throw away all the
invariants above this number. This method is very fast. As the
result, we get the correct number of invariants, but there still
might exist polynomial dependencies among them.

The second method is inspired by [36], it can also be found
in [9]. If we have a dependent set of nk invariants, there must
exist function F such that

F (I1, I2, . . . , Ink
) = 0 . (21)

It must hold, for its derivatives with respect to an arbitrary
moment (the proof is in [45])

∂F (I1, I2, . . . , Ink
)

∂m
(s)
pq

= 0 . (22)

Let us sort somehow the moments m(s)
pq and change their labels

to mj , where j = 1, 2, . . . , nm. We can decompose Eq. (22)
to the form

∂F (I1, I2, . . . , Ink
)

∂mj
=

nk∑

`=1

∂F (I1, I2, . . . , Ink
)

∂I`

∂I`
∂mj

= 0 ,

(23)
where again j = 1, 2, . . . , nm.

The invariants as the functions of the moments are known,

so the factor
∂I`
∂mj

can be evaluated for specific values of the

moments. The factor
∂F (I1, I2, . . . , Ink

)

∂I`
is unknown, but it

is the same for all j, it depends only on `. Equation (23) can
be understood as a system of linear equations with the matrix

of elements aj` =
∂I`
∂mj

of size nk × nm and the vector of

unknown coefficients b` =
∂F (I1, I2, . . . , Ink

)

∂I`
of the size nk.

If the invariants are independent, the system can only have one
solution with b` = 0 for all `. Then the matrix (aj`) must have
full rank nk (it also means nk ≤ nm). If the rank nr is less
than nk, then only nr invariants are independent (in this case
nk can be greater than nm).

The above idea is clear and correct. However, when im-
plementing it, we encounter some problems in computing the
rank nr of matrix (aj`). It cannot be determined by symbolic
computation. We should calculate (aj`) on a representative
set of objects and set nr as the maximum particular rank.
This would be impractical and time-consuming. Instead, we
generate randomly five sets of moment values4 and calculate
the rank of the matrices via SVD using the Matlab in-built
function rank. Then we estimate nr as the maximum of these
five particular ranks.

If we end up with nr � nk, we must somehow select
nr invariants out of nk such that they are independent. We
apply a sequential incremental procedure. First, we select the

4Moment values of a vector field could be almost arbitrary, the only
constraint is so-called complete monotonicity [2].

simplest invariant available. As soon as a subset of invariants
has been selected, we add a new one such that the rank of (aj`)
increases by one. We iterate this process until the number nr
of the chosen invariants has been reached. Theoretically, this
algorithm may select a dependent set due to the nesting effect.
To improve it, we could implement a kind of backtracking, but
this is actually a borderline problem that need not be solved
in this case.

As we already pointed out, the graph generation algorithm
is limited by the maximum number of edges. We run it for
w = 9 at most. After eliminating the reducible invariants,
we obtained 1890 irreducible invariants of the type (11) and
6323 irreducible invariants of the type (16) in explicit form.
The selection algorithm based on the rank of (aj`) yielded 76
and 77 independent invariants, respectively. They are listed on
http://zoi.utia.cas.cz/affine-vector-fields. This process took 50
hours on a computer with the processor Intel Core i7-2600K
CPU 3.4 GHz and 16 GB operational memory. It might seem
too long, but note that this process is applied only once and
does not depend on any data. As soon as the invariant sets have
been created, we can apply them to any vector field without
the necessity of their re-generation.

VIII. NUMERICAL EXPERIMENTS

A. Verification of the invariance

In the first experiment, we verified the invariance property
under simulated conditions. We transformed a vector field
(which had been obtained as a gradient field of a grayscale
Lena image, see Fig. 5) by 100 randomly generated inde-
pendent TAFTs (i.e. transformations of the type (1), where
A and B were independent) and calculated five invariants of
V -type and five ones of Z-type. Theoretically, all Vk should
be exactly invariant, while some Zk may change since they
are generally not invariant. The experiment confirmed this
expectation (see Fig. 6 for visualization of the results). The
small fluctuations of the Vk values appear due to the field
resampling and interpolation, while the fluctuations of the Zk

values are really significant. If we constrain the transformation
such that B = A, invariants Zk become really invariant, as can
be seen in Fig. 6c.

When we relaxed the perfect conditions, the invariance
property became violated, but still the invariants exhibit a good
robustness. We repeated the previous experiment, but we had
added Gaussian noise independently to both field components
before the field was transformed. We can observe the behavior
of one selected invariant in Fig. 7, the others behave similarly.
If SNR > 10dB, the relative error is under 5%, which is fully
acceptable.

B. Template matching in a gradient field

In this experiment, we demonstrate the performance in
template matching, for the present again in a controlled envi-
ronment to be able to evaluate the results quantitatively. We
calculated a gradient field of a real photograph and randomly
selected 100 circular templates (see Fig. 8), the coordinates
of which were drawn from a uniform distribution. Then we
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(c)
Fig. 5. (a) Gradient field of a grayscale image, which served as a test
vector field in the synthetic experiments, (b) an example of the vector
field transformed by a randomly generated TAFT, (c) colormap for gradient
visualization, where the brightness corresponds to the magnitude and the hue
to the direction of the gradient.

transformed the gradient field by a TAFT transformation and
tried to localize the templates in the deformed field.

The matching was implemented as a search of all possible
template locations and the matching position is determined
as that one which minimizes `2-distance in the space of 33
invariants. If the localization error was less or equal than two
pixels, the match was considered correct, and false otherwise.

We run this experiment ten times for various deformations

(a)
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(c)
Fig. 6. The values of the invariants over 100 randomly generated total affine
transformations. (a) - Five selected invariants of the V -type exhibit very good
invariance (except a few cases when the transformation is close to singular),
(b) - Invariants of the Z-type are not really invariant under these conditions, (c)
- The same invariants of the Z-type when the transformations were constrained
such that B = A.

and various template sets. The success rate in each run depends
on the significance (structure) of the selected templates and
also on the particular deformation. It ranged from 100% to
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Fig. 7. The relative error of the invariant Z9 over 100 randomly generated
total affine transformations and SNR ranging from 30 dB to -5 dB. The
robustness is very good for SNR > 10dB. Only the ratio of the “noisy”
and original value is visualized.

Fig. 8. Gradient field with 100 randomly selected templates used in a single
run of the experiment. The colormap is the same as in Fig. 5.

75%, being almost uniformly distributed between 95% and
80%. For a comparison, we applied in each run also rotation
vector field invariants from [13]. Their success rate never
exceeded 10%, which clearly illustrates the advantage of
the affine invariants over the rotational ones if a true affine
deformation is present.

C. Template matching in a fluid flow field

In this experiment, we demonstrate the applicability of
the proposed invariants in an important problem from fluid
dynamics engineering – vortex detection in a fluid flow vector
field. We used the field showing the Kármán vortex street,
which is a repeating pattern of swirling vortices caused by the
flow of a fluid around blunt bodies. In the Kármán pattern,
we can see several vortices arranged into two rows. The
orientation of the “street” is given by the main flow direction
and is generally not known a priori. The data used in this
experiment come from a computer simulation, not from a real
physical measurement. The simulation resulted in a 300-frame
video, showing the time-development of the Kármán street.

In the initial frame, we selected a template with a typical
vortex, see Fig. 9. Then we deformed the video by two

different TAFTs, which comprised anisotropic scaling with
a factor of 5/4 and 7/4, respectively. The task is to find all
vortices of a similar shape modulo TAFT in each frame of
the deformed video. The search is performed in the space
of invariants Zk. We search for all local minima of `2-
distance below a user-defined threshold. Such a task definition
is rather “soft”, because it specifies neither the significance
of the vortices to be detected nor the required degree of
similarity with the template. The results may be controlled
by the number/order of the invariants we use5.

Fig. 9. The Kármán vortex street with the selected template (the first frame
of the video).

We matched the template to each frame individually. We
repeated the experiment for various maximum invariant order.
So, we matched the templates in ten videos, which means
we processed 3000 frames altogether. The resulting videos
showing the vortex tracking can be found at zoi.utia.cas.cz/
Experiment-with-Karman-Street. Two sample frames, one for
each deformation, can be seen in Fig. 10.

Fig. 10. The detected vortices in the deformed field when invariants Zi up
to 7th order were employed. The deformation comprised anisotropic scaling
with factors 5/4 (top) and 7/4 (bottom). The full videos can be found at
zoi.utia.cas.cz/Experiment-with-Karman-Street .

Since the ground truth is not known in this experiment, the
matching accuracy cannot be evaluated quantitatively. How-
ever, visual inspection of the videos provide a good insight
into the performance of the method. Most of the vortices
were correctly found, but we can also observe some gross
errors. They arose most probably because the neighborhood,
the invariants were calculated from, was always circular and of

5The number of matches may be influenced also by the choice of the
threshold. To eliminate this influence, we used thresholds of the same
significance in each moment order.
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Fig. 11. Vortex detection in NOAA images by means of the invariants. The images display the wind magnitude only but the orientation is available as well
and was used for the detection.

Fig. 12. Vortex detection by λci (left) and Delta method (right) from [22]. The first method missed many vortices, the second one exhibits numerous false
positives.

the same size as the original template. To comply with all the-
oretical assumptions, the neighborhood should be transformed
according to the inner transformation into an ellipse. However,
we did not follow this approach in order to simulate real-world
conditions (in practice, the transformation is unknown).

D. Vortex detection in NOAA data

In this experiment, we show on real data how our method
can be used for vortex detection in weather satellite images and
we also compare the results with two of “non-image” vortex
detection methods [22]. We used the world wind maps from
the NOAA satellite [46], which are publicly available through
www.esrl.noaa.gov/psd/. We used 18 frames from different
days. We extracted three typical circular templates of a wind
vortex of the same size (two from the northern and one from
the southern hemisphere). Then we tried to locate vortices of
the same shape in the other frames. The results achieved by
the invariants in two sample frames are shown in Fig. 11. For
the template matching, we used 35 independent invariants up
to the order five (both types Vi and Zi were included). Since

there is no measurable ground truth, we are left to a visual
evaluation. We can see the detection works quite well. Thanks
to the affine invariance, also some vortices that exhibit an
elongated shape due to data resampling in polar areas were
detected (when searching the polar areas, the templates were
not resampled, only the underlaying patch in the image was
taken elliptical rather than circular). The method missed some
vortices which look similar to the templates in magnitudes but
their structure is different.

Then we applied the method from [22], which is a typi-
cal representative of “non-image” methods. It calculates the
vorticity measure locally in each pixel from the gradient of
the wind velocity. A vortex is a connected region where
the vorticity measure exceeds a given threshold. We used
two vorticity measures proposed in [22] – λci and Delta
criterion, respectively. The results for one frame are shown
in Fig. 12. We can see that the sensitivity of the λci method
is low and only few vortices were found. On the other hand,
the Delta method has higher sensitivity but low specificity,
which leads to many false positives (as soon as the wind
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trajectory is curved enough, the area is considered to be
a vortex). Both algorithms were applied with the parameter
setting recommended in [22].

IX. CONCLUSION

This paper introduced invariants of vector fields w.r.t. total
affine transformation based on the moments of the vector field.
The behavior of VFs under TAFT is significantly different
from scalar and color images under standard affine transfor-
mation and the traditional techniques cannot be used. We
derived new invariants in explicit closed form and showed
that they can be represented by multilayer graphs. We also
proposed the algorithm for selection of a maximal independent
set of the invariants and use it to derive irreducible and
independent invariants up to the weight nine. We demonstrated
the performance of the invariants in template matching on
gradient fields, on simulated data from fluid dynamics, and
on real data from NOAA satellite. The comparison to rotation
invariants and two “non-image” vortex detection methods
showed the advantages of the proposed affine invariants.

APPENDIX A
Let B = (Bmn) be a regular outer transformation matrix.

Then

F ′kj = f ′1(xk, yk)f
′
2(xj , yj)− f ′1(xj , yj)f ′2(xk, yk) =

= [B11f1(xk, yk) +B12f2(xk, yk)] [B21f1(xj , yj)

+B22f2(xj , yj)]− [B11f1(xj , yj) +B12f2(xj , yj)]

[B21f1(xk, yk) +B22f2(xk, yk)] =

= B11B21f1(xj , yj)f1(xk, yk)

+B11B22f1(xk, yk)f2(xj , yj)

+B12B21f2(xk, yk)f1(xj , yj)

+B12B22f2(xk, yk)f2(xj , yj)

−B11B21f1(xj , yj)f1(xk, yk)

−B11B22f1(xj , yj)f2(xk, yk)

−B12B21f2(xj , yj)f1(xk, yk)

−B12B22f2(xj , yj)f2(xk, yk) =

= (B11B22 −B12B21) [f1(xk, yk)f2(xj , yj)

−f2(xk, yk)f1(xj , yj)] = JB · Fkj .

APPENDIX B
Let A = (Amn) be a regular outer and inner transformation

matrix. Then

D′kj = y′jf
′
1(x
′
k, y
′
k)− x′jf ′2(x′k, y′k) =

= (A21xj +A22yj) [A11f1(xk, yk) +A12f2(xk, yk)]

−(A11xj +A12yj) [A21f1(xk, yk) +A22f2(xk, yk)] =

= A21A11xjf1(xk, yk) +A21A12xjf2(xk, yk)

+A22A11yjf1(xk, yk) +A22A12yjf2(xk, yk)

−A11A21xjf1(xk, yk)−A11A22xjf2(xk, yk)

−A12A21yjf1(xk, yk)−A12A22yjf2(xk, yk) =

= (A11A22 −A12A21) [yjf1(xk, yk)− xjf2(xk, yk)] =
= JA ·Dkj .

APPENDIX C

In this appendix, we present the multilayer graphs represent-
ing the invariants V (f) (11). The black edges belong to E1 and
the magenta edges belong to E2. The invariants V1, V2, . . . , V8
shown here were selected from the set of the irreducible
invariants http://zoi.utia.cas.cz/affine-vector-fields, where they
are labeled as Vr1, Vr2, Vr4, Vr7, Vr15, Vr18, Vr3, and Vr19 re-
spectively. The invariants V1, V2, . . . , V8 create a complete and
independent set of the second and third-order VFAMIs. The
invariants V1 and V2 are shown also in their explicit forms.
For explicit formulas of all other invariants, please visit the
website http://zoi.utia.cas.cz/affine-vector-fields.
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APPENDIX D

In this appendix, we present the multilayer graphs represent-
ing the invariants w.r.t. special total transformation Z(f) (16).
The black edges belong to E1, the magenta edges belong to
E2, and the black-magenta edges depict the layer E3 (the
head-end of the edge is black). The invariants Z1, Z2, . . . , Z10

shown here were selected from the set of the irreducible
invariants http://zoi.utia.cas.cz/affine-vector-fields, where they
are labeled as Zr3, Zr4, Zr6, Zr8, Zr9, Zr19, Zr20, Zr21, Zr11,
and Zr13 respectively. The invariants Z1, Z2, . . . , Z10 create
a complete and independent set of the second and third
order. For higher-order invariants please visit the website
http://zoi.utia.cas.cz/affine-vector-fields.
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[13] B. Yang, J. Kostková, J. Flusser, T. Suk, and R. Bujack, “Rotation in-
variants of vector fields from orthogonal moments,” Pattern Recognition,
vol. 74, pp. 110–121, 2018.

