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Abstract

This thesis summarises author’s research contributions concerning applying
Knowledge Engineering techniques in Domain-independent Automated Plan-
ning. Domain-independent planning decouples planning task description,
provided in some standardised language (e.g. PDDL), and planning engines,
generic solvers of planning tasks. Thanks to the International Planning Com-
petitions that are organised since 1998, numerous advanced planning engines
have been developed. Efficiency of planning task models (or lack of) has con-
siderable impact on performance of these planning engines. Hence research
efforts concerning efficient planning task modelling complement research ef-
forts concerning developing advanced planning techniques.

This thesis discusses techniques for automated planning task reformula-
tion, namely entanglements and macro-operators. Then, the thesis discusses
a technique for manual encoding of Domain Control Knowledge into plan-
ning task models. Finally, the thesis discusses the planning task modelling
process from more general perspective using a case study of task planning
for Autonomous Underwater Vehicles.
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Chapter 1

Introduction

Automated Planning deals with the problem of finding a (partially ordered)
action sequence, a plan, transforming the environment from a given initial
state to some required goal state [26]. In a nutshell, Automated Planning
is a tool for deliberative reasoning which intelligent entities can use to find
strategies (plans) for achieving longer-term goals. There are many success-
ful real-world applications ranging from space and planet observations [1],
Urban Traffic Control [34], narrative generation [28] to Machine Tool cali-
bration [39)].

Domain-independent planning decouples planning task description, spec-
ified in a language such as PDDL [36], and planning engines that generate
a plan from the task description (if a plan exists). Planning task consists of
a planning domain model that gives general description of the environment
and actions of a given domain and a planning problem that specifies concrete
objects, an initial state and a goal. Since domain models capture generalised
aspects of domains, it is typical that one domain model can be used for a
class of planning tasks.

The advantage of domain-independent planning is its modularity, i.e., the
domain model and the planning engine are independent components, that
can be easier plug into larger systems. To communicate with the planning
component, the system has to be able to generate planning problems in a
given language (for example, in PDDL), pass them alongside the domain
model to the planning engine and interpret (and execute) generated plans.

Whereas the planning community, driven by International Planning Com-
petitions (IPC)!, focuses on developing advanced planning techniques for
solving planning tasks, the engineering process of developing models of plan-
ning tasks, or domain models, is also important, although as shown in the

Thttp://ipc.icaps-conference.org



last International Competition on Knowledge Engineering for Planning and

Scheduling (ICKEPS) it has not yet received that much attention from the

planning community [10]. Efficiency of a planning task model, or a domain

model is however a crucial factor considerably affecting performance of plan-

ning engines and hence the usability of the model in a real application.
This thesis consists of a collection of papers:

1. introducing techniques for automated planning task reformulation, namely
entanglements and macro-operators,

2. introducing a technique for manual encoding of Domain Control Knowl-
edge, specified in a form of finite automata,

3. discussing the planning task modelling process from more general per-
spective and summarises an experience of the author with the pro-
cess of knowledge elicitation, domain modelling, and plan execution
for the application of task planning for Autonomous Underwater Vehi-
cles (AUVs).

Contribution of the papers in the collection (in Appendix) will be discussed
in Chapters 3 and 4.

1.1 Impact

The impact of my research, presented in this thesis, is twofold. Firstly, an
improvement of domain-independent planning by (automated) remodelling of
planning tasks and, secondly, studying and applying Knowledge Engineering
techniques for designing and developing planning domain models for real-
world applications.

In analogy to computer programming, how planning tasks are modelled
is one of the crucial factors determining efficiency of domain-independent
planning engines. Simply said, efficient representation of planning tasks al-
lows planning engines to solve them more quickly (or solve them at all). One
possibility is to reformulate domain models such that additional knowledge
about the models, which can provide further guidance to planning engines,
is encoded within them. Chapter 3 summarises my research achievements
concerning planning task reformulation.

To effectively leverage domain-independent planning in real-world appli-
cations, models of the environment and actions or domain models, in other
words, have to be developed. Knowledge Engineering process concerns do-
main knowledge elicitation, its formal conceptualisation and domain model



development. Chapter 4 is devoted to describing such a Knowledge Engi-
neering process for the application of task planning for AUVs.



Chapter 2

Preliminaries

The classical (STRIPS) representation considers static and fully observ-
able environment, and deterministic and instantaneous action effects [26].
The environment is described by first-order logic predicates. States are de-
fined as sets of atoms, which are grounded predicates. We say that o =
(name(o), pre(o0), del(o), add(o)) is a planning operator, where name(o) =
op-name(xy, . ..,x;) (op-name is an unique operator name and z1, ...z are
variable symbols (arguments) appearing in the operator) and pre(o), del(o)
and add(o) are sets of predicates with variables taken only from zy,...zy
representing o’s precondition, delete, and add effects respectively. Actions
are grounded instances of planning operators. An action a is applicable in a
state s if and only if pre(a) C s. Application of a in s (if possible) results in
a state (s \ del(a)) U add(a).

A planning domain model D = (P, O) is specified by a set of predicates P
and a set of planning operators O. A planning task Il = (D, I, @) is specified
via a domain model D, an initial state I and a set of goal atoms G. Given a
planning problem, a plan is a sequence of actions such that their consecutive
application starting in the initial state results in a state containing all the
goal atoms.

Classical planning is the simplest form of Automated Planning and hence
it might not be expressive enough to capture physics of the real-world do-
main. More expressive (yet deterministic) planning involves durative actions,
i.e., actions whose application takes time, numeric fluents, or continuous ac-
tion effects [25]. Non-deterministic planning involves, for instance, actions
with non-deterministic or probabilistic effects, or partially-observable envi-
ronment [27].



Chapter 3

Planning Task Reformulation

Planning Task reformulation can be leveraged for encoding additional domain
knowledge directly into the planning domain model (and/or task description).
Whereas a “raw” domain model might accurately capture the physics of the
application domain and hence plans might be easier to interpret, it might be
difficult to reason with such “raw” models for planning engines. Incorporat-
ing additional knowledge into the domain model by effectively reformulating
it provides generic planning engines guidance that they can leverage while
generating plans.

Additional domain knowledge can be automatically generated, for exam-
ple, from training plans, or manually encoded by a domain expert. Although
the former does not require a domain expert, generated knowledge might have
limited impact on planning engines. In this chapter, we present two types
of automatically generated domain knowledge — entanglements and macro-
operators — and one type of manually specified type of domain knowledge —
Transition-based Domain Control Knowledge.

3.1 Entanglements

Entanglements [18, 19] are relations between planning operators and predi-
cates. Entanglements aim to capture the causal relationships characteristic
for a given class of planning tasks which if leveraged can reduce the branch-
ing factor in the state space. There are two kinds of entanglements, outer
and inner entanglements.



3.1.1 Outer Entanglements

Outer entanglements are relations between planning operators and initial or
goal atoms which refer to situations where to solve a given planning problem
we need only such instances of operators where instances of a certain pred-
icate in an operator’s precondition or add effects respectively are present in
an initial state or a goal respectively. In BlocksWorld, it can be observed that
unstacking blocks only has to occur from their initial positions. In this case an
entanglement by init will capture that if an atom (on a b) is to be achieved
for a corresponding instance of operator unstack(?x ?y) (unstack(a b)),
then the atom is an initial atom. Similarly, it may be observed that stack-
ing blocks only has to occur to their goal positions. Then, an entanglement
by goal will capture that atom (on b a) achieved by a corresponding in-
stance of operator stack(?x ?7y) (stack(b a)) is a goal atom. Encoding
outer entanglements into planning domains and problems is done by intro-
ducing static predicates which allow only instances following conditions of
outer entanglements.

The aim of Outer Entanglements is to decrease the number of operator
instances that planning engines have to reason with for solving a given plan-
ning task. In the BlocksWorld example, we can observe that the original
model considers quadratic number of the unstack and stack operators, i.e.,
n? — n each, where n is the number of blocks, while the “entangled” model
consider linear number of these operators, i.e., at most n — 1 each. Reducing
the number of operators’ instances might propagate (although does not have
to) into reduction of the number of reachable states. It can be observed that
each block can be at most in 4 states: stacked on the initial block, held by
the robotic hand, put on the table, and stacked on the goal block. Moreover,
unless the initial and goal blocks are the same, once the block is unstacked
from the initial position it cannot be returned to it and after the block is
stacked on the goal position it can no longer be moved. In other words,
the states can become “directional”. Such a property might, however, intro-
duce dead-ends, for example when the tower of block is being built from the
middle.

For further details and experimental results, see [18].

3.1.2 Inner Entanglements

Inner entanglements are relations between pairs of planning operators and
predicates which refer to situations where one operator is an exclusive “achiever”
or “consumer” of a predicate to or from another operator. In the BlocksWorld
it may be observed that operator pickup(?x) achieves predicate holding(?x)



exclusively for operator stack(?x ?y) (and not for operator putdown (?x)),
i.e., pickup(?x) is entangled by succeeding stack(?x ?y) with holding(?x).
Similarly, it may be observed that predicate holding(?7x) for operator putdown (7x)
is exclusively achieved by operator unstack(?x ?y) (and not by operator
pickup(?x)), i.e., putdown(?x) is entangled by preceding unstack(?x ?y)
with holding(?x). Encoding inner entanglements into planning domains
and problems must ensure “achiever” and “consumer” exclusivity given by
these inner entanglements. It is done by using specific predicates, “locks”,
which prevent executing certain instances of operators in some stage of the
planning process. An instance of an operator having a “lock” in its precon-
dition cannot be executed after executing an instance of another operator
(“locker”) having a “lock” in its negative effects until an instance of some
other operator (“releaser”) having a “lock” in its positive effects has been
executed. For example, a situation where pickup(?7x) is entangled by succeed-
ing stack(?x ?y) with holding(?7x) is modelled such that pickup(?x) is a
“locker” for putdown (?x) and stack(?x ?7y) is a “releaser” for putdown (7x).
In contrast to Outer Entanglements, Inner Entanglements do not neces-
sarily reduce the number of operators’ instances as well as the size of the
state space. On the other hand, Inner Entanglements eliminate some tran-
sition sequences in the state space (e.g. pickup(?x) cannot be followed by
putdown(?x)). That might, in consequence, lead to state “directionality”.
For further details and experimental results, see [19].

3.2 Macro-operators

Macro-operators (macros) encapsulate sequences of ordinary planning opera-
tors while being encoded in the same way as ordinary planning operators [32].
Technically, an instance of a macro is applicable in a state if and only if a
corresponding sequence of operators’ instances is applicable in that state and
the result of the application of the macro’s instance is the same as the result
of application of the corresponding sequence of operators’ instances. Macros
can be added to the original domain models, which gives the technique the
potential of being planner independent. Informally speaking, macros repre-
sent shortcuts in the state space and hence planning engines can generate
plans in fewer steps.

Formally, a macro o, ; is constructed by assembling planning operators o;
and o; (in that order) as follows. Let ® and W be mappings between variable
symbols (we need to appropriately rename variable symbols of o; and o; to
construct o, ;).

o pre(oi;) = pre(®(o;)) U (pre(¥(o;)) \ add(®(o;)))
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o del(o; ;) = (del(®(0;)) \ add(V(0;))) U del(¥(0,))
o add(o; ;) = (add(®(0;)) \ del(¥(0;))) U add(¥(o;))

For a macro to be sound, no instance of ®(0;) can delete an atom required
by a corresponding instance of W(o;), otherwise they cannot be applied con-
secutively. Whereas it is obvious that if a predicate deleted by ®(o;) (and
not added back) is the same (both name and variable symbols) as a predicate
in the precondition of ¥(o;), i.e., (del(®(0;)) \ add(®(0;)) N pre(¥(o;)) # 0),
then the macro o;; is unsound, another source of macro unsoundness refers
to instantiating two or more macro’s variables to a same object. For exam-
ple, in the Blocks-World domain, a macro pickup-stack(?x ?y) that has (clear
?x)(ontable ?x)(clear ?y)(handempty) in its precondition can be instantiated
into pickup-stack(A A) that is applicable if (clear A)(ontable A)(handempty) is
true in a current state. However, actions pickup(A) and stack(A A) cannot be
applied consecutively because pickup(A) deletes (clear A) which is required
by stack(A A) and hence pickup-stack(?x ?y) is unsound. These situations can
be easily identified by checking whether the same object substitution leads
to the situation in which the first operator deletes a precondition for a sec-
ond operator. To make the affected macro sound, inequality constraints [5]
have to be added to macro’s precondition (e.g. (not (= ?x ?y)) is added into
pickup-stack(?x ?y)’s precondition) [5].

Longer macros, i.e., those encapsulating longer sequences of original plan-
ning operators can be constructed iteratively by the above approach.

Besides a clear advantage, that is, providing shortcuts in the search space,
macros often have many instances that in consequence increase branching
factor as well as memory requirements. Therefore, there exist works that
aim at opposite, either eliminate “redundant” actions whose effects can be
achieved by sequences of other actions [29], or split operators into simpler
ones [2]. That said, it is important that benefits of macros outweigh their
drawbacks, which is also known as the wtility problem [37].

Several recently developed planner-dependent macro generation systems
aim at addressing a weakness of a specific planning engine. We can mention
the SOL-EP version of Macro-FF [4], or Marvin [21] that generate macros
that help to escape local heuristic minima of the well known FF planner [30].
Wizard [38] that is a planner-independent macro generating system that
learns macros from training plans by leveraging genetic programming. The
learning process incorporates a cross-validation phase in which generated
macros are evaluated on a set of test problems being solved by a given plan-
ner. Hence, the aim is to learn macros that maximize performance of a
given planning engine in a given domain. Such macros can be considered



as planner-specific (despite being generated by a planner-independent tech-
nique).

In a planner-independent settings, a frequent occurrence of sequences
of actions in training plans usually plays a pivotal role in macro genera-
tion systems. Examples of such systems include the work of Chrpa [5] in
which macros are learnt by analysing dependencies between actions in train-
ing plans. Dulac et al. [24] exploit n-gram algorithm to analyse training plans
to learn macros. DBMP/S [31] applies Map Reduce for learning macros from
a larger set of training plans. The CA-ED version of MacroFF [4] generates
macros according to several pre-defined rules (e.g., the “locality rule”) that
apply on adjacent actions in training plans.

Chrpa’s approach [5] leverages the property of “independent” actions that
can be swapped in plans without affecting their validity. This idea was further
elaborated by Siddiqui and Haslum in their approach deordering plans into
partially ordered action “blocks” such that no ordering constraint between
actions can be eliminated [43]. BloMa [14] is a macro learning approach that
exploits block deordering [43] such that training plans are deordered into
“blocks” that are further combined into “macroblocks” according to several
rules describing relationships between blocks. Macroblocks that are frequent
in training plans are assembled into macros. The advantage of BloMa is that
it can learn useful longer macros, for example, a macro capturing shaking a
cocktail and cleaning the shaker afterwards.

MUM [16] aims at learning “instance-wise” macros which, in other words,
means that macros learnt by MUM should have a comparable number of
instances to the original operators. To do so, MUM exploits Outer Entangle-
ments that when applied on macros reduce the number of macros’” instances.
Outer Entanglements also serve as a heuristic for macro generation such that
operators with the entanglement by init relation go first while operators with
the entanglement by goal relation go last. In the ideal case, macros directly
connect initial state of an object with its goal state (e.g. pick-move-drop).
Frequency of macro occurrence in training plans is a secondary criterion.

Critical Section Macros [15], inspired by Critical Sections in parallel com-
puting in which processes deal with shared resources, capture activities that
use limited resources (e.g. a robotic hand). In planning, resource availability
and use is represented by mutex predicates, for example, (handempty) and
(holding 7x) respectively. Then locker and releaser operators that locks and
releases the resource respectively can be identified. For example, unstack is
a locker as it deletes (handempty) and achieves (holding 7x) while putdown is
a releaser as it deletes (holding ?x) and achieves (handempty). Straightfor-
wardly, a Critical Section Macro starts with a locker and ends up with a re-
leaser. In between, the macro might contain users that have the resource use



Drive; (at ?p ?to), g:(at ?p ?dest), ?to != ?dest
Load; g: at(?p ?dest), ?dest != 71

Drive; (in ?p), g:(at ?p ?to)

Unload; g:(at ?p ?1)

Figure 3.1: Transition-based DCK for our simple logistic domain.

predicate in their preconditions (e.g. a paint operator that paints the block
held by the robotic hand), or gluing operators that have to be present in the
macro for some reason (e.g. a move operator that moves the robotic hand
between tables). Critical Section Macros hence capture the whole activities
from locking to releasing resources and, consequently, encapsulate the whole
period of resource use. As it is often the case that the resource can be locked
by multiple objects (e.g. a robotic hand can hold any of the available blocks
but at most one at a time), delete-relaxation heuristics, which are widely
used in planning, tend to (heavily) underestimate the plan cost as they as-
sume the resource can be used by multiple objects at the same time. Critical
Section Macros, in other words, “bypass” the resource use part, therefore,
mitigate the discrepancy between delete-relaxed heuristic estimation and the
real cost of the plan.

Besides systems that learn macros by training on a set of small problems,
there are several systems such as DHG [3] or OMA [17] that extracts planner-
independent macros online, i.e., without the training phase. These systems,
however, usually underperform the learning ones [17].

3.3 Transition-based Domain Control Knowl-
edge

A domain engineer can leverage Transition-Based Domain Control Knowl-
edge (TB-DCK) that is based on Finite-State Automata [7, 6]. TB-DCK
represents a “grammar” of solution plans which is, roughly speaking, knowl-
edge about ordering of planning operators in plans. On top of that, TB-DCK
allows to define extra preconditions that can be used to restrict applicability
of some instances of planning operators that are not useful.

In principle, TB-DCK consists of a set of DCK states and transitions that
refer to which planning operators can be applied under specified conditions
in a given planning state. To illustrate the concept of TB-DCK, we consider
a simple logistic domain, where all locations are connected and packages have
to be delivered from their initial locations to their goal locations by a truck
that can carry at most one package. We define four predicates to describe the
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environment: (at-truck ?1) — the truck is at location ?I; (at ?p ?I) — a package
?p is at location ?I; (in ?p) — a package ?p is in the truck; (empty-truck)
— a truck is empty (no package is in it). Then, we define three planning
operators: Drive(?from 7to) — the truck moves from the location ?from to
the location 7to; Load(?p ?I) — a package 7p is loaded into the truck at the
location ?l; and Unload(?p ?1) — a package 7p is unloaded from the truck at
the location ?l. We may observe that i) an empty truck has to be moved
only to locations where some package is waiting for being delivered, and ii)
if a package is loaded to the truck (in its initial location), then the truck
has to move to package’s goal location, where the package is unloaded. We
can encode such an observation in the TB-DCK as depicted in Figure 3.1. In
particular, the DCK state sg represents that the truck is empty, s; represents
that the truck has just been loaded with a package, and sy represents that
the package is ready to be unloaded in its goal location. Hence there are two
options while being in the DCK state sq - the truck can load a package that
has not yet been delivered, or move to a location in which there is a package
that has not yet been delivered. In the DCK states s; and ss, there is only
one option - move to the goal location of the loaded package, or unload the
package, respectively.

TB-DCK consists of DCK states and transitions (as illustrated in Fig-
ure 3.1). Each transition is associated with a planning operator and, pos-
sibly, additional constraints (e.g. extra preconditions). Conceptually, the
action selection that is the core aspect of planning algorithms is amended
by selecting an outgoing transition from the current DCK state such that
some instance of the associated planning operator is applicable in the cur-
rent planning state and the additional constraints of the transition are met.
Therefore, generated plans remain valid as the action applicability in the
current planning state is checked while the action selection is restricted to
only possibly useful alternatives.

One of the advantages of TB-DCK is that it can be encoded into a plan-
ning task and thus exploited by generic planning engines without their mod-
ification. The environment description of a TB-DCK enhanced planning
domain model is extended by a “DCK state” predicate and “open goal”
predicates (the latter is used for the additional transition constraints). Tran-
sitions are encoded as planning operators such that the associated planning
operators are extended with the DCK state update as well as the additional
constraints. It should be noted that more transitions can be associated with
the same planning operators. In our running example, we have two tran-
sitions referring to the Drive operator. So, we create two operators, for in-
stance, Drive-empty and Drive-full to reflect two different transitions in the
given TB-DCK (see Figure 3.1). For details, see [7, 6].
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Chapter 4

Planning Task Modelling

Knowledge Engineering is a discipline that, in a nutshell, deals with elici-
tation of domain knowledge and its effective representation. In Automated
Planning, the Knowledge Engineering process elicits and transform require-
ments of a (real-world) domain into a planning domain model. The crucial
aspect is the quality of the developed domain model [35]. As McCluskey et
al. [35] argue, a good quality domain model has to be complete, i.e., solution
plans match solutions in the real-world, accurate, i.e., the model accurately
represents real-world domain requirements, and operational, i.e., planning
engines can efficiently reason with the model. The latter two properties —
accuracy and operationality — usually go against each other as more accurate
models might be difficult for planing engines to reason with.

The key step of the Knowledge Engineering process is a formalised con-
ceptualisation of the domain. In other words, a formal conceptualisation of
the domain is a “mid-product” between an informal requirements description
and a domain model [42]. That said, a domain expert and a domain model
engineer in an iterative process come to an agreement on the environment
description as well as the description of planning operators. After a formal
conceptualisation of the domain is finished, a planning engineer refines a
planning domain model. It is worth noting that the domain model might be
of a different level of expressivity (e.g. classical, temporal) that on one side
affects model accuracy, i.e., more expressive models are more accurate, while
on the other side affects model operationality, i.e., less expressive models are
less operational [42].

The following sections provide a case study of the Knowledge Engineering
process of developing domain model for an application of task planning for
Autonomous Underwater Vehicles (AUVs).

12
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Figure 4.1: A modular architecture of the system [12]

4.1 Planning for AUVs

While operating Autonomous Underwater Vehicles (AUVs), human operators
interact with a fleet of vehicles via NEPTUS, a graphical decision-support
system with Graphical User Interface and analysis capabilities [23]. NEP-
TUS, in a nutshell, allows users to view vehicle data and to define behaviours
and tasks of the vehicles. NEPTUS is connected via Inter-Module Commu-
nication (IMC) Protocol to DUNE that runs on board of each vehicle and is
responsible for command execution and gathering of sensory data [40].

In a nutshell, a human operator specifies and executes high level com-
mands in NEPTUS, for example, “move AUV1 to location X”, or “sample
AUV1 an object Y at location X”. However, operating multiple (heteroge-
neous) AUVs to perform several tasks might be time consuming and error
prone for human operators even though the mission might not be very com-
plex.

The idea how to automatise AUV operations is to leverage Automated
Planning for generating plans for AUVs such that they eventually complete
all tasks specified by human operators [12]. An Automated Planning compo-
nent can be embedded to the NEPTUS toolchain as depicted in Figure 4.1.
Intuitively, the high level commands an operator can specify in NEPTUS
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will correspond to actions specified in a planning domain model.

4.2 Requirements

Given a fleet of heterogeneous AUVs where each AUV has different payloads
attached to it, a human operator specifies tasks in NEPTUS such that each
task consists of an object or area of interest and a payload which has to
be used to collect data about the object/area of interest. Each task has to
be fulfilled by a single AUV. In other words, no task is collaborative, i.e.,
requiring two or more AUVs to work simultaneously.

To incorporate dynamic task allocation as well as recovery from task
failures, the system has to be able to replan, i.e., to generate a new plan
which replaces the old one. In particular, any user change might trigger
replanning, however, for practical reason replanning is triggered (if a change
occurs) periodically. Task failures can be directly reported to the system
that reinserts the failed task back into the system and the task is considered
for replanning.

During operations none of the AUVs has to run out of power. Also, two or
more AUVs cannot operate at the same location or in the same area. On the
other hand, when moving between locations AUVs can be in different depths
and hence they should not collide. When operating underwater, AUVs are
usually unable to establish reliable communication with the control center.
In practice, AUVs might be radio silent for a couple of minutes. Hence, AUVs
have to periodically return to their “depots” to establish communication with
the control center.

Each AUV can move between two locations if it has enough power. An
AUV can sample an object of interest or survey an area of interest if it is in
the required location, has enough energy and has a required payload. If an
AUV is close to the operation center, it can transfer acquired data there.

Addressing the communication issue can be done by requesting AUVs
to return to their “depots” and establish communication with the control
center in a given period of time. Specifically, each AUV can be away for
at most a given period of time before returning to its “depot” to establish
communication and then it can go away again (for at most the given period
of time). That said, AUV will complete tasks in “rounds”.

The planning engine has to then find a plan that allocates all user-
specified tasks to particular AUVs such that the above constraints are met
(e.g. AUVs will not run out of power) and the AUVs return to their “safe
spots” next to the control center and transmit acquired data.

14



4.3 Domain Model

Actions were designed such that they reflect the high-level commands in the
NEPTUS system. These actions are: move — an AUV moves between two
locations, sample —an AUV samples an object of interest, survey — an AUV
surveys an area of interest and communicate — an AUV transmits collected
data to the control center. Environment is described by predicates such
as at — specifying the position of an AUV, or task-desc — specifying what
object/area of interest has to be sampled/surveyed by what payload, and by
numeric fluents such as battery-level — specifying the remaining battery of an
AUV. Details about the environment description can be found in works [12,
11].

Each action costs some energy, hence an AUV has to have enough energy
to execute the action and after executing it AUV’s battery level decreases.
Similarly, each action takes time to be executed, to comply with the “max-
imum away time” constraint, we keep track about how long the vehicle is
“away” and whether its “away time” is within the constraint. With regards
to sample and survey actions, an AUV has to have a required payload for the
given task. The move action is split into three variants — mowve-to-sample,
move-to-survey and move-to-depot — that, roughly speaking, ensures that
an AUV goes to locations where it has something to do. The communicate
action is applicable only when an AUV is in its depot (so it can reliably
establish communication with the control center). For the formal description
of the domain model, see [12, 11].

4.4 Problem Specification

The planning problem is specified by concrete objects (e.g. AUVs, phenom-
ena, locations), an initial state and a goal. The goal is to have the required
data transmitted to the control center and having AUVs back in their depots.
The initial state consists of initial locations of AUVs and their depots, loca-
tions or areas of phenomena, vehicles’ payloads, task descriptions (specified
by a human operator in NEPTUS), i.e., which types of payloads is to be used
to collect data about the phenomena, distance between the locations, vehi-
cle speed, maximum “away” time, battery levels, and battery consumption
values per vehicle/payload.

One possibility is to generate plans that fulfil all specified tasks (at that
time) while minimising “make-span” (the total plan execution time) along-
side with the number of the move-to-depot actions (to minimise the number
of AUVs’ “rounds”). Such an approach is called the all-tasks model [11].
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Another possibility is to generate plans only for the next “round” while
optimising for the number of completed tasks for that round. Such an ap-
proach is called the one-round model [11].

4.5 Field Experiment

The models have been evaluated on a “mine-hunting” scenario in Porto Har-
bour [12, 11]. Three AUVs were used such that in the first stage they were
set to perform several survey tasks while in the second stage they were set to
perform several sample tasks. Generated plans were successfully executed,
hence AUVs successfully completed assigned tasks in both stages.

The results have shown that there are considerable discrepancies between
anticipated and actual action durations, especially for the move and survey
actions [12]. The issue has been addressed to a large extent by consider-
ing “timed-waypoint” move actions that, roughly speaking, allow to adjust
vehicle speed to mitigate the differences of the planned and actual time [11].

In longer-term autonomy with none or very limited human intervention,
domain models have to adapt themselves according to observation of the en-
vironment (e.g. ocean currents) in order to provide accurate plans. That
said, domain models have to have configurable parameters (e.g. action dura-
tion, energy consumption) that can be automatically modified onboard the
vehicle according to data from its current observation [22].
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Chapter 5

Conclusions

Knowledge Engineering for Automated Planning is an important discipline
for designing and developing effective and efficient planning domain models.
Efficiency of domain models can be improved by automatic extraction of addi-
tional knowledge such as macro-operators [5, 16, 15] or entanglements [18, 19]
and incorporating such knowledge directly into the domain models, in other
words reformulating them. Alternatively, additional knowledge can be man-
ually specified (e.g. Transition-based Domain Control Knowledge [7]) and
encoded into the domain model. Whereas there exist many techniques sup-
porting classical planning, more expressive planning (e.g. temporal, confor-
mant) is rarely supported at the moment.

From the perspective of design and development of domain models from
the scratch, it is important to conceptualise the requirements, elicited from
domain experts, into a formal representation that forms a base for the de-
velopment of the domain model itself [42]. Such a domain modelling process
has been applied for task planning for AUVs and tested in a real-world en-
vironment [12, 11]. The initial observations showed that planning and plan
execution in a real-world environment pose a challenge of uncertainty (e.g.
how long the action execution actually takes) that grows with the time (i.e.,
longer plan execution yields higher uncertainty) as the domain model might
not accurately reflect the actual situation. Whereas some of the issues can be
addressed by ad-hoc domain specific approaches (e.g. timed-waypoint move
actions) [11], a more general (domain-independent) concept would be useful.

5.1 Future Work

In a nutshell, my future work concerns of bridging the gap between domain-
independent planning and its use in real-world applications. Planning pro-
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vides solutions that are usually more complex than rules provided by experts
while still being explainable (e.g. it is known why a given action has been
applied). That said, Automated Planning is an essential component of intel-
ligent behaviour and thus is crucial for autonomous and intelligent systems.

However, in reality the environment is rarely static that makes plan-
ning and plan execution a challenge as dynamic environment might render
plans invalid and, worse, might cause damages to the autonomous agent or
robot. Specifically, my focus will be given to models considering exogenous
non-deterministic events that might occur without the consent of the agent.
Reasoning about unsafe or “dangerous” states, those in which occurrence of
events might lead to dead-ends (and possible damage to the agent) [8, 9],
is one possible direction towards safer autonomy. Taken from a different
perspective, events might account for actions of adversaries that might try
to deliberately hinder agent’s plans. In such a case, a combination of Au-
tomated Planning and Game-theoretical approaches seems to be beneficial
to address the issue (a preliminary work incorporating the Double Oracle
algorithm into Classical planning to tackle zero-sum game-like scenarios has
recently been published [41, 13]).

Another possibility (besides defining exogenous events) is to use self-
adaptable domain models. It means, roughly speaking, that the models
would contain customisable parameters that can be automatically adjusted
according to agent’s observations of the environment (that can be done, for
example, by machine learning techniques, or by mathematical models). Self-
adaptable domain models can be very useful in long-term autonomy, for
example, in ocean exploration [22] or Urban Traffic Control [20, 33].
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Abstract

There are many approaches for solving planning problems. Many of these approaches are based
on ‘brute force’ search methods and they usually do not care about structures of plans previously
computed in particular planning domains. By analyzing these structures, we can obtain useful
knowledge that can help us find solutions to more complex planning problems. The method
described in this paper is designed for gathering macro-operators by analyzing training plans. This
sort of analysis is based on the investigation of action dependencies in training plans. Knowledge
gained by our method can be passed directly to planning algorithms to improve their efficiency.

1 Introduction

Planning is an important branch of Artificial Intelligence (AI) research. In planning, we define
states of ‘worlds’ described by logical facts or functions and actions (or operators) that can modify
these states. The purpose of planning is to generate a sequence of actions that transform the
‘worlds’ from some initial state to the given goal state.

Despite significant improvement in planning systems in the last few years, many automated
planning algorithms are still based on ‘brute force’ search techniques accommodated with heur-
istics guiding the planner toward the solution Bonet and Geffner (1999). Hence, an important
question is how such knowledge transformable into efficient planning heuristics can be found.
Several heuristics are based on the structure of a Planning Graph Blum and Furst (1997). While
these heuristics provide good results, an analysis of the Planning Graph does not seem to reveal
complete information hidden in the plan structures. One of the most significant works from the
past was a solver called REFLECT (Dawson & Siklossy, 1977), which uses a preprocessing phase
to ease its own solving. Specifically, the preprocessing phase consists of detecting incompatible
predicates (i.e. predicates that cannot be simultaneously true) and building macro-operators
(described in greater depth in Section 3). System PRODIGY (Minton & Carbonell, 1987) focuses
on learning search control rules (i.e. logical rules describing relationships between predicates or
operators). Search control rules were also applied in a well-known planner called TALPlanner
(Kvanstrém & Magnusson, 2003). A newer approach presented in Hoffmann et al. (2004)
describes Landmarks—facts that must be true in every valid plan. Another work (Knoblock, 1994)
presents a structure called Causal Graph that describes dependencies between state variables. The
most recent studies (Gimenez & Jonsson, 2007; Katz & Domshlak, 2007) analyze the Causal
Graph with respect to complexity of planning problems. Both the Landmarks and the Causal
Graphs are tools based on analyzing literals, giving us useful information about planning
domains, but almost no information about the dependencies between actions in plans. One of the
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most influential works from the area of action dependencies (McCain & Turner, 1997) defines a
language for expressing causal knowledge (previously studied in Geffner (1990) and Lin (1995))
and formalizes the actions in it. One of the newest approaches (Vidal & Geffner, 2006) is based on
plan space planning techniques over temporal domains. It gained very good results, especially in
parallel planning, because it handles supports, precedences and causal links in a better way. There
are other more practically oriented approaches, such as those described by Wu et al. (2005), where
knowledge is gathered from plans stochastically, and Nejati et al. (2006) where learning from
expert traces is adapted for acquiring classes of hierarchical task networks (HTN). Finally, papers
(Chrpa & Bartak, 2008a, 2008b) define relations describing action dependencies and present
methods based on these relations.

Another way to improve the efficiency of planners rests in using macro-actions or macro-
operators that represent sequences of primitive actions or operators (related works are discussed in
Section 3). In this paper, we provide a method generating macro-operators by investigation of
action dependencies in training plans (the method is an extension of the work presented in (Chrpa,
2008)). Our method is used for learning macro-operators from simpler training plans; the learned
macro-operators are encoded back into the domains and the primitive operators replaced by the
macro-operators are removed from the domains. Such domains can be passed to planners without
modifying their code. It means that our method is designed as a supporting tool for arbitrary planners.

The paper is organized as follows. In the next section, we introduce basic notions from the
planning theory. Then we discuss related works in the area of macro-operators. After that, we
provide a brief theoretical background of the problem of action dependencies in plans and then we
describe our method for gathering macro-operators from training plans. Then we present and
discuss the formal soundness and time complexity of our method. Finally, we discuss the
experimental results of our method, similarities and differences with existing approaches and
possible directions of our future research.

2 Preliminaries

Traditionally, Al planning (in state space) deals with the problem of finding a sequence of actions
transforming the world from some initial state to a desired state. State s is a set of predicates that
are true in 5. Action a is a 3-tuple (p(a), e (a), e (a)) of sets of predicates such that p(a) is a set of
predicates representing the precondition of action a, ¢ (a) is a set of negative effects of action «,
e"(a) is a set of positive effects of action a. Action a is applicable to state s if p(a) C s. If action a
is applicable to state s, then new state s’ obtained after applying action a is s’ = (s\ e (a)) Ue™ (a).
A planning domain is represented by a set of states and a set of actions. A planning problem is
represented by a planning domain, an initial state and a set of goal predicates. A plan is an ordered
sequence of actions that lead from the initial state to any goal state containing all of the goal
predicates. For a deeper insight in this area, see Ghallab et al. (2004).

In this paper, we consider the classical representation of planing problems. This representation
allows the definition of planning operators, in which actions are their grounded instances. Our
approach supports the Typed STRIPS representation of PDDL (Planning Domain Definition
Language).

3 Related works

Macro-operators (macro-actions) represent sequences of primitive operators (actions), but behave
as common planning operators (actions). The advantage of using macro-operators is clear—
shorter plans are explored to find a solution. However, macro-operators usually have much more
instances than primitive operators, which leads to an increased branching factor for search.

One of the oldest approaches, STRIPS (Fikes & Nilsson, 1971), generates macro-actions from
all subsequences of plans. It leads to plenty of useless macro-actions. REFLECT (Dawson &
Siklossy, 1977) builds macro-operators from pairs of primitive operators that are applied successively
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and share at least one argument. In this case, macro-operators are learned directly from a domain
analysis. However, it may lead to the generation of useless macro-operators. FM (McCluskey,
1987) follows the ideas used by STRIPS, but instead of STRIPS, FM compiles learned sequences
of operators into one single operator representing the whole sequence of primitive ones. In
addition, FM learns b-chunks that help it with instantiating of macro-actions. Even though FM
gained a significant improvement against STRIPS, still it produced many useless and too complex
macro-operators. MORRIS (Minton, 1985) learns macro-operators for STRIPS from parts of
plans appearing frequently or being potentially useful (but having low priority). Macro Problem
Solver (MPS), presented in Korf (1985), learns macro-actions only for particular goals. It needs
different macro-actions when the problem instances scale or goals are different. MACLEARN
(Iba, 1989) generates macro-actions that can ‘traverse’ from one peak of a particular heuristic
function to another peak. A domain-dependently oriented work (Iba, 1985) discusses the usability
of macro-operators in puzzle worlds (for instance, Peg Solitaire).

One of the state-of-the-art approaches, MARVIN (Coles & Smith, 2007; Coles ez al., 2007)
learns macro-operators online from action sequences that help FF-based planners to escape
plateaus. It also learns macro-operators from plans of reduced versions of the given problems. One
of the most outstanding works in the area of macro-actions is Macro-FF (Botea et al., 2005), a
system for generating macro-operators through the analysis of static predicates. In addition,
Macro-FF can learn macro-operators from training plans by analyzing successive actions. Macro-
FF is produced in two versions. CA-ED version is designed for arbitrary planners where changing
their source code is not necessary and SOL-EP version (planner dependent) where a planner (in
this case, FF) is enchanted for handling macro-operators. WIZARD (Newton et al., 2007) learns
macro-actions from training plans by genetic algorithms. There are defined several genetic
operators working over action sequences appearing in training plans. WIZARD is designed for
arbitrary planners. DHG (Armano et al., 2003, 2005) is able to learn macro-operators from static
domain analysis by exploring a graph of dependencies between operators.

Our method is designed for domain-independent planning and for arbitrary planners like
the other systems. Macro-operators can be assembled only from operators that are dependent, in
terms that one operator provides a predicate (or predicates) to the other operator. It is similar to
existing approaches. Nevertheless, there are some differences between our method and the existing
approaches. We are able to detect pairs of actions that can be assembled into macro-actions, but
the actions do not have to be necessarily successive in training plans. In addition, we are able to
update the training plans in such a way that the updated training plans consider generated macro-
operators. Therefore, it is not necessary to run the planners again. This can help us with another
issue, the removal of unnecessary primitive operators that can be replaced by generated macro-
operators. Despite the potential loss of completeness of some planning problems, planners benefit
from the removal of primitive operators and the experiments we made on International Planning
Competition (IPC) domains did not reveal any problem that became unsolvable. In addition,
our method can reveal a suitable set of macro-operators in very little time. A more thorough
comparison of our method with the existing ones is done in Section 8.3 (last paragraph).

4 Action dependencies in plans

Action choice is the key part of planning. Plans often contain sequences with dependencies
between actions in the sense that one action provides predicates serving as preconditions for the
other actions. In this section, we formally describe this dependency relation and present some of its
useful features.

Every action needs some predicates to be true before the action is applicable. These predicates
are provided by the initial state or by other actions that were performed before. If we have a plan
solving a planning problem, we can identify which actions are providing these predicates to other
actions that need them as their precondition. The following definition describes this relation
formally.
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DeriNtTiON 1.1. Let {ay, ... ,a,) be an ordered sequence of actions. Action a; is straightly dependent
on the effects of action a; (denoted as a; — a;) if and only if i<j (e (a;) Np(a;))#0 and
(e*(a) Npla) ZU/Z/L et (@),

Action a; is dependent on the effect of action a; if and only if a; » *a; where —* is a transitive
closure of the relation —.

The relation of straight dependency on the effects of action (hereinafter straight dependency
only) means that a; — a; holds if some predicate from the precondition of action g; is provided by
action a; and a; is the last action before action a; providing that predicate. Notice that an action
may be straightly dependent on more actions (if it has more predicates in the precondition). The
relation of dependency on the effects of action (hereinafter dependency only) is a transitive closure
of the relation of straight dependency.

Remark 1.2. Negation of the relations of straight dependency and dependency is denoted in the
following way:

® a; - a; means that a; is not straightly dependent on a; (i.e. —(a; = a))).
® a; - *a; means that ; is not dependent on a; (i.e. —(a; = *a))).

Let us define the complementary notion of action independency. The motivation behind this
notion is that two independent actions being adjacent can be swapped in the action sequence
without influencing the plan (lemma 1.4 (see below) which has been formally proved in Chrpa and
Bartak (2008D).

DEeFINtTION 1.3, Let {ay, ... ,a,) be an ordered sequence of actions. Actions a; and a; (without loss
of generality, we assume that i <j) are independent on the effects (denoted as a;<a;) if and only if
a;+ *a, p(a;))Ne (a;)=0and e* (a;)Ne (a;) = 0.

LemmA 1.4. Let m= {ay, ... ,a;—1,a;, @i + 1,4 + 2, ..., 4, y be a plan solving planning problem P and
a;<»a;+1. Then plan 7 = {ay, ...,a;— 1, @i + 1, a;, @ + 2, ..., a4, y also solves planning problem P.

The symbol for relation of independency on the effects (hereinafter independency only) evokes a
symmetrical relation even though, according to Definition 1.3, the relation of independency does
not have to be necessarily symmetrical. The reason for using the symmetrical symbol is hidden in
the previously mentioned property of the independency relation (lemma 1.4).

Remark 1.5. Since the relations of dependency and independency are not complementary, we
define the following symbol:

® a;<>a; means that g; is not independent on a; (i.e. —(a;+* a))).

Computation of the relation of straight dependency is quite straightforward. The idea is based
on storing of indices of the last actions that created the particular predicates. Concretely, each
predicate p is annotated by d(p), which refers to the last action that created it. We simulate
execution of the plan and when action «; is executed, we find the dependent actions by exploring
d(p) for all predicates p in the precondition of a; The relation of straight dependency can be
naturally represented as a directed acyclic graph, so the relation of dependency is obtained as a
transitive closure of the graph Mehlhorn (1984). The relation of independency can be easily
computed by checking every pair of actions a; and a; (i <j) on satisfaction of the conditions from
Definition 1.3. It is straightforward that the time complexity in the worst case is O(n*) where n
represents the length of the sequence of actions (plan).

5 Identifying actions that can be assembled

We obtain a new macro-action by assembling two primitive actions. The result of applying a
macro-action to some state is identical to the result of applying the primitive actions in the given
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Figure 1 Four different situations for moving the intermediate actions (gray-filled) before or behind one of
the boundary actions (black-filled)

order to the same state. A macro-action obtained by assembling of actions a; and g; (in this order)
will be denoted as a;;, formally:

* pla;)) = pla) U (p(ay)\ e (@)
* ¢ (@)= (a)Ue (@))\e'(a)
* ¢(a)= (" (@Ue @)\ (a)

This approach can be easily extended for more actions; see Chrpa et al. (2007).

It is clear that we have to decide which actions can be assembled. We can analyze several previously
found plans (training plans), where we focus on actions (instances of operators) that are (or can be)
often successive. We can analyze the plans by looking for successive actions only. However, in such a
case, we may miss many pairs of actions that can be performed successively, but in the plans, there are
some other actions placed between them. If the intermediate actions can be moved before or behind
the chosen pair of actions without losing plan validity, then we can assemble even non-successive
actions. We use the main property of independent actions (can be swapped if adjacent) for detection if
a pair of actions can be assembled (we can make them adjacent). To get more insight regarding
permutations in plans, see Fox and Long (1999). Figure 1 shows four different situations (actually two
situations and their mirror alternatives) for moving the intermediate actions. Clearly, if the inter-
mediate action is adjacent and independent on the boundary action, we can move this action before or
behind one of the boundary actions (according to lemma 1.4). If the intermediate action is not
independent on one of the boundary actions, then we have to move it only before or behind the other
boundary action, which means that this intermediate action must be independent on all actions in
between (including the boundary action).

The algorithm (Figure 2) is based on repeated application of the above steps. If all intermediate
actions are moved before or behind the boundary actions, then the boundary actions can be
assembled (become adjacent). If some intermediate actions remain and none of the steps can be
performed, then the boundary actions cannot be assembled. Anyway, if the algorithm returns true
(i.e. actions can be assembled), we also obtain lists of action indices representing (intermediate)
actions that must be moved before (respectively behind) actions a; and a;. Usage of these lists will
be explained in the following section.

6 Generating macro-operators

As mentioned earlier, planning domains include planning operators rather than ground actions.
Assembling operators rather than actions is more advantageous, because macro-operators can be
more easily converted into more complex problems than macro-actions. The idea of detecting such
operators, which can be assembled, is based on the investigation of training plans, where we
explore pairs of actions (instances of operators) that can be assembled more times.

DEerFINITION. 2.1. Let M be a square matrix where both rows and columns represent all planning
operators in the given planning domain. If field M(k,l) contains a pair {N, V) such that:

® Nis a number of such pairs of actions a;, a; that are instances of k-th and /-th planning operator
(in order), a; > a; and both actions a; and a@; can be assembled in some example plan.
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Function DETECT-IF-CAN-ASSEMBLE(IN index 4, IN index j, IN independency relation S, OUT list of indices L,
OUT list of indices R) : returns bool

D= {k|i < k < j}

L:=R:=0
Repeat
chg := false

k :=min(D) // min(D) returns the smallest element from D or 0 if D is empty
Ifk > Oand (i, k) € S then

D := D\ {k}

chg = true

L:=LU{k}
EndIf

k := maxz(D) // maz(D) returns the greatest element from D or O if D is empty
If k > Oand (k,j) € S then

D := D\ {k}
chg = true
R:= RU{k}
EndIf
Z :={xz|lx € DA (i,z) & S}
k := max(2)
Ifk > 0,(k,j) € SandForEachl € D Al > k (k,l) € S holds then
D := D\ {k}
chg = true
R := RU{k}
EndIf

Z :={z|lx € DA (x,j) € S}
k:=min(Z)
Ifk > 0,(i,k) € SandForEachl € D Al < k (I, k) € S holds then

D := D\ {k}

chg := true

L:=LuU({k}
EndIf

Until not chg
If D = () then Return true else Return false

EndFunction

Figure 2 Algorithm for detecting pairs of actions that can be assembled

In addition, a; (resp. a;) cannot be in such a pair with the other instances of /-th (resp. k-th)
operator.
® |/ is a set of variables shared by k-th and /-th planning operators.

Then M is a matrix of candidates.

In other words, the matrix of candidates contains proper pairs of actions (instances of planning
operators) for assembling (or becoming macro-actions). The algorithm (Figure 3) constructs the
matrix of candidates from the given set of training plans solving the planning problems in the same
domain. Computation of the sets of variables that operators share needs to be clarified. For
example, in a variant of a well-known BlockWorld domain, there are operators PICK (box,
hoist and surface) and DROP (box, hoist and surface). If we decide to make a macro-operator
PICK-DROP (consisting of PICK and DROP operators in this order), then we can also see that
the box and hoist are always the same (we are picking and dropping the same box with the same
hoist in time), and only the surface may differ. Generally, we observe which parameters (objects)
are shared by actions and select such parameters that are shared by all pairs of actions (instances
of the given operators) that can be assembled.

Now, we explain the purpose of lists L and R that are generated in function DETECT-
IF-CAN-ASSEMBLE. If we have to update plans by replacing selected actions by macro-actions
(instances of generated macro-operators), then we must also reorder other actions to keep the
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Procedure CREATE-MATRIX(IN set of plans P, OUT matrix M)

Set M as empty square matrix
ForEach 7 in P do

Compute D as a relation of straight dependency on actions from 7
Compute S as a relation of independency on actions from 7
ForEach (i, j) € D do
If DETECT-IF-CAN-ASSEMBLE(, j, S, L, R) then
Set k as the id of the operator whose a; is an instance
Set [ as the id of the operator whose a; is an instance
Compute V' as a set of arguments that a; and a; share
IfM;, ; is empty then
My, =<1,V >
Else
(N,0V) :== M 1,

If a; resp. a; are not already selected as a candidate with [-th operator resp. k-th operator then
N1:= N +1lelse N1:=N

M :=(N1,0V NV)
EndIf
EndIf
EndForeach
EndForeach

EndProcedure

Figure 3 Algorithm for creating the matrix of candidates for assemblage

(:action pickup_stack
:parameters (?x ?y)
:precondition (and (clear ?x) (ontable ?x) (handempty) (clear ?y))
reffect (and (clear ?x) (on ?x ?y) (handempty)
(not (ontable ?x)) (not (holding ?x)) (not (clear ?y)) )

Figure 4 Example of PICKUP-STACK macro-operator

(training) plans valid. The following approach shows how to reorder actions in plan
m=<{ay, ... ,a,,, if a pair of selected actions a;, a; is assembled into macro-action a; ;.

actions ajy, ... @;—; remain in their positions

actions listed in L are moved (in order) to positions i, ..., +|L[—1
macro-action a; ; is added to i +|L|-th position

actions listed in R are moved (in order) to positions i +|L|+1, ...,j—1
actions a; 4 1, ..., a, are moved one position back (to positions j, ...,n—1)

To generate macro-operators from training plans (in the given domain), we can use the fol-
lowing approach (formally in Figure 5). We create macro-operators repeatedly until no other
macro-operator can be created. At first, we have to compute the matrix of candidates from all the
training plans (CREATE-MATRIX). Then we select a proper candidate for creating macro-
operators (SELECT-CANDIDATE), which means that such a candidate must satisfy certain
conditions (which will be explained later). To ensure the soundness of the generated macro-
operators, we have to assign inequality constraints for macro-operator arguments. It prevents
a possible instantiation of invalid macro-actions if these arguments are set as equal. In Figure 4,
we can see an example of the PICKUP-STACK macro-operator. If the arguments are set as equal,
we can simply see that such an instance is applicable, but invalid (when unfolded). Inequality
constraints can be easily detected by simulation of performance of the operators that are going
to be assembled. After a creation of the macro-operator from the selected candidate, we must
update all training plans (UPDATE-PLANS), which means that we replace particular pairs
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of actions by the corresponding instances of the new macro-operator. UPDATE-PLANS
procedure can be easily implemented by application of the previously described approach (reor-
dering actions after assembling) on every pair of actions (instances of the selected operators) in
every plan.

