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2-D Locally Regularized Tissue Strain Estimation
From Radio-Frequency Ultrasound Images:
Theoretical Developments and Results on
Experimental Data

Elisabeth Brusseau*, Jan Kybic, Jean-Frangois Déprez, and Olivier Basset

Abstract—In this paper, a 2-D locally regularized strain estima-
tion method for imaging deformation of soft biological tissues from
radio-frequency (RF) ultrasound (US) data is introduced. Con-
trary to most 2-D techniques that model the compression-induced
local displacement as a 2-D shift, our algorithm also considers a
local scaling factor in the axial direction. This direction-dependent
model of tissue motion and deformation is induced by the highly
anisotropic resolution of RF US images. Optimal parameters are
computed through the constrained maximization of a similarity
criterion defined as the normalized correlation coefficient. Its
value at the solution is then used as an indicator of estimation
reliability, the probability of correct estimation increasing with
the correlation value. In case of correlation loss, the estimation
integrates an additional constraint, imposing local continuity
within displacement and strain fields. Using local scaling factors
and regularization increase the method’s robustness with regard
to decorrelation noise, resulting in a wider range of precise mea-
surements. Results on simulated US data from a mechanically
homogeneous medium subjected to successive uniaxial loadings
demonstrate that our method is theoretically able to accurately es-
timate strains up to 17 %. Experimental strain images of phantom
and cut specimens of bovine liver clearly show the harder inclu-
sions.

Index Terms—Elastography, optimization, strain estimation, ul-
trasound (US).

I. INTRODUCTION

LTRASOUND elastography is an emerging imaging

modality dedicated to the investigation of the elastic
properties of soft biological tissues [1]. This technique is
of fundamental interest for the clinical diagnosis of various
diseases, since the development of a pathological process is
often correlated with local changes in tissue stiffness [2], [3].
Elastography might therefore provide useful information for
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early detection and characterization of various pathologies and
for patient treatment follow up [4]-[12]. In practical terms, the
tissue is deformed by applying a static load or by generating
low-frequency mechanical waves that propagate within the
medium. Tissue internal displacements and deformations are
then locally estimated from acquired radio-frequency (RF)
ultrasound (US) images, by partitioning the US data into many
overlapping regions of interest (ROI) and by evaluating, within
each ROI, the positional variations induced by the stress. De-
formation analysis may be completed by the reconstruction of
mechanical parameters such as the Young’s modulus.

This paper focuses on estimating the strain field in static
elastography, where compression is applied with the probe
[Fig. 1(a)]. In elastography, strains must be estimated with
high accuracy since clinicians’ diagnosis as well as the quality
of mechanical parameter reconstruction are directly related
to these estimations. Until recently, the most commonly used
strain estimation techniques were 1-D. They analyze only
the 1-D variations generated by the stress application, and
occurring along the US beam propagation axis (axial axis).
Essentially, two approaches have been reported in the literature.
The first one groups together techniques that compute the
axial strain as the spatial gradient of the displacements that the
tissue locally experiences when compressing forces are applied
[13]-[17]. The local displacement is assumed to be a simple
axial translation, resulting in a shift of the corresponding 1-D
ROI within RF signals. It is estimated by a correlation analysis.
These methods are accurate for small deformations. However,
they rapidly fail with increasing strains, because they ignore
the signal shape variation induced by the physical compression
of the medium and responsible for decorrelation [18], [19].

This observation has led to the development of techniques that
also take into account a signal shape modification. Specifically,
these methods consider that when applying the load the tissue lo-
cally undergoes a 1-D deformation comparable to a compression
[20]-[22]. The signal after compression is locally assumed to be
a shifted and spatially-scaled replica of the original signal. By es-
timating the local axial scaling factor between the precompres-
sion and postcompression signals, the deformation profile is de-
duced. Using scaling factors provides estimation methods thatare
much more robust in terms of decorrelation noise and increases
the range of accuracy in strain measurements.

The major limitation of all previously mentioned methods is
their 1-D character. When a biological medium is subjected to
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Fig. 1. (a) Geometry of the acquisition; left: tissue in its initial configuration, right: tissue under load. Dashed line delimits the field of view of the US probe. (b)
Illustration of the ROI adaptive displacement. While the successive positions of R, in the precompression image I; covers a regular grid, in the postcompression
image I, R is adaptively displaced according to the effects on its position produced by the deformation of surrounding regions.

an axial compression, it also naturally undergoes a lateral and
azimuthal expansion. Ideally, estimating the strain should take
into account the 3-D tissue motion. However, because clinical
US scanners typically provide only 2-D images, in this paper we
consider the problem of 2-D strain estimation from 2-D RF US
data acquisitions.

Only a few 2-D techniques have been reported to date. Most of
them model 2-D local displacement as a translation in both axial
and lateral (perpendicular to the US beam’s propagation axis in
the image plane) directions, and then compute strain estimates
as the displacement gradient. The simplest approach is the 2-D
speckle tracking [23]. Unfortunately, it lacks robustness and ac-
curacy because of compression-induced signal decorrelation and
the coarse lateral spacing between adjacent signals. An alternate

approach improving the estimation of lateral displacements was
proposed by Chen et al. [24]. Lateral tracking can conceptually
perform better if lateral phase information, similar to that in the
axial direction, is present in the final 2-D correlation function.
The synthetic lateral phase is generated numerically by splitting
the analytic signal spectrum with respect to zero frequency in the
lateral direction into up and down halves. The 2-D displacement
is then determined as phase zero-crossings in both dimensions.
Unfortunately, the improvement in lateral tracking is limited only
to regions where strain is less than 1%, and becomes insignifi-
cant with increasing strain magnitude [24]. The main reason is
the signal decorrelation induced by tissue motion.