[14] R. Bujack and J. Flusser, “Flexible basis of rotation moment invariants,”
in International Conferences in Central Europe on Computer Graphics,
Visualization and Computer Vision WSCG’17, V. Skala, Ed., 2017, pp.
11–20.

[15] M. Jiang, R. Machiraju, and D. Thompson, Visualization Handbook.
Elsevier Science, 2011, ch. Detection and visualization of vortices, pp.
295–312.

[16] D. Degani, A. Seginer, and Y. Levy, “Graphical visualization of vortical
flows by means of helicity,” AIAA journal, vol. 28, no. 8, pp. 1347–1352,
1990.

[17] C. Berdahl and D. Thompson, “Eduction of swirling structure using the
velocity gradient tensor,” AIAA journal, vol. 31, no. 1, pp. 97–103, 1993.



IEEE TRANS. ON PAMI, VOL. XX, NO. X, NOVEMBER 2019 16

[18] J. Jeong and F. Hussain, “On the identification of a vortex,” Journal of
fluid mechanics, vol. 285, pp. 69–94, 1995.

[19] D. C. Banks and B. A. Singer, “A predictor-corrector technique for
visualizing unsteady flow,” IEEE Transactions on Visualization and
Computer Graphics, vol. 1, no. 2, pp. 151–163, 1995.

[20] M. Roth and R. Peikert, “A higher-order method for finding vortex core
lines,” in Proceedings Visualization’98 (Cat. No. 98CB36276). IEEE,
1998, pp. 143–150.

[21] I. A. Sadarjoen, F. H. Post, B. Ma, D. C. Banks, and H.-G. Pagen-
darm, “Selective visualization of vortices in hydrodynamic flows,” in
Proceedings Visualization’98 (Cat. No. 98CB36276). IEEE, 1998, pp.
419–422.

[22] Q. Chen, Q. Zhong, M. Qi, and X. Wang, “Comparison of vortex
identification criteria for planar velocity fields in wall turbulence,”
Physics of Fluids, vol. 27, no. 8, p. 085101, 2015.

[23] D. Hilbert, Theory of Algebraic Invariants. Cambridge, U.K.: Cam-
bridge University Press, 1993.

[24] J. H. Grace and A. Young, The Algebra of Invariants. Cambridge,
U.K.: Cambridge University Press, 1903.

[25] J. J. Sylvester assisted by F. Franklin, “Tables of the generating functions
and groundforms for the binary quantics of the first ten orders,”
American Journal of Mathematics, vol. 2, pp. 223–251, 1879.

[26] ——, “Tables of the generating functions and groundforms for simulta-
neous binary quantics of the first four orders taken two and two together,”
American Journal of Mathematics, vol. 2, pp. 293–306, 324–329, 1879.

[27] I. Schur, Vorlesungen über Invariantentheorie. Berlin, Germany:
Springer, 1968, in German.

[28] G. B. Gurevich, Foundations of the Theory of Algebraic Invariants.
Groningen, The Netherlands: Nordhoff, 1964.

[29] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE
Transactions on Information Theory, vol. 8, no. 2, pp. 179–187, 1962.

[30] T. H. Reiss, “The revised fundamental theorem of moment invari-
ants,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 8, pp. 830–834, 1991.

[31] J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,”
Pattern Recognition, vol. 26, no. 1, pp. 167–174, 1993.

[32] T. Suk and J. Flusser, “Graph method for generating affine moment
invariants,” in Proceedings of the 17th International Conference on
Pattern Recognition ICPR’04. IEEE Computer Society, 2004, pp. 192–
195.

[33] ——, “Affine moment invariants generated by graph method,” Pattern
Recognition, vol. 44, no. 9, pp. 2047–2056, 2011.

[34] T. H. Reiss, Recognizing Planar Objects Using Invariant Image Fea-
tures, ser. LNCS. Berlin, Germany: Springer, 1993, vol. 676.

[35] T. Suk and J. Flusser, “Affine moment invariants generated by automated
solution of the equations,” in Proceedings of the 19th International
Conference on Pattern Recognition ICPR’08. IEEE Computer Society,
2008.

[36] M. S. Hickman, “Geometric moments and their invariants,” Journal of
Mathematical Imaging and Vision, vol. 44, no. 3, pp. 223–235, 2012.
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a b s t r a c t 

The paper presents a new theory of invariants to Gaussian blur. Unlike earlier methods, the blur ker- 

nel may be arbitrary oriented, scaled and elongated. Such blurring is a semi-group action in the image 

space, where the orbits are classes of blur-equivalent images. We propose a non-linear projection oper- 

ator which extracts blur-insensitive component of the image. The invariants are then formally defined 

as moments of this component but can be computed directly from the blurred image without an ex- 

plicit construction of the projections. Image description by the new invariants does not require any prior 

knowledge of the blur kernel parameters and does not include any deconvolution. The invariance prop- 

erty could be extended also to linear transformation of the image coordinates and combined affine-blur 

invariants can be constructed. Experimental comparison to three other blur-invariant methods is given. 

Potential applications of the new invariants are in blur/position invariant image recognition and in robust 

template matching. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

In image processing and analysis, we often have to deal with 

images which are degraded versions of the original scene. One of 

the most common degradations is blur , which usually appears as 

a smoothing or suppression of high-frequency details of the image. 

Capturing an ideal scene f by an imaging device with the point- 

spread function (PSF) h , the observed image g can be modeled as 

a convolution of both 

g( x ) = ( f ∗ h )(x ) . (1) 

This linear image formation model, even if it is very simple, is 

a reasonably accurate approximation of many imaging devices and 

acquisition scenarios. In this paper, we concentrate our attention 

to the case when the PSF is a Gaussian function with unknown 

parameters. 

Gaussian blur appears whenever the image has been acquired 

through a turbulent medium and the acquisition/exposure time is 

by far longer than the period of Brownian motion of the particles 

in the medium. Random fluctuations of the refractive index per- 

turb the phase of the light and blur the acquired image. Ground- 

based astronomical imaging through the atmosphere, long-distance 

aerial and satellite surveillance, taking pictures through a haze, un- 
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derwater imaging, and fluorescence microscopy are typical exam- 

ples of such situation (in some cases, the blur may be coupled with 

a contrast decrease). Gaussian blur is also introduced into the im- 

ages as the sensor blur which is due to a finite size of the sampling 

pulse. It may be sometimes applied intentionally as a low-pass fil- 

ter for noise suppression, as a graphic tool to soften the image, 

and as a preprocessing when building the scale-space image pyra- 

mid to prevent aliasing artifacts. Few examples of Gaussian-blurred 

images can be seen in Fig. 1 . 

Eq. (1) is an example of an inverse problem , where we want to 

estimate f from its degraded version g , while the PSF may be par- 

tially known or unknown. This task is ill posed. Without additional 

constraints, infinitely many solutions satisfying Eq. (1) may exist. 

Solving of (1) has been known in image processing literature as im- 

age restoration and can be traced back to1960’s. Despite of its long 

history, it has not been fully resolved. Although some of the cur- 

rent image restoration and deconvolution methods yield good re- 

sults, they rely on prior knowledge incorporated into regularization 

terms or in other constraints. If such prior knowledge is not avail- 

able, the methods may diverge or converge to a solution which is 

far from the ground truth. In case of a Gaussian blur, the paramet- 

ric shape of the PSF can be used as a prior but another specific 

problem appears. Since any Gaussian function is infinitely divisible 

(it can be expressed as a convolution of arbitrary number of Gaus- 

sians) and since the convolution is an associative operation, the 

deconvolution may eliminate only a part of the actual blur, while 

the rest of the blur may be mistakenly considered as a part of the 

https://doi.org/10.1016/j.patcog.2020.107264 

0031-3203/© 2020 Elsevier Ltd. All rights reserved. 
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Fig. 1. Examples of the Gaussian blur: (a) a sunspot blurred by atmospheric turbulence, (b) underwater photo blurred by light dispersion, (c) a picture taken through haze, 

(d) a digitally low-pass filtered image. 

Fig. 2. Four approaches to analysis of blurred images. Image restoration via deconvolution (first branch), description and recognition by blur invariants (second branch), 

matching by minimum blur-invariant distance (third branch), and brute-force searching an augmented database (last branch). 

original image. From a purely mathematical point of view, there is 

in principle no chance to avoid these formally correct but actually 

false solutions if no other prior information is available. 

In 1990 ′ s, some researchers not only realized all the above- 

mentioned difficulties connected with the solving of Eq. (1) but 

also found out that in many applications a complete restoration 

of f is not necessary and can be avoided, provided that an appro- 

priate image representation is used. A typical example is a recog- 

nition of objects in blurred images, where a blur-robust object de- 

scription forms a sufficient input for the classifier. This led to in- 

troducing the idea of blur invariants . Roughly speaking, blur invari- 

ant I is a functional fulfilling the constraint I( f ) = I( f ∗ h ) for any h 

from a certain set S of admissible PSF’s. Many systems of blur in- 

variants have been proposed so far. They differ from one another 

by the assumptions on the PSF, by the mathematical tools used for 

invariant construction, by the domain in which the invariants are 

defined, and by the application area which the invariants were de- 

signed for (see [1] , Chapter 6, for a survey of blur invariants and 

further references). 

Instead of constructing blur invariants of an individual image, in 

a few papers the authors proposed rather to use blur-invariant dis- 

tance to measure the similarity between a blurred query image and 

clear database elements. This may help for such PSF’s for which the 

invariants I ( f ) are difficult to design or expensive to calculate. 

The last group of methods replaces the theoretical construc- 

tion of blur invariants with a brute-force search of an augmented 

database, which contains numerous samples of artificially gener- 

ated blurred versions of each clear database image. 

Fig. 2 illustrates the differences between these four approaches. 

Relevant work of all these categories are reviewed in Section 2 . 

All current methods dealing with Gaussian blur, regardless of 

the category they belong to, suffer from two serious limitations. 

The first one is that they were designed for circular Gaussian blur 

only and cannot handle more general scenarios. The assumption 

of the circular symmetry of the blur is an intrinsic aspect of most 

methods. The generalization from circular to anisotropic arbitrary 

oriented Gaussian blur is non-trivial and requires completely new 

approaches. The second limitation, which is partially connected 

with the first one, is that almost all current methods cannot han- 

dle simultaneously the blur and geometric transformations, such 

as rotation, scaling and affine transformation. They either cannot 

be adapted to handle spatial transformations at all (this is true 

namely for the invariant distances) or the possibility of the adap- 

tation is coupled with the assumption of circular blur, which must 

not be violated under the spatial transformation (which is not the 

case of an affine transform). Since in practical applications the 

template rotation/scaling/affine transform may be present quite of- 

ten, this is a serious drawback. One might think that an anisotropic 

Gaussian blur does not appear often in practice but the opposite is 

true. If the sensor has different resolution in horizontal and vertical 

direction then, even if the ground-truth PSF is circular, the image 

is blurred differently in x and y . If, moreover, the sensor parame- 

ters are not adjusted w.r.t. the database images, we face the prob- 

lem of recognition of rotated/scaled/skewed and blurred images by 

an arbitrary-shaped Gaussian. An anisotropic Gaussian blur appears 

also if the turbulence in the medium, we are taking the picture 

through, is in certain direction more significant (due to wind for 

instance) than in the others. All this is a clear call for a discovery 

of more advanced invariants. 

The main novel contribution of this paper is the design of the 

combined invariants to Gaussian blur and spatial affine transforma- 

tion. This problem has not been tackled in the literature so far. This 

is accomplished through a derivation of the invariants w.r.t. blur- 

ring with a general (anisotropic) Gaussian kernel. The new blur 

invariants are defined by means of non-linear projection opera- 

tors and are able to handle much more general scenarios than 

any other existing method, as we demonstrate by experiments. 

This brings immediate practical benefits. When applying the earlier 
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invariants, we should first check whether or not the Gaussian blur- 

ring PSF is circularly symmetric, which is almost impossible to ver- 

ify from the blurred image itself. If this constraint has not been 

met, the method fails. The new invariants presented in this paper 

can be applied directly and do not require any prior estimation of 

the blurring PSF. The proposed combination with a rotation/affine 

invariance is based on the Substitution Theorem , which crowns the 

paper. 

The paper is structured as follows. After the literature survey 

given in the next Section, we introduce the mathematical back- 

ground of Gaussian blur in Section 3 . Blur invariants in Fourier do- 

main are proposed in Section 4 and their counterparts in image 

domain, moment-based blur invariants, are presented in Section 5 . 

In Section 6 , we formulate the Substitution Theorem, which allows 

to construct combined blur-affine invariants. Section 7 presents 

several recognition experiments on real real images and video. 

2. Related work 

State-of-the-art methods, dealing with the model (1) and with 

Gaussian blur, can be categorized into four main groups. In the se- 

quel, we give a brief overview of each of them. 

2.1. Restoration methods 

Several image restoration methods specifically designed for 

Gaussian blur have been published. They try to estimate the size 

(variance) of the blur and perform a non-blind deconvolution. 

Honarvar et al. [2] proposed to perform the deconvolution in the 

moment domain but that algorithm contains a time-consuming 

search in the parametric space and is sensitive to overestimation 

of the Gaussian variance. The APEX method [3] estimated the blur 

variance by fitting the image spectrum in the Fourier domain. 

There exist also several local methods that estimate the blur size 

by investigating the response on a point source or on an ideal 

edge [4,5] . A common weakness of these methods is their sensi- 

tivity to noise and the necessity of the prior knowledge where an 

ideal point or edge is located. Xue and Blu [6] proposed to esti- 

mate the blur variance by minimizing a proper functional and then 

to apply a non-blind Wiener filtering. As in the previous cases, the 

method is sensitive to the variance overestimation and relatively 

time consuming. Numerous other methods were developed spe- 

cially for atmospheric turbulence restoration [7] and most of the 

general blind-deconvolution algorithms (see, for instance, [8] for 

a survey and further references) can be used for Gaussian blur 

restoration as well with average results. 

Restoration methods are not direct competitors of the proposed 

invariant-based technique. They were primarily designed to yield 

an estimation of the ideal image for visual interpretation. When 

used for recognition purposes, they serve as a pre-processing of 

the query image which is then described by some standard fea- 

tures. Such approach is, however, slow and unstable due to the 

restoration artifacts. 