Last but not least, the remaining unexplained issue is the function for selecting the proper
candidate for assemblage (SELECT-CANDIDATE). We suggested selecting such a candidate that
satisfies the following conditions (let f{O) represent the frequency of operator O (how many
instances of operator O occur in all the training plans), a(O) represent the arity of operator O
(number of arguments of O), N, ; represent the number N in field M; ; of the matrix of candidates
and V; ; represent the set of variables shared by i-th and j-th operator):

Nij  Nij
e (765 765) > (o1
LA (6.2)

=c
> f(Ok)
%
a(0;) +a(0)) Vil <d (6.3)

Condition 6.1 says that we are looking for such operators whose instances usually appear (or
can appear) successively. Constant be {0;1) represents a pre-defined bound that prevents
selecting such operators whose instances do not appear successively so often. It is clear that if
the bound is too small, many operators may be assembled. It usually causes that generated
macro-operators are representing almost the whole training plans, which does not bring any
contribution to planners. On the other hand, if the bound is too big, almost no operators may
be assembled, which means that the domains may remain unchanged. However, in some cases
we are not able to prevent the generation of such macro-operators representing a huge part of
some training plan, even though b is set quite big. The reason for this rests in the fact that
sometimes only one (or a very few) instances of some operator occur in all the training plans.
Almost always, we can find some other action that can be assembled with this instance, because
the ratio between the number of candidates (stored in the matrix of candidates) and the fre-
quency of the operator becomes 1. It means that the operator will be certainly selected for
assemblage. To prevent this unwanted selection, we can add condition 6.2 allowing only the
selection of such operators whose ratio between the number of instances being able to be
assembled (stored in N; ;) and the number of all actions from all the training plans reaches a
predefined constant c.

Another problem we are facing rests in the fact that many planners use grounding. It means
that the planners generate all possible instances of operators that are used during planning.
However, macro-operators usually have more parameters than primitive operators, which means
that macro-operators may have much more instances than primitive operators. To avoid troubles
with planners regarding grounding, we should limit the maximum number of parameters for each
macro-operator by a pre-defined constant d (condition 6.3). If there are more candidates satisfying
all the conditions, then we prefer the candidate with the maximum value of the expression listed in
condition 6.1.

We must also decide which macro-operators can be added to the domain and which primitive
operators can be removed from the domain. Here, we decided to add every macro-operator whose
frequency in the updated training plans is non-zero. Similarly, we decided to remove every pri-
mitive operator whose frequency in the updated training plans becomes zero. It is clear that it may
cause a possible failure when solving non-training problems. Fortunately, in IPC benchmarks, it
does not happen (we did not experience any such problem during the experiments). If for some
problem planners fail to find a solution, then it is possible to bring the removed primitive
operators back to the domain and run the planners again.
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7 Soundness and complexity discussion

We assume that all plans used for analysis by our algorithms are valid. To ensure the validity of
the plans, we can simply extend the algorithm for computing the relation of straight dependency
by checking the satisfiability of action preconditions. It is quite straightforward that the algo-
rithms for computing the relations of (straight) dependency and independency (sketches of the
algorithms are discussed at the end of Section 3) are sound and can be computed in O(#?) steps (in
the worst case), where n represents the length of the input plan. Soundness and time complexity of
the other presented algorithms are justified in more detail.

ProvositioN 3.1. The algorithm DETECT-IF-CAN-ASSEMBLE (Figure 2) is sound and can be
computed in the worst case in O(I*) steps where | is the number of intermediate actions (actions
between a; and a;).

Proof. The idea of the algorithm is based on moving intermediate actions before or behind defined
actions. It is clear that a pair of adjacent actions can be assembled into a macro-action (we must
follow their order) without loss of validity of the examined plan. The moving of intermediate
actions can be done in the four cases (Figure 1), where two of them are a mirror of the other two.
Without loss of generality, we prove the soundness and complexity only in two cases (on the left-
hand side on Figure 1), because the soundness and complexity of the other cases can be proved
analogically. First, if @;<» a;1 |, then by applying lemma 1.4, we can move a;, | before a; without
loss of the plan’s validity and it takes a constant time (i.e. O(1)). Second, assume that a; < a;, k <j
and k is the greatest possible value. If a; <~ q, VI: k <[ <j, then by repetitively applying lemma 1.4,
we can move g behind a; also without loss of the plan’s validity. It can take at most O(/) steps. The
algorithm always terminates because in each run of the loop we remove at least one intermediate
action. When no intermediate action remains, the loop ends. It means that the cycle is performed
at most / times. Hence, in the worst case the algorithm requires O(/%) steps to perform. O

ProrosiTioN 3.2. The algorithm CREATE-MATRIX (Figure 3) is sound and can be computed in the
worst case in O(n*) steps where n is the total length of all the training plans.

Proof. For each training plan, the algorithm explores each pair of actions being in the relation of
straight dependency by the algorithm DETECT-IF-CAN-ASSEMBLE (Figure 2), which is sound
(proposition 3.1). It is clear that by using this approach, we can build the matrix of candidates
consistent with the previously stated conditions. It is also clear that in the worst case we can have
O(n?) relations of straight dependency and the algorithm DETECT-IF-CAN-ASSEMBLE in the
worst case can be performed in O(n%) steps (proposition 3.1—considering that / can be close to n).
Summarized, it gives us the time complexity O(n*) in the worst case. O

THEOREM 3.3. The algorithm GENERATE-MACRO (Figure 5) is sound and can be computed in the
worst case in O(n’) steps, where n is the total length of all the training plans.

Proof. From the soundness of the algorithms DETECT-IF-CAN-ASSEMBLE (proposition 3.1)
and CREATE-MATRIX (proposition 3.2), we know that each candidate for assemblage repre-
sents a pair of actions that can be assembled without loss of the plan’s validity. If we generalize it
and consider the inequality constraints, then we can simply see that each macro-operator pro-
duced by this algorithm is valid. The algorithm also always terminates because in each step of the
loop the length of the training plans decreases at least by one, which means that the loop can be
performed in the worst case n — 1 times. Together with the complexity of the algorithm CREATE-
MATRIX (proposition 3.2), it gives us the time complexity O(n°) in the worst case. U

It is well known that if we add a generated macro-operator into the domain, then the domain
remains valid. We can also remove the primitive operators fully replaced by the generated macro-
operators. It brings us an improvement of the performance of the planners. However, it may cause
an insolvability of some problems that were solvable in original domains. Hopefully, in all tested
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Procedure GENERATE-MACRO(IN set of plans P, OUT set of macro-operators O)

O:=90
Repeat

picked := false

CREATE-MATRIX(P,M)

If SELECT-CANDIDATE(M,C) then
picked := true
ASSIGN-INEQUALITY-CONSTRAINTS(C)
O:=0uU{C}
UPDATE-PLANS(P,C)

EndIf

Until not picked

EndProcedure

Figure 5 Algorithm for generation of macro-operators

cases it did not happen as we can see in the experiments (Section 8). Despite the high time
complexity of our method (in the worst case), the experiments showed that our method is fast
(tenths of a second for one run of the GENERATE-MACRO procedure).

8 Experimental evaluation

In this section, we present the experimental evaluation of our method. We compare the perfor-
mance of the given planners between the original domains and the domains updated by our
method. The planning domains and planning problems that we used here are well known from the
IPC. We have done the evaluation in the following steps:

® Generate several simpler training plans as an input for our method.

® Generate macro-operators by our method and add them to the domains. Remove such primitive
operators that no longer appear in the updated training plans.

e Compare running times for more complex problems between the original domains and the
updated domains. The time limit was set to 600 seconds.

We used SATPLAN 2006 (Kautz et al., 2006) and SGPLAN 5.22 (Hsu et al., 2007) both for the
generation of the training plans (for the learning phase) and for the comparison of the running
times and quality of plans. We also used LAMA (Richter & Westphal, 2008), Filtering and
Decomposition for Planning (FDP) (Grandcolas & Pain-Barre, 2007) and LPG-td (Gerevini &
Serina, 2002) for the comparison of running times and quality of plans (not for the learning
phase).! The choice of the planners was motivated by great results that the planners achieved on
the (several last) IPCs. Since SATPLAN and FDP cannot handle negative preconditions (which
are necessary for representation of inequality constraints), we used a tool called ADL2STRIPS?
that can produce grounded STRIPS domain from ADL domain.

For the evaluation, we used IPC domains Blocks, Depots, Zenotravel, Rovers, Gripper, Satellite
and Goldminer.?

8.1 Generating macro-operators and updating the domains

As mentioned earlier, the generation of macro-operators depends on pre-defined bounds b, ¢ and d
(conditions 6.1, 6.2 and 6.3). The number of training plans for each domain differs from 3 to 6
with respect to their lengths. The average time taken by both SGPLAN and SATPLAN to

' The results of LPG are only briefly reported.

2 Available on IPC4 website.
3 Can be obtained on http://ipc.icaps-conference.org
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Table 1 Suggestion of our method—the best results for the particular domains

Domain Added macro-operators Removed primitive operators
Blocks PICKUP-STACK, UNSTACK-STACK, PICKUP, PUTDOWN, STACK,
UNSTACK-PUTDOWN UNSTACK
Depots LIFT-LOAD, UNLOAD-DROP LIFT, LOAD, UNLOAD, DROP
Zenotravel REFUEL-FLY REFUEL
Rovers CALIBRATE-TAKE-IMAGE CALIBRATE, TAKE-IMAGE
Gripper PICK-MOVE-DROP, MOVE-PICK-MOVE- MOVE, PICK, DROP
DROP
Satellite SWITCH-ON-CALIBRATE SWITCH-ON, CALIBRATE,
SWITCH-OFF
Gold miner MOVE-PICKUP-LASER, MOVE- PICKUP-LASER, PICK-GOLD,
DETONATE-BOMB-MOVE-PICK-GOLD DETONATE-BOMB

generate a training plan was (mostly) within tenths of a second.* Despite the high (worst-case) time
complexity O(n’) (Theorem 3.3), the average time taken by one run of our method (GENERATE-
MACRO procedure) was within tenths of a second.’

We used different settings of bounds b, ¢ and d and two different planners (SATPLAN 2006,
SGPLAN 5.22) for the generation of the training plans. First, bound d was set to N+1 (except for the
Satellite domain and Gripper domain for SATPLAN’s training plans), where /N represents the greatest
number of arguments of operators in the particular domain, because we did not want to generate too
complicated macro-operators. If bound b was set too low, then many useless macro-operators were
generated. We found out that a reasonable value of bound b can be almost in all cases 0.8; only in the
Gripper domain (for SATPLAN’s training plans), we lowered it to 0.6. Setting bound ¢ was not as
definite as setting the other bounds. Usually, the reasonable value was between 0.1 and 0.05, but in the
Gripper domain it was set to 0.03. The reason for keeping bound ¢ low (0.03-0.05) rested in the fact
that in the Blocks and Gripped domains, all the primitive operators were replaced by generated macro-
operators. The choice of a planner for the generation of training plans brought several differences—
only in the Blocks domain, it resulted in the same result. In the Depots domain, we were not able to
remove some primitive operators when SATPLAN’s training plans were used as we did when
SGPLAN’s training plans were used. In the Zenotravel and Rovers domains, we were not able to learn
any suitable set of macro-operators when SATPLAN’s training plans were used. Likewise, in the
Satellite domain, when SGPLAN’s training plans were used. In the Gripper domain, the results of
learning differed with respect to planners’ strategies—SATPLAN prefers to carry balls in both robotic
hands, SGPLAN prefers to carry balls just in one robotic hand. In the Gold Miner domain, the
planners preferred different operators, which resulted in slightly different results of learning.

The results of learning (best for the particular domains) are showed in Table 1. We stated
only such alternatives that provided the best results in the running times and quality of plans
comparison for the particular domains.

8.2 Comparison of running times and quality of plans

In this evaluation, we used SGPLAN 5.22, an absolute winner of the IPC 5, SATPLAN 2006, co-
winner of optimal track in the IPC 5, LAMA, winner of the IPC 6 suboptimal track and FDP,
participant of the IPC 5 and LPG-td, awarded on the IPC 4. The benchmarks ran on XEON
2.4GHz, IGB RAM and Ubuntu Linux. The results are presented in Tables 2 and 3. We chose
such problems (in most domains) that were neither so easy nor so hard for the particular planners,
because the evaluation of these problems usually tells us the most about the particular domains.

4 Performed on XEON 2.4GHz, 1GB RAM, Ubuntu Linux.
5 Performed on Core2Duo 2.66GHz, 4GB RAM, Win XP SP2.



Table 2 Comparison of running times and plans lengths (we assume that macro-actions are unfolded into primitive actions) for SGPLAN (left-hand side) and SATPLAN
(right-hand side)

SGPLAN SATPLAN

Time (in seconds) Plan length Time (in seconds) Plan length
Problem orig upd-SG upd-SAT orig upd-SG upd-SAT Problem orig upd-SAT upd-SG orig upd-SAT upd-SG
Blocks14-0 >600.00 0.03 0.03 NA 48 48 Blocks14-0 23.58 3.14 3.14 38 56 56
Blocks14-1 >600.00 0.03 0.03 NA 44 44 Blocks14-1 38.06 3.84 3.84 36 88 88
Blocks15-0 >600.00 0.32 0.32 NA 88 88 Blocks15-0 46.90 7.24 7.24 40 60 60
Blocks15-1 179.84 0.05 0.05 114 54 54 Blocks15-1 45.68 7.63 7.63 52 142 142
depots1817 24.56 15.52 20.71 100 104 94 depots4321 5.24 4.40 2.07 43 41 38
depots4534 >600.00 0.53 54.71 NA 112 110 depots5656 222.42 >600.00 143.33 70 NA 59
depots5656 410.94 0.32 7.70 133 132 82 depots6178 6.82 43.14 26.11 51 50 42
depots7615 8.48 1.88 2.14 98 102 91 depots7654 10.04 25.96 16.45 41 56 39
zeno-5-20a 0.88 0.75 - 98 101 - depots8715 35.96 46.95 err 50 38 err
zeno-5-20b 1.07 0.77 92 97 zeno-3-10 3.77 4.17 31 35
zeno-5-25a 1.74 1.05 - 124 122 - zeno-5-10 34.07 - 48.19 42 - 38
zeno-5-25b 0.57 0.58 117 125 zeno-5-15a 92.13 30.93 50 51
rovers4621 2.31 0.03 - 48 44 - zeno-5-15b err - err err - err
rovers5624 0.10 0.02 52 52 rovers4621 182.20 >600.00 47 NA
rovers7182 4.32 0.12 - 90 91 - rovers5624 4.30 - >600.00 62 - NA
rovers8327 3.53 0.06 - 78 71 - rovers8327 1.17 - >600.00 45 - NA
gripperl6 0.05 0.05 1.11 135 135 101 gripper8 >600.00 8.14 0.03 NA 53 71
gripperl7 0.06 0.06 1.31 143 143 107 gripper9 >600.00 12.86 0.06 NA 59 79
gripper18 0.06 0.07 1.56 151 151 113 eripperl0 >600.00 19.78 0.04 NA 65 87
gripperl19 0.06 0.07 1.83 159 159 119 gripper11 >600.00 err 0.07 NA err 95
gripper20 0.07 0.08 2.13 167 167 125 gripper12 >600.00 err 0.06 NA err 103
satellite26 3.73 - 29.99 138 - 138 satellite]15 82.79 88.25 - 68 70 -
satellite27 4.73 - 13.20 138 - 139 satellite16 >600.00 115.07 - NA 69 -
satellite28 12.87 - 260.26 193 - 193 satellite17 129.39 127.62 - 74 73 -
satellite29 18.69 - 70.36 195 - 195 satellite18 25.05 24.40 - 44 43 -
satellite30 31.57 - 117.52 231 - 231 satellite19 >600.00 574.46 - NA 66 -
satellite31 56.65 - 201.36 272 - 272 gminer7X7-06 6.00 5.07 6.34 33 35 34
gminer7X7-06 err 0.01 0.01 NA 33 30 gminer7x7-07 6.08 4.91 5.82 38 38 37
gminer7x7-07 err 0.02 0.01 NA 34 65 gminer7X7-08 3.06 2.08 2.81 25 25 25
gminer7x7-08 err 0.01 0.01 NA 25 26 gminer7X7-09 4.24 3.47 4.26 33 30 29
gminer7x7-09 err 0.01 0.01 NA 29 32 gminer7X7-10 5.96 4.83 6.05 35 35 35

gminer7Xx7-10 err 0.01 0.02 NA 33 43
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Table 3 Comparison of running times and plans lengths (we assume that macro-actions are unfolded into primitive actions) for LAMA (left-hand side) and FDP (right-

hand side)

LAMA FDP

Time (in seconds) Plan length Time (in seconds) Plan length
Problem orig upd-SG upd-SAT orig upd-SG upd-SAT Problem orig upd-SG upd-SAT orig upd-SG upd-SAT
Blocks14-0 0.12 0.08 0.08 84 84 84 Blocks10-1 >600.00 11.82 11.82 NA 34 34
Blocks14-1 0.13 0.06 0.06 52 44 44 Blocks10-2 >600.00 6.57 6.57 NA 34 34
Blocks15-0 0.44 0.10 0.10 144 52 52 Blocks11-0 >600.00 178.31 178.31 NA 36 36
Blocks15-1 0.27 0.14 0.14 112 62 62 Blocks11-1 >600.00 146.24 146.24 NA 34 34
depots1817 >600.00 93.68 >600.00 NA 122 NA Blocks11-2 >600.00 93.02 93.02 NA 38 38
depots4534 243.61 1.39 9.81 122 67 107 depotprob7512 1.66 0.10 0.37 15 15 15
depots5656 >600.00 0.53 7.70 NA 70 98 depotprob1935 >600.00 11.41 44.18 NA 27 27
depots7615 >600.00 5.71 61.61 NA 71 78 depotprob6512 >600.00 70.24 288.27 NA 30 30
zeno-5-20a 1.22 0.87 - 91 91 - depotprob1234 >600.00 29.18 147.31 NA 23 21
zeno-5-20b 1.55 0.75 - 83 91 - zeno-2-4 5.34 7.88 - 11 11 -
zeno-5-25a 2.85 0.98 - 95 105 - zeno-2-5 42.29 73.01 - 11 11 —
zeno-5-25b 7.18 1.42 - 100 115 - zeno-2-6 58.18 7.71 - 15 15 -
rovers4621 0.06 0.06 - 47 47 - zeno-3-6 551.53 >600.00 - 11 NA -
rovers5624 0.08 0.04 - 50 50 - gripper8 >600.00 0.04 8.98 NA 71 53
rovers7182 0.23 0.18 - 90 90 - gripper9 >600.00 0.06 16.91 NA 79 59
rovers8327 0.15 0.10 - 71 71 - gripper10 >600.00 0.08 32.66 NA 87 65
gripper16 0.05 0.06 3.76 101 135 101 gripperl1 >600.00 0.10 55.57 NA 95 71
gripper17 0.05 0.07 4.49 107 143 107 gripper12 >600.00 0.13 92.14 NA 103 71
gripper18 0.06 0.08 5.26 113 151 113 satellite3 1.39 0.28 11 11
gripper19 0.07 0.08 6.13 122 159 119 satellite4 62.52 - 17.24 17 - 17
gripper20 0.07 0.10 7.02 128 167 125 satellite5 >600.00 264.06 NA 15
satellite26 3.85 - 7.37 139 - 139 satellite6 >600.00 - >600.00 NA - NA
satellite27 2.80 3.63 135 139
satellite28 >600.00 - 11.76 NA - 194
satellite29 16.82 - 19.88 190 - 191
satellite30 72.18 - 32.63 229 - 229
satellite31 40.46 - 67.47 269 - 272
gminer7X7-06 0.22 0.04 0.03 170 31 31
gminer7x7-07 0.04 0.04 0.03 65 34 65
gminer7X7-08 >600.00 0.03 0.03 NA 25 26
gminer7x7-09 0.14 0.04 0.03 130 29 32
gminer7X7-10 0.30 0.04 0.03 176 31 43
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The less complex problems were solved in the updated domains almost as fast as or a bit slower
than in the original ones (except for the Rovers domain in SATPLAN’s evaluation). The hardest
problems (both original and updated) were not solved within the time limit of 600 seconds.

SGPLAN performed well in the original domains on almost all the tested problems except Blocks
problems, some Depots problems and Gold Miner problems. Running times in the updated domains
were always better except in the Gripper domain, where the running times were slightly worse, and the
Satellite domain where the results were significantly worse. The quality of the plans® generated in the
updated domains was not much worse, however; sometimes, the quality was slightly better and,
surprisingly, in one Blocks problem it was more than twice better. The best results SGPLAN were
reached in the Blocks domain where the speed-up was quite impressive. The possible reason may rest
in the fact that SGPLAN’s heuristics (FF-based) do not handle well problems like Blocks or Depots,
because the plan quality was significantly better in the updated problems as well. SGPLAN’s behavior
in the Gold Miner domain was weird, because for all more complex (original) problems, SGPLAN
terminated without throwing any error message after about 3 minutes of running.

SATPLAN, unfortunately, did not benefit often from our method. In the Blocks domain,
SATPLAN was able to generate plans faster, but at the price of significantly worse quality of
plans. However, SATPLAN produced very good results in the updated Gripper domain, where
the problems normally unsolvable (in 600 seconds) were solved in a couple of seconds (for the
domain updated on the basis of SATPLAN’s training plans) or in hundreds of a second (for the
domain updated on the basis of SGPLAN’s training plans). The reason for that rests in the fact
that SATPLAN uses a Planning Graph and each tested problem in the updated Gripper domain
can be solved in only two layers. SATPLAN also gained quite good results in the Satellite and
Gold Miner domains. Errors thrown by SATPLAN were caused by insufficient memory or a large
domain file (produced by the ADL2STRIPS tool).

FDP is a planner based on CSP techniques that guarantees optimal plans. Even though FDP
seems to be an ideal candidate for generating training plans for the learning phase, it fails to find a
reasonable number of training plans in reasonable time. However, the experiments showed that
the performance on the updated domains significantly increased in most of the tested problems.
Using macro-operators reduced the depth of the search, which expectedly increased FDP’s per-
formance. The worse results gained in the Zenotravel domain was caused by the fact that no
macro-action was used in the solutions of the updated problems (except zeno-2-6). An absence of
results on the Rovers and Gold Miner domains is caused by the inability of FDP to process the
domains descriptions (both for the original and updated ones) correctly.

LAMA is a planner that combines the Causal Graph heuristic and FF-based heuristics. In the
Depots, Blocks and Gold Miner domains, the quality of plans was significantly better in updated
domains. In addition, the time comparison for the Depots domain showed a significant increase in
performance. The results correlate a bit with the results achieved by SGPLAN, because SGPLAN
uses FF-based heuristics as well.

We also made experiments with the LPG-td (Gerevini & Serina, 2002) planner. LPG is based on
local search techniques. Our experiments showed significantly worse performance in the Blocks
and Depots domains; in the other domains, LPG performed almost the same. However, the results
of LPG had huge discrepancies (both the running times and the quality of plans) with respect to
the selected random seed.

8.3 Additional remarks

The presented results showed an interesting improvement for more complex problems in the
domains updated by our method. Even though we used only at most six training plans for each
domain (depending on the length of the training plans), we usually gathered enough knowledge for

® A ratio of the length of the plans in the original domains and the length of the plans in the updated
domains—macro-actions are unfolded into primitive actions.



Generation of macro-operators via investigation of action dependencies in plans 295

updating the domains. Even though we removed primitive operators from the original domains, we
were able to solve correctly each problem in the updated domains. The reason may be that planning
problems from the IPCs usually differ by the number of objects and not by different types of initial
states or goals. However, there exist domains (for instance, Freecell, Pipesworld, N-puzzle and
Sokoban) where our method did not manage to find any reasonable set of macro-operators (in
terms, that found macro-operators did not fully replace any primitive operator).

Generated macro-operators used in the comparison were in almost all cases combined only from
two primitive operators, except in the Gripper and Gold-Miner domains. Although the construction
of more complex macro-operators may reduce the depth of the search, such macro-operators may
have much more instances that can cause troubles to planners (increased branching factor).

The success of our method depends on several factors. First, training plans should be optimal
(shortest) or nearly optimal, because non-optimal plans may contain flaws (useless actions) that
may prohibit the detection of useful macro-operators or useless primitive operators. Second, we
have to decide what result of our method (generated macro-operators and removed primitive
operators) is the best. We followed the strategy where the particular generated macro-operator
replaces at least one primitive operator that is removed from the domain. The experiments showed
that our strategy is reasonable and contributive in many cases. Of course, there is a possible
improvement that considers planners’ specifics and strategies. SGPLAN is a planner that
decomposes a problem into subproblems and solves them by other planning techniques, mostly
FF-based. LAMA also uses FF-based heuristics and, in addition, Causal Graph heuristics. FF-
based planning techniques usually experience difficulties with plateaux. Therefore, if there are such
macro-operators that help the FF-based planner to escape plateaux, then the performance of the
planner should significantly increase. It has been already studied in Coles and Smith (2007).
SATPLAN is a planner that translates Planning Graph into SAT and then uses a SAT solver to
solve the problem. Potential success, in this case, mainly rests in the reduction of makespan (i.e.
the numbers of layers of the planning graph that must be explored). However, if makespan is
reduced only slightly, it may not result in speed-up, because the layers can be much more complex.
It also depends on the first appearance of instances of particular macro-operators in the Planning
Graph (the later the better).

For most of the older approaches (typically for STRIPS or MPS), it is quite common to
generate more complex macro-operators to penetrate the depth of the search as much as possible.
Our method is able to generate more complex macro-operators, if bounds b and ¢ are kept lower
and bound d is kept higher. However, such macro-operators are very problem-specific, which
makes them unusable for a larger scale of problems in the given domain. Systems like PRODIGY
or DHG use static domain analysis and do not require training plans for their learning. Some
macro-operators learned by these systems may be unnecessary (i.e. instances of these macro-
operators usually do not appear in solutions of most of the problems). State-of-the-art systems
Marvin or Macro-FF (SOL-EP version) are built on the FF planner. These systems achieved very
promising results, but they cannot be applied with other planners. WIZARD and Macro-FF (CA-ED
version) are, like our method, designed as a supporting tool for arbitrary planners without
changing their code. WIZARD learns macro-operators genetically from training plans, which
follows quite a different policy than our method does. The usability of macro-operators is eval-
uated by the monitoring of running behavior of planners on updated training problems (by the
macro-operators). WIZARD, in comparison to our method, reported better results in the Satellite
domain or with the LPG planner, but WIZARD spends many hours on the learning phase,
whereas our method spends seconds. Macro-FF (CA-ED version) generates macro-operators
from an analysis of static predicates, then adds them into the domain and then generates training
plans (with the macro-operators). Unlike that, our method generates macro-operators from
training plans gathered from the original training problems and does not require to resolve them
(by the planners) in their updated form (with macro-operators). The idea, how the usability of
macro-operators is evaluated, is quite similar to our method, but a bit simpler—Macro-FF (CA-ED
version) picks the » most frequent macro-operators (assembled from two primitive operators).
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In addition, our method detects which primitive operators can be removed (with the risk of losing
completeness). For example, in the Depots domain, our method and Macro-FF (CA-ED version) found
the same macro-operators. Our method, in addition, removed four (resp. two) primitive operators by
using SGPLAN (resp. SATPLAN) for generating the training plans. Removing the primitive operators
brought much more benefit to the planners’ performance and often to the quality of plans.

9 Conclusion

In this paper, we presented a method for generating macro-operators and removing useless pri-
mitive operators from the planning domain. The method explores pairs of actions (not necessarily
adjacent) that can be assembled in the given training plans. It results both in the detection of
suitable macro-operators and primitive operators that can be removed. The method is designed as
a supporting tool for arbitrary planners. The presented evaluation showed that using our method
is reasonable and can transparently improve the planning process, especially on more complex
planning problems. Nevertheless, the results were obtained by evaluation of IPC benchmarks only.
Probably, the main disadvantage of IPC benchmarks rests in similarities of the planning problems
(the problems differ only in the number of objects), which makes the analysis of plans structures
much easier. In real world applications, it may be more difficult to use our method properly (e.g.
we need a set of good training plans, etc.). Classification of such problems where we can remove
particular primitive operators without loss of the problems’ completeness remains an open pro-
blem. Furthermore, more complex macro-operators may contain many parameters that may cause
big difficulties to planners. We are also investigating possibilities of pruning potentially useless
actions (operators’ instances), see Chrpa and Bartak (2009).

In future, we should also focus on a possible extension of our method for generating HTNs.
Then we can use some HTN planner, for example, SHOP2 (Nau et a/., 2003). This idea partially
follows the idea listed in Nejati et al. (2006). In addition, we should investigate more deeply how
stochastic data gathered during the execution of our method (like the number of operators in
training plans, etc.) can be efficiently used. We should also study action dependencies more from
the side of predicates, because it may reveal knowledge that can be used as heuristics for planners.
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Abstract

Formulating knowledge for use in Al Planning en-
gines is currently something of an ad-hoc process,
where the skills of knowledge engineers and the
tools they use may significantly influence the qual-
ity of the resulting planning application. There is
little in the way of guidelines or standard proce-
dures, however, for knowledge engineers to use
when formulating knowledge into planning domain
languages such as PDDL. This paper seeks to in-
vestigate this process using as a case study a road
traffic accident management domain.

Managing road accidents requires systematic,
sound planning and coordination of resources to
improve outcomes for accident victims. We have
derived a set of requirements in consultation with
stakeholders for the resource coordination part
of managing accidents. We evaluate two separate
knowledge engineering strategies for encoding the
resulting planning domain from the set of require-
ments: (a) the traditional method of PDDL experts
and text editor, and (b) a leading planning GUI with
built in UML modelling tools.

These strategies are evaluated using process and
product metrics, where the domain model (the
product) was tested extensively with a range of
planning engines. The results give insights into the
strengths and weaknesses of the approaches, high-
light lessons learned regarding knowledge encod-
ing, and point to important lines of research for
knowledge engineering for planning.

1

Knowledge Engineering for automated planning is the pro-
cess that deals with the acquisition, formulation, validation
and maintenance of planning knowledge, where a key prod-
uct is the domain model. The field has advanced steadily
in recent years, helped by a series of international compe-
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titions', the build up of experience from planning applica-
tions, along with well developed support environments (for
example, Europa [Barreiro et al., 2012], itSIMPLE [Vaquero
et al., 2007], GIPO [Simpson et al., 2007]). It is generally
accepted that effective tool support is required to build do-
main models and bind them with planning engines into ap-
plications. There have been reviews of such knowledge en-
gineering tools and techniques for Al Planning [Vaquero er
al., 2011], and some work was done in comparing tools us-
ing sets of “features” for the ICKEPS competitions [Bartik
et al., 2010]. While these works are illuminating, they are
not founded on practice-based evaluation, in part, no doubt,
because of the difficulty in setting up evaluations of meth-
ods themselves. Given a new planning domain, there is little
published research to inform engineers on which method and
tools to use in order to effectively engineer a planning do-
main model. This is of growing importance, as domain inde-
pendent planning engines are now being used in a wide range
of applications, with the consequence that operational prob-
lem encodings and domain models have to be developed in a
standard language such as PDDL. In particular, at the difficult
stage of domain knowledge formulation, changing a state-
ment of the requirements into something formal - a PDDL
domain model - is still somewhat of a “black art”, usually
conducted by a team of Al experts using text editors. On the
other hand, the use of tools such as itSIMPLE or GIPO, with
which experts generate a high level diagrammatic description
and automatically generate the domain model, have not yet
been proven to be more effective than hand coding.

In this paper we explore the deployment of automated plan-
ning to assist the management of accident planning, using
a set of requirements derived from operational manuals and
stakeholder interaction. Moreover, in introducing a new plan-
ning domain, we take the opportunity to employ and hence
evaluate two separate methods for knowledge formulation:
(i) the traditional method of hand-coding by PDDL experts,
using a text editor and relying on dynamic testing for debug-
ging; (ii) itSIMPLE [Vaquero et al., 2007], an award-winning
GUI, utilising a method and tool support based on the Uni-

'for the most recent see http://icaps12.poli.usp.br/icaps12/ickeps



fied Modelling Language (UML). Evaluating these two ap-
proaches with respect to qualitative and quantitative mea-
sures, gives a range of interesting insights into their strengths
and weaknesses for encoding new domains. Evaluation mea-
sures used are based on two standard categories in the soft-
ware engineering literature - process (the method of encod-
ing and debugging the domain model) and product (the do-
main model, and its use within a planner to produce plans).
In particular, we provide a comparison of the operationality
of the planning domain models generated through the pro-
posed methods, based on the performance of state-of-the-art
domain independent planners.

2 Case Study: Management of Road Traffic
Accidents (RTAs)

Road traffic management operations are subject to rising
costs, rising public expectations, more complex and demand-
ing goals, and contain a great deal of legacy software. Re-
cent technological advances have in part confounded this by
providing more management controls and more surveillance
data. The need to look to reducing costs, while maintaining
level of service is a high priority. The area of incident man-
agement on the Road Traffic Network combines the challenge
above, while demanding an optimal solution in real time; fur-
ther, the space of possible states, and configurations of the
incident, is far too large to be able to generate concrete plans
a priori. Systematic, robust planning with the coordination of
human and technical resources is the key to managing these
incidents. In particular where the process involves safety of
victims and other road users, such as in RTA, the respond-
ing agencies need to deliver accident management activities
safely and efficiently [Owens er al., 2000].

Our work in producing a set of requirements for the au-
tomation of accident management plans has been performed
in the context of the EU-funded network Autonomic Road
Transport Support* consisting of both academics and prac-
tising transportation engineers. Using contacts through this
network, two scientific exchanges with transportation special-
ists, contributions to transport workshops, and a set of manu-
als [HA, 2009; Owens et al., 2000; Benesch, 2011], we have
elicited a set of requirements for the RTA planning problem.

In the UK, the main responsibility for managing and deal-
ing with an incident lies with the highways agency (HA)
that serves that area, as well as the police, ambulance, traf-
fic offers and breakdown services. Part 7 of the UK’s High-
way’s Agency Manual [HA, 2009] is our major source of
knowledge. This identifies the service providers responsible
for dealing with accidents at an operational level, with police
leading co-ordination in and around the scene. The phases of
an incident are detection, verification, response, scene man-
agement, recovery and restoration. Here we assume that an
accident has been detected, and consider the planning ele-
ment for the subsequent phases, with the overall requirement
that the planning function is to provide whoever is leading
the incident management with an operational plan for man-
aging services. Incidents are centrally controlled, and there is

2www.cost-arts.org
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only one leader at any point in time (though leadership can
change, e.g. from the police to the HA). Within this context
there are major and critical levels of incident. The former can
be described as disasters; the HA require a Crisis manage-
ment Team to deal with this. We will concentrate on incidents
at critical levels, which consist of single or multiple accidents
in a region, and typically may consist of up to 10s of vehicles,
requiring several emergency vehicles, within a single region.

2.1 Initial Domain Analysis

An initial conceptualisation of the RTA domain is described
in the following paragraphs.

A Road Network is represented by an undirected graph
(V, E) where vertices V stand for locations and edges F
for roads. 1t is useful to effectively abstract the topology of
the Road Network, since the Road Network usually consid-
ers a region covering several ‘clusters’, i.e., towns/cities or
districts (e.g. see Figure 1), with locations of interest (e.g.
Hospitals or Police Stations). We assume that all the loca-
tions within a ‘cluster’ are connected to each other. ‘Clusters’
are connected only if there is a road between them. Assets
X = X, U X, are divided into two categories, static assets
X (e.g. Police Stations, Hospitals, Fire Stations) and mobile
assets X,, (e.g. Police Cars, Ambulances, Fire Brigades). Let
T C ROJ’ be a set of time-stamps. We define a function loc
which for an asset and time-stamp returns the location (or L
which stands for a situation when the asset is on the way), for-
mally loc : X x T'— V' U{L}. Clearly, for every static asset
x € X, loc(z,t) is constant (i.e. its value is not dependent on
the time-stamp). Mobile assets can be moved between loca-
tions using roads (i.e. a mobile asset can move from one loca-
tion to another if and only if these locations are connected by
road). Artefacts Y (e.g. accident victims, damaged cars etc.)
cannot move freely between locations (unlike mobile assets)
but they need a mobile asset (e.g. an ambulance) which can
transport them to different locations. We define a function in
which for an artefact and time-stamp returns either an asset
(static or mobile) an artefact is attached to, or a location an
artefact is located if the artefact is not attached to any asset,
or L if an artefact is being attached or detached from an as-
set, formally in : Y x T — X UV U {L}. An artefact can
be attached to an asset if and only if the artefact is currently
not attached to any other asset and the current location of an
artefact is the same as the current location of the asset. Sim-
ilarly, if an artefact is unattached from an asset then its loca-
tion will be the same as the current location of the asset. Each
asset may have a limited capacity, i.e., a maximum number
of attached artefacts in the same time. We define a function
cap : X — N referring to an asset capacity. It must hold that
Vie TWVe e X: {ylyeY Ain(y,t) = x}| < cap(z).
Assets and artefacts can also interact with each other in order
to modify their characteristic properties. For instance, the po-
lice have to confirm an accident or a paramedic has to give
first aid to victims before they are taken to hospital. Hence,
we define properties as sets of values characterising artefacts
and/or assets (e.g. accident victims can be waiting for first
aid, being aided, aided or delivered to a hospital).

All the above thus specify the environment of the RTA
domain. This environment can be modified by (planning)



operators representing types of actions, specified via precon-
ditions (what must be met in order to apply the operator) and
effects (what is changed in the environment after applying the
operator). We define the following operator families which
modify the environment of the RTA domain (we assume that
the operator is applied in a time-stamp ¢ and lasts for At
time).

move(z, [1,l2) moves a mobile asset x € X, from a loca-
tion /; to a location Il (I1,l3 € V). As a precondi-
tion it must hold that loc(z,t) = I3 and [; and Iy are
connected with a road (i.e. (I1,l2) € E). An effect of
applying the operator is that loc(z,t + At) = lo and
Vit € (t,t + At) : loc(z,t') = L.

attach(y, x, ) attaches an artefact y € Y to an asset x € X
in a location [ € V. As a precondition it must hold that
loc(z,t) =in(y,t) =1, V' € [t,t+At] : loc(x,t') =1
and [{y/ | in(y',t) = x}| < cap(z). An effect of ap-
plying the operator is that in(y,t + At) = =z, V&' €
(t,t+ At) sin(y,t') = L.

detach(y, x,[) detaches an artefacty € Y from an asset xz €
X in a location [ € V. As a precondition it must hold
that Vt' € [t,t + At] : loc(z,t') = | and in(y,t) = .
An effect of applying the operator is that in(y, t+At) =
LYY € (t,t+ At) in(y,t') = L.

interact(eq, es, 1, p1,...,pg) refers to interaction between
artefacts or assets ey, eo € X UY in alocation! € V.
As a precondition it must hold that V¢’ € [t,t + At] :
(loc(er,t') =1 o e € X))V (in(er,t') =l & eg €
Y), (loc(ea, ') =1 < ex € X) V (in(eg,t') =1 &
e € Y) and e; and es has properties p; and po in time
t. An effect of applying the operator is that properties
of e; and ey in any ¢’ € (t,t + At) are p3, ps respec-
tively and properties of e; and es in t + At are ps, pg
respectively.

There are further constraints which must be met. Operator
families attach and detach must not be executed simultane-
ously for a given asset (i.e., during attaching or detaching an
artefact no other artefact can be attached to or detached from
the given asset). Also artefacts must have certain properties
in order to be attached or detached from the assets (e.g. an
accident victim must be stabilised before it is loaded to an
ambulance).

Despite a very general scope of the operators’ definitions
it can illustrate well the main aspects of the RTA domain.
Clearly, we may have to consider a ‘cluster’-like topology of
the Road Network by introducing two ‘move’ operators, one
for moving within a ‘cluster’ and the other for moving be-
tween different ‘clusters’. ‘Attaching’ and ‘detaching’ arte-
facts to/from assets must reflect different kinds of artefacts
or assets. For instance, accident victims can be ‘attached’ to
ambulances or hospitals, in other words the victim is loaded
into the ambulance or is delivered into the hospital. ‘Interact-
ing’ between assets and/or artefacts captures situations such
as giving first aid to accident victims (an ambulance must be
at the accident scene), certifying an accident by police (a po-
lice car must be at the accident scene), or untrapping accident
victims by a fire brigade.
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The RTA domain deals with a situation which arises imme-
diately after a traffic accident has been reported. Police must
certify and secure the accident scene. Fire brigades must free
accident victims trapped in a vehicle, and fire brigades must
extinguish any fire at the accident scene. Once victims are re-
leased and free of wreckage, paramedics must give first aid to
them, and then load them into ambulances and deliver them
to hospitals. Tow trucks then deliver damaged cars from the
accident scene to garages.

3 The Knowledge Engineering Methods

Having analysed the RTA domain, and conceptualised the re-
quirements, we set up the experiment to evaluate two methods
of planning domain knowledge formulation. As with any ex-
ercise on evaluating methods, there are problems to do with
the effect of human factors such as level of method expertise
of the knowledge engineers (so-called extraneous variables).
Each method was carried out in parallel over a period of time.
There was no time limit fixed a priori. Each team was com-
posed of two experts. All the experts were involved in the re-
quirements phase. The background of all participating in the
teams was that all except one (who is in the final year of an Al
Planning PhD) had a PhD in AI Planning. The expertise level
of the PDDL encoders (method A) was expert, whereas for
method B the team leader was competent rather than expert
in the use of the itSIMPLE tool.

The aim of the experiment was to evaluate two well known
approaches to formulate domain models and problem encod-
ings, within the RTA domain, where the problem was to gen-
erate management plans for a particular scenario. The criteria
for evaluation are arranged in two broad categories, using in-
spiration from the software engineering area:

e the process of the formulation: this is the encoding of
the conceptualised knowledge taken from the initial do-
main analysis, source documents and expertise, until it
reaches a final form in which it can be input to Al
Planning engine(s). Features such as defect identifica-
tion and removal, the nature of testing, and repeatabil-
ity/traceability of the process are considered here.

o the product of the formulation: this is the domain model
and problem files, with features such as maintainability,
size, complexity and operationality (the latter based on
the performance and quality of plans produced and range
of problems solved where they are consequences of the
model rather than the planner).

As an application scenario, we have chosen a region shown
in Figure 1, consisting of an area within the UK. For evaluat-
ing the methods we used a set of test instances, considering
the map shown in Figure 1, in which three accidents hap-
pen in Ainley Top, Greetland and Baliff Bridge. Police are
required to confirm accidents, number of victims and vehi-
cles involved. The victims are required to be taken as soon
as possible to one of the hospitals, and involved broken vehi-
cles are required to be removed from the road and taken to an
available garage. Three ambulances, four police cars, two fire
brigades and four tow trucks are available. We created test in-
stances involving from six to one hundred victims, and from



five to thirty cars, where some victims might be trapped in-
side cars. We also considered an instance in which the num-
ber of available emergency vehicles is doubled, to evaluate
the coordination that the different methods encodings are able
to achieve. In each case, the formulation proceeded until the
method produces a planning application which solves the test
instances of accident management as specified above.

We overview each method before we use it, but given space
restrictions the reader is encouraged to consult the literature
for full details.

3.1 Method A: Hand Encoding

PDDL [McDermott, 1998; Ghallab et al, 1998] is an
action-based domain definition language which is inspired by
STRIPS [Fikes and Nilsson, 1971] style planning. The core
of the PDDL formalism is for expressing the semantics of do-
main actions, using pre- and post- conditions to describe the
applicability and effects of actions. In this method the RTA
model was hand encoded by a team composed of two PDDL
experts, using a text editor and relying on dynamic testing.
In the ad-hoc method of generate and test, the experts iter-
ate over the following steps: (i) encode requirements, (ii) run
a set of planners on several easy problems, (iii) evaluate the
resulting plans (if any), and (iv) in the case of strange plans
(in relation to the RTA domain requirements) find a way to
fix the issue. Usually an expert has to iterate several times
through the steps above before plans are produced that match
the requirements.

3.2 Method B: itSIMPLE

The main goal of GUI tools is to provide knowledge engi-
neers with a systematic way to reduce modelling time and
errors. There are a number of tools available in the research
community, such as JABBAH [Gonzdlez-Ferrer ef al., 2009]
and GIPO [Simpson et al., 2007]. itSIMPLE [Vaquero et al.,
2007; 2012] is a method and tools environment that enables
knowledge engineers to model a planning domain using the
UML standards. The main function of itSIMPLE is to take
UML’s Object Constraint Language as input through state
machine diagrams, and translate them into PDDL.

4 Evaluation of the methods

4.1 Execution

In method A, first the PDDL experts manually coded the RTA
domain using PDDL and PDDL2.1 [Fox and Long, 2001],
and utilised standard planners such as LPG [Gerevini et al.,
2003], and SGPlan [Chen et al., 2006]. The experts trans-
lated the informal description of the requirements directly
into PDDL, without developing any intermediate notation, us-
ing their skill and judgement to perform the encoding. Af-
ter approximately ten iterations of step (i) and (ii), simple
plans were generated which matched requirements. At the
next step, longer plans were generated for more complex
problems; in this case, unusual behaviour was noticed (e.g.,
a single ambulance was able to carry 10s of victims) and six
more cycles of debugging resulted in plans which solved the
test instances.
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Figure 1: The Road Traffic Domain Model used for empir-
ical analysis. It consists of a portion of the county of West
Yorkshire. H, F, P and G respectively stand for Hospital, Fire
station, Police station and Garage locations.

The steps in the method B, in general, follow the use of
UML in software engineering: (i) design of class diagrams;
(ii) definition of state machines; (iii) translation to PDDL;
(iv) generation of problem files. A user formulates the re-
quirements by designing several UML diagrams, and auto-
matically generates the corresponding PDDL (or PDDL2.1)
domain encoding. While the parameters of the operators and
their duration are defined in step (i), in step (ii) the state ma-
chine diagrams help the domain modeller to encode pre- and
post- condition of operators. In step (iii), we used itSIMPLE
to generate both PDDL and PDDL2.1, although it does not
cover all the spectrum of timing constraints expressible in
PDDL [Vaquero et al., 2012]. The generation of PDDL prob-
lem files was done by instantiating objects represented by the
previously defined classes, describing their properties in the
initial state, and describing the desired properties of objects
at the goal state.

The amount of resource to perform the encoding was sim-
ilar for both the methods. They took approximately 1 person
week.



4.2 Process Comparison

Regarding method A, the main issue related with hand cod-
ing a real world domain in PDDL is that it tends to be ad-hoc,
without the direction or static checks that a tool supported
method would impose. The encoding is left to the skill and
judgement of the experts that are working on it. This lack of
structure leads to domain models that, even if representing the
same real world application, are different and hard to under-
stand if developed and maintained by different experts. More-
over, the process of this method is difficult to replicate while
everything is left to the sensitivity and to the knowledge of
experts. Since the itSIMPLE tool is designed for supporting
a disciplined design cycle and for supporting the transition
of requirements to formal specifications, the process is more
clearly defined and not difficult to repeat.

With respect to bug identification and removal, in the hand-
coded method, all but syntactic bugs were dealt with by dy-
namic testing of the model. Most of the development time
was spent in dynamic testing: analysing produced plans, iden-
tifying bugs and removing them from the model. While hand
encoding a domain, usually many issues are noticed only by
carefully reading the generated plans. One example of bug
identification is when the team of method A noticed broken
vehicles were being delivered to hospitals, instead of garages.
Removing the bug in this case amounted to adding further
constraints to the operators. On the other hand, most of the
time spent with itSIMPLE was in designing classes of ob-
jects and defining legal interactions between them. After that,
only a relatively short time is required for debugging. How-
ever, we found that where debugging was required, it was
initiated through dynamic testing: while the structure of the
model helps in its development and maintenance, it is the
failure of a planning engine to solve a goal which alerts the
developer to the presence of a bug, in most cases. This is per-
haps a failing peculiar to itSIMPLE, as there are systems with
stronger static tests (such as GIPO [Simpson et al., 2007])
which are capable of identifying bugs at an earlier stage than
dynamic testing. The need for static tests is reduced, however,
given the structure imposed by the UML method; additionally
this helps determine the completeness of the model, in terms
of classes and finite state machines. Also, itSIMPLE’s auto-
mated generation of the PDDL model, much like compilation
of a high level language into a low level language, has the
benefit of eliminating human errors in encoding details. The
tool offers the modellers a range of third party planners for
generating plans, along with features such as plan analysis,
where the plan generated can be viewed graphically.

There are advantages in using hand-coding over using tool
supported environments: the development of environments
tends to lag behind in the use of expressive modelling lan-
guages. itSIMPLE, although being continuously developed,
has some limitations in the type of PDDL that it can generate.
Also, some details such as parameter associations and metrics
are only possible to encode using dialog boxes within GUI-
based tools, which hamper their ease of use.

4.3 Product Comparison

For comparing the domain models generated by methods A
and B, we selected a subset of the metrics suggested by
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Metric PDDL PDDL2.1

A B A B
# types 19 22 19 22
# predicates 16 18 16 16
# operators 12 14 12 12

mean parameters | 3.1 | 3.2 | 3.1 | 3.2
mean precond+ 43 | 38 | 43 | 40
mean precond- 02 | 04 | 02 | 04

mean eff+ 1.7 14 1.7 1.6
mean eff- 1.9 1.2 1.9 1.3
# lines 225 | 263 | 248 | 259

Table 1: The values of the metrics selected for comparing the
domain models generated by methods A and B.

Roberts and Howe in [Roberts and Howe, 2007]. In this work
they described some techniques for predicting the perfor-
mance of domain-independent planners by evaluating a set
of metrics related to both the domain model and the planning
problem. Since we are comparing planning domain models
for understanding their quality, which depends also on the
performance of the planners that will solve the problems, such
a set of metrics could give some interesting insights. We con-
sidered also the number of lines, which could give a very in-
tuitive idea of the complexity of the models. The results of
this comparison are shown in Table 1, metrics considered are
the number of types, predicates and operators, the mean num-
ber of parameters per operator, the mean number of pos/neg
preconditions and the mean number of pos/neg effects.

We found that the iterative process in Method A led to an
over-constrained domain encoding. Many of the constraints,
added in the form of pre- and/or post- conditions, were built
up incrementally during de-bugging in an ad-hoc fashion, in
order to avoid unwanted behaviours. The resulting model is
complex and hard to read and understand compared to the
model developed using method B. That method A leads to a
constrained model is confirmed by the higher mean number
of positive preconditions and effects. This is not noticeable by
the number of lines of the files because method B invites to
use many different types, as usual in KE approaches, which
are not listed in a very compact way. The PDDL domain
model generated by method B has 2 more actions than the
method A one; these operators are related to the untrapping
people and extinguish fire tasks and are used for avoiding that
the same fire brigade extinguishes several fires or untraps sev-
eral people at the same time. The method A model exploits a
“trick”: the PDDL experts added the same predicate as a pos-
itive and negative effect of the operator, which avoids the si-
multaneous execution of actions instantiated with similar pa-
rameters. Although these kind of tricks are commonly used
by experts, their impact on the performance of the planners
have not been studied, and moreover they make the domain
model harder to read and understand.

We observed that the structured and principled process of
encoding the requirements in Method B led to domain en-
codings that are clear and easy to understand. Moreover, we
found that the UML documentation is useful in maintenance,
as it helps trace the encoding to the initial requirements. The
main difference between PDDL and PDDL2.1 encodings is



LPG

Instance CPU time # Actions Duration
A B A B A B
6P, 5V, 1T 0.03]0.03| 97 90 28 29

30P, 10V, 2T, 1IF 05 ] 03 | 318 | 317 | 90 | 108
100P, 30V, 5T, 3F | 35.6 | 22.8 | 1015 | 1001 | 350 | 311
100P, 30V, 5T, 3F * | 62.4 | 37.9 | 1033 | 988 | 254 | 246

SGPLAN
Instance CPU time # Actions Duration
A B A B A B
6P, 5V, 1T 0.12 1 0.09 | 95 96 95 96

30P, 10V, 2T, 1F 036 | 0.59 | 324 | 338 | 324 | 338
100P, 30V, 5T, 3F 1.25 | 1.50 | 998 | 1018 | 998 | 1018
100P, 30V, 5T, 3F * | 2.85 | 3.60 | 993 | 1068 | 993 | 1068

LPG
Instance CPU time | # Actions Duration
A B A B A B
6P, 5V, 1T 0.04 | 0.03 | 94 91 82 76

30P, 10V, 2T, IF 0.7 | 03 | 317 | 321 | 198 | 220
100P, 30V, 5T, 3F | 57.8 | 25.2 | 1000 | 1012 | 530 | 526
100P, 30V, 5T, 3F * | 86.0 | 42.1 | 1025 | 1029 | 315 | 330

SGPLAN
Instance CPU time | # Actions Duration
A B A B A B
6P, 5V, 1T 0.110.13 | 88 97 117 | 141

30P, 10V, 2T, 1IF 0.48 | 0.54 | 331 | 332 | 528 | 415
100P, 30V, 5T, 3F 1.45 | 1.81 | 1006 | 1048 | 1634 | 1115
100P, 30V, 5T, 3F * | 3.64 | 4.40 | 1000 | 1062 | 1543 | 1322

Table 2: For every instance, the CPU time (seconds), the
number of actions and the duration of plans generated by
LPG and SGPlan on domains encoded using methods A and
B. The upper table refers to PDDL encodings, the lower to
PDDL2.1. Instances are described by the number of victims
(P), the number of vehicles involved (V), the number of vic-
tims trapped (T) and the number of cars on fire (F); * indicates
that the number of available emergency vehicles is doubled.

that PDDL plans, since actions are instantly completed, are a
very compact version of the PDDL2.1 ones. The simpler en-
coding is not very realistic, however, as emergency vehicles
are used without taking into account their distance from the
accident location, since distance cannot be described in the
simpler encoding.

To compare the operationality of the products, we investi-
gated the performance achieved by planning systems on the
models generated exploiting by methods A and B. We ran
LPG and SGPlan on a set of test instances using the different
models. We selected them due to their ability to handle dura-
tive actions and negative preconditions, which are both used
in the generated domains, because they are readily available
and performed well at IPCs. The results of the experiment are
shown in Table 2 in terms of CPU time, number of actions
and plans duration.

These results indicate that LPG with the hand written
domain models needs more CPU time, both in PDDL and
PDDL2.1, than with the models generated through method
B. In the number of actions and duration of the plans there

are no significant differences. The performance of LPG while
exploiting method B models is very interesting; for generat-
ing good quality solutions, it requires significantly less CPU
time.

On the other hand, SGPlan displays a very different per-
formance profile compared to LPG. In this case, the domains
encoded by method B slow down the plan generation pro-
cess, but method B encodings lead to plans with significantly
shorter makespan when generated by LPG. While SGPlan is
faster than LPG at plan generation, it was not effective at ex-
ploiting the parallelisation of actions in solution plans, which
unlike in LPG’s performance, resulted in plans with a high
makespan.

5 Conclusions and Future Work

In this paper we have developed requirements for a new plan-
ning domain, the RTA domain, addressing the problem of
managing emergency situations in road traffic accidents. We
have elicited a set of requirements, and used domain analy-
sis to make precise and unambiguous relevant features for the
planning problem. We then described two methods used for
formulating requirements into domain models, and set up an
evaluation experiment where they were used to design and
create RTA domain models. Special attention was given to
knowledge engineering aspects such as how long it takes to
create a model or which tools can be used to verify the model.
We observed that creating different models does not take very
different amounts of time (taking into account the developers’
expertise). We also noticed that most of the existing domain-
independent planners do not support many features required
for modelling real world situations: i.e., negative precondi-
tions and durative actions. This is, clearly, a big limitation for
their application. The main outcome from our work to feed
back to tools developers is to provide facilities to couple plan-
ning engines and formulation tools (see [Shah et al., 2013] for
more details of such lessons learned).

As for the comparison, we can conclude that using itSIM-
PLE (method B) achieved superior results in both process and
product metrics. From the process point of view, method B
is easier to replicate and does not require high expertise in
planning languages. From the product point of view, mod-
els are clearer to read, understand, and easier to maintain us-
ing method B. Moreover, the domain model produced with it
led to a better performance from both the selected planners,
even if on different metrics: LPG is significantly faster in plan
generation, and SGPlan generates better quality plans, using
method B’s domain model.

Given the fact that different planners exploit different
search techniques, they could have very different perfor-
mance on the same domain encoding, as shown in our exper-
imental analysis. The strategy that we suggest, that is derived
from the experience gathered in this work, is (i) to define a
metric to be optimized, (ii) select a (set of) planner(s) which
handle the required features, (iii) test the planners on some
easy instances, and (iv) selecting the planners, or the set of
planners, which achieves the best results w.r.t. the predefined
metric.

Future work will involve a simulation framework for eval-
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uating plan execution, where we can couple model design
and plan generation more tightly. This may reveal opportu-
nities for improving domain models in general, and the RTA
model in particular. We are also interested in simulating more
complex road accidents, with blocked roads or accidents oc-
curring in locations difficult to reach (e.g. on narrow roads).
Moreover, we should consider more expressive approaches,
for instance, PDDL+ [Howey et al., 2004], capturing fea-
tures of continuous planning since it might produce more
robust system working in real-time and be able to react to
unexpected events. Another interesting area might be to com-
pare our centralised approach to using a multi-agent approach
which moves the problem from centralized to a distributed
point of view.
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Abstract

Research into techniques that reformulate problems
to make general solvers more efficiently derive solu-
tions has attracted much attention, in particular when
the reformulation process is to some degree solver
and domain independent. There are major challenges
to overcome when applying such techniques to auto-
mated planning, however: reformulation methods such
as adding macro-operators (macros, for short) can be
detrimental because they tend to increase branching fac-
tors during solution search, while other methods such
as learning entanglements can limit a planner’s space
of potentially solvable problems (its coverage) through
over-pruning. These techniques may therefore work
well with some domain-problem-planner combinations,
but work poorly with others.

In this paper we introduce a new learning technique
(MUM) for synthesising macros from training example
plans in order to improve the speed and coverage of do-
main independent automated planning engines. MUM
embodies domain independent constraints for selecting
macro candidates, for generating macros, and for lim-
iting the size of the grounding set of learned macros,
therefore maximising the utility of used macros. Our
empirical results with IPC benchmark domains and a
range of state of the art planners demonstrate the ad-
vance that MUM makes to the increased coverage and
efficiency of the planners. Comparisons with a previous
leading macro learning mechanism further demonstrate
MUM’s capability.

Introduction

A fundamental problem solving technique is to reformulate
a problem to make it easier to solve. In automated planning,
where solution generation is known to be hard in general,
techniques that reformulate planning domains have the po-
tential to increase the speed of solution plan generation, and
increase coverage, that is the number of planning problems
that can be solved within some resource constraint. Where
the reformulation involves encoding knowledge directly into
the same language in which the problem definition is en-
coded, then planning engines do not need to be modified in
order to exploit them.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Macro-operator generation is a well known technique for
encapsulating sequences of original operators, so that they
can be stored and used in future planning problems. Macro-
operators (macros, for short) can be encoded in the same
format as original operators and therefore can be used to re-
formulate planning problem definitions. The idea of using
macros in planning dates back to 1970s where, for example,
it was applied in STRIPS (Fikes and Nilsson 1971) and RE-
FLECT (Dawson and Sikléssy 1977). More recently, sys-
tems such as MacroFF CA-ED version (Botea et al. 2005)
or WIZARD (Newton et al. 2007) are able to extract macros
and reformulate the original domain model, such that stan-
dard planning engines can exploit them.

On the other hand, macros can also be exploited by specif-
ically enhanced algorithms. This is the case for MacroFF
SOL-EP version (Botea et al. 2005) which is able to exploit
offline extracted and ranked macros, and Marvin (Coles,
Fox, and Smith 2007) that generates macros online by
combining sequences of actions previously used for escap-
ing plateaus. Such systems can efficiently deal with draw-
backs of specific planning engines, in this case the FF plan-
ner (Hoffmann and Nebel 2001), however, their adaptability
for different planning engines might be low.

Another type of additional knowledge that can be encoded
into domain/problem definitions and has been exploited
in classical planning are entanglements, relations between
planning operators and predicates (Chrpa and McCluskey
2012). Outer entanglements (Chrpa and Bartdk 2009), one of
the types of entanglements, capture causal relations between
planning operators and initial or goal predicates which are
used to prune some unpromising instances of planning oper-
ators. Deciding outer entanglements is, however, PSPACE-
complete in general (Chrpa, McCluskey, and Osborne 2012),
therefore they are extracted by an approximation algorithm
which generally does not preserve completeness (solvability
might be lost if incorrect entanglements are applied).

In this paper we introduce MUM, a new learning tech-
nique for synthesising macros from training examples in
order to improve the speed and coverage of domain inde-
pendent planning engines which input encodings in clas-
sical PDDL. MUM utilises constraints which are created
through the generation of outer entanglements, then uses
these entanglements for selecting macro candidates, for gen-
erating macros, and for limiting the size of the ground-



ing set of learned macros. There have been approaches
which utilise macros and outer entanglements indepen-
dently (Chrpa 2010a), however, in contrast to this, MUM is
designed to directly exploit knowledge related to outer en-
tanglements throughout the process of macro learning and
use, thus maximising their utility. Also, MUM preserves
completeness since outer entanglements are applied only
on generated macros, so the original operators remain in-
tact. We present an empirical evaluation on IPC benchmarks
(from the IPC-7 learning track) using a range of 6 planners
and 9 domains. Our empirical results demonstrate the ad-
vance that MUM makes to the increased coverage and ef-
ficiency of the planners, and this improvement is apparent
across planners and domains. Comparisons with a previous
leading macro learning mechanism called WIZARD (New-
ton et al. 2007), further demonstrate MUMs capability.

Background and Related Work

Classical planning (in state space) deals with finding a se-
quence of deterministic actions to transform the fully ob-
servable environment from some initial state to a desired
goal state (Ghallab, Nau, and Traverso 2004).

In the set-theoretic representation atoms, which describe
the environment, are propositions. States are defined as sets
of propositions. Actions are specified via sets of atoms defin-
ing their preconditions, negative and positive effects (i.e.,
a = (pre(a),eff (a),eff (a))). An action a is applicable in
a state s if and only if pre(a) C s. Application of a in s (if
possible) results in a state (s \ eff (a)) Uefft (a).

In the classical representation atoms are predicates. A
planning operator o = (name (o), pre(0), eff (o), eff* (0))
is a generalised action (i.e. an action is a grounded instance
of the operator), where name(o) = op_name(z1,...,xx)
(op-name is an unique operator name and x1, . . . T, are vari-
able symbols (arguments) appearing in the operator) and
pre(o), eff (o) and eff" (o) are sets of (ungrounded) predi-
cates with variables taken only from z1, . .. z.

A planning domain model is specified by a set of predi-
cates and a set of planning operators. A planning problem
definition is specified via a domain model, initial state and
set of goal atoms. A plan is a sequence of actions. A plan is
a solution of a planning problem if and only if a consecutive
application of the actions in the plan (starting in the initial
state) results in a state, where all the goal atoms are satis-
fied. An important class of predicates in this paper are static
predicates. For a given domain model, a predicate is called
static if it is not present in the effects of any operator.

Macro-operators

Macro learning and use has been studied for several
decades (Dawson and Sikldssy 1977; Korf 1985; Botea et
al. 2005; Fikes and Nilsson 1971). Here we are concerned
with macros that are encoded in the same way as ordi-
nary planning operators but encapsulate sequences of plan-
ning operators. This gives the technique the potential of be-
ing planner independent as well as being domain indepen-
dent. In the well known BlocksWorld domain (Slaney and
Thiébaux 2001), we can observe, for instance, that the oper-
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ator unstack(?x,?y) is often followed by the operator put-
down(?x). Hence, it might be reasonable to create a macro
unstack-putdown(?x,?y) which moves a block ?x from top
of a block ?y directly to the table, bypassing the situation
where the block ?x is held by the robotic hand. Formally, a
macro o; ; is constructed by assembling planning operators
o; and o; (in that order) in the following way:

o pre(0;,;) = pre(0;) U (pre(o;) \ eff* (0:))
o off (0i;) = (eff (0:) \ eff (0;)) Ueff (o)
o eff (0 ) = (eff " (0:) \ eff (05)) Ueff™ (o))

For a macro to be sound o; must not delete any predicate
required by o;. If soundness is violated then corresponding
instances of o; and o; cannot be applied consecutively.

Longer macros, i.e., those encapsulating longer sequences
of original planning operators can be constructed by this ap-
proach iteratively.

Macros can be understood as ‘shortcuts’ in the state space.
This property can be useful since by exploiting them it is
possible to reach the goals in fewer steps. However, the num-
ber of instances of macros is often higher than the num-
ber of instances of the original operators, because they usu-
ally have a large set of parameters, that derives from the
parameters of the operators that are encapsulated. This in-
creases the branching factor in the search space, which can
slow down the planning process and, moreover, increase the
memory consumption. Therefore, it is important that ben-
efits of macros outweigh their drawbacks. This problem is
known as the utility problem (Minton 1988).

Learning Macros

Macro learning techniques often follow the following rules,
when a macro o; ; is being created from operator o; and o;
(in that order):

1) o; adds a predicate needed in the preconditions of o;
2) o045 is not complex
3) the number of learned macros is small

Rule 1) refers to a sort of coherency between o; and o;.
Theoretically, it is possible to generate a macro from inde-
pendent operators, however, in practice it is not a very useful
approach because then the number of possible instances of
the macro can be very high and, moreover, there may not
be a clear motivation for executing such independent op-
erators in a specific sequence. Rules 2) and 3) ameliorate
the utility problem: complex macros can have many ground-
ings which are likely to introduce overheads which outweigh
the benefits of macro use, and similarly, generation of many
macros may bring the same shortcomings. Recent related
work confirms that the better option is to generate a few
and shorter macros rather than many or longer macros. For
macros which are generated to have the same format as orig-
inal operators, and thus are potentially planner independent,
relevant state-of-the-art systems include MacroFF (Botea et
al. 2005), Wizard (Newton et al. 2007) and the system de-
veloped by Chrpa (2010b). The CA-ED version of MacroFF
uses a component abstraction technique for learning macros.



In brief, abstract components are sets of static predicates
referring to ‘localities’. Static predicates provide a kind of
matching between objects of different or the same types. An
abstract component consists of such static predicates that, in-
formally, can group objects into a single component. For in-
stance, in the Depots domain, each hoist is placed at some lo-
cation. Hence, at(?hoist, ?place) can form an abstract com-
ponent since a hoist can be only at one place, in other words,
we can have a mapping from the set of hoists to the set of
places (locations). On the other hand, supports(?camera,
?mode) cannot form an abstract component since a cam-
era might support more than one mode as well as a specific
mode can be supported by more than one different cameras.
So, we cannot have any mapping from the set of cameras
to the set of modes (or the other way round). Abstract com-
ponents are used to check the locality rule of a generated
macro, that is, whether static predicates in a macro’s pre-
condition belong to the same abstract component. By prun-
ing macros containing cycles and limiting numbers of ar-
guments or predicates in macro preconditions, MacroFF is
able to eliminate complex macros. Limiting the number of
learned macros is done by selecting the n most used macros
in training plans (which are solutions of simple problems).

In Chrpa’s approach, macros are learned from training
plans by considering both adjacent actions, and non-adjacent
actions which can be made adjacent by permutating the
training plans (clearly the permutations considered must pre-
serve the soundness of the plan). Macros are generated ac-
cording to several criteria such as whether instances of one
operator frequently follows (or precedes) instances of the
other operator, and whether the number of the macro’s argu-
ments is small. No limit on how many macros can be gener-
ated is given a priori, but the priority is given to macros that
could replace some original operators. Removing original
operators is, however, incomplete in general, although it has
been empirically shown on IPC benchmarks that solvability
is lost very rarely (Chrpa 2010b). Whereas IPC benchmarks
differ by number of objects, initial and goal situations often
are found to be similar in structure.

Wizard is based on an evolutionary method carried out
in a training phase, which computes macros by combining
operators using a genetic algorithm. This approach allows
Wizard to generate macros that refer to sequences of actions
that do not appear in the considered training plans. Gener-
ated macros are then cross-validated on training problems
and the fitness of the macros, i.e. their usefulness, is deter-
mined according to the performance of planners. Although
macros generated by Wizard have shown to have good qual-
ity, learning time is often very high (typically tens of hours).

Outer Entanglements

Outer Entanglements are relations between planning oper-
ators and initial or goal predicates, and have been intro-
duced as a tool for eliminating potentially unnecessary in-
stances of these operators (Chrpa and McCluskey 2012). In
the BlocksWorld domain' (Slaney and Thiébaux 2001) we
may observe, for example, that unstacking blocks only oc-

"no space restriction on the table is considered
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Unstack(X,Y) =
n(X, lear(X),handempty} //prec
on(X,Y),clear(X),handempty} //neg eff
holding(X),clear(Y)} //pos eff

Stack(X,Y) =

{ {holding(X),clear(Y)} //prec
{holding(X),clear(Y)} //neg eff
on(X, lear(X),handempty} //pos eff

entangled

by init entangled
by goal
c A
on(C,B) on(A,B)
s | ) [
on(B,A) on(B,C)
A C
init goal

Figure 1: An illustrative example of outer entanglements.

curs from their initial positions. In this case an entangle-
ment by init will capture that if a predicate onblock(a,b)
is to be achieved for a corresponding instance of opera-
tor unstack(?x,?y) (unstack(a,b)), then the predicate is
present in the initial state. Similarly, it may be observed
that stacking blocks only occurs to their goal position. Then,
an entanglement by goal will capture that a predicate on-
block(b,a) achieved by a corresponding instance of operator
stack(?x,?y) (stack(b,a)) is the goal one. Such an observa-
tion is depicted in Figure 1. Outer entanglements are defined
as follows.

Definition 1. Ler P be a planning problem, where I is the
initial situation and G is the goal situation. Let o be a plan-
ning operator and p be a predicate (o and p are defined in
the domain model of P). We say that operator o is entan-
gled by init (resp. goal) with predicate p in P if and only
if p € pre(o) (resp. p € eff"(0)) and there exists a plan
that is a solution of P and for every action a € w which
is an instance of o and for every grounded instance pg4nq of
the predicate p it holds: pgnq € pre(a) = pgna € I (resp.
Pgnd € eﬁ-‘—(a) = Pgnd € G).

Henceforth, entanglements by init and goal are denoted as
outer entanglements. |

Outer entanglements can be used to prune potentially un-
necessary instances of planning operators. Given the exam-
ple of the BlocksWorld domain (see Figure 1), we can see
that since the unstack operator is entangled by init with
the on predicate only the instances unstack(b,a) and un-
stack(c,b) follow the entanglement conditions and then we
can prune the rest of unstack’s instances because they are
not necessary to find a solution plan. Similarly, we can see
that since the stack operator is entangled by goal with the on
predicate only the instances stack(a,b) and unstack(b,c)
follow the entanglement conditions and then we can prune
the rest of stack’s instances. Usefulness of such pruning can
be demonstrated in the following way. Given n blocks we
can have at most n-(n—1) instances of stack or unstack (we
do not consider instances when the block is unstacked from
or stacked on itself — e.g stack(a,a)). Considering outer en-
tanglements we can have at most n — 1 instances of stack
or unstack (we consider situations where at most one block



can be stacked on the top of another block and no block can
be stacked on more than one block). In summary, while in
the original setting the number of instances grows quadrati-
cally with the number of blocks, considering outer entangle-
ments reduces the instances growth to linear.

Reformulating Planning Problems by Outer
Entanglements

Outer entanglements are directly encoded into a problem
definition, so, similarly to the kind of macros we consider,
are used as a problem reformulation technique. The way
outer entanglements are encoded is inspired by one of their
properties: given a static predicate p,, an operator o is en-
tangled by init with p; if and only if ps € pre(o) (Chrpa
and Bartak 2009). Introducing supplementary static predi-
cates and putting them into preconditions of operators in the
outer entanglement relation (both init and goal) will filter
instances of these operators which do not follow the entan-
glement conditions. Formally, let P be a planning problem,
I be its initial state and G its goal situation. Let an oper-
ator o be entangled by init (resp. goal) with a predicate p.
Then the problem P is reformulated as follows (Chrpa and
McCluskey 2012):

1. Create a static predicate p’ (not already defined in the do-
main model of P) having the same arguments as p and
add p’ to the domain model of P.

2. Modify the operator o by adding p’ into its precondition.
p’ has the same arguments as p which is in precondition
(resp. positive effects) of o.

3. Add instances of p’ which correspond to instances of p in
I (resp.in G) into I.

Detecting Outer Entanglements

Deciding outer entanglements is PSPACE-complete in gen-
eral, i.e., as hard as planning itself (Chrpa, McCluskey, and
Osborne 2012). Detecting outer entanglements is thus done
by using an approximation method which finds the entan-
glements in several training plans, solution of simpler plan-
ning problem, and assumes these entanglements hold for the
whole class of planning problems defined in the same do-
main (e.g. IPC benchmarks) (Chrpa and McCluskey 2012).
Although this approximate method may result in an incor-
rect assumption, it has been shown empirically using IPC
benchmarks that it occurs very rarely, though whether the
technique would show the same success rate in ‘real-world’
problems is an open question.

The method proceeds by iterating through the training
plans counting how many times for an (operator, predicate)
pair the outer entanglement conditions are violated. Because
training plans might consist of ‘flaws’ (e.g. redundant ac-
tions) a flaw ratio 7 is used to allow some percentage of er-
rors (i.e. when the entanglement conditions are violated). An
entanglement between an operator and a predicate is consid-
ered true if the number of the operator’s instances is non-
zero and the ratio between errors and the number of the op-
erator’s instances is smaller or equal to the flaw ratio. Of
course, having the flaw ratio greater than zero might result

68

in detecting incorrect entanglements even for training prob-
lems. Hence, these entanglements must be validated on the
training problems and if some of the problems become un-
solvable then the flaw ratio is decreased and the method is
run again.

The MUM Technique: Combining Outer
Entanglements and Macros

The general idea of MUM is to utilise outer entanglements
both in the macro generation and the macro use phase, in or-
der to constrain which macros are generated, and the num-
ber of instances of macros in their use. Adding macros into
a domain model does not affect completeness since macros
can be understood as ‘shortcuts’ in the state space. Because
deciding outer entanglements is intractable in general, an ap-
proximation method is used to extract them. However, there
is no guarantee that all the extracted entanglements are valid.
In other words, applying incorrect entanglements leads to
losing solvability of some problems. If some instances of a
macro are removed due to ’incorrect entanglements’, com-
pleteness is not affected since the corresponding sequence of
instances of original operators can be used instead. Hence,
applying entanglements only on macros (and not on the orig-
inal operator set) ensures completeness is preserved even in
the case where some of the entanglements are incorrect.

It is of course possible to learn macros and outer entangle-
ments separately, and use them both to reformulate planning
problems as distinct techniques. While using such an ap-
proach can bring promising results (Chrpa 2010a), the prob-
lems of completeness not being preserved, or macros having
too many instances, remain. In contrary to this, MUM ex-
ploits outer entanglements directly during the macro learn-
ing process, so we believe that it will lead to generating bet-
ter quality macros. Following these insights, a high level de-
sign of MUM is as follows:

1) Learn outer entanglements

2) Macro Generation: learn macros by exploiting the
knowledge of outer entanglements

3) Macro Use: reformulate a problem definition with
learned macros and their supporting outer entanglements

One useful result we can use in step 2), is that macros
can inherit outer entanglements from original operators as
follows (Chrpa 2010a):

e 0, ; is entangled by init with p iff p € pre(o; ;) and o; or
o; is entangled by init with p.

e 0; ; is entangled by goal with p iff p € eff"(0; ;) and o;
or o; is entangled by goal with p.

Estimating the potential number of instances of an
operator

Inspired by abstract components used by MacroFF (Botea et
al. 2005) to determine ‘locality’ of objects of different types,
we propose an idea of operator argument matching which
can be used to estimate the number of operator instances.
Static predicates which have at least two arguments denote
relations between objects. For example, in the well known



Depots domain, the static predicate at(?hoist,?place) pro-
vides a relation between hoists and places. In particu-
lar, a hoist can be exactly at one place. This informa-
tion can be useful for estimating how many reachable in-
stances a planning operator (or macro) can have. For ex-
ample, Lift(?hoist,?crate,?surface,?place) can hypothet-
ically have #hoists - #crates - #surfaces - #places in-
stances. Knowing that the static predicate at(?hoist,?place)
is in the precondition of Lift we can deduce that the num-
ber of Lift’s instances is bounded by #hoists - #crates -
#surfaces because the number of at’s instances in the ini-
tial state is bounded by #hoists.

Recall how outer entanglements are encoded, that is by
introducing supplementary static predicates. If these intro-
duced static predicates have at least two arguments, then
they can be exploited in the same way as other static pred-
icates in order to estimate operator instances. It holds that
if p € pre(o) is static, then o is entangled by init with
p (Chrpa and Bartdk 2009). In other words, static predi-
cates are special cases of entanglement by init relations.
If Lift(?hoist, ?crate, ?surface, ?place) is entangled by init
with a predicate on(?crate,?surface), then a static predi-
cate on’(?crate,?surface) is created and put into Lift’s pre-
condition. For each problem, its initial state I is modified to
I’ by adding instances of on’ such that Vz,y : on/(x,y) €
I' & on(z,y) € 1.

A similar modification takes place in the case where
Lift(?hoist,?crate, ?surface,?place) is entangled by init
with a predicate at(?crate,?place). We can observe that the
number of instances of on’(?crate,?surface) as well as the
number of instances of at’(?crate,?place) (a supplementary
static predicate derived from at(?crate,?place)) is bounded
by the number of crates (#crates). Straightforwardly, at
most one crate can be stacked on a given surface and a crate
can be in at most one place. With the knowledge of these
entanglement relations involving the Lift operator, the esti-
mation of the number of Lift’s instances can be modified to
O(#crates).

Static predicates and outer entanglements provide match-
ing between arguments of planning operators. For every op-
erator we can construct an argument matching graph (or a
simple argument matching graph if only static predicates are
involved) as in the following formal definition:

Definition 2. Let o(x1,...,2,) be a planning operator
where 1, . . ., x, are its arguments.

Let G = (N, E) be an undirected graph such that N =
{x1,...,2n} and (x;,2;) € E if and only if x; # x;
and there is a static predicate p such that p € pre(o) and
zi,x; € args(p). Then, we denote G as the simple argu-
ment matching graph of o.

Let G = (N, E) be an undirected graph such that N =
{z1,...,2n} and (z;,x;) € E if and only if x; # x; and
there is a predicate p such that x;,x; € args(p) and o is
entangled by init or goal with p. Then, we denote G as the
argument matching graph of o.

Henceforth, we will assume that the number of instances
of predicates having at least one argument in the initial/goal
state of a typical planning problem is bounded by O(n) (n
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Algorithm 1 Our method for generating macros

1: macros := {}
2: repeat
3:  candidates := ComputeMacroCandidates()

4:  candidates := SortMacroCandidates(candidates)

5:  candSelected := false

6:  while not candSelected and not Empty(candidates)

do

7: cand := PopFirst(candidates)

8: mcr := GenerateMacro(cand)

9: if not Uninformative(mcr) and not Repetitive-

ness(mcr) and AMGComponentCheck(mcr) then

10: candSelected := true
11: end if

12:  end while
13:  if candSelected then

14: UpdatePlans(mcr)
15: macros := macros U{mcr}
16:  endif

17: until no more macros have been generated or the no. of
generated macros has reached a prescribed limit
18: FilterGeneratedMacros(macros)

stands for the number of objects). This assumption is made
according to the observation of standard planning bench-
marks and will be used as a heuristic estimation of numbers
of operator or predicate instances. Of course, this assump-
tion might not be always true, hence a predicate which does
not follow the assumption does not have to be considered
when constructing the (simple) argument matching graph.

Using the previous assumption, the (simple) argument
matching graph of an operator o can be therefore used to
estimate the number of o’s instances. Let n be the number of
objects defined in some planning problem, o be a planning
operator and c¢ be the number of components of the (simple)
argument matching graph of o. Then, the number of 0’s in-
stances is O(n®). This result will be useful for estimating
impact of generated macros on branching factor.

Generating Macros

Algorithm 1 describes how MUM generates macros (it is
the detail of step 2 in the high level design of MUM provided
earlier in the text). Computing macro candidates (Line 3) is
done according to Chrpa’s approach (2010b). This approach
considers two actions adjacent not only in the original plans
but also their potential permutations. Analogously to Macro-
FF, considered actions are related, i.e., one achieves a pred-
icate (or predicates) required by the other’s precondition.
Plan permutations are computed according to the property
of ‘action independence’ which allows the swapping of ad-
jacent actions in plans following this property. We shall see
later that the outer loop (Line 2) enables the possibility that
generated macros are not of restricted length (that is, they
can encapsulate more than two original operators).

Considering the sorting procedure in Line 4, let o; and o;
be two operators making up a macro candidate, and o; ; be
the macro generated by assembling o; and o; (in this order).



We say that an operator o has a relational entanglement by
init (goal) if o is entangled by init (goal) with a non-static
predicate p which has at least two arguments. The macro
candidates are then sorted (Line 4) as follows. The macro
candidates are ranked according to the following conditions.

(1) o; has a relational entanglement by init
(2) o; has a relational entanglement by goal

If both (1) and (2) are satisfied then the macro candidate is
put to the top rank, if either (1) or (2) is satisfied then the
candidate is put into the middle rank, otherwise the candi-
date is put into the bottom rank. If more than one candidate
lies within the same rank, then those whose instances of cor-
responding operators can become macros (macro-actions) in
the training plans more times are preferred.

The reason for this ranking is that if both (1) and (2) are
satisfied, then the macro is supposed to modify the state of
an object (or objects) directly from its (their) initial to its
(their) goal state. Such a macro is, from our point of view,
very useful. A good example is the macro Pick-Move-Drop
in the Gripper domain. Similarly, if only one of (1) and (2)
is satisfied, the macro is supposed to start from the initial
object state or to reach the goal object state. In other words,
in the Gripper domain, we prefer a potential macro Move-
Drop before a potential macro Move-Pick.

Within the inner loop, the macro candidates are checked
in the given order whether they meet three criteria (Line 9),
i.e., whether the macro is uninformative, repetitive and its
number of possible instances remains within the same or-
der as for the original operators (or macros) the macro is
assembled from (the AMGComponentCheck). A potential
macro o; ; is uninformative if and only if eff*(0; ;) C
pre(0; ;). Clearly, such a macro is of no utility since its ap-
plication will not create any new atom (predicate). Repet-
itiveness of the potential macro is determined by repeat-
ing subsequences of original operators, for example, Move-
Move or Lift-Load-Lift-Load. The last check, AMGCompo-
nentCheck, refers to whether the potential macro will lead to
a significant increase of the branching factor during search.
For this, we have to construct the argument matching graphs
of 0;,0; and o; ;. For original operators which will be in-
tact in the reformulated domain models, the simple argu-
ment matching graphs will be considered. Let comp(o) be
the number of components of the (simple) argument match-
ing graph of o (depends whether o is an original operator or
a macro). The AMGComponentCheck succeeds if and only
if comp(o; ;) < comp(o0;) or comp(0; ;) < comp(o;). Fail-
ure of the AMGComponentCheck means that the number
of instances of the potential macro o; ; can be significantly
higher than the number of instances of o; and o;, which is
undesirable.

If all the criteria (Line 9) are met, then the macro is con-
sidered and the training plans are updated by replacing the
instances of macro candidates by the new macro (for details,
see (Chrpa 2010b)). If no macro candidate has met all the
criteria, or the number of generated macros has reached the
limit, then the main loop (Lines 6—17) terminates.

Finally, the generated macros are filtered (Line 18) ac-
cording to following conditions. If comp(o; ;) > comp(o;)
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FF | LAMA | LPG | Mp | Probe | Tot
Barman | — - - - - -
Blocks - 2 - 3 3
Depots 2 - - 2 2 2
Gripper | 1 1 1 1 1 1
Parking | — - - - - -
Rovers 2 2 1 2 1 4
Satellite | 1 2 1 1 2 2
Spanner | 2 1 2 1 1 3
TPP 1 1 1 1 1 2

Table 1: Number of macros extracted by MUM on a given
domain for a single planner and the total number of different
macros per domain (Tot).

or comp(o; ;) > comp(o;), then o; ; is removed. Note
that the AMGComponentCheck used in the generation
phase is a weaker condition than this, and allows situa-
tions where min(comp(o;),comp(o;)) < comp(o;;) <
max(comp(o;), comp(o;)). The reason is that o; ; may be
used as a ‘building block’ for a longer macro which can
be very useful (for illustration, see the example below). In
the case where one or both of the components of a new
macro my is also a macro (call it my), it is desirable to
keep at most one of these. m; does not pass the filter test
of Line 18 if comp(m;) > comp(m). my is also filtered if
comp(m;) = comp(m) and the number of m,’s instances
is not greater than the number of m;’s instances in the up-
dated training plans. Otherwise m; is kept and m is filtered
out.

As an example to demonstrate how our method works we
take the Gripper domain model (the version from the IPC-
7 learning track). We identified three outer entanglements:
Pick is entangled by init with at(?r,?room) and free(?r,?g)
and Drop is entangled by goal with at(?r,?room). The
numbers of components of the simple argument matching
graphs are as follows: comp(move) = 3 and comp(pick) =
comp(drop) = 4. After calculating the macro candi-
dates we selected at first a potential macro Pick-Drop
since it is the highest candidate after sorting. This macro
is, however, uninformative since Pick and Drop are re-
versing each other’s effects in this case. Then, a poten-
tial macro Move-Drop is selected. It passed all the checks,
comp(move—drop) = 4 (we consider the non-simple ar-
gument matching graph), so the macro is considered and
the training plans are updated by replacing corresponding
instances of Move and Drop with the new macro Move-
Drop. Iterating around the outer repeat loop of Algorithm 1,
macro-candidates are recalculated using the re-represented
training plans. After the candidates have been sorted, the
potential macro Pick-Move-Drop is selected. It passed all
the checks, where comp(pick—move—drop) = 2, hence
the macro is considered and the training plans are up-
dated. Furthermore, two more macros Move-Pick-Move-
Drop and Pick-Move-Drop-Move-Pick-Move-Drop such
that comp(pick—move—drop—move-pick—move—drop) =
comp(move—pick—-move—drop) = 3 are considered.
Since the prescribed limit of considered macros was



Solved # Fastest IPC score

(@) M (0] M (0] M
FF 1 36 0 36 0.5 36.0
LAMA | 39 | 116 | 5 113 | 304 | 1157
LPG 99 86 89 24 | 979 | 67.1
Mp 8 41 2 41 6.9 41.0
Probe 80 8 | 20 | 75 63.4 84.3
Total 227 | 365 | 116 | 289 | 199.1 | 344.1

Table 2: Number of solved problems, number of problems
solved faster and IPC score achieved by considered planners
on all the benchmark problems, while exploiting the origi-
nal formulation (O) or the formulation extended with MUM
macros (M), whenever available.

4, which is reached, we proceed to the filtering stage.
The macros Move-Pick-Move-Drop and Pick-Move-Drop-
Move-Pick-Move-Drop are pruned since their common
‘submacro’ Pick-Move-Drop has fewer components of ar-
gument matching graph. The macro Pick-Move-Drop has
fewer components than the original operator Pick and the
macro Move-Drop. Hence, the macro Pick-Move-Drop is
kept while its ‘submacro’ Move-Drop is pruned. After the
filtering stage only Pick-Move-Drop remains which is is
then added (with entanglements) into the original Gripper
domain model.

Experimental Analysis

The aims of this experimental analysis were to (a) eval-
uate the effectiveness of the MUM system with respect
to increasing the speed and coverage of plan generation
over a range of domains and planning engine combinations,
and (b) to compare it to a similar state-of-the-art method.
For this purpose, we use the well-known benchmark in-
stances used in the learning track of the last International
Planning Competition (IPC-7) (Coles et al. 2012) that was
held in 2011. Such problems are from the following do-
mains: Barman, BlocksWorld (BW), Depots, Gripper, Park-
ing, Rovers, Satellite, Spanner and TPP. As benchmark-
ing planners we chose Metric-FF (Hoffmann 2003), LPG-
td (Gerevini, Saetti, and Serina 2003), LAMA-11 (Richter
and Westphal 2010; Richter, Westphal, and Helmert 2011),
Mp (Rintanen 2012) and Probe (Lipovetzky and Geffner
2011). All the planners successfully competed in the IPCs
and exploit different techniques for finding satisficing plans.
A runtime cutoff of 900 CPU seconds (15 minutes, as in
learning tracks of IPC) was used for both learning and test-
ing runs. All the experiments were run on 3.0 Ghz ma-
chine CPU with 4GB of RAM. In this experimental anal-
ysis, IPC score as defined in IPC-7 are used. For a plan-
ner C and a problem p, Score(C,p) is 0 if p is unsolved,
and 1/(1 + logy(T,(C)/T})), where T, (C) is the cpu time
needed by planner C to solve problem p and 7)) is the
cputime needed by the best considered planner, otherwise.
The IPC score on a set of problems is given by the sum of
the scores achieved on each considered problem.

As the training set for learning macros for a given planner
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on a specific domain consists of about 5-8 simpler problems
that were generated using the problem generators provided
by the organisers. For a single planner and a single domain,
the learning process required a couple of seconds including
generating the training plans and the execution of MUM.

Results of Macro Generation: In Table 1 the number
of macros generated by MUM for a specific planner, on a
given domain, is shown. Generally, the results show a good
spread across planners and domains. Also, the total number
of macros extracted per domain is usually lower than the pre-
scribed limit of 4. Macros are often of length of 2 or 3, occa-
sionally 4, and in the Spanner domain one macro is of length
5. Often the plans generated by different planners have sim-
ilar structure, reflecting the domain’s structure, resulting in
the opportunity to generate only a low number of different
macros. In Barman and Parking MUM did not generate any
macros. In Barman we observe that there is not a sequence of
operators which is frequently used in a plan, since the ways
for generating different cocktails differ quite significantly,
hence the reason why no macros were generated. In Parking,
no outer entanglements were extracted, therefore potential
macros had more possible instances (according to the num-
ber of components of their argument matching graphs), and
so were filtered out. In BW and Depots, MUM did not gen-
erate macros for some planners because the training plans
produced by these planners were of low quality (they were
too long) which prevented MUM extracting useful outer en-
tanglements at the start of the process. Because of that, po-
tential macros were not constrained enough (the number of
components of the argument matching graph was high), so
they were filtered out.

Results of Macro Use: Cumulative results of the eval-
uation are presented in Table 2, with the performances ex-
ploited in the domain model enhanced with macros, com-
pared to the original problem formulation. Values are com-
puted only in domains in which MUM was able to find a set
of macros for the given planner. The results show that, in
general, exploiting the domain model extended with the ex-
tracted macros leads to a performance improvement in terms
of number of solved problems, number of problems solved
faster and IPC score (that is, improved coverage and speed).
The exception to this are all the domains using the LPG
planner. To investigate why, we ran LPG with entanglement-
supported macros generated by other planners, and observed
that the performance of LPG was usually better than the ones
achieved on the original domain model. Hence, we postulate
this behaviour is caused by (i) low quality solutions found
for training problems by LPG (ii) the use of a local search
algorithm in LPG being oversensitive to even a marginal in-
crease of the branching factor caused by added macros.

Results of Comparison with Wizard: In order to eval-
uate the effectiveness of MUM with regards to the related
state-of-the-art techniques for planner-independent genera-
tion of macros, we compared it to Wizard (Newton et al.
2007). For training Wizard about 90 problems per domain
were used, divided in three sets accordingly to their com-
plexity (assessed by the number of involved objects). De-
fault parameters configuration was used. For a single plan-
ner, the process of generating macros on all the considered



Solved # Fastest IPC score

Barman (€] w M (@] w M (@] w M
FF 0 - - 0 - - 0.0 - -
LAMA 0 - - 0 - - 0.0 - -
LPG 0 - - 0 - - 0.0 - -
Mp 0 0 - 0 0 - 0.0 0.0 -
Probe 1 1 - 1 0 - 1.0 0.9 -
BW (¢] W | M (@] W | M (@] w M
FF 0 - - 0 - - 0.0 - -
LAMA 18 0 27 2 0 25 132 0.0 26.8
LPG 20 | 30 - 0 30 - 9.2 30.0 -
Mp 0 0 - 0 0 - 0.0 0.0 -
Probe 20 | 18 | 30 0 0 30 13.6 11.1 | 30.0
Depots (€] w M (@] w (@] w M
FF 1 2 4 0 0 4 0.5 1.1 4.0
LAMA 3 - - 3 - 3.0 - -
LPG 13 - - 13 - - 13.0 - -
Mp 6 5 19 1 2 17 4.7 3.9 18.6
Probe 30 | 30 | 30 1 0 29 23.0 | 23.6 | 299
Gripper (¢] W | M (@] W | M (@] w M
FF 0 - 25 0 25 0.0 - 25.0
LAMA 0 - 26 0 - 26 0.0 - 26.0
LPG 10 - 22 10 - 12 10.0 - 18.0
Mp 0 0 0 0 0 0 0.0 0.0 0.0
Probe 0 - 0 0 - 0 0.0 - 0.0
Parking (¢] W | M (@] W | M (@] w M
FF 7 0 - 7 0 - 7.0 0.0 -
LAMA 4 - - 4 - - 4.0 - -
LPG 0 - - 0 - - 0.0 - -
Mp 0 - - 0 - - 0.0 - -
Probe 3 - - 3 - - 3.0 - -
Rovers (¢] M (@) (@] w M
FF 0 - 0 0 - 0 0.0 - 0.0
LAMA 6 - 29 0 - 29 4.1 - 29.0
LPG 28 - 27 26 - 2 279 - 21.1
Mp 1 - 0 1 - 0 1.0 - 0.0
Probe 20 - 11 19 - 1 20.0 - 9.4
Satellite (¢] W | M (@] W | M (@] w M
FF 0 0 7 0 0 7 0.0 0.0 7.0
LAMA 2 - 18 0 - 18 1.9 - 18.0
LPG 30 - 9 30 - 0 30.0 - 4.0
Mp 0 0 0 0 0 0 0.0 0.0 0.0
Probe 0 - 0 0 - 0 0.0 - 0.0
Spanner (¢] M (@] M (@] w M
FF 0 - 0 0 - 0 0.0 - 0.0
LAMA 0 - 0 0 - 0 0.0 - 0.0
LPG 30 - 26 22 - 8 29.2 - 22.0
Mp 0 20 | 20 0 0 20 0.0 18.7 | 20.0
Probe 0 - 0 0 - 0 0.0 - 0.0
TPP (¢] M (@] W | M (@] w M
FF 0 - 0 0 - 0 0.0 - 0.0
LAMA 13 13 16 3 0 15 11.2 10.8 | 159
LPG 1 - 2 1 - 2 0.8 - 2.0
Mp 1 8 2 0 7 1 0.9 8.0 1.9
Probe 10 6 15 0 0 15 6.8 34 15.0

Table 3: Number of solved problems, number of problems
solved faster and IPC score achieved by considered plan-
ners on the benchmark domains, while exploiting the origi-
nal formulation (O), the formulation extended with macros
extracted by Wizard (W) or the formulation extended with
macros extracted by MUM (M).
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domains took between two and ten cpu-time days. Table
3 shows the detailed results achieved by each planner on
the considered domains, while exploiting the original do-
main formulation, the domain model extended with macros
found by Wizard and the formulation that includes the
entanglement-supported macros extracted by MUM. Since
Wizard is able to provide at most three different sets of
macro operators, resulting from the execution of different
sets of genetic operators, in Table 3 we reported only the
results achieved by the best one. In the results, Wizard is
not able to generate macros in more cases (domain, planner)
than our method. We also observed that wizard macros are
usually ‘long’, in the sense that are composed by several op-
erators. Moreover, some macros generated by Wizard seem
somewhat counter-intuitive and therefore they do not seem
to be very useful, although they might have some effects to,
for instance, delete-relaxation based heuristics (e.g. FF). Ac-
cording to the results shown in Table 3, we can derive that on
the considered domains: (i) MUM is able to generate macros
for most of the considered planners and domains; (ii)) MUM
is usually able to generate macros that improve the perfor-
mance of the given planner; (iii) the macros generated by
MUM have a greater impact on planners’ performance than
Wizard’s.

Although MUM uses Chrpa(2010b)’s technique of inves-
tigating action dependencies and independencies to identify
candidates for becoming macros, MUM’s criteria for select-
ing which candidates are suitable is more sophisticated, re-
sulting in an improved set of generated macros. For exam-
ple, in the Gripper domain MUM extracted a useful macro
Pick-Move-Drop while Chrpa’s technique did not extract
any macro. Applying entanglements on macros in an ad-
hoc way (Chrpa 2010a) has some drawbacks, in particular
a macro learning technique may not extract any macros, or
it may not be possible to apply entanglements to extracted
macros. A detailed empirical study is planned for future
work.