To help restore the coherence of echoes prior to cross corre-
lation, several techniques have been developed. Konofagou et
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al. [25] describe a global axial stretch of the RF signals and
a weighted interpolation method, operating between these sig-
nals, to track the lateral displacement. Companding methods
consisting of joint operations of compression and expansion of
echo fields have also been introduced [26], [27]. The 2-D com-
panding technique integrates a two-scale analysis, both global
and local. Global companding is initially performed to compen-
sate for the average deformations and displacements, assuming
the medium is incompressible and spatially uniform in elas-
ticity. In a second-pass process, local companding is achieved
by estimating, for many overlapping kernels, the 2-D motion be-
tween precompression and postcompression echo fields, and by
shifting echo waveforms accordingly. Finally, cross correlation
is applied along the direction of the beam propagation to mea-
sure the residual axial displacement. The latter is then added to
the displacements induced by the global and local compandings,
before computing the gradient to form the strain image. Such
algorithms provide more accurate axial strain estimates. Nev-
ertheless, the scaling factors applied to compensate for signal
decorrelation are not optimal, because they are not specifically
adapted to each ROI considered.

Maurice et al. [28], [29] suggest estimating the 2-D strain
field by determining the linear transformation that locally ex-
ists between the initial and deformed images. In practical terms,
strain parameters, corresponding to local scaling factors, are es-
timated as the arguments that minimize the mean square error
between a precompression ROI and its deformed version com-
pensated for the assumed deformation parameters. The authors
underline that, prior to the strain parameter estimation, the 2-D
translation that inherently occurs between the precompression
and postcompression 2-D ROIs needs to be removed. This com-
pensation is performed using correlation techniques and may
therefore lack accuracy over highly strained regions and corrupt
the strain estimation.

A recent study [30] pointed out that data alone may be insuf-
ficient to solve the ambiguities caused by the loss of echo coher-
ence, and therefore integrating a priori knowledge into the mo-
tion estimation process might be needed. The 2-D displacement
field is estimated by locally minimizing an energy equation, im-
posing constraints of echo amplitude conservation and displace-
ment field smoothness. Such an algorithm prevents noisy strain
fields. However, it only considers constant shifts (not scaling)
and uses a spatially constant regularization parameter that may
excessively smooth the boundaries.

The aim of this paper is to present a 2-D strain estimation
method with improved performance. This method estimates
the axial strain while considering lateral displacement. The
algorithm is based on an iterative and adaptive process, ap-
propriate to investigating a medium subjected to a wide range
of strains. Achieving maximum accuracy requires processing
that adequately fits the local strain variations. However, as
described by [30] echo coherence may be lost and the proposed
technique needs to be able to overcome this problem. There-
fore, the method estimates the parameters, in terms of 2-D
shifts and time-scaling factor, by matching precompressed and
postcompressed 2-D acoustical footprints as closely as pos-
sible. This optimal parameter estimation is performed through
the constrained maximization of a similarity criterion. Unlike

described techniques, the value of the similarity criterion at the
solution is used as an indicator of estimation reliability, and
over regions where variations in the signal have led to ambigui-
ties or incoherence, deformation parameters are recomputed by
locally imposing smoothness constraints.

This paper is organized as follows: the theoretical framework
and the technique implementation are described in Section II,
followed by results on simulated and experimental data in
Section III. Section IV provides a discussion of the results
along with concluding remarks.

II. METHOD

A. Deformation Model

An increase in the range of accurate estimates was recently
demonstrated [20]—[22] for 1-D techniques, when not only shifts
but also scaling factors of acoustical footprints are considered
in the strain estimation. In a first approximation, the signal after
deformation in the direction of the US wave propagation can
thus be considered as a locally shifted and scaled replica of the
signal prior to deformation.

Axially compressed, biological media also undergo an ex-
pansion along the lateral direction. Therefore, similar effects,
local shifts and scaling factors, might be considered in the lat-
eral direction as well. However, US RF data are characterized
by a highly anisotropic resolution. The resolution in the axial
direction is very fine, primarily determined by the US carrier
frequency, whereas the lateral resolution is much rougher, lim-
ited by the acoustic aperture size. For these reasons, the scaling
factor will be considered only in the axial direction. The as-
sumed relation between the precompression and postcompres-
sion images, I resp. I», can be locally expressed as follows:

ey

where (x,y) are the axial and lateral variables, respectively, «
is the axial scaling (compression) factor, and 7, and d the axial
and lateral displacements, respectively. «, 7 and d are spatially
slowly varying parameters.

L(z,y) = Loz + 7,y + d)

B. Method Description

As previously mentioned, locally estimating strains implies
considering a small ROI in I3 that is moved throughout the en-
tire image, and for each of its positions, its deformed version
in I5 is determined and the compression-induced variations are
analyzed.

Let us consider any region of interest 12, at the position pg1
in I. The physical compression of the medium has two impacts
on this ROL

* The first one is the variation in its position, resulting from

the deformation of the surrounding tissues. Let us denote
Ry the deformed version of R; in I5. The compression
of regions located between R; and the probe produces an
axial shift between R; and Rs, described by the parameter
7 in (1). Similarly, surrounding medium deformation will
induce a lateral shift between R; and Rs. This lateral shift,
denoted v, represents the major contribution of d (1).

» The second one is its specific deformation, a function of its

own mechanical parameters.
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These shifts 7 and v can be compensated for if an adequate
strategy to track the ROI Ry corresponding to R; is adopted.
In this case, only two parameters remain to be estimated for
each ROI, those relative to its specific deformation, namely the
scaling factor o and a small-magnitude residual lateral shift u
(such that d = u + v).

The algorithm implemented includes the following four sub-
tasks, described in greater detail hereafter:

1) two-dimensional adaptive displacement of ROIs;

2) joint estimation of the axial scaling factor o and the lateral
shift u;

3) field representation;

4) local regularization.

1) Regions of Interest 2-D Adaptive Displacement: To com-
pensate for 7 and v, and, therefore, consider the same phys-
ical tissue region before and after deformation, R; and Ry are
displaced simultaneously and adaptively in both images. In the
precompression image I, R; describes a succession of vertical
(axial) sweeps from the probe downwards, and from the image
center [identified by the central axis, see Fig. 1(b)] toward lat-
eral extremities. Along the axial direction, R; is displaced with
a constant step A,x. Laterally, the sweeps’ interdistance is also
constant, and denoted A},;. Significant overlap is maintained in
both directions. The set of R; positions therefore covers a reg-
ular grid.

While regularly moving R; in I3, Rs is displaced adaptively
in I by considering the effects of the deformation of sur-
rounding tissues on its position. Its axial position is calculated
by accumulation of the axial compression of regions located
between the probe and its current position. Its lateral position
differs from that of R; by a global shift, which is the sum of the
lateral shifts that the adjacent regions undergo, regions located
between the current position and the central axis.

More formally, let pr; be the position of R; in I; and pgo
the position of Ry in I after compensation for 7 and v. These
positions are defined with respect to the middle point of the ROI
top boundary [see Fig. 1(b)]. Let us identify by a horizontal
(lateral) index n and a vertical (axial) index m the set of po-
sitions of Ry in I, denoted pRrim » and of Ry in I (pR2m n)-
The corresponding axial and lateral shifts are denoted 7,,, ,, and
Up,n, Tespectively. The positions prim » and prom,» have the
following coordinates, show in (2) and (3) at the bottom of the
page, where sgn(n) represents the sign function. oy, ., is the es-
timated axial scaling factor for the region located at pr1x,, and

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 2, FEBRUARY 2008

Um, &, the estimated lateral signed distance between 2, and 1%,
located at pRim i and prom, i, respectively.

Specific conditions must be mentioned. At the probe-medium
interface, the axial shift is inherently equal to zero. This is in-
dicated by the condition av_1 , = 0. Moreover, along the first
vertical sweep, prior to the first lateral displacement estimation,
R; and R, are initialized, centered on the lateral central axis,
and thus have the same lateral position. Finally, parameters 7, ,,
and vy, ,, correspond locally to the signed difference of positions
PR2m.,n and Prim ., in the axial and lateral directions, respec-
tively

Tm,n = [Z Ap—1p — M| - Aax
k=0
and
Umn = Z um,k—sgn(n)' (4)
k=0

Finally let L be the axial length and W the lateral width of
the ROIs. Ry at prim.n(MAax, nAe) is the part of I1(x,y)
such that

Rl:Il($7y|m'Aaxngm'Aax'f'L_l;n'Alat

- gJ <y<n-Au— gJ +W—1> )

where | -| represents the floor function. The width W is in prac-
tical terms a number of signal segments. The spatial variables
for ROIs will still be denoted = and y such that Ry (z,y) = Ry.
A similar relation characterizes the postcompression region Rs.

Once the adaptive ROI displacement has been performed,
only the axial scaling factor o, ,, and the small magnitude lat-
eral displacement ,, ,, remain to be estimated.

2) Axial Scaling Factor and Lateral Shift Joint Estimation:
Ry atprim,» and Ry at propm, » having been determined, the op-
timal parameters («, u) are estimated by optimizing an objective
function based on a similarity criterion. They are determined as
the arguments that maximize the normalized correlation coeffi-
cient between the initial region R; and its deformed version Ro,
when the latter is compensated for according to these parameters.

Unlike classical approaches, we take advantage of the fact
that, in elastography, biological tissue compression is small,

PRl'm,,n (mAa)m nAlat)

m=0,1,..., Mandn=-N,...,-1,0,1,... N 2)

PR2m,n (Z Op—1,n ° Aa)u nAa + Z um,ksgn(n)) with A_1n = 0
k=0

k=0

and tp,,—1 =0 forn >0
U1 = 0 forn <0
sgn(n) = 1forn > 0,—1 otherwise  (3)
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resulting in an expected small range of admissible parameter
values. Consequently, we use constrained optimization, which
increases the robustness of the estimation.

Maximizing an objective function is equivalent to minimizing
the opposite of this function. In terms of minimization, the con-
strained nonlinear programming problem to be solved is

[&, 4] = arg min f(a,u)
a,u
SUbjeCt t0:min S & S Omax

Umin S (] S Umax (6)

where f (see the equation at the bottom of the page) is the
opposite of the normalized correlation coefficient between R
and Ry, R; and R, the mean values of Ry (z,y) and Ro(x,vy),
respectively, and = and y the axial and lateral variables.
Defining ¢ = («,u), the minimization problem can be
rewritten as

[t] = arg mtin f(@)
subject to: At <b @)

where the matrix A and the vector b contain the coefficients as-
sociated with parameters and bounds, respectively. The neces-
sary conditions for a feasible point ¢* to be a local minimum of
(7) are

G1: At* <bwith At* = b

G2: Z'Vf{t) =0 VFEt)+ATA* =0

G3: AP >0,V

G4: X\ (Ait" —b;) =0,V

G5: ZTH (t*) Z is positive semi-definite (8)

where A is the submatrix of A containing the coefficients of
the constraints active at ¢* (those on bounds) and b the sub-
vector of b, such that At* = b. 7 is the matrix whose columns
form a basis for the set of vectors orthogonal to the rows of A.
ZTV f (t*) and ZT H(t*)Z are the projected gradient and Hes-
sian at t*, respectively. The Lagrange multipliers are denoted
by \;. G2, G3, and G4 define the Kuhn-Tucker conditions.

To solve (7), we use an optimization algorithm based on
the sequential quadratic programming (SQP) methodology
[31]. Such methods can be viewed as the natural extension
of Newton (or quasi-Newton) techniques to constrained opti-
mization setting. This iterative procedure consists in modeling
the defined problem at a given approximate solution g, by a
quadratic programming (QP) subproblem, and then in using the
subproblem solution to construct a better approximation ¢z41
as follows:

th+1 = tr + prdi 9)

where py, is the step length and dj, the QP solution that defines
the descent direction. The QP subproblem solved at each itera-
tion takes the following form:

min V7 (1)7 - dy + L dF - H(t)d,

subject to: A (dy +t;) < b (10)

where d; = t — ty, V f is the objective function gradient com-
puted by a finite-difference approximation and H is the Hessian
of f. The latter is initialized to the Identity matrix and a pos-
itive-definite approximation is iteratively built through BFGS
updates [32].

This quadratic subproblem is solved for d;, using an active
set strategy. It is an iterative procedure that aims at identifying
which inequality constraints will become active at the solution
[(8, G1)], determining the subspace Z of feasible search direc-
tions. More precisely, having a prediction of this subspace Z;,
a typical QP iteration j consists in computing the descent direc-
tion following the iterative scheme:

tiv1 =1+ (- dj (1D

where the initial value of ¢;, namely ¢y, corresponds to tj, and
where d; = Z; - p is determined by solving the equation

withVf; =V f (to) + H (to) - (t; —to) (12)

(; is a step length for which only two choices are possible. A
step of unity along d; is the exact step to the minimum. If it
can be taken without constraint violation, Lagrange multipliers
are computed and if all positive [(8, G3)], the QP minimum is
achieved. Otherwise, if one multiplier is negative, the associ-
ated constraint is deleted from the active set, Z; is updated, and
the process iterated. Finally, if there is an inequality constraint
blocking the way toward the minimum, (; is less than unity and
fixed to the distance to the nearest constraint. The blocking con-
straint is added to the active set, involving the update of Z;, and
a new iteration is performed.

Once the descent direction dj, is determined, the step length
pr 1s varied until a sufficient decrease in the objective function
is obtained. It is upper bounded by the distance to the nearest
constraint in the direction dj,.

SQP methods, like Newton’s method, are only guaranteed to
find a local solution of (6). The small size of the feasible region
considered, discussed later in the Results section, drastically re-
duces the occurrence of local minima but does not eliminate it.
To make the algorithm converge toward the solution sought, op-
timization can be initialized with configurations that are close to
the global minimum [33]. Since displacement and strain fields
are continuous, the optimal parameter vector for one region can

-> (Rl(x,y) - Rl(x,y)) . (R2 (%y-i—u) - R, (g,y+u))

f(aau) =

VS Biwy) - Bae) E (B (24 u) B (2.5 +u))’
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be used as the initial value for the minimization process in a
neighboring region.

More formally, let us consider Ry at prim,» and Ry at
PR2m,n. The ROI adaptive displacement results in a lateral
shift v of small magnitude. It will, therefore, be initialized to
0. On the other hand, the scaling factor will be initialized to
the optimal scaling factor obtained for the region immediately
above the current position, such that

oz(()?,)l = mean value of the feasible axial range

al? =dm_1am >0 (13)
where the superscript (0) indicates initialization of the iterative
process.

Even if suitable, these initializations are not sufficient to pre-
vent the algorithm from being trapped in a local minimum. In
particular, for regions at the probe-medium interface, the scaling
factor is arbitrarily initialized to the mean value of the feasible
axial range. To avoid keeping parameter vectors that would have
been wrongly estimated, a correction procedure is introduced.
It uses the similarity criterion value to assess whether the esti-
mate is potentially incorrect. Estimates are suspected of being
erroneous when their normalized correlation coefficient remains
below a threshold Ripreshold, Since the probability of correct es-
timation is higher if this coefficient is closer to 1. Once an insuf-
ficiently reliable estimate has been detected, a better parameter
vector value is sought by initializing /Nb new minimization pro-
cesses from Nb points uniformly spread within the parameter
domain. The parameter vector retained is the one leading to the
highest correlation coefficient.

3) Field Representation: To sum up, by describing a
succession of vertical sweeps, R; covers the entire image
I; and for each of its positions pgrim,m, its corresponding
ROI R, in Iy is determined and the parameter vector
fmm = [Gm,n; Um n] estimated. The axial compression factor

field @ = {&mn,(m,n)=10,...,M]x[-N,...,NJ}
and the lateral displacement field 1 =
{Gm.n, (m,n) =1[0,...,M] x [-N,...,N|} are

thus obtained.

The field that is specifically interesting is the axial strain
field . Since axial strain corresponds to the relative change
in length of an infinitesimal line element of the medium
along the axial direction, € can be easily computed from the
axial compression factor field & [34]. It is determined as
E={émn, (mmn)=10,...,M] x [-N,...,N]}, with

Emmn = Amn — 1. (14)
Note that with this formula, the strain field follows the estab-
lished convention that the strain is negative for a compression
and positive for a dilatation. However, since in elastography we
always work in compression and for simplification purposes, we
will display the opposite of the axial strain field.

Since most strain imaging techniques estimate the axial shift
distribution, we have decided to also represent the axial dis-
placement field. This field corresponds to the integration of the
axial strain field along the axial direction. In practical terms, this
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operation is performed by a cumulative summation along that
direction. The axial displacement distribution 7 is thus defined
as

m

Tm,n = § Ein - Aa)n

=0

;=

With the convention used in (14), it clearly appears that the
axial displacement is negative when a compression is observed.
Therefore, similarly to the axial strain field, we will display the
opposite of the axial displacement field, knowing that these dis-
placements result from the compression of the medium.

Finally, the correlation coefficient map is presented as well,
providing information on the reliability of the results. The closer
to 1 the correlation is, the higher the probability of correct esti-
mation.

4) Local Regularization: The three steps, Sections II-B1,
II-B2, and II-B3, result in initial displacement and strain fields
with a local indicator of the estimation reliability. Generally,
these fields exhibit small areas of unreliable estimates because
of locally large or out-of-plane motion or insufficiently strong
signals. A low correlation coefficient does not signify an erro-
neous estimation, but it means that the estimate cannot be trusted
and further investigation with additional information is neces-
sary.

Let us denote by (2 the set of parameter vectors whose estima-
tion has led to a high normalized correlation coefficient Rm,n,
higher than a threshold value R,.s. These vectors have a strong
probability of being correctly estimated and are retained un-
changed

(16)

On the other hand, parameter vectors that do not belong to €2
are considered unreliable and need to be recomputed by intro-
ducing a priori information. Since displacement and strain are
continuous 2-D fields, the new parameter vector estimation im-
poses a local smoothness constraint with surrounding parameter
values belonging to 2.

To correct a parameter vector fmyn, we first consider a neigh-
borhood V' of this estimate in the parameter field. V' is initial-
ized to the 8 neighboring vectors with respect to the discrete grid
m, n. Those belonging to €2 are selected and if they represent
at least a quarter of the neighboring vectors, the neighborhood
is retained. If not, the neighborhood V' grows uniformly until
at least 25% of the parameters belong to €. Only the param-
eter vectors at the intersection of V' and €2 are retained and their
weighted average value, ,verage, 1S computed. Weights are the
correlation coefficients associated with the parameter vectors.

tm,n 1S then estimated anew using the following minimization
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[shown in (17) at the bottom of the page] where 1 is a positive
regularization factor. This factor as well as the parameter F,cq
have been adjusted empirically.

Considering neighborhoods containing at least 25% reliable
values avoids correcting an estimate with the information of
only one isolate point, and ensures continuity with close, well-
estimated regions.

The proposed regularization process is dedicated to the
correction of localized ambiguities or estimation errors. It is,
therefore, expected that initial displacement and strain fields
obtained from Sections II-B1, II-B2, and II-B3 are of enough
good quality, in other words that areas of insufficiently reliable
estimation are small. However, the advantage of our technique
is its ability to discriminate which areas of the displacement and
strain fields need to be recomputed and to select only reliable
information to redo the estimation.

III. RESULTS

A. Results on Simulated Data

The technique performance was first assessed on simulated
data. This required modeling the tissue motion under compres-
sion and the US image formation.

1) Displacement-Field and Image-Formation Models: Sim-
ulated media are assumed to exhibit homogeneous echogenicity,
making any lesion undetectable with standard US imaging.
Acoustically, they are modeled as a set of scatterers that are
spatially uniformly distributed and whose acoustical amplitudes
are normally distributed within the range [—1, 1]. Deforming the
medium implies scatterer interdistance variations, depending on
the mechanical properties of the region they belong to. Depending
on the complexity of the medium’s mechanical properties, the
new location for the scatterers is computed with closed-form
equations or using a finite element modeling software.

The image formation in this study is assumed to be a linear
space-invariant operation. US RF images are generated by
convolving the acoustical scatterer distributions with the point
spread function (PSF) of the imaging system [28]. The PSF
shape is direction-dependent (Fig. 2). Axially, it is modeled
as a 7-MHz cosine function, modulated by a Gaussian. In the
lateral direction, the PSF is considered to be Gaussian-shaped.
The PSF shape is completed by introducing a slight curvature,

Point spread function
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Fig. 2. Representation of the simulated point spread function.

making it similar to those measured experimentally [35]. Fi-
nally, the sampling frequency has been set to 100 MHz. The
generated images are composed of 128 RF lines.

2) Homogeneous Mechanical Media Results: To assess
the accuracy of the presented method and to determine some
of its parameters, the deformation of a 40 x 40 x 40-mm?
cube of mechanically homogeneous material under successive
uniaxial loadings with negligible friction was investigated. In
particular, the section for which no out-of-plane motion occurs
was considered. The medium was assumed to be linear elastic,
isotropic, and incompressible (Poisson’s ratio, ¥ = 0.5). Nine-
teen compression levels inducing 0.5%, and from 1% to 18%
(by 1% steps) of averaged axial strains (¢) were considered. As
previously mentioned, simulated medium deformation involves
moving the acoustical scatterers accordingly. In this simple
case, scatterer motion in the plane considered is described by
the following equations:

{ Tpnew = (1 +€)zp

18
yp_new = (1 - Va)yp ( )

where (z,,y,) are the coordinates of the scatterer P prior to de-
formation, (%p_new, Yp_new) its coordinates after compression,
and ¢ the axial strain, positive for a dilatation and negative for
a compression.

To increase the accuracy of the estimation, the simulated RF
images were interpolated by a factor of 2 in both directions.
Axial strain and lateral displacement fields were all computed
using the following parameters. The region of interest R
measured 10 axial wavelengths by six interpolated lateral
signals. The axial length came from previous experiments [22]

[{] =&, 4] = arg min [f(a,U) +p

subject to : A [3] <b
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Fig. 3. Assessment of the method’s performance with a mechanically homogeneous medium subjected to 19 compression levels, inducing 0.5% and from 1% to
18% (by 1% steps) of averaged axial strains. (a) Estimated mean axial strain and standard deviation as a function of the true strain. (b) Average lateral displacement
profiles (along the lateral direction) and standard deviations for 0.5%, 5%, 10% 15%, and 17% strains applied. (c) Average axial displacement profiles and stan-
dard deviations for strains equal to 0.5%, 5%, 10%, 15%, and 17%. (d) Mean normalized correlation coefficients as a function of the compression level applied.
The method computes accurate estimates for strains up to 17%. Standard deviations along the lateral displacement profiles are higher than those along the axial

displacement profiles but remain in good agreement with the theory.

that demonstrated it to be a good trade-off between estimation
accuracy and spatial resolution. R; was displaced regularly
in I; with an axial overlap of 75% and a lateral overlap of
60%, while R, was adaptively displaced in I». Because of
the range of axial strains considered, the bound values for the
axial scaling factors were «,,;;, = 0.8 (maximal compression)
and amax = 1 (no compression). Lateral displacement bounds
were chosen such that a displacement of six interpolated
signals on the left or on the right was allowed. This way the
lateral displacement could be controlled while an erroneous
estimation over an adjacent region could be compensated.
Finally, the optimization was initialized to the center of the
feasible domain t(()?,)l = a(()?i =0.9; ug?,{

the probe-medium interface, while initialization for consecutive
regions was performed as described in Section II-B2.

= 0] for regions at

The threshold value for which the correction procedure de-
tects an estimate as unreliable was set to Rthreshold = 0.8, gen-
erating Nb = 10 new minimization processes. In this section
only, no local regularization was considered. Indeed, as dis-
cussed in Section II-B4, the regularization is dedicated to cor-
rect localized estimation errors, assuming that the axial strain
and lateral displacement fields that result from steps in Sections
II-B1, II-B2, and II-B3 are for the most part correctly estimated.
This requires analyzing results at the end of the first three steps.
Finally, it should be recalled that all estimated strain values were
negative and for simplicity reasons, values will be displayed as
positive, knowing that we measured a compression and not a di-
latation.

Fig. 3(a) presents the mean and standard deviation of the es-
timated axial strains as a function of the true strains. We ob-
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serve that the method is able to accurately compute estimates for
strains up to 17%. The standard deviation increases slightly with
the deformation but remains low over the range. Axial displace-
ments were computed from axial strain estimates. Their mean
profiles along the axial direction as well as standard deviations
are reported in Fig. 3(c) for a few compression levels (¢ = 0.5%,
5%, 10%, 15%, and 17%) for purposes of clarity. However, all
compression levels were investigated and it was observed a very
continuous evolution in axial displacement mean profiles from
one level to another. Computed mean axial displacements are
very close to the theoretical values. A slight increase in standard
deviations with the compression level can be observed; however
they remain on the order of 1e-3 mm fore = 17%. Mean profiles
and standard deviations for lateral displacements are also pro-
vided [Fig. 3(b)]. As expected, their estimation is noisier than
the estimation along the axial direction, but remains in good
agreement with theoretical values. Finally, the mean correlation
coefficient as a function of the compression level is displayed
[Fig. 3(d)]. Its value, close to 1 for small strains, decreases with
the applied compression to reach 0.8 for 16% strain. With in-
creasing strains, signals are subjected to higher nonlinear ampli-
tude and phase distortions that are not considered in our defor-
mation model. Nevertheless, the technique proposed provides a
good-quality estimation.

These results must, however, be cautiously interpreted, since
simulations always remain ideal cases and the medium studied
is mechanically homogeneous and therefore uniformly absorbs
the compression. Biological tissues are unfortunately mainly
heterogeneous, especially when they are pathological. Their
compression will result in a wide range of strain variations.
The load therefore needs to be carefully applied to avoid large
areas of high strains (> 17%). Moreover, local strong medium
heterogeneities may increase signal distortions, reducing the
range of accurate strains with the use of medical data.

However, this range will remain sufficiently wide to inves-
tigate in vivo biological tissues. Previous studies concerning
medical applications have demonstrated the potential of elastog-
raphy, with elastograms exhibiting a narrower range of accurate
strains [6], [9], [30].

The following results use local regularization when neces-
sary. The parameters .., and ;» were empirically selected using
phantom and biological tissue data. According to our observa-
tions, small areas of the displacement and strain fields that visu-
ally appear to suffer from an erroneous estimation were mainly
characterized by a correlation coefficient that remained weak
after the correction procedure. These considerations have led us
to set Ryeq to 0.8.

Determining ;4 was achieved by varying its value in the range
[0.25-100] and by investigating the regularization effects on the
displacement and strain fields. We visually observed that for
u < 8, the regularization was too weak to smooth the areas
concerned. For y > 40, the parameter vector estimation was
exclusively dominated by the regularization process. Finally, for
8 < 1 < 40, a very slow continuous area smoothing was ob-
served with increasing values for the regularization factor. Con-
sequently p was set to 30.

3) Heterogeneous Mechanical Media Results: The ability
of the proposed technique to image heterogeneous strain fields

was investigated with two simulated linear elastic, nearly in-
compressible mechanical bodies. The first case we numerically
created was a homogeneous cube (F = 50 kPa) containing a
cylindrical inclusion that was twice as hard as the surrounding
material (£ = 100 kPa). This medium was subjected to a uni-
axial load of 2 kPa. The second medium was a three-layer body,
whose middle layer of Young’s modulus (F = 50 kPa) was
six times softer than the top and bottom layers (£ = 300 kPa).
This body was subjected to a uniaxial load of 7 kPa. Its defor-
mation covered a wider range of strains than the example used
in the first case. Both bodies measured 40 x 40 x 40 mm?3.

The resulting displacement and strain fields from the em-
bedded inclusion medium and the three-layer medium are
presented in Figs. 4 and 5, respectively. For both, estimated
fields are close to the theoretical values. In Fig. 4(b), the axial
strain field brings out the hard inclusion with sharp boundaries,
whereas it is not detectable in the conventional B-scan US
image [Fig. 4(h)]. Regions located above and below the hard in-
clusion exhibit higher strains because of stress concentrations,
as demonstrated with the theoretical field [Fig. 4(a)]. The corre-
sponding axial displacement field has been deduced [Fig. 4(d)]
and is in perfect agreement with the theory [Fig. 4(c)]. In the
lateral direction, the displacement field also corroborates the
theoretical values, but is noisier than the axial displacement
field, because of the poor lateral resolution of the imaging
system. Finally, as the objective function is based on the nor-
malized correlation coefficient between a 2-D initial region and
its compensated deformed version, this similarity criterion has
been mapped. It remains strong throughout the entire image,
achieving its highest values for less strained regions. The
weakest values are reached at the inclusion boundaries, where
the assumption of a constant strain over the region of interest
is not valid. However, the correlation coefficient remains high
and has been estimated at 0.96 on average.

Similar observations can be made with the fields resulting
from the three-layer medium. Estimated strain and displace-
ment fields are close to FEM distributions. Correlation coef-
ficients are in the range [0.58-0.996], with more than 99% of
them higher than 0.8, resulting in a mean value of 0.94.

B. Results on Experimental Data

1) Strain Imaging of a Tissue-Mimicking Phantom: RF US
images were acquired from a parallelepipedic PVA cryogel
phantom, measuring 3 X 5 x 4 cm® and containing a harder
cylindrical inclusion [Fig. 6(a)]. Polyvinyl alcohol (PVA)
cryogel is a material whose stiffness increases by oper-
ating successive freeze-thaw cycles, adapted for constructing
tissue-mimicking phantoms [36]. The surrounding medium
and the inclusion were subjected to 1 and 3 freeze-thaw cycles,
respectively. During the experiment, the bottom surface of the
phantom lay on a support, while its top surface was compressed
downward by lowering the US probe. The other four vertical
exterior phantom surfaces were free to slip. The transducer was
subjected to a 0.9-mm vertical displacement inducing a mean
global strain of 3%. RF images were acquired with a 7-MHz
central frequency probe and sampled with a frequency of 50
MHz. Each image was composed of 128 RF A-lines. RF data
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2.5

1.4mm

Fig. 4. Simulated inhomogeneous phantom with a harder inclusion. True: (a) axial strain, (c) axial displacement, (e) lateral displacement. Estimated: (b) axial
strain, (d) axial displacement, (f) lateral displacement. (g) Normalized correlation coefficient map, (h) B-mode image.

were interpolated by a factor of 4 in the axial direction and by a
factor of 2 in the lateral direction, prior to strain computation.
Results are presented in Fig. 6. While the inclusion is
not revealed in the classical B-mode US image [Fig. 6(b)],
it is clearly brought out with sharp boundaries in the axial
elastogram [Fig. 6(c)]. The maximal axial displacement is
estimated at 0.83 mm, and the mean axial strain at 3.05%, cor-
roborating the experimental conditions. Lateral displacement
estimation is noisy [Fig. 6(e)] but remains in agreement with the
theoretical developments. Moreover, its significant amplitude
demonstrates that it must be taken into account for a better

estimation of the axial component. Indeed, we can observe that
although noisy, considering the lateral displacement provides a
correct estimation of the axial strain even at the lateral image
extremities, where the lateral motion is the greatest. This level
of quality could not be achieved with techniques that ignore
this motion, such as 1-D methods. As illustrated with the elas-
togram provided in Fig. 6(g) and computed with a 1-D-scaling
factor estimation technique [22], the axial strain computation
is highly corrupted by signal decorrelation toward the image’s
lateral borders, resulting in erroneous values. This may lead to
elastogram areas where a small lesion is undetectable because
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Fig.5. Simulated three-layer phantom. True: (a) axial strain, (c) axial displacement, and (e) lateral displacement. Estimated: (b) axial strain, (d) axial displacement,
and (f) lateral displacement. (g) Normalized correlation coefficient map. (h) B-mode image.

of the noise level. With such 1-D schemes, the loss of correla-
tion induced by lateral motion cannot be compensated for by
additional processing.

Finally, the distribution of the normalized correlation coeffi-
cient between an initial 2-D region and its deformed version,
compensated for the lateral shift and axial scaling factor, is
quasi-uniform and estimated on average at 0.89 [Fig. 6(f)].

2) Strain Imaging of In Vitro Bovine Livers: Our method was
finally tested on experimental data from two cut specimens of
bovine liver [Fig. 7(a)]. The first biological sample presented
variable thicknesses with a maximum of 28 mm. An embedded
harder inclusion in agar gel measuring approximately 7.5 mm

in diameter was created inside the soft tissue [Fig. 7(b)]. The
same experimental protocol as described in the previous section
was applied, with the two following differences. The vertical
displacement of the probe to perform the compression was de-
creased to 0.2 and 0.4 mm because of the weak thickness of the
tissue, emphasized by the significant precompression that needs
to be applied to ensure sufficient contact between the transducer
and the curved top surface of the specimen. Moreover, the sam-
pling frequency was set at 200 MHz. Data were interpolated by
a factor of 2 in the lateral direction.

Fig. 7 illustrates the axial strain fields for 0.2 mm [Fig. 7(d)]
and 0.4 mm [Fig. 7(h)] of vertical displacements. The estimated
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Fig. 6. Results obtained for a cryogel phantom containing a harder inclusion. (a) Phantom scheme. (b) US B-mode image. Estimated: (c) axial strain, (d) axial
displacement, (e) lateral displacement, (f) correlation coefficient map, and (g) results obtained with a 1-D scaling factor estimation technique. Although noisy,
considering the lateral displacement provides a correct estimation of the axial strain throughout the entire image, contrary to the 1-D technique whose estimation

fails at the image extremities, where the lateral motion is the greatest.

axial [Fig. 7(e)] and lateral [Fig. 7(f)] displacement fields as
well as the correlation coefficient map [Fig. 7(g)] are presented
for the 0.2-mm vertical displacement. However, similar results
were obtained for the 0.4-mm motion. The results demonstrate
that our technique can discriminate harder regions within soft
biological tissues. Similar comments to those provided for the
phantom can be made here. In particular, the inclusion is shown
in the axial elastogram, with a clearly delimited shape. The es-
timated maximum axial displacements are in perfect agreement
with the compression application conditions.

Finally, the normalized correlation coefficient field is quasi-
uniform with a mean of 0.97 and 0.915 for 0.2-mm and 0.4-mm
vertical displacement, respectively, indicating the good simi-
larity achieved between a 2-D region and its deformed compen-
sated version.

The results from bovine liver sample #2 containing a harder
agar inclusion are presented in Fig. 8. This sample, whose max-
imum thickness reached 36 mm prior to precompression, was in-
vestigated with the same experimental conditions as sample #1,
except that the vertical displacement applied was set to 1 mm.

We can observe that the lesion exhibits a much lower strain
than the surrounding regions, making it clearly visible in the
axial elastogram [Fig. 8(b)]. Moreover, the axial displacement
field [Fig. 8(c)] deduced from the axial strain distribution has
a maximum value that perfectly corroborates the conditions of
the load application. The lateral displacement field [Fig. 8(d)]
is greater than 0.6 mm at the lateral image extremities, demon-
strating that it does indeed need to be considered. Finally, the
mean normalized correlation coefficient has been estimated at
0.85 [Fig. 8(e)].
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Fig. 7. Results from bovine liver sample #1 within which is embedded a harder inclusion in agar. (a) Global view of the biological sample. (b) Photograph of the
slice of interest. (c) US B-mode image. Estimated: (d) axial strain, (e) axial displacement, (f) lateral displacement, and (g) normalized correlation coefficient, for a
vertical displacement of 0.2 mm, and (h) axial strain for a 0.4-mm probe motion applied. Whereas the agar inclusion is nearly undetectable in the B-mode image,
it is clearly visible in the deformation fields. Moreover, the difference in range of axial strain fields (d) and (h) as well as the axial displacement distribution are in

perfect agreement with the experimental conditions of the load application.

IV. CONCLUSION

In this paper, a 2-D strain estimation algorithm was intro-
duced, computing the axial strain while considering lateral mo-
tion. Contrary to most 2-D techniques that model the compres-
sion-induced local displacement as a 2-D shift, we also consider
a scaling factor in the axial dimension. This leads to a method
that is much more robust in terms of decorrelation noise and re-
sults in a larger range of accurate measurements.

To achieve maximum accuracy, the technique computes de-
formation parameters as those leading to the best possible match
between the precompression and postcompression 2-D RF re-
gions, when the latter are highly correlated. This is done through
the constrained maximization of an objective function, defined
as the normalized correlation coefficient between the initial 2-D
RF acoustical region and the deformed region, compensated for
the deformation parameters. When the correlation is lost, the

estimation integrates an additional local smoothness constraint,
imposing the continuity of resulting displacement and strain
fields.

Two error sources for the model (1) should nevertheless be
mentioned. The processed RF images inevitably contain an
additive noise that can be modeled as a signal-independent,
zero-mean, spatially uncorrelated process like electronic noise
[18]. However, the similarity criterion used is known to be
robust to such noise [37]. Moreover, with increasing strains,
signals will be subjected to higher nonlinear amplitude and
phase distortions that are not considered in our deformation
model. This represents the major cause of decorrelation at
larger strains.

The results on phantom and in vitro biological data demon-
strate the ability of our technique to image deformation, pro-
viding information complementary to standard US images.
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Fig. 8. Results from bovine liver sample #2. (a) US B-mode image. Estimated: (b) axial strain, (c) axial displacement, (d) lateral displacement, and (e) normalized
correlation coefficient for a 1-mm vertical displacement of the probe. Agar inclusion exhibits a much lower strain than the surrounding medium.

Compared to 1-D techniques, the algorithm described is char-
acterized by a significant increase of computational costs. With
the current implementation, the run time to compute one axial
strain image and the corresponding lateral field is a few min-
utes on a PC (Pentium M 1.7-GHz Processor, 1GB. RAM). De-
veloping a real-time method is beyond the scope of this paper.
However, it has to be mentioned that the algorithm can be mod-
ified to support parallel computing. Investigating such imple-
mentation will be part of our future work.

In the present implementation, bounds of the feasible region
and thresholds are constants. It should be possible to adapt them
according to the estimated compression level. This could accel-
erate the convergence of the algorithm. Therefore these parameter
values may evolve with future analysis. Finally, the present algo-
rithm, based on the sequential quadratic programming method-
ology, allows the immediate addition of new constraints, whether
linear or nonlinear. It can also be easily formalized in 3-D.

APPENDIX

A. The Sequential Quadratic Programming (sequential QP)
Algorithm is a generalization of Newton’s method, in that
it finds a step away from the current point by minimizing a
quadratic model of the problem.

1 0

0 1} the

Given initializations, k = 0, tg, A; 0, Ho = [

technique consists in iteratively:
1) Forming and solving the (QP) subproblem to obtain the
descent direction dj, (see Appendix B).
2) Determining a step length p;, to obtain a sufficient decrease
in the objective function.
3) Set tx+1 = tr + prd, and updates the Lagrange multi-

pliers.

4) STOP if convergence (= satisfaction of the Kuhn—Tucker
conditions).

5) Else compute Hy41 (BFGS update), set k := k+ 1 and go
to 1).

B. Form and Solve the (QP) Subproblem: The descent di-
rection dy, is computed as the solution of the associated QP sub-
problem. In our case, it corresponds to finding the constrained
minimum of the quadratic approximation of the objective func-
tion since all constraints are linear

1
min V f(t)" - de + Sdi - H(te) - dy
subject to:A(dy + ) <b

where d; = t — ;..
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Fig. 9. QP solution computation.

This problem is solved by using an active set strategy. Ac-
tive set methods are procedures that aim at identifying the con-
straints that will become active at the solution. Since it is not
possible to know a priori which constraints will be active at the
solution, these techniques are based on developing a prediction
of the correct active set. And because the prediction could be
wrong, the technique must also include procedures to modify it.

In the article, we denoted A the submatrix of A containing
the coefficients of the constraints active at the solution and Z
the matrix whose columns form a basis for the set of vectors
orthogonal to the rows of A. Z thus defined the subspace of
feasible search directions.

Similarly, we will denote Aj the prediction of the active set at
the jth iteration and Z; the corresponding subspace of feasible
directions.

The technique works as shown in Fig. 9. In most cases, this
process is completed in 1 or 2 iterations.
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