2.2. Brute force and convolution neural networks 

A brute-force approach to recognition of degraded images re- 

lies on high computational power of current super-computers. To 

avoid both inversion of the degradation model as well as the de- 

sign of the invariants, the training set is extended with all as- 

sumable degradations (using a proper sampling of the parametric 

space) of the training images. This process is called data augmenta- 

tion and is popular especially in the connection with deep convolu- 

tion neural networks (CNNs) where it may improve the recognition 

rate, see for instance [9] . Large-scale data augmentation is, how- 

ever, time and memory consuming. In our case, the augmentation 

would require to generate blurred and spatially deformed versions 

of each training image with Gaussian kernels and transformation 

parameters from a certain range, and a consequent massive train- 

ing. Since this would enlarge the training set by several orders, it 

is clear that this is not a feasible solution for databases containing 

many classes. Without data augmentation, even the state-of-the- 

art CNNs that perform excellently on clear images fail frequently 

when recognizing blurred inputs. As shown experimentally in [10] , 

their performance drops when they are used to recognize degraded 

images while they have been trained on clear images only [10] . 

2.3. Blur-invariant distances 

The idea of blur-invariant distance was firstly proposed by 

Zhang et al. [11] and has found several successors. All algorithms 

of this kind try to define a distance between two images, which 

fulfills the constrain d( f 1 , f 2 ) = d( f 1 ∗ h, f 2 ) for any admissible h . 

Zhang et al. [11,12] assumed circular Gaussian blur, estimated 

the blur level of the images to be compared (the authors took 

the integral of the image Laplacian as the blur estimator) and 

brought the images to the same blur level by blurring of the one 

which was less blurred. The distance d ( f 1 , f 2 ) is then defined ei- 

ther as a weighted L 2 -distance between the images of the same 

blur level [11] or as a geodesic distance on the surface of the man- 

ifold which contains the images of the same blur level [12] . The 

advantage of the Zhang’s method is its simplicity. It does not con- 

tain any deblurring, minimization and iterations. However, the pro- 

posed estimation of the blur level is questionable for two images 

with different amount of high-frequency information. 

Gopalan et al. [13] derived another blur-invariant distance mea- 

sure without assuming the knowledge of the blur shape but they 

imposed a limitation on the blur support size. The authors showed 

that all blurred versions of the given image create a linear sub- 

space, which can be understood as a point on Grassmann manifold. 

The blur-invariant distance between two images is then defined as 

the Riemannian distance between two points on the manifold. At 

the same time, this can be equivalently understood as measuring 

the angle between two subspaces. Although the Gopalan’s method 

does not explicitly use the parametric shape of the blur, it per- 

forms well on Gaussian blur. However, the method suffers from 

two major drawbacks – the absence of any constraints imposed on 

the blur (except the support size) admits physically non-realistic 

blurs with negative values and the calculation of the Riemannian 

distance is very time-consuming. 

The Gopalan’s method was improved by Vageeswaran et al. [14] , 

who introduced the positivity and energy-preserving constraints 

into the Gopalan’s method. Under these constraints, blur- 

equivalent images form a convex set in the image space. The blur- 

invariant distance between the query image and the template is 

defined as the distance between the point, representing the query 

image, and its projection onto the convex set containing all blurred 

versions of the template. Most recently, essentially the same idea 

was independently proposed by Lébl et al. [15] who also presented 

an efficient algorithm for distance calculation by quadratic pro- 

gramming. 

Fig. 3 visualizes, in a simplified way, the differences between 

the above mentioned distance measures. All three measures are 

compared to the proposed method in the experiments in Section 7 . 

2.4. Explicit blur invariants 

Invariants w.r.t. blur were originally proposed in the work by 

Flusser et al. [16,17] . The first blur invariants were invariant w.r.t. 

any centrosymmetric PSF, without taking into account its paramet- 

ric form. In 2015, Flusser et al. proposed a general theory of linear 
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Fig. 3. Illustration of three blur invariant distances: Zhang’s (Z) “image to image”, 

Gopalan’s (G) “subspace to subspace” and Lébl’s and Vageeswaran’s (P) “image to 

a convex set”. 

projection operators [18] , which allowed to design specific blur in- 

variants w.r.t. arbitrary N -fold symmetric blur, which led to an in- 

crease of their discriminability. The literature on blur invariants is 

relatively rich. Below we review only those methods, that were de- 

signed specifically for Gaussian blur. If a parametric Gaussian form 

of the blur kernel is assumed, the general invariants from [18] and 

similar can be still used but do not provide the optimal discrimi- 

nation power. 

Liu and Zhang [19] realized that the complex moments of the 

image, one index of which is zero, are invariant to Gaussian blur. 

Xiao [20] seemingly derived invariants to Gaussian blur but in fact 

he only employed the symmetry of the Gaussian rather than its 

parametric form. Höschl proposed invariants to Gaussian convo- 

lution in 1D and applied them to image histograms [21] . Flusser 

et al. [22] introduced a complete set of moment-based Gaussian 

blur invariants for the case that the Gaussian PSF is circularly 

symmetric. The experimental evaluation in [22] shows that these 

invariants, thanks to their specificity, outperform in template- 

matching experiments general methods such as cross-correlation, 

local phase quantization (LPQ) [23] and centrosymmetric blur in- 

variants [17] . They even performed better than the Zhang’s dis- 

tance [12] . 

Serious weakness of all above mentioned Gaussian-blur invari- 

ant methods is that they assume circularly symmetric Gaussian 

blur only. Some of them, such as [12] and [22] , could be gener- 

alized to work with elongated Gaussian blur in axial position (i.e. 

with a diagonal covariance matrix) but it is not possible to go be- 

yond this limitation. This is also the reason why these methods 

cannot combine the invariance to blur with the invariance to image 

rotation and/or affine transformation, which is a critical limitation 

for practical usage. 

Most recently, Kostková et al. [24] published the first paper ever 

on invariants w.r.t. Gaussian blur with a non-diagonal covariance 

matrix. In this paper, we adopt some preliminary results published 

in [24] . However, the idea of the combined invariants was not 

mentioned in [24] . 

3. Gaussian blur 

In this section, we establish the necessary mathematical back- 

ground which will be later used for designing the invariants. 

By d -dimensional image function (or just image for short) f ( x ) 

we understand any function from L 1 
(
R 

d 
)
, the integral of which is 

nonzero. For the sake of generality, we do not constraint it to be 

non-negative. In this paper, we are mostly dealing with 2D images, 

but many conclusions are valid or can be readily extended to arbi- 

trary d . 

By d -dimensional Gaussian G � we understand the function 

G �(x ) = 

1 

(2 π) d/ 2 
√ | �| exp 

(
−1 

2 

x 

T �−1 x 

)
, (2) 

Fig. 4. 2D general Gaussian function with the principal eigenvector oriented in ap- 

prox 30 degrees and with the eigenvalue ratio 6. 

where x ≡ (x 1 , x 2 , . . . , x d ) 
T and � is a d × d regular covariance ma- 

trix. Since the covariance matrix is positive definite, we have, for 

its determinant, | �| > 0. We consider centralized Gaussians only 

(convolution with a non-centralized PSF just introduces an extra 

shift of the image). 

The covariance matrix determines the shape of the Gaussian. 

If it is a multiple of a unitary matrix, then we get a circularly 

symmetric function. If it is diagonal but not unitary, we obtain 

an “elongated” Gaussian with elliptical contours in the axial po- 

sition (in that case, d -dimensional Gaussian can be factorized into 

a product of d one-dimensional Gaussians). Generally, the Gaus- 

sian may be arbitrary oriented and elongated. The eigenvectors of 

� define the axes of the Gaussian and the eigenvalues determine 

its elongation (see Fig. 4 ). 

The set S of all Gaussian blurring kernels is 

S = { aG �| a > 0 , � positive definite } . (3) 

Note that S is not a linear vector space because the sum of two dif- 

ferent Gaussians is not a Gaussian. For the sake of generality, we 

consider un-normalized kernels to be able to model also a change 

of the image contrast. The basic properties of the set S are listed 

below. The closure properties play the most important role in de- 

riving invariants. 

Proposition 1 (Integrability) . S ⊂ L 1 since 
∫ 

aG � = a . 

Proposition 2 (Convolution closure) . S is closed under convolution 

as 

a 1 G �1 
∗ a 2 G �2 

= a 1 a 2 G �1 +�2 
. 

Proposition 3 (Multiplication closure) . S is closed under point-wise 

multiplication as 

a 1 G �1 
· a 2 G �2 

= aG � , 

where 

a = 

a 1 a 2 

(2 π) d/ 2 
√ | �1 + �2 | 

and � = 

(
�−1 

1 
+ �−1 

2 

)−1 
. 

Proposition 4 (Fourier transform closure) . Fourier transform of 

a function from S always exists, lies in S and is given by 

F(aG �) = 

a 

(2 π) d/ 2 
√ | �| G �1 

, 

where 

�1 = 

1 

4 π2 
�−1 . 

Proposition 5 (Coordinate transform closure) . Let A be a regular 

d × d matrix describing a linear transform of the coordinates. Then 

S turns to itself under the transform x ′ = A x . This follows from the 

fact that 

aG �(A x ) = 

a 

‖ A ‖ 

G A −1 �A −T (x ) , 
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where ‖ A ‖ means the absolute value of the determinant of A and 

A 

−T ≡ ( A 

T ) −1 = ( A 

−1 ) T . 

In the sequel, we use a slightly extended definition of S with 

Dirac δ-function being incorporated 

S = { aG �| a > 0 , � positive definite } ∪ { aδ} . (4) 

Proposition 2 , along with the associativity of convolution, says that 

( S , ∗) is a semi-group (it is not a group since convolution is not 

invertible within S ). Hence, convolution with a function from S is 

a semi-group action on L 1 . 

The image space L 1 is factorized into blur-equivalent classes by 

the following relation. We say that the images f and g are Gaussian 

blur equivalent ( f ~ g ), if and only if there exist h 1 , h 2 ∈ S such that 

h 1 ∗ f = h 2 ∗ g. Thanks to Proposition 2 and to the commutativity 

of convolution, this relation is transitive, while symmetry and re- 

flexivity are obvious. At the same time, the equivalence classes of 

L 1 / ~ are related to the orbits of the above mentioned semi-group 

action. An orbit, originating from image f , is the set of all images 

that can be obtained from f as the result of the semi-group action. 

We will later show that the classes of L 1 / ~ are exactly the same as 

the orbits generated by certain special images (this assertion will 

be formulated as Theorem 2 in Section 4 ). 

The main idea of this paper is the following. We are going to 

find these “origins” of the orbits (we will call them primordial im- 

ages ) and describe them by means of properly chosen descriptors 

– invariants of the orbits. For instance, the set S itself forms an 

orbit with δ being its primordial image. The invariants stay con- 

stant within each equivalence class, while should distinguish any 

two images belonging to different classes. The invariance in ques- 

tion is in fact the invariance w.r.t. arbitrary Gaussian blur. The main 

trick, which makes this theory practically applicable, is that the in- 

variants can be calculated from the given blurred image without 

explicitly constructing the primordial image. 

In Section 4 , we define a projection operator that “projects” each 

image onto S . The primordial images and, consequently, Gaussian 

blur invariants are constructed by means of this projection opera- 

tor. 

4. Projection operators and blur invariants 

In linear algebra, projection operators onto linear subspaces are 

a well-established tool to decompose the given space into a direct 

sum of two subspaces, which usually have distinct properties. The 

idea of projecting the image space onto proper subspaces and then 

to define the image invariants in one of them was originally pro- 

posed by Flusser et al. in [18] , where the invariants w.r.t. convolu- 

tion with a symmetric non-parametric kernel were proposed. The 

authors constructed the projection onto the kernel subspace and 

defined the invariants in the complementary subspace. 

In this paper, we face an analogous situation – we may try to 

construct the image projection onto the set S , eliminate somehow 

this Gaussian component of the image and define the invariants 

in the complement. However, there is a significant difference from 

the mathematical point of view. While in [18] , linear projections 

onto linear, mutually orthogonal, subspaces were sufficient to re- 

solve the problem, here we have to find a projection onto the set S 

of Gaussian kernels, which is not a linear subspace. Clearly, the 

respective projection operator cannot be linear and must be con- 

structed in a different way than the operators proposed in [18] . 

Let us define the projection operator P such that it projects an 

image f onto the nearest un-normalized Gaussian, where the term 

“nearest” means the Gaussian having the same integral and covari- 

ance matrix as the image f itself. So, for d = 2 we define 

P f = m 00 G C , (5) 

where 

C = 

1 

m 00 

(
m 20 m 11 

m 11 m 02 

)
, 

and m pq is the centralized image moment 

m pq = 

∫ ∫ 
(x − c 1 ) 

p (y − c 2 ) 
q f (x, y ) d x d y (6) 

with ( c 1 , c 2 ) being the image centroid. 

Clearly, P is well defined for all “common” images 1 and actually 

if Pf exists, then always Pf ∈ S . Although P is not linear, it can still 

be called projection operator, because it is idempotent, i.e. P 2 = P . 

In particular, P (aG �) = aG � . Pf can be understood as a Gaussian 

component of f . Note, that the Gaussian component depends both 

on the image content and on the Gaussian blur (if any). Both fac- 

tors contribute jointly to Pf . So, Pf is not an estimate of the actual 

blur kernel. 

The key property of P , which will be later used for construc- 

tion of the invariants, is that it commutes with a convolution with 

a Gaussian kernel, as shown in the following lemma. 

Lemma 1. Let P be the above-defined projector, f ∈ L 1 be an image 

function such that Pf exists and let G � ∈ S. Then it holds 

P ( f ∗ G �) = P f ∗ G � . (7) 

Proof. To prove this lemma, we first recall how the image central 

moments are transformed under convolution. For arbitrary f and h 

we have 

m 

( f∗h ) 
00 

= m 

( f ) 
00 

m 

(h ) 
00 

, 

m 

( f∗h ) 
20 

= m 

( f ) 
20 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
20 

, 

m 

( f∗h ) 
11 

= m 

( f ) 
11 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
11 

, 

m 

( f∗h ) 
02 

= m 

( f ) 
02 

m 

(h ) 
00 

+ m 

( f ) 
00 

m 

(h ) 
02 

. 

Considering the projection of f ∗ G �, it must have a form P ( f ∗
G �) = aG K , where a = m 

( f∗G �) 
00 

= m 

( f ) 
00 

and 

K = 

1 

m 00 

(
m 20 + m 00 �20 m 11 + m 00 �11 

m 11 + m 00 �11 m 02 + m 00 �02 

)
. 

All moments m pq in the above equation are related to f . Hence, 

K = C + �. On the other hand, we have 

P f ∗ G � = m 00 G C ∗ G � = m 00 G C+� . 

The last equality follows from Proposition 2 . �

Now we can formulate the Fundamental theorem on blur in- 

variants. 

Theorem 1. Let P be the above-defined projector and let f be an im- 

age function such that Pf exists. Then 

I ( f ) = 

F( f ) 

F(P f ) 
(8) 

is an invariant to Gaussian blur, i.e. I( f ) = I( f ∗ h ) for any h ∈ S. 

Proof. The proof follows immediately from Lemma 1 . 

I ( f ∗ h ) = 

F( f ∗ h ) 

F(P ( f ∗ h )) 
= 

F ( f ) F (h ) 

F(P f ∗ h ) 
= 

F ( f ) F (h ) 

F (P f ) F (h ) 
= 

F( f ) 

F(P f ) 
= I( f ) 

�

Note that if Pf exists, then I ( f ) is well defined on all frequencies 

because the denominator F(P f ) is a Gaussian and hence non-zero 

everywhere. 

1 If m 00 = 0 or if C is not positive definite or if some second-order moment(s) 

are infinite, then Pf is undefined. Although such functions exist in L 1 , they do not 

describe real-life images and we do not consider them in this paper. 
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Fig. 5. Visualization of the main idea: The image is projected onto a set of Gaus- 

sians and this projection (i.e. the Gaussian part of the image) is used to “decon- 

volve” the image in Fourier domain. Blur-invariant primordial image is obtained as 

the result of this operation. Moments of the primordial image are blur invariants 

introduced in Eq. (15) . 

The following Theorem says that the invariant I ( f ) is complete , 

which means the equality I ( f 1 ) = I ( f 2 ) occurs if and only if f 1 and 

f 2 belong to the same equivalence class. 

Theorem 2. Let f 1 and f 2 be two image functions and I ( f ) be the in- 

variant defined in Theorem 1 . Then I ( f 1 ) = I ( f 2 ) if and only if there 

exist h 1 , h 2 ∈ S such that h 1 ∗ f 1 = h 2 ∗ f 2 . 

The proof is straightforward by setting h 1 = P f 2 and h 2 = P f 1 . 

The completeness guarantees that I ( f ) discriminates between the 

images from different equivalence classes, while stays constant in- 

side each class due to the invariance property. This assertion not 

only shows the limitations (the images belonging to the same 

equivalence class can never be discriminated) but also explains 

why these invariants outperform general blur invariants if Gaus- 

sian blur is present (equivalence classes w.r.t. a general blur are 

larger than those w.r.t. Gaussian blur). 

Invariant I ( f ) is a ratio of two Fourier transforms which may be 

interpreted as a deconvolution in frequency domain. Having an im- 

age f , we seemingly “deconvolve” it by the kernel Pf . This deconvo- 

lution always sends the Gaussian component of f to δ-function. We 

call the result of this seeming deconvolution the primordial image 

f r = F 

−1 (I( f )) . 

Hence, I ( f ) can be viewed as Fourier transform of f r . Note that f r 
is actually the “maximally possible” deconvolved image f , which 

creates the origin of the respective orbit (see Fig. 5 for schematic 

illustration). Primordial image can be also understood as a kind 

of normalization (or canonical form) of f w.r.t. arbitrary Gaussian 

blurring. 

It should be noted, that the primordial image is a useful theo- 

retical concept of blur invariants but it is not actually constructed 

in the implementation of the method. It may lie outside L 1 or may 

even not exist but it does not matter – the existence of its Fourier 

transform, the invariants are obtained from, is guaranteed. 

5. Invariants in the image domain 

Although I ( f ) itself could serve as an image descriptor, its di- 

rect usage brings certain difficulties and disadvantages. On high 

frequencies, we divide by small numbers which may lead to pre- 

cision loss. This effect is even more severe if f is noisy. This prob- 

lem could be overcome by suppressing high frequencies by a low- 

pass filter, but such a procedure would introduce a user-defined 

parameter (the cut-off frequency) which should be set up with re- 

spect to the particular noise level. Another disadvantage is that we 

would have to actually construct F(P f ) in order to calculate I ( f ). 

That is why we prefer to work directly in the image domain, where 

moment-based invariants equivalent to I ( f ) can be constructed and 

evaluated without an explicit calculation of Pf . 

First of all, we recall that geometric moments of an image are 

Taylor coefficients (up to a constant factor) of its Fourier trans- 

form 

2 

F( f )(u ) = 

∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p u 

p (9) 

(for simplicity, and also to show the independence of the dimen- 

sion d , we use the multi-index notation). 

Theorem 1 can be rewritten as 

F(P f ) (u ) · I( f )(u ) = F( f ) (u ) . 

All these three Fourier transforms can be expanded similarly 

to (9) into absolutely convergent Taylor series 

∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

(P f ) 
p u 

p ·
∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

M p u 

p = 

∑ 

p ≥0 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p u 

p , 

(10) 

where by M p we denote the Taylor coefficient of I ( f ) (we will show 

later that M p is in fact the moment of the primordial image). 

Comparing the coefficients of the same powers of u we obtain, 

for any p , 

∑ 

k ≤p 

(−2 π i ) | k | 
k ! 

(−2 π i ) | p −k | 
(p − k )! 

m 

(P f ) 
k 

M p −k = 

(−2 π i ) | p | 
p ! 

m 

( f ) 
p , (11) 

which can be read as 

∑ 

k ≤p 

(
p 

k 

)
m 

(P f ) 
k 

M p −k = m 

( f ) 
p . (12) 

In 2D, Eq. (12) reads as 

p ∑ 

m =0 

q ∑ 

n =0 

(
p 

m 

)(
q 

n 

)
m 

(P f ) 
mn M p−m,q −n = m 

( f ) 
pq . (13) 

Since P f = m 

( f ) 
00 

G C , where C is given by the second-order mo- 

ments of f , we can express its moments m 

(P f ) 
mn without actually 

constructing the projection Pf . Clearly, m 

(P f ) 
mn = 0 for any odd m + n 

due to the centrosymmetry of G C . For any even m + n, m 

(P f ) 
mn can 

be expressed in terms of the moments of f as 

m 

(P f ) 
mn = m 

( f ) 
00 

m 

(G C ) 
mn 

= m 

( f ) 
00 

� m 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ m −n 
2 

(−1) i − j 

(
m 

2 i 

)(
i 

j 

)
(m + n − 2 i − 1)!! ·

·(2 i − 1)!! 

(
m 11 

m 00 

)m −2 j (m 20 

m 00 

) j (m 02 

m 00 

) n −m 
2 + j 

. (14) 

The above expression was obtained by substituting our particular C 

into the formula for moments of a 2D Gaussian. (The moment for- 

mula for a diagonal covariance matrix is well known. For a general 

covariance matrix, it is not commonly cited in the literature. It can 

be either deduced from the papers presenting general approaches 

to moment calculation [25,26] or obtained directly from the defi- 

nition by integration.) 

2 We assume that all moments are finite, which is guaranteed for all images with 

bounded support. 
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Now we can isolate M pq on the left-hand side and obtain the 

recurrence 

M pq = 

m 

( f ) 
pq 

m 00 

−
p ∑ 

l=0 

q ∑ 

k =0 
l+ k  =0 , 

l+ k even 

(
p 

l 

)(
q 

k 

) � k 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ k −l 
2 

(−1) i − j 

(
k 

2 i 

)(
i 

j 

)
(l + k − 2 i − 1)!! ·

· (2 i − 1)!! 

(
m 11 

m 00 

)k −2 j ( m 20 

m 00 

) l−k 
2 + j ( m 02 

m 00 

) j 

M p−l,q −k . (15) 

This recurrence formula defines Gaussian blur invariants in the im- 

age domain. Since I ( f ) has been proven to be invariant to Gaussian 

blur, all coefficients M pq must also be blur invariants. The M pq ’s 

can be understood as the moments of the primordial image f r . The 

power of Eq. (15) lies in the fact that we can calculate them di- 

rectly from the moments of f , without constructing the primordial 

image explicitly either in frequency or in the spatial domain and 

also without any prior knowledge of the blurring kernel orienta- 

tion. Thanks to the uniqueness of Fourier transform, the set of all 

M pq ’s carries the same information about the function f as I ( f ) it- 

self, so the cumulative discrimination power of all M pq ’s equals to 

that of I ( f ). 

Some of the invariants (15) are always trivial. Regardless of f , 

we have M 00 = 1 , M 10 = M 01 = 0 because we work in centralized 

coordinates, and M 20 = M 11 = M 02 = 0 since these three moments 

were already used for the definition of Pf . Note that the joint null- 

space of all M pq ’s except M 00 equals the set S , which is implied 

by the fact that P (aG �) = aG � and the corresponding primordial 

image f (S) 
r = δ. 

Eq. (15) can be turned to an equivalent non-recursive form 

M pq = 

1 

m 00 

p ∑ 

l=0 

q ∑ 

k =0 
l+ k even 

(−1) 
k + l 

2 

(
p 

l 

)(
q 

k 

) � k 2 � ∑ 

i =0 

i ∑ 

j=0 

j≥ k −l 
2 

(−1) i − j 

(
k 

2 i 

)(
i 

j 

)
(l+ k −2 i −1)!! ·

· (2 i − 1)!! 

(
m 11 

m 00 

)k −2 j ( m 20 

m 00 

) l−k 
2 + j ( m 02 

m 00 

) j 

m 

( f ) 
p−l,q −k 

. (16) 

While the recursive formula is efficient if we want to calculate all 

invariants up to a certain order, the non-recursive one is useful for 

calculating a single invariant of higher order. 

6. Combined invariants 

One of the main benefits of the assumption that the covariance 

matrix is not constrained to be diagonal is the existence of com- 

bined invariants to blur and affine transformation of the coordi- 

nates. If the blurring Gaussian kernel was assumed in the axial po- 

sition and hence C was constrained to be diagonal, we could never 

combine blur with an affine transformation or rotation, because it 

would violate the assumption. This is why the combined invariants 

have not been constructed yet (except a very special case of a uni- 

tary covariance matrix and rotation, see [22] ). 

The key idea of designing the combined invariants follows from 

the observation how the primordial image is transformed if the 

original image has undergone an affine transformation f ′ (x ) = 

f (A x ) . By means of Propositions 3 –5 , it is easy to show that 

I 
(

f ′ 
)
(u ) = I( f ) 

(
A 

−T u 

)
. 

Applying inverse Fourier transform, we get 

f ′ r (x ) = ‖ A ‖ f r (A x ) , 

where f ′ r is the primordial image of f ′ . This relation tells us that 

the primordial image is transformed by the same coordinate trans- 

formation as the original image. 

Since the invariants M pq in Eq. (15) are in a fact moments of f r , 

we can simply substitute them into any affine or rotation moment 

invariant (we only should avoid those containing second-order mo- 

ments because they would lead to trivial invariants) and we end up 

with the combined invariant. The theory of both affine and rotation 

moment invariants has been well elaborated and several complete 

and independent invariant sets are available, see for instance [1,27–

31] . Since blur invariants M pq also form a complete and indepen- 

dent set (see Theorem 2 ), we get in this way a complete and inde- 

pendent set of combined invariants. This strong result is summa- 

rized in the following Theorem. 

Theorem 3 (Substitution Theorem) . Let f be an image function and 

let M pq be invariants w.r.t. Gaussian blur defined by Eq. (15) . Let 

f ′ (x ) = f (A x ) , A being a regular 2 × 2 matrix. Let J(m pq | p, q = 

0 , . . . , r) be an absolute invariant of image moments w.r.t. A, 

i.e. J(m 

′ 
pq | p, q = 0 , . . . , r) = J(m pq | p, q = 0 , . . . , r) . Then J(M pq | p, q = 

0 , . . . , r) is a relative invariant w.r.t. both A and Gaussian blur as 

‖ A ‖ 

w J(M 

′ 
pq | p, q = 0 , . . . , r) = J(M pq | p, q = 0 , . . . , r) , 

where w is the weight 3 of invariant J(m pq | p, q = 0 , . . . , r) . 

Proof. Since f ′ r (x ) = ‖ A ‖ f r (A x ) , the moments M 

′ 
pq of f ′ r (x ) are re- 

lated to the moments ˜ M pq of f r ( A x ) as M 

′ 
pq = ‖ A ‖ ˜ M pq for any p 

and q . In the theory of affine moment invariants [1,29] , it is well 

known that any absolute invariant J(m pq | p, q = 0 , . . . , r) must have 

a form of a finite sum, where all terms are products of K mo- 

ments ( K is called the degree of the invariant) divided by (K + w ) - 

th power of m 00 . The statement of Theorem 3 follows immediately 

from this fact. Note that the invariance of J(M pq | p, q = 0 , . . . , r) 

w.r.t. Gaussian blur is obvious and does not depend on the order 

in which the blurring and the coordinate transformation A have 

been applied. They are commutative in the sense that ( f ∗ h ) ′ = 

1 / ‖ A ‖ ( f ′ ∗ h ′ ) and still h ′ ∈ S thanks to Proposition 5 . �

Since A is usually unknown in practice, absolute invariants are 

more convenient image descriptors than the relative ones. An abso- 

lute combined invariant can be obtained as a ratio of two relative 

invariants of the same weight or, more generally, as a ratio of any 

two products of various relative invariants such that the factor ‖ A ‖ 
is cancelled. 

7. Experiments 

Numerical experiments presented in this section aim to illus- 

trate the properties of the proposed invariants, namely to evaluate 

the invariance w.r.t. arbitrary Gaussian blur, the recognition power 

and the robustness to additive noise. First, we prove the invariance 

on static images and also on a real video, where the Gaussian blur 

model is not exactly valid. As sample applications, we show how 

the blur invariants can be used for object tracking in a video and 

for recognition of blurred faces. A comparison to other state-of- 

the-art methods is given. Finally, we show the performance of the 

combined affine-blur invariants in digit recognition. 

7.1. Invariance verification on public datasets 

This basic experiment is a verification of the invariance of func- 

tionals M pq from Eq. (15) . We used two public-domain image 

databases, which contain series of Gaussian-blurred images (see 

Fig. 6 for two examples). We used 30 series (original and five 

blurred instances of various extent of the blur) from the CID:IQ 

dataset [32] and 23 series from the CSIQ dataset [33] . For each of 

them, we calculated the invariants up to the 9th order. The relative 

error of all invariants on each image series was always between 

10 −4 and 10 −3 , which illustrates a perfect invariance. The fluctu- 

ation within a single series is so small that in no way diminishes 

3 The term weight of an invariant has been commonly used in the theory of algebraic 

invariants, see for instance [1] , [29] for the definition. For any given invariant, its 

weight is known and follows from the way how the invariant has been constructed. 
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Fig. 6. Two examples of the Gaussian-blurred image series from the CSIQ database. 

Fig. 7. The values of a single invariant calculated over 23 series (from left to right) consisting of six blurred instances of the originals (from front to back). The value is 

always almost constant within each individual series while significantly different for distinct images. 

Fig. 8. Four sample frames of a video blurred due to the hot air turbulence. 

the ability to discriminate two different originals, as is illustrated 

in Fig. 7 . 

7.2. Verification on a real video 

In this experiment, we used publicly accessible video 4 

from [7] showing a static scene (front side of a building) captured 

intentionally through a turbulent hot air. Due to the turbulence, 

the video is degraded by a time-varying blur, which is, according 

to [7] , expected to be approximately Gaussian. Four sample frames 

of the sequence are shown in Fig. 8 . 

Similarly to the previous experiment, we calculated the blur in- 

variants M pq from Eq. (15) up to the 8th order for each frame. The 

graph in Fig. 9 summarizes the results. It is worth noting that the 

invariants exhibit a perfect stability even if the real blur is proba- 

bly not exactly Gaussian. 

7.3. Tracking in a video 

The proposed blur invariants can be used also for tracking ob- 

jects in a blurred video. We took an indoor video that starts with 

a clear frame. Then the video becomes more and more blurred. The 

blur is Gaussian with a time-varying covariance matrix. In the first 

frame, we chose the template of interest that we track by invariant 

template matching in the rest of the video. 

4 http://alumni.soe.ucsc.edu/ ∼xzhu/doc/turbulence.html . 

Fig. 9. The values of the invariants up to the 8th order calculated over 99 frames 

of a video corrupted by a real turbulence blur. The value of each invariant is always 

almost constant on all frames. 

To show the strength of the method, each frame was processed 

independently (in reality, the motion information could be used to 

speed up and stabilize the tracking but here we wanted to demon- 

strate solely the performance of the invariants). We can evaluate 

visually that the tracking is reasonably stable and accurate and ac- 

tually follows the real motion of the template. Sample frames with 

the detected template are shown in Fig. 10 . 5 

5 The full video is available at http://zoi.utia.cas.cz/files/Tracking _ changing _ blur _ 

5th _ order.gif . 
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Fig. 10. Tracking in a blurred video. The initial clear image with the template (top 

left), sample frames of the blurred video with the template detected. 

Table 1 

The recognition rate [%] of the tested methods for Gaussian blur of 

various size. 

Blur size (Gaussian) Invariants Zhang Lébl Gopalan 

7 × 7 100 100 100 74 

11 × 11 100 86 100 25 

15 × 15 100 48 100 5 

7.4. Recognition of blurred faces 

In this experiment we show the performance of the proposed 

invariants in face recognition applied on blurred photographs. 

We compare the proposed method with the blur-invariant dis- 

tances proposed by Gopalan et al. [13] , Zhang et al. [11] , and Lébl 

et al. [15] (see Section 2.3 for a brief description of these competi- 

tors). We calculated also the standard � 2 -distance, which does not 

take the blur into account at all, but it expectedly failed completely 

so we did not include it in the tables. 

We used 38 distinct human faces from the Extended Yale 

Face Database B [34] (the same database was used in [13] ). This 

database contains clear faces only, so we created the blurred and 

noisy query images artificially (see Fig. 11 for some examples). In 

all tests, moment invariants up to the 9th order were used. 

First, we tested the recognition rate as a function of the blur 

size. The blurred, noise-free query image was always classified 

against the clear 38-image database. While moment invariants and 

the Lébl’s method are 100% successful even for relatively large 

blurs, the Gopalan’s method surprisingly does not reach compara- 

ble results. Its success rate drops very rapidly with the increasing 

blur size, even if we provided the correct blur size as the input 

parameter of the algorithm. The Zhang’s method performs well for 

small blurs (see Table 1 ). It should be pointed out, that the re- 

ported 100% success rate of the invariants was achieved thanks to 

a controlled noise-free environment, where the Gaussian convolu- 

tion model held perfectly. In the next two experiments, these ideal 

conditions will be relaxed and we will monitor the impact on the 

method performance. 

If we apply a significantly non-Gaussian blur (we used a direc- 

tional motion blur in this experiment), we observe a drop of the 

performance of the invariants, while the other methods perform 

more or less the same as in the case of Gaussian blur (see Table 2 ). 

This is not surprising, because the derivation of the invariants was 

inherently based on the assumption of a Gaussian blur while the 

Gopalan’s and Lébl’s methods assume only the knowledge of the 

blur size, which was fulfilled in this experiment. The invariants are 

relatively sensitive to the violation of the Gaussian blur shape. 

Then, we tested the noise robustness of all methods. We cor- 

rupted the query images with an additive white normally dis- 

Table 2 

The recognition rate [%] of the tested methods for a motion blur 

of various size. 

Blur size (motion) Invariants Zhang Lébl Gopalan 

7 × 7 87 100 100 99 

11 × 11 71 72 100 76 

15 × 15 45 17 100 40 

Table 3 

Noise robustness test: The recognition rate [%] achieved for various SNR. 

SNR [dB] Invariants Zhang Lébl Gopalan OG Invariants 

20 100 100 100 76 100 

10 100 55 100 51 100 

5 99 44 99 37 99 

2 97 37 87 27 97 

0 92 32 79 26 95 

tributed noise of SNR from 20 dB to 0 dB. The success rate of the 

invariants as well as of the Lébl’s method remains very high even 

for heavy noise, while the other two methods appear to be vulner- 

able. Table 3 summarizes the results. High robustness of the invari- 

ants can be explained by the fact that the moments, being integral 

features, average-out the noise. 

Many papers on moments have shown experimentally that or- 

thogonal (OG) moments are more robust to numerical errors and 

also to noise. This is due to the fact that OG moments can be 

calculated indirectly using recurrent formulas, which avoids work- 

ing with very high and very low numbers. For this reason, vari- 

ous OG moments have been implemented in moment invariants, 

where they replace traditional geometric moments (see [1] , Chap- 

ter 7, for a survey of OG moments). In the context of blur invari- 

ants (but not to Gaussian blur), this approach was applied for in- 

stance in [35–41] . 6 We tested the use of Legendre moments in the 

proposed Gaussian blur invariants. We expressed geometric mo- 

ments as functions of Legendre moments, substituted these func- 

tions into (15) and obtained in this way blur invariants in terms of 

Legendre moments. We applied these invariants on the same noisy 

facial images as above. The results are shown in the rightmost col- 

umn of Table 3 . The recognition rate is the same as for the invari- 

ants from geometric moments except SNR = 0 dB, where a slightly 

better robustness of OG moments appears. 

Finally, we compared the speed of all methods. We evaluated it 

as a function of the image size. The results are shown in Fig. 12 . 

The time refers to a single query and does not comprise any pre- 

calculations on the database images. 

The proposed invariants work with a highly-compressed image 

representation (only the moments up to the 9th order were used). 

All other methods use a complete pixel-wise representation, how- 

ever with various time-efficiency. The Lébl’s method is the most 

efficient for small images. As the image size increases, moment in- 

variants become more time efficient. They outperform the Lébl’s 

method for images larger than approximately 600 × 600 pixels. 

It should be noted, that the complexity of calculation of the in- 

variants is determined solely by the complexity of moment com- 

putation. For a graylevel N × N image, this is typically O ( N 

2 ) and 

does not depend on the actual blur size (unlike the Zhang’s and 

Gopalan’s methods). Although some faster algorithms exist for mo- 

ment computation [43] , we did not use them here because they 

are efficient for special types of images only. 

6 It should be noted that the use of OG moments in blur invariants is solely be- 

cause of their favorable numerical properties. As proved by Kautsky [42] , blur in- 

variants in any two distinct polynomial bases are theoretically equivalent. 
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Fig. 11. Sample face images used in the experiments: clear database faces (images 1–3), blurred (images 4–6) and noisy (images 7–9) query images. 

Fig. 12. Time [s] needed to compare a query image to a single database image as 

a function of the image size. The blur size was fixed at 15 × 15 pixels. The time 

axis is shown in a logarithmic scale. 

Fig. 13. 100 randomly blurred and affinely deformed pictures of digit 4. 

7.5. Recognition of blurred and affinely deformed objects 

In the last experiment, we demonstrate the power of the com- 

bined affine-blur invariants proposed in Section 6 . For this test, 

we used the popular MNIST dataset of handwritten digits [44] . 

For each digit 0 , 1 , . . . , 9 we randomly generated 100 blurred and 

affinely deformed samples (see Fig. 13 showing the test set of 

the digit 4) and classified them against the original dataset. The 

affine-blur invariants used in this test were constructed according 

to the Substitution Theorem ( Theorem 3 ), where we used the well- 

established Affine moment invariants (AMIs) [29] as J ( m pq ). 

To illustrate the advantage of the combined invariants, we com- 

pared them both to “pure” AMIs [29] and to “pure” Gaussian blur 

invariants (15) . The combined invariants yielded the overall recog- 

nition rate 98.5 %, while the AMIs only 20 % and the blur invariants 

performed even worse yielding 15.6 % success rate. This clearly 

shows that the Substitution Theorem brings invariants of a new 

quality. 

The comparison to the Gopalan’s, Zhang’s, and Lébl’s invariant 

distances as in the face recognition experiment does not make 

sense here because all those methods require the images to be 

precisely geometrically aligned and collapse completely in case of 

spatial misalignment. 

8. Conclusion 

Blur invariants w.r.t. blur kernels which are defined by certain 

generic properties rather than by their parametric form were al- 

ready discovered for centrosymmetric [17] , radial [45] , N -fold ro- 

tational symmetric [18,46] , and N -fold dihedral [47] blurs, respec- 

tively. In this paper, we focused on parametric kernels since they 

allow to derive more specific invariants which yields a better dis- 

crimination power. We proposed new invariants w.r.t. Gaussian 

blur. Unlike all earlier works on Gaussian blur, our method does 

not require the Gaussian blurring kernel to be circularly symmetric 

and works with arbitrary Gaussians. We found a non-linear projec- 

tion operator by means of which the invariants are defined in the 

Fourier domain. Equivalently, the invariants can be calculated di- 

rectly in the image domain, without an explicit construction of the 

projections. We showed that the new invariants can be made in- 

variant also to a linear transformation of the coordinates thanks 

to the Substitution Theorem, which was not possible in case of 

earlier Gaussian-blur invariants. Experimental evaluation and com- 

parison to alternative approaches (namely to various blur-invariant 

distances) showed a superior performance in most scenarios in 

terms of the recognition rate and speed. 

In a future work, it would be interesting to couple the proposed 

blur-invariant representation with the CNNs in order to make the 

CNNs blur-invariant without any data augmentation. CNNs proba- 

bly cannot be fed directly with the moment invariant (15) . Instead, 

we envisage to use the Fourier-domain invariants (8) for this pur- 

pose. However, since the distinctive patterns in spectral domain 

are totally different from those in the image domain, one proba- 

bly cannot use any publicly available pre-trained network and will 

have to train (and maybe also to design) the network by himself. 
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Abstract
Observation of random variables is often corrupted by additive Gaussian noise. Noise-
reducing data processing is time-consuming and may introduce unwanted artifacts. In this
paper, a novel approach to description of random variables insensitive with respect to Gaus-
sian noise is presented. The proposed quantities represent the probability density function of
the variable to be observed, while noise estimation, deconvolution or denoising are avoided.
Projection operators are constructed, that divide the probability density function into a non-
Gaussian and a Gaussian part. The Gaussian part is subsequently removed by modifying the
characteristic function to ensure the invariance. The descriptors are based on the moments of
the probability density function of the noisy random variable. The invariance property and
the performance of the proposed method are demonstrated on real image data.

Keywords Multivariate density · Gaussian additive noise · Noise-robust estimation ·
Moments · Invariant characteristics

1 Introduction

Observation of random variables in a real-world environment is often corrupted by numerous
degradation factors, among which an additive random noise is one of the most frequent
ones. The noise may be introduced by measurement device imperfection, by storing and
transmitting, and also due to the precision loss when pre-processing the data.
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Let X be the multivariate random variable to be observed and let N be an additive noise.
As a result of the measurement, we actually observe realizations of a random variable Z =
X + N instead of X , which is observed only indirectly. If the signal-to-noise ratio is low, the
corruption is so heavy that it is very difficult to deduce anything about the observed variable
X from the sample data Z . This situation occurs frequently in many application areas such
as signal and image processing, econometrics, experimental physics, geoscience, and many
others.

A large amount of effort has been spent to develop methods that decrease the impact of the
noise and allow to estimate either the entire X or at least some of its discriminative character-
istics. These methods can be categorized into three main groups – denoising, deconvolution,
and robust estimators.

Denoising methods aim to suppress the noise in the data and are usually based on linear
or non-linear filtering of high-frequency components and data smoothing. The advantage
of denoising methods is that they provide a complete estimate of X while the common
disadvantage howevermay be artifacts and deformation or loss of high-frequency information
contained in original X .

Deconvolutionmethods try to recover the probability density function (PDF) fX of random
variable X from the estimated PDF of the observed Z . Assuming the noise is independent of
the data, it is well known that the PDF of the sum of two independent random variables is a
convolution of the densities of the summands, i.e. in our case

fZ (x) = ( fX ∗ fN ) (x) =
∫

fX (x − s) fN (s) ds. (1)

Deconvolution methods could theoretically yield an accurate estimate of fX but in reality
they suffer from several drawbacks. Blind deconvolution methods, which do not require
any prior knowledge of the noise density fN , are numerically unstable, may converge to an
incorrect solution and are very time-consuming. Non-blind methods are better in that sense
but obtaining a good estimate of fN may be in practice difficult or even impossible.

Robust estimators try to estimate certain characteristics of X such asmean value, variance,
skewness and higher-order moments directly from the observed samples of Z . Standard
formulas for sample moments do not perform well on noisy data. This is why some authors
proposed not to resolve Eq. (1) but only to find some characteristics which are not affected
by convolution. Such characteristics, called convolution invariants, must be the same for
both fZ and fX and should be calculated directly from sample observations of Z . This
modern approach [it was firstly proposed in Höschl IV and Flusser (2016)] may be very
efficient whenever a complete knowledge of fX is not necessary, typically in noisy signal
classification and signal/image retrieval. In this paper, we develop this idea substantially.

The main idea of this paper is as follows. We assume that noise N is a multivariate Gaus-
sian random variable with zero mean and a general covariance matrix, which is unknown.
We introduce projection operators, acting on the space of all PDF’s, that divide each PDF
into two components. Based on the known parametric form of fN , we show that one of the
components can be used to compute quantities, which are invariant with respect to convolu-
tion in Eq. (1). These quantities can be used directly to characterize fX without any noise
estimation, denoising and deconvolution. Unlike Höschl IV and Flusser (2016), where the
idea of invariant descriptors was used heuristically for univariate densities only, we present
here a consistent theory for multivariate densities.

After providing the state-of-the-art review in Sect. 2, we formulate the problem formally
in Sect. 3. Section 4 is dedicated to the construction of a projection operator and its rela-
tion to invariants. This theory is then used for the construction of moment-based invariants
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descriptors in r dimensions (r -D) in Sect. 5. In Sect. 6, one and two-dimensional cases are
analyzed in detail and explicit invariant formula is derived. Finally, the experimental section
verifies the theory on simulated as well as real data from image processing area and shows a
potential application in image retrieval.

2 Literature review

2.1 Denoisingmethods

Majority of the articles on denoising comes from signal processing area, such as Motwani
et al. (2004), Buades et al. (2005b). These methods often lead to subjective improvement but
they can cause the loss of important information, the formation of artifacts, smoothing of the
signal, etc. The simplest way of removing noise from the signal is a linear filtering, when
the corrupted signal is convolved with some low-pass filter. This method, however, leads to
deformation of the high-frequency components of the signal. Non-linear filtering methods,
such as median filter and the anisotropic filter designed by Perona and Malik (1990), attempt
to avoid the effect of signal blurring. One of the state-of-the-art methods is the Non-Local
Means algorithm based on the self-similarity of signal patches (Buades et al. 2005a). Various
methods rely on a transform domain filtering, e.g. wavelet-based denoising (Chen et al. 2013;
Cho and Bui 2005), ridgelet- and curvelet-based denoising (Starck et al. 2002), and Fourier
Wiener filtering (Khireddine et al. 2007). Other methods make use of minimization of some
functionals, e.g. a total variation method (Chambolle and Lions 1997) and a method using
higher order statistics (Teuber et al. 2012).

2.2 Deconvolutionmethods

Many books and papers dedicated to this topic have been published. The tutorial arti-
cle (De Brabanter and De Moor 2012) and the book (Meister 2009) gave an introduction
to deconvolution problems in non-parametric statistics (density estimation based on contam-
inated data, errors-in-variables regression, and image reconstruction). One of the approaches
is to estimate the density of Z in the non-parametric form by a kernel estimator and then
to use Fourier transform to recover the distribution of X (Carroll and Hall 1988; Stefan-
ski and Carroll 1990; Fan 1992); another is Bayesian approach (Efron 2014) and wavelet
approach (Pensky et al. 1999). The paper (Butucea et al. 2009) tries to estimate E[ψ(X)],
where ψ is a known integrable function and the distribution of N is known. In Johannes
et al. (2009), the authors deal with the estimation of deconvolution, when only an estimate of
the distribution of N is available. The authors of Comte and Lacour (2011) suppose that the
distribution of N is unknown and present an adaptive estimator. The goal of Kappus et al.
(2014) is analogous, but they do not impose any assumption on the shape of the characteristic
function of noise.

2.3 Convolution invariants

The use of convolution invariants for a noise-robust PDF estimation was firstly proposed in
the paper Höschl IV and Flusser (2016), which was motivated by histogram-based image
retrieval. The authors presented invariants defined for univariate densities only. Their invari-
ants were based onmoments of a histogram of the noisy graylevel image. However, the results
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of Höschl IV and Flusser (2016) cannot be easily extended to multidimensional signals and
multivariate PDF’s. It should be noted that convolution invariants have been thoroughly stud-
ied in a different context and domains (Flusser and Suk 1998; Flusser et al. 2003; Galigekere
and Swamy 2006; Ojansivu and Heikkilä 2007; Zhang et al. 2010; Gopalan et al. 2012;
Makaremi and Ahmadi 2012; Pedone et al. 2013; Flusser et al. 2015) but those results are
not suitable for noisy PDF estimation due to a very specific convolution kernel shapes, that
do not correspond to real-life noise PDFs.

3 Problem formulation

Let X and N be two r -D independent random variables with probability density functions
fX and fN , respectively, where N ∼ N (0,Σ) is a normally distributed zero-mean random
variable with a regular covariance matrix Σ . Then fN has the well-known Gaussian shape

fN (x) = 1√
(2π)r |Σ | exp

{
−1

2
xTΣ−1x

}
, (2)

where x = (x1, . . . , xr )T . Most frequently, but not necessarily, X is the multivariate random
variable which represents the original non-corrupted data and N is an additive Gaussian
noise.

Under the above assumptions, the PDF of the sum of these variables

Z = X + N (3)

exists and is given by
fZ = fX ∗ fN . (4)

Our aim is to design a functional (descriptor) I , which is invariant with respect to the
noise. Since we construct this functional on the space of the PDFs, we require

I ( fX ) = I ( fZ ) = I ( fX ∗ fN ) (5)

for any normally distributed zero-mean random variable N with arbitrary (unknown) covari-
ance matrix Σ .

To comply with Eq. (5) is, however, not the only desirable property of I . At the same time,
I must be discriminable, which means

I ( fX ) �= I ( fY ) (6)

for any X and Y such that they are not linked as Y = X + N for any Gaussian N .
If we design such invariant I , it maps the original data as well as all its corrupted versions

into a single point in an abstract feature space, while any two distinct data are mapped into
distinct points regardless of their potential corruption. Such invariant feature space can be
efficiently used for data description and classification.

4 Construction of the invariant

The main idea of constructing invariants to Gaussian convolution is based on projections of a
PDF onto the set of all Gaussian functions. In this way, we extract the Gaussian component of
the random variable. We will show that the ratio of the characteristic functions of the original
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random variable and of its Gaussian component possesses the desired invariant property. In
the sequel, we introduce the necessary mathematical background.

Let us denote the set of all probability density functions with finite second-order central
moments as D and the set of all zero-mean Gaussian probability density functions

S = { fN |Σ � 0}, (7)

where Σ � 0 denotes the positive-definiteness of covariance matrix Σ . The set S exhibits the
following basic properties.

Lemma 1 S is closed under convolution.

It holds for any two Gaussian PDFs fN1 and fN2 with covariance matrices Σ1 and Σ2

that the result of convolution

fN1 ∗ fN2 = fN

is again a Gaussian PDF with covariance matrix Σ = Σ1 + Σ2.
Let us define projection operator P that projects an arbitrary f ∈ D on the “nearest”

Gaussian PDF in the sense of having the same covariance matrix. In particular, P : D �→ S
is defined as

P f = fN , (8)

where fN has the same covariance matrix as f . The operator P is well defined for all PDFs
with a regular covariance matrix1 and is idempotent, i.e. P2 = P . Note that P is not linear,
so it is not a projector in the common sense known from linear algebra.

For our purposes, the crucial property of operator P is that it commutes with the convo-
lution with functions from S. This property is necessary for the construction of the invariant
descriptors.

Lemma 2 Let f ∈ D and g ∈ S. Then
P( f ∗ g) = P f ∗ g. (9)

Proof First, we investigate the right-hand side, wherewe have a convolution of twoGaussians
with covariancematricesΣ f andΣg , respectively. Thanks to Lemma1, this is also aGaussian
with covariance matrix Σ = Σ f + Σg .

On the left-hand side, P( f ∗ g) is by definition a Gaussian with covariance matrix Σ f ∗g .
It is well known that central second-order moments of any PDF, which is a convolution of
two other PDFs, are sums of the same moments of the factors. The same is true for entire
covariance matrix. Hence, we have Σ f ∗g = Σ f + Σg = Σ , which completes the proof.


�
Nowwe formulate the principal theorem of the paper that introduces the invariant descrip-

tor of a probability density function as a ratio of certain characteristic functions.

Theorem 1 Let f ∈ D and let P be the projection operator defined above. Then the ratio of
characteristic functions Φ of the densities f and P f

I ( f ) = Φ( f )

Φ(P f )
(10)

is an invariant to convolution with a Gaussian probability density function, i.e. I ( f ) =
I ( f ∗ fN ) for any fN ∈ S.

1 It is possible to extend this definition also to singular covariancematrices by admitting degenerated Gaussian
densities in S.
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Proof First, note that I is well defined. Both characteristic functions always exist (they
actually equal to the Fourier transform of the respective PDF) and the denominator is non-
zero everywhere. The rest of the proof follows from the fact that P commutes with the
Gaussian convolution (see Lemma 2). If fN ∈ S, then

I ( f ∗ fN ) = Φ( f ∗ fN )

Φ(P( f ∗ fN ))
= Φ( f ∗ fN )

Φ(P f ∗ fN )
= Φ( f )Φ( fN )

Φ(P f )Φ( fN )
= Φ( f )

Φ(P f )
= I ( f ).


�
The following Theorem claims that the invariant I is a complete description of f modulo

convolution with a Gaussian.

Theorem 2 Let f1 and f2 be two probability density functions and I ( f ) be the invariant
defined in Theorem 1. Then I ( f1) = I ( f2) if and only if there exist fN1 , fN2 ∈ S such that
fN1 ∗ f1 = fN2 ∗ f2.

Proof Let us prove the forward implication first.

I ( f1) = I ( f2) ⇒ Φ( f1)

Φ(P f1)
= Φ( f2)

Φ(P f2)
⇒ Φ( f1)Φ(P f2) = Φ( f2)Φ(P f1)

⇒ Φ( f1 ∗ P f2) = Φ( f2 ∗ P f1) ⇒ f1 ∗ P f2 = f2 ∗ P f1.

So, we have found fN1 = P f2 and fN2 = P f1. The backward implication follows directly
from Theorem 1. 
�

In 1D, Theorem 2 can be formulated in a stronger way. I ( f1) = I ( f2) if and only if there
exists fN ∈ S such that fN ∗ f1 = f2 or fN ∗ f2 = f1. This statement follows from the
divisibility of 1D Gaussian functions but it cannot be extended into the multidimensional
case.

Theorems 1 and 2 show that invariant I entirely and uniquely describes any PDF modulo
convolution with a Gaussian. In particular, for any f ∈ S we have I ( f ) = 1.

5 Invariants frommoments

Although theoretically the invariant I ( f ) fully describes f , several problems can occur when
dealing with finite-precision arithmetic. The division by small numbers leads to the precision
loss. To speed up the computation, it would be better to avoid the explicit construction of
Φ( f ) and Φ(P f ). In this Section, we show that it can be accomplished by constructing
moment-based invariants equivalent to I ( f ).

We can rewrite Eq. (10) as
Φ(P f ) · I ( f ) = Φ( f ). (11)

If the 1D characteristic function is n-times differentiable, then its k-th derivative (k ≤ n) is
the moment mk of the PDF up to a multiplicative constant. The same is true in multidimen-
sional case. If the characteristic function Φ( f ) has a Taylor expansion, then we can write,
using a multi-index notation,

∞∑
k=0

|k|�=0, even

i|k|

k! m
(P f )
k uk ·

∞∑
p=0

i|p|

p! Apup =
∞∑
q=0

i|q|

q! m
( f )
q uq. (12)

123



Multidimensional Systems and Signal Processing (2020) 31:1113–1143 1119

where the Ak’s are Taylor coefficients of I ( f ). By equating the coefficients of the same
power of u we get

k∑
l=0

|l| even

i|l|

l! m
(P f )
l

i|k|−|l|

(k − l)! Ak−l = i|k|

k! m
( f )
k , (13)

which is equivalent to

k∑
l=0

|l| even

(
k
l

)
m(P f )

l Ak−l = m( f )
k . (14)

Since I ( f ) is an invariant, each Ak must be an invariant, too. Re-arranging the previous
equation, we obtain a recursive formula for Ak

Ak = m( f )
k −

k∑
l=0

|l|�=0, even

(
k
l

)
m(P f )

l Ak−l. (15)

For characteristic functions that do not possess a complete Taylor expansion, we may
use the Taylor’s Theorem. If the characteristic function has continuous derivatives up to the
order n + 1, then one can write the characteristic function as the Taylor expansion up to the
n-th order plus the remainder. Consequently, the invariants up to the order n exist and follow
Formula (15).

An intuitive meaning of the invariants Ak is the following one. They could be understood
as moments of a “mother function” fm , which is a function that has no Gaussian component
and that “generates” f in the sense that there exist g ∈ S such that f = g ∗ fm . In general,
fm lies outside D or may not even exist but the invariants Ak can be, however, still applied
correctly.

Another noteworthy point is that generally we have to calculate moments of both f and
P f in order to evaluate Eq. (15). In the next Section, we show how the construction of P f
and calculation of its moments can be avoided in one and two dimensions.

6 Invariants in one and two dimensions

In many practical applications, especially in signal and image processing, the PDFs we want
to characterize are one dimensional or two dimensional functions. In this Section, we show
how Eq. (15) can be further simplified in those cases.

In 1D, the recursive form of invariants (15) obtains the form

Ap = m( f )
p −

p∑
k=2
k even

(
p

k

)
(k − 1)!!mk/2

2 Ap−k . (16)

This simplification follows from the fact that the odd-order moments of a 1D Gaussian
with standard deviation σ vanish and the even-order ones are given as mp = σ p(p − 1)!! .
Furthermore, σ 2 ≡ m(P f )

2 = m( f )
2 which allows us to express all moments of P f in terms of
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those of f . Thanks to this, Eq. (16) can be equivalently rewritten in a non-recursive form as

Ap =
p∑

k=0
k even

(−1)k/2
(
p

k

)
(k − 1)!!mk/2

2 m( f )
p−k . (17)

In 2D, simplification of Eq. (15) is much more difficult. First, we need to express the
moments of 2D Gaussian PDF explicitly. If we assume that the two components of our
random variable N are independent, then we can constraint the covariance matrix of P f to
be diagonal. Then the general moment of P f is simply

m(P f )
pq = (p − 1)!!(q − 1)!!mp

20m
q
02 (18)

and we obtain similar formulas as in 1D case

Amn = m( f )
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

)
(l − 1)!!(k − 1)!!ml/2

20 m
k/2
02 Am−l,n−k (19)

in the recursive form and

Amn =
m∑
l=0

n∑
k=0

l+k even

(−1)
k+l
2

(
m

l

)(
n

k

)
(l − 1)!!(k − 1)!!ml/2

20 m
k/2
02 m( f )

m−l,n−k (20)

in the explicit form.
However, the assumption of independent components and hence of the diagonal covariance

matrix is not realistic in practice. We illustrate this by real data from signal processing. The
signal was captured in two spectral bands, both corrupted by a thermal noise of the sensor.
This noise can be approximatively modelled as an additive Gaussian noise. In Fig. 1, we
can see the 2D histogram of the noise extracted from a real image by means of denoising
algorithm and subtracting from the original. The normalized histogram is a sampled PDF of
the noise. It is clearly apparent that there is a strong correlation between the noise in red and
green channels. So, to make our method applicable in practice, we have to assume a general
covariance matrix of P f .

For a general covariance matrix, the formula for moments of a 2D Gaussian is much more
complicated and is not commonly cited in the literature. It can be either deduced, after some
manipulations, from the papers presenting general approaches tomoment calculation (Isserlis
1918; Bar andDittrich 1971;VonRosen 1988; Blacher 2003; Schott 2003; Triantafyllopoulos
2003; Song and Lee 2015) or obtained directly from the definition by integration as shown
in “Appendix A”.

The moments of 2D Gaussian PDF are given as

m(P f )
mn =

�m
2 �∑

i=0

i∑
j=0

j≥m−n
2

(−1)i− j
(
m

2i

)(
i

j

)
(m + n − 2i − 1)!!(2i − 1)!!mm−2 j

11 m j
20m

n−m
2 + j

02 . (21)
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Fig. 1 2D histogram of the noise
extracted from red and green
channels of a real digital image.
The on-chip postprocessing
introduces a correlation about
0.33 between the noise in
individual channels (Color figure
online)

If we use Formula (21), the general recursive definition of the invariants (15) turns to the
form

Amn =m( f )
mn −

m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!

· (2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02Am−l,n−k,

(22)

which can again be rewritten into a non-recursive formula

Amn =
m∑
l=0

n∑
k=0
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(−1)
k+l
2

(
m

l

)(
n

k

) � k
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i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!

· (2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02m

( f )
m−l,n−k .

(23)

The proof of equivalence of (22) and (23) can be found in “Appendix B”.

7 Implementation

The formulas (22) and (23) are both efficient in the sense that they contain only the moments
of f , which is the PDF of the observed noisy random variable. As we will see in the next
section, in practice the theoretical PDF is often replaced with a normalized multidimensional
histogram, which is in fact a sampled PDF and is easy to compute directly from the observed
values. Neither the characteristic function Φ( f ) nor the projection P f are necessary to
be constructed. This is the main advantage of the moment approach over the direct use of
I ( f ). Hence, in numerical implementation, we always use the moment-based invariants Amn

instead of I ( f ).
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The value of Amn can be calculated either from (22) or (23). Since they are theoretically
equivalent, the choice depends on the particular task. If all invariants up to a certain order
are to be computed, the recursive formula is recommended. Formula (23) is more efficient if
we want to compute a single invariant only. The complexity of both depends mainly on our
ability to compute the moments of the PDF efficiently. Since the PDF may be of arbitrary
shape, we calculate the moments from definition without any speed-up tricks.

In Eqs. (22) and (23), we may use either general or central moments, depending on the
nature of the random variable we observe. If there is a systematic shift of the values, which
is not important in our application, we use central moments that are not influenced by this
shift. Regardless of what moments we employ, some invariants are trivial. A00 = 1 and
A20 = A02 = A11 = 0 because of the normalization constraints. If we use central moments,
then also A10 = A01 = 0. Trivial invariants are useless for the PDF description and should
be removed from the feature vector to reduce its dimensionality.

When calculating the moments of a large-scale histogram, we face a threat of a precision
loss due to rounding or even a floating-point overflow. This may happen particularly for
higher-order moments and degrade the calculation of the invariants. However, in practice we
usually obtain a sufficient characterization of the PDF from the invariants Amn of reasonably
low orders (in our experiments in the next section, the maximum order was 25) and we do
not encounter any significant precision loss, but one has to be aware of this danger.

8 Experiments

In this section, we demonstrate the invariance property and performance of the proposed
method on real data from image processing.

We can view an image as a realization of a random variable, the dimension of which
is given by the number of spectral/color bands. Its normalized multidimensional histogram
plays the role of a sampled multivariate PDF. The image has been corrupted by an additive
Gaussian noise in all bands, which is assumed to be independent of the image content.

8.1 Invariance to simulated noise

In this experiment, we show the invariance property if the noise exactly follows the Gaussian
model. We used real color photographs as the test data and we corrupted them by an artificial
Gaussian noise generated from thePDF (2).Wedid not cut off the values belowzero and above
255 in order to fulfill the assumption of normal distribution. We used two families of noise,
each represented by 100 realizations. Medium noise (SNR about 32 dB) was generated such
that the eigenvalues of the correlation matrix were set λ1 = 6, λ2 = 3.5 and the correlation
coefficient was random. Heavy noise (SNR about 28) was generated in the same way using
λ1 = 15 and λ2 = 8. To get 2D histograms, we used the RGB channels pairwise.

In Fig. 2, we can see the first test image. Figure 3 shows a segment of the original and
noisy images, respectively, to illustrate the visual appearance of the noise. Figure 4 shows
the 2D histogram of blue and green channels and the histogram of the same channels of the
noisy image.

We calculated more than 300 invariants using Eq. (22) of a histogram of each noisy image
and took the mean value of each invariant (separately for medium noise and heavy noise).
Thenwe calculated relative errors between this mean value and the invariants calculated from
the original “clear” histogram. The relative errors of all invariants are visualized in Fig. 5
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Fig. 2 The original image of a meadow

Fig. 3 The segment of the original image (left) and of the noisy image (right). The noise is visually apparent

Fig. 4 2D histogram of the blue and green channels of the original clear image (left) and of the same image
corrupted by an additive Gaussian noise (right). Note that the “noisy” histogram is actually a smoothed version
of the original histogram
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Fig. 5 Mean relative errors of the invariants (top) and of the moments (bottom) up to the order 25. The 25×25
matrix contains the color-encoded values of the mean errors of individual invariants/moments. Only the upper
left triangle of the matrix is valid. Top left matrix shows invariants calculated from 100 instances of medium
noise (see the text for the details on noise generation), top right matrix shows the same for heavy noise. The
bottom matrices display the same for the moments (Color figure online)

(top). We can see that almost all errors are reasonably low. Relative errors higher than 1%
appear only for heavy noise in case of few invariants of orders between 20 and 25. To show
the advantage of the proposed invariants over the plain moments, we calculated the same for
the moments of the histograms, see Fig. 5 bottom. Comparing the corresponding values, we
can see the errors of the moments are by one order higher since the moments do not posses
the invariance property and are heavily influenced by noise. The errors of the invariants are,
however, not zero as one could expect from the theory. Especially for higher-order invariants,
we face precision loss in calculations. Another source of errors is that the theory assumes
continuous Gaussian convolution kernel while in the discrete domain we work with sampled
and truncated Gaussian.

We repeated this experiment on other test images and with various color band pairs. In
most cases, the results were fully comparable to those described above (see Figs. 6, 7 and 8
for three other examples). However, we found a few examples where the relative errors of the
invariants are significantly higher, even for medium noise. This occurs when the histogram is
extremely sparse. In such a case, the sampling errors are more significant and the invariants
properties derived in a continuous domain are violated (see Fig. 9 for an example).

8.2 Invariance on real pictures

In the second experiment, we tested the invariance on real noisy images captured by a compact
camera. The noise comes mainly due to physical processes on the CCD chip and has several
components. Photon shot noise, thermal noise, readout noise and background noise are the
main ones. An additive noise component can be reasonably modelled by a Gaussian random
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Fig. 6 Picture of a living room a with its 2D histograms b and mean relative errors (c, d). Mean relative errors
of the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 7 Picture of a couple a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 8 Picture of a market a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of red–green (first row), blue–green (second
row) and red–blue (third row) channels were used (Color figure online)
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Fig. 9 Picture of a mountain a with its 2D histograms b and mean relative errors (c, d). Mean relative errors of
the invariants for medium noise (first column) and heavy noise (second column), and of the moments for the
same noise (third and fourth column, respectively). Histograms of blue–green (first row) and red–blue (second
row) channels were used (Color figure online)
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Fig. 10 A patch of a real noisy picture (left) and the same patch with the noise suppressed by time averaging
over 10 images (right)

variable uncorrelated with the image values while the signal-dependent component (which
is less significant here) follows Poisson distribution and cannot be handled by the proposed
method. The main difference from the synthetic case is that the pixel values are always
between 0 and 255, which cuts off the tails of the noise distribution and makes the PDF
different from a Gaussian.

To obtain test images with visually apparent noise, we deliberately took pictures of the
same scene in a dark environment using low exposure and high ISO. Such setup amplifies
the noise, see Fig. 10 left for an example. Since it was not possible to capture the reference
clear image directly, we estimated it by a time-averaging of twenty noisy images of the same
scene, see Fig. 10 right.

We calculated three 2D histograms (R–G, R–B, and G–B) of each noisy image and the
denoised image and computed the invariants. The ratio between the invariants is plotted in
Fig. 11. Ideally, it should be close to one. We can, however, observe some oscillations around
this theoretical value. This is caused by several factors. The actual noise distribution is not
exactly normal (the normality hypothesis was in all cases rejected by the Pearson’s test)
and the convolution model between the clear and noisy histogram is not valid in boundary
regions of the color space. Still, the invariants are relatively stable (especially comparing to
moments and other common PDF characteristics) and provide a noise-robust description of
the histogram, which can be used for instance in histogram-based image retrieval systems.

8.3 Application in image retrieval

The previous experiments indicated that one of the potential application areas of the proposed
convolution invariants could be a content-based image retrieval (CBIR). CBIRmethods often
relies on histograms, because two images with similar histograms are mostly perceived as
similar by humans (Pass and Zabih 1996; Wang and Healey 1998; Swain and Ballard 1991).
Another attractive property of the histogram is that it does not depend on image translation,
rotation and (if normalized to the image size) on scaling. Simple preprocessing can also
make the histogram insensitive to linear changes of the contrast and brightness of the image.
Current CBIR methods based on comparing histograms are sensitive to noise in the images.
We already demonstrated that an additive noise leads to a histogram smoothing, which results
in a drop of the retrieval performance because different histograms tend to be more and more
similar to each other.
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Fig. 11 The ratio of the invariants up to the order 8 of noisy and clear images for histogram of red and
blue channels (left), red and green channels (right) and green and blue channels (bottom), respectively. Black
crosses denote the median of the invariants (Color figure online)

We envisage the use of the proposed invariants as noise-robust descriptors of multidi-
mensional histograms, similarly as the authors of Höschl IV and Flusser (2016) used the
1D convolution invariants for graylevel histogram recognition. The new invariants could be
helpful in the case of noisy database and/or noisy query images (see Fig. 12 for the proposed
method outline).

9 Conclusion

Weproposed a newmethod for description of random variables, which is robust to an additive
Gaussian noise. The method is based on the fact that the PDF of the noisy variable is a
convolution of the PDF of the original unobservable variable and the PDF of the noise.

We constructed a projection operator onto the set of all Gaussian probability density
functions, removed the Gaussian part of the functions and described the complement by

123



Multidimensional Systems and Signal Processing (2020) 31:1113–1143 1131

Fig. 12 Noise-robust CBIR. From left to right: original image and its histogram, noisy images with smoothed
histograms, representation of the histograms by the proposed convolution invariants, image retrieval based
on histogram similarity measured by the invariants. The actual implementation works with color images and
multidimensional histograms

invariants composed of moments. The method does not require any estimation of the noise
parameters, which makes it attractive for practical usage The 2D case was discussed in more
details because of its importance in applications. The invariance property was demonstrated
on experiments from image processing area.

A Explicit formula for Gaussianmoments in two dimensions

In this Appendix, we present the derivation of the explicit formula for 2D central moments
of the Gaussian probability density function fN (x) with the covariance matrix

Σ =
(

σ1 ρ

ρ σ2

)
.

It holds for the inverse matrix Σ−1 and its determinant

Σ−1 = 1

|Σ |
(

σ2 −ρ

−ρ σ1

)
≡

(
a b
b c

)
, |Σ−1| = ac − b2 = 1

|Σ | .

If m + n is odd, the moments vanish due to the symmetry

m( fN )
mn = 0.
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For m + n even we have

m( fN )
mn = 1

2π
√|Σ |
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xm yne− 1
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We can separate the integrals and use the formula for 1D moments of Gaussian function:
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We may reduce the quadratic form in the exponent to a sum of squares in the following way

1
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)
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2
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Then using the substitution

x + b
a y = u
y = v

another formula for moments of bivariate Gaussian distribution is obtained
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When we compare these two results, it is obvious that the coefficients of negative powers
must be zero. Hence,moments are composed of positive powers of the elements of covariance
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matrix only
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B Proof of the equivalence

Let us show that Formulas (22) and (23) for convolution invariants are equivalent. The proof
is done by induction.

Proof A00 = 1 in Formula (22) as well as in Formula (23).
Let us assume (m, n), m + n > 0. From the induction assumption, the explicit formula

is valid for all indices (p, q), where p ≤ m, q ≤ n and (p, q) �= (m, n).

Amn = mmn −
m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!(2i − 1)!!

· mk−2 j
11 m

l−k
2 + j

20 m j
02Am−l,n−k =

= mmn −
m∑
l=0

n∑
k=0

l+k �=0,
l+k even

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)

· (l + k − 2i − 1)!!(2i − 1)!!mk−2 j
11 m

l−k
2 + j

20 m j
02

·
n−k∑
s=0

m−l∑
t=0

s+t even

(−1)
s+t
2

(
m − l

t

)(
n − k

s

) � s
2 �∑

α=0

α∑
β=0

β≥ s−t
2

(−1)α−β

(
s

2α

)(
α

β

)

(2α − 1)!!(s + t − 2α − 1)!!
· ms−2β

11 m
t−s
2 +β

20 mβ
02mm−l−t,n−k−s =

= mmn −
m∑
l=0

n∑
k=0

l+k �=0,
l+k even

m!
l!(m − l)!

n!
k!(n − k)!

� k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(2i − 1)!!

· (l + k − 2i − 1)!!

· mk−2 j
11 m

l−k
2 + j

20 m j
02

n−k∑
s=0

m−l∑
t=0

s+t even

(−1)
s+t
2

(m − l)!
t !(m − l − t)!

(n − k)!
s!(n − k − s)!

123



1134 Multidimensional Systems and Signal Processing (2020) 31:1113–1143
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(
p − k

2α

)(
α

β

)

· (2α − 1)!!(p + q − k − l − 2α − 1)!!mp−k−2β
11 m

q−p+k−l
2 +β

20 mβ
02 =

= mmn −
n∑

p=0

m∑
q=0

p+q �=0,
p+q even

(−1)
p+q
2

(
m

q

)(
n

p

)
mm−q,n−p

·
[ p∑
k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

)
m(G)

l,k m(G)
q−l,p−k

−
� p
2 �∑

α=0

α∑
β=0

β≥ p−q
2

(−1)α−β

(
p

2α

)(
α

β

)
(2α − 1)!!(p + q − 2α − 1)!!mp−2β

11 m
q−p
2 +β

20 mβ
02

]
=

=
m∑
l=0

n∑
k=0

l+k even

(−1)
k+l
2

(
m

l

)(
n

k

) � k
2 �∑

i=0

i∑
j=0

j≥ k−l
2

(−1)i− j
(
k

2i

)(
i

j

)
(l + k − 2i − 1)!!(2i − 1)!!

· mk−2 j
11 m

l−k
2 + j

20 m j
02mm−l,n−k .

It remains to prove that for p + q > 0, p + q even, it holds

p∑
k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

)
m( fN )

l,k m( fN )
q−l,p−k = 0. (27)
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For p+q
2 being odd, the proof is trivial because every combination is present twice with the

opposite signs. Thus, all terms vanish.

k = a, l = b ⇒ (−1)
a+b
2

(
p

a

)(
q

b

)
mb,amq−b,p−a

k = p − a, l = q − b ⇒ (−1)
p+q−(a+b)

2

(
p

p − a

)(
q

q − b

)
mq−b,p−amb,a =

−
[
(−1)

a+b
2

(
p

a

)(
q

b

)
mb,amq−b,p−a

]

For p+q
2 even we have

p∑
k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

)
m( fN )

l,k m( fN )
q−l,p−k =

=
p∑

k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

) � k
2 �∑

i=0

i∑
t=0

t≥ k−l
2

(−1)i−t
(
k

2i

)(
i

t

)
(l + k − 2i − 1)!!

· (2i − 1)!!mk−2t
11 m

l−k
2 +t

20 mt
02

·
� p−k

2 �∑
s=0

s∑
r=0

r≥ p−q−k+l
2

(−1)s−r
(
p − k

2s

)(
s

r

)
(p + q − l − k − 2s − 1)!!

· (2s − 1)!!mp−k−2r
11 m

q−l−p+k
2 +r

20 mr
02 =

=
p∑

k=0

q∑
l=0

� k
2 �∑

i=0

i∑
t=0

� p−k
2 �∑

s=0

s∑
r=0

k+l even ∧ t≥ k−l
2 ∧ r≥ p−q−k+l

2

(
p

k

)(
q

l

)(
k

2i

)(
i

t

)(
p − k

2s

)(
s

r

)
(2i − 1)!!(2s − 1)!!

· (l + k − 2i − 1)!!(p + q − l − k − 2s − 1)!!(−1)
k+l
2 +i−t+s−r

· mp−2t−2r
11 m

q−p
2 +r+t

20 mr+t
02

=
p∑

k=0

q∑
l=0

� k
2 �∑

t=0

� k
2 �∑

i=t

� p−k
2 �∑

s=0

s∑
r=0

k+l even ∧ t≥ k−l
2 ∧ r≥ p−q−k+l

2

(
p

k

)(
q

l

)(
k

2i

)(
i

t

)(
p − k

2s

)(
s

r

)
(2i − 1)!!(2s − 1)!!

· (l + k − 2i − 1)!!(p + q − l − k − 2s − 1)!!(−1)
k+l
2 +i−t+s−rm p−2t−2r

11 m
q−p
2 +r+t

20 mr+t
02

=
∣∣∣∣k = 0 : p, t = 0 : � k

2� ⇒
t = 0 : � p

2 �, k = 2t : p
∣∣∣∣ s = 0 : � p−k

2 �, r = 0 : s ⇒
r = 0 : � p−k

2 �, s = r : � p−k
2 �

∣∣∣∣∣ =
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=
� p
2 �∑

t=0

p∑
k=2t

q∑
l=0

� k
2 �∑

i=t

� p−k
2 �∑

r=0

� p−k
2 �∑

s=r

k+l even ∧ t≥ k−l
2 ∧ r≥ p−q−k+l

2

(
p

k

)(
q

l

)(
k

2i

)(
i

t

)(
p − k

2s

)(
s

r

)
(2i − 1)!!(2s − 1)!!

· (l + k − 2i − 1)!!(p + q − l − k − 2s − 1)!!(−1)
k+l
2 +i−t+s−rm p−2t−2r

11

· m
q−p
2 +r+t

20 mr+t
02

=
∣∣∣∣∣
k = 2t : p, r = 0 : � p−k

2 � ⇒
r = 0 : � p−2t

2 �, k = 2t : p − 2r

∣∣∣∣∣ =

=
� p
2 �∑

t=0

� p−2t
2 �∑

r=0

p−2r∑
k=2t

q∑
l=0

� k
2 �∑

i=t

� p−k
2 �∑

s=r

k+l even ∧ t≥ k−l
2 ∧ r≥ p−q−k+l

2

(
p

k

)(
q

l

)(
k

2i

)(
i

t

)(
p − k

2s

)(
s

r

)
(2i − 1)!!(2s − 1)!!

· (l + k − 2i − 1)!!(p + q − l − k − 2s − 1)!!(−1)
k+l
2 +i−t+s−rm p−2t−2r

11

· m
q−p
2 +r+t

20 mr+t
02

=
� p
2 �∑

t=0

� p−2t
2 �∑

r=0

mp−2t−2r
11 m

q−p
2 +r+t

20 mr+t
02

p−2r∑
k=2t

q∑
l=0

� k
2 �∑

i=t

� p−k
2 �∑

s=r

k+l even ∧ t≥ k−l
2 ∧ r≥ p−q−k+l

2

(−1)
k+l
2 +i−t+s−r

(
p

k

)(
q

l

)

·
(
k

2i

)(
i

t

)(
p − k

2s

)(
s

r

)
(2i − 1)!!(2s − 1)!!(l+k−2i−1)!!(p + q − l − k − 2s − 1)!!

=
∣∣∣∣∣∣
t + r = N ⇒ r = N − t

t = 0 : � p
2 � ⇒

N = t : � p
2 �

∣∣∣∣∣∣ =

=
� p
2 �∑

t=0

� p
2 �∑

N=t

m p−2N
11 m

q−p
2 +N

20 mN
02

p−2N+2t∑
k=2t

q∑
l=0

� k
2 �∑

i=t

� p−k
2 �∑

s=N−t

k+l even∧N− p−k−q+l
2 ≥t≥ k−l

2

(−1)
k+l
2 +i+s−N

(
p

k

)(
q

l

)(
k

2i

)(
i

t

)

·
(
p − k

2s

)(
s

N − t

)
(2i − 1)!!(2s − 1)!!(l + k − 2i − 1)!!(p + q − l − k − 2s − 1)!!

=
∣∣∣∣t = 0 : � p

2 �, N = t : � p
2 � ⇒

N = 0 : � p
2 �, t = 0 : N

∣∣∣∣ =

=
� p
2 �∑

N=0

N∑
t=0

mp−2N
11 m

q−p
2 +N

20 mN
02

p−2N+2t∑
k=2t

q∑
l=0

� k
2 �∑

i=t

� p−k
2 �∑

s=N−t

k+l even ∧ N− p−k−q+l
2 ≥t≥ k−l

2

(−1)
k+l
2 +i+s−N

(
p

k

)(
q

l

)(
i

t

)

·
(
k

2i

)(
p − k

2s

)(
s

N − t

)
(2i − 1)!!(2s − 1)!!(l+k − 2i−1)!!(p + q−l−k−2s − 1)!! =

=
∣∣∣∣∣∣
k − 2t = m ⇒ k = m + 2t
k = 2t : p − 2N + 2t ⇒

m = 0 : p − 2N

∣∣∣∣∣∣ =
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=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m+2t
2 �∑

i=t

� p−m−2t
2 �∑

s=N−t

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 +t+i+s−N

·
(

p

m + 2t

)(
q

l

)(
m + 2t

2i

)(
i

t

)

·
(

s

N − t

)(
p − m − 2t

2s

)
(2i − 1)!!(2s − 1)!!

· (l + m + 2t − 2i − 1)!!(p + q − l − m − 2t − 2s − 1)!!

=
∣∣∣∣∣∣
i − t= j ⇒ i = j + t

i=t : �m+2t
2 � ⇒

j=0 : �m
2 �

∣∣∣∣∣∣ =

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2t
2 �∑

s=N−t

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+2t+s−N

·
(

p

m + 2t

)(
q

l

)(
m + 2t

2 j + 2t

)(
j + t

t

)

·
(

s

N − t

)(
p − m − 2t

2s

)
(2 j + 2t − 1)!!(2s − 1)!!(l + m − 2 j − 1)!!

· (p + q − l − m − 2t − 2s − 1)!!

=
∣∣∣∣∣∣
s − N + t = k ⇒ s = N − t + k

s = N − t : � p−2m−2t
2 � ⇒

k = 0 : � p−2m−2N
2 �

∣∣∣∣∣∣ =

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k+t

(
p

m + 2t

)(
q

l

)

·
(
m + 2t

2 j + 2t

)(
j + t

t

)(
N − t + k

N − t

)(
p − m − 2t

2N − 2t + 2k

)
(2 j + 2t − 1)!!(2N − 2t + 2k − 1)!!

· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k+t

(
q

l

)
p!

· (2 j + 2t − 1)!!
(2 j + 2t)!(m − 2 j)!

( j + t)!
t ! j !

(N − t + k)!
(N − t)!k!

(2N − 2t + 2k − 1)!!
(2N − 2t + 2k)!(p − m − 2N − 2k)!

· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k+t

(
q

l

)
p!
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· 1

(2 j + 2t)!!(m − 2 j)!
( j + t)!
t ! j !

(N − t + k)!
(N − t)!k!

1

(2N − 2t + 2k)!!(p − m − 2N − 2k)!

· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k+t

(
q

l

)
p!

· 1

2 j+t ( j + t)!(m − 2 j)!
( j + t)!
t ! j !

(N − t + k)!
(N − t)!k!

1

2N−t+k(N − t + k)!(p − m − 2N − 2k)!
· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

N∑
t=0

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k+t

(
q

l

)
p!

· 1

2 j j !(m − 2 j)!
1

2N+kk!(p − m − 2N − 2k)!
1

t !(N − t)!
· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k

(
q

l

)
p!

· 1

(2 j)!!(m − 2 j)!
1

(2k)!!(p − m − 2N − 2k)!2N N !

· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!
N∑
t=0

(−1)t
(
N

t

)
= (28)

=
� p
2 �∑

N=0

mp−2N
11 m

q−p
2 +N

20 mN
02

p−2N∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m−2N
2 �∑

k=0

m+l even ∧ N− p−q
2 ≥ l−m

2 ≥0

(−1)
m+l
2 + j+k

(
q

l

)
p!

· (2 j − 1)!!
(2 j)!(m − 2 j)!

(2k − 1)!!
(2k)!(p − m − 2N − 2k)!(2N )!!

· (l + m − 2 j − 1)!!(p + q − l − m − 2N − 2k − 1)!!(1 − 1)N . (29)

All the terms of (29) are zero if N > 0. If N = 0, there remains the last term only

p∑
m=0

q∑
l=0

�m
2 �∑

j=0

� p−m
2 �∑

k=0
m+l even ∧ q−p≥l−m≥0

(−1)
m+l
2 + j+k

(
p

m

)(
q

l

)(
m

2 j

)(
p − m

2k

)

· (2 j − 1)!!(2k − 1)!!(l + m − 2 j − 1)!!(p + q − l − m − 2k − 1)!!. (30)
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Now we prove that this term is zero as well. This term is equivalent to

p∑
m=0

q∑
l=0

m+l even
q−p≥l−m≥0

(−1)
m+l
2

(
p

m

)(
q

l

) �m
2 �∑

j=0

(−1) j
(
m

2 j

)
(l + m − 2 j − 1)!!(2 j − 1)!!

·
� p−m

2 �∑
k=0

(−1)k
(
p − m

2k

)
(p + q − l − m − 2k − 1)!!(2k − 1)!! = Ξ. (31)

It can be shown for l ≥ m using the method of generating functions described in Gould and
Quaintance (2012) that

�m
2 �∑

j=0

(−1) j
(
m

2 j

)
(l + m − 2 j − 1)!!(2 j − 1)!! = l!

(l − m)!! . (32)

We adopt the notation from Gould and Quaintance (2012) for double factorial binomial
coefficients and we recall (p + q)/2 is even. The previous expression can be rewritten

Ξ =
p∑

m=0

q∑
l=0

m+l even
q−p≥l−m≥0

(−1)
m+l
2

(
p

m

)(
q

l

)
l!

(l − m)!!
(q − l)!

(q − l − p + m)!! =

= q!
(q − p)!!

p∑
m=0

q−p+m∑
l=m

m+l even
q−p≥l−m≥0

(−1)
m+l
2

(
p

m

) ((
q − p

l − m

))
=

∣∣∣∣ l − m = 2 j
j = 0 : q−p

2

∣∣∣∣ =

= q!
(q − p)!!

p∑
m=0

q−p
2∑

j=0

(−1) j+m
(
p

m

) ((
q − p

2 j

))
=

= q!
(q − p)!!

p∑
m=0

(−1)m
(
p

m

) q−p
2∑

j=0

(−1) j
((

q − p

2 j

))
(33)

The inner sum is zero if q > p

q−p
2∑

j=0

(−1) j
((

q − p

2 j

))
=

q−p
2∑

j=0

(−1) j
(q − p)!!

(2 j)!!(q − p − 2 j)!!

=
q−p
2∑

j=0

(−1) j
( q−p

2
j

)
= (1 − 1)

q−p
2 = 0. (34)

For the caseq = p (q−pmust be non-negative) the inner sumequals 1 and the expression (33)
is

p!
p∑

m=0

(−1)m
(
p

m

)
= p!(1 − 1)p (35)

which completes the proof because it is zero whenever p > 0.
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The formula
p∑

k=0

q∑
l=0

k+l even

(−1)
k+l
2

(
p

k

)(
q

l

)
m( fN )

l,k m( fN )
q−l,p−k = 0 (36)

holds not only for p+ q even but for all p and q . If p+ q is odd, then m( fN )
q−l,p−k is Gaussian

moment of the odd order and all the terms in summation are zero. 
�
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appendix

In this Appendix, we will complete the proof from the paper [2]. This part of the proof
was not included in the original paper because of the page limit. We use the method
of generating functions described in [165] to prove Equation (32), i.e.

bm
2 c

∑
j=0

(−1)j
(

m
2j

)
(l + m− 2j− 1)!!(2j− 1)!! =

= m!
bm

2 c
∑
j=0

(−1)j (2j− 1)!!
(2j)!

(l + m− 2j− 1)!!
(m− 2j)!

=
l!

(l −m)!!
. (5)

Proof. We are looking for such series ∑+∞
n=0 anxn , ∑+∞

n=0 bnxn , ∑+∞
n=0 cnxn that

+∞

∑
n=0

cnxn =

(
+∞

∑
n=0

anxn

)
·
(

+∞

∑
n=0

bnxn

)
=

+∞

∑
n=0

(
n

∑
j=0

ajbn−j

)
xn .

Then it holds for the coefficients

cn =
n

∑
k=0

akbn−k .

We can divide the proof into two parts to get rid of the floor of m/2.

1. If m = 2n is even then l = 2N is even and we can simplify Eq. (5) to

bm
2 c

∑
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(−1)j (2j− 1)!!
(2j)!

(l + m− 2j− 1)!!
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.

Clearly, the coefficient ak is

ak = (−1)k (2k− 1)!!
(2k)!

. (6)

Hence, the power series becomes
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= e−x/2 .

In the case of the second power series, the process will be more complicated
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=
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Let us define new series
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We will find the sum of the power series f0(x) by means of termwise integration
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and differentiation
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Now, we are able to construct the third power series

+∞

∑
n=0

cnxn =

(
+∞

∑
n=0

anxn

)
·
(

+∞

∑
n=0

bnxn

)
=

N

∑
n=0

(
N
n

)
(2N − 1)!!
(2n− 1)!!

xn .

Finally, we have the coefficients
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2. If m = 2n + 1 is odd then l = 2N + 1 is odd and we can simplify Eq. (5) to
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Hence, the result is
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