One unwelcome side-effect of the use of macros is that
their exploitation could have a negative impact on the qual-
ity of solution plans. In our experimental analysis we did not
observe a significant difference between the quality of plans
found by exploiting the original domain formulation and the
domain model extended with macros; the average number of
actions of plans is 416 in the former case and 422 in the lat-
ter. Often, the difference between length of plans is within
10%. In some cases the solutions using macros were of much
better quality (e.g. where the planner was LPG, and the do-
main was Gripper) and in other cases the solutions using
macros were of worse quality (e.g. where the planner was
LAMA and the domain was BW). In summary, the macros
generated using MUM are able to deliver an impressive im-
provement in the runtime of planners without significantly
decreasing the quality of solutions.

Conclusions
In this paper we presented MUM, a technique for learning
macros while maximising their utility by keeping them in-
formative, though constrained. The number of possible in-
stantiation of macros is limited by using outer entanglements



in their generation and use. Moreover, MUM preserves com-
pleteness since only instances of macros are pruned. Macros
generated by MUM generally improve the performance of
planning engines by reducing the time to generate plans and
increasing the number of solved problems, on the bench-
mark instances of the learning track of IPC-7. Also, macros
generated by MUM have achieved impressive results in
comparison to the macro learning system WIZARD (New-
ton et al. 2007) and we have evidence to show that this is not
at the cost of poor quality solutions. Our experiments also
give us useful insights into the current limitations of MUM:
poor quality solutions used in training (as is the case with
LPG) led to reduced performance, and in 2 of the 9 domains
(Barman and Parking) no useful macro could be generated
using our technique.

For future work, we are interested in investigating pos-
sibilities of learning problem- (or problem class-) specific
macros. Inspired by work of Alhossaini and Beck (2013)
which selects appropriate problem-specific macros from sets
of macros learnt by existing approaches (e.g Wizard) we
believe that implementing similar ideas on MUM will re-
sult in further improvements. We believe that extending our
technique to support, for instance, ADL features (e.g. condi-
tional effects) or durative actions (temporal planning), which
is planned in future, will bring improvements to such kinds
of planning techniques.
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Abstract

Capturing and exploiting structural knowledge of
planning problems has shown to be a successful
strategy for making the planning process more ef-
ficient. Plans can be decomposed into its con-
stituent coherent subplans, called blocks, that en-
capsulate some effects and preconditions, reduc-
ing interference and thus allowing more deordering
of plans. According to the nature of blocks, they
can be straightforwardly transformed into useful
macro-operators (shortly, “macros”). Macros are
well known and widely studied kind of structural
knowledge because they can be easily encoded in
the domain model and thus exploited by standard
planning engines.

In this paper, we introduce a method, called
BLOMA, that learns domain-specific macros from
plans, decomposed into “macro-blocks” which are
extensions of blocks, utilising structural knowledge
they capture. In contrast to existing macro learn-
ing techniques, macro-blocks are often able to cap-
ture high-level activities that form a basis for useful
longer macros (i.e. those consisting of more orig-
inal operators). Our method is evaluated by using
the IPC benchmarks with state-of-the-art planning
engines, and shows considerable improvement in
many cases.

1 Introduction

Capturing and exploiting structural knowledge of planning
problems has shown to be a successful strategy for improving
efficiency of the planning process. A well-known technique
for encapsulating sequences of operators, macro-operators
“macros”, for short), is a good example of such structural
knowledge due to possibility to encode macros in the same
format as original operators, so they can be used in a planner-
independent way. Macros date back to 1970s where they were
used, for example, in STRIPS [Fikes and Nilsson, 1971] and
REFLECT [Dawson and Sikléssy, 1977]. Korf (1985) has
shown that using macros can reduce the problem complex-
ity in some cases which gives a good motivation for their use.
Hence, many successful macro learning techniques have been
developed in recent years (see the following section).

Fazlul Hasan Siddiqui
NICTA Optimisation Research Group
Research School of Computer Science

The Australian National University, Australia
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Analysis of training plans, usually solutions of simpler
problems, is a key step in the macro learning process. To-
tally ordered plans, however, often “hide” some promising
candidates for macros, since corresponding actions are not
adjacent. Chrpa (2010) proposed a technique that as macro
candidates considered actions non-adjacent in a given plan
but adjacent in some of its permutations. Recently, a tech-
nique that decomposes plans into its constituent coherent sub-
plans, blocks [Siddiqui and Haslum, 2012], was developed,
and successfully applied in post-processing based plan qual-
ity optimisation [Siddiqui and Haslum, 2013]. Blocks can
reduce interference between actions and thus allowing more
deordering of plans, hence blocks can be exploited in the form
of macros.

In this paper, we introduce macro-blocks that extend the
blocks by considering relations between them in order to
provide more promising macro candidates. In some do-
mains, macro-blocks can capture longer subplans represent-
ing important activities. Then, we introduce a method, called
BLOMA, that from macro-blocks achieved by decomposi-
tion of training plans extracts domain-specific macros. Given
the property of macro-blocks, BLOMA can generate useful
longer macros in problems whose structure relies on repeti-
tive application of a larger sets of actions. Traditional macro
learning techniques that are based on “operator chaining” ap-
proaches (i.e. assembling operators one by one) are often not
able to find such long macros. BLOMA is evaluated by using
the IPC benchmarks with state-of-the-art planning engines,
and shows considerable improvement in many cases.

2 Related Work

Recent macro learning systems can be categorised as planner-
independent or planner-specific. The CA-ED version of
MacroFF [Botea et al., 2005] generates macros according
to several pre-defined rules (e.g., the “locality rule”) and
by exploring adjacent actions in plans. SOL-EP version of
MacroFF learns macros from training plans and uses them
for improving the performance of the FF planner [Hoffmann
and Nebel, 2001]. Marvin [Coles et al., 20071, which is built
on top of FF, combines offline and online macro generat-
ing techniques in order to escape plateaus in heuristics land-
scape. Wizard [Newton et al., 2007] learns macros by exploit-
ing genetic programming. Alhossaini and Beck (2013) pro-
posed a technique for efficient selection of problem-specific



macros from a set of macros learnt by some of the ex-
isting techniques. A more recent macro learning method,
called MUM [Chrpa et al., 2014], is based on Chrpa’s (2010)
method considering non-adjacent actions in training plans,
and exploits outer entanglements [Chrpa and McCluskey,
2012] as a heuristics for limiting the number of potential in-
stances of macros.

Several works go in the opposite direction. Haslum and
Jonsson (2000) proposed a method that identifies and re-
moves “redundant actions” (i.e. actions whose effects can be
achieved by sequences of other actions). Areces et al. (2014)
proposed a technique for decomposing more complex opera-
tors into simpler ones.

3 Background

Al planning deals with finding a sequence of actions trans-
forming the environment from an initial state to a desired goal
state [Ghallab ez al., 2004].

In the classical (STRIPS) representation the environ-
ment is described by predicates.  States are defined
as sets of grounded predicates. @ We say that o
(name(0), pre(0),del(0),add(o)) is a planning operator,
where name(o) = op_name(x1,...,xy) (op-name is an
unique operator name and x1, . . . T are variable symbols (ar-
guments) appearing in the operator) and pre(0), del(o) and
add(o) are sets of (ungrounded) predicates with variables
taken only from x1,...x) representing o’s precondition,
delete, and add effects respectively. Actions are grounded in-
stances of planning operators. An action a is applicable in a
state s if and only if pre(a) C s. Application of a in s (if
possible) results in a state (s \ del(a)) U add(a).

A planning domain model is specified by a set of predi-
cates and a set of planning operators. A planning problem
is specified via a domain model, initial state and set of goal
predicates. Given a planning problem, a plan is a sequence of
actions such that their consecutive application starting in the
initial state results in a state containing all the goal predicates.

3.1 Macro-operators

Macros can be encoded in the same way as ordinary planning
operators, but encapsulate sequences of planning operators.
This gives the technique the potential of being planner inde-
pendent. Formally, a macro o; ; is constructed by assembling
planning operators o; and o; (in that order) in the following
way (0; and o; may share some arguments)':

o pre(0;,;) = pre(o;) U (pre(o;) \ add(o;))

o del(o; ;) = (del(o;) \ add(o;)) U del(o;)

e add(o; ;) = (add(0;) \ del(o;)) U add(o;)

Macros can be understood as ‘shortcuts’ in the state space.
This property can be useful since by exploiting them it is
possible to reach the goals in fewer steps, or to escape local

heuristic minima. Macros, however, have often a high num-
ber of instances and thus they might considerably increase

"Longer macros, i.e., those encapsulating longer sequences of
original planning operators can be constructed by this approach iter-
atively.
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the size of grounded problem representation and be mem-
ory demanding. Therefore, it is important that benefits of
macros exploitation outweigh their drawbacks. This problem
is known as the utility problem [Minton, 1988].

3.2 Outer Entanglements

Outer Entanglements are relations between planning oper-
ators and initial or goal predicates, and have been intro-
duced as a technique for eliminating potentially unneces-
sary instances of these operators [Chrpa and Bartdk, 2009;
Chrpa and McCluskey, 2012]. Such a technique is especially
useful for limiting the number of instances of macros [Chrpa
etal.,2014].

We say that an operator is entangled by init (resp. entan-
gled by goal) with a predicate, if there exists a plan where all
the operator’s instances require (resp., produce) instances of
the predicate that correspond to initial (resp., goal) ones.

In the BlocksWorld domain [Slaney and Thiébaux, 20011,
the operator unstack is entangled by init with the predicate
on, since unstacking blocks is necessary only from their ini-
tial positions. Similarly, the operator stack is entangled by
goal with the predicate on, since stacking blocks is necessary
only to their goal position.

Outer entanglements have been used as a reformulation
technique, as they can be directly encoded into a domain and
problem model. The way outer entanglements are encoded
is inspired by one of their properties: given a static predicate
ps2, an operator o is entangled by init with p, if and only if
ps € pre(o) [Chrpa and Bartdk, 2009]. Operators involved
in the outer entanglement relation with a non-static predicate
are modified by putting a “static twin” of the predicate into
the precondition. Instances of the “static twin” corresponding
with initial or goal instances of the predicate are added into
the initial state. For detailed description of the reformulation
approach, see [Chrpa and McCluskey, 2012]

3.3 Plan Deordering and Block Decomposition

A partially ordered plan (POP) is a tuple (A, <), where A
is the set of plan actions and < is a strict partial order on
A. <7 denotes the transitive closure of <. A lineariza-
tion of (A, <) is a total ordering of the actions in A that
respects <. A POP provides a compact representation for
multiple linearizations. We assume that every ordering con-
straint, a; < aj, in (A, <) must have at least one nec-
essary reason, denoted by Re(a; < a;), for not violating
a; < a;. Violating a; < a; causes an action precondition
to be unsatisfied before its execution in some linearizations
of (A, <). Necessary reasons (with respect to an atom ) are
of four types: PC(m) (producer—consumer of m), CD(m)
(consumer—deleter of m), DP(m) (deleter—producer of m),
and DK(m) (deleter—knight of m). Note that an ordering
constraint can have several associated reasons of the same
type but referring to different atoms. PC(m) € Re(a; < a;)
states that a; produces an atom m that a; consumes. This
relation is usually called a causal link from a; to a; for m
[McAllester and Rosenblitt, 1991], and denoted by a triple
(ai,m,a;). A causal link {a;, m,a;) is threatened if there is

%A predicate is static if not present in effects of any operator



any possibility of m being deleted and there is no producer
to reproduce it before the execution of a;. CD(m) states that
a; deletes an atom m that a; consumes. Therefore, unless
a; is ordered after a;, m could be unsatisfied before the exe-
cution of a; in some linearizations of (A, <). DP(m) states
that a; deletes an atom m that a; produces, and that is con-
sumed by some action aj, with a; < ay. Therefore, unless a;
is ordered before a;, m could be unsatisfied before the exe-
cution of ay, in some linearizations of (A, <). Note that it is
not necessary to order a producer and deleter if no step that
may occur after the producer in the plan depends on the pro-
duced atom. Finally, DK(m) states that a; deletes an atom m
that a; produces, and a; threats a causal link (az,m, a,) in
some linearizations of (A, <) unless a; is ordered before a;.
Hence, a; acts as a white knight to (a,, m, ay).

The validity of a POP can be defined in two equivalent
ways: (1) a POP is valid iff every linearisation of its actions
is a valid sequential plan, under the usual STRIPS execution
semantics; and (2) a POP is valid if every action precondition
is supported by an unthreatened causal link.

A block [Siddiqui and Haslum, 2012] is a constituent co-
herent subplan, i.e., a subset of actions, that must not be in-
terleaved with actions outside the block.

Definition 1. Ler (A, <) be a partially ordered plan. A block
w.r.t. < is a subset b C A of actions such that for any two
actions a,a’ € b, there exists no action a’’ € (A — b) such
thata <% a” <1 d.

Blocks, like ordinary actions, have preconditions, add, and
delete effects that are a subset of the union of those of its
constituent actions. This enables blocks encapsulating some
effects and preconditions, reducing interference, and thus al-
lowing more deordering of plans.

A decomposition of a plan into blocks is recursive, i.e., a
block can be wholly contained in another. However, blocks
cannot be partially overlapping. The semantics of a partially
ordered block decomposed plan is defined by restricting its
linearisations (for which it must be valid) to those that respect
the block decomposition, i.e., that do not interleave actions
from disjoint blocks.

Deordering converts a sequential plan into a POP, but
the conventional deordering approach restricts the deordering
to only the cases where individual actions are independent
and thus non-interfering. Block deordering [Siddiqui and
Haslum, 2012] eliminates that restriction by forming blocks
which allows to remove some ordering constraints. It en-
ables deordering in many cases where it is impossible in the
standard interpretation of plans. Maximising such deordering
helps to exhibit the plan structure more clearly.

The block deordering procedure [Siddiqui and Haslum,
2012] automatically finds a block decomposition of a plan
that maximises deordering of a partially ordered plan. This
procedure works in a check-and-remove fashion: Firstly, it
checks the reasons (PC, CD, DP, and DK) behind every nec-
essary ordering a; < a; within the current plan structure, and
forms two blocks b; and b; with the initial element a; and
a; respectively. Then the blocks gradually expand in oppo-
site directions picking steps one after another from the plan
structure until those reasons (and newly added reasons) be-

PC(handempty)

al: pickup A
PC(holding A) -aO: init
DP(handempty)  pc(handempty) PC(handempty)
a2: stack AB
_ Ypcthandempty) 37 5o AT Ty (35 pickup M)
a3: pickup M PC(holding A) t 1 | PC(holding M) '

DP(handempty); 1 | DP(handempty) !
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{ a2:stack AB ‘; \14: stack M N !
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ad: stack M N
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(i) sequential plan

(ii) block deordered plan

Figure 1: A sequential plan and its block deordering. Prece-
dences are labelled with their reasons: producer—consumer
(i.e., a causal link), denoted PC(p); deleter—producer, de-
noted DP(p); and consumer—deleter, denoted CD(p).

hind the ordering no longer exist (due to the encapsulation
within the blocks) or the expansion has reached the bound-
ary. If no reason is left at the end, the ordering is removed
as well, and this process is repeated until all the necessary
orderings have been checked or the allotted time is up. As
a simple example, Figure 1(i) shows a sequential plan for a
small BlocksWorld problem. This plan cannot be deordered
into a conventional POP, because each action in plan has a
reason to be ordered next to another. Block deordering, how-
ever, is able to break the ordering (a2 < a3) by removing the
only reason PC(handempty) based on the formation of two
blocks b and by as shown in (ii). Neither of the two blocks
delete or add the atom “handempty” (though it is a precon-
dition of both). This removes the interference between them,
and allows the two blocks to be executed in any order but
not in an iterleaving way. Therefore, the possible linearisa-
tions of the block decomposed partially ordered plan are only
(a1,az,a3,aq) and (a3, a4, a1, az).

The nature of blocks is very similar to macros. Since block
deordering tends to produce blocks that localise interactions
between actions as much as possible, they often capture some
coherent activities that can form a basis for useful macros. In
addition, the block deordering algorithm returns also a jus-
tification for correctness of the block ordering, by labelling
ordering constraints with their reasons (as mentioned above).

4 Macro-block Formulation

We extend the blocks to macro-blocks by considering differ-
ent relations between them (as defined below) in order to pro-
vide larger subplans revealing important structural properties
that often capture more complex activities that are frequently
used in plans (e.g. mixing a cocktail and cleaning the shaker
afterwards — as observed in the Barman domain).

Having a block deordered plan, we define relations of im-
mediate predecessor and immediate successor of a block. Or-
dering between blocks is determined by any of the neces-
sary reasons (PC, CD, DP, and DK) as stated in Section 3.3.
Let IP(b) be a set of blocks being ordered immediately be-
fore b with respect to the transitively reduced ordering. Also,
let IS(b) be a set of blocks that are ordered immediately af-



Algorithm 1 Computing extended blocks.

Algorithm 2 The high-level design of BLOMA

1: Bex¢ < Bpasic

2: while 3b;, bj € Bex - IP(b] {
3: BCXt < Bext U {bl . b]} \ b
4: end while

bi}, 1S(bi) = {b;} do

)=
{bh j}

ter b with respect to the transitively reduced ordering. The
causal followers of a producer a, with respect to an atom
m, CF(;, q,), are a set of actions {ay, aj, ..., ax} \ {ar, ac}
(a; and ag are special “init” and “goal” actions respec-
tively, where a; produces initial atoms, and ag consumes
the goal atoms) such that {{(a,, m,a;), ..., {(ap, m,ay)} are
the causal links. For example, the atom m = (holding A)
in the block deordered plan of Figure 1 is associated with
one causal link: (aj,m,as), which form the causal fol-
lowers CF((nowding A),a;) = 1al,a2}. The causal follower
blocks involve a set of blocks related to the given causal link
rather than a set of actions. In particular, the causal fol-
lower blocks for an atom m and its producer a,, are defined
as CFBy,.q,) = {b| b € B,CF(y, 4,y Nb # 0} (B is aset of
blocks). For example, the causal follower blocks of the atom
m = (holding A) and its producer a; in the block deordered
plan of Figure 1, are CFB ((nolding A),a,) = ({01}), since all
the actions of CF (holding A),q,) are captured by the block b1.

Let Bpasic be the set of blocks acquired by applying the
block deordering approach. Extended blocks By are gen-
erated iteratively from the basic blocks as depicted in Algo-
rithm 1. In other words, extended blocks encapsulate non-
branching subsequences of blocks, and therefore, can better
capture some non-trivial activities. It should be noted that if
no deordering is possible, By will consist of a single (ex-
tended) block encapsulating the whole plan.

Macro-blocks are constructed according to the following
eight rules we have specified. Each rule is applied over both
sets of basic (Bpasic) and extended blocks (Bey). The macro-
block construction rules are as follows:

R1: (b) R5 : (R4,R2)
R2 : (IP(b),b) R6 : (R4,R3)
R3 : (b, IS(b)) R7 : (R4, R4)
R4 : (IP(b), b, IS(b)) RS : CFB (.4,

The above rules can be divided into three groups, namely
the primary rules (R1 to R4), the secondary rules (R5 to
R7), and the causal rule (R8). Applied to all blocks in
Biasic U Bext, the primary, secondary, and causal rules can
produce duplicates; of course, only unique macro-blocks are
kept. The primary rules generate macro-blocks considering
basic and extended blocks and their immediate predecessors
and successors. Secondary rules chain exactly two macro-
blocks generated by primary rules. The causal rule (R8) con-
structs macro-blocks based on causal links, specifically for
each atom m and its producer a,. These macro-blocks are
not limited to any fixed length. The resultant macro-block,
after applying any rule, may not capture some intermediate
blocks, i.e., blocks that are ordered in between. Assume that
IS(by) = IP(b,) = {bp,b,}, and b, and b, are unordered.
Applying R4 over b, results in a set of blocks that do not con-
tain the intermediately placed block b,. We incorporate the
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1: II < GenerateTrainingPlans()
2: B + GenerateMacroBlocks(IT)
3. M < ExtractMacros(B3)

4: EnhanceDomain(M)

5: 1II + GenerateTrainingPlans()
6: FilterMacros(II)

7: LearnEntanglements(1I)

intermediate blocks after applying each rule, i.e., b, will be
considered in a macro-block constructed from b,, by applying
R4. If intermediate blocks are not considered, then macro-
blocks do not represent consistent subplans.

5 Generating Macros from Macro-Blocks

Blocks aim to remove some of the ordering constraints (see
Section 3.3), and thus reduce some interference between ac-
tions. Extended blocks put together blocks that have “no
other alternative”, in other words, blocks that are strictly con-
secutive in block deordered plans. Extended blocks are thus
supposed to capture larger activities (e.g. shaking a cock-
tail and cleaning the shaker). Macro-blocks encapsulate both
basic and extended blocks and relations between them. Con-
sidering relations between these blocks is somewhat related
to the “chaining” approaches utilised by most of the existing
macro learning techniques. In short, macro-blocks thus cap-
ture structural knowledge in form of coherent subplans that
frequently occur in plans. These subplans can be linearised
and thus can be exploited in the form of macros.

Algorithm 2 depicts the high-level implementation of
BLOMA. Firstly, given a set of training planning problems
(simpler but not trivial), training plans are generated. Then,
BLOMA processes the training plans and generates macro-
blocks as described in Section 4. Macro-blocks that consist
of more than one action are linearised and then assembled
into macros as described in Section 3.1. Macros that ap-
pear frequently in macro-blocks are added into the domain
model. Then, training plans are re-generated using the macro
enhanced domain model. Macros that do not appear or appear
infrequently in the re-generated training plans are filtered out.
In fact, we let the planner “decide” which macros are useful
for it. The same strategy was used by MacroFF [Botea et al.,
2005]. As a final step of BLOMA macro-specific entangle-
ments (i.e. those where only macros are involved) are learnt.
Entanglements are learnt by checking whether for each opera-
tor and related predicates the entanglement conditions are sat-
isfied in all the training plans. Some error rate (typically 10%)
is allowed. For details, see [Chrpa and McCluskey, 2012]. As
MUM does [Chrpa et al., 2014] BLOMA uses entanglements
for efficient pruning of unnecessary instances of macros.

Whether a macro candidate or macro is “frequent” is deter-
mined relatively. Let f°(m) be a number of occurrences of
a macro candidate m in the set of macro-blocks . Then, a
macro candidate m € M (M is the set of macros) is con-
sidered as frequent if f®(m) > p,max,cps f°(x), where
0 < pp < 1. Similarly, let f?(0) be a number of occur-
rences of an operator or macro o in macro enhanced train-



ing plans II. Then, a macro m is considered as frequent if
fP(m) > ppmaxzeo fP(x), where 0 < p, < 1and O is
a set of operators (including macros) defined in the planning
domain. Clearly, setting py,, p,, too high might cause filtering
some useful macros out, while setting them too low might
cause keeping useless macros.

Using basic blocks leads to generating a subset of macros
that can be generated by using extended blocks, which often
results in failing to generate any macro. Although exploiting
extended blocks yields to a relatively small number of con-
sidered macro candidates, they often provide a basis for good
quality macros. This is because extended blocks often cap-
ture complex single activities. Such macros are usually not
generated by “chaining-based” approaches. Macro-blocks,
on the other hand, provide a larger number of suitable macro
candidates than extended blocks, since R2-R8 allow weaker
forms of block chaining. R2-R8 in fact incorporate a variant
of “chaining” approaches which might lead into generating
similar macros as the existing techniques do.

Following the above observations, BLOMA works in a two-
phased way. Initially, BLOMA tries to generate macros from
extended blocks. If no macro is generated, then BLOMA uses
macro-blocks to generate macros.

6 Experimental Analysis

We experimentally evaluated BLOMA in order to demon-
strate how it improves against the original and MUM en-
hanced domain and problem models. We used all the domains
from the learning track of IPC-7. The results are analysed in
terms of providing insights into possible impact of generated
macros to the planning process.

6.1 Learning

We generated 6 training problems for each domain. The train-
ing problems were rather simple but not trivial, so the plan
length was mostly within 40-80 steps. For learning, we have
used 4 state-of-the-art planners that accommodate various
planning techniques: LAMA [Richter and Westphal, 2010],
MpC [Rintanen, 2014], Probe [Lipovetzky et al., 2014] and
Mercury [Katz and Hoffmann, 2014]. For each domain, we
considered that planner that generated the best quality (short-
est) training plans. One plan was considered per each training
problem. The parameters p;, and p,, were both set to 0.5. The
learning process took from couple of seconds to couple of
minutes, where generating training plans consume the major-
ity of the learning time.

6.2 Comparison

We use IPC score as defined in the learning track of IPC-
7 [Coles et al., 2012]. For an encoding e of a prob-
lem p, IPC(p,e) is 0 if p is unsolved in e, and 1/(1 +
logyo(Tp,e/T,)), where Ty, . is the CPU-time needed to solve
pin e and T is the smallest CPU-time needed to solve p
in any considered encodings, otherwise. As in the learning
track, the time limit was 15 minutes per problem. All the
experiments were run on Intel Xeon 2.53 Ghz with 2GB of
RAM, CentOS 6.5. Apart of the four planners considered
for learning, we also used Yahsp3 [Vidal, 2014] and Bfs-
f [Lipovetzky et al., 2014].
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Coverage ATPC
O|M]|B H M | B
Barman
Lama 0 - [ 30 - +30.0
Mercury | 23 | - | 30 - +9.8
MpC 0 - 0 - 0.0
Probe 3 -] 22 - +19.7
Yahsp 0 - | 11 - +11.0
Bfs-f 30| - | 30 - -6.5
TocksWorl
Lama 237 - 125 - +3.3
Mercury | 19 | - 8 - -11.1
MpC 0 - 0 - 0.0
Probe 24 1 - | 25 - +3.5
Yahsp 28 | - |22 - -1.5
Bfs-f 0 - | 10 - +10.0
Depots
Lama 0 2 2 +2.0 +2.0
Mercury | 0 0 0 0.0 0.0
MpC 18 | 24 | 24 || +8.6 +8.6
Probe 30 | 30 | 30 || +4.2 +4.2
Yahsp 21 | 20 | 20 || +1.0 | +1.0
Bfs-f 4 |21 |21 || 417.8 | +17.8
Gripper
Lama 0 7307 30 [ +30.0 [ +30.0
Mercury | 0 4 4 +4.0 +4.0
MpC 0 0 0 0.0 0.0
Probe 0 5 5 +5.0 | +5.0
Yahsp 0 0 0 0.0 0.0
Bfs-f 0 0 0 0.0 0.0
Parking
Lama 3 - 0 - -3.0
Mercury | 6 - 3 - -3.1
MpC 5 - 0 - -5.0
Probe 3 - 4 - +1.2
Yahsp 0 - 4 - +4.0
Bfs-f 5 - 5 - -0.9
Rovers
Lama 27129725 +3.6 -33
Mercury | 24 | 26 | 29 +6.7 +9.5
MpC 5 5 5 -0.1 0.0
Probe 28 | 27 | 19 -1.0 -11.9
Yahsp 30 | 30 | 30 || +0.6 -0.4
Bfs-f 0 0 0 0.0 0.0
Satellite
Lama 3 1267 18] +23.7 | +15.7
Mercury | 19 | 11 | 13 || -10.7 -9.2
MpC 1 0 0 -1.0 -1.0
Probe 0 2 0 +2.0 0.0
Yahsp 16 | 27 | 16 || +4.7 -6.8
Bfs-f 0 0 0 0.0 0.0
Spanner
Lama 0 0 - 0.0 -
Mercury | 0 0 - 0.0 -
MpC 30 | 30 | - +1.7 -
Probe 0 0 - 0.0 -
Yahsp 0 0 - 0.0 -
Bfs-f 0 0 - 0.0 -
TPP
Lama 16 T 15 7 17 -2.0 +1.0
Mercury | 19 | 16 | 20 -4.0 +2.7
MpC 9 | 11 | 20 || +2.0 | +14.0
Probe 12 | 14 | 17 +2.2 +7.1
Yahsp 30 | 30 | 30 -0.7 +0.4
Bfs-f 15|15 8 -0.7 -8.3

Table 1: Comparison between original (O), MUM (M) and
BLOMA (B) on the IPC-7 learning track domains. - stands
for “no macros found”. A IPC stands for a difference of IPC
score of the original and the corresponding macro enhanced
encodings.



Table 1 presents the results of BLOMA in comparison
to the original problem encodings and macros generated by
MUM. BLOMA and MUM generated the same sets of macros
in Depots and Gripper. By exploiting extended blocks,
macros have been generated in Barman, BW, Rovers and TPP.
In Spanner, no macro has been generated. Positive results
have been achieved in Barman, Depots, Gripper and TPP. In
the rest of domains the results were rather mixed.

Mixed results point to the fact that different planning tech-
niques have often a different “response” to macros. This ob-
servation is, of course, not very surprising. Macros are often
not supportive if the original problems are solved quickly (in
a few seconds) since macros are more demanding in the pre-
processing stage. Letting a planner learn macros for itself is,
however, occasionally helpful, although in the Satellite do-
main, MpC learnt a good macro for itself. On the other hand,
when training plans are of poor quality, generated macros are
very poor as well. For example, in TPP, Probe learnt a very
poor macro.

In Barman, the success of BLOMA rests in finding an 8-
step long macro that captures an important activity — shaking
a cocktail, pouring it into a shot and cleaning the shaker after-
wards. In Gripper, BLOMA (as well as MUM) found a useful
3-step long macro that directly delivers an object from its ini-
tial to its goal location. In other domains, BLOMA found only
2-step macros capturing only partial activities (e.g. loading a
truck). In TPP, BLOMA generated a “recursive” macro drive-
drive that a bit surprisingly contributed considerably to MpC
and Probe’s performance.

Apart from Barman, we identified other domains, namely
Scanalyzer, Storage and the IPC-2 version of Gripper, where
BLOMA found longer macros. Most problems from these do-
mains (all problems in the IPC-2 Gripper domain) are easy to
solve, that is, the planners needed at most a few seconds. With
higher pre-processing requirements for macros, there is no
space for improvement, although the performance was rarely
considerably worse. In Storage, the learnt macro helped
Probe to solve 7 more problems, Bfs-f and LAMA to solve
2 more problems, however, the macro caused MpC to solve
6 less problems. In Scanalyzer, the learnt macro was spe-
cific for “2-cycle problems” [Helmert and Lasinger, 2010].
While considering the macro, MpC solved 1 more problem
and Mercury has better performance on harder problems. On
the contrary, Bfs-f solved 1 less problem.

6.3 Discussion

As discussed before, BLOMA is particularly useful in do-
mains where longer macros capturing important activities
can be identified. Traditional “chaining-based” approaches
(e.g. MUM) often fail in these occasions. In other domains,
BLOMA performs with mixed results.

Number of instances of macros might cause issues with
memory consumption as well as might make pre-processing
more difficult. A typical example is the Parking domain that
represents a combinatorial problem of re-arranging cars in a
parking lot. Therefore, macros despite being frequently used
in plans might have detrimental effect on performance. From
this perspective, approaches such as MUM that consider only
macros with a relatively small number of instances are effi-
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cient. However, as showed in this paper, they are not able
to generate longer macros that despite a larger number of in-
stances can be very beneficial.

On the other hand, we have observed that in some cases
macros have arguments that are not necessary to be kept ex-
plicitly, so the number of instances might be reduced consid-
erably. In particular, if a state of some object remains the
same, i.e., no predicates containing this object are added or
deleted, then it is not necessary to keep this object as an ar-
gument of the macro. For example, having a macro that rep-
resents an activity of delivering a package by a truck and re-
turning the truck to the place of package’s origin. The truck
in fact does not change its state after applying the macro. Of
course, some truck must be in the place of package’s origin
which has to be reflected in macro’s precondition. It can be
done by using existential quantifiers. Although they are sup-
ported in PDDL, many planning engines do not support such
a feature.

Impact of particular macros depends on a planning tech-
nique exploiting them. In Depots, macros bypass situations
where a crate is held by a hoist. It is well known that a
hoist can hold at most one crate at time, however, delete-
relaxed heuristics ignores such a constraint which might lead
into having many local minima in heuristic landscape [Hoff-
mann, 2011]. Macros that reduce the complexity of Planning
Graph (e.g. smaller number of layers, less mutexes) seem
to be beneficial for techniques such as those incorporated in
MpC as observed in Depots and TPP. We believe that clas-
sifying macros according to their features will be helpful for
selecting planner-specific macros that will be tailored for a
given planning technique.

7 Conclusions

In this paper, we presented BLOMA that learns planner-
independent macros from macro-blocks, which can be ex-
tracted from training plans, encapsulating constituent coher-
ent subplans. Such an approach is beneficial especially for
domains (e.g. Barman), where an important activity repeat-
edly applied in plans can be encapsulated by (longer) macros.
We have shown empirically that BLOMA can considerably
improve the performance in many cases.

There are two major limitations. Firstly, a higher num-
ber of macros’ instances might be detrimental to the plan-
ning process. However, all the arguments of macros do not
have to be always explicitly defined. To address this we
have to use existential quantifiers in macros’ preconditions,
however, such a feature is not widely supported by planning
engines. Alternatively, we might learn HTN methods rather
than macros. Secondly, some macros are not supportive for
certain planning techniques (e.g. they might “jump” into lo-
cal heuristics minima). Hence, classifying macros according
to their features might reveal what kind of macros has posi-
tive/negative impact on certain planning techniques.
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Abstract— Supervision and control of Autonomous un-
derwater vehicles (AUVs) has traditionally been focused
on an operator determining a priori the sequence of
waypoints of a single vehicle for a mission. As AUVs
become more ubiquitous as a scientific tool, we envision
the need for controlling multiple vehicles which would
impose less cognitive burden on the operator with a
more abstract form of human-in-the-loop control. Such
mixed-initiative methods in goal-oriented commanding are
new for the oceanographic domain and we describe the
motivations and preliminary experiments with multiple
vehicles operating simultaneously in the water, using a
shore-based automated planner.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have made
steady gains as tools for scientific observations and
security applications in recent years. They have shown
their utility in both benthic [1] and upper water column
exploration [2], [3].Typically they have been deployed
as single vehicles controlled by a single operator.

As these robots have become more affordable and
robust, it is becoming viable to own and operate multiple
vehicles, sometimes simultaneously. The LSTS labo-
ratory, for instance, participates in an annual exercise
where multi-vehicle operation and control are the key
emphasis for security and upper water exploration [4].
These experiments target coordinated observations pri-
marily to look for features such as frontal zones, blooms
and plumes in the coastal ocean [5]. Networked het-
erogeneous robotic vehicles can be applied to complex
scenarios where mobile sensing nodes can be sched-
uled according to their specific capabilities towards a
common goal. However, in order for tasking vehicles
appropriately, they must be aware of the state of the
entire system and any vehicle-specific capabilities and
parameters.

Our experiments in coordination and control, have
revolved on the use of advanced decision-support tools
in the LSTS toolchain [6] often with onboard machine
intelligence to synthesize actions with continuous inter-
leaved planning and execution. Our AUV platform is the
Light AUV (LAUV) [7], an advanced and robust vehicle
with an open source (and open) architecture (Fig. 1).

In these experiments, decision support, situational
awareness, control, planning, data visualization and
archiving is provided by software including NEPTUS,
with DUNE providing low-level functional control and
IMC the middleware message-passing mechanism. Task
planning on NEPTUS involves either sending waypoints

Fig. 1. The human-portable LSTS Light Autonomous Underwater
Vehicle (LAUV) [7] is a multi-use vehicle for benthic and upper water-
column exploration.

to the AUV when on the surface, or more recently,
sending abstract plans to the vehicle formulated as goals
for onboard plan synthesis [4]. This has proved adequate
for commanding a single vehicle. However, as we move
towards mixed-mode multi-vehicle operations at sea, the
need arises to use abstraction for goal formulation. We
envision that a single NEPTUS user would rapidly plan
a set of goals for a collection of vehicles in a mixed-
initiative formulation [8], and then dispatch these goals
for execution for AUVs. The goals would initially be
targeted for distinct tasks on individual vehicles with
the aim of obtaining field experience on such multi-
vehicle operationand then gravitate towards coordinated
experiments with temporal and task constraints involving
complex task handoffs between AUVs and in the near
future UAVs.

In this paper, we describe the first steps towards
such a mixed-initiative planning and control tool-set that
combines “high-level” goal-oriented mission planning
and “low-level” control of the vehicles for AUVs only.
In particular, the operator generates multiple tasks in
NEPTUS which encodes them as a planning problem
that is solved by a domain-independent planning engine
and the plan is then dispatched to every vehicle as a se-
quence of tasks to perform. Control-loop closure occurs
onboard; however task closure for now is done visually
by the operator on NEPTUS who can observe the vehicle
behavior in real-time using acoustic modems for com-
municating AUV states. We have evaluated our approach
on a mine-hunting scenario with multiple AUVs with
different payloads. To the best of our knowledge this is
the first work in this domain, which use mixed-initiative
automated planning and control methods on shore.

The paper is organized as follows. Section II situates
this work in the context of previous efforts, Section
IIT provides background material, with Section IV the
core of the paper, highlighting the planning technique.
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Results from experiments are highlighted in Section V
and we conclude with future work in Section VI.

II. RELATED WORK

In the oceanographic domain, command and control
of a vehicle is typically waypoint based with incremen-
tal waypoint achievement as a means to identify goal
achievement. Our previous work is among the few to
include automated planning in this harsh domain where
we have demonstrated embedded continuous planning
and execution in the context of scientific upper water-
column exploration on a single AUV [9], [10], [11]. Re-
cent work [12] shows more interest along similar lines.
Multi-vehicle planning in the oceanographic context has
continued to revolve along waypoint based low-level
control [13]. Multiple glider deployments [14] have also
been demonstrated, again using simple waypoint-based
methods. Further, our work is informed by past efforts in
mixed-initiative command/control in the space domain;
the MAPGEN system continues to command the rover
Opportunity on the surface of Mars using automated
planning methods [8] also used in this work. While we
have demonstrated a form of mixed-initiative control
on AUVs, this has been in the context of a single
AUV while tracking gradients [11] and where automated
decision-making was onboard the vehicle. To the best of
our knowledge using automated planning as a means to
provide abstraction in control over multiple vehicles in
the oceanographic domain is novel.

III. BACKGROUND & MOTIVATION

LSTS, has developed a set of software tools to sup-
port the operation of heterogeneous vehicle networks
[15]. Operators interact with vehicles via NEPTUS,
a graphical decision-support system with visualization
and analysis capabilities that allows users to view all
incoming vehicle data in real-time, to define vehicle
objectives and to supervise their execution.

Embedded on the vehicles, the DUNE executive man-
ages localization, path-planning, data acquisition and
command execution on different types of vehicles and
other embedded systems like data loggers and commu-
nication gateways. IMC is the middle-ware used for con-
joining all the sensory data with the various platforms.
DUNE has an in-built executive which is capable of
parsing and executing script-based plans. The language
used for describing plans is graph-based where each
node represents a parameterized behavior and transi-
tions between nodes occur in response to events such
as behavior termination or failures. Moreover, DUNE
allows the specification of configuration parameters,
like payload settings, on transitions. This simple plan
specification has been used extensively for deterministic
behaviors. In order to allow other types of behavior
definition and execution, an API was devised that allows
external modules to guide vehicles and control their
payload configuration.

In this work, we describe a shore based automated
planner which connects to the NEPTUS API for mixed-
initiative command and control. Automated Planning

Domain

Model
G (PDDL)

4
User Interaction Problem
specification v

Mission Planning

Mgmt. engine

(Neptus) [¥~__Plan_—| (LPG-TD)

1

|
Dispatch and execution
N

g. 2. A modular architecture of the system.
deals w1th a problem of finding a sequence of actions

that transform the environment from a given initial state
to a desired goal state [16]. The simplest form of auto-
mated planning works in deterministic, fully observable
and static environment, where effects of actions are
instantaneous. Temporal planning, which is the focus of
our interest, allows “durative actions” whose planning
and execution makes explicit use of, and reasons with,
the notion of time.

We use PDDL 2.1 [17] for representing our planning
problems. The environment is described by predicates
and numeric functions. Actions are specified via pre-
conditions, effects and the duration of their execution.
Preconditions are sets of logical expressions that must
be true in order to have the actions executable. In PDDI,
these expressions can take place prior to starting action
execution, prior to finishing action execution, or over the
whole time period when the action is executed. Effects
are sets of literals and function assignments that become
true when the action is executed. In PDDL, effects can
occur just after starting, or just after finishing action
execution.

The PDDL representation allows us to specify domain
models and problem specifications separately. Usually,
one domain model is used for a class of problems. In
particular, a domain model consists of predicate and
function descriptions and action definitions, while a
problem specification consists of definition of objects,
an initial state and a set of goal conditions.

In domain-independent planning, planning engines
and domain models are decoupled. A planning engine
can deal with various domain models, and a domain
model can be accepted by various planning engines.
Therefore, if the domain model is modified, there is
no reason to modify the planning engine; equally it is
possible to replace one planning engine with another
without changing the domain model. As shown in Fig.
2, a user specifies the mission in a control system like
NEPTUS, which then automatically generates planning
problem description that is accepted by the planning
engine. Given the domain model and problem specifi-
cation, the planning engine returns a plan (if one exists)
to NEPTUS which in turn, distributes the plan among the
vehicles, where it is executed. Since the planning engine
is used as a “black-box” we have extended NEPTUS in
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order to generate problem specification in PDDL as well
as to process PDDL-compliant plans.

Specifying problems in PDDL is relatively
straightforward. For example, predicates are defined
in the form of (at noptilusl taskl-loc)
and function assignments are defined in form of

(= (battery-use noptilusl) 50). A plan
action is in the form 48.0: (MOVE XPLORE1l
XPLORE1-DEPOT TO1-LOC) [1365.000],

where the first number refers to the time-stamp when
the action is executed, while the second refers to the
duration of action execution. Every action accepts a
single vehicle as a parameter.

In this work we use LPG-TD [18] as the planning
engine. LPG-TD is based on a local search in Planning
Graphs [16] which allows executing actions that do not
interfere with each other in each plan step. While it is
a mature planner, most state-of-the-art planning engines
either do not support required features (such as numeric
functions or durative actions) nor do they scale well. For
instance, while both Optic [19] and EUROPA, [20]
offer richer representations, our experimentation with
these demonstrated that their performance did not scale
well for problems we envision for such mixed-initiative
interaction.

IV. GOAL-ORIENTED MISSION PLANNING

In short, automated planning is used to decide what
tasks, which are specified by a user, are performed by
which AUV and when. Various constraints are consid-
ered (e.g. battery limits).

We have conceptualized mission requirements in the
form of a domain model specification. This conceptu-
alization is divided into three categories: object types,
predicates and functions, and actions similar to work of
Shah et al. [21]. Object types refer to classes of objects
that are relevant for the planning process such as: vehicle
V), payload (P), phenomenon (X), task (1), location
(L). By “phenomenon” we mean a target object or area
of interest, where we assume that such phenomena are
deterministic and static. Tasks are considered as atomic,
to be fulfilled by a single vehicle.

Predicates and functions describe states of the envi-
ronment. In particular, predicates represent relationships
between objects, and functions refer to quantity of
resources related to the objects. In our case, we have
defined: at C V x L — a location of the vehicle, base C
V x L — a location of the vehicle’s depot, i.e. known
positions where a vehicle is expected to be safe when
on the surface, has C V x P — whether a payload is
attached to the vehicle, at-phen C X x L — a location of
the phenomenon, task C T x X x P — which describes a
task of getting data about a phenomenon from a specific
payload, sampled C T x V — whether data of a given
task has been acquired by the vehicle, data C T -
whether the task data has been acquired from the vehicle,
dist : L x L — RT — a distance between two locations,
speed : V — RT — speed over ground of the vehicle,
battery-level : V — R} — the amount of energy in a
vehicle’s battery, battery-use : V.U P — RT — battery

consumption per distance unit (moving a vehicle) or
per time unit (using a payload). We currently make an
assumption of linear energy use both for moving or using
a payload.

Actions when executed modify the environment ac-
cording to their effects. We have specified 4 actions (we
denote ¢, as time when an action is executed, and t. as
time when an action execution ends):

e move(v,ly,ly) — the vehicle v moves from its
location of origin /1 to its desination location l5. As
a precondition is must hold that in ¢4: (v,l;) € at,
battery-level(v) > dist(ly,l2) * battery-use(v);
and in t.: =Jv, # v : (vg,l2) € at. The effect
is that in ts: (v,l1) & at, and battery-level(v) =
battery-level(v)—dist(ly,ly)*battery-use(v) , and
int.: (v,lp) € at

o sample(v,t,z,p,l) — the vehicle v samples a phe-
nomenon x by the payload p. As a precondition
it must hold that in ts: battery-level(v) > (t, —
ts) * battery-use(p), and in [ts,t.]: (v,1) € at,
(x,1) € at-phen, (v,p) € has and (t,z,v) €
task. The effect is that in t,: battery-level(v) =
battery-level(v) — (te — ts) * battery-use(p), and
in t.: (t,v) € sampled.

o survey(v,t,x,p,l1,l2) — the vehicle v surveys
the area (between [; and l3) of a phenomenon
x occurrence by the payload p. As a precon-
dition is must hold that in ts: (v,l1) € at,
battery-level(v) > dist(l1,la) * battery-use(v) +
(te — ts) * battery-use(p), and in [ts, te]: (x,l1) €
at-phen, (z,ls) € at-phen, (v,p) € has and
(t,z,v) € task. Also, no other vehicle can per-
form the survey action over the phenomenon z in
[ts, te]. The effect is that in ts: (v,l1) € at, and
battery-level(v) = battery-level(v)—(dist(ly,l2)*
battery-use(v) + (te — ts) * battery-use(p)), and
in t.: (v,l2) € at, (t,v) € sampled.

e collect-data(v, t,1) — the data associated with a task
t is collected by vehicle v. As a precondition it must
hold that in [ts,t]: (v,1) € at, (v,1) € base and
(t,v) € sampled. The effect is that in t.: ¢ € data.

As an example, the Sample action is encoded as

depicted in Fig. 3.

The user specifies mission tasks in NEPTUS’s front-

end by pointing to the locations/area of the phenomena

(:durative-action sample

:parameters (?v - vehicle ?1 - location
?t -task ?0 - phenomenon ?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-phen 20 ?1))
(over all (task ?t 7?0 ?p))
(over all (at ?v 21))
(over all (having ?p ?v))
(

(

(
at start (>= (battery-level ?v)

(+ (battery-use ?p) 60))))
(at end (sampled 2t ?v))
(decrease (battery-level ?v)
(» (battery-use ?p) 60)))) )

:effect (and
(at start

Fig. 3. The Sample action in PDDL.
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the user wants to observe and by selecting payloads the
user wants to use for obtaining data. AUVs that are
connected to NEPTUS are considered as operational and
could be used for a mission. NEPTUS then encodes the
information about vehicles and tasks into PDDL, and as
a goal sets to acquire all the data specified by the tasks.
The planner decides which vehicle does which task
and in which order the tasks are to be performed. Plans
follow constraints specified in the action descriptions,
i.e., collision avoidance (at most one vehicle can be in
one location) and energy constraints (vehicles must not
run out of energy before finishing all the tasks) with
plans are optimized for total mission time. If the planner
is unable to find a plan, the user is notified of plan
failure, requiring her/him to iteratively relax constraints.
An illustrative example follows:
Example:: An operator needs to plan two AUVs
#s 1 & 2). #1 has multi-beam, #2 has the downward
looking camera, and each of the vehicles has a side-
scan sonar. Then, the operator specifies three tasks; two
scope out areas of interest, where one has to be surveyed
by side-scan and the second by multibeam, while the
third refers to a location of another phenomenon that
has to be sampled by camera. The planner then assigns
the multibeam related task to be performed by #1 and
the camera task to be performed by #2. The task where
side-scan sonar is required might be performed by both
AUVs. The planner decides to allocate it to #2 since
it takes less time than #1. However at plan time, it is
determined that #2 does not have enough energy; the
task therefore gets assigned to #1. When neither of the
AUVs has enough energy, the planner does not return
any plan, since this last task cannot be allocated.

V. EXPERIMENTAL EVALUATION

For system evaluation we used a mine-hunting sce-
nario with multiple AUVs with different payloads. Typ-
ically, AUVs for such a scenario are equipped with side-
scan sonars to image the sea floor, an acoustic altimeter
and a high-resolution camera. After side-scan images
are inspected by an operator, a set of objects of interest
or contacts and their locations are determined and the
AUVs are dispatched to identify those objects with high
resolution cameras to be ground-truthed.

For sea-floor surveys, AUVs typically need to travel
while maintaining a constant altitude over ground. This
is primarily because for each sonar range and frequency
configuration, there is an optimal distance at which
the seafloor can be sampled to derive the appropriate
resolution of the bathymetry. As a result, planned tra-
jectories must be in accordance to the selected side-scan
sonar configurations. Mine-hunting operations are also
usually executed with a single AUV or using homoge-
neous vehicles as plans created manually by operators
need to be adapted to each individual vehicle hardware
configuration, periodicity of surfacing, side-scan sonar
configurations, planned depths, etc.

Conceptually, the use of heterogeneous vehicles for
such an application reduces the overall operation time,
because some of the vehicles may be better suited for

(b) Detail of depots and objectives from Fig. 4(a)
defined for phase one of the experiment.

Fig. 4. Experiment location and transit lines of the vehicles.

surveying large areas while others may have higher
resolution sensors and/or navigation in order to take
high-resolution images of detected contacts. However
this results in a high cognitive burden on the operator.
Moreover, manual planning for AUVs also requires a
number of safety procedures that can add to operator
overload when using multiple heterogeneous vehicles.
Such a scenario is therefore ripe for our evaluation using
automated planning.

A. Field deployment

We used 3 LAUV’s (Noptilus-1, -2 and -3) in
our experiments. All vehicles have different payload
configurations but similar navigation accuracy using
the same Inertial Navigation System (INS). Noptilus-
1 and Noptilus-3 carry lower-resolution Imagenex side-
scan sonars and Imagenex DeltaT Multibeam sensors.
Noptilus-3 and Noptilus-1 both carry underwater high-
resolution cameras and Noptilus-2 carries only an Ed-
getech side-scan sonar. Noptilus-1 carries an RBR CTD
(conductivity/temperature/depth) probe while other ve-
hicles carry a sound velocity sensor, used primarily for
correcting sonar measurements.

The deployment area was inside the Leixdes harbor
in Porto (Fig. 4(a)). The base station was located on top
of a pier in the harbor with easy access to the water. The
vehicles were deployed from near the base station and
tele-operated to the operational area shown in the figure.
Inside the operational area, the vehicles were placed in
known and safe positions at the surface, which we call
depots, where communications with the base station was
viable. The experiment was then divided in two phases.
In the first phase the vehicles were used to survey the
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Vehicle Action Average Time | Standard
Difference deviation
move 47,80 49,11
_ survey 23,15 23,26
Noptilus-1 1, mpie 133 0,58
communicate | 0,16 0,17
move 39,57 35,66
_ survey 107,88 141,10
Noptilus-2- | oie N/A N/A
communicate | 0,25 0,07
move 59,90 57,05
_ survey 24 0,00
Noptilus-3 | mple 9,57 13.64
communicate | 0,11 0,16
TABLE I

DIFFERENCE BETWEEN PLANNED AND EXECUTION TIME FOR THE THREE
AUVs (N/A IMPLIES A GIVEN ACTION WAS NOT IN A PLAN).

operational area while in the second, to identify and
sample in points of interest in the data acquired in the
earlier phase .

In phase one, the operator defined a set of areas of
interest to be surveyed using side-scan or multibeam
sonar sensors. Fig. 4(b) is a NEPTUS console view taken
during the experiment after the operator specified the
survey area. In order to task the vehicles, the operator
requests NEPTUS to generate the plans for the vehicles
which will result in translating the current world state
to PDDL and generating a set of solutions using LPG-
TD. The best solution is selected automatically based on
overall execution time. As a result a set of scripted plans
is generated and available for the operator to visualize
and simulate. The operator can visually verify the plan
and change the objectives and regenerate a solution
accordingly if needed.

When the operator has validated the plan, s/he sends
the plans to the respective vehicles and order its ex-
ecution. After the vehicles perform this initial survey,
all side-scan data is downloaded to the base station and
inspected by the operator in determining contacts in the
sampled regions.

In phase two, a new set of objectives is then defined
by the operator in order to get a closer view of these
potential contacts. For some contacts it is likely that
the operator not only requests a camera inspection but
also CTD sampling in order to augment identification.
The deployment ends when all vehicles return to their
respective depots after completing objectives.

B. Experimental Data and Analysis

Fig. 5(a) shows a visualization of side-scan data (in
brown) that was acquired on the first phase of the
experiment showing complete coverage of the survey
area. Moreover, the contacts identified by the operator at
the end of this phase are indicated with yellow markers.
In the second phase of the experiment, these contacts
were visited by the vehicles and the tracks performed by
the vehicles in phase two are overlayed within NEPTUS.

The behavior of the vehicles mapped well into the
specification of the operator; however the action du-
rations had discrepancies compared to the predicted

Ihttps://www.youtube.com/watch?v=qWHXRek8_so

(a) Vehicle trajectory in the second phase of the experiment,
overlayed on top of side-scan data (brown) and identified
contacts (yellow).
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(b) 3D view of the vehicle trajectories for the second phase of the
experiment with trajectories from three AUVs.
Fig. 5. Results from phase two of the experiment showing side-scan
and trajectories of the AUVs.
plan times. Table I shows the average difference be-
tween predicted and actual times for executing different
actions. The results show that executing communicate
and sample actions is more accurate than survey and
move. This occurs because communicate and sample
in particular, generate timed actions while the other
actions generate a behavior that requires the vehicle
to move between different locations whose completion
time depends on environment conditions such as water
currents, sea floor roughness and time to achieve depth.
The roughness of the terrain can be seen in Fig. 5(b)
where the trajectories of the vehicles are plotted in 3D.
To give an example, the vehicle takes longer to reach the
depth required to take a camera image if the location is
in a deeper point of the operational area and this depth
is not modeled a priori in the planner.

For movement actions, DUNE also appended a sur-
facing behavior. This was added in order to re-acquire
GPS positions and therefore improve the quality of
localization for upcoming samples and surveys. This is
important, since it may require the vehicle to stay under-
water for a substantial period of time with consequent
localization errors. However this was not reflected in
the planning domain model. Since the generated plans
do not require time coordination of the vehicles, this did
not impact the end result from the operator perspective.
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C. Discussion

Incorporating domain-independent planning, i.e., a
PDDL domain model and the LPG-TD planner, into
NEPTUS does not introduce any serious engineering
challenges. Our domain model scales well and LPG-
TD solves problems with 20 tasks in at most a few
seconds. However, the main drawback of our approach
is that durations of the actions must be determined a
priori, which as shown leads into discrepancies between
planned and execution time. Although this is not a major
issue for scenarios like ours, more complex applications
requiring synchronisation of multiple vehicles might be
considerably impacted by such discrepancies accumu-
lating delays. We believe that considering optimistic,
realistic and pessimistic estimations of action durations,
and then evaluating corresponding plans might help to
reduce discrepancies between plan and execution time.

VI. DISCUSSION & FUTURE WORK

While the field experimentation validated our prelimi-
nary approach for real-world multi-vehicle applications,
scenarios that require time coordination among vehicles,
the DUNE executive lacks in-situ plan adaptation. One
trivial approach to solve this problem is to use conser-
vative plans with padded time between actions and an
executive that supports timing of actions by advancing to
the next action only when its start time has arrived. Such
a strategy has indeed been tested with the Networked
Vehicle Language (NVL) [22].

Moreover, if we consider that the vehicle is connected
with other systems only during communicate actions, a
more advanced executive may deterministically adjust
the plan between communicate actions. Such plan ad-
justments may include throttling vehicle speed, changing
the traveled path or stopping at the surface, as long as the
communicate actions, where the vehicles synchronize
with other parts of the network, is correctly timed.

Limitations in underwater communication also makes
it crucial that part of the temporal execution of the
plan for each vehicle is managed locally ensuring local
adaptability of vehicle behavior. These problems are pre-
cisely where the applicability of a temporal constrained-
based planning/execution framework like T-REX [9],
[10], [11] can be tackled in the near future. While
T-REX has already been integrated on our LAUVs,
coupling multiple T-REX enabled vehicles to a shore-
based mixed-initiative system as in this paper, is future
work. A likely challenge to address in that eventuality,
will be the interaction of local and autonomous decision-
making with the plan for the ensemble of robots.

In conclusion, we described our work in mixed-
initiative control, with a shore-based automated planner
synthesizing goals to command multiple AUVs. Abstrac-
tion in control is an important objective of this work
primarily as a means to control multiple heterogeneous
vehicles for distributed problem solving in real-world
environments. Finally, we have demonstrated this work
by coalescing and abstracting control functions with
one operator using a well established command/control
methodology used in recent field experiments.
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Abstract

Domain-independent planning requires only to specify
planning problems in a standard language (e.g. PDDL)
in order to utilise planning in some application. Despite
a huge advancement in domain-independent planning,
some relatively-easy problems are still challenging for
existing planning engines. Such an issue can be miti-
gated by specifying Domain Control Knowledge (DCK)
that can provide better guidance for planning engines.

In this paper, we introduce transition-based DCK, in-
spired by Finite State Automata, that is efficient as
demonstrated empirically, planner-independent (can be
encoded within planning problems) and easy to specify.

Introduction

Despite a huge advancement of domain-independent plan-
ning engines, they might still struggle with problems that
are easy to solve for a domain-dependent approach because
“raw” specification of these problem might not be very in-
formative for domain-independent planning engines. This
issue can be (to some extent) addressed by specifying Do-
main Control Knowledge (DCK) that can guide the search
that planning engines perform. DCK can be specified, for
instance, in form of Control rules (Minton and Carbonell
1987), Hierarchical Task Networks (HTNs) (Georgievski
and Aiello 2015), and Macro-operators (Korf 1985). DCK
can be exploited by specifically tailored planning engines
such as TALPlanner (Kvarnstrom and Doherty 2000) for
Control Rules, and SHOP2 (Nau et al. 2003)) for HTNs.
Some kinds of DCK such as macro-operators can also be
(automatically) encoded into planning problems and thus
any standard planning engine can exploit such DCK.

In this paper, we introduce transition-based Domain Con-
trol Knowledge that is inspired by Finite State Automata.
Roughly speaking, transition-based DCK represents knowl-
edge about dependencies between planning operators that is
used to restrict the number of their instances that can be ap-
plied in each step of the planning process. We will show that
transition-based DCK can be directly encoded into planning
problems, so standard planning engines can reason with it.
Like Finite State Automata, transition-based DCK can be

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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specified in a schematical way, which we believe is easy to
use for domain engineers. To demonstrate the efficiency of
transition-based DCK we use six benchmark domains and
six state-of-the-art domain-independent planning engines.

Classical Planning

Classical Planning deals with finding a partially or totally
ordered sequence of actions transforming the static and fully
observable environment from an initial state to a desired goal
state (Ghallab, Nau, and Traverso 2004).

In the classical representation, the environment is
described by predicates that are constructed in form
pred_name(xq,...,x;) such that pred name is a
unique predicate name and x1,...z; are predicate
arguments, where each argument is either a vari-
able symbol or a constant. Planning states are de-
fined as sets of grounded predicates. We say that o
(name(o), pre* (o), pre™ (o), eff~(0), eff *(0), cost(0)) is a
planning operator, where name(o) = op_name(z1, . . ., Tr)
(op_name is a unique operator name and x,...xj are
variable symbols, arguments, appearing in the operator) and
pret(0), pre(0),eff (o) and eff" (o) are sets of predicates
with variables taken only from x1, ...z representing o’s
positive and negative preconditions, and negative and pos-
itive effects, and cost(0) is a numerical value representing
0’s cost!. Actions are instances of planning operators. An
action «a is applicable in a planning state s if and only if
pret(a) C s Apre”(a) N's = (). Application of a in s (if
possible) results in a planning state (s \ eff (a)) Ueff™ (a).

A planning domain model is specified by a set of con-
stants (domain-specific objects), a set of predicates and a set
of planning operators accommodating these constants and
predicates. A planning problem is specified via a (planning)
domain model, a set of constants (problem-specific objects),
an initial planning state, and a set of goal predicates. A goal
predicate is an open goal if it has not yet been achieved in
the current planning state. A solution plan of the planning
problem is a sequence of actions such that their consecutive
application starting from the initial planning state results in
a planning state containing all the goal predicates.

mplicitly, cost(o) = 1.



Drive; at(?p 2to), g: at(?p 2dest), 2to 1= 2dest
Load; g:at(?p 2dest), 2dest =21

Drive; in(?p 1), g: at(?p %to)

Figure 1: Transition-based DCK for our simple logistic do-
main.

Running Example

We consider a simple logistic domain, where packages have
to be delivered from their initial locations to their goal loca-
tions by trucks that can carry at most one package each. No
other constraints are defined, i.e., all locations are connected
and a package can be carried by any of the trucks. We define
three predicates: (at ?x ?I) — an object ?x (either truck or
package) is at location ?I; (in ?p ?t) —a package ?p is in the
truck ?t; (free ?t) — a truck ?t is empty (no package is in it).
Then, we define three planning operators: Drive(?t ?from
?t0) — a truck ?t moves from the location ?from to a loca-
tion ?to; Load(?t ?p ?I) — a package ?p is loaded into the
truck ?t at the location ?1; and Unload(?t ?p ?l) — a package
?p is unloaded from the truck ?t at the location ?I.

Transition-based Domain Control Knowledge

Generally speaking, Domain Control Knowledge (DCK)
provides a guidance to planning engines and thus makes the
planning process more efficient. Inspired by Finite State Au-
tomata, we designed a transition-based DCK that is easy
to specify and can be encoded into planning domain mod-
els and problems (described later in the text). In principle,
our transition-based DCK consists of a set of DCK states
and transitions that refer to actions that can be applied under
specified conditions in a given planning state. The formal
definition of transition-based DCK follows.

Definition 1. Transition-based DCK is a quadruple K =
(S,0,T,s0), where S is a set of DCK states, sg € S is the
initial DCK state, O is a set of planning operators, and T is
a set of transitions in the form (s,0,C,s’), where s,s’ € S,
o € O and C is a set of constraints, where each constraint
is in the form:

e p,—p — a predicate p must or must not be present in the
current planning state

e g:p — a predicate p is an open goal in the current plan-
ning state

In our running example, we assume that the packages are
at their initial locations and the trucks are empty. We may
observe that i) an empty truck has to be moved only to lo-
cations where some package is waiting for being delivered,
and ii) if a package is loaded to the truck (in its initial loca-
tion), then the truck has to move to package’s goal location,
where the package is then unloaded. Such an observation can
be encoded as a transition-based DCK with sq as an initial
DCK state as depicted in Figure 1.

A (classical) planning problem can be solved by a generic
algorithm that starting in the initial planning state, iterates
by non-deterministically selecting an action (an instance of
a planning operator defined in the domain model of the prob-
lem) that is applicable in the current planning state and by
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(raction Drive-empty

:parameters (?t - truck ?from ?to ?dest - location ?p - package)

:precondition (and (at ?t ?from) (at ?p ?to) (DCK-state s0)
(open—-goal-at ?p ?dest) (not (= ?to ?dest)))

:effect (and (not (at ?t ?from)) (at 2t ?to))

)

(:action Drive-full

:parameters (?t - truck ?from ?to - location ?p - package)
:precondition (and (at ?t ?from) (DCK-state s1)

(in ?p ?t) (open-goal-at ?p ?to))
:effect (and (not (at 2t 2from)) (at 2t ?to)

(not (DCK-state sl)) (DCK-state s2))
)
(:raction Load
:parameters (?t - truck ?p - package ?1 ?dest - location)
:precondition (and (at ?t ?1) (at ?p ?1) (free ?t) (DCK-state s0)
(open-goal-at ?p ?dest) (not (= ?to ?dest)))
(and (not (at ?p ?1)) (not (free ?t)) (in ?p ?t)
(not (DCK-state s0)) (DCK-state s1))

reffect

)

(:raction Unload

:parameters (?t - truck ?p - package ?1 - location)
:precondition (and (at ?t ?1) (in ?p ?t) (DCK-state s2)
(open-goal-at ?p ?1))

(and (not (in ?p ?t)) (free ?t) (at ?p ?1)

(not (open-goal-at ?p ?1))

(not (DCK-state s2)) (DCK-state s0))

reffect
)

Figure 2: Modified planning operators (in PDDL) of our
simple logistics domain with respect to the transition-based
DCK as in Figure 1. Additional arguments and predicates
introduced by the DCK are in italics.

applying the action (updating the current planning state) un-
til the goal is reached (all the goal predicates are present
in the current planning state). Transition-based DCK can
be embedded into the generic algorithm as follows. Let sp
be the current planning state and sx be the current DCK
state (we start in the initial planning state and in the initial
DCK state). An action a can be selected for being applied
if and only if a is applicable in sr; and there is a transition
(sk,0,C, s)) such that a is an instance of o and for each
element in C' which is in form p, —p, or g:p it is the case
that a corresponding instance of p is in s, not in sy, or
is an open goal respectively. After a is applied the current
planning state is updated accordingly and sj- becomes the
current DCK state. The goal predicate is considered to be an
open goal only before it is achieved for the first time. Re-
opening open goals requires more complex encoding and,
moreover, we believe that it is not very useful to direct the
search toward goals that need to be achieved more than once.

We can easily observe that the augmented generic plan-
ning algorithm is sound, i.e., a plan that is returned by the
algorithm is a solution plan of the problem given on the in-
put. This is because exploiting transition-based DCK only
puts further restrictions on action selection. A well-defined
transition-based DCK does not prune all solution plans of
the problem, so it remains solvable. The DCK from our run-
ning example is well defined for problems where none of the
packages that has to be delivered is initially loaded in any of
the trucks and at least one truck is initially empty.

Encoding Transition-based DCK into Planning
Problems

In the case of our transition-based DCK, we have to en-
code DCK states, transitions, and constraints under which
the transitions can be performed. The encoding will be de-



scribed in the following paragraphs.

DCK states can be encoded by adding a supplementary
predicate with one argument, e.g., (DCK-state ?s), into a
planning domain model. Concrete DCK states are encoded
as domain-specific objects (e.g. SO, s1, s2). The initial
DCK state is encoded into the initial planning state by a
corresponding instance of the supplementary predicate. In
our running example, the initial DCK state is s, therefore,
(DCK-state s0) will be added to the initial planing state of
each planning problem in our simple logistics domain.

Open goals can be encoded by adding supplementary
“twin” predicates that have the same arguments as the goal
predicates. Instances of these supplementary predicates that
correspond to the goal predicates are added into the ini-
tial planning state. In our running example, if we have
a problem with two goal predicates, (at pkg1 loc1) and
(at pkg2 loc2), then the supplementary predicates, (open-
goal-at pkg1l loc1) and (open-goal-at pkg2 loc2) are
added into the initial planning state. Also, planning opera-
tors that achieve goal predicates (have them in the positive
effects) are extended by adding the corresponding supple-
mentary predicates into their negative effects. In our running
example, the Unload operator achieves goal predicates, i.e.,
(at ?p ?1), so (open-goal-at ?p ?I) is added to its negative
effects. Clearly, if no transition in the DCK considers open
goals, there is no need to encode them.

Transitions in our transition-based DCK incorporate in-
formation about what planning operators and under which
constraints they can be applied in given DCK states and how
DCK states change. Such information can be encoded within
the planning operators defined in the corresponding domain
model. For each planning operator o we identify how many
transitions (from T) refer to it, i.e., t(o) = |[{t | t € T,t =
(s,0,C, ")} If for an operator o, t(0) = 0, then o can never
be applied and thus will be removed from the domain model.
If for an operator o, t(0) > 1, then we create t(0) “clones”
of o, i.e., we create t(0) operators that are identical to o but
having a unique operator name. In our running example, we
have two transitions referring to the Drive operator. So, we
create two operators, for instance, Drive-empty and Drive-
full that have the identical structure to the original Drive op-
erator (arguments, preconditions, and effects).

A transition (s, 0,C,s’) is encoded into o (or its corre-
sponding “clone”) as follows. Ensuring that instances of o
can be applied only if s is the current DCK state is done
by adding the corresponding supplementary predicate rep-
resenting the DCK state (i.e., (DCK-state s)) into pre™ (o).
If s = s, then the DCK state does not change, so effects
of o remain intact. Otherwise, (DCK-state s) is added into
eff (o) and (DCK-state s') into eff* (o), so after applying
an instance of o, the current DCK state changes to s’. The
Load operator from our running example is modified by
adding (DCK-state s0) into the positive preconditions as
well as into the negative effects, and by adding (DCK-state
s1) into the positive effects.

Each constraint ¢ € C' is encoded into o as follows de-
pending on its form:

e p—add p into pre™ (o)
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e —p — add p into pre~ (o)
e g:p — add the “open goal twin” predicate of p into

pre* (o)

If some of the predicates that are added into the o’s precon-
dition contain arguments that are not defined in o, the list of
o’s arguments is updated accordingly.

The transition-based DCK as defined in Figure 1 is en-
coded within the planning operators of our simple logistic
domain as depicted in Figure 2. Recall that Drive-empty
and Drive-full are “clones” of the original Drive operator.

Solution plans of the DCK enhanced problems may not
entirely correspond with solution plans of the original prob-
lems because of using different operator names for “cloned
operators”, and using extra arguments for accommodating
additional preconditions. Hence, to get a valid solution plan
for the original problem we have to rename all “clones” to
the name of the corresponding original operators and remove
all the extra arguments. For example, if the solution plan of
the DCK enhanced simple logistic problem contains an ac-
tion Drive-full(truck1 loc1 loc2 pkg1), then it has to be
renamed to Drive and the extra argument pkg1 has to be
removed, so we obtain Drive(truck1 loc1 loc2) which is a
valid action for the corresponding original problem.

Experimental Evaluation

Our experiments aim to demonstrate how transition-based
DCK influences the planning process in terms of planners’
runtimes and quality of solution plans. We encoded the
DCK into the domain models and problems of six domains
— Barman, CaveDiving, ChildSnack, CityCar, Hiking, and
Nomystery. For descriptions of these domains and related
transition-based DCKs we specified, the reader is referred
to our workshop paper (Chrpa and Bartak 2015). The prob-
lem sets for these domains were taken from the agile track of
the 8th International Planning Competition (IPC-8), except
Nomystery, where the problem set was taken from the satis-
ficing track of the IPC-7. All the problem sets consist of 20
problems. For comparing how the DCK influences the plan-
ning process, we have used six state-of-the-art planners that
accommodate various planning techniques: LAMA (Richter
and Westphal 2010), the winner of the IPC-7, and MpC,
Probe, Mercury, Yahsp3, and Bfs-f that performed well in
the IPC-8 (Vallati, Chrpa, and McCluskey 2014).

For analysis of planners’ performance and quality of solu-
tion plans, we use IPC score as defined in the IPC-8 (Vallati
et al. 2015). With regards to runtime, the score is calculated
as follows. For an encoding e of a problem p, IPC;(p, €) is 0
if pis unsolvedin e, and 1/(1+log;(7}. /T, )), where T,
is the CPU-time needed to solve p in e and 7} is the small-
est CPU-time needed to solve p in any considered encoding,
otherwise. With regard to quality of solution plans (i.e., the
sum of costs of all their actions), the score is calculated as
follows. For an encoding e of a problem p, IPC,(p, €) is 0 if
p is unsolved in e, and (Q;/Qp.c)), where @,  is the cost
of the solution plan of p in e and @)}, is the smallest cost of
the solution plan of p in any considered encoding, otherwise.
Notice that the maximum IPC score for a particular p and e
is 1. As in the agile track of IPC-8, we set the time limit to 5



Barman CaveDiving ChildSnack CityCar Hiking Nomystery

Planner | Coverage A IPC Coverage ATPC | Coverage A IPC Coverage A IPC Coverage A IPC Coverage | A IPC

O| E T Q (0} E T Q |O| E T Q O E T Q |O| E T Q |O| E T Q
Lama 16| 20 [ 482 | +69 | 6 7 [+41|+1.010| 19 [+19.0|+190| 5 20 [+154 | +139| 5| 19 |+159|+139 (14| 14 |+03| 0.0
Mercury | 7 | 20 |+13.4|+153| 2 3 |+1.8|+1.0|5| 20 |+175[+150| 2 | 20 |[+17.9|+18.8| 8 | 17 |+11.5| +7.0 | 13| 15 |+2.1|+42.0
MpC 0| 20 |+20.0|+20.0| 4 4 |+14)00 | 7| 20 [+114]|+109| 9 | 20 |+12.8|+158| 7 3 30 | -39 (6| 5 |-12]-1.0
Probe 18] 20 | -27 | +2.8 | 1 7 |+64|+60| 0| 15 |+150[+150| 8 20 [+12.8|+17.3 (13| 19 |+109| +5.8 | 5 | 11 |[+7.0|+59
Yahsp 0| 20 |+20.0|+20.0 [ N/A [N/A|N/A|N/A|O| N/A | NA | NA |[NA|N/A| NA | NA [13| 10 | +0.6 | +46 | 8 | 12 |+7.2|+4.1
Bfs-f 20 20 | +3.8 | -1.5 7 7 |+2.0]| 0.0 |8 8 08 | -02 | 5 20 [+17.5|+16.7| 2 | 14 |+134|+11.6 14| 15 |+4.7|+13

Table 1: Comparison between original (O) and enhanced (E) domain models. A IPC stands for a difference of the time (T)
and quality (Q) IPC score of the original and the corresponding enhanced problem encodings (positive numbers refer to better

performance/quality of the enhanced problems).

minutes per problem. All the experiments were run on Intel
Xeon 2.53 Ghz with 2GB of RAM, CentOS 6.5.

Table 1 presents the results of comparison of planners’
performance and quality of solution plans of the origi-
nal problem encodings and the encodings enhanced by our
transition-based DCK. Notice that Yahsp3 could not solve
some problem sets (denoted as “N/A” in the table), since it
does not fully support negative preconditions. Remarkable
results have been achieved in Barman and CityCar domains,
where using DCK allowed every planner (except Yashp3 in
CityCar) to solve all the problems within the 5 minute limit.
The reason is that in these domains the problems can be
solved by using the “reach goals one-by-one” strategy that
can be easily captured by transition-based DCK. Good re-
sults were achieved in the Childsnack domain, where our
transition-based DCK can prevent “trapping” in dead-ends.
In CaveDiving and Nomystery the results were modest. The
reason is that transition-based DCK does not address the
“combinatorial” part of these domains. In Hiking, the results
of applying transition-based DCK were mixed, i.e., achiev-
ing good improvement for Lama, Mercury, Probe, and Bfs-f,
while having rather detrimental effect on MpC and Yahsp3.
MpC uses a structure, similar to Planning Graph (Blum and
Furst 1997), that allows applying more actions in one step.
This strategy is useful in Hiking. Transition-based DCK,
however, interferes with such a strategy. In terms of qual-
ity of solution plans, there are no (or very marginal) dif-
ferences in the Cave Diving and Nomystery domains (the
quality score differs because the number of solved problems
differs). This is because there is usually no other way how
to solve these problems, so solution plans are very similar
(some actions might be in a different order). In the other do-
mains, the quality results are mixed (sometimes DCK en-
hanced problems lead to better solution plans, sometimes
worse). Notice that in Hiking, Yahsp3 was able to provide
considerably better plans (often more than 10x) when DCK
was considered.

Conclusions

In this paper, we introduced transition-based DCK, inspired
by Finite State Automata, that is planner-independent (can
be encoded within planning problems), efficient and easy to
specify due to its “schematical” representation.

In future, we plan to (semi)automatise the process of ex-
tracting transition-based DCK. We believe that taking in-
spiration from macro-operator generating techniques and/or
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tools for plan analysis will be a useful step towards such
an achievement. Also, we plan to extend the concept of
transition-based DCK to non-classical planning (e.g. tem-
poral or continuous planning).
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Abstract— Mission planning and execution for au-
tonomous vehicles is crucial for their effective and efficient
operation during scientific exploration, or search and
rescue missions, to mention a few. Automated Planning has
shown to be a useful tool for “high level” mission planning,
that is, allocating tasks to vehicles while following given
constraints (e.g., energy, collision avoidance).

In this paper, we focus on making mission planning
flexible and robust. That is, a human mission coordinator
can modify tasks during the mission execution, so the tasks
have to be dynamically reallocated during the process.
Moreover, we assume that communication might not be
reliable when vehicles are “outside”, i.e., performing the
tasks, and thus we enforce vehicles to come back to their
safe spots regularly. To address these requirements, we
have developed two models, namely “all tasks” and ‘“‘one
round”, and integrated them to the control software. We
have evaluated our approach in a field experiment focused
on a mine-hunting scenario.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are be-
coming affordable and their use becoming ubiquitous
for tasks such as ocean exploration, scientific observa-
tions, mine hunting, or search and rescue operations.
AUVs have already shown their utility, for example, in
benthic [1] or upper water column exploration [2], [3].
Automated Planning and Execution has been applied
on a single AUV [4], [5] in various settings, most
recently in monitoring and maintaining offshore subsea
facilities [6]. Similarly, the single vehicle approach has
been applied in the space domain [7]. Planning and
executing complex missions where a fleet heterogeneous
AUVs has to be effectively coordinated remains to a
large extent a challenge for human mission operators
who often have to perform “high level” control and
monitoring manually.

The LSTS laboratory has developed and field-tested
tools for the operation of multiple autonomous vehi-
cles [8]. Currently, coordination and control of AUVs
is maintained via advanced decision-support tools in the
LSTS toolchain [9] that synthesizes onboard AUV con-
trol with interleaved “low level” planning and execution.
AUVs can accept and execute “high level” commands
(e.g., move to a location, sample an object with the
camera, etc.) commanded by the on shore control system
(NEPTUS) and then use their onboard intelligence to
execute these commands autonomously.

In a nutshell, more complex mission planning requires
allocation of tasks to vehicles that have needed capabili-
ties, enough power and do not interfere with each other.

When the tasks are allocated, the mission is executed in
parallel by allocated vehicles. In practice, the human
mission coordinator specifies tasks (in the NEPTUS
control software, for instance) for a fleet of AUVs
(or other types of autonomous vehicles) [7], and then
(manually) dispatches these tasks to particular AUVs.
In our recent work [10], we have applied Automated
Planning techniques that automatically allocated tasks
to the vehicles while considering the aforementioned
constraints. We have demonstrated the feasibility of
such an approach in a field experiment — the human
coordinator could allocate tasks s/he has specified to
vehicles automatically and these tasks were successfully
completed. Although such work was a considerable step
forward in use of mixed-initiative planning and control
methods, there are some limitations that might hinder
its use in real-world settings. In particular, missions
are planned and executed in “one shot”, that is, all
tasks are allocated and the execution goes until all tasks
are completed. In real missions, however, the operator
should be able to do changes online (add, remove, or
modify tasks) and the control system should reflect
these changes. For example, the operator receives some
interesting data from a surveillance task, s/he then adds
several sampling tasks for further investigation. Also, the
“one shot” approach is prone to failures (e.g. breakdown
of a vehicle, failing to complete some task, etc.) as well
as changes of conditions. Moreover, when the vehicles
execute the mission they go underwater and communi-
cation between them and the on-shore control system
might not be possible. With the “one shot” approach,
therefore, communication might be impossible until the
whole mission is finished. Hence, the system has very
limited operationality with regards to addressing failures
or changes of conditions.

In this paper, we address the aforementioned limita-
tions. Similarly to the “one shot” model, the human mis-
sion coordinator specifies tasks in NEPTUS which calls
a domain-independent planning engine that generates a
plan that is dispatched to particular vehicles and then
executed. Here, the coordinator can add/remove or mod-
ify tasks during the mission execution, then NEPTUS
calls the planning engine again, a new plan is generated
and dispatched to the vehicles. However, one of the
assumptions we are dealing with is that communication
might not be possible (or is not reliable) when the
vehicle is executing the tasks. Hence, in our new model
we enforce vehicles to regularly return to their “depots”
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(safe spots near the on shore control center from which
communication can be reliably established). In practice,
new plans are dispatched to vehicles when they return to
the “depot”. In this paper, we introduce two models, All
Tasks and One Round. The All Tasks model allocates all
tasks to the vehicles, so typically they might do several
“rounds” (i.e., they are forced to return to their depots
several times). The One Round model is motivated by
work of Martinez et al. [11] showing that planning for
shorter time horizons is more efficient for more complex
scenarios. The one round model, therefore, generates
plans only for the next round (i.e., when a vehicle returns
to its depot it has finished its turn) while maximizing
the number of allocated tasks the vehicles will perform.
Both models are evaluated on a field experiment in Porto
harbor where 3 heterogeneous bottom-mapping AUVs
were used in a mine-hunting application scenario where
they were used simultaneously to detect potential threats
(mines) using sidescan sonars and to verify detected
objects as mines or false positives. The experiment
demonstrated operationality and robustness of our ap-
proach in a multiple heterogeneous AUVs setting, that
is, the system automatically allocates tasks to AUVs,
monitors the mission execution, and re-plans if changes
occur (e.g., the user adds a new task). Hence, we believe
that our approach is a considerable step forward for
automatizing mission planning and executing in more
complex settings.

II. BACKGROUND
A. Control Software

LSTS, has developed a software tool chain that is
used to support the operation of heterogeneous networks
of autonomous vehicles [12] composed by DUNE, IMC
and NEPTUS. DUNE is embedded on-board the vehi-
cles and manages “low level” control, i.e., localization,
trajectory-planning, communication, data logging and
command execution. IMC is the middle-ware that defines
a common control message set that can be understood
by all vehicles and computers in the network using
transports such as Wi-Fi, Acoustic Modem or GSM.
Finally, NEPTUS is a ‘“high level” decision-support
system providing situation awareness and interfaces for
human operators to specify tasks for vehicles, simulate
and supervise execution, and analyze collected data.

B. Automated Planning

In general, Automated Planning deals with a problem
of finding a (partially) ordered sequence of actions that
transform the environment from a given initial state to a
desired goal state [13]. Temporal planning, which we
focus on in this paper, considers a fully observable
and deterministic environment and ‘“durative actions”
making the explicit use of the notion of time.

A planning task is composed from a planning domain
model, which describes the environment and actions, and
a planning problem instance, which describes the initial
state of the environment, the goal to be achieved and the
metric to be optimized.

We use PDDL 2.2 [14], an extension of the well
known PDDL 2.1 [15] for representing planning tasks.

The environment is specified via predicates and numeric
fluents. In a state of the environment, predicates that
are present in that state (e.g. (completed t1)) refer
to properties that are true in that state (t1 has been
completed), while numeric fluents represent values of
“resources” in that state (e.g. (completed-tasks)
refers to the number of tasks that have been completed
in that state). Note that if a predicate is not present in the
state of the environment, we assume that the property it
represents does not hold in that state.

Actions are specified via preconditions (i.e., what
must hold prior their execution), effects (i.e., what will
happen after their execution) and the duration of their
execution. Preconditions are specified via sets of literals
(e.g., (at lauvl scene?2) or (not (completed
tl))) and binary relations between numeric fluents
(e.g., (>= (completed-tasks) 5). Each element
can take place either prior to starting action execution,
prior to finishing action execution, or over the whole
time period when the action is executed. Effects are sets
of literals and numeric fluent assignments or adjustments
(increase or decrease of fluent’s value), where each effect
can take place just after starting, or just after finishing
action execution.

Specifying problem instances in PDDL 2.2 is straight-
forward. We need to specify objects (e.g., concrete
vehicles, locations, payloads etc.), an initial state, a goal
and an optimization metric. An initial state consists
a set of predicates referring to properties that initially
hold in the environment and a set of numeric fluents’
initial assignments (e.g., (= (completed-tasks)
0) . Notice that we can encode properties that will hold
at some (non-initial) time. For this purpose, we use
“timed-initial literals™, a feature of PDDL 2.2, that allow
us to encode such “delayed” properties (e.g., (at 60
(at lauvl depotl)) represents that lauvl will
be at depotl at time 60). A Goal is specified in a
similar way as action’s preconditions, i.e., via sets of
literals and binary relations between numeric fluents.
An optimization metric is specified via a numeric fluent
that has to be minimized (e.g. (total-time)) or
maximized (e.g. (completed-tasks).

A plan that solves a given planning task is a set of
tuples (timestamp,action,duration) such that executing
these actions in the corresponding timestamps for given
durations (it must always be possible) transforms the
environment from the initial state to some state where
the goal is satisfied (i.e. a goal state). Notice that quality
of plans is measured via the metric they are optimized
for (e.g., a plan that completes more tasks has greater
value when optimizing for number of completed tasks).

C. Embedding Planning into Control Software

Domain-independent planning engines accept a de-
scription of a domain model and a problem instance in
some standard language such as PDDL and produces a
plan. Noticeably, one domain model is usually used for a
class of problem instances. Hence, planning engines and
domain models are decoupled and can be understood as
standalone components. In practice, this means that the
domain model is not tied to a specific planning engine
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as well as it allows replacing the planning engine by
another without modifications to the model.

In order to exploit these “planning components”, the
control software (NEPTUS), has to generate a problem
instance description (in PDDL 2.2) and has to inter-
pret the resulting plan. Generating problem instances
involves a translation of NEPTUS’s internal represen-
tation of the environment into the PDDL one, which is
straightforward given the predicate/numeric fluents rep-
resentation required by PDDL 2.2. Since plans contain
information about what has to be done and when, it is
straightforward for NEPTUS to interpret them and dis-
tribute corresponding commands to particular vehicles.

When NEPTUS calculates the initial state to feed the
planner, some of the vehicles may already be undergoing
an autonomous behavior. In order to estimate when these
vehicles will be available for the planner, NEPTUS uses
a shore-side simulation engine that keeps track of what
behavior each vehicle is doing and integrates incoming
Wi-Fi and acoustic position reports to maintain an up-
to-date estimation of future availability.

It is worth noting that such “planning components”
(e.g., a domain model and a planning engine) can be
exploited in any robotic system. In principle, the inte-
gration of the “planning components” into any robotic
system is analogous to the integration we have done with
NEPTUS. Environment specification and actions (i.e.,
a domain model) have to correspond with a particular
application (e.g., robots’ capabilities).

III. SPECIFYING DOMAIN MODELS

As demonstrated in our earlier work [10], Automated
Planning can be effectively exploited for allocating tasks
for heterogeneous AUVs. Chrpa et al.’s model assumes
“one shot” planning, i.e., allocating all user specified
tasks to AUVs, and then executing the plan until it
finishes. Such a model works under the assumptions that
i) tasks do not change, ii) communication with AUVs is
always possible, and iii) AUVs will not fail during plan
execution.

These assumptions limit operationality of the system
and might introduce unnecessary overheads for the user.
Hence, (i) the user should be able to add/remove/modify
tasks during the plan execution (the user might get new
data, or requests), (ii) the vehicles are not “error-proof™
as they might fail, (iii) other vehicles can join during
execution, and (iv) communication with vehicles might
not be always possible when vehicles are “away” (e.g.,
the system cannot send plans to submerged vehicles).
Addressing (i)-(iii) involves dynamic re-planning. In
other words, when the user adds/removes/changes any
task, or a new vehicle joins, the system should re-plan
in order to re-allocate the tasks among the vehicles. It
similarly applies to situations where the vehicle fails
to fulfill a given task (the task is put back into the
system), or the vehicle breaks down in which case
the system must re-plan as well. Regarding (iv) we
assume that communication is always possible when the
vehicle is in its “depot”. Since we have no guarantee
that communication can be established when the vehicle

is outside its “depot”, we have to define a maximum
duration for which the vehicle can be away.

In order to comply with the above requirements, we
have developed two domain models, namely All Tasks
and One Round'. All Tasks allocates all the tasks to
available vehicles, while One Round plans for “one
shift”, i.e., just for tasks that can be fulfilled before
vehicles have to come back to their “depots”.

A. All Tasks

Similarly to Chrpa et al.’s model [10], we consider
the following object types: AUVs (?v), Locations (?1),
Objects of Interest (?0), Areas of Interest (?a), Payloads
(?p) and Tasks (?t).

The static part of the environment is specified as
follows. Each vehicle is specified by its capabilities, i.e.,
its speed, payloads it carries, by a location of its “depot”,
and by the maximum time it can operate before returning
to its depot (denoted as (max-to-depot ?v)). By
“depot” we mean a safe location where the vehicle can
communicate with the on-shore control system. Tasks
that are specified by user of the control system map
objects or areas of interest with payloads that will be
used to collect data. Each object of interest has its
location. Areas of interest are specified via entry and exit
points and length of the survey path. All locations are
interconnected and distances between each two locations
are specified.

The dynamic part of the environment specifies the
current position of vehicles, whether vehicles collected
data with regards to user specified tasks, and how long
vehicles are operating since their last visit of their depots
(denoted as (from—-depot ?v)). We also consider
collision avoidance constraints, that is, at most one
vehicle can be at a location at time and at most one
vehicle can perform the survey action in an area of
interest at time. It should be noted that in contrast to
Chrpa et al.’s model [10], we do not consider energy
consumption. With the maximum time the vehicle can
be “on mission” we can estimate how much energy a
vehicle needs to make its “round” before returning to its
depot and, moreover, when the vehicle has low energy
it drops the remaining tasks and returns to the “depot”.
Hence, we believe it is not necessary to explicitly model
energy consumption in our case.

The action types, namely move, sample, survey, com-
municate, are the same as in Chrpa et al.’s model [10],
however, there are some differences in their implemen-
tation in order to comply with our requirements. In
our model, we implement three types of move action
that specifies vehicle’s movement between two locations.
These types, namely move-to-object, move-to-area and
move-to-depot, “enforce” the destination location to be
a location of object of interest, entry point to area of in-
terest, and vehicle’s depot respectively. After the vehicle
performs move-to-object or move-to-area action it has
to then perform sampling or surveillance, respectively.
This constraint is used to optimize the planning process

The models are available at
https://github.com/LSTS/neptus/tree/develop/conf/pddl
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by not allowing vehicles to go to locations where they
have nothing to do. Move-to-depot resets the value of the
(from-depot ?v) fluent to zero. In the sample and
survey actions the vehicle collects data of a given task
by sampling the specified object of interest or surveying
the specified area of interest by the specified payload.
Clearly, the vehicle must carry the specified payload
and be in a corresponding location prior to executing of
the sample/survey action. Noticeably, the survey action
can consider up to three payloads (there is no vehicle
with more than three payloads in our fleet) and thus the
vehicle can collect data of up to three tasks referring
to the same area of interest. The communicate action
transmits the data from the vehicle to the control system.
The vehicle must be in its depot for the whole time the
data transfer takes place. Estimated duration of the move
and survey actions is calculated from vehicle’s speed and
the distance the vehicle has to travel. Estimated duration
of the sample and communication actions is constant.

In order to enforce the “out of depot” constraint, (<
(from—-depot ?v) (max—-to-depot ?v)) must
always hold for each vehicle ?v. Each action, except
communicate, increments (from—-depot ?v) by its
duration at the start of its execution. The move-to-depot
action sets (from—depot ?v) to zero at the end of
its execution.

Initial states are generated from the current states
of the system (e.g, positions of vehicles, locations of
objects/areas of interest, tasks description, vehicles’ ca-
pabilities etc.). Usually, it is assumed that such an in-
formation (e.g., (at lauvl depotl)) holds at time
zero — just before plan execution. However, in case of
re-planning, some vehicles might not be immediately
available (e.g., performing tasks, communication not
established etc.). Then, according to the current plan
we can estimate when the vehicle will be available
(e.g. when it returns back to its depot). Such infor-
mation can be encoded into the initial state by using
“timed-initial literals” in form (at 100 (at lauvl
depotl)), (at 100 (can-move lauvl)) (so,
lauvl will be available at depotl in time 100).

Goals are to have all tasks completed and data
transmitted to the control system. Plans are optimized
for minimizing makespan, i.e., the duration of plans’
execution, and the number of move-to-depot actions.
The latter is used to minimize the number of “rounds”
vehicles have to take as well as the number of vehicles
necessary to fulfill the tasks.

B. One Round

The main difference in the One Round domain model
from the All Tasks domain model is that the former only
allocates tasks that can be completed in one round of
each vehicle (i.e., before it returns back to its depot).
In particular, the communicate action is not modeled
and after executing the move-to-depot action the vehicle
cannot perform any other action. Whereas the latter
difference is straightforward — we plan just for one round
the vehicle has to operate before returning to its depot
— the former difference assumes that communicating
collected data will be done implicitly after the vehicle
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Fig. 1. NEPTUS snapshot taken during the experiment when all
vehicles were underwater executing sidescan / camera surveys

comes back to its depot (since there are no other actions
the vehicle can execute in that planning episode).
Goals, in contrast to the All Tasks model, are to have
all involved vehicles in their depots and a specified
minimum number of tasks completed. Also, it is possible
to explicitly specify which tasks have to be completed.
Notice that it might not be possible to complete all
the specified tasks in one round, so the user has to
be “lenient” when specifying the tasks that have to be
completed in a given round. Plans are optimized for
maximizing the number of completed tasks.

IV. EXECUTION

In order to interface fleets of autonomous vehicles,
we have extended NEPTUS with a plug-in for mixed-
initiative planning. When vehicles execute known be-
havior, NEPTUS uses a simulation engine to estimate
the future state when the vehicle will be ready to receive
more commands. Moreover, the same simulation engine
is used to predict vehicle behavior in real-time when
they are disconnected due to communication limitations,
which is used to augment user awareness.

The developed plug-in allows users to add high-level
tasks in a visual intuitive way and periodically converts
unallocated tasks, together with current vehicle states
into PDDL. In order to translate the world state and
tasks to PDDL, the plug-in (1) determines the capabil-
ities of each available vehicle; (2) estimates the future
state where each vehicle will become ready to execute
commands; (3) splits tasks that are too large into smaller
tasks and (4) calculates task constraints such as distance
to other locations, required execution time, its start and
end locations. After calculating all this information, the
plug-in uses a PDDL translator to generate problem
specification (in PDDL). The generated problem descrip-
tion together with specified domain model (in PDDL) are
passed to the planner that produces a plan file. NEPTUS
then converts the plan file into a sequence of vehicle
behaviors and monitors its execution.

If during the execution a new planning request arrives
while a vehicle is executing the current plan, the vehicle
continues executing the current plan until its earliest
arrival to its depot. Then, the new plan is assigned to
the vehicle (notice that the planning request considers
the estimated time when the vehicle will be available).
Whenever a vehicle finishes executing its assigned be-
haviors, NEPTUS verifies if the behaviors were executed
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correctly (success result) or not. If the vehicle failed
to execute its assigned behaviors, the associated tasks
become unallocated again. If the vehicle succeeded in
the execution, the tasks are signaled as finished and are
removed from the interface.

In our previous work, the commands dispatched to the
vehicles did not include any timing requirements which
resulted in some lag between planned and actual action
durations due to variable environment conditions [10].
To address this problem, in this work, we translate move
actions into timed waypoint behaviors which specify
target locations and absolute times of arrival. As a result,
when vehicles move between locations they adapt their
speed according to remaining time to arrive at the target
location. Moreover, the vehicle clocks are synchronized
by GPS time when they surface.

V. EXPERIMENTAL RESULTS
A. Scenario

For validating our concept we opted to apply it to
a mine-hunting scenario. Typically, mine-hunting oper-
ations are divided into two phases: at phase 1, one or
more AUVs carrying a sidescan sonar payload are used
to search contacts in the sea floor by mapping the area.
At phase 2, a set of AUVs carrying video camera and/or
magnetometer revisit the contacts in order to identify the
objects as either mines or false positives. Typically, some
AUVs carries both sidescan sonar and camera and thus
can participate in both phases. In contrast to Chrpa et
al. [10], where both phases were planned and executed
separately, our approach allow simultaneous execution
of both phases.

Figure 3 shows the tasks that were used for these
tests. In the first phase (left side of the picture) six
sidescan sonar survey tasks were configured each taking
around 375 seconds to complete and making up an area
of 38400 m2. On the second phase (right side of the
picture), 4 camera sampling tasks were used to revisit
and identify the contacts from phase 1. Moreover, an
additional multibeam sonar sampling and a multibeam
sonar survey were added in two steep areas which appear
as shadows in the sidescan sonar surveys?.

B. Experiment overview

In this work, we have used LPG-TD [16] as the plan-
ning engine. LPG-TD supports PDDL 2.2 and scales
well for both models, i.e., it usually found a plan in
a few seconds. LPG-TD is an anytime planner, so it
keeps running until the given time elapses (in our case
10 seconds), while keeping improving plans quality (the
best quality plan is returned).

For the field test, we used three LAUV autonomous
submarines, two of them being equipped with a sidescan
sonar and one equipped with a video camera (see Figure
4). These vehicles were deployed to the water and their
depots have been selected to be close to the base station
for improved communication bandwidth. For monitoring
tasks execution while underwater, the vehicles period-
ically sent (every minute) a state message including

2See the video at https://www.youtube.com/watch?v=DYADNTokaXc

Fig. 2. LAUV vehicles being deployed for the experiment (left) and
sidescan data acquired (right)
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Fig. 3. Tasks to be executed by the vehicles

location, behavior execution progress and remaining
fuel. An acoustic modem deployed at the base station
is used to receive these data and also to send short
commands such as interrupting current behavior and
moving to a pre-determined location.

Nominal speed of these vehicles is 1 m/s which is
the optimal speed for sonar surveys. While traveling
between tasks all vehicle used different depths to prevent
collisions and for each task the payload type defined the
traveling depth (or altitude from bottom). For instance,
while performing sidescan sonar surveys, the vehicles
travel at 3 meters from the bottom and when executing
multibeam sonar surveys they travel at 2 meters of depth.

C. Replanning and Onboard Adaptation

Regardless of the planning model in use, all the
vehicles deployed have the capability to adapt a task’s
execution according to how late or early they in compar-
ison to what was defined by the planner. If, for instance,
a vehicle finishes a survey later than what was expected,

T

Fig. 4. Sidescan data acquired by the vehicles during phase 1 (One
Round model)
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Fig. 5. Task’s execution and plan times, and vehicle speed throughout

while moving to another objective, the vehicle will adapt
its speed in order to reach it on time.

Figure 5 shows the vehicle’s speed throughout a plan
execution (time series in blue) and the times at which
each task has actually started (vertical colored lines) and
what was defined by the plan (vertical dashed line). Most
time differences are quite small (less than 3 seconds).
Around time 1000, however, there was a noticeable
difference between planned and actual end time of a
survey task that had started on time. This happened
because, during the execution, the ocean floor was too
steep and the vehicle had to stop the propeller to prevent
collisions and ascend for a while, and then continue
the survey. The drops in speed during the survey are
visible in Figure 5 between times 600 and 1000. Even
though the survey finished a bit later, the vehicle adapted
the plan execution and accelerated to reach the next
objective on time. To note that the vehicle only adapts its
speed while en-route to a new objective, and not during
execution of surveys, i.e., if the vehicle is already late
while completing, for instance, a survey it won’t speed
up, rather, it will complete the current objective at the
predefined speed and then, when finished, accelerate
towards the next one. This is because most sonars
require a specific constant speed for the best results.

During the test execution, LAUV-Noptilus-3 reported
a temporary depth sensor fault and interrupted during
one of the assigned plans (All Tasks model, phase 2).
As a result, NEPTUS received the error and marked all
related tasks as unallocated. Despite the (unintentional)
errors, all tasks were again reassigned and executed to
completion by the system.

D. All Tasks vs. One Round

In both models, plans for our field experiments were
generated within the 10 seconds threshold. We have
noticed that the All Tasks model allocates more tasks to
vehicles for the first round than the One Round model.
For smaller exercises, the All Tasks model seems to
be more efficient, however, we believe that for larger
exercises (dozens of tasks), the All Tasks model might
struggle to generate plans in required time (plans will
be longer) while the One Round model should be still
able to generate plans in the 10 seconds time limit.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed limitations of Chrpa
et al’s model [10] for “high level” task planning in

order to allow human coordinators to specify and modify
tasks online (even during the mission execution) and to
consider communication limitation (the control system
might not be able to send commands to vehicles that
are executing the tasks). To do so, we have developed
two domain models, All Tasks and One Round. Our
concepts have been verified in field experiments, where
we demonstrated utility of the introduced approach.

In future, we would like to evaluate our concepts on
large exercises (~100 tasks, ~15 vehicles). Furthermore,
we will investigate how the models can be adapted in
order to support collaborative tasks, which two or more
vehicles have to perform simultaneously.
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Performance of planning engines can be improved by gathering KEYWORDS
additional knowledge about a class of planning tasks. In this paper Classical planning; outer

we present Outer Entanglements, relations between planning opera- entanglements; domain
tors and predicates, that are used to restrict the number of operator reformulation; state space
instances. Outer Entanglements can be encoded within a planning pruning

task description, effectively reformulating it. We provide an in depth
analysis and evaluation of outer entanglements illustrating the effec-
tiveness of using them as generic heuristics for improving the effi-
ciency of planning engines.

1. Introduction

Automated planning is an important research area of artificial intelligence (Al) where an autono-
mous entity (e.g. a robot) reasons about the way it can act in order to achieve its goals. Al planning
has therefore a great potential for applications where a certain level of autonomy is required such
as in the Deep Space 1 (Bernard et al., 2000).

Automated planning involves combinatorial search that, roughly speaking, examines numerous
combinations of action sequences in order to find a solution plan (an action sequence transforming
the environment from the initial state to some goal state). In the last few decades, there has been a
great deal of activity in the research community designing planning techniques and planning
engines. The International Planning Competition (IPC)' has been staged regularly since 1998 and is
increasingly attracting the attention of the Al planning community (Vallati et al., 2015). Thanks to
the IPC we have many advanced planning engines, and PDDL (Ghallab et al., 1998) that is a
standardised language family for describing planning tasks and standard benchmarks for measur-
ing planners’ performance. Along with those planning engines, many novel planning techniques
have been proposed, such as heuristic search (Bonet & Geffner, 1999), translating planning tasks
into SAT (Kautz & Selman, 1992) just to mention a few.

The performance of planning engines can be improved by extracting and exploiting
Domain Control Knowledge (DCK), i.e. additional knowledge about planning tasks, for
instance, in the form of Control Rules (Minton & Carbonell, 1987) or Decision Trees (De La
Rosa, Celorrio, Fuentetaja, & Borrajo, 2011). DCK, roughly speaking, provides a guidance for
planning engines, so they can find solution plans more quickly. The usefulness of learning
and exploiting DCK in planning has been demonstrated by Yoon, Fern, and Givan (2008)
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whose approach that learns DCK from relaxed plans (obtained by solving planning tasks
while omitting negative effects of actions) won the best learner award at IPC 2008. However,
these types of knowledge are often tied to specific planning engines using a planner-specific
language (e.g. as with TALPlanner (Kvarnstrom & Doherty, 2000)) or a convention on
extending the input language to take advantage of them, so that planning engines can
maintain some level of domain-independence. On the contrary, knowledge which can be
directly encoded into the standard definition language (such as PDDL) is planner indepen-
dent, so a standard planning engine can straightforwardly exploit it. For example, action-
centric DCK can be compiled into PDDL (Baier, Fritz, & Mcllraith, 2007). The best known
specific type of DCK, macro-operators (‘macros’), which encapsulate sequences of operators,
can be encoded as normal planning operators, so they can be exploited in a planner-
independent way (Chrpa, 2010; Korf, 1985; McCluskey & Porteous, 1997; Newton, Levine,
Fox, & Long, 2007). Abstracting planning tasks by their reformulation in order to reveal their
hierarchical structures can mitigate ‘accidental complexity’ of their domain models? (Haslum,
2007).

Beside macros, another type of domain-independent DCK are Entanglements (Chrpa &
Bartak, 2009; Chrpa & McCluskey, 2012), which represent relations between planning opera-
tors and predicates, aimed at eliminating unpromising alternatives in a planning engine’s
search space. Inner Entanglements (Chrpa & McCluskey, 2012) are relations between pairs of
operators and predicates which capture exclusivity of predicate achievement or requirement
between the given operators. The vast majority of planning engines such as FF (Hoffmann &
Nebel, 2001) or those built on top of the Fast Downward planner (Helmert, 2006) perform a
pre-processing step - called grounding - in which they compute all atoms and actions that
can be reachable from a given initial state, mutual exclusivity of pair of atoms (those that
cannot be both present in any reachable state), and structures such as Causal Graph
(Knoblock, 1994). Large grounded representation, i.e. a large number of atoms describing
the environment and actions one can perform, poses high CPU time and memory require-
ments for traditional domain-independent planning engines. Noteworthy, use of some types
of DCK such as macros or inner entanglements often exacerbate the problem of large
representation, since, for example, macros have more arguments than ordinary operators
and thus have much more instances.

Outer Entanglements (Chrpa & Bartdk, 2009; Chrpa & McCluskey, 2012), we focus on in this paper,
aim at reducing the size of problem representation by eliminating possibly unpromising grounded
actions. Outer entanglements are relations between planning operators and predicates whose
instances are present in the initial state or the goal. These relations capture a useful knowledge
that some planning operators are needed only to modify initial situations (e.g. picking up a
package at its initial location) or achieve goal situations (e.g. delivering a package to its goal
location). Hence, only limited numbers of instances of ‘entangled’ operators have to be considered
in the planning tasks reducing the size and complexity of the state space planning engines have to
search through. In particular, eliminating some actions (operators’ instances) often makes some
atoms unreachable (e.g. a package cannot be in other than initial or goal location). Smaller
problem representation increases efficiency of pre-processing planning engines perform.
Consequently, state space is smaller too, as some unpromising alternatives in it are eliminated.
Hence, planning engines have to make less effort to search through such a reduced state space in
order to find solution plans.

Outer entanglements can be encoded in planning tasks, effectively re-formulating them,
and thus they are planner independent. Deciding whether a given outer entanglement holds
in a planning task is PSPACE complete, the same complexity class as the problem of solving
the planning task, hence finding outer entanglements for a planning task is generally as
hard as solving the task. On the other hand, outer entanglements are often domain specific
rather than task specific. Therefore, we have developed an approximate, heuristic method
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that is used to learn outer entanglements from training plans, solution plans of simpler tasks
in a given domain. One of the advantages of the learning approach is that we do not have
to know why a set of outer entanglements holds in a given domain. Arguably, the nature of
outer entanglements differs per different domain models as discussed in Section 4.4. On the
other hand, the heuristic method follows the premise that outer entanglements generalise
well, i.e. if a set of outer entanglements holds for a set of (simpler) planning tasks, then it
also holds for the whole class of the planning tasks sharing the same domain model. Being a
heuristic method, it is possible that the reformulation results in incorrect choices, and there
may even be instances where is preferable to use the original search space: we investigate
this issue in our experimental evaluation.

Initial work on outer entanglements has been reported in a series of shorter papers detailing the
discovery, use and effectiveness of outer entanglements. In this paper, we integrate and extend
previous work, with:

e encodings of outer entanglements (Chrpa & Bartdk, 2009) including formal proofs of their
correctness;

e a collected summary of the known complexity results (Chrpa, McCluskey, & Osborne, 2012),
and trivial cases where entanglements hold (Chrpa & Bartak, 2009);

e case studies in which we investigate what outer entanglements hold, and under what
conditions;

e an analysis of the potential impact of outer entanglements on the planning process;

® an approximation method for extracting outer entanglements (Chrpa & Bartak, 2009);

e an extensive empirical study of the impact of outer entanglements in the planning process
using all the domains from the 6th and 7th IPC's learning track,® and 7 state-of-the-art
planning engines based on very different principles.

The main empirical findings from this paper are that the use of outer entanglements
improves the planning process, often remarkably, through the planner and domain model
combinations we experimented with. The results demonstrate that the learning method,
despite being heuristically based, often learns a useful set of outer entanglements that
generalise well for non-training planning tasks. Also, the thorough experimental analysis
provides invaluable lessons from which domain engineers can learn how to extract effective
and efficient sets of outer entanglements for their domain models.

The paper is organised as follows. After discussing related work, classical planning is
introduced, the required terminology is defined and a BlocksWorld domain running example
is introduced. Then, outer entanglements are defined, complexity of their identification and
case studies referring to easy and possibly hard instances of outer entanglement identifica-
tion are discussed. After that a reformulation approach enforcing outer entanglements in a
planner-independent way (i.e. any standard planner can make use of outer entanglements) is
presented, and an approximation algorithm for learning outer entanglements from training
plans is introduced. Empirical analysis of impact of outer entanglements in the planning
process is provided after that and then, finally, we conclude and present some future
avenues of research.

2. Related work

Generating DCK which can be exploited by planning engines dates back into 1970s when systems
such as REFLECT (Dawson & Siklossy, 1977) were developed. Macros, which encapsulate sequences
of ordinary planning operators, are one of the best known types of DCK in classical planning,
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because they can be encoded as normal planning operators and thus easily added into planning
domain models. Macro-FF CA-ED version (Botea, Enzenberger, Miiller, & Schaeffer, 2005), which
learns macros through analysis of relations between static predicates, and Wizard (Coles, Fox, &
Smith, 2007), which learns macros by genetic algorithms, are good examples of planner-indepen-
dent macro-learning systems.

While the main disadvantage of using macros is the risk of a significant increase of the
branching factor during searching, there are several techniques which are used for reducing the
branching factor. One way is to combine macros with another learning technique, specifically
aimed at pruning unpromising instances of macros, such as in McCluskey's early work
(McCluskey, 1987). The complementary technique here created ‘chunks’ — learnt relations
between initial states and operator preconditions, similar to entanglements by init (a subtype
of outer entanglements). The method required a specially extended planner, however, and was
aimed at plan space search rather than state space search. Recently, it has been shown that
there is a synergy between macros and outer entanglements, in other words, outer entangle-
ments can prune unpromising instances of macros as well as provide heuristics for their
generation, which has been demonstrated by MUM (Chrpa, Vallati, & McCluskey, 2014) and
OMA (Chrpa, Vallati, & McCluskey, 2015b), where the former learns macros from training plans
while the latter generates macros online (without training plans).

Determining action relevance is an important branch of research, which reduces the number of
instances of planning operators planning engines have to deal with. The FF planner (Hoffmann &
Nebel, 2001) instantiates only actions appearing at some level of relaxed Planning Graph.
FastDownward (Helmert, 2006) uses the ‘reach-one-goal’ idea, i.e. achieves the goals of the
planning task consecutively, where the solver focuses only on such actions that may be relevant
for a particular goal. Other work focusing on cost-optimal SAS+ planning (Coles & Coles, 2010)
prunes irrelevant actions (e.g. actions changing a value of a variable having no dependants from a
goal value) or exploits ‘tunnel macro-actions’ (i.e. if a certain action is executed then there is no
other choice than to execute specific actions forming the ‘tunnel’). Haslum and Jonsson (2000)
proposed a technique for pruning actions whose effects can be acquired by executing a sequence
of different actions. Scholz (2004) proposed a method for determining action relevance on
problems with acyclic causal graphs. Scholz's method has recently been extended to cover
problems with non-acyclic causal graphs (Haslum, Helmert, & Jonsson, 2013). Expansion Core is a
method which in a node expansion phase (in A* search) restricts on relevant Domain Transition
Graphs rather than all of them (Chen & Yao, 2009). The idea of ‘expansion cores’ is extended into
strong stubborn sets that guarantee stronger pruning than expansion cores (Wehrle, Helmert,
Alkhazraji, & Mattmuiller, 2013). Recently, factored planning (Brafman & Domshlak, 2013) has been
exploited for extending the strong stubborn sets approach and introducing decoupled strong
stubborn sets that in some cases provide exponentially stronger reductions of the problem
(Gnad, Wehrle, & Hoffmann, 2016). In contrast to aforementioned techniques, outer entanglements
focus on pruning operator instances that either do not require initial atoms, or do not achieve goal
atoms and thus are complementary to aforementioned techniques.

3. Preliminaries

This section is devoted to introducing the terminology that will be used throughout the paper.

3.1. Classical planning

Classical planning is concerned with finding a (partially or totally ordered) sequence of actions
transforming the static, deterministic and fully observable environment from the given initial state
to a desired goal state (Fox & Long, 2003; Ghallab, Nau, & Traverso, 2004).
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In the classical representation, a planning task consists of a planning domain model and a
planning problem, where the planning domain model describes the environment and defines
planning operators while the planning problem defines concrete objects, an initial state and a
set of goals. The environment is described by predicates that are specified via a unique identifier
and terms (variable symbols or constants). For example, a predicate at(?t ?p), where at is a unique
identifier, and ?t and ?p are variable symbols, denotes that a truck ?t is at location ?p. Predicates
thus capture general relations between objects.

Definition 1: A planning task is a pair II = (Domyy, Proby;) where a planning domain model
Domy; = (Predsy;, Opsyp) is a pair consisting of a finite set of predicates Preds;; and planning
operators Opsy;, and a planning problem Proby; = (Objsyy, I, Gri) is a triple consisting of a finite
set of objects Objsyy, initial state /i and goal G.

Let atsy; be the set of all atoms that are formed from the predicates Preds;; by substituting the
objects Objsy; for the predicates’ arguments. In other words, an atom is an instance of a predicate
(in the rest of the paper when we use the term instance, we mean an instance that is fully
grounded). A State is a subset of atsy, and the initial state /; is a distinguished state. The goal
Gy is a non-empty subset of atsy;, and a goal state is any state that contains the goal Gy;.

Notice that the semantics of state reflects the full observability of the environment. That is, that
for a state s, atoms present in s are assumed to be true in s, while atoms not present in s are
assumed to be false in s.

Planning operators are ‘modifiers’ of the environment. They consist of preconditions, i.e. what must
hold prior operators’ application, and effects, i.e. what is changed after operators’ application. Actions
are instances of planning operators, i.e. operators’ arguments as well as corresponding variable
symbols in operators’ preconditions and effects are substituted by objects (constants). Planning
operators capture general types of activities that can be performed. Similarly to predicates that can
be instantiated to atoms to capture given relations between concrete objects, planning operators can
be instantiated to actions to capture given activities between concrete objects.

Definition 2: A planning operator is a tuple o = ( name(o), pre(o), eff (o), eff *(0)) is specified
such that name(o) = op_name(xy,...,xx), where op_name is a unique identifier and x, ... X, are
all the variable symbols (arguments) appearing in the operator, pre (o) is a set of predicates represent-
ing o’s precondition, eff ~(0) and eff " (0) are sets of predicates representing o's negative and positive
effects. Notice that all the predicates in o’s definition must be defined in Preds; of the corresponding
domain model. Actions are instances of planning operators that are formed by substituting objects,
which are defined in a planning problem, for operators’ arguments as well as for corresponding
variable symbols in operators’ preconditions and effects. An action a = ( pre(a), eff ~(a), eff *(a))
is applicable in a state s if and only if pre(a) C s. If possible, application of a in s, denoted as y(s, a),
results in a state (s\ eff “(a)) U eff *(a).

A solution of a planning task is a sequence of actions transforming the environment from the
given initial state to a goal state.

Definition 3: A solution plan, or shortly plan, of a planning task II = (Domy, Proby;), where
Proby; = (Objsy, I, Grr), is a sequence of actions ay,...,a, (all actions are instances of planning
operators defined in Domy;) such that Gy C y(...y(Ig, a1),...,dn).

3.2. Blocksworld domain

We briefly introduce a model representing the BlocksWorld domain (Slaney & Thiébaux, 2001),
which is one of the best known planning domains, that will be used as a running example in the

paper.
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The BlocksWorld domain describes an environment where we have a finite number of blocks,
one table with unlimited space, and one robotic hand. A block can be either stacked on another
block, placed on the table or held by the robotic hand. No block can be stacked on more than one
block at the same time as well as no more than one block can be stacked on a block at the same
time. The robotic hand can hold at most one block. The BlocksWorld domain model consists of four
operators: pickup(?x) refers to a situation when the robotic hand picks up a block ?x from the table,
putdown(?x) refers to a situation when the robotic hand puts down the block ?x it is holding to the
table, unstack(?x ?y) refers to a situation when the robotic hand unstacks a ‘clear’ block ?x from a
block ?y, and stack(?x ?y) refers to a situation when the robotic hand stacks the block ?x it is
holding to a ‘clear’ block ?y. As mentioned before, planning operators are instantiated by sub-
stituting constants (objects) for variable symbols that appear in operators’ definition. For example,
putdown(?x) can be instantiated by substituting a, which refers to a concrete block ‘@’, for ?x. We
then obtain an action putdown(a) that requires the robotic hand to hold the block a, and the effect
is that the block a is placed on the table, the block a is clear (no other block is stacked on it), and
the hand no longer holds it.

4. Outer entanglements

This section formally introduces outer entanglements and provides theoretical analysis of them.

4.1. Introduction

Outer Entanglements are relations between planning operators and predicates whose instances
are present in the initial state or the goal of some solution plan. In a BlocksWorld planning task,
there exists a solution plan where the unstack actions may only unstack blocks from their initial
positions (e.g. if on(a b) holds in the initial state, then unstack(a,b) ca be present in the plan)
and the stack actions may only stack blocks to their goal position. Notice that blocks can be
temporarily put on the table (there are no space limits on the table). Formally speaking, an
entanglement by init will capture that if an atom on(a b) is to be achieved for a corresponding
instance of the operator unstack(?x ?y) (unstack(a b)), then the atom is present in the initial
state. Similarly, an entanglement by goal will capture that an atom on(b a) achieved by a
corresponding instance of the operator stack(?x ?y) (stack(b a)) is present in the goal. For
illustration, see Figure 1. The outer entanglements relation, i.e. the entanglements by init and
goal, are defined as follows.

Definition 4: Let II be a planning task, where Iy is the initial state and Gy; is the goal. Let o be a
planning operator and p be a predicate defined in the domain model of I1. We say that operator o
is entangled by init (resp. goal) with a predicate p in II if and only if p € pre(o) (resp.
p € eff (0)) and there exists m, a solution plan of II, such that for every action a € m being an
instance of o and for every atom pynqs being an instance of p, it holds: pg.q € pre(a) = pgnd € In
(resp. pgng € eff t(a) = pgna € Gr). We also say that r satisfies the entanglement (by init or goal)
conditions.

Henceforth, entanglements by init and goal are denoted as outer entanglements.

Notice that the definition allows for initial atoms to be deleted/re-achieved during the plan,
without falsifying the entanglement relationship with an operator instance requiring such an atom
later in the plan.

Also, a single outer entanglement requires only the existence of one solution plan of the given
planning task where the entanglement conditions are met. However, different entanglements might
hold in different solution plans. It is practical to consider a set of outer entanglements for a planning
task rather than a single one, which means that there must exist a solution plan in which all
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(:action unstack (:action stack
:parameters (?x - block 2y - block) :parameters (?x - block ?y - block)
:precondition (ape{(on ?x ?y)¥clear ?x)(handempty))  :precondition (and (holding ?x)(clear ?y))
:effect (and (h6lding ?x)(clear ?y) :effect (and (not (holding ?x)) ar ?y))
(no¥ (clear ?x))(not (handempty)) (clear ?x)(handemptyX(on ?x ?y
(ngt (on ?x ?y))) )
)
entangled
by init entangled
by goal
L A | —
on(C B) on(A B)
g B B
on(B A) on(B C)
A C
init goal

Figure 1. An illustrative example of outer entanglements. On the left hand side, unstack is entangled by init with on, and, on
the right hand side, stack is entangled by goal with on.

entanglements from the set hold. Also, in practice, outer entanglements are domain - or class of tasks
specific rather than task specific. The above definition can be extended to reflect these aspects.

Definition 5: Let II be a planning task. We say that a set of outer entanglements ENT; holds for I1
if and only if there exists a solution plan of II which satisfies all the entanglements from ENT ;.
Similarly, ENT» holds for a set of planning tasks P if and only if ENTp = Npep ENTyy.

Both the aforementioned BlocksWorld-related outer entanglements hold for every BlocksWorld
planning task with unlimited table space.

4.2. Intractability of deciding on entanglements

Landmark theory (Hoffmann, Porteous, & Sebastia, 2004) is a useful framework for studying
structures of planning tasks. We will use a fragment of the landmark theory to prove intractability
(PSPACE completeness) of deciding whether a given outer entanglement holds in a given task.
Landmarks are atoms which must be achieved at some point in every solution plan of a given
planning task. Action landmarks are actions which must be applied at some point in every solution
plan of a given planning task. Deciding whether atoms are landmarks as well as whether actions
are action landmarks is PSPACE complete (Hoffmann et al., 2004)

The intractability (PSPACE completeness) of deciding whether a given outer entanglement holds
is proved by the following theorem.

Theorem 1: Let 11 be a planning task, o be a planning operator and p a predicate defined in the domain
model of I1. The problem of deciding whether o is entangled by init (resp. goal) with p in I1 is PSPACE complete.

Proof. First, we show that the problem of deciding whether o is entangled by init (resp. goal)
with p in II belongs to the PSPACE class. To do this, we reformulate II by encoding the given
entanglement as described in Section 5.2. Hence, the decision problem of whether the given
outer entanglement holds can be encoded as a planning task, i.e. the entanglement holds if
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and only if the reformulated planning task is solvable. We know that we can solve planning
tasks in polynomial space, hence this decision problem belongs to PSPACE. Next, we reduce (in
polynomial time) the problem of deciding whether an action a is an action landmark in a
planning task II', which is PSPACE complete, to the problem of deciding whether o is
entangled by init (resp. goal) with p in II. Let 0o’ be a planning operator defined in the domain
model of II' such that a is its instance. Let p be a predicate which has the same variable
symbols (arguments) as operator o’ and without loss of generality we assume that p is not
defined in the domain model of IT'.

To decide that an action a is an action landmark in a planning task IT" by exploiting entanglements
by init, we modify IT' in a following way. We create a planning operator o as a modification of o/, that
is, 0 = ( name(0’), pre(0’) U {p}, eff (0'), eff *(0')). Then, we create a planning operator 0" such
that o” has the same variable symbols (arguments) as o/, pre(o”)= eff (0”")=0 and

eff T (0") = {p}. Finally, we create a planning task II by modifying I' in such a way that o’ is
removed, and o and 0" are added into the set of operators, p is added into the set of predicates,
and all the instances of p but one that has the same arguments as the action a are added into the
initial state. We can see that o is entangled by init with p in IT if and only if a is not an action landmark
in IT'. This is, because the entanglement tells us that there exists a solution plan of IT" where a is not
present. The missing instance of p can be achieved by a corresponding instance of 0”, so II remains
solvable even if a is an action landmark, however, the entanglement does not hold.

To decide that an action a is an action landmark in a planning task IT" by exploiting entanglements by
goal, we modify IT' in a following way. We create a planning operator o as a modification of o/, that is,
o= ( name(0’), pre(o'), eff (0'), efft(0') U{p}). Then, we create a planning task II by modifying
IT" in such a way that o’ is removed, and o is added into the set of operators, p is added into the set of
predicates, and all the instances of p but one that has the same arguments as the action a are added into
the initial state and into the goal. We can see that o is entangled by goal with p in IT if and only if a is not an
action landmark in II’. This is as in the previous case, because the entanglement tells us that there exists a
solution plan of IT' where a is not present. If a must be applied in all solution plans of IT’, then the instance
of p which is missing in the goal of II is always achieved and thus the entanglement does not hold.

Clearly, modification of II" in both cases is done in polynomial time. Hence, since the problem of
deciding whether a is a landmark action in II" is PSPACE complete, the problem deciding whether
modified o is entangled by init (resp. goal) with p in II, which belongs to PSPACE, is PSPACE complete
as well.

Intractability of deciding whether a single outer entanglement holds for a given planning task
implies intractability of deciding whether a set of outer entanglements holds for that task.

Corollary 1: Let e; and e, be outer entanglements that hold in a planning task 11. The problem of
deciding whether a set {eq,e,} holds in 11 is PSPACE complete.

Proof. Without loss of generality, let II,, be a planning task obtained by reformulating II
considering ey (see Section 5.2). Then, the problem of deciding whether {e;,e,;} holds in II is
equivalent to the problem of deciding whether e, holds in Il,, which is PSPACE complete.

4.3. Special cases

Despite the intractability, there are some cases where we can trivially identify outer entanglements
(hereinafter referred as trivial outer entanglements). The following situations refer to special cases
where there is no way to violate outer entanglements in the planning process. However, trivial
outer entanglements do not provide any new domain-specific information and hence we do not
have to consider them in the reformulation.

For instance, if a predicate p is not achieved by any operator defined in the domain model (e.g. p
is a static predicate), then any operator having p in its precondition is entangled by init with p.
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Lemma 1: Let I1 be a planning task, p be a predicate and Ops be the set of planning operators defined
in the domain model of 11. If p ¢ eff ™ (0) for every o € Ops, then for every o € Ops it is the case that o is
entangled by init with p in 11 if and only if p € pre(o).

Another trivial example where outer entanglements can be easily determined is when all
instances of a predicate are present in the initial state or the goal.

Lemma 2: Let II be a planning task, | its initial state and G its goal. Let Ops be the set of planning
operators and p be a predicate defined in the domain model of 11 such that all possible instances of p
are present in | (resp. G). Then, an operator o € Ops is entangled by init (resp. goal) with p in 11 if and
only if p € pre(o) (resp. p € eff *(0)).

4.4. Case studies

In the BlocksWorld domain, which we also used as a running example, we can identify two non-trivial
outer entanglements. The operator unstack is entangled by init with the predicate on and the operator
stack is entangled by goal with on. A typical task (re-stacking the blocks from initial stacks to goal stacks)
can be solved as follows. Blocks are unstacked from their initial positions and put down on the table until
all the blocks are on the table. Then, we pick the blocks up and stack them on their goal positions (in the
right order). We can see that both the entanglements hold for such solution plans. However, limiting the
space on the table (in some modification of the domain) might invalidate these entanglements since due
to lack of table space we might be forced to temporarily stack blocks on other blocks. Clearly, if the table
space is greater or equal the number of blocks, or if goal stacks of blocks are reverted initial stacks of
blocks, the entanglements still hold. However, in a general case deciding whether one or both entangle-
ments hold for a given planning task having the modified domain model can be as hard as solving the
task.

In the well-known ZenoTravel domain, which addresses the problem of transporting passengers
by planes between cities, we can observe that the operator board is entangled by init with the
predicate at and the operator debark is entangled by goal with at. A typical problem can be solved as
follows. Each passenger can board an aircraft at the location of origin (if no aircraft is there, then it
will arrive from a different location), then the aircraft flies to passenger’s destination location where
the passenger debarks. The entanglements hold in such solution plans. However, modifying the
domain by constraining the locations where a particular aircraft can fly might invalidate the
entanglements which will be the case when some passenger would have to change the aircraft at
some (non-initial) location. Deciding whether the entanglements (or one of them) hold is easy in the
modified domain, since for each passenger we can check whether there is a direct flight or not.
Similarly, we can identify outer entanglements in the similar logistic-based domains.

Although we identified some domain-specific cases where identifying (non-trivial) outer entan-
glements is easy, we are still missing a more general domain-independent approach for identifying
a subclass of non-trivial outer entanglements in polynomial time. We believe that analysing
structure of planning tasks (e.g. relations between planning operators, mutexes) can be useful
for identifying some non-trivial outer entanglements.

5. The use of outer entanglements to speed-up the planning process

This section is devoted to practical use of outer entanglements.

5.1. Motivation

The reason for introducing the outer entanglement relation was to form the basis of a tool for
eliminating potentially unnecessary instances of planning operators and thus reduce ‘overheads’ for
planning engines (Chrpa & Bartdk, 2009). This follows the observation that in many domains some
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operators are needed only to modify the initial state of the object, or achieve the goal state of the
object. Given the example of the BlocksWorld domain (see Figure 1 in Section 4), we can see that since
the unstack operator is entangled by init with the on predicate only the instances unstack(b a) and
unstack(c b) are necessary, so we can prune the rest of unstack’s instances because they are not
necessary to find a solution plan. Similarly, we can see that since the stack operator is entangled by goal
with the on predicate only the instances stack(a b) and stack(b c) are necessary, so we can prune the
rest of stack’s instances. Usefulness of such pruning can be demonstrated in the following way. Given n
blocks, we can have at most n - (n — 1) instances of stack or unstack (we do not consider instances
when a block is unstacked from or stacked on itself - e.g. stack(a a)). Considering both the entangle-
ments, we can have at most n — 1 instances of the stack or unstack operators. In summary, while in the
original setting, the number of operators’ instances grows quadratically with the number of blocks,
considering outer entanglements reduces the growth of the number of operators’ instances to linear.
Consequently, the state space (i.e. the number of reachable states) can be also reduced. In the
BlocksWorld case, a block cannot be stacked on another block unless it is its initial or goal configuration.
Hence, when the given outer entanglements are applied there are only at most two (other) blocks a
block can be stacked on at any point of the planning process. Otherwise (in the original encoding), a
block can be stacked on n — 1 other blocks (excluding itself) at any point of the planning process.

Outer entanglements are encoded by supplementary static predicates that are added into pre-
conditions of operators involved in the outer entanglement relation. Most of existing planning engines
generate operators’ instances in pre-processing, i.e. they perform grounding. Static predicates are only
useful at this stage; they are useful in filtering unreachable operators’ instances,” however, static
predicates do not provide any valuable information in search, so planners are compiling them away
after grounding. Hence, introducing supplementary static predicates does not increase the number of
atoms planners have to deal with during the search. Reducing the number of actions planners have to
consider during the search reduces the branching factor and thus ‘narrows’ the search space. Moreover,
memory requirements for planners can be often considerably lowered.

However, outer entanglements might cause some actions to become irreversible. For example, if
we allow unstacking blocks only from their initial positions (captured by the entanglement by init
mentioned before), then we cannot recover from a situation where a block becomes eventually
stacked on an ‘incorrect’ block. Also by having a ‘symmetrical’ entanglement by goal between the
operator stack and the predicate on which allows stacking blocks only on their goal position, we
might not recover from a situation where the goal tower of blocks is being built from ‘the middle’.
Hence, outer entanglements may introduce dead-ends which might be detrimental for some
planning techniques, especially those based on local search.

5.2. Reformulating planning tasks

To exploit outer entanglements during the planning process we have to develop a specific planner,
modify an existing one, or we have to reformulate planning tasks in such a way that outer
entanglements are enforced during the search. The last option is planner independent because,
as we will show later, reformulation does not require any features which are not provided within
classical (STRIPS) planning (see Section 3).

Encoding outer entanglements is done by introducing static predicates that eliminate instances
of operators that do not ‘comply’ with these entanglements (for more background details, see
(Chrpa & Bartak, 2009)). Let II be a planning task, / be its initial state and G its goal. Let an operator
o be entangled by init (resp. goal) with a predicate p (o0 and p are defined in the domain model of
IT) in II. Then the task II is reformulated as follows:

(1) Create a predicate p’ (not defined in the domain model of II) having the same arguments as
p and add p’ into the domain model of II.
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(2) Modify the operator o by adding p’ into its precondition. p’ has the same arguments as p
which is in precondition (resp. positive effects) of o.

(3) Create all possible instances of p’ which correspond to instances of p listed in / (resp. G) and
add the instances of p’ to /.

Adding p’, which is in fact a static predicate, into precondition of o causes that instances of o that are
‘prohibited’ by the entanglement become unreachable. Figure 2 depicts the encoding of an entangle-
ment by init between the unstack operator and the predicate on. In our terminology, unstack(?x ?y) refers
to 0, on(?x ?y) to p and stai_on(?x ?y) to p’. Correctness of the reformulation is formally proved as follows.

Proposition 1: Let II be a planning task, o be a planning operator and p be a predicate (o and p are
defined in the domain model of T1) such that o is entangled by init (resp. goal) with p in T1. Let I be a
planning task obtained by reformulating 11 using the previous approach. i’ is a solution plan of IT' if
and only if ' is a solution plan of 11 that satisfies the entanglement conditions (see Definition 4).

Proof. Hereinafter, we will refer to modified o as o’. Adding predicates only into a precondition of an
operator does not affect the result of application of its instances. For each ground substitution &
(mapping variable symbols to constants) it holds that applying £(0’) in some state s (if possible)
results in the same state as applying £(0) in s (0 and o’ have the same variable symbols). From this,
we can observe that if 7’ is a solution plan of I/, then i’ is a solution plan of II. For each ground
substitution ¢ (mapping variable symbols to constants) it holds that £(p') € ' — &(p) €1 or
E(p) el — &(p) € G, respectively (I' is the initial state of IT'). No instance of p’ can be achieved or
deleted during the planning process, since no operator defined in the domain model of II' has p’ in
its positive or negative effects. Hence, for every o's instance a € m’ and p’s corresponding instance
Pgna € pre(a) it is the case that pgng € pre(a) — pgna € I (resp. pgng € pre(a) — pgnd € G). From
this, 7’ also satisfies the entanglement conditions in II (see Definition 4). Also, given that each
instance of p present in / (resp. G) has its ‘twin’, i.e. a corresponding instance of p’ present in /', only
instances of o that violate the entanglement are pruned. Therefore, if 1’ is a solution plan of II that
satisfies the entanglement conditions, then 7’ is a solution plan of IT'.

5.3. Extracting entanglements from training plans

Deciding whether a given outer entanglement holds is generally PSPACE complete as well as
deciding whether the set of outer entanglements hold (as discussed in Section 4.2). Trivial
entanglements, which can be identified easily (see Section 4.3), are not informative and thus not
considered for task reformulation. Therefore, we have to devise an effective approximation tech-
nique for extracting sets of outer entanglements. We assume that tasks having the same domain
model have a similar structure, so the same set of outer entanglements holds in all of them. Hence,
we can select a representative set of simple tasks for each domain model as training tasks, so those
can be solved easily by standard planning engines. Generated training plans, that are the solutions
of these training tasks, are then explored in order to find what entanglements hold in them.

The above approach can be formalised as follows. Let P be a class of planning tasks that has the
same domain model. Let Pr C P be a set of training tasks. In our approximation method, we assume
that ENTp, = ENTp, in other words, a set of outer entanglements valid on training planning tasks is also

(raction unstack
:parameters (?x - block 7y - block)
:precondition (and (on 7x ?y) (clear ?7x) (handempty) (stai_on 7x 7y))
:effect (and (holding ?7x) (clear ?7y)
(not (clear 7x)) (not (handempty)) (not (on ?x 7y)))
)

Figure 2. An example of the encoding of an entanglement by init between the unstack operator and the on predicate.
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valid on the whole class of planning tasks. This assumption is a potential source of incompleteness,
since using a set of outer entanglements that does not hold for some planning tasks may make a task
unsolvable within that reformulation. On the other hand, planning tasks having the same domain
model are of similar structure (e.g. they differ only by number of objects), which is the case of the most
of IPC benchmarks. This provides evidence that selecting a small set of these tasks such that selected
tasks are easy but not trivial, can mitigate the heuristic nature of the method, and thus support the
assumption. A thorough empirical study that also explores these issues is provided in Section 6.

Determining whether a set of outer entanglements holds in all the training plans is often not a
very efficient way to determine a useful set of outer entanglements, as previously discussed in the
literature (Chrpa & Bartdk, 2009). There are two main reasons. First, training plans might contain
redundant actions or very sub-optimal sub-plans which can prevent detecting some useful entan-
glements. Second, there might be several strategies how a task can be solved, where only some of
these lead into discovery of some useful entanglements. For example, in BlocksWorld, we might
‘put aside’ blocks in two different ways: put them on the table, or stack them on other blocks. Only
the former way leads to the discovery of two useful outer entanglements (i.e. unstack is entangled
by init with on and stack is entangled by goal with on). Using optimal planners might alleviate the
issue related to sub-optimal plans but it might be computationally very expensive even for training
tasks. Moreover, using optimal planners might not handle the ‘strategy issue’.

Algorithm 1 Extracting a set of outer entanglements from training plans.

Require: a set of training tasks with corresponding solution plans (training plans), flaw ratio n
Ensure: a set of outer entanglements ENT

1: initialize_ent_arrays(); {create empty arrays entl, entG of size [Ops, Preds]}

2: initialize_op_counter(); {create an empty array counter of size [Ops]}

3: for each training plan m = (ay,...a,) do

4: fori:=1tondo

5 for each p € pre(a;) do

6: if p € then

7: entl[is_inst(a;), is_inst(p)] + +;
8: end if

9:  end for

10: for eachp € eff *(a;) do

11: if p € G then

12: entGlis_inst(a;), is_inst(p)] + +;
13: end if

14:  end for

15:  counterlis_inst(a;)] + +;

16: end for

17: end for

18: ENT = ()

19: for each(o, p) € [Ops,Preds] such that counter(o)>0 do

20: if not trivial ¢/(o,p) and entl[o, pl/counter(o) > 1 — n then
21: ENT = ENT U{e/(0,p)}

22: end if

23: if not trivial eg(0,p) and entG[o, pl/counter(o) > 1 — n then
24:  ENT = ENT U{eg(o,p)}

25: end if

26: end for
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Introducing a flaw ratio n € [0; 1] which is a parameter referring to an allowed percentage of
‘flaws’ in training plans can identify outer entanglements that can be discovered in plans that are
somehow ‘close’ to the training plans. Let n be a flaw ratio, then the outer entanglements are
extracted as follows:

entl[o, p| S

counterfo] — t=n )

e/<07p) <

entGlo, p]

>1-— 2
counter[o] — '7 @

eG(Ovp) A

The method for extracting sets of outer entanglements in training plans is presented in our
previous work (Chrpa & Bartdk, 2009). For every action we check how many times instances of
predicates in its precondition and positive effects, respectively, correspond with atoms in the initial
state and the goal, respectively, of the given training task. This information is then used for
extracting a set of outer entanglements. This idea is elaborated in Algorithm 1. We define an
array counter, which stores information about how many instances of given operators occur in the
training plans, arrays entl, entG, which count how many times the conditions of entanglement by
init or goal are satisfied for pairs of operators and predicates (Lines 3-17). Function is_inst(arg)
returns either an operator if arg (action) is an instance of it or a predicate if arg (atom) is an
instance of it. Then, a set of outer entanglements is extracted according to a given flaw ratio n
(equations (1) and (2)) while ignoring trivial outer entanglements (Lines 18-26).

Algorithm 1 requires linear time with respect to the lengths of given training plans if the
number of atoms in actions’ preconditions and effects is much lower than lengths of training
plans, so it can be bounded by a constant.

Algorithm 2 Extraction of outer entanglements with the flaw ratio.

Require: init-fr (the initial value of flaw ratio), step (a decrement of flaw ratio)
Ensure: reformulated planning tasks

1: generate training plans

2: n = init-fr + step

3: repeat

4:  n=max(0,n — step)

5: extract entanglements by Alg. 1 considering n

6: generate reformulated training tasks

7: until n = 0 or all the reformulated training tasks are solvable
8: generate reformulated (testing) tasks

Introducing the flaw ratio (n) might invalidate the assumption that the extracted set of outer
entanglements (by Algorithm 1) holds for the training tasks. Hence, the assumption must be
verified after the set of outer entanglements is extracted. This idea is elaborated in Algorithm 2.
A value of flaw ratio n is initially set to init-fr+step (Line 2). The main loop (Lines 3-7) iteratively
decreases n by the decrement step (Line 4), extracts a set of outer entanglements by Algorithm 2
(Line 5), reformulates the training tasks according to the approach described in Section 5.2 (Line 6)
and tries to solve these reformulated training tasks. Failing to solve any of the reformulated
training tasks indicates that the extracted set of entanglements does not hold for all the training
tasks (so, we have to continue by going back to Line 3). Clearly, if n = 0 then, the training plans are
also solution plans of the reformulated training tasks.
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6. Experimental evaluation

This section is devoted to the empirical evaluation of the impact of outer entanglements in the
plan generation process. The aims of the experiments are: (i) to analyse the impact of outer
entanglements on state-of-the-art planning engines; (ii) to assess how different training plans
influence extraction of outer entanglements; and (iii) to measure the influence of outer entangle-
ments on grounding, i.e. how reduced is the size of the search space.

6.1. Experimental setup

In order to perform our analysis, we selected a number of planners according to (i) their performance in
the IPCs, and (ii) the variety of techniques they exploit. Selected planners are: Metric-FF (Hoffmann,
2003), LPG-td (Gerevini, Saetti, & Serina, 2003), LAMA (Richter & Westphal, 2010; Richter, Westphal, &
Helmert, 2011), Probe (Lipovetzky & Geffner, 2011; Lipovetzky, Ramirez, Muise, & Geffner, 2014), MpC
(Rintanen, 2012, 2014), Yahsp3 (Vidal, 2014), and Mercury (Domshlak, Hoffmann, & Katz, 2015).

For the empirical evaluation purposes we selected all the domains used in the learning tracks of
IPC-6 and IPC-7; since outer entanglements are automatically extracted domain-specific knowl-
edge, the learning track benchmarks seem to be the most appropriate. This test set is thus
independent, open, and gives a relatively wide coverage.

In each domain, the planning tasks have the same domain model and thus differ only by
planning problem specifications. Henceforth, training problems denote tasks that are used for
learning entanglements, and testing problems denote tasks that are used as benchmarks. In the
learning track of IPC-7 (Coles et al., 2012), a set of training problems is not explicitly provided and
thus the training problems have to be generated by provided problem generators.

In Machine Learning, it is important to have a good quality training set in order to maximise the
outcome of the learning process. From the planning perspective, training plans should capture the
important structural aspects that are generalisable to the whole class of planning tasks. According
to the observation made by Chrpa, Vallati, and Osborne (2013) sets of extracted entanglements
often do not change with increasing number of training problems. Similar observations have been
made when configuring portfolios of planners (NUfiez, Borrajo, & Linares Lépez, 2012). On the other
hand, using very few training problems increases the risk of extracting outer entanglements that
do not generally hold (we might be ‘lucky’ to have a very atypical problem as a training one).
Following these observations, 5 training problems per domain were used. Regarding complexity of
training problems, there are some aspects that should be taken into account. If training plans are
too short, it indicates that their structure might be over-constrained and thus not typical for tasks
in a given class. Consequently, we might extract some outer entanglements that do not hold for
such ‘typical’ tasks. On the other hand, obtaining long training plans might be too time consuming
or even impossible, since planning is computationally very expensive. Hence, we have experimen-
tally observed — by conducting preliminary investigations on a disjoint set of benchmarks, and by
considering results from literature (Chrpa & Bartak, 2009; Chrpa & McCluskey, 2012) - that a
reasonable size for training problems is when the length of their solution plans is at least 20 in
average. With larger number of defined operators in the domain model the length of training plans
should be higher (more operators yield longer solution plans).

The benchmark planners were used to generate training plans. The flaw ratio (1) was initially set to 0.2,
and, in case of any of the training problems became unsolvable after incorporating outer entanglements,’
the flaw ratio was iteratively reduced by the decrement of 0.05 until the set of extracted outer entangle-
ment held for all training problems, or the flaw ratio dropped to 0.0 (for details, see Algorithm 2). Although
in the literature (Chrpa & Bartak, 2009; Chrpa & McCluskey, 2012) the flaw ratio is set to 0.1, we observed on
some preliminary experiments, performed on a small set of benchmarks (not included in the rest of this
experimental analysis) that such a value is too conservative. On the other hand, setting the value above 0.2
led to extraction of outer entanglements that often did not hold in the training problems.
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A CPU-time cutoff of 900 s (15 min, as in learning tracks of IPC) was used for both learning and
testing runs. All the experiments were run on 3.0 Ghz CPU machine with 4GB of RAM. In this
experimental analysis, IPC scores as defined in IPC-7 are used. For a planner C and a problem p,
Time(C, p) is 0 if p is unsolved, and 1/(1 +log;,(T,(C)/T;)), where T, (C) is the CPU time needed by

planner C to solve problem p (if the actual CPU time is less than 1's, then T,(C) = 1, i.e. 1 s is considered
as a minimum CPU time needed to solve any problem) and T is the CPU time needed by the best

considered planner, otherwise. Similarly, Qual(C,p) is 0 if p is unsolved, and N;/N,,(C), where N, (C) is
the cost of the plan, solution of p, obtained by C and Ny, is the minimal cost of the solution plan of p

among all the considered planners, otherwise. The IPC score on a set of problems is given by the sum of
the scores achieved on each considered problem.

6.2. Experimental results: the learning phase

Table 1 shows the different sets of outer entanglements that were extracted by using considered
planners for generating training plans. The planners used for generating training plans are arranged
into sets, where each set contains all the planners that generate the same set of outer entanglements.
Where applicable, the sets are ordered according to the D relation, which denotes the superset
relation between corresponding sets of outer entanglements. For example, in Bw, we have extracted
two different sets of outer entanglements. The first set was extracted from training plans generated by
Probe, the second was extracted from training plans generated by either LAMA or Mercury or Yahsp.
The first set is a superset of the second one. Notice that using training plans generated by either FF or
LPG or MpC has led to an empty set of outer entanglements (i.e. no non-trivial outer entanglements
have been extracted). Hereinafter, a planner-plan set of entanglements will denote a set of outer
entanglements obtained by using training plans extracted by a given planner, i.e. an FF-plan set of
entanglements is obtained by using plans extracted by FF. We have made the following observations:

® no outer entanglements were detected at all in the nPuzzle domain, hence we have omitted
the results from this domain in the rest of the analysis;

¢ in five domains, namely Barman, Rovers, Satellite, Sokoban and Spanner, the sets of outer
entanglements were the same for all the planners;

¢ in Matching-bw and Thoughtful, there were considerable differences among the planners;

e in Parking and Thoughtful, there is no set that contains all the outer entanglements (i.e. there
is not a superset to all the other sets)

Table 1. Sets of extracted outer entanglements according to planners whose training plans were used. V
denotes the set outer entanglements consisting of all the planners. The O relation denotes the superset
relation between corresponding sets of outer entanglements.

Domain Outer Entanglements

Barman A4

Bw {Probe} O {Lama,Mercury,Yahsp}

Depots {FF,Lama,LPG,MpC,Probe}

Gold-m V\{Yahsp} D {Yahsp}

Gripper V\{Yahsp} D {Yahsp}

Matching-Bw {Lama} D {FF,Mercury} D {Lpe} D {Probe}
! {MpC, Yahsp}

Parking {FF}, {Lama}

Rovers \4

Satellite A

Sokoban A

Spanner \4

Thoughtful {Probe} D {FF}, {MpC} D {LPG}, {LAMA}, {Mercury}, {Yahsp}

TPP {FF,LPG,Mercury} O {Lama,MpC,Probe,Yahsp}
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Pruning power of outer entanglements along with numbers of extracted outer entangle-
ments is shown in Table 2. Ratios of instantiated atoms and actions by the Probe planner in
reformulated vs. original problems are presented (e.g. a value of 0.7 means that 70% of atoms/
actions are considered in the reformulated tasks). Notice that Mercury- and Probe-sets in
Thoughtful do not hold for 6 and 4 testing problems, respectively. In these problems, the
reachability check did not reach the goal, so these (reformulated) problems are unsolvable.
Table 2 therefore refers to reduction of the size of problem representation when outer
entanglements are applied.

Remarkably, different outer entanglements have different pruning power. For example, in
Rovers five entanglements prune only about 11% of actions and 5% of atoms, while one entangle-
ment in Bw (set no. ll) prunes about 97% of actions and 94% of atoms.

Table 2. Numbers of entanglements by init (El) and by goal (EG) per set. Ratios of instantiated atoms and actions by the Probe
planner in reformulated vs. original testing problems (in ascending order per domain). V denotes the set consisting of all the
planners.

No. Set El EG Atoms Actions
Barman

I \v 1 1 0.54 0.53
Bw

I {Probe} 1 1 0.06 0.02
Il {Lama,Mercury,Yahsp} 0 1 0.06 0.03
Depots

| {FF,Lama,LPG,MpC,Probe} 2 1 0.28 0.07
Gold-miner

I V\{Yahsp} 3 0 1.00 0.90
Il {Yahsp} 2 0 1.00 1.00
Gripper

[ W\ {Yahsp} 2 1 0.71 0.07
Il {Yahsp} 2 0 1.00 0.54
Matching-bw

| {Lama} 1 4 0.25 0.08
I {FF,Mercury} 0 4 0.25 0.10
11l {LPG} 0 3 0.63 0.44
v {MpC,Yahsp} 0 3 0.63 0.44
v {Probe} 0 2 0.63 0.56
Parking

I {Lama} 1 0 1.00 0.79
Il {FF} 1 0 1.00 0.79
Rovers

I \v 2 3 0.95 0.89
Satellite

| \v 0 1 0.52 0.98
Sokoban

| v 2 0 0.97 0.90
Spanner

I v 1 0 1.00 1.00
Thoughtful

| {Yahsp} 6 0 1.00 0.70
I {FF} 8 0 1.00 0.79
11} {Lama} 5 1 1.00 0.81
v {MpC} 10 0 1.00 0.81
v {LPG} 6 0 1.00 0.92
Vi {Mercury} 7 1 N/A N/A
Vil {Probe} 15 0 N/A N/A
TPP

| {FF,LPG,Mercury} 3 0 0.40 0.03

Il {Lama,MpC,Probe,Yahsp} 2

o

0.40 0.09
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6.3. Experimental results: the testing phase

Table 3 gives us an overview of performance of planners on the original testing problems and
problems reformulated by different sets of outer entanglements we extracted during the
learning phase (see Tables 1 and 2). In particular, the results simulate a ‘competition” between
different encodings for each domain and planner. Coverage denotes how many tasks (out of
30) were solved in the given time-limit (15 min) for each configuration. Remarkably, in Bw,
Gripper, and Matching-Bw, the use of outer entanglements allowed some planners to solve all
30 problems in the given time-limit in spite of the fact that they did not solve any task using
the original encoding. The IPC score gives a relative evaluation that ranges per task from 0, i.e.
the task has not been solved, to 1, i.e. the task has been solved in the smallest CPU-time (or in
1 s) or the solution plan is of the best quality. Hence, if the IPC score is equal (or very close to)
the coverage, then the tasks were solved in (nearly) the smallest time or (nearly) the best
quality among the encodings. For example, in Depots, the | set provides the best results
against the original encoding among almost all the planners.

In summary, in the vast majority of cases, using outer entanglements has positive impact on the
planners’ performance. For example, in Bw, Depots, Matching-bw, Gripper and TPP the impact is
remarkable. Table 4 summarises the results across the planners for each set of outer entanglements
as well as original encodings and ranks them according to achieved score in three categories —
coverage, speed and quality. As it can be seen from Table 2, the sets of outer entanglements are
ordered according to their pruning power, i.e. the set | is the most pruning set of outer entangle-
ments. Also, as Table 1 shows in all the cases, except Parking and Thoughtful, set | contains all the
outer entanglements extracted in a particular domain, i.e. | is a superset of all other sets of outer
entanglements.

In three domains out of 13, namely Barman, Parking and Sokoban, the original encoding
achieved the best overall results, although in Sokoban, the original encoding yielded to worse
coverage. In Thoughtful, the set Ill yielded to the best performance, while the set | unperformed
even the original encoding. In TPP, the set Il was the best in the coverage and quality metrics, while
the set | was the best in the speed metric. In the rest of domains, the set | shows the best
performance according to all the criteria.

Figure 3 shows the coverage performance of the considered planners when exploiting the
original encodings, and the encodings enhanced with the | sets of outer entanglements. Results
are cumulative across all the testing benchmarks and demonstrate that coverage increased
overall for each planner when the | sets of outer entanglements are used. The largest impact
can be observed on the performance of the MpC planner, where the coverage is increased by 125
instances (32.1%). We believe that such an improvement was achieved because outer entangle-
ments reduced, often considerably, memory requirements. On the contrary, Yahsp coverage
performance is less affected by the exploitation of the | sets of outer entanglements: 39 more
instances are solved (10.0%).

6.4. Analysis of the results

The aim of outer entanglements is to (i) eliminate unpromising instances of planning operators,
which, consequently, reduces the branching factor, and (ii) reduce the size of task representation,
which, consequently, can also reduce the size of the state space. Given the planner-independent
nature of outer entanglements, i.e. they can be encoded directly in the planning task, any standard
planning engine can benefit from them. The most significant impact on planners’ performance is
given by outer entanglements in Bw, Depots, Gripper, Matching-bw and TPP. In these domains, the
| sets of outer entanglements had the strongest pruning power, in particular, they eliminated more
than 90% of actions (see Table 2). Also, the number of atoms was apart of the Gripper domain
reduced by at least 60%. The results (see Tables 3 and 4) demonstrate that the performance gain of
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Table 4. Ranking the cumulative results for (O)riginal tasks and reformulated tasks by different sets of outer entanglements in
coverage, and speed and quality IPC score.

Coverage Speed Quality Coverage Speed Quality
Set Count Set Score Set Score Set Count Set Score Set Score
Barman Rovers
0 28 0] 273 0 27.9 | 161 | 160.7 I 160.4
| 27 | 264 | 26.1 0] 144 0 127.7 0 143.1
Bw Satellite
I 208 | 202.3 I 207.9 | 71 | 70.9 I 70.9
Il 199 Il 167.8 Il 119.2 0] 70 (0] 66.6 0 69.9

0 121 0] 534 0 66.2 Sokoban
Depots | 168 0] 147.3 (0] 151.7
| 204 | 203.5 | 2034 0 163 | 146.9 | 149.6
0 81 0] 320 0] 57.1 Spanner
Gold-miner 1/0 60 | 60.0 1/0 60.0
I 210 | 210.0 I 200.7 1/0 60 0 59.9 1/0 60.0
Il 208 Il 197.9 Il 190.9 Thoughtful
0 205 0] 196.9 0 170.8 11l 130 11l 1124 11l 125.1
Gripper Il 102 Il 88.5 Il 95.8
I 93 | 93.0 I 92.8 VI 92 VI 78.9 Vi 824
Il 45 Il 28.6 Il 448 0] 91 1\ 73.3 0 82.1
0 30 0] 16.1 0 27.1 v 89 (0] 72.6 V 81.0
Matching-bw v 84 v 70.2 v 74.5
11l 210 | 209.0 I 208.7 | 82 | 60.8 I 69.3
| 210 Il 189.6 Il 146.9 Vil 61 Vil 49.0 Vil 50.2
v 192 [\ 123.6 v 123.4 TPP
1] 174 1] 115.4 1} 108.4 Il 169 | 166.5 Il 165.7
v 153 v 94.6 v 96.7 | 167 Il 1254 I 158.5
0 93 0] 53.2 0 62.4 0] 80 (0] 373 0 79.2
Parking
0 30 0] 27.0 0 29.3
Il 24 Il 22.3 Il 21.7
| 17 | 15.3 | 17.2
300 T T T T
250 .
'GE:G 200
=
< 150
100 +
50

FF LPG Lama Probe MpC Mercury Yahsp

Original I sets m—

Figure 3. Cumulative coverage performance of the considered planners exploiting the original encodings and the encodings
enhanced with the | sets of outer entanglements, across all the testing benchmarks.
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the planning engines is often considerable. Therefore, outer entanglements learnt in these
domains do efficiently both — eliminating unpromising operators’ instances and (considerably)
reducing the state space.

By analysing the impact of outer entanglements in particular domains, we can see the following.
In Bw and its variant Matching-bw, there are two possibilities how blocks can be temporarily put
aside — putting them on the table, or stacking them on other blocks. Outer entanglements enforce
the former option. This drastically reduces the size of the state space because blocks can be only in
their initial or goal positions, on the table, or being held by the robotic hand. Moreover, tempora-
rily stacking blocks on other (non-goal) blocks introduces further constraints, i.e. a block on which
we temporarily stack another block cannot be moved without taking that other block out. A
possible drawback is in introducing dead-ends. If a stack of blocks is incorrectly built from ‘the
middle’, the planner cannot repair it (it is impossible to unstack blocks from other than initial
configurations) and has to backtrack. However, the results clearly indicate that introducing dead-
ends in these domains does not negatively affect planners’ performance. The Gripper domain
describes the problem of moving balls between rooms by robots with two grippers. Outer
entanglements in this domain prevent to pickup a ball in other than its initial location as well as
to drop the ball in other than its goal location. The planners thus do not have to consider to
temporarily leave balls in non-goal locations, which as the results indicate is beneficial for some
planners. Similar observations can be made in Depots and TPP. Thoughtful is a variant of the well
known freecell card game (Bjarnason, Tadepalli, & Fern, 2007). There are a number of strategies that
can be exploited in order to achieve a goal configuration of cards. Interestingly, each planner
exploited a different strategy while solving training problems which led to extraction of different
sets of outer entanglements most of which are incomparable to each other (see Table 1). As
mentioned before, the sets VI and VIl do not hold for 4 and 6 testing problems, respectively. This
indicates that the training problems were too constrained and that some strategies feasible for
solving them might not generalise well for wider range of (testing) problems. On the bright side,
the set Il brought a considerable performance improvement among the planners (except LPG that
benefited from the VI set). A closer analysis of the IPC speed scores indicates that testing problems
do not unanimously benefit from a single encoding (i.e. there is a gap between coverage and the
IPC speed score). Also, given the discrepancies between learnt sets of entanglements for each
planner (in spite of the fact that training problems were same for all the planners), planners’
‘sensitivity’ might very vary for particular sets of outer entanglements. In such cases determining
the most promising set of entanglements can be done by cross-validating their performances on
several tasks which are more complex than the training ones.

In Barman and Parking, outer entanglements underperformed the original encodings. Table 3
shows that the results are more mixed, i.e. some planners benefit from outer entanglements, some
do not. In Barman, outer entanglements enforce cocktails to be poured only into the ‘goal” shots.
Probe considerably benefits from such a restriction, while it has a very detrimental impact for
Mercury. The reason for the latter seems to be in Mercury’s inefficient handling of situations where
the ‘goal’ shot is not clean while the cocktail is being prepared. Parking, which deals with a
problem of rearranging cars on a parking lot, is a combinatorial domain. The sets of outer
entanglements seem to be beneficial only for some planning techniques and a limited number
of testing problems. Such results point to the fact that despite their reasonable pruning power
(around 50% of actions and atoms were pruned in the Barman domain) outer entanglements can
have detrimental effects on some planning techniques (such as Red-Black heuristics accommo-
dated in the Mercury planner (Domshlak et al., 2015)).

In Gold-miner, Rovers, Satellite, Sokoban and Spanner, outer entanglements slightly outper-
formed the original encodings. In these domains, however, outer entanglements have limited
pruning power and hence their impact on planners’ performance is limited.

In spite of a few cases where outer entanglements have rather detrimental effects on planning
engines, the results demonstrated, as summarised in Figure 3, that the use of outer entanglements
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improves performance of planning engines regardless planning techniques they exploit across a
number of different domains. Hence, outer entanglements can be considered a fruitful technique
to be exploited both in domain-independent and planner-independent fashion.

7. Discussion

This section is devoted to discussion of benefits and drawbacks of outer entanglements and
provide general recommendation for their extraction and use.

7.1. Extracting ‘good’ sets of outer entanglements

The outcome of the outer entanglement learning process depends on training problems and
solution plans of these problems (i.e. training plans). According to the study of Chrpa et al.
(2013) if the number and complexity of training problems, which is determined by length of
solution plans, increase above certain thresholds, the impact on the outcome of the outer
entanglement learning process is negligible. On the other hand, using different planners to
generate training plans might lead to considerably different results.

Our experimental results, where the number of training problems was set to 5 and whose
solution (or training) plans consisted of at least 20 actions in average per domain, have shown that
these thresholds are sufficient for generating sets of outer entanglements that hold also for testing
problems and improve planners’ performance. The only exception has been observed in the
Thoughtful domain, where Mercury- and Probe-sets did not hold for some of the testing problems.
Since the Thoughtful domain is complex (containing more than 20 planning operators), the used
thresholds might be too low. Hence, when setting up the training problems, it is important to
consider complexity of the domain model and adjust the thresholds accordingly, i.e. the number
and complexity of training problems should be higher for more complex domain models.

For generating training plans, we have used 7 different planners. In 5 domains, the extracted
sets of outer entanglements were identical regardless of the used planner. On the other hand, in
Matching-bw and Thoughtful, the extracted sets of outer entanglements considerably differed (for
details, see Tables 1 and 2). Also, the impact of different sets of outer entanglements on planners’
performance often varied considerably (see Tables 3 and 4). Except Parking and Thoughtful, we
were able to identify a set of outer entanglements that subsumes the other sets. Since such a set
has always the strongest pruning power, in our experiments the set was denoted as I. With a few
notable exceptions (e.g. Barman), the | sets outperformed, often considerably, the other sets as well
as the original encodings. In Thoughtful, the Lama-set (set Ill) was the best performing set, while in
Parking, the Lama-set (set I) was the worst performing set. Interestingly, in both cases Lama
generated the best quality training plans. Moreover, the Lama-set in Thoughtful does not have
the strongest pruning power, it is the Yahsp-set (set I) that underperformed even the original
encoding. It should be, however, noted that training plans in Thoughtful generated by Yahsp were
of a low quality (the worst among the planners).

Lessons learnt from analysing the experimental results indicate that (i) poor quality training
plans lead to empty or ‘poor’ sets of outer entanglements, (ii) the best quality training plans do not
necessarily lead to ‘good’ sets of outer entanglements, (iii) sets containing all extracted outer
entanglements tend to be the best performing ones, and (iv) incomparable sets of outer entangle-
ments indicate lack of training data (i.e. a small number and low complexity of training problems).
Notice that the best quality training plans are not necessarily optimal (unless an optimal planner is
used for their extraction). As poor quality training plans we consider those that are at least 50%
longer than the best quality ones. We believe that taking into account these lessons provides a
general guidance for performing effective and efficient outer entanglement learning process.
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7.2. Heuristic nature of the learning method

Because deciding whether an outer entanglement holds in a given planning task is PSPACE complete,
we have developed an approximation method that learns outer entanglements from training plans,
solutions of simple planning tasks. Our method, therefore, follows an assumption that a learnt set of
outer entanglements holds for every task in a given class (or domain). There is, however, no theoretical
guarantee that the assumption will hold for every (non-training) planning task. Although the experi-
ments have demonstrated a strong support for the assumption, in a few cases we have observed that
the assumption did not hold, and to solve a problem the system would have to revert to its original
formulation. Theoretically, after a reformulated task is proved to be unsolvable, the original task has to
be solved (or proven unsolvable too). Such an approach might be practically reasonable only in cases
in which the unsolvability of the reformulated task is proved quickly (e.g. goals are not reachable).
Another possibility to alleviate the heuristic issue is to integrate outer entanglement reformulated
tasks within planning portfolios. Also, an engineer who has developed a domain model might
manually decide whether a learnt set of outer entanglements holds for planning tasks using that
domain model. In cases such as BlocksWorld, it might be easy.

7.3. Optimality

The quality of plans has improved in many cases when outer entanglements were used. Intuitively,
pruning the search space may force planners to find better solution plans. On the other hand, outer
entanglements do not guarantee optimality in general. Strengthening definitions of outer entangle-
ments to guarantee plans optimality is, of course, theoretically possible. Given the complexity results
of ‘normal’ entanglements, we can expect the same for ‘optimal’ entanglements. Using the approx-
imation algorithm for learning outer entanglements on optimal training plans with zero flaw ratio
might extract some useful ‘optimal’ outer entanglements. However, we believe that there is a high risk
of extracting ‘sub-optimal’ outer entanglements that prune optimal solution plans. For example, in
Logistic-like domain, it is often an optimal strategy to pick up packages from their initial locations and
deliver them to their goal locations. This can be captured by outer entanglements. However, if driving
between some locations is very expensive, it might be better to move some packages from other
trucks to one truck which will perform the ‘expensive’ journey. Here, the outer entanglements will
prevent to do so and thus will prune optimal solutions (although the task will remain solvable).

8. Conclusions and future work

In this paper we presented outer entanglements, relations between planning operators and predi-
cates whose instances are in the initial state or the goal. Outer entanglements are used to eliminate
unpromising instances of planning operators and thus reduce branching factor in the state space as
well as the size of problem representation (and, consequently, the size of the search space). To deal
with the intractability of deciding whether a given outer entanglement holds for a given planning task
(see Section 4.2), we used a learning method for extracting ‘domain-specific’ sets of outer entangle-
ments from training plans, solution plans of simple tasks. Outer entanglements can be encoded into
domain models without extending the input language of a planner (see Section 5.2) and, therefore,
they can be understood and exploited as planner-independent knowledge.

The extensive experimental analysis in this paper demonstrates that outer entanglements improve
the planning process considerably within a wide range of competition domains and state-of-the-art
planning engine combinations. Our experiments using 7 state-of-the-art planning engines, and 14
benchmark domain models, have given a good indication of the planner and domain independence,
and the effectiveness of the method: in the overwhelming majority of the cases, outer entanglements
caused a substantial improvement in plan generation speed and solution plan quality.
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We identified several avenues for future research. First, we plan to incorporate outer entangle-
ments into well known planning frameworks such as Fast Downward (Helmert, 2006) or LAPKT
(Ramirez, Lipovetzky, & Muise, 2015) so they can be exploited, for instance, for computing
heuristics. Second, given the encouraging spread of results among sets of planners and domains,
we intend to work towards including an entanglements generating facility as part of a knowledge
engineering workbench. Finally, we plan to extend the concept of outer entanglements for non-
classical planning which will potentially improve performance of real-world planning applications
(preliminary work has been started on this in numerical planning (Chrpa, Scala, & Vallati, 2015a)).

Notes

1. http://ipc.icaps-conference.org.

2. 'Accidental complexity of domain models’ means their inefficient encodings decreasing performance of
planning engines.

3. Learning track benchmarks are more natural, since entanglements extraction phase can be understood as a
learning process.

4. By unreachable operator instances we mean those not applicable at any point of the planning process.

5. By ‘unsolvable” we mean those problems where the planner did not find a solution within the given time limit
of 900 CPU-time seconds.
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Abstract

Macro-operators, macros for short, are a well-known tech-
nique for enhancing performance of planning engines by pro-
viding “short-cuts” in the state space. Existing macro learn-
ing systems usually generate macros from most frequent se-
quences of actions in training plans. Such approach priorities
frequently used sequences of actions over meaningful activi-
ties to be performed for solving planning tasks.

This paper presents a technique that, inspired by resource
locking in critical sections in parallel computing, learns
macros capturing activities in which a limited resource (e.g.,
a robotic hand) is used. In particular, such macros capture
the whole activity in which the resource is “locked” (e.g., the
robotic hand is holding an object) and thus “bridge” states in
which the resource is locked and cannot be used. We also in-
troduce an “aggressive” variant of our technique that removes
original operators superseded by macros from the domain
model. Usefulness of macros is evaluated on several state-
of-the-art planners, and a wide range of benchmarks from the
learning tracks of the 2008 and 2011 editions of the Interna-
tional Planning Competition.

Introduction

Automated Planning, in a nutshell, is about finding a se-
quence of actions whose application in an initial state of the
environment leads to a desired goal state (Ghallab, Nau, and
Traverso 2004). Whereas a lot of effort has been traditionally
given to developing efficient planning engines, usually based
on heuristic search (Bonet and Geffner 2001), another line
of research focuses on increasing efficiency of the planning
process by reformulating the domain knowledge, to obtain
models that are more amenable for automated reasoners.

A very well-known reformulation approach is the gen-
eration of macro-operators, macros for short, that encap-
sulate sequences of (original) planning operators. Macros
are encoded as ordinary planning operators and, hence, they
can be added into domain models such that standard plan-
ning engines can straightforwardly take advantage of them.
Macros, informally speaking, provide ‘“short-cuts” in the
state space and, consequently, planning engines can gen-
erate plans in less number of steps. This comes with the
cost of increased branching factor since macros often have

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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much more instances than ordinary operators and thus their
use might introduce additional overheads as well as larger
memory requirements. Although in theory the use of macros
might reduce complexity of planning (Korf 1985), in prac-
tice macros are considered if their use is frequent (Hof-
mann, Niemueller, and Lakemeyer 2017), their number of
instances is small (Chrpa, Vallati, and McCluskey 2014), or
they address weaknesses of a specific planner (Coles, Fox,
and Smith 2007).

In this paper, we introduce Critical Section Macros. Be-
ing inspired by resource locking in critical section in parallel
computing, these macros capture whole activities in which
a resource is used. For example, a robotic hand manipulates
with objects (e.g. blocks in BlocksWorld, or shaker in Bar-
man). When the robotic hand grasps an object it becomes
“locked”, i.e., no other object can be grasped by that hand,
until the hand releases the object it holds. Hence, Critical
Section Macros aim to capture sequences of operators such
that the first operator locks a resource (e.g. a robotic hand
grasps an object), the last operator releases the resource (e.g.
the robotic hand drops the object), and the intermediate oper-
ators, if any, uses the resource (e.g. shaking a cocktail). From
the technical perspective, Critical Section Macros “bridge”
states in which the resource is locked and cannot be used.
This is thought to be particularly beneficial for techniques
that exploit delete-relaxation (Hoffmann and Nebel 2001)
as they tend to incorrectly assume that a resource can be
used by multiple activities (e.g. a robotic hand holding mul-
tiple objects) and thus provide largely incorrect heuristic es-
timations. As additional contributions, we illustrate how the
proposed reformulation approach can be exploited in an “ag-
gressive” variant, that removes the elementary operators that
are included in the macros, and can be combined with more
traditional techniques for generating macros. The usefulness
of Critical Section Macros, in all the variants depicted above,
is evaluated on several state-of-the-art planners, and a wide
range of benchmarks from learning tracks of the Interna-
tional Planning Competition.

Related Work
Using macros dates back to 1970s and 1980s. RE-
FLECT (Dawson and Sikléssy 1977) builds macro-operators
from pairs of primitive operators that can be succes-
sively applied and share at least one argument. MOR-



RIS (Minton 1988) learns macro-operators from parts of
plans appearing frequently (S-macros) or being potentially
useful despite having low priority (T-macros). Macro Prob-
lem Solver (Korf 1985) learns macros for particular non-
serializable sub-goals (e.g. in Rubik’s cube).

Recent planner-independent techniques aim at improving
performance of any standard planner. MacroFF (Botea et
al. 2005) generates macros according to several pre-defined
rules (e.g., the “locality rule”) that apply on adjacent ac-
tions in training plans. Wizard (Newton et al. 2007) learns
macros from training plans by exploiting genetic program-
ming. Alhossaini and Beck (2013) selects problem-specific
macros from a given pool of macros (hand-coded or gen-
erated by another technique). Dulac et al. (2013) exploits
n-gram algorithm to analyze training plans to learn macros.
DBMP/S (Hofmann, Niemueller, and Lakemeyer 2017) ap-
plies Map Reduce for learning macros from a larger set
of training plans. CAP (Asai and Fukunaga 2015) exploits
component abstraction (introduced by MacroFF) for gener-
ating sub-goal specific macros.

MUM (Chrpa, Vallati, and McCluskey 2014) exploits
“outer entanglements” (Chrpa and McCluskey 2012) as
a heuristics for generating macros with limited number
of instances. BloMa (Chrpa and Siddiqui 2015) exploits
block deordering (Siddiqui and Haslum 2012) for generat-
ing possibly longer macros. Our “critical section” macros
share some characteristics with “block” macros generated
by BloMa. BloMa, however, initially generates a large pool
of macros that is later reduced by applying (strict) frequency
requirements.

Classical Planning

The classical (STRIPS) representation considers static
and fully observable environment, and deterministic and
instantaneous action effects. The environment is de-
scribed by first-order logic predicates defined as p
pred_name(x1,...,T,), where pred_name is a unique
predicate name and zi,...x, are variable symbols.
States are defined as sets of atoms (grounded predi-
cates whose variable symbols are substituted with con-
stants - problem-specific objects). We say that o
(name(o0), pre(0),del(0),add(0)) is a planning operator,
where name(o) op-name(x1,...,x) (op-name is an
unique operator name and x1, ...z are variable symbols
(arguments) appearing in the operator) and pre(0), del(o)
and add(o) are sets of (ungrounded) predicates with vari-
ables taken only from x1, ...z, representing o’s precon-
dition, delete, and add effects respectively. Actions are
grounded instances of planning operators. An action a is ap-
plicable in a state s if and only if pre(a) C s. Application of
a in s (if possible) results in a state (s \ del(a)) U add(a).

A planning domain model D = (P,O) is specified by
a set of predicates (P) and a set of planning operators(O).
A planning task 11 = (D, I,G) is specified via a domain
model (D), initial state (1) and set of goal atoms (G). Given
a planning problem, a plan is a sequence of actions such
that their consecutive application starting in the initial state
results in a state containing all the goal atoms.
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Given a planning task IT, we say that a state s’ is reachable
from a state s if and only if there exists a sequence of actions
such that their consecutive application starting in s results in
s’. We say that an action a; is an achiever for an action a; if
an only if add(a;) N pre(a;) # 0. We also say that actions
a; and a; are independent if and only if del(a;) N (pre(a;) U
add(a;)) = 0 and del(a;) N (pre(a;) U add(a;)) = 0.

Macro-operators

Macros represent sequences of (ordinary) planning opera-
tors. Advantageously, macros can be encoded in the same
form as planning operators (i.e., having a precondition, add
and delete effects). Hence, macros can be added into a do-
main model and thus can be exploited in a planner indepen-
dent way (e.g. encoded in PDDL).

Formally, a macro o;_; is constructed by assembling plan-
ning operators o; and o; (in that order) as follows. Let &
and ¥ be mappings between variable symbols (we need to
appropriately rename variable symbols of 0; and o, to con-
struct o; ;).

o pre(0i,;) = pre(®(0;)) U (pre(¥(o;)) \ add(®(0;)))
o del(os;) = (del(®(01)) \ add(¥(0;))) U del(¥(0,))
o add(o; ;) = (add(®(0;)) \ del(¥(0;))) U add(¥(o;))

Longer macros, i.e., those encapsulating longer sequences
of original planning operators can be constructed iteratively
by the above approach.

For a macro to be sound, no instance of ®(o;) can delete
an atom required by a corresponding instance of ¥(o,), oth-
erwise they cannot be applied consecutively. Whereas it is
obvious that if a predicate deleted by ®(o;) (and not added
back) is the same (both name and variable symbols) as a
predicate in the precondition of ¥(o;) then the macro o; ;
is unsound, another source of macro unsoundness is often
not being even considered in literature. For example, in the
Blocks-World domain, a macro pickup-stack(?x ?y) that
has (clear ?x)(ontable ?x)(clear ?y)(handempty) in its
precondition can be instantiated into pickup-stack(A A) that
is applicable if (clear A)(ontable A)(handempty) is true in
some state. However, actions (pickup A) and stack(A A)
cannot be applied consecutively because (pickup A) deletes
(clear A) which is required by stack(A A). By generaliz-
ing this observation we can see that if some (different) vari-
able symbols are substituted by the same constants, a macro
might become unsound. To avoid such cases, a constraint
requiring different instantiation of affected variable symbols
is added into macro’s precondition (e.g. (not (= ?x ?y)) is
added into pickup-stack(?x ?y)’s precondition).

Critical Section Macros

In parallel computing, critical sections are used to regulate
the access to resources, to guarantee the integrity of the over-
all system by avoiding situations where many different pro-
cesses are concurrently modifying a resource. To prevent
other processes (or threads) to access the resource while it
is in use, the resource is locked at the beginning of the crit-
ical section, then the required operations are made with the
resource by the process that is locking it, and then —at the



end of critical section— the resource is released and is there-
fore available for other processes.

In planning, we can observe that some subsequences of
actions in plans replicate the underlying structure of critical
section, i.e., locking a resource, using it, and releasing it. In
Blocks-World, the robotic hand can be seen as a resource.
When the robotic hand picks-up or unstacks a block it be-
comes “locked”, that is, no other block can be carried by
the robotic hand at that time. When the robotic hand stacks
or puts-down the block it is holding, then the hand is “re-
leased”, that is, it can be used to manipulate other blocks.
A more complicated example can be found in the Barman
domain, in which a robotic barman prepares cocktails. Here,
a critical section activity, for instance, involves grabbing a
shaker (locking robot’s hand), shaking a cocktail, putting the
cocktail to a shot, cleaning the shaker before putting it back
on the table (releasing robot’s hand).

Technically speaking, a free resource, as well as a locked
resource, is represented by corresponding predicates. For ex-
ample, (handfree) represents a free resource (robotic hand)
while (holding ?x) represents a locked resource (robotic
hand carrying a block). Also, corresponding instances of
these predicates must be mutually exclusive (mutex for
short), i.e., no resource can be both free and locked at the
same time.

Definition 1. Let I1 be a planning task and p and q be pred-
icates defined in the domain model of 11. Let ®, U be substi-
tutions mapping variable symbols to variable symbols. We
say that p and q with respect to ® and U are mutex in 11 if
and only if for all ground instances of ®(p) and V(q) it is
the case that they are not both true in all reachable states
from the initial state of T1.

Having mutex predicates p and ¢ that represent a free
and locked resource respectively, is a necessary condition
for recognising “critical section” activities. Also, arguments
of ¢ must be a superset of arguments of p (they can have
the same set of arguments). Arguably, since g represents a
locked resource, it might contain additional arguments re-
ferring to why the resource is locked (e.g. a hand holding an
object), however, it cannot contain less arguments (in order
to recover a corresponding instance of p after releasing the
resource).

Locking and releasing resources is done by specific plan-
ning operators. A planning operator that deletes p and adds a
corresponding variant of ¢, a locker, locks a given resource.
Analogously, a planning operator that deletes ¢ and adds a
corresponding variant of p, a releaser, releases (unlocks) the
given resource. This idea is formalised as follows.

Definition 2. Let Il = (D, I,G) be a problem instance
and D = (P,0) be a domain model. Let p,q € P be
predicates such that p and q with respect to substitutions
&, U are mutex in Il and args(®(p)) C args(¥(q)). We
say that an operator o € O is a p,q-locker if ®(p) €
del(0(0)) and ¥(q) € add(©(0)) (© is a renaming sub-
stitution). We also say that o' € O is a p, q-releaser if
D(q) € del(©'(0')) and ¥ (p) € add(©'(0")) (O is a re-
naming substitution). We also say that 0" € O is a p, q-user
if ®(q) € pre(0”(0")) \ (del(©"(0")) Uadd(©" (0"))) (6"

Algorithm 1 Learning Critical Section Macros from training
plans

1: ¢s < {(p,q,01,0,) | oy € Oyisap,g-locker; o, € O,
is a p, g-releaser}

2: for each (ay,...,a,) in Training_Plans do

3: lr,pairs — {(alvarapgaqy) ‘ (p7 q, OlaOT‘) €
cs;r > lya,ar,pg, qq are instances of o € Oy, 0, €
O,,p, q respectively; p, € del(a;) N add(ar);q, €
add(a;) Ndel(a,)}

4:  for each (a;, ar,pg, qy) € lr_pairs do

5: inma < {ax |l < k < r;qq € pre(ar)} U
{(117 ar}

6: out-ma < {ag |l < k <r;ay € in-ma}

7: ConsiderDependent(in_ma,out_ma)

8: if no “gluing” action added extra argument then

9: 0™ +CreateMacro(in_ma)

10: ConsiderGoal Achieving(o™)

11: AddMacro(mer_db,0™)

12: end if

13:  end for

14: end for

15: FilterUnderrepresentedMacros(mcr_db)

16: function CONSIDERDEPENDENT(in_ma,out_ma)

17:  while 3k : {i| a; € outoma;i < k} = 0 and
{a; | a; € in-ma;i < k;a; is an achiever for ay, or a; is
not independent with a; } = ) do

18: out_-ma < out-ma \ {ay}

19:  end while

20:  while 3k : {j | a; € out-ma;j > k} = 0 and
{a; | a; € in-ma;j > k;ay is an achiever for a; or a;
is not independent with a;, } = () do

21: out_-ma < out_ma \ {ay}
22: end while
23: n_ma < tm_ma U out_ma

24: end function

is a renaming substitution).

The above definition considers one phase single locks.
That is, that resources are locked/released by one operator
(rather than their sequence) and only one lock (i.e., instance
of ¢) is acquired. The definition can be extended to con-
sider multiple-phase and multiple locks, however, for prac-
tical reasons (i.e., such situations are very uncommon if any
in standard benchmarks used in the international planning
competition) and for the sake of clarity we resort to the cases
covered by Definition 2.

Constructing Critical Section Macros

The rationale behind the Critical Section Macros is to bridge
resource use with a single macro. Delete-relaxation (Hoff-
mann and Nebel 2001) is a popular approach for many
state-of-the-art planning engines. Delete-relaxation, roughly
speaking, ignores delete effects of planning operators. Con-
sequently, mutex relations between grounded predicates are
also ignored. In situations of resource locking, the differ-
ence between delete-relaxed approximation and reality can



be considerably large, hence undermining the usefulness of
the heuristic evaluation. For example, in delete-relaxation,
the robotic hand can hold all the blocks at the same time.
As it is apparent, such discrepancies can easily cause local
minima on landscape of heuristic functions based on delete-
relaxation (Hoffmann 2011).

Critical Section Macros encapsulate sequences of oper-
ators such that they start with p, g-lockers and end with
p, g-releasers. For longer sequences, p,g-users and “glu-
ing” operators are present in between. For example, a macro
pickup-stack is a Critical Section Macro consisting of only
a locker (pickup) and a releaser (stack). In Barman, for ex-
ample, a macro grasp-fillshot-leave is a Critical Section
Macro consisting of a locker (grasp), a releaser (leave) and
a user (fillshot). In Gripper, a macro pick-move-drop is a
Critical Section Macro consisting of a locker (pick), a re-
leaser (drop) and a gluing operator (Move).

Algorithm 1 describes the method for learning Crit-
ical Section Macros from training plans. Quadruples
(p,q,0;,0,) (Line 1) are determined by considering
whether each operator deleting p (or ¢) adding a correspond-
ing variant of ¢ (or p), in other words, each operator having
p or q in its effects is either a p, g-locker or p, g releaser.
Also, if corresponding instances of p and ¢ are not simulta-
neously present in initial states of training tasks (and testing
tasks), then p and ¢ are mutex (with respect to correspond-
ing substitutions). For each training plan, we determine all
possible locker/releaser pairs (a;, a,) with corresponding in-
stances of the involved predicates (py, q4) (Line 3). Then, we
iterate through the locker/releaser pairs (Lines 4-13). Be-
sides a; (py, gg-locker) and a,. (pg, g4-releaser) we consider
Dg, Gg-users into a possible macro (Line 5). Other actions
placed in between a; and a, are checked whether they can
be moved away (either before a; or after a,.). This is done by
the ConsiderDependent function. The idea of how interme-
diate actions can be moved away is based on the observation
that: if for two adjacent actions a,a’ in a plan (in this or-
der), it is the case that a and o’ are independent and a is not
an achiever for a’, then a,a’ can be swapped without com-
promising the correctness of the plan (similar approach has
been used by MUM (Chrpa, Vallati, and McCluskey 2014)).
Those actions that cannot be moved away are gluing actions.
If none of the gluing actions introduces an extra argument,
in other words, does not have to reason with additional ob-
jects than the locker, releaser and the user actions (Line 8),
then the action sequence in consideration can be considered
as a macro (Line 9). After the macro is created, it is checked
whether it is goal achieving, i.e., whether some of its add
effects are goal atoms. Goal achieving macros, achieving in-
stances of p that are present in the goal, extend the ordinary
macros by introducing a supplementary static predicate p®,
added into macro’s precondition, that has the same variable
symbols as p in the macro’s add effects but a different name.
Also, a problem-instance is modified such that for each in-
stance of p € G, a corresponding instance of p“ is added
to I. Noteworthy, such a concept is analogous to the use of
outer entanglements (Chrpa and McCluskey 2012).

Macros that are “underrepresented”, i.e., their number in
the “macro database” is below a specified threshold are fil-
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tered out. Underrepresented macros, in a Machine Learn-
ing terminology, are noise in training data. That are, for ex-
ample, problem-specific macros that do not generalize for
a class of planning problems, or macros capturing pecu-
liarities in training plans. Such macros are very unlikely
to be beneficial. Other macro learning techniques such as
MacroFF (Botea et al. 2005) or MUM (Chrpa, Vallati, and
McCluskey 2014) also eliminate underrepresented macros
from the same reason.

For macros that are assembled from the same operators
but differ by being goal achieving, the most restrictive macro
(achieving most goals) is only considered.

Aggressive Approach

Adding (sound) macros into a domain model does not com-
promise completeness. On the other hand, the size of the
(grounded) representation can considerably grow as macros
often have more instances than ordinary operators, due to the
larger number of arguments. Consequently, planners might
suffer with increased memory requirements and with extra
burden in pre-processing.

To mitigate such an issue, original operators that are ef-
fectively replaced by macros can be removed from the do-
main model. Critical Section Macros have a good potential
to replace original operators that operate with particular re-
sources because the activities these macros represent have to
be usually performed either as whole or not at all. For exam-
ple, in Gripper, a Critical Section Macro pick-move-drop
replaces original operators pick and drop (unless some robot
initially holds some ball or it is required that some robot
holds some ball in a goal state).

The aggressive version of our Critical Section Macro ap-
proach consists of the following steps:

1. Generate Critical Section Macros (Algorithm 1) and add
them into the domain model.

. Remove lockers and releasers of each macro from the do-
main model.

. Generate plans for the training tasks with the modified
domain model.

. If some task cannot be solved, then fail (removed original
operators are necessary).

. Otherwise analyse the plans and eventually remove also
those operators whose instances are never used in these
plans.

The aggressive approach can compromise completeness
as it can remove original operators that might be neces-
sary to solve some (non-training) tasks. On the other hand,
the aggressive approach by removing original operators can
(sometimes considerably) reduce the size of the representa-
tion. In the Gripper example, removing the pick and drop
operators prunes out states in which a ball is held by a
robotic gripper and thus considerably reduces the size of
(grounded) representation. The risk of making a task un-
solvable can be alleviated by incorporating aggressive ap-
proaches into portfolios containing conservative compo-
nents (e.g., the original model, a model with macros but con-
taining all original operators).



Combination with other Approaches

Critical Section Macros focus on capturing activities in
which a resource is locked. Other approaches consider
different criteria for macro generation such as frequency
of operators’ ‘“‘consecutivity” or the possible number of
macros’ instances. In particular, “chaining” approaches such
as MacroFF (Botea et al. 2005) or MUM (Chrpa, Vallati,
and McCluskey 2014), which construct macros iteratively,
have a good potential to complement our approach as they
can possibly chain the activities into longer and more useful
macros.

Combining Critical Section Macros with other ap-
proaches (e.g., MUM) can be done straightforwardly. Criti-
cal Section Macros can be generated, as described in the pre-
vious sections, and then added to the domain model. Such
enhanced domain model is then used for the training of a
different macro generation approach. In fact, for the other
macro learning approach, Critical Section Macros can be
considered as original operators, and will be treated as orig-
inal operators. On the other hand, as some macro learning
approaches perform filtering of unpromising macros it might
be useful to consider Critical Section Macros as macros in
certain occasions. In particular, MUM filters out macros that
are replaced by longer macros (e.g. a move-drop macro can
be replaced by the pick-move-drop macro). Also, MUM
uses “entanglements” to eliminate possibly unpromising in-
stances of macros. For such occasions, we consider Critical
Section Macros as macros. In all the remaining cases, Criti-
cal Section Macros are considered as ordinary operators, so
they cannot be filtered out from different reasons.

Experimental Results

The purpose of this experimental analysis is to i) evaluate
planners’ performance on Critical Section macros as well as
their combination with MUM (both conservative and aggres-
sive versions), ii) compare them against related state-of-the-
art techniques, MUM (Chrpa, Vallati, and McCluskey 2014)
and BloMa (Chrpa and Siddiqui 2015) and iii) analyse im-
pact of quality of training plans on generated macros utility .
We considered domains from the learning track of IPC 2008
and 2011.

We have selected 6 state-of-the-art planning engines, ac-
cording to their results in recent IPCs, and to the exploited
planning techniques, namely: LAMA (Richter and West-
phal 2010), Probe (Lipovetzky et al. 2014), MpC (Rintanen
2014), Yahsp3 (Vidal 2014), FDSS 2018 (Seipp and Roger
2018) and Dual BFWS (Lipovetzky et al. 2018).
Evaluation Metrics. Three metrics were used to evaluate
planners’ performance, namely coverage (number of solved
problems), PARIO score and IPC quality score. For each
testing task time limit of 900 seconds and memory limit of
4 GB is applied (as in the learning tracks of IPCs). All the
experiments were conducted on Intel Xeon ES 2.0 Ghz, De-
bian 9.

Penalised Average Runtime (PAR10) score is a metric
usually exploited in machine learning and algorithm con-
figuration techniques. This metric trades off coverage and
runtime for solved problems: if a planner p solves a prob-

7550

lem instance II in time ¢ < T (" = 900s in our case),
then PARI0(p, IT) = ¢, otherwise PARIO(p,II) = 10T (i.e.,
9000s in our case).

IPC quality score is defined as in the learning track of

IPC-7 (Coles et al. 2012) as follows. For an encoding e of
a problem instance II, IPC(I1, e) is O if II is unsolved in e,
and (my; . /m)), where mi . is the cost of the plan of II
in e and my; is the smallest cost of the plan of II in any
considered encodings, otherwise.
Learning. We have considered two methodologies, one that
have been used by MUM (Chrpa, Vallati, and McCluskey
2014) and one that have been used by BloMa (Chrpa and
Siddiqui 2015). For both methodologies, we considered 6
training tasks per each domain such that their plan length
was mostly within 40-80 actions'. Both methodologies con-
sider one training plan per a training task.

The MUM methodology uses the same planner for gen-
erating training plans as for solving testing tasks. In other
words, planners learn macros for themselves (and not for
other planners). This methodology follows an intuition that
most promising knowledge for a given planner can be ex-
tracted by analysing its outputs (plans).

The BloMa methodology, in contrast, selects a planner
which generates, for a given domain, best quality training
plans (e.g. the shortest plans). This methodology follows
an intuition that good quality training plans yield to most
promising knowledge for all planners.

The threshold for “underrepresented” macros was set to 6

(as the number of training tasks). The learning process took
at most several seconds.
Results. The results for domains in which Critical Section
Macros were generated are summarised in Table 1 and 2
for the MUM learning methodology (i.e., a planner learns
for itself) and the BloMa learning methodology (i.e., con-
sidering best quality training plans), respectively. We can
observe that macros learnt by the BloMa methodology per-
form better across the considered domains and planners.
For example, in Parking, Critical Sequence Macros gener-
ated from poor quality training plans capture meaningless
activities (e.g. moveCarToCar-moveCarToCar) while no
macros were generated from the best quality training plans.
Intuitively, better quality training plans carry better informa-
tion that can be exploited by a range of planning engines.

The conservative variant of Critical Section Macros out-
performs BloMa (in PAR10) in about 72% of cases consid-
ering the MUM learning methodology while in about 63%
of cases considering the BloMa learning methodology. With
regards to MUM, the results are mixed, in about 50% of
cases the conservative variant of Critical Section Macros
outperforms MUM (in both methodologies). Combination
of Critical Section Macros and MUM (the conservative ver-
sion) outperforms both MUM and Critical Section Macros in
about 60% of cases (overall). The aggressive versions out-
perform the corresponding conservative versions in about
90% of cases in which the aggressive versions generated

'For the IPC 2011 domains, we used provided problem gener-
ators while for the IPC 2008 domains, we selected the tasks from
the provided sets of “bootstrap” tasks.



Planner || Coverage \ PARIO \ IPC Quality
O/M|B|CICM|JACIACM|l O | M| B ] C|CM|JAC|ACM|] O M| B | C |[CM]AC |ACM
barman
lama 21 -719730730 30 30 [[8428] - [3653[385[86 | IT | 1.8 [[1.7] - [189]26.4129.9[29.9] 29.9
probe 20 - 712 3 24| 23 |[|8427| - |7022|8455|8136(2104|2379 | 1.4 | - |48 | 1.7 |26 (239|228
MpC 0|-1]0]0] 01O 0 [/9000| - {9000 |9000|9000|9000|9000( 00| - |0.0|0.0|0.0/|0.0| 00
yahsp [[O|-|-[0| O | O 0 |/9000| - - 19000 | 9000|9000 | 9000 || 0.0 | - - 10.0]00]0.0 0.0
BFWS [[0|-]0 |3 0 [12] 30 [|9000| - |9000 814890005606 1.2 || 00| - | 0.0 |28 | 0.0 |[12.0]| 29.2
FDSS [[20] - |24|30] 30 [ 30| 30 |[/3234] - |2164]330 166 | 16 | 2.1 ||[17.5] - 123.9]29.3]29.3/29.3| 29.3
bw
lama 28729710 (28729 [28 ] 28 T[] 681 [ 411 [9000] 711 [ 379 | 617 | 616 [[24.5]22.2] 0.0 [22.1]23.4[23.0] 23.0
probe |[|25]| - |30(30| 30 |30 | 30 |/1679| - | 156 | 215 | 195 | 04 | 0.3 |[21.4| - [28.4]27.2|27.1|27.5| 29.9
MpC 0|-]101(30[30 |11 | 18 |/9000| - [9000| 177 | 173 [5700| 3600 || 0.0 | - | 0.0 |12.3|28.7| 3.7 | 16.7
yahsp [|27(24]22/26| 26 | 30| 30 || 948 | 1833|2437 |1239|1227| 0.1 | 0.1 || 5.9 |19.6|16.4|22.4/20.3|27.1| 27.2
BFWS [[3[-]0[0| 0 | O 0 |[8106] - [9000|9000|9000|9000| 9000 3.0 - |0.0]0.0]0.0|0.0]| 0.0
FDSS [/22]120]21]19] 22 | 30| 30 |/2506)|3104 2780|3387 2492 | 11 11 ||18.0]14.9/14.7 14.7|15.1|23.4| 23.4
depots
Jama O7-70T727 0 [30] 30 [[9000] - 7900078417790007 0.4 T 03 [[0.0] - 70.0] I.470.0[29.5]29.9
probe [|30|30(30(30| 30 | 30 | 30 39 | 40 | 21 | 88 | 42 | 0.3 | 0.1 |[26.1]26.4]|27.0/25.8|27.4|28.0| 29.4
MpC 17125| 0 | 15| 24 | 30 | 30 |[3985|1635|9000|4589|1944| 0.4 | 0.1 |[11.7|18.6| 0.0 |11.2|17.7|28.7| 29.8
yahsp [|21| - |12/ 5| 5 [30| 30 [|2809| - |5558|7545|7555| 14 | 0.1 || 23| - | 1.8]0.7 0.7 [27.4| 30.0
BFWS || 9 |15 3 |15] 14 |30 | 30 | 6383|4577 |8108 |4555|4892| 0.1 | 02 || 59| 7.6 | 1.3 | 9.1 | 6.4 |28.1| 28.1
FDSS [[19] - | 0 |14 12 |30 | 30 |[3838| - 190005024 |5602| 0.6 | 0.5 ||189] - | 0.0 |12.7|11.1]27.5| 284
ripper
lama 6 [30717730730 [30[ 30 [[7342] 101 (424271 160 [ 105 | 4.8 T 4.2 ][ 5.6 [29.9716.9]29.9129.9[25.7] 25.7
probe 0/0[0[0| - |[30] 30 |{/9000|9000|9000|9000| - 16 17 |1 00| 00| 00|00 | - 299|299
MpC 0]/0|0[0O| O |30 30 [/9000|9000|9000|9000({9000( 48 | 1.3 || 0.0 | 0.0 | 0.0 | 0.0 | 0.0 {29.7 | 29.8
yahsp [[O[-][0/0| O | O] 30 [|9000| - 9000 9000|9000/9000f 0.2 || 00| - | 0.0 | 0.0 0.0 0.0 300
BFWS || 0|5 |50 | 5 |27 | 27 |/9000|7527|7539 /9000|7527 1372|1382 || 0.0 | 49 | 49 | 0.0 | 49 |26.9]| 26.9
FDSS [0 |14/ 09|13 |30| - 9000 | 5082 | 9000 | 6492 | 5361 | 7.3 - 0.0 139/ 0.0 | 89 |12.9]299| -
matching-bw
Jama 26[30] - [30] 29 [30 [ 30 [[1202] 2.8 - 25 7301 [ 0.1 [ 0.1 [[I83]21.9] - [20.4[20.9[23.4] 29.5
probe ||13]23| 0 |22 23 | - - 5108 2123|9000 | 2434 | 2115| - - 9.7 119.2| 0.0 203 /20.5| - -
MﬁC 0]0]|-126(24| - - 90009000 | - |1294|1885| - - 0.1]0.1| - [227/208| - -
yahsp || 0 [25] - |26| 26 [ 30| 30 [/9000|1523| - |1201|1204| 0.1 | 0.1 || 0.1 |14.0| - |17.3/17.2|22.4]| 29.8
BFWS [ 11|15] 0 (27|29 | 30| 30 || 5748|4604 |9000| 987 | 444 | 0.1 | 0.1 | 8.8 |12.3| 0.0 |21.5(25.2|27.4| 27.5
FDSS ]/30]/30]30]30] 30 | 30| 30 22 120 | 1.8 | 23 | 1.7 | 02 | 0.2 |[22.4|21.4]|21.8/20.4|21.0/24.6| 29.4
arking
lama 217 -T707 -1 -7 - - 2896 - [9000[ - - - - 200 - 70O - - - -
probe 21-10101 010 0 || 8436| - |9000|9000|9000|9000| 9000 2.0 | - |0.0]0.0]0.0|00]| 00
MIEC 5/-1010| - | - - 75391 - 19000{9000| - - - 50| - |00]00/| - - -
yahsp [[O|-]0[O| - | O 0 |[9000| - [9000|9000| - |9000|9000( 00| - |00]00]| - |00/ 00
BFWS (|20 - |O | - | - | - - 3087 - |9000| - - - - 199 - 00| - - - -
FDSS |[10] - |O |- | - | - - 6155 - [9000| - - - - 94| - |00 - - - -
rovers
lama 3073073030730 [30[ 30 [[ I53 [ 134 [ 129 [ 136 [ 116 [ 10T [ 81 [[27.07126.7[26.7128.4]28.7[29.31 29.5
probe (/2912629 (30| 28 | 29 | 29 || 699 |1541| 640 | 400 | 954 | 624 | 620 ||28.1|25.4|28.3|28.9|27.2|28.0| 28.3
MpC 913151714138 4 1651281817602 |7060|7898|6783| 7913 || 8.7 | 2.1 | 2.6 | 6.9 |29 | 6.6 | 2.6
yahsp [|30(30|30/30| 30 | 30 | 30 19 | 19 | 21 | 18 | 18 | 18 19 |/26.7]26.6(26.5|29.628.1|29.2| 29.5
BFWS |[17|12| 1 |19] 16 | - - ||4197]5596 | 8718 | 3590|4449 | - - 16.7111.7| 0.9 |18.2|15.4| - -
FDSS [/30/30]24]30] 30 | 30 | 30 | 372 | 306 |2207 | 354 | 280 | 301 | 274 ||27.4|27.4]21.9]29.1 29.0|28.9| 28.7
sokoban
lama 207 - J21]22]T 19 [ - - 30177 - [2731]24317[3326] - - 1797 - [17.77183]142] - -
probe ||25] - |27[29| 28 | - - 1539 - | 924 | 329 | 631 | - - 21.0| - ]232|235|23.0| - -
MpC 30| - |30(30] 29 | - - 1.3 - 1.0 | 2.7 1303 | - - 27.6| - [28.3(24.5(247| - -
yahsp |[|25| - [25(28| 27 | - - 1527| - | 1577|724 | 966 | - - 17.2| - |13.3|25.6|245| - -
BFWS [|30] - {30(30| 30 | - - 1.2 - 30 | 1.9 | 23 - - 28.5| - 1263|27.8]283]| - -
FDSS |[30] - [30/30| 30 | - - 22 - 13 | 37 | 30 - - 27.3] - ]20.2[24.0]245] - -

Table 1: Coverage, average PAR10 score (in seconds), and IPC quality score of the (O)riginal, (M)UM, (B)LoMa, (C)ritical
Section Marcos, Aggressive Critical Section Macros (AC) and their combination with MUM (CM, ACM respectively) encod-
ings, using the MUM learning methodology. ”-”” denotes that no macros have been generated. Gray indicates cases where C or
CM model allow the planner to outperform the Original, MUM, and BloMa models in terms of PAR10. Light gray is used for
cases where the improvement is achieved only by AC or ACM.

macros and successfully removed the replaced original op-
erators.

Interestingly, in 6 domains (Barman, BlocksWorld, De-
pots, Gripper, Matching-Bw, Rovers), the aggressive vari-
ant (the BIoMA learning methodology) generates Critical
Section Macros that can replace all primitive operators op-
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erating with a resource. Only in Sokoban, original opera-
tors cannot be removed as it renders training tasks unsolv-
able (a macro push-push cannot replace the push oper-
ator). Combination of aggressive Critical Section Macros
with MUM, especially when using the BloMa learning
methodology, leads to further performance boost. In Bar-



Planner || Coverage \ PARIO \ IPC Quality
O/M|B|CICM|JAC|IACM|l O | M| B ] C |CM|JAC|IACM|] O M| B | C |CM]AC |ACM
barman
lama 21 -]14730730[30] 30 [[8428] - [5022[396 [ 85 | II | 1.9 [[ 1.7 ] - [13.9[26.4130.0{30.0] 30.0
probe 2| -124/0(30|30| 30 |/8427| - [2044|9000| 43 231 | 05 || 14| - [22.5]| 0.0 {29.9(29.9| 29.9
MpC 0|-]0[0[30| 1| 30 [/9000| - [9000|9000| 11 [8700| 0.6 || 0.0 | - | 0.0 | 0.0 |30.0| 1.0 | 30.0
yahsp || O | - (29|30 30 30| 30 [|9000| - |442 25303 | 10 | 0.1 || 00| - |21.5/29.130.0(/30.0| 30.0
BFWS || 0| - (30/20| 30 {30| 30 [[9000| - | 49 (3007 22 | 1.8 | 0.1 || 00| - |30.0|18.7/28.2(28.2| 28.2
FDSS [[20] - |25]30] 30 [ 30| 30 |[[3234] - |1820]310 | 152 | 15 | 19 ||17.6] - |249]29.3/29.4(29.4| 294
bw
lama 2871 - 129728729 [28 [ 30 [ 681 - [380 711404616 04 [[153] - [12.1]12.7]13.0]12.8] 30.0
probe [|25| - [29(30| 30 |30 | 30 |[1679| - | 558 | 214|172 | 04 | 03 ||214| - |27.3(27.2|27.0|/27.3|29.9
MpC 0|-]01(30[30|11| 20 |/9000| - [9000| 172 | 168 [5700| 3012 || 0.0 | - | 0.0 | 9.5 |22.0| 2.2 | 20.0
yahsp [|27| - [24/26| 27 [ 30| 30 || 948 | - 1848|1235/ 950 | 0.1 | 0.2 | 44 | - |13.7|18.1|18.5]/20.5| 30.0
BFWS |3 |-|1|1| 3 (30| 30 [|8106| - |8700/8709|8114| 58 | 32 || 06| - | 0.1 |04 1.3 |282] 299
FDSS |[22] - |22|21] 21 |30 | 30 |/2506| - ]2493/2806|2794| 11 | 0.6 |[142] - [10.4/12.0/11.2]16.3| 30.0
depots
lama 07070727 0 [30] 30 []90007900079000]841779000]7 0.5 T 0.3 [[0.0 [ 0.0 70.0 ] I.4 0.0 [29.5] 29.9
probe [|30|30|30(30| 30 | 30 | 30 39 | 38 | 43 | 87 | 37 | 0.3 | 0.1 |[26.2]26.8]26.7|25.8|27.6|28.0| 29.4
MpC 17125|23|14| 24 | 30 | 30 |[3985|1649|2221|4883|1947| 0.4 | 0.1 |[11.7|18.6|17.1|10.6|17.9|28.7| 29.8
yahsp ([21{20(20| 5 | 20 | 30| 30 /2809|3050 3061 |7550/3060| 1.4 | 0.1 || 23|32 |32|0.7 |32 [274]| 30.0
BFWS || 9 |13 |14|15] 15 |30 | 30 | 6383|5180 |4873|4550|4620| 0.1 | 0.1 || 53|93 |9.0 | 7.8 10.8/20.4| 29.7
FDSS [[19]12]13|12| 12 |30 | 30 ||3838|5597 5325|5592 |5601| 0.6 | 0.4 ||189]11.2|12.2]11.0|11.2]27.5| 284
ripper
lama 6 (30730724727 [30[ 30 [[7342] 101 | 103 [1926] 985 | 4.8 | 4.1 ][ 5.6 [30.0730.0124.027.0[25.8] 25.8
probe 0/0[0[0]| O |30]| 30 {/9000|9000|9000 |90009000| 17 17 |1 00| 0.0 | 00| 0.0 | 0.0 (29.9]| 29.9
MpC 0]/0|0[0O| O |30 30 [9000 9000 |9000|9000({9000( 48 | 1.3 || 0.0 | 0.0 | 0.0 | 0.0 | 0.0 {29.7 | 29.8
yahsp (O[O0 [0 |0 | O | O] 30 9000|9000 9000 9000|9000/ 9000 0.2 || 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0
BFWS || 0|5 |50 | 5 |27 | 27 |/9000]|7529 |7526|9000 7525|1371 | 1381 || 0.0 | 49 | 49 | 0.0 | 49 |26.9]| 26.9
FDSS || 0 [15]14|9 | 10 | 30| 30 ][9000]|4802 5081|6493 |6202| 7.2 | 6.4 | 0.0 |149/13.9] 89 | 9.9 |29.9] 29.9
matching-bw
Jama 26[26] 0 [30] 30 [30 [ 30 [[1202]1202]9000] 2.6 | 2.2 [ 0.1 | 0. [[21.2]20.7] 0.0 [25.3725.8[27.4] 27.4
probe |/ 1318| 0 [30| 30 | 30 | 30 | 510836109000 0.7 | 1.5 | 0.1 | 0.1 || 7.1 |11.2] 0.0 |29.0|28.3|28.8| 28.9
MﬁC 0]0|0([25] 17 | 15| 20 {9000 9000 9000 | 1582|3982 (4500|3000 || 0.0 | 0.0 | 0.0 |17.3|13.7| 9.0 | 19.9
yahsp || 0 (28] 0 25|25 (30| 30 [/9000| 639 /9000|1501 |1512| 0.1 | 0.1 || 0.0 [20.9| 0.0 |21.9/20.3|27.7| 27.7
BFWS [[11|15] 0 |27 |29 | 30| 30 |[|5748|4604|9000| 985 | 442 | 0.1 | 0.1 | 8.8 [12.3| 0.0 |21.5]25.2|27.4| 27.5
FDSS [[30]30]15/30| 30 | 30 | 30 22 | 1.8 14505 24 | 19 | 0.1 | 0.1 |[24.2]24.6|/10.0]22.5/23.4|/25.9] 25.9
rovers
lama 3073073030730 [30] 30 [[ 153 [ 123 [ 163 [ 118 ] 91 [ IT0 [ 81 [[26.6]26.2]126.3129.5[29.6[28.8] 29.0
probe (/292312229 | 30 | 28 | 29 || 699 |2392|2789 | 675 | 361 | 907 | 634 | 28.1|22.5|20.8|28.0|29.3|27.0| 28.1
MpC 916|871 71|38 8 [|6512]7333 (6786|7060 |7058|6787| 6788 || 83 | 5.6 | 7.5 | 6.6 | 69 | 6.3 | 6.7
yahsp [[30{30{30(30| 30 | 30| 30 19 | 18 | 17 | 18 | 18 | 18 18 |[26.2/26.6(26.1(29.1(29.8|28.6| 29.3
BFWS ||[17|11| 2 [18| 15 | 21 | 19 | 4197|5881 | 8441 3854|4734 /3016|3615 ||16.7|10.8| 1.9 |17.3|14.4|199| 17.9
FDSS [/30/30]23]30] 30 | 30 | 30 | 372 | 302 |2477 | 354 | 258 | 348 | 248 ||27.4|27.3]20.829.1 |28.9|28.6| 28.7
sokoban
lama 207 - T127227 19 [ - - 30177 - [5414]24317[3326] - - 185] - [9.8I88]14.6] - -
probe [|25| - |27(29| 28 | - - 1539 - | 918 | 329 | 631 | - - 209 - [22.1)24.1|23.1| - -
MpC 30| - [30(30] 30 | - - 1.3 - 1.1 | 2.6 | 47 - - 27.6 - [28.3]24.5(253]| - -
yahsp |[|25| - [26(28| 27 | - - 1527 - |1297| 722 | 965 | - - 17.2| - |13.8|25.6|245| - -
BFWS [|30| - {30(30| 30 | - - 1.2 - 25| 1.8 | 2.2 - - 28.5| - 1263(27.8(283]| - -
FDSS |[30] - |30]26] 29 | - - 22 - 12 [1220] 329 | - - 274] - ]20.3[20.8]|23.6] - -

Table 2: Coverage, average PAR10 score (in seconds), and IPC quality score of the (O)riginal, (M)UM, (B)LoMa, (C)ritical
Section Marcos, Aggressive Critical Section Macros (AC) and their combination with MUM (CM, ACM respectively) encod-
ings, using the BloMa learning methodology. - denotes that no macros have been generated. Gray indicates cases where C or
CM model allow the planner to outperform the Original, MUM, and BloMa models in terms of PAR10. Light gray is used for
cases where the improvement is achieved only by AC or ACM.

man, BlocksWorld, Depots, Gripper, Matching-Bw, there
exists at least one planner that solves each “enhanced” test-
ing task within 1 second in average (that is considerably
better than for the original tasks). Critical Section Macros
are particularly useful in Barman, where we could learn
two “long” macros, one which puts two ingredients into the
shaker and cleans the shot used to fill the shaker, and the
other which shakes the cocktail, pours it into the required
shot and cleans the shaker afterwards. When combined with
MUM, a “supermacro” assembling these two macros to-
gether was generated (hence, a cocktail can be made in
one step). In Rovers, Critical Section Macros capture more
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marginal activities (sampling and dropping rock or soil) and
thus the macros are improving performance marginally.

The IPC quality score indicates that the expectable plan
quality degradation by macro use is marginal (the score is
often close to the coverage). In Bw and Depots, plan quality
even increases when macros are used.

We can observe that if Critical Section Macros capture
more complex activities such as in Barman their impact on
performance tend to be larger. In contrast, if Critical Sec-
tion Macros capture non-frequent activities (i.e., macros are
used a few times in plans) their impact is marginal such as
in Rovers. Replacing all original operators dealing with a re-



source in the aggressive variant usually results in a consider-
able performance improvement. In the conservative variant,
reasoning with such a resource is not completely eliminated
as the original operators remain in the domain model and
hence planning engines might not fully benefit from Critical
Section Macros. Finally, using better quality training plans
leads to more representative macros.

Conclusion

In this paper, we introduced Critical Section Macros that are
inspired by resource locking in critical sections in parallel
computing. Roughly speaking, these macros capture whole
activities in which a resource is locked (e.g., shaking a cock-
tail and cleaning the shaker afterwards). The results have
shown the usefulness of Critical Section Macros, especially
in domains where non-trivial activities can be captured (e.g.
Barman) or where original operators dealing with resources
can be removed (e.g. BlocksWorld, Gripper).

In future, we would like to extend the methods for tempo-
ral planning, since we believe that the nature Critical Section
Macros can capture useful activities also in partially ordered
action sequences common in temporal plans.
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Abstract

In the field of automated planning, the central research
focus is on domain-independent planning engines that
accept planning tasks (domain models and problem
descriptions) in a description language, such as Planning
Domain Definition Language, and return solution plans.
The performance of planning engines can be improved by
gathering additional knowledge about specific planning
domain models/tasks (such as control rules) that can nar-
row the search for a solution plan. Such knowledge is often
learned from training plans and solutions of simple tasks.
Using techniques to reformulate the given planning task
to incorporate additional knowledge, while keeping to the
same input language, allows to exploit off-the-shelf plan-
ning engines. In this paper, we present inner entanglements
that are relations between pairs of operators and predicates
that represent the exclusivity of predicate achievement or
requirement between the given operators. Inner entan-
glements can be encoded into a planner's input language
by transforming the original planning task; hence, plan-
ning engines can exploit them. The contribution of this
paper is to provide an in-depth analysis and evaluation
of inner entanglements, covering theoretical aspects such
as complexity results, and an extensive empirical study
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reproduction in any medium, provided the original work is properly cited.
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using International Planning Competition benchmarks and
state-of-the-art planning engines.

KEYWORDS

classical planning, knowledge representation, machine learning, problem

reformulation

1 | INTRODUCTION

Automated planning is an important research area of artificial intelligence (AI), where an
autonomous entity (eg, a robot) reasons about the way it can act in order to achieve its goals.
Al planning has therefore a great potential for applications where a certain level of autonomy is
required, such as in the Deep Space 1 mission.! Classical planning is a subarea of Al planning
that deals with a static and fully observable environment and where actions have deterministic
and instantaneous effects. Classical planning is, however, intractable (PSPACE-complete).?

In the last few decades, there has been a great deal of activity in the research community
designing planning techniques and planning engines. In 1998, the International Planning Com-
petition (IPC)* was organized and has since been increasingly attracting the attention of the
Al planning community. Due to the IPC, we have the Planning Domain Definition Language
(PDDL),* which is a widely used language for describing planning tasks, and a wide range of
benchmarks that can be used for measuring planners’ performance. Currently, PDDL is supported
by a large number of advanced planning engines. Along with those planning engines, many novel
planning techniques have been proposed, such as heuristic search,* translating planning tasks
into SAT,’ just to mention a few.

The performance of planning engines can be improved by restricting the search space, ie, by
introducing pruning techniques that “cut off ” branches that are unnecessary or redundant. Com-
mutativity pruning eliminates all but one permutation of commutative actions (can be applied in
any order).® Symmetry breaking reuses information about one object to its symmetric “twin” in
such a way that “bad” states of one object can be avoided for its symmetric “twin.”” Reachability
analysis can determine whether the goal is unreachable from a current state.*

Another way how performance of planning engines can be improved is by gathering domain
control knowledge (DCK), ie, additional knowledge about planning tasks indicating how solution
plans would look like. DCK can be expressed, for instance, in the form of control rules,® tempo-
ral logic formulas,’ or decision trees.'® With growing interest in extracting DCK automatically,
emphasis was given on exploiting machine learning techniques that can acquire useful DCK, usu-
ally, by analyzing “training plans,” which are solutions of simple planning tasks. This motivated
the foundation of the learning track in the IPC, which has been organized since 2008. It should be
noted that an approach that learns DCK from relaxed plans (obtained by solving planning tasks
while omitting negative effects of actions)'' won the best learner award at IPC 2008. However,
such types of knowledge often require specific planning engines such as TALplanner'* in the case
of control rules. Alternatively, DCK can be directly encoded into the domain and problem descrip-
tions (usually in PDDL). Such an approach is planner independent; hence, a standard planning
engine can straightforwardly exploit it.

The best-known planning task reformulation technique, macro-operators (“macros”), which
encapsulate sequences of PDDL operators, can be encoded as normal planning operators; hence,

*http://ipc.icaps-conference.org
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they can be easily added into domain models.”**® Abstracting planning tasks by their reformu-
lation in order to reveal their hierarchical structures can mitigate the “accidental complexity” of
their domain models.”7'8

Apart from macros, another type of domain-independent DCK is Entanglements,'**
which represent relations between planning operators and predicates, aiming at eliminating
unpromising alternatives in a planning engine's search space. Technically speaking, entangle-
ments are task specific, ie, relations described by entanglements hold in at least one solution plan
of a given task. Entanglements usually generalize well, that is, a set of entanglements holds for a
class of planning tasks with the same domain model.

Outer entanglements"” are relations between planning operators and predicates whose
instances are present in the initial state or the goal. Inner entanglements,”*' on which we focus
in this paper, are relations of the exclusivity of predicate achievement or requirement between
pairs of operators. Inner entanglements can be encoded in planning tasks, effectively reformulat-
ing them, and thus, they are planner independent. Deciding whether a given inner entanglement
holds in a given planning task is generally intractable (PSPACE-complete) and, thus, as hard as
solving a planning task. Such a theoretical result indicates practical infeasibility of enumerating
entanglements for a given task prior to solving it. Since inner entanglements generalize well as
reported in the literature,”* ie, they are rather domain specific than task specific, for extracting
them, we have exploited the “learning for planning” paradigm, which identifies DCK from a set
of “training” planning tasks. Therefore, inner entanglements can be learned on simple training
tasks, which are easy to solve, and then used for more complex tasks (in the same class) for speed-
ing up the plan generation process. Our initial work on inner entanglements has been reported
in a couple of shorter papers detailing their discovery, use, and effectiveness.**! In this paper, we
integrate and extend our previous work, with

« adetailed description of the encodings of inner entanglements, including formal proofs of their
correctness;

+ a collected summary of the known complexity results and trivial cases where inner entangle-
ments hold;

« case studies in which we investigate the knowledge engineering aspects of (re)using inner
entanglements;

« an analysis of the potential impact of inner entanglements on the planning process;

« an approximation method for extracting entanglements enriched by filtering unpromising
inner entanglements; and

« an extensive empirical study of the impact of inner entanglements in the planning process
using all the domains from the 7th IPC's learning track* and seven state-of-the-art planning
engines based on very different principles.

Although our approximation method for learning inner entanglements does not theoretically
guarantee that the reformulated tasks remain solvable, the main empirical findings from this
paper are that the use of inner entanglements improves the planning process generally through
the considered planner and domain model combinations. In addition, in the experimental scenar-
ios we used, the potential for identification of incorrect inner entanglements stemming from our

T“Accidental complexity of domain models” means that their inefficient encodings decrease the performance of planning
engines.

*Learning track benchmarks are more natural, since the inner-entanglement extraction phase can be understood as a
learning process.
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approximation method for their extraction did not explicitly manifest itself in the results. Using
the “learning for planning” paradigm, ie, learning domain-specific knowledge on a small set of
training tasks, has demonstrated its usefulness in the inner-entanglement case. Noticeably, the
issue of making some reformulated tasks unsolvable can be alleviated (i) by running the plan-
ner on the original task if the reformulated task was unsolved, (ii) by domain engineers who can
verify the correctness of learned inner entanglements, or (iii) by incorporating reformulated tasks
along with the original ones into portfolios such as PbP.*

This paper is organized as follows. After discussing related work, basic terminology is pro-
vided. Then, inner entanglements are introduced. After that, the reformulation of planning tasks
in order to enforce inner entanglements is presented. Then, a theoretical analysis of inner entan-
glements is provided, and an approximation algorithm for extracting inner entanglements is
presented (including the filtering technique for unpromising inner entanglements). After that,
an empirical analysis of the impact of inner entanglements in the planning process is provided.
Finally, we give conclusions and present future avenues of research.

2 | RELATED WORK

Generating DCK, which can be exploited by planning engines, dates back to the 1970s, when
systems such as REFLECT* were developed. Macros are one of the best-known type of DCK in
classical planning, because they can be encoded as normal planning operators and, thus, easily
added into planning domain models."* Macro-FF CA-ED version,** which learns macros through
an analysis of relations between static predicates; Wizard,* which learns macros by genetic algo-
rithms; and BLOMA,*® which exploits a block decomposition technique?* to learn “long” macros,
are good examples of planner-independent macro learning systems. Although macros and inner
entanglements are based on a similar idea, ie, enforcing (primitive) operators to be applied in
certain order, inner entanglements do not require the affected operators to be applied strictly
consecutively, and inner entanglements can be represented in such a way that the number of
operators' instances (after grounding) is not higher than when the original models are consid-
ered. The relation between inner entanglements and macros and how inner entanglements can
be exploited for macro learning has been studied in the work of Chrpa et al.®

A general technique, called commutativity pruning, is used to discard all but one permutation
of commutative (or independent) actions, which do not influence each other and, thus, can be
executed in any order.® Graphplan,* which is one of the best-known planning algorithms, allows
the execution of commutative actions in parallel (in one step). Symmetry breaking is a well-known
technique for pruning unneeded alternatives in the search space. In planning, some objects might
be symmetric, which can be exploited for avoiding alternatives concerning one object that has
been already tried with the object's symmetric “twin.”’

In the spirit of the works of Emerson and Sistla* and Rintanen,*! Pochter et al** present a prun-
ing technique that identifies symmetries by exploring automorphisms in state-transition systems.
This approach has been recently extended for cost-optimal planning.** Motivated by the idea of
partial order-based reduction used in model checking,** Chen and Yao*® introduce an Expansion
Core method, focusing on cost-optimal SAS+ planning,* which, in a node expansion phase (in
the A* search), restricts on relevant domain transition graphs rather than all of them. The idea
of “expansion cores” is extended into strong stubborn sets that guarantee stronger pruning than
“expansion cores.”*” In contrast, inner entanglements prune asymmetrical alternatives. Outer
entanglements' are relations between operators and the initial or goal atoms that aim to prune
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unpromising instances of these operators. Outer and inner entanglements are complementary as
has already been demonstrated in the literature.*®

A recent work, which is, to some extent, similar to inner entanglements, proposes a method
to learn “bad” causal links in order to generate plans of better quality.* In contrast to this
work, inner entanglements aim to capture possibly “good” causal links that are enforced in the
planning process. In addition, “bad” causal links are learned by exploring the differences between
(different) plans solving a single planning task, whereas entanglements are learned by exploring
similarities in structures of solution plans of several planning tasks.

3 | PRELIMINARIES

This section is devoted to introducing the terminology that will be used throughout this paper.

3.1 | Classical planning

Classical planning is concerned with finding a (partially or totally ordered) sequence of actions
transforming the static, deterministic, and fully observable environment from the given initial
state to a desired goal state.*>*

In the classical representation, a planning task consists of a planning domain model and a plan-
ning problem, where the planning domain model describes the environment and defines planning
operators, whereas the planning problem defines concrete objects, an initial state, and a set of
goals. The environment is described by predicates that are specified via a unique identifier and
terms (variable symbols or constants). For example, a predicate at(?t ?p), where at is a unique
identifier and ?t and ?p are variable symbols, denotes that a truck ?tis in a location ?p. Predicates
thus capture general relations between objects.

Definition 1. A planning task is a pair [1 = (Domyy, Proby;), where a planning domain
model Domy; = (Pry, Opsyy) is a pair consisting of a finite set of predicates Py and planning
operators Ops;, and a planning problem Prob;; = (Objsy, I, Grp) is a triple consisting of a
finite set of objects Objsy;, initial state Iy, and goal Gy;.

Let atsyy be the set of all atoms that are formed from the predicates Py by substituting
the objects Objsy; for the predicates’ arguments. In other words, an atom is an instance of a
predicate (in the rest of this paper, when we use the term instance, we mean an instance that
is fully ground). A state is a subset of atsy;, and the initial state I; is a distinguished state. The
goal Gy is a nonempty subset of atsy;, and a goal state is any state that contains the goal Gy;.

Notice that the semantics of a state reflects the full observability of the environment. That is,
that for a state s, atoms present in s are assumed to be true in s, whereas atoms not present in s
are assumed to be false in s.

Planning operators are “modifiers” of the environment. They consist of preconditions, ie, what
must hold prior operators’ application, and effects, ie, what is changed after operators’ application.
Specifically, we distinguish between negative effects, ie, what becomes false, and positive effects,
ie, what becomes true after operators’ application. Actions are instances of planning operators, ie,
operators’ arguments as well as the corresponding variable symbols in operators’ preconditions
and effects are substituted by objects (constants). Planning operators capture general types of
activities that can be performed. Planning operators can be instantiated to actions in order to
capture given activities between concrete objects.
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Definition 2. A planning operator o = (name(0), pre(o), eff ~(0), eff *(0)) is specified such
that name(o) = op_name(x,, ...,X;), Where op_name is a unique identifier and xi, ..., xx
are all the variable symbols (arguments) appearing in the operator, pre(o) is a set of predi-
cates representing an operator's precondition, and eff ~(0) and eff * (o) are sets of predicates
representing an operator's negative and positive effects. Actions are instances of planning
operators that are formed by substituting objects, which are defined in a planning problem,
for operators’ arguments as well as for the corresponding variable symbols in operators’ pre-
conditions and effects. An action a = (pre(a), eff “(a), eff t(a)) is applicable in a state s if and
only if pre(a) C s. The application of a in s, if possible, results in a state (s\eff ~(a)) U eff " (a).

A solution of a planning task is a sequence of actions transforming the environment from the
given initial state into a goal state.

Definition 3. A plan is a sequence of actions. A plan is a solution of a planning task I, a
solution plan of IT in other words, if and only if a consecutive application of the actions from
the plan starting in the initial state of I results in the goal state of I1.

Determining equality of predicates (needed for set operations such as intersection) is done
such that predicates are equal if they have the same name and their arguments (including their
order) are identical. Hence, an expression p € XNY, where X and Y are sets of predicates, means
that p has the same name and arguments (in the same order) in both X and Y. A predicate p is
a variant of a predicate ¢’ if, by renaming p's variable symbols (arguments), we get a predicate
equal to q.

3.2 | Relations between actions and operators

By analyzing the preconditions and effects of actions or operators, we can identify how these
influence each other. As discussed in Chapman's earlier work,* an action having some atom in
its positive effects is a possible achiever of that atom for some other action having that atom in
its precondition. The opposite for being a possible achiever is being a possible clobberer (below
referred to simply as clobberer), which means that action a; deletes atom(s) that g; has in its
precondition. Note that being a clobberer refers to the notion of “threat” in plan-space planning.*

Definition 4. Let g; and g; be actions. We say that a; possibly achieves an atom p for q; if
and only if p € eff*(a;) N pre(a;). We say that a; is a possible clobberer for q; if and only if
eff ~(a;) N pre(a;) # .

Notions of a possible achiever and clobberer can be easily extended for planning operators.

Definition 5. Leto; and o; be planning operators and p be a predicate. We say that o; possibly
achieves a predicate p for o; if and only if there exist a;, a;, and p, instances of o;, 0;, and p,
respectively, such that a; possibly achieves p, for a;, ie, py € eff "(a;) N pre(a;). Similarly, we
say that o; is a possible clobberer for o; if and only if there exist a; and g;, instances of o; and
oj, respectively, such that eff ~(a;) N pre(a;) # 9.

In every solution plan, every atom in a precondition of an action q; is (necessarily) achieved
in the sense that there exists a possible achiever action q; for the atom before a; and that there is
no action in between a; and a;, which deletes the atom (here, the initial state can be viewed as

$We can also say that p is unifiable with g.



CHRPA ET AL. WI LEYm %::ﬁmm“‘ 401

the initial action that only adds atoms, and the goal can be viewed as the final action that only
has precondition atoms). Notice that being an achiever relates to the notion of “causal link” in
plan-space planning.

Definition 6. Let (a;,a,, ...,a,) be a solution plan of some planning task. We say that an
action a; achieves an atom p for an action a; if and only ifi < j,p € eff*(a;) N pre(a;) and
p ¢ eff (ax) foreveryk € {i + 1, ...,j — 1}.

Of course, an action can achieve an atom that then appears in preconditions of several fol-
lowing actions. Likewise, several actions can achieve an atom for one action. For the purpose of
defining inner entanglements, we have to introduce special cases of the achiever relation. If a;
achieves an atom required by a; and no action in between them also achieves the atom, then a;
is the primary achiever of the atom. In another case, where an action a; achieves an atom for
another action a; and no other action in between has that atom in its precondition or its positive
effects, we say that g; first achieves the atom required by q;. If g; first achieves an atom, it follows
that it is also the primary achiever of it.

Definition 7. Let (a;,a,, ...,a,) be a solution plan of some planning task. We say that an
action g; is the primary achiever of an atom p for an action qg; if and only if a; achieves p for
aj, and p & eff "(ax) Ueff (ar) foreveryk € {i + 1, ...,j — 1}.

We also say that an action a; first achieves an atom p required by an action g; if and only
if a; achieves p for a;, and p & eff *(ax) U pre(ax) U eff "(ay) foreveryk € {i + 1, ...,j — 1}.

3.3 | BlocksWorld domain

We briefly introduce the BlocksWorld domain,** which is one of the best-known planning
domains, that will be used as a running example in this paper.

The BlocksWorld domain describes an environment where we have a finite number of blocks,
one table with unlimited space, and one robotic hand. A block can be either stacked on another
block, placed on the table, or held by the robotic hand. No block can be stacked on more than one
block at the same time as well as no more than one block can be stacked on a block at the same
time. The robotic hand can hold, at most, one block. The BlocksWorld domain consists of four
operators: pickup(?x) refers to a situation when the robotic hand picks up a block ?x from the
table, putdown(?x) refers to a situation when the robotic hand puts down the block ?xitis holding
on the table, unstack(?x ?y) refers to a situation when the robotic hand unstacks a “clear” block
?x from a block ?y, and stack(?x ?y) refers to a situation when the robotic hand stacks the block
?x it is holding to a “clear” block ?y. As mentioned before, planning operators are instantiated
by substituting constants (objects) for variable symbols that appear in operators' definition. For
example, putdown(?x) can be instantiated by substituting a, which refers to a concrete block “a,”
for ?x. We then obtain an action putdown(a) that requires the robotic hand to hold the block a,
and the effect is that the block a is placed on the table, the block a is clear (no other block is
stacked on it), and the hand no longer holds it.

4 | INNER ENTANGLEMENTS

Inner entanglements are relations between pairs of planning operators and predicates. Inner
entanglements, informally speaking, represent the exclusivity of “achieving” or “requiring”
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predicates between operators. That is, that for a given planning task, there exists at least one solu-
tion plan where a given inner entanglement holds. In other words, considering that inner entan-
glement while solving the task will not prune all possible solution plans. Typically, a predicate
can be achieved by more than one operator, as well as more than one operator might require the
same predicate. However, it is often the case that some combinations “achiever-requirer” are not
useful.

Specifically, we have two types of inner entanglements, entanglements by succeeding and
entanglements by preceding. An entanglement by succeeding represents the exclusivity of achieve-
ment of a predicate p by an operator o; for an operator o;. For a planning task, where such an
entanglement holds, there exists a solution plan such that instances of o; first achieve instances
of p exclusively only for instances of 0;. An entanglement by preceding, on the other hand, rep-
resents the exclusivity of requirement of a predicate p by an operator o; from an operator o;. For
a planning task, where such an entanglement holds, there exists a solution plan such that only
instances of o; are exclusive primary achievers of instances of p for instances of o;.

For example, in the BlocksWorld domain, it may be observed that operator pickup(?x) pos-
sibly achieves predicate holding(?x) for operators stack(?x ?y) and putdown(?x). Similarly, it
may be observed that predicate holding(?x) is possibly achieved for operator putdown(?x) by
operators unstack(?x ?y) and pickup(?x). We may require that every instance of pickup(?x) first
achieves an instance of holding(?x) exclusively for a corresponding instance of stack(?x ?y)
since putdown(?x) would just reverse the effects of pickup(?x) (see Figure 1, right). In other
words, pickup(?x) is entangled by succeeding stack(?x ?y) with holding(?x). Analogously, we
may require that for every instance of putdown(?x), a corresponding instance of unstack(?x ?y) is
the exclusive primary achiever of an instance of holding(?x) because, again, putdown(?x) would
just reverse the effects of pickup(?x) (see Figure 1, left). In other words, putdown(?x) is entangled
by preceding unstack(?x ?y) with holding(?x).

Roughly speaking, inner entanglements provide restrictions to the plan generation process
since they allow only some combinations of action sequences while not affecting the solvabil-
ity of considered planning tasks. Whereas the BlocksWorld example (see Figure 1) indicates one
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FIGURE1 Motivating example for inner entanglements, concretely entanglements by preceding (left) and by
succeeding (right). Whereas holding(B) can be achieved by either pickup(B) or unstack(B A), for putdown(B)
requiring holding(B), only unstack(B A) is useful. Similarly, whereas holding(B) is required by either
putdown(B) or stack(B A), only stack(B A) is useful if holding(B) is achieved by pickup(B)
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possible nature of inner entanglements, in the general case, the reason why given inner entangle-
ments hold in a given domain model might vary. Hence, our definition of inner entanglements
does not explicitly capture their nature and “maintains” only solvability of considered planning
tasks.

We distinguish two variants of them, namely, strict and nonstrict. The strict variant captures
the exclusivity of predicate achievement strictly between involved operators, whereas the non-
strict variant allows situations where some instances of the predicates are present in the initial
state or can be present in the goal state. For example, if the initial state of some planning task
contains an atom holding(a), then the strict version of the above entanglement by preceding pre-
vents applying putdown(a) in the initial state, whereas the nonstrict variant of the entanglement
allows to apply putdown(a) in the initial state. Both strict and nonstrict variants of inner entan-
glements are defined as follows. Notice that we assume that operators 0; and o, share arguments
that are relevant to p. For example, pickup(?x) and stack(?x ?y) share the argument ?X, since it
is relevant for holding(?x).

Definition 8. Let I1 be a planning task. Let 0; and o0, be planning operators and p be a predi-
cate (01, 0, and p are defined in the domain model of IT) such that p € eff ™ (01) N pre(o,). We
say that o, is strictly entangled by succeeding o, with p in IT if and only if there exists a
solution plan z of I, and for each a; € = being an instance of 0;, there existsa, € z beingan
instance of 0, such that a, first achieves an atom pg,q, where pgyq is an instance of p, required
by a,.

We also say that o, is strictly entangled by preceding o, with p in IT if and only if there
exists a solution plan z of I1, and for each a, € # being an instance of 0, there existsa; € =
being an instance of o, such that a, is the primary achiever of an atom pg,4, where p g4 is an
instance of p, for a,.

Henceforth, strict entanglements by preceding and succeeding are denoted as strict inner
entanglements.

Definition 9. Let IT be a planning task. Let 0; and o, be planning operators and p be a
predicate (01,0,, and p are defined in the planning domain model of IT) such that p €
eff t(01) N pre(o,). We say that o; is nonstrictly entangled by succeeding 0, with p in I1
if and only if there exists a solution plan = of I1, and for every a;,a, € # such that a; first
achieves an atom pg,q4, Where pgy,q is an instance of p, required by a,; it holds that if a; is an
instance of 0;, then a, is an instance of 0,.

We also say that o, is nonstrictly entangled by preceding o, with p in II if and only
if there exists a solution plan z of I, and for every a;,a, € = such that a; is the primary
achiever of an atom p g4, Where py,q is an instance of p, for a,; it holds that if a, is an instance
of 0,, then a; is an instance of o;.

Henceforth, nonstrict entanglements by preceding and succeeding are denoted as non-
strict inner entanglements.

Inner entanglements (both strict and nonstrict) can be used for pruning some unpromis-
ing alternatives in the search space, in other words, reducing the branching factor. Notice that
a predicate involved in some inner entanglement relation might be true for some time after it
is achieved; in other words, the predicate does not have to be “used” immediately after being
achieved. Since the previous example of BlocksWorld might be confusing in this sense (the
predicate holding(?x) is immediately “used” after being achieved), we provide another example
in a modification of the BlocksWorld domain that considers more than one robotic hand. Let
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pickup(?h ?x) be strictly entangled by succeeding stack(?h ?x ?y) with holding(?h ?x) in some
planning task. If action pickup(h1 a) is applied at step i, then action stack(h1 a ?y) (any other
block than a can be substituted for ?y) must be applied at step j such that j > i. The entangle-
ment prohibits applying action putdown(h1 a) at step k such thati < k < j. On the other hand,
other actions that utilize different robotic hands than h1 can be applied in between the ith and the
jth step.

A single inner entanglement requires only the existence of one solution plan of the given
planning task where the entanglement conditions are met. However, different entanglements
might hold in different solution plans. To consider multiple (different) inner entanglements rather
than a single one, there must exist a solution plan in which all considered entanglements hold.
Moreover, in practice, inner entanglements are domain specific or class of problems specific rather
than problem specific. The above definition can be extended to reflect these aspects.

Definition 10. Let I1 be a planning task. Let ENTy; be a set of inner entanglements, where
each element of ENTY; is specified by a type of the inner-entanglement relation and involved
a pair of planning operators and predicate. We say that a set of inner entanglements ENTy
holds for ITif and only if there exists a solution plan of IT in which all the entanglements from
ENTy hold.

Similarly, ENT» holds for a set of planning tasks P sharing the same planning domain
model if and only if ENTp = (., ENTTr.

Both the BlocksWorld related entanglements hold for every BlocksWorld planning task. By
adding two more inner entanglements, namely, unstack(?x ?y) to be (strictly) entangled by suc-
ceeding putdown(?X) and stack(?x ?y) to be (strictly) entangled by preceding pickup(?X), we
restrict to solution plans where blocks are always put down on the table after being unstacked
from other blocks and, eventually, picked up from the table and stacked on some other blocks.
This might be useful since it introduces more restrictions on decisions the planner has to take
during the search. With unlimited table space, these inner entanglements hold for every task.

5 | REFORMULATING PLANNING TASKS

To exploit inner entanglements during the planning process, we have to develop a specific planner,
modify an existing one, or reformulate a planning task in such a way that the entanglements hold
in every solution plan retrieved by a planner. The last option is planner independent: in fact, it
involves the reformulation of domain and problem models using features of the PDDL (actually,
STRIPS) language (see Section 3).

Hence, after inner entanglements are identified, we encode them directly into the planning
task. The reformulated planning task is passed to a generic planning engine in order to generate
a solution plan, which is also a solution plan of the original planning task. Encoding of inner
entanglements as we show in this section prevents planning engines from exploring branches of
the search space that violate these entanglements. In other words, reformulated tasks “narrow”
the search space for planning engines for improving their performance.

Encoding inner entanglements is done by introducing supplementary predicates, “locks,” that
ensure that we cannot apply certain instances of operators in some stage of the planning process
in order to enforce inner entanglements. Let I1 be a planning task and Ops be the set of operators
defined in the domain model of I1. Let an operator 0; € Ops be (strictly or nonstrictly) entangled
by a succeeding operator o, € Ops with a predicate p (defined in the domain model of IT) in I1.
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(raction pick-up
:parameters (?x — block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable ?x)) (not (clear 7?x)) (not (handempty))
(holding ?x) (not (pick-up_stack_succ_holding ?x)))
)
(:action put-down
:parameters (?x — block)
:precondition (and (holding ?x) (pick-up_stack_succ_holding ?x))
reffect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))
)
(:action stack
:parameters (?x - block ?y - Dblock)
:precondition (and (holding ?x) (clear ?y))
teffect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)
(handempty) (on ?x ?y) (pick-up_stack_succ_holding ?x))
)
(:action unstack
:parameters (?x — block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (clear ?y)
(not (clear ?x)) (not (handempty))
(not (on ?x ?y)) (pick-up_stack_succ_holding ?x))

FIGURE 2 An example of the BlocksWorld operators reformulated by an entanglement by succeeding
(between pickup, stack, and holding)

Then, IT is reformulated as follows.

(1) Create a predicate p’ (not defined in the domain model of IT) having the same arguments as
p and add p’ to the domain model of TI.

(2) Modify the operator o, by adding p’ into its negative effects. p’ has the same arguments as
p, which is in the positive effects of o;.

(3) Modify the operator o0, by adding p’ into its positive effects. p’ has the same arguments as p,
which is in the precondition of o,.

(4) Modify all operators 0 € Opssuch thato # 0, and having a variant of p in pre(o) by adding
p’ into its precondition. p’ has the same arguments as the variant of p.

(5) Modify all operatorso € Opssuchthato # o0; and having a variant of p in eff * (0) by adding
p’ into its positive effects. p’ has the same arguments as the variant of p.

(6) Add all possible instances of p’ into the initial state of I, and if the entanglement is strict,
then also to the goal of I1.

Figure 2 depicts the BlocksWorld operators encoding an entanglement by succeeding, con-
cretely that pick-up(?x) is (strictly) entangled by succeeding stack(?x ?y) with holding(?x). In
our terminology, pick-up(?x) refers to o,, stack(?x ?y) refers to o,, holding(?x) refers to p, and
pick-up_stack_succ_holding(?x) refers to p’. The correctness of the reformulation is proved as
follows.

Proposition 1. LetI1be a planning task and Ops be the set of planning operators defined in the
domain model of I1. Let 01,0, € Ops be planning operators and p be a predicate (p is defined
in the domain model of T1) such that o, is strictly (respectively, nonstrictly) entangled by suc-
ceeding o, with p inI1. Let Il be a planning task obtained by reformulating I1 using the previous
approach. r’ is a solution plan of II' if and only if n’ is a solution plan of T1 that satisfies the
entanglement conditions (see Definitions 8 and 9).
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Proof. Hereinafter, the modified operators o, and o, will be denoted as ojand 0),. The strict
entanglement by succeeding (see Definition 8) says that if an instance of 0; that achieves an
atom pg,g that is an instance of p is applied at step i and a corresponding instance of o, that
requires pgnq is applied at step j, or never in the case of the nonstrict entanglement, soj = oo,
then no corresponding instance of any operator other than o, having pg,q4 in its precondition
can be applied at step k unless py,q is re-achieved by any operator different than o, at step L.
Formally speaking,j > iand,ifi < k < j,theni <[l < k < j.

Applying an instance of o] results in removing an atom p’g o thatis aninstance of p’ having
the same arguments as pgnq (notice that all the possible instances of p’ are present in the initial
state of IT"). From step 4 of the reformulation, p’ is put into the precondition of any operator
that has p in its precondition (both p and p’ have the same arguments) except 0,. Hence,
only instances of o/, having pgyq in its precondition can be applied, since actions having pgnq
in their precondition that are not instances of 0, have p’g g 10 their preconditions as well. If
0/, is applied or p is re-achieved by any other (modified) operator than o} (see step 5 of the
reformulation), then a corresponding instance of p’ is re-achieved as well.

For the strict version of the entanglement, all the instances of p’ must be present in the
goal state; hence, o), must be applied at some point after o}. For the nonstrict version of the
entanglement, there is no need to re-achieve all the instances of p’; hence, og does not have to
be applied at some point after o} in order to “use” the corresponding instance of p achieved

by o}; however, no other operator can “use” it.
Straightforwardly, if z’ is a solution plan of IT’, then #’ is a solution plan of IT that satis-

fies the entanglement conditions. The provided reformulation prevents only the application
of operators in Ops\{o,} having p in their precondition after o; achieved p. Therefore, if
7’ is a solution plan of IT that satisfies the entanglement conditions, then z’ is a solution
plan of IT'. O
Similarly, we use supplementary predicates, “locks,” to enforce entanglements by preceding.
Let IT be a planning task and Ops be the set of operators defined in the domain model of I1. Let an
operator o, € Ops be (strictly or nonstrictly) entangled by a preceding operator o; € Ops with a
predicate p (defined in the domain model of IT) in IT. Then, IT is reformulated as follows.

(1) Create a predicate p’ (not defined in the domain model of IT) having the same arguments as
p and add p’ to the domain model of TI.
(2) Modify the operator o; by adding p’ into its positive effects. p’ has the same arguments as p,

which is in the positive effects of o;.

(3) Modify the operator o, by adding p’ into its precondition. p’ has the same arguments as p,
which is in the precondition of o,.

(4) Modify operators o € Ops such that o # o0; and having a variant of p in eff *(o0) by adding
p’ into its negative effects (p’ has the same arguments as the variant of p).

(5) Ifthe entanglement is nonstrict, then add all possible instances of p’ to the initial state of .

Figure 3 depicts the BlocksWorld operators encoding an entanglement by preceding, con-
cretely that put-down(?x) is (strictly) entangled by preceding unstack(?x ?y) with holding(?x).
In our terminology, put-down(?x) refers to o,, unstack(?x ?y) refers to o;, holding(?x) refers to
p, and put-down_unstack_prec_holding(?x) refers to p’. The correctness of the reformulation is
proved as follows.

Proposition 2. Let Il be a planning task and Ops be the set of planning operators defined in the
domain model of T1. Let 01,0, € Ops be planning operators and p be a predicate (p is defined in
the domain model of T1) such that o, is strictly (respectively, nonstrictly) entangled by preceding 0,
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(:action pick-up

:parameters ( ?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable 7?7x)) (not (clear ?x)) (not (handempty))

(holding ?x) (not (put-down_unstack_prec_holding ?x)))
)

(:action put-down

:parameters ( ?x - block)
:precondition (and (holding ?x) (put-down_unstack_prec_holding ?x))
reffect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))

)

(:action stack

:parameters ( ?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
reffect (and (not (holding ?7x)) (not (clear ?y)) (clear ?x)

(handempty) (on ?x ?y))
)

(:action unstack

:parameters ( ?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
reffect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty))

(not (on ?x ?y)) (put-down_unstack_prec_holding ?x))

)

FIGURE 3 An example of the BlocksWorld operators reformulated by an entanglement by preceding (between
unstack, put-down, and holding)

with p inIL Let Il be a planning task obtained by reformulating I1 using the previous approach.
7' is a solution plan of 11 if and only if z’ is a solution plan of TI that satisfies the entanglement
conditions (see Definitions 8 and 9).

Proof. Hereinafter, the modified operators o, and o, will be denoted as ojand 0),. The strict
version of entanglement by preceding (see Definition 8) says that if an instance of 0, requiring
an atom pg,g that is an instance of p is applied at step j and a corresponding instance of 0, is
applied at step i achieving pguq (i < j), then no corresponding instance of any operator other
than o, having pg,q in its positive effects can be applied at step k such thati < k < j.

Adding p’ into 0,'s precondition results in the situation that any instance of o} can be
applied only after the corresponding instance of o since p’ is in 0/'s positive effects. In par-
ticular, an instance of o} that achieves an atom py,4 (an instance of p) achieves also p’g o that
is an instance of p’ having the same arguments as pg,q. The instance of 0’2 that requires pgnