
 

 

Kladno 2020 
 

 

CZECH TECHNICAL UNIVERSITY IN PRAGUE 

FACULTY OF BIOMEDICAL ENGINEERING 

Department of Biomedical Technology  

 

 

 

 

 

 

 

Design of a control and actuator system of smart lower 

extremity brace 
 

 

Návrh řídicího a pohonného systému chytré ortézy dolních končetin 

 

 

 

 

Bachelor Thesis 

 

 

 

 

Study program: Biomedical and Clinical Technology 

Study branch: Biomedical Technician 

 

Bachelor thesis supervisor: doc. Ing. Patrik Kutílek, MSc., Ph.D. 

 

 

 

 

 

 

David Sebastian Martinez Lema 

 



 

  

David Sebastian Martinez Lema 



 

  

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DECLARATION 

I hereby declare that I have completed this thesis having the topic “Design of a control 

and actuator system of smart lower extremity brace” independently, and that I have 

attached an exhaustive list of citations of the employed sources.  

 

I do not have a compelling reason against the use of the thesis within the meaning of 

Section 60 of the Act No.121 / 2000 Sb., on copyright, rights related to copyright and 

amending some laws (the Copyright Act). 

 

 

 

In Kladno 2020            …...….………...………………... 

       David Sebastian Martinez Lema 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisor doc. Ing. Patrik Kutílek, MSc., Ph.D. for his 

guidance and assistance provided during the realization of this project. 

 



 

  

 

 

 

 

 

 

 

 

 

ABSTRACT 

 
Title of the Thesis:  

Design of a control and actuator system of smart lower extremity brace.  

Exoskeletons can facilitate the rehabilitation of lower limbs as they provide additional 

structural support and strength. The design and implementation of a functional prototype 

of lower extremity brace actuation and control system, capable of wireless 

communication is this thesis’s main aim. The design focus is to provide a supportive 

torque and increase the range of motion after complications that reduce muscular strength 

such as Arthrofibrosis. Its structure, components and control algorithms were proposed, 

calculated and tested. The prototype supports leg raises and gradual standing and slow 

walking. The main control modalities are based on an Artificial Neural Network and a 

Finite State Machine. The prototype’s functionality was monitored by time-angle graphs. 

The final prototype shows the potential to treat joint impairments in an adaptive way.  

Key words 

Exoskeleton, range of motion, actuator system, control system, neural networks. 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRAKT 

 

Název práce: 

Návrh řídicího a pohonného systému chytré ortézy dolních končetin. 

 

Exoskeletony dokáží usnadnit rehabilitaci dolních končetin tím, že poskytují dodatečnou 

strukturální oporu a sílu. Hlavním záměrem této bakalářské práce je navržení a 

implementace funkčního prototypu ovládacího a pohonného systému dolní koncové 

ortézy, schopného bezdrátové komunikace. Navržené zaměření poskytuje podpůrný 

točivý moment, kterým se zvyšuje rozsah pohybu končetin při zdravotních komplikacích, 

snižující svalovou sílu, jako je například artrofibróza. Byla navržena, vypočtena a 

testována její struktura, komponenty a řídicí algoritmy. Prototyp podporuje zdvih nohou, 

postupné postavení se a pomalou chůzi. Hlavní způsoby ovládání jsou založeny na umělé 

neuronové síti a konečném stavovém automatu. Funkčnost prototypu byla monitorována 

pomocí grafů s časovým úhlem. Konečný prototyp představuje potenciál adaptivně léčit 

poruchy kloubů.  

Klíčová slova: 

Exoskeleton, rozsah pohybu, akční systém, řídicí systém, neuronové sítě. 

  



 

7 

 

Table of Contents 

List of symbols and abbreviations .............................................................................. 8 

1 Introduction .......................................................................................................... 9 

2 Overview of the current state of the art ............................................................. 10 

3 Aims .................................................................................................................... 12 

4 Methods............................................................................................................... 13 

4.1 Proposal of structure and components .......................................................... 13 

4.1.1 Leg rises evaluation ......................................................................... 13 

4.1.2 Standing up and walking evaluation ................................................. 15 

4.1.3 Calculation of forces based on movement analysis ........................... 17 

4.1.4 Actuator System ............................................................................... 21 

4.1.5 Control System ................................................................................ 22 

4.1.6 Actuator testing wireless module ...................................................... 24 

4.2 Design of control algorithms ....................................................................... 25 

4.2.1 Main functions ................................................................................. 25 

4.2.2 Actuator testing software and wireless communication ..................... 27 

4.2.3 Experimental intention of movement detection ................................. 30 

4.2.4 Control modalities ............................................................................ 35 

4.3 Implementation and testing of prototype ...................................................... 39 

4.3.1 Control and actuator system implementation .................................... 39 

4.3.2 Testing of complete system .............................................................. 42 

5 Results ................................................................................................................. 44 

6 Discussion............................................................................................................ 55 

7 Conclusion .......................................................................................................... 56 

References .................................................................................................................. 57 

Appendix A: Code for wireless actuator control testing .......................................... 60 

Appendix B: Code for neural network training ....................................................... 62 

Appendix C: Code for continuous leg rises .............................................................. 63 

Appendix D: Code for leg rises with an ANN ........................................................... 66 

Appendix E: Code for standing up and walking ...................................................... 69 

Appendix F:Content of the enclosed CD .................................................................. 72 



 

8 

 

List of symbols and abbreviations 

List of symbols 

Symbol  Meaning 

A Amperes 

a Distance of contact 

D Distributed Load 

d Distance to center of mass 

F Force 

fs Pulse Frequency 

g Gravitational acceleration 

GR  Gear Ratio 

m Mass 

Pa 
Probability of class with 

preference 

PPR Pulses Per Revolution  

Px Probability of estimated class 

Rpm Revolutions Per Minute 

S  Stepper Motor Steps 

t Time 

T Torque  

Th Angle Threshold 

Tl Torque of load 

V Voltage 

w Scaling factor 

α Activation Angle 

θ Encoder Angle 

φ Desired Angular Position 

List of abbreviations 

Abbreviation  Meaning 

ANN 
Artificial Neural 

Network 

CPM 
Continuous Passive 

Motion 

DOF Degrees of Freedom  

LSB Least Significant Bit 

MSB Most Significant Bit 

ROM Range of Motion 

TKA Total Knee Arthroplasty 

W/R Read or Write 



 

9 

 

1 Introduction 

The term exoskeleton is originally  from the field of Biology. It is defined as the external 

skeleton of  insects and other invertebrates which protects and supports their body. In 

other words, a biological exoskeleton would perform the same task as a mechanical or 

robotic exoskeleton. A series of biometric sensors track the position of the limbs, nerve 

impulses and other available information from the environment to produce a movement. 

The processing unit of exoskeletons then detects these signals, processes them and acts 

accordingly. It allows the exoskeleton to work in cooperation with its user as if it was part 

of the body. This process is similar to how the brain reads the nervous signals from the 

body and then adapts itself to the environment.  

 

The demand for exoskeletons is constantly increasing as efforts to modernize and 

automate healthcare are made globally. Such devices can facilitate limb rehabilitation 

process since they provide additional strength and support to the patients. At the same 

time, they can reduce the therapist’s fatigue caused by the exhaustive nature of 

rehabilitation therapy. Exoskeletons are used in different types of therapies where joint 

impairments are treated, such as gait rehabilitation. These type of robotic devices are 

called lower limb exoskeletons. They are designed to work parallelly to the human lower 

limbs and mimic the human gait [1].  

  



 

10 

 

2 Overview of the current state of the art 

As opposed to the normal human skeleton, which supports the body from the inside, an 

exoskeleton supports the body from the outside. Exoskeletons are usually designed to 

allow people with mobility disorders to walk or increase strength and endurance. 

Exoskeletons have several key components; the frame, usually made of lightweight 

materials, must be strong enough to support the weight of the body, as well as the weight 

of the exoskeleton and its components. Sensors capture information about how the user 

wants to move. The sensors can be manual, like a lever, or they can be electric and detect 

the physiological impulses generated by the body. The controller acts as the brain of the 

device, the controller is an on-board computer which takes the information captured by 

the sensors and controls the actuators. The computer coordinates the actuators in the 

exoskeleton and allows the exoskeleton and its user to stand, walk, climb or descend [2]. 

To do it in the bes possible way the actuators are one of the most important elements that 

should be chosen.  

 

A stepper motor is a brushless DC motor that has the characteristic of rotating in both 

directions, moving with precise angular increments, holding a holding torque at zero 

speed, and controlled by digital circuits. The stepper motor is very useful because it can 

be precisely positioned without any feedback sensor, therefore it can be represented as an 

open circuit controller. The number and rate of pulses controls the position and speed of 

the motor shaft. Stepper motors are typically manufactured with 12, 24, 72, 144, 180, and 

200 steps per revolution, resulting in shaft increments of 30 °, 15 °, 2.5 °, 2 °, and 1.8 °. 

As the stepper motor coils are activated in a particular order,  a current is allowed to flow 

through them that magnetizes the stator causing electromagnetic poles that will cause 

motor drive. Special microstep circuits can be designed to allow more steps per 

revolution, often 10,000 steps per revolution or more.[3] 

 

For instance a servo motor allows the user to control the position of the rotor. This 

makes it posible to move it to a certain amount of degrees and then remain fixed in that 

position. They are especially useful in the field of robotics. A servo motor is a type of 

motor that, by reversing its polarity, its direction of rotation changes, the axis moves by 

desired degrees. Its main advantage is the control of position and speed. It is made up of 

a mixed system of electromechanical and electronic parts. The motor and a set of gears 

are the electromechanical part, it rotates thanks to an applied current, and the electronic 

part is the control circuit. They are composed by a an electronic control circuit and a 

potentiometer internally.Servo motors have three cables while common motors only have 

two. Regarding its operation, it can be determined that it responds to the width of the 

modulated signal.[4] 

 

 

 

 



 

11 

 

Model-based Control systems for exoskeletons are commonly used nowadays. They 

part from a dynamic model which can be obtained by identifying the system involved in 

the movement and then replicating its behavior [5]. Another approach is to drive the 

exoskeleton by means of a Finite state machine. These algorithms are based in states and 

transitions. To reach a certain outcome the control system must undergo such transitions. 

They have been use in combination with a foot pressure sensor to detect if the system 

should provide a supportive movement[6]. In 2015 a team of researchers in Korea 

proposed gait phase classification method based on neural networks using sensor signals 

and foot force sensors to classify gait phases.[7] Exoskeletons used in gait rehabilitation 

are often designed to assist the limited movements caused by a condition. To achieve this, 

they have to be developed in such a way that they follow rehabilitation standards and 

implications such as the ones proposed by The International Classification of Functioning 

and Disability [8].  

 

     After a knee complication such as Arthrofibrosis or a TKA surgery the knee’s ROM 

could be reduced from 130 degrees to as low as 80 degrees. Ideally an assistive device 

such as an exoskeleton or a continuous passive motion (CPM) machine should allow this 

range to increment progressively until it is back to the post-operative state [9]. There are 

reported cases of patients who are able to regain their original knee extension and flexion 

after using such devices and even return fully to do sports and physical activities [10]. A 

study conducted in 2006 showed that short-term usage of CPM causes a greater short-

term ROM [11]. 

 

 

 

 

 

  

 

 

 

 

 

 



 

12 

 

3 Aims 

The main aim of this project is to design and realize a prototype of actuator system for a 

lower extremity brace developed by the company Prokyber s.r.o., Kladno, Czech 

Republic. For this, the control algorithms, structure and components of the smart brace 

control system and brace actuation have to be proposed, calculated and developed. The 

actuator and control system should allow upright standing and slow walking by 

generating a supportive torque in case of debilitated muscles as a result of conditions 

such as Arthrofibrosis and the post-operative stage of TKA. A testing module able to 

connect wirelessly to the testing software would be created to control the selected 

actuator and test actuator control. The aforementioned elements should comply with 

rehabilitation standards to address joint impairments. This also means that it should 

allow biomedical technicians or medical staff to test it in an easy manner, thus the 

software interface for actuator testing of the smart brace must be user friendly. The 

outcome of the bachelor thesis would be a functional  prototype of lower extremity 

brace actuator system designed to increase the ROM following such complications. 

Finally the functionality of the created system and must be evaluated. 

 

 

  



 

13 

 

4 Methods 

During the realization of this project an actuator and control system prototype for a smart 

knee  brace, designed by the company Prokyber s.r.o., was developed. In order to fulfill 

the principal aims of the project, the desired movements where thoroughly analyzed so 

that the behavior of actuator system complies with clinical requirements for orthotic 

devices used in the human knee.  

Based on this requirements, its structure, components and control algorithms were 

proposed, calculated and tested. This development sequence is described in the next 

chapters. 

4.1 Proposal of structure and components 

The movements analyzed in the following subchapters were used as a reference to select 

the components of the control system and design the control algorithms and the control 

modalities that drive the exoskeleton. 

4.1.1 Leg rises evaluation 

The American Academy of Orthopaedic Surgeons states that supported and unsupported 

knee bends while sitting are often recommended by orthopedic surgeons and physical 

therapists as part of rehabilitation exercises during the recovery stage of TKA. The 

supported knee bends involve the aid of the healthy leg and the unsupported knee bends 

are performed by the affected leg only, as shown in Figures 4.1 and 4.2 respectively. Both 

movements involve the extension of the affected knee as far as the patient withstands, 

then the current position is held for 5 to 10 seconds and finally the leg is moved to the 

original position [12]. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Supported knee bend while sitting (taken from [13]) 



 

14 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Unsupported knee bend while sitting (taken from [14]) 

 

 

Based on the movements described above the desired ROM was defined. Ideally, 

the initial position is when the leg is perpendicular to the ground and the foot is in contact 

with it, as described in Figure 4.2, though it can be different depending on the knee’s 

degree of initial flexion. For this reason, the initial angular position was set to 0 degrees 

and the final angular position to 120 degrees to give the user an extended ROM. The 

control algorithms of the smart brace use this ROM (0° to 120°) to generate the main 

boundaries applied in the leg rise movement for actuator testing and also include the 5 

seconds of pause in the extended position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

4.1.2 Standing up and walking evaluation 

The process of standing up requires the action of the biomechanical pulley in the  

knee, as illustrated in Figure 4.3, which involves the femur, tibia, patella (including its 

ligament and tendon) and quadriceps [15]. The components of the actuator system were 

selected in such a way that they mimic the aforementioned structure and behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: A biomechanical pulley of the human body compared to a mechanical 

pulley (taken from [16]) 

The tibial-on-femoral extension for standing up is driven by the flexion of the 

quadriceps in the same way as the tibial-on-femoral extension for leg rises (Figure 

4.4).For this reason, the same ROM was used in the design of the control algorithms for 

standing up. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Tibial-on-femoral extension for standing up (taken from [17]) 

 

 

 

 

 

 

 

 



 

16 

 

In the sagittal, transverse and coronal planes, the knee joint is displaced during gait. 

Nevertheless, most of the knee joint motion is done in the sagittal plane, including the 

knee joint's flexion and extension. The knee joint's flexion and extension is periodical and 

ranges from 0 to 70 degrees, although there is some variability in the exact amount of 

peak flexion that occurs. Such variations may be due to differences in walking speed, 

personal gait pattern of the subject and the terrain evenness. This process is described in 

the book Tidy's Physiotherapy [18].  

To replicate the described gait pattern the control system uses an angle encoder and 

two interrupters; they are placed in such a way that only one is pressed at the time when 

the user’s leg is extending, through phase 5, or flexing, through phases 3 and 4, as shown 

in Figure 4.6. 

 

  

 

Figure 4.6:  Knee angular movement through the gait cycle (taken from [19]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

4.1.3 Calculation of forces based on movement analysis  

The mechanical structure of the smart brace was designed by Prokyber s.r.o. to resemble 

the biomechanical pulley system of the human knee and is mainly made of aluminum. 

It has three links with two revolute joints. The three links of the exoskeleton mimic to the 

structure of the human leg, which is composed by the foot, shank and thig; the two 

revolute joints correspond to the ankle, which is merely used as a pivot and support point 

and the knee, which is actuated by mechanism composed by gears and pulleys as 

described on (Figure 4.7). 

 
Figure 4.7: Two DOF smart brace structure.(Manufactured by [20]) 

 

 

 

 

 

 

 

 

 

 

 



 

18 

 

In order to evaluate the structural support provided to the patient and select the 

actuator for the smart brace actuator system a structural and mechanical analysis was 

performed. It consisted in calculating the total reaction force and moment required on the 

upper segment of the exoskeleton, which is the one in charge of creating a structural 

support external to the knee joint, and the holding torque of the exoskeleton’s actuator 

system which would ease the process of standing up and walking. The first step was 

identifying all the relevant components that exert a weight on the link. These main 

elements would be the gear fixed to the link by means of an axle and bearing, the motor 

support fixed by two screws, the chosen motor and the link itself. The masses and 

distances of the mentioned elements were measured and their forces were calculated. The 

weight of the motor was set to 2 kg as a maximum rating to keep the total load weight as 

low as possible. Since a human subject is intended to use the brace, the weight of the thig 

and upper body segment on an average human[21] of 62 kg were considered using 

anthropometric tables found in the book Human Body Dynamics [22].  

To obtain the force of each element following equation was used: 

                                                           �⃗� = 𝑚 × 𝑔                                                        (4.1) 

Where �⃗� is the force, 

 m— mass, 

 g— gravitational acceleration constant.  

 

To get the force vector of the distributed load this equation was used: 

𝐷 =
 �⃗�

𝑎
                                                             (4.3) 

Where D is the distributed load, 

�⃗� — the applied force, 

a— distance of contact. 

 

To obtain the resultant vector of reaction force this equation was used: 

                                                      ∑  �⃗�𝑖
𝑛
𝑖=1 = 0                                                       (4.5) 

Where n is the total number of forces in the system, 

i— the index of each applied force, 

�⃗�— the applied force vector. 

Additionally 0 represents that the system is in equilibrium . 

 

To obtain the resultant reaction moment the following equation was used: 

                                                   ∑  �⃗�𝑖
𝑛
𝑖=1 × 𝑑 = 0                                                        (4.6) 

Where n is the total number of forces on the system, 

i— the index of each applied force, 

�⃗�— the applied force, 

d— the distance from the joint to the center of mass of the element. 

Additionally 0 represents that the system is in equilibrium . 

 

To estimate the gear ratio of the actuation mechanism this equation was used: 



 

19 

 

 

𝐺𝑅 =
∆𝐿𝑑

∆𝐸𝑓𝑓
                                                          (4.7) 

where GR is the gear ratio, 

 ∆𝐿𝑑 — the driven angular displacement (load), 

 ∆𝐸𝑓𝑓— the driver angular displacement(effort). 

 

To obtain the required torque for the actuator system the following equation was used: 

                                                   𝑇 =
𝑇𝐿

𝐺𝑅
                                                        (4.8) 

Where T is the final required torque, 

𝑇𝐿— torque of the load, 

GR— Gear ratio of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

20 

 

A free body diagram was created to illustrate the applied forces and the resultant 

force, that was calculated using equation 4.5 and the resultant moment, which was 

calculated with equation 4.6. A moment of  233.18 Nm and a resultant force of 467.85 N 

were obtained. This implies that the structure of the exoskeleton should be able to reduce 

the stress on the muscles and knee joint caused by lifting the upper body and thigh link 

of the exoskeleton, including all of its components. The gear ratio of the smart brace is 

11 approximately. It was determined by setting an initial position marker in the knee joint 

(driven element), then the small gear (driver element) was rotated 360 degrees and finally 

the angular displacement Δθ in the knee joint was measured with a value of 33 degrees. 

For this estimation the formula 4.7 was used. Finally the required torque for the smart 

brace was approximated using the calculated moment applied on the joint by means of 

formula 4.8. This resultant torque of 21.2 Nm was used as a reference to select the 

actuator. 

 

 

 
 

Figure 4.8: Free body diagram of forces applied on the thigh link. 

 

 

 

 

 

 

 



 

21 

 

4.1.4 Actuator System 

During the overview of the current state of the art it was determined that the best 

motor for this application is a bipolar stepper motor due to the high accuracy, torque 

provided and the fact that its open loop.  The stepper motor LDO-60STH86-3004A, 

manufactured by LDO Motors, was selected based on the structural analysis. The torque 

rating of this motor is 2.75 Nm at low Rpm, however if we multiply it by the gear ratio of 

the actuation mechanism the final torque of 30.25 Nm is obtained. This value is greater 

than the required torque of 21.1 Nm. Based on this rough theoretical approximation, the 

actuation system would be able to lift the applied load and generate a supportive torque. 

The stepper motor would be incorporated to the small gear of 14 teeth situated at the top 

of the stepper motor support. After this it would be connected to the main gear of 72 teeth 

using the already provided dented belt PowerGrip-HTD-50-5m. The main gear is fused 

with a small pulley of 25 mm of diameter facing the brace. This pulley is in turn linked 

to the knee joint pulley by means of a steel cable. The knee joint pulley has a diameter of 

100 mm. Finally, the Rotary encoder BHK 16.05A.0500-I2-5, manufactured by BHK, 

was selected to detect the angular position of the leg. This encoder was chosen due to the 

high precision given by the number of pulses per revolution it has (500 pulses per 

revolution) and the fact that it operates with 5V, given that most microcontrollers operate 

on that range.  The structure of the smart brace actuator system is described on the 

 Figure 4.9. 

 

 

 

 

Figure 4.9: Two DOF smart brace actuator structure. 

 

 



 

22 

 

 

 

4.1.5 Control System 

For the control system, the architecture in Figure 4.8 was proposed based on the 

movement, sensing and control requirements. The microcontroller board used in this 

prototype is the STM32 F446 which uses a custom firmware developed by the company 

Prokyber.s.r.o. specifically for the control of the smart brace. The embedded functions of 

the mentioned firmware operate with input and output values stored in its registers. The 

pins of the STM32  are assigned to these inputs and outputs as shown on table 4.. The 

system uses a computer running Ubuntu Linux 20.04LTS as the one in charge of the 

decision-making, it sends R/W requests and receives responses trough Modbus RTU from 

the STM32, acting in a master-slave relationship with it. 

 

Table 4.1. List of pins of the STM32 

Pin Description 

PB_8 Encoder A 

PB_9 Encoder B 

PB_10 Motor pulse counter(connect to pulse pin) 

PC_7 Motor pulse 

PC_6 Motor enable 

PB_12 Motor direction 

PA_10 Button 1 

PB_1 Button 2 

 

 

 

 



 

23 

 

The control system uses the encoder’s pulses, from its terminals A and B, as an input. 

Internally the signals from the encoder are transformed into a degree value and assigned 

to a register that can be read when needed. Some pins can be used as digital inputs, in this 

case they are used to get the binary state from the buttons so that their instance can be 

used for control. As an output the STM32 sends three different pulses to the stepper driver 

denominated Direction, Enable and Pulse used to control the stepper motor. These 

rectangular pulse signals are in the range of 0V to 5V. The stepper driver DM805-AI 

manufactured by Leadshine was selected based on the fact that it matches the current 

raiting of 3A required by the stepper motor and the diversity of control modalities it 

allows, which were useful in the stage of actuator prototyping, being the Pulse/Direction 

the one mainly used in this project.  

Figure 4.8: Architecture of the control system. 

 

 

 

 

 

 

 

 

 

 

 

 



 

24 

 

4.1.6 Actuator testing wireless module 

In order to test the actuator control a testing module capable of wireless Bluetooth 

communication was developed. This testing module is designed for biomedical 

technicians and other medical staff to test individual actuators by plugging it to a selected 

actuator with a pin connector and control it by means of a software created for tablets or 

smartphones running Android Operating System; the software is fully described in the 

next subchapter. 

The actuator testing module is controlled by an Arduino Nano microcontroller board 

which uses an Atmega328p microchip. This microcontroller board was selected given 

that it is compact, it allows fast prototyping and it is able to send and read data through 

serial communication using the transmit and receive (TX and RX) pins. The component 

chosen for wireless communication is the ZS-040 Bluetooth module due to its 

compatibility with Arduino microcontrollers and serial communication capabilities. To 

connect it with the serial pins of the Arduino a voltage divider was used because the 

Arduino has an input logic level of 3.3V. Oppositely the stepper driver requires the pulse 

and direction signals to be of 5V of amplitude, therefore a series of 2N2222A transistors 

were used as interrupters mediated by the 3.3 V signals produced by the pins D5 and D6 

of the Arduino Nano. The testing module connection is represented on Figure 4.9. 

 
Figure 4.9. Bluetooth actuator testing module 

 



 

25 

 

4.2 Design of control algorithms 

4.2.1 Main functions 

The main embedded functions on the STM32 firmware are the function that transforms 

the encoder pulses into degrees and the function that generates the pulses to move the 

stepper motor to a specific angular position at a given Rpm as presented in Figure 4.10. 

Figure 4.10: Main functions used in the actuator control (Taken and edited from [17]) 

 

To obtain the angle from the encoder the following equation was used: 

                                                       𝜃 =
𝑃

𝑃𝑃𝑅
× 360                                                      (4.9) 

Where θ is the encoder angle, 

 P— the number of pulses, 

 PPR— the pulses per revolution of the encoder.  

 

To measure the number of steps required to move the motor to a specific angular 

position this equation was used: 

                                         𝑆 =
𝜑

360
× 200                                                     (4.10) 

Where S is the stepper motor steps, 

𝜑 — the desired angular position, 

 Additionally 200 represents the steps per revolution of the used stepper motor.  

For the wireless actuator testing module an algorithm based on equation 4.1 was used to 

move the actuator to a desired angular position. 

 

To measure the revolutions per minute the following equation was used: 

                                        𝑅𝑝𝑚 =
1.8

360
× 𝑓𝑠 × 60                                                 (4.11) 

Where Rpm is the revolutions per minute of the stepper motor, 

𝑓𝑠 — the pulse frequency, 

 Additionally 1.8 is the angle per step of the stepper motor .  



 

26 

 

 

For accessing and using the main functions the control algorithms read and write 

values from the STM32 registers through Modbus RTU communication by using their 

respective address shown in Table 4.2. These functions use hexadecimal notation, 

therefore a function for transforming them into floating point values and vice versa was 

implemented, these functions are called “floatToMod” and “modToFloat”; they are used 

throughout the Python control algorithms. 

 

Table 4.2. List of registers in the STM32  

Address Register description Type 

40356 Enable register W 

40357 RPM(Revolutions per minute) W 

40358 Stepper angular position (MSB) R/W 

40359 Stepper angular position (LSB) R/W 

40360 Mode (1 to run continuously, 2 for angular movement) W 

40361 Run (0 to stop, 1 or anything else to run) W 

40350 Encoder angle  R 

10001 Digital inputs R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

4.2.2 Actuator testing software and wireless communication 

The actuator testing software was developed using the MIT App Inventor development 

environment for applications. It uses visual objects to create block diagrams as a 

programming paradigm. This software was programmed to allow the user to test a 

selected actuator by moving it to a desired angular position or by generating a leg rise 

cycle. These commands are sent from an Android device to the smart brace actuator 

through Bluetooth with the wireless testing module as a mediator. 

First a global delay function is generated. This function is necessary because without 

it the program would run continuously and the executed commands would not be able to 

be delivered to the actuator wireless testing module. This procedure uses the system’s 

time which is a counter that counts every millisecond. To generate a twenty milliseconds 

delay a value of 20 is added to the current system’s time and that new value is compared 

with the actual system’s time until it catches up in 20 milliseconds. The delay happens 

because this comparison is tested on a while loop containing no instructions to do. The 

next function created generates a list of available Bluetooth devices, denominated clients, 

and their respective addresses to select from. During this procedure the user can select 

the wireless actuator testing module. After the user picks a Bluetooth client, the 

application gets connected to it and sets the label to “Connected”. These functions are 

described on   Figure 4.11. 

Figure 4.11: Global delay function and Bluetooth connection function. 

 

 

 

 

 



 

28 

 

What followed was the creation of a canvas space that was used to move the smart 

brace actuator to a certain angular position. This was achieved by making an indicator 

image sprite point in direction to the x and y coordinates of the section where the canvas 

space was touched and then using that action to send a value in degrees to the actual 

Bluetooth client. Since the actuator is not set to move in a range of  360 degrees, a function 

to limitate the range, return the leg to the initial position and warn the users that they are 

out of range was created. This function is shown in Figure 4.12 . 

. 

Figure 4.12: Function to move the actuator to a given angular position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 

Finally a function to switch from the angular position selection to the leg rise cycle 

generation was designed by sending messages to the current Bluetooth client. The check 

box object switches between the mentioned functions and a button object starts the leg 

rise cycle by sending the command “Start”. If the check box is checked the indicator 

returns to the origin and the command “Rise” is sent and when it is not checked the 

command “Angle” is sent. This function is illustrated in Figure 4.13. 

 
Figure 4.13: Function for switching between control modalities. 

 

In order to read the commands sent by the mobile application, the Arduino Nano was 

programmed to receive such commands through serial communication as a string. There 

are two main states for the wireless actuator testing denominated Rises and Angle. These 

states are set up by the check box object on the Android application. When one of them 

is selected, the program switches to the selected state. If the Angle mode is selected the 

header label on the Android app is set to the angle corresponding to the section where the 

canvas space was touched. This value is used to determine the direction of movement and 

calculate the number of  steps the actuator should move to reach the given position. If the 

Rises mode is selected, the program waits until the start button is pressed to start a leg 

rise cycle. The leg rise cycle is composed by a flexion and extension. This code can be 

found on Appendix A. 

 

 

 



 

30 

 

4.2.3 Experimental intention of movement detection 

To detect the intention of movement and algorithm based on an ANN was designed, 

trained and adapted for control purposes. This algorithm was made with the Keras Python 

library which is intended for the creation of neural network models. To be able to use a 

neural network for the movement intention detection of the smart brace user the possible 

sources of information, that would reveal what is the desired movement, were identified 

and analyzed.  

These sources are the angular displacement Δθ of the encoder and the binary states 

of the interrupters initially placed on the exoskeleton’s foot support belt and base. These 

sources of data are used as the input features of the model. Based on the leg movement 

evaluation it was assumed that when the user has the intention to flex the leg, the angle 

difference is negative and smaller than some threshold value of -15. Oppositely, if the 

user’s intention is to extend the leg, the angle difference would be positive and bigger 

than some threshold value of 15. Both of these assumptions are based on the fact that it’s 

possible that the user will not press any of the buttons but still try to move, therefore the 

angle displacement Δθ will always be considered to detect the intention of movement. If 

the angle difference is negative and at the same time the Button 1 placed on the foot belt 

is pressed, the system should become more sensitive given that it would have more 

information to decide that the user is trying to flex the leg. This would be achieved by 

reducing the threshold value from -15 to -10. The same would happen if Button 2 is 

pressed while trying to extend the leg, the threshold value would be reduced from 15 to 

10. Besides these instances there could be some accidental button presses opposite to the 

direction of movement, however since the encoder’s position is always considered a 

movement should be possible anyways but with the peculiarity that I would be activated 

after surpassing a bigger threshold of -25 when contracting and accidentally pressing 

Button 2 and 25 when extending and accidentally pressing Button 1. If a given movement 

is in between the range of the positive and negative thresholds it would not be sufficient 

for the system to determine if the user wants to move the leg at all so no movement would 

be generated. The three possible actions after detecting an intention are to flex, extend or 

stop the smart brace movement. These outcomes were used as different classes for 

classifying the intention of the user and a simplified estimation about the relevance of the 

classes with the labels Very high, High ,Very low and Low was defined on Table 4.. 

Table 4.3: Expected Class outputs based on deduced input features values. 

  Input Features Classes 

Instance Button1 Button2 Δθ  Flex Extend Stop 

1 1 0 Δθ <-10 Very high Very low Low 

2 1 0 -10<Δθ<25 Low Very low High 

3 1 0 Δθ>25 Low High Low 

4 0 1 Δθ<-25 High Low Low 

5 0 1 -25<Δθ<10 Very low Low High 

6 0 1 Δθ>10 Very low Very high Low 

7 0 0 Δθ<-15 High Low Low 

8 0 0 -15<Δθ<15 Low Low Very high 

9 0 0 Δθ>15 Low High Low 



 

31 

 

To train an ANN for classification purposes a decent amount of  training and testing 

data is required, however this data is not available at the moment since to collect it the 

smart brace would have to be tested several times by many users under many 

circumstances to collect the necessary data for training; data mining is beyond the scope 

of this project. However, it’s still possible to test the model’s potential of detecting the 

intention of movement by generating synthetic data based on the input features and the 

expected class outputs defined above. This is done with the intention of transfer learning 

to the live data provided by the smart brace’s sensors[23]. To achieve this the data was 

generated using the following equation: 

𝑃𝑥 = (1 − 𝑃𝑎) × 𝑤                                               (4.12) 

Where 𝑃𝑥 is the probability of the estimated class, 

𝑃𝑎— the probability of the class with preference. 

 w— a scaling factor dependent on the relevance of the estimated class. 

To create the data the thresholds were placed on a table in such a way that at the 

threshold value the class with preference has a probability value close to 0.5, which 

represents half of the total probability. Then the probability of the class with preference 

is extended incrementally by a factor of 0.2. This increment is parallel to the angle 

displacement until the value reached is equal to the total probability of 1, from this point 

the probabilities of the other classes are set to zero. The class with preference is the one 

that has the highest probability to be the outcome depending on the input. For instance, 

on Table 4.4. as the value of angle displacement decreases the probability of flexing 

increases from the threshold value of -10 at which the probability value of the Flex class 

is bigger compared to the Extend and Stop classes. The values of the Extend and Stop 

classes are calculated by subtracting the total probability of 1 and the value of the class 

with preference, times a scaling factor. The scaling factor was chosen by means of the 

observations made on Table 4.3. Note that the sum of scaling factors is equal to one, 

meaning that the remaining probability after the subtraction is divided proportionally to 

the scaling factor. 

 

Table 4.4: Example of generated synthetic data for when the button 1 is pressed.  

Button1 Button2 Δθ  Flex   Extend   Stop 

1 0 -25  Flex 1 Pext = 0 Pstop = 0 

1 0 -20 class is  0.84 (1-Pa)w  0.04 (1-Pa)w  0.12 

1 0 -15 Pa 0.64  0.09  0.27 

1 0 -10  0.44 w=0.25 0.14 w=0.75 0.42 

1 0 -5  0.24  0.19  0.57 

1 0 0   0.07   0.23   0.7 

1 0 5 Pflex = 0.01 Pext = 0.01  Stop 0.98 

1 0 10 (1-Pa)w  0.07 (1-Pa)w  0.15 class is  0.78 

1 0 15  0.14  0.28 Pa 0.58 

1 0 20 w=0.333 0.21 w=0.666 0.41  0.38 

1 0 25   0.27   0.55   0.18 

 



 

32 

 

 

Table 4.5: Example of generated synthetic data for when the button 2 is pressed.  

Input Features Classes 

Button1 Button2 Δθ Flex   Extend   Stop 

0 1 -25 Pflex = 0.55 Pext = 0.27  Stop 0.18 

0 1 -20 (1-Pa)w  0.41 (1-Pa)w  0.21 class is  0.38 

0 1 -15  0.28  0.14 Pa 0.58 

0 1 -10 w=0.666 0.15 w=0.333 0.07  0.78 

0 1 -5   0.01   0.01   0.98 

0 1 0 Pflex= 0.24  Extend 0.04 Pstop= 0.72 

0 1 5 (1-Pa)w  0.19 class is  0.24 (1-Pa)w  0.57 

0 1 10  0.14 Pa 0.44  0.42 

0 1 15 w=0.25 0.09  0.64 w=0.75 0.27 

0 1 20  0.04  0.84  0.12 

0 1 25   0.00   1.00   0.00 

 

Table 4.6: Example of generated synthetic data for when no buttons are pressed.  

Input Features Classes 

Button1 Button2 Δθ  Flex   Extend   Stop 

0 0 -25  Flex 0.8 Pext = 0.08 Pstop = 0.12 

0 0 -20 class is  0.6 (1-Pa)w  0.16 (1-Pa)w  0.24 

0 0 -15 Pa 0.4  0.24  0.36 

0 0 -10  0.2 w=0.4 0.32 w=0.6 0.48 

0 0 -5   0   0.4   0.6 

0 0 0   0   0   1 

0 0 5 Pstop = 0.4  Extend 0 Pstop = 0.6 

0 0 10 (1-Pa)w  0.32 class is  0.2 (1-Pa)w  0.48 

0 0 15  0.24 Pa 0.4  0.36 

0 0 20 w=0.4 0.16  0.6 w=0.6 0.24 

0 0 25   0.08   0.8   0.12 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 

 

The neural network receives three input features, what happens inside is that each 

value from the input layer is distributed to each one of the 20 neurons from the first hidden 

layer giving each connection or synapse between neurons a random weight. The same 

happens inside the hidden layers giving each connection between the first layer of 20 

neurons and the second one of 10 neurons a random weight until it is mapped to the output 

layer with random weights too. The output layer then shows a result using a probability 

distribution. Then the decision with the highest probability of whether the user wants to 

contract, extend, or stop the movement is selected by means of an Argmax function. This 

structure is shown on Figure 4.14. 

Figure 4.14: Architecture of the neural network 

 

Each synapse of a neuron represents that the neuron takes each input value multiplied 

by each of their random connection weight and sums it all together plus the bias, then the 

result provided by the neuron activation function will return a binary value of 0 or 1 using 

a ReLU activation function depending on the value of the calculated sum. Each neuron 

undergoes this process until each of the three final decision neurons get a value. A 

probability value between 0 and 1 from a Softmax function is the output of the neural 

network. The value with the highest the probability represents the chosen decision, the 

sum of those three values equals 1 which makes for the whole distribution of probabilities.  

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

 

At first, the neural network won’t get the expected outputs correctly so that’s why it 

needs to get trained by calculating each error made. This is done by comparing the actual 

output value with the expected one. Then an adjustment vector is calculated by 

multiplying the difference of the compared outputs by the derivatives of the Relu function 

evaluated on the outputs gotten. To get new weights for each neuron a dot product 

calculation is made between the adjustment vector and the input layer. This process 

iterates many times until the network becomes more accurate by adjusting each weight 

and bias applied on the neuron.[24] 

Initially, a CSV file is uploaded with the synthetically generated data to train the 

network by separating the input data from the output values. The network is built 

sequentially, layer by layer. First, it is declared that the input layer has 3 neurons with 3 

input values which will be densely connected to those 20 of the first hidden layer created. 

This is the mapping process which builds each one of the synapses between these two 

layers that will return an output value of 0 or 1 for each neuron after undergoing the ReLu 

activation function process. The same process is made when the second hidden layer is 

created with 10 neurons, with the singularity that a dropout of 20% is applied. This 

implicates that 20% of the neurons are randomly disconnected as neighbor neurons tend 

to rely on the specialization of each other, which could cause the model to become 

specialized only for the training data set given. Then the output layer is created with three 

neurons densely connected to those of the last hidden layer which weren’t ignored, 

returning a final output value between 0 and 1 after undergoing the Softmax activation 

function to get the probability distribution of them. This neural network compiles the 

three existing categories to adjust itself by comparing the outputs and calculating the error 

made, it iterates this process 1000 times or epochs. The Adam gradient descent optimizer 

is used, where after getting a prediction the algorithm goes back again  make the necessary 

adjustments to the weights based on how accurate the model was, to get new predictions 

until the model gets more accurate. To see the full code for training the neural network 

go to Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 

 

4.2.4 Control modalities 

The algorithms were written in the Python programming language and use functions of 

several libraries. The PyModbus library is used to read the encoder degrees and buttons 

and activate the stepper motor by Modbus RTU communication, the NumPy library for 

mathematical operations with arrays and Keras to initialize the ANN and load the 

pretrained weights. For the process of leg rises three control modalities were proposed.  

 

During the movement analysis stage the main characteristics of the desired 

movements were investigated. To assist the leg extension and flexions involved in the leg 

rises the encoder was programmed to detect the intention of movement through the use 

of an angular threshold. The angular threshold is created after the initial angular position 

is read and it is defined as the initial position plus an activation angle of 15 degrees, 

however this parameter can be changed to make the system less or more sensitive. If the 

angular threshold is surpassed the stepper motor generates an angular increment with the 

set speed in Rpm; the speed on the knee joint would be reduced due to the gear ratio. This 

process is repeated until the leg reaches the final position of 120 degrees, once it happens 

the stepper motor waits 5 seconds and slowly returns to the initial position with a given 

speed. This code, included in Appendix D, is represented in a commented section. 

 
Figure 4.15: Simplified flowchart of the basic leg rises control algorithm. 

 

 

 

 



 

36 

 

For the continuous leg rises algorithm the angular position of the encoder sensor is 

read, followed by the state of the buttons. In the case that the position read is smaller than 

120 degrees and the first button is pressed ,the smart brace generates a leg extension, if 

instead the button 2 is pressed a flexion movement is generated. When the position is 

greater than 120 degrees the system generates a corrective movement given by a leg 

flexion. This code can be found on Appendix C. 

 

 
 

Figure 4.16: Simplified flowchart for the continuous leg rises algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 

 

For the ANN based leg rises modality the model was initialized and the weights were 

loaded into it. Then the initial angular position of the encoder is read followed by a delay. 

The purpose of the delay is to give the system some time to identify whether the position 

has changed, this wouldn’t be possible without it. After this, the actual position is read 

and the angular displacement Δθ is determined by calculating the actual position minus 

the initial position. Next, the state of the input buttons is read and put into an array with 

the angular displacement Δθ. This array is then passed through the trained neural network 

and an Argmax function. The Argmax function returns the index of the class with the 

highest probability. This index value is assigned to the action variable and it is the one 

that is read by the if statements; it determines the action to be taken by the system. If the 

action is equal to 0 the flexion movement is generated. If the action equals 1, the extension 

movement is the outcome. Finally when the action equals 2, the stop action is selected. 

These functions are followed by a delay to allow the system to preform them. The 

flowchart for this algorithm is described on Figure 4.17 . 

 
 

Figure 4.17: Simplified flowchart of the leg rises control algorithm based on an 

ANN. 

 

 

 

 

 

 



 

38 

 

To aid the process of standing and walking the exoskeleton uses an algorithm based 

on a finite state machine approach as described on Figure 4.18. This approach has 

different states and transitions that follow a logical sequence. In the beginning the person 

would be sitting, this state is defined as Sitting State. If the button is pressed the smart 

brace would start to create an extension movement that takes the user from the Sitting 

State to the Upright Standing State. From this point if the user presses the button again 

the system starts to generate a simplified gait cycle defined as Walking State which is 

composed of a leg flexion followed by a leg extension, in a ROM of 120 to 60 degrees 

and at the set speed in Rpm. When this cycle ends the user is back at the Upright Standing 

State. If during this cycle the user causes a movement that is beyond the defined ROM  

the system moves to the Error State. In order to return to the Walking State a correction 

is generated depending on the boundary that was surpassed. This code is fully included 

on Appendix E. 

 
Figure 4.18: Finite state machine algorithm for standing and walking. 

 

 

 

 

 

 

 

 



 

39 

 

4.3 Implementation and testing of prototype 

The process of prototype construction and testing consists of two sections where the 

actuator system, control system prototype were implemented and then tested under 

different circumstances where they could potentially fail. The outcomes of such tests were 

reported and then the relevant parameters were adjusted to get the best possible 

performance. 

4.3.1 Control and actuator system implementation 

First the selected stepper motor was incorporated to the existing motor support of the 

smart brace by four M5 screws with hexagonal head of 5mm of diameter and 20mm of 

length and the provided dented belt was placed as shown on Figure 4.19. 

 
Figure 4.19: Incorporation of the stepper motor and dented belt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 

 

Then the selected encoder was fixed by three M1 screws, of 1 mm of diameter and 

20mm of length, and six nuts nuts made to fit the same diameter, Figure 4.20. 

 

 
Figure 4.20: Incorporation of the encoder. 

The next step was to build the control system. This was achieved by placing the 

STM32 microcontroller board, button circuits, some pins for connection of the sensors, 

emergency switch and stepper motor driver on a prototyping circuit board and soldering 

them following the proposed schematic on the Subchapter 4.1.5. Finally the power supply 

and the stepper motor phases were connected. The final prototype is illustrated on  

Figure 4.21. 

 
Figure 4.21: Control system prototype. 

 

 

 



 

41 

 

After this, the wireless actuator testing module was soldered to a prototyping circuit 

board based on the circuit proposed on the Subchapter 4.1.6. It includes the Bluetooth 

module, Arduino Nano, resistors and transistors and finally a 4 pin connector for 

powering the module and sending the signals to the stepper motor driver. This module is 

depicted on Figure 4.22. 

 

 
Figure 4.22: Wireless actuator testing module. 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

4.3.2 Testing of complete system 

At first a continuity test was performed to evaluate if the components of the control 

system were properly soldered or connected and if no short circuits were created during 

the process. This was done by using a multimeter in continuity test mode and placing its 

leads at the ends of the measured terminals or pins; the state of the connection was 

evaluated and the necessary corrections were applied. 

 The Android application was compiled and tested based on the proposed structure 

on subchapter 4.2.2. On the canvas space at the center, an image showing the angles where 

the exoskeleton can move was inserted and on top of that an indicator image sprite, 

symbolizing the smart brace’s shank, was centered to match the pivot point of the leg. At 

the bottom a check box to change the testing modality and a button to start the leg rise 

modality were inserted. This structure was evaluated on a real Android smartphone 

(Samsung Galaxy S8+) by means of enabling the developer options to show the layout 

bounds. 

Then the prototyped actuator testing wireless module was assessed by a connecting 

it to the stepper motor driver and trying to stablish a Bluetooth communication 20 times 

with the Android application for actuator testing. The number of times the connection 

was successful versus the times it didn’t work were recoded to evaluate the performance 

of the system. The pointer location and show taps Android developer options were used 

to demonstrate the functionality of the application. The Bluetooth module is selected and 

the communication is stablished when its LED starts to blink intermittently every second 

(Figure 4.23). 

 
Figure 4.23: Testing of Bluetooth connection with the actuator testing module. 

 

 

 

 

 

 

 



 

43 

 

After the connection was stablished some commands were sent to the exoskeleton to 

test if the leg rise cycle was activated and  if the desired angular position was achieved. 

These results were compared in the same way as the Bluetooth connectivity. To prevent 

the smart brace from falling while testing, some weights were placed on the foot link to 

keep it grounded as shown on Figure 4.24. 

 

 
 

Figure 4.24: Weights placed on the foot link. 

 

Then the neural network was trained with the generated synthetic data. 

To evaluate the control algorithms a human subject tried the smart brace and  time-angle 

graphs were implemented by reading the angular position of the encoder while the control 

algorithms were running.  

 

 

Figure 4.25: Exoskeleton aided leg rise on a human subject. 



 

44 

 

5 Results 

The results contain tables, graphs and bar charts with examples of final values. 

 

 
Figure 5.1: Measured mass of elements that exert a weight on the thigh link of the 

exoskeleton. 

 

 

Table 5.1: Forces and distances of elements with respect to the brace’s knee joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element 

Force 

[N] 

Distance from 

joint to COM [m] 

Distributed 

Load 

[N/m] 

Load segment 

extension[m] 

Gear 1.666 0.14 - - 

Motor Support 0.98 0.19 - - 

Motor 19.6 0.19 - - 

Link 5.488 0.32 8.57 From 0 to 0.64 

Thigh 60.074 0.24 127.06 From 0 to 0.48 

Upper body 383.18 0.56 2375.94 From 0.48 to 0.64 



 

45 

 

 
Figure 5.2: Measured number of pulses to reach a given encoder Angle. 

 

 
Figure 5.3: Measured number of stepper motor pulses to reach a desired angular position. 

 

 

y = 0.5556x

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

St
ep

p
er

 M
o

to
r 

St
ep

s[
-]

Desired Angular Position [°] 

Measured Stepper Motor Steps



 

46 

 

 
Figure 5.4: Measured Rpm at a given pulse frequency of the stepper motor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 0.3x

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

A
n

gu
la

r 
V

el
o

ci
ty

 [r
p

m
]  

Pulse Frequency [Hz]

Measured Stepper Motor Pulse Frequency



 

47 

 

Table 5.2: Continuity test results of the control system prototype 

        

Measurement Between Result Improvement 

GND terminal of 

Stepper driver 

GND terminal of power 

supply Continuous  
GND terminal of 

Stepper driver GND terminal of STM32 Continuous  
GND terminal of 

Stepper driver GND terminal of encoder Continuous  

GND terminal of 

Stepper driver Button 1 resistor 

Pin of the button 

got broken 

A new button 

was soldered 

and tested 

GND terminal of 

Stepper driver Button 2 resistor Continuous  
+24V terminal of 

Stepper driver 

Vcc terminal of power 

supply Continuous  
+5V terminal of 

Stepper driver +5V terminal of STM32 

Continuous 

intermittently 

Pin soldered 

again 

+5V terminal of 

Stepper driver +5V terminal of encoder Continuous  
+5V terminal of 

Stepper driver Button 1 input pin Continuous  
+5V terminal of 

Stepper driver Button 2 input pin Continuous  
Enable pin of 

STM32 

Enable pin of Stepper 

driver Continuous  
Pulse pin of 

STM32 

Pulse pin of Stepper 

driver Continuous  
Direction pin of 

STM32 

Direction pin of Stepper 

driver Continuous  

Pulse counter pin 

of STM32 Pulse pin of STM32 

Short circuit due 

to exposed cable 

New longer 

cable was 

soldered 

Encoder A pin of 

STM32 Encoder Phase A Continuous  
Encoder B pin of 

STM32 Encoder Phase B Continuous  
Interrupt 1 

terminal of 

STM32 Button 1 output Continuous  
Interrupt 2 

terminal of 

STM33 Button 2 output Continuous   

    



 

48 

 

 
 

Figure 5.6: Result of the compiled layout of the wireless actuator testing application. 

 

 



 

49 

 

 
Figure 5.7: Testing of command delivery to the wireless actuator control module. 

 

 
Figure 5.8: Testing of angle command delivery to the exoskeleton. 

 



 

50 

 

 

Figure 5.9: Graph of synthetic data generated for button 1 pressed. 

 

Figure 5.10: Graph of synthetic data generated for button 2 pressed. 

 

 



 

51 

 

 

Figure 5.11: Graph of synthetic data generated for when no buttons are pressed. 

 

 

Figure 5.12: Time-angle graph of the leg rise function activated by thresholds. 

 

 

 

 



 

52 

 

 
Figure 5.13: Time-angle graph of the walking algorithm generating a correction when 

the negative limit is passed, 

 

 

 
Figure 5.14: Time-angle graph of the walking algorithm generating a correction when  

the positive limit is passed, 



 

53 

 

 
Figure 5.15: ANN mediated leg rise. 

 

 

 

 

 

 

 



 

54 

 

 

Figure 5.16: Continuous leg rises algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

55 

 

6 Discussion 

The outcome of this project is a functional lower extremity smart brace control and 

actuator system which allows several control modalities and wireless communication. 

The calculated torque value that was used to select the stepper motor was a rough 

approximation which didn’t  take in account the inertia of the elements involved on the 

movement or the friction of the system. However it was still able to produce a supportive 

torque which was the main goal. 

During this process it was determined that the accuracy of the neural network was 

affected mainly by the number of epochs applied when training it. It was observed that 

the higher the number of epochs, the higher the accuracy. A value of 1000 epochs was 

chosen to train the network, which produced an accuracy of 98.16. Since the neural 

network was trained with an experimental synthetically generated data the accuracy value 

should just be used as a reference to perform adjustments to the network but not as a 

relevant indicator of the accuracy of the network. 

 The first operational mode based on leg rises was approached with three control 

modalities. The first one mediated by setting an angular threshold and increasing the 

position step by step worked as expected, however for it to be usable the speed of 

increment had to be very slow, compared to the other control modalities for leg rises. The 

continuous leg rises one, mediated by two buttons and an angular limit, worked well with 

the peculiarity that its performance was better when the step resolution was increased for 

microstepping of the stepper motor. This is because at the time when the user presses one 

button continuously the program tries to initialize the sent instruction continuously and it 

creates undesired vibrations. For the las one based on an ANN the delay and speed had 

to be increased for it to work optimally. The buttons that were placed on the foot link 

increased the sensitivity of the system as expected, however since the foot link is not  

fixed, there were some accidental button presses, so a new approach for placing the 

buttons on the foot link should be further investigated, perhaps if the foot link is 

immobilized the outcome would be better. 

The second type of movement, standing up and walking, worked as expected when 

the limits were surpassed by creating a corrective movement. However it could be 

improved by allowing the user to go from the standing state back to the sitting state and 

also by replicating the full gait cycle and not just the phases 3, 4 and 5 a better outcome 

could be achieved.  

The Bluetooth testing module faced some connectivity issues when trying to receive 

commands, this could have been because the delivered voltage was not enough. 

The control code is functional but it could be improved by creating a visual interface 

not just for actuator testing but for control of the whole system, where the therapists could 

easily set up the parameter for rehabilitation depending on the patient’s needs. The 

mechanical system didn’t have an actuator system to aid the hip joint, which is also 

involved in the movement. In a future version the addition of such actuator at the hip 

position may allow a smoother movement with less strain in the patient’s leg. 

 



 

56 

 

7 Conclusion 

Although there are certain disadvantages of using exoskeletons such as limited mobility, 

possible failures, the fact that they require constant maintenance and high costs, they are 

very helpful devices. They could be used to improve the range of movement limitation 

caused by several knee complications. Also, exoskeletons could reduce the number of 

therapists needed, and allow even the most disabled patients to regain some degree of 

mobility. The advantages of using them may include, increased strength, increased 

resistance, protection against impacts, performance of demanding jobs easily and 

provision of vital data for improvements. For example, the data provided by the included 

sensors could be used as a feedback to know the level of progress after a series of 

rehabilitation sessions. If this approach is combined with machine learning algorithms, 

the system could become adaptive, meaning that it would incrementally become 

specialized on a particular recovery modality or patient, outperforming other available 

systems that do not possess such flexible capabilities. 

The ease of customization of such robotic systems may provide much more 

personalized and precise rehabilitation routines to recover the ROM, since they allow 

quantifying and studying the rehabilitation process in greater depth, especially about what 

the exoskeleton and the patient are doing jointly. At the same time, the fact that these 

devices can be upgraded through software updates or through the addition of modular 

components such as a wireless module, represents a huge advantage given that it would 

allow them to keep improving steadily and not becoming obsolete. As a result the 

wellbeing of patients would be improved and the overall process of rehabilitation would 

be eased. 

 

 



 

57 

 

References 

[1] VITECKOVA, Slavka, KUTILEK, Patrik, BOISBOISSEL, Gérard De, KRUPICKA, 

Radim, GALAJDOVA, Alena, KAULER, Jan, LHOTSKA, Lenka and SZABO, 

Zoltan. Empowering lower limbs exoskeletons: state-of-the-art. Robotica. 2018. 

Vol. 36, no. 11p. 1743–1756. DOI 10.1017/s0263574718000693. 

 

[2] CHEN, Bing, ZI, Bin, WANG, Zhengyu, QIN, Ling and LIAO, Wei-Hsin. Knee 

exoskeletons for gait rehabilitation and human performance augmentation: A state-

of-the-art. Mechanism and Machine Theory. 2019. Vol. 134, p. 499–511. 

DOI 10.1016/j.mechmachtheory.2019.01.016. 

 

[3] COOKE, J R, 1988. Stepper Motors: Principles and Characteristics. Proceedings of 

the Institution of Mechanical Engineers, Part D: Transport Engineering [online]. vol. 

202, no. 2, pp. 111–117. Retrieved z: doi:10.1243/pime_proc_1988_202_163_02 

 

[4] HALICIOGLU, Recep, L Canan DULGER and A Tolga BOZDANA, 2015. 

Mechanisms, classifications, and applications of servo presses: A review with 

comparisons. Proceedings of the Institution of Mechanical Engineers, Part B: Journal 

of Engineering Manufacture [online]. vol. 230, no. 7, pp. 1177–1194. Retrieved z: 

doi:10.1177/0954405415600013 

[5] ANAM, Khairul and AL-JUMAILY, Adel Ali. Active Exoskeleton Control Systems: 

State of the Art. Procedia Engineering. 2012. Vol. 41, p. 988–994. 

DOI 10.1016/j.proeng.2012.07.273. 

[6] SHAMAEI, Kamran, Massimo CENCIARINI, Albert A. ADAMS, Karen N. 

GREGORCZYK, Jeffrey M. SCHIFFMAN and Aaron M. DOLLAR, 2014. Design 

and Evaluation of a Quasi-Passive Knee Exoskeleton for Investigation of Motor 

Adaptation in Lower Extremity Joints. IEEE Transactions on Biomedical Engineering 

[online]. vol. 61, no. 6, pp. 1809–1821. Retrieved z: doi:10.1109/tbme.2014.2307698 

[7] JUNG, Jun-Young, Wonho HEO, Hyundae YANG and Hyunsub PARK, 2015. A 

Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on 

Lower Limb Exoskeleton Robots. Sensors [online]. vol. 15, no. 11, pp. 27738–27759. 

Retrieved z: doi:10.3390/s151127738 

 

[8] BUTTON, Kate, IQBAL, Arshi S., LETCHFORD, Robert H. and DEURSEN, Robert 

W.m. Van. Clinical effectiveness of knee rehabilitation techniques and implications 

for a self-care treatment model. Physiotherapy. 2012. Vol. 98, no. 4p. 287–299. 

DOI 10.1016/j.physio.2011.08.003. 

 



 

58 

 

[9] MUTSUZAKI, Hirotaka, TAKEUCHI, Ryoko, MATAKI, Yuki and WADANO, 

Yasuyoshi. Target range of motion for rehabilitation after total knee 

arthroplasty. Journal of Rural Medicine. 2017. Vol. 12, no. 1p. 33–37. 

DOI 10.2185/jrm.2923. 

 

[10] Use of Knee Extension Device During Rehabilitation of a Patient with Type 3 

Arthrofibrosis after ACL Reconstruction. North American Journal of Sports Physical 

Therapy : NAJSPT. August 2006. 

[11] LENSSEN, Anton F, CRIJNS, Yvonne Hf, WALTJÉ, Eddie Mh, ROOX, George 

M, STEYN, Mike Ja Van, GEESINK, Ruud Jt, BRANDT, Piet A Van Den and BIE, 

Rob A De. Effectiveness of prolonged use of continuous passive motion (CPM) as an 

adjunct to physiotherapy following total knee arthroplasty: Design of a randomised 

controlled trial [ISRCTN85759656]. BMC Musculoskeletal Disorders. 2006. Vol. 7, 

no. 1. DOI 10.1186/1471-2474-7-15. 

 

[12] FORAN, Jared R.H. Total Knee Replacement Exercise Guide - OrthoInfo - 

AAOS. FISCHER, Stuart J. (ed.), OrthoInfo [online]. February 2017. 

[Accessed 7 January 2020]. Available from: 

https://orthoinfo.aaos.org/en/recovery/total-knee-replacement-exercise-guide/ 

 

[13] Total Knee Replacement Exercise Guide [online]. February 2017. Orthoinfo. 

[Accessed 7 January 2020]. Available from: 

https://orthoinfo.aaos.org/globalassets/figures/a00301f05.jpg 

 

[14] Total Knee Replacement Exercise Guide [online]. February 2017. Orthoinfo. 

[Accessed 7 January 2020]. Available from: 

https://orthoinfo.aaos.org/globalassets/figures/a00301f06.jpg 

 

[15] NEUMANN, Donald A., KELLY, Elisabeth Roen, KIEFER, Craig L., 

MARTENS, Kimberly and GROSZ, Claudia M. Kinesiology of the musculoskeletal 

system: foundations for rehabilitation. St. Louis, MO : Elsevier, 2017. 

 

[16] LOUDON, Janice K. BIOMECHANICS AND PATHOMECHANICS OF THE 

PATELLOFEMORAL JOINT. International journal of sports physical 

therapy [online]. December 2016. [Accessed 8 January 2020]. Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095937/#__ffn_sectitle 

 

[17] SCHAFER, R. C. CHAPTER 2: MECHANICAL CONCEPTS AND TERMS. 

In : Clinical biomechanics: muscoskeletal actions and reactions. Baltimore : 

Williams & Wilkins, 1987. 

 

[18] PORTER, Stuart. Chapter 6: Biomechanics. In : Tidys Physiotherapy. 

Edinburgh : Churchill Livingstone, 2008. p. 152–153. 

 



 

59 

 

[19] Biomechanics. Musculoskeletal Key [online]. 7 January 2017. 

[Accessed 9 January 2020]. Available from: 

https://musculoskeletalkey.com/biomechanics-2/ 

 

[20] Experimentální systém robotického exoskeletu kostry dolních končetin ESRE-

OMI. Exoskelet - Technická podpora [online]. [Accessed 8 January 2020]. Available 

from: https://rm.prokyber.cz/projects/zak-

vyr/wiki/Exoskelet?fbclid=IwAR3cwWWbFVnqyxQj2PimZZCyDEIyZAbkdiytzKJ

iGIfruIDV04DKIKPECYo 

 

[21] MALTHUS, COWARD, TJ, SCHOFIELD, STEVENS, COWAN, G. DANAEI, 

LIN, FEZEU, B. BALKAU, KENGNE, MJ, JK, AP and JCN, 1970. The weight of 

nations: an estimation of adult human biomassBMC Public Health [online] [accessed. 

21. May 2020]. Retrieved z: 

https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-439 

 

[22] TÖZEREN Aydin, 1999. Human body dynamics: classical mechanics and human 

movement. New York: Springer.  

 

[23] T. A. Le, A. G. Baydin, R. Zinkov and F. Wood, "Using synthetic data to train 

neural networks is model-based reasoning," 2017 International Joint Conference on 

Neural Networks (IJCNN), Anchorage, AK, 2017, pp. 3514-3521, doi: 

10.1109/IJCNN.2017.7966298. 

 

[24] SHARMA, Aditya, 2017. Understanding Activation Functions in Deep 

LearningLearn OpenCV [online] [accessed. 21. May 2020]. Retrieved z: 

https://www.learnopencv.com/understanding-activation-functions-in-deep-learning/ 



 

60 

 

Appendix A: Code for wireless actuator control 

testing 

const int stepPin = 6;  

const int dirPin = 5; 

String initialState = "";  

int label=0; 

int currentAngle=0; 

int lastAngle=0; 

int angle=0; 

int displacement=0; 

String actualState = "Angle"; 

boolean dirRotation = HIGH; 

int rotSpeed = 1500; 

  

void setup() { 

  pinMode(stepPin,OUTPUT);  

  pinMode(dirPin,OUTPUT); 

  Serial.begin(9600);  

} 

void loop() { 

  delayMicroseconds(1); 

  if(Serial.available() > 0){ // if data is being sent do: 

    initialState = Serial.readString(); // Read data from the serial port 

 } 

 if (actualState == "Rise"){ //if the rise command is sent, generate a le

g cycle 

  if (initialState == "Start") {//Start if button is pressed 

    delay(10); 

    if (dirRotation == HIGH) { 

      dirRotation = LOW; 

    }  //start leg rise cycle 

    digitalWrite(dirPin,dirRotation); 

    delay(1000); 

      for(int i = 0; i <= 200; i++) { 

      digitalWrite(stepPin,HIGH);  

      delayMicroseconds(10000);  

      digitalWrite(stepPin,LOW);  

      delayMicroseconds(10000);  

      } 

     digitalWrite(dirPin,HIGH); 

     delay(1000); 

      for(int i = 0; i <= 200; i++) { 

      digitalWrite(stepPin,HIGH);  

      delayMicroseconds(10000);  



 

61 

 

      digitalWrite(stepPin,LOW);  

      delayMicroseconds(10000);  

      } 

       

    initialState = ""; 

  } 

   

  if (initialState == "Angle"){ 

    actualState = initialState; 

  } 

   

 } 

  

 else if (actualState == "Angle"){  

 label = initialState.toInt(); 

 Serial.println(angle); 

 Serial.println(initialState); 

 if (label < 0 ){ 

  label = 360+label; 

 } 

 currentAngle = map(label,0,359,0,200); 

 digitalWrite(dirPin,LOW); // move to selected angle 

  if (currentAngle != lastAngle){ 

    if(currentAngle > lastAngle){   

      displacement = (currentAngle - lastAngle);   

      for(int i = 0; i < displacement; i++) { 

      digitalWrite(stepPin,HIGH);  

      delayMicroseconds(10000);  

      digitalWrite(stepPin,LOW);  

      delayMicroseconds(10000);  

      } 

    } 

    if(currentAngle < lastAngle){   

      displacement = (lastAngle - currentAngle);  

      digitalWrite(dirPin,HIGH);  

      for(int i = 0; i < displacement; i++) { 

      digitalWrite(stepPin,HIGH);  

      delayMicroseconds(10000);  

      digitalWrite(stepPin,LOW);  

      delayMicroseconds(10000);  

      } 

    } 

  } 

  lastAngle = currentAngle; 

  if (initialState == "Rise"){ 

    actualState = initialState; 

  } 

 } 

 



 

62 

 

Appendix B: Code for neural network training  

from keras.models import Sequential 

from keras.layers import Dense, Dropout 

from sklearn.model_selection import train_test_split 

import numpy 

 

dataset = numpy.loadtxt("exoskeleton.csv", dtype=float, delimiter="," ) 

X = dataset[:,:3] 

Y = dataset[:,3:] 

#create neural network 

model = Sequential() 

model.add(Dense(3, input_dim=3, activation='relu')) # 1 input layer 

model.add(Dense(20, activation='relu'))#first hidden layer 

model.add(Dense(10, activation='relu'))#second hidden layer 

model.add(Dropout(.2)) 

model.add(Dense(3, activation='softmax')) # softmax class probability 

 

# compile the neural network, adam gradient descent 

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=

['accuracy']) 

 

# call the function to fit to the data (training the network) 

model.fit(X, Y, epochs = 1000, batch_size=10) 

scores= model.evaluate(X,Y) 

print("\n%s: %.2f%%"% (model.metrics_names[1],scores[1]*100)) 

model.save('weights2.h5') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 

Appendix C: Code for continuous leg rises  

from ModbusHandler import modbusHandler 

from datetime import datetime 

import time #the initial conditions are defined here: 

mbClient = modbusHandler(Method = "rtu", Port = "/dev/ttyUSB0", Stopbits 

= 1 , Bytesize = 8, Parity = 'E', Baudrate = 460800) 

enable=1 

rpm=60 

run=1 

st0p=0 

angle=300 

angle1=-300 

rpm2=10 

smoothExt=20 

smoothFlex=-20 

 

def angMSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleMSB=angleArray[0] 

 return angleMSB 

 

def angLSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleLSB=angleArray[1] 

 return angleLSB 

 

def extend() : 

 

  mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #ena

ble 

  mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1) #rpm 

  mbClient.write_register(addresS = 40358, valuE =angMSB(smoothExt), uniT

 = 1)#angleMSB 

  mbClient.write_register(addresS = 40359, valuE =angLSB(smoothExt), uniT

 = 1)#angleLSB 

  mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

  mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

  time.sleep(0.0001) 

  stop() 

  mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #ena

ble 

  mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

  mbClient.write_register(addresS = 40358, valuE =angMSB(angle), uniT = 1

)#angleMSB 

  mbClient.write_register(addresS = 40359, valuE =angLSB(angle), uniT = 1

)#angleLSB 

  mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 



 

64 

 

  mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

   

 

def stop() : 

 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = st0p, uniT = 1) #run 

 

def flex() :  

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(smoothFlex), uniT

 = 1)#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(smoothFlex), uniT

 = 1)#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

 time.sleep(0.0001) 

 stop() 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(angle1), uniT = 1

)#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angle1), uniT = 1

)#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

def smooth() :  

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(smoothFlex), uniT

 = 1)#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(smoothFlex), uniT

 = 1)#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

while(1): 

 

  result = mbClient.read_holding_registers(addresS =40350, counT = 2, uni

T = 1) 

  position= mbClient.modToFloat(result.registers[0],result.registers[1]) 

  result = mbClient.read_discrete_inputs(addresS =10001, counT = 10, uniT

 = 1) 

  print (position) 



 

65 

 

  print(result.bits) 

  button1=result.bits[0] 

  button2=result.bits[3] 

  if(position <= 120): 

 

      if button1 ==1: 

       print("extend") 

       extend() 

        

      if button2==1: 

       print("flex") 

       flex() 

        

  if(position >=120): 

      time.sleep(0.01) 

      flex() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 

 

 

Appendix D: Code for leg rises with an ANN 

from ModbusHandler import modbusHandler 

from datetime import datetime 

import time 

from keras.models import Sequential 

from keras.layers import Dense, Dropout 

import numpy 

 

# The neural network is initialized 

model = Sequential() 

model.add(Dense(3, input_dim=3, activation='relu'))  

model.add(Dense(20, activation='relu')) 

model.add(Dense(10, activation='relu')) 

 

model.add(Dropout(.2)) 

model.add(Dense(3, activation='softmax')) 

 

model.load_weights('weights2.h5') 

# communication is stablished 

mbClient = modbusHandler(Method = "rtu", Port = "/dev/ttyUSB0", Stopbits 

= 1 , Bytesize = 8, Parity = 'E', Baudrate = 460800) 

gearRatio=11 

enable=1 

rpm=20 

run=1 

st0p=0 

angle=20*gearRatio 

angle1=-20*gearRatio 

angleReturn=-120*gearRatio 

 

def neural_Network(a,b,c): 

 array1=numpy.array([[a,b,c]]) 

 predictions = model.predict(array1) 

 # output our model's predictions. 

 return predictions 

def angMSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleMSB=angleArray[0] 

 return angleMSB 

def angLSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleLSB=angleArray[1] 

 return angleLSB 



 

67 

 

def up() :#this function moves the leg up 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(angle), uniT = 1)

#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angle), uniT = 1)

#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

 

def stop() :#this function stops the leg 

 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = st0p, uniT = 1) #run 

 

def down() : #this function moves the leg down 

 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(angle1), uniT = 1

)#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angle1), uniT = 1

)#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

  

def Return() :#this function moves the to origin 

 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) #enab

le 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(angleReturn), uni

T = 1)#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angleReturn), uni

T = 1)#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

 

while(1): 

 

    result = mbClient.read_holding_registers(addresS =40350, counT = 2, u

niT = 1) 

    deg=mbClient.modToFloat(result.registers[0],result.registers[1]) 

    time.sleep(1) 



 

68 

 

    result2 = mbClient.read_holding_registers(addresS =40350, counT = 2, 

uniT = 1) 

    deg2=mbClient.modToFloat(result2.registers[0],result2.registers[1]) 

    teta=deg2-deg 

    print(deg) 

    result = mbClient.read_discrete_inputs(addresS =10001, counT = 10, un

iT = 1) 

    button1=result.bits[0] 

    button2=result.bits[3] 

    out_array=[result.bits[0],result.bits[3],teta] 

    print(out_array) 

    predicted=neural_Network(button1,button2,teta) 

    print(predicted) 

    action=numpy.argmax(predicted) 

    print(action) 

    if(action==0): 

      print('down') 

      down() 

      time.sleep(2) 

 

    if(action==1): 

      print('up') 

      up() 

      time.sleep(2) 

 

    if(action==2): 

      print('stop') 

      stop() 

# code for basic leg rises 

# while(1): 

#  result = mbClient.read_holding_registers(addresS =40350, counT = 2, un

iT = 1) 

#  initial= mbClient.modToFloat(result.registers[0],result.registers[1]) 

#  TRH=initial+15) 

#  result1 = mbClient.read_holding_registers(addresS =40350, counT = 2, u

niT = 1) 

#  actual= mbClient.modToFloat(result1.registers[0],result1.registers[1]) 

#  print(actual) 

#  if(actual>=120): 

#       print('down') 

#       time.sleep(5) 

#       Return() 

#       time.sleep(2) 

#  if(actual<120): 

#      if(actual>=TRH): 

#       print('up') 

#       up() 

#       time.sleep(1) 

 



 

69 

 

Appendix E: Code for standing up and walking 

from ModbusHandler import modbusHandler 

from datetime import datetime 

import time #the initial conditions are defined here: 

mbClient = modbusHandler(Method = "rtu", Port = "/dev/ttyUSB0", Stopbits 

= 1 , Bytesize = 8, Parity = 'E', Baudrate = 460800) 

gearRatio=11 

enable=1 

rpm=10 

run=1 

st0p=0 

angle=5*gearRatio 

angle1=-5*gearRatio 

rpm2=3 

smoothExt=10 

smoothFlex=-10 

def angMSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleMSB=angleArray[0] 

 return angleMSB 

def angLSB(a) : 

 angleArray= mbClient.floatToMod(a) 

 angleLSB=angleArray[1] 

 return angleLSB 

def stop() : 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT= 1)#enable 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = st0p, uniT = 1) #run  

def stand() : 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT= 1)#enable 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1) #rpm 

 mbClient.write_register(addresS = 40358, valuE =angMSB(120), uniT = 1) 

#angleMSB 

 mbClient.write_register(addresS = 40359, valuE =angLSB(120), uniT = 1) 

#angleLSB 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1)#mode 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) #run 

   

def walk() : 

 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1)  

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1) 

 mbClient.write_register(addresS =40358,valuE =angMSB(smoothFlex),uniT=1) 

 mbClient.write_register(addresS = 40359,valuE=angLSB(smoothFlex),uniT=1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1)  

 time.sleep(0.0001) 



 

70 

 

 stop() 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1)  

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1)  

 mbClient.write_register(addresS = 40358, valuE =angMSB(angle1),uniT = 1) 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angle1),uniT = 1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1) 

 time.sleep(0.0001) 

 stop() 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) 

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1)  

 mbClient.write_register(addresS = 40358, valuE=angMSB(smoothExt),uniT=1) 

 mbClient.write_register(addresS = 40359, valuE=angLSB(smoothExt),uniT=1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1)  

 time.sleep(0.0001) 

  stop() 

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) 

 mbClient.write_register(addresS = 40357, valuE =rpm, uniT = 1)  

 mbClient.write_register(addresS = 40358, valuE =angMSB(angle), uniT = 1) 

 mbClient.write_register(addresS = 40359, valuE =angLSB(angle), uniT = 1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1)  

def plusreturn() :  

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1) 

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1)  

 mbClient.write_register(addresS = 40358, valuE=angMSB(angle),uniT=1) 

 mbClient.write_register(addresS = 40359, valuE=angLSB(angle),uniT=1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1)  

def minusreturn() :  

 mbClient.write_register(addresS = 40356, valuE = enable, uniT = 1)  

 mbClient.write_register(addresS = 40357, valuE =rpm2, uniT = 1) 

 mbClient.write_register(addresS = 40358,valuE=angMSB(smoothFlex),uniT=1) 

 mbClient.write_register(addresS = 40359,valuE=angLSB(smoothFlex),uniT=1) 

 mbClient.write_register(addresS = 40360, valuE = 2, uniT = 1) 

 mbClient.write_register(addresS = 40361, valuE = run, uniT = 1)  

# sitting state 

while(1):   

 result = mbClient.read_discrete_inputs(addresS =10001, counT =10,uniT=1) 

 if(result.bits[0]==1) 

   stand() 

   time.sleep(3) 

   # standing state 

 

   while(1): 

  

    result = mbClient.read_holding_registers(addresS =40350, counT = 2, u

niT = 1) 



 

71 

 

    position= mbClient.modToFloat(result.registers[0],result.registers[1]

) 

    result = mbClient.read_discrete_inputs(addresS =10001, counT = 10, un

iT = 1) 

    print (position) 

    print(result.bits) 

    button1=result.bits[0] 

 

    if(position < 120 and position > 60): 

      # walking state 

      if button1 ==1: 

       print("walk") 

       walk() 

      # back to standing state  

    if(position >= 120): 

      # error 

      print("out of range") 

      time.sleep(0.01) 

      # correction 

      minusreturn() 

      # back to walking state 

    if(position<= 60): 

      # error 

      print("out of range") 

      time.sleep(0.01) 

      # correction 

      plusreturn() 

      # back to walking state 

 

 

 

 

 

 



 

72 

 

Appendix F:Content of the enclosed CD 

 

• Key words  

• Abstract in Czech  

• Abstract in English  

• Scan of the assignment of the topic of the diploma thesis  

• The complete diploma thesis  

• Datasheet of used components 

• Codes  

• Data from calculations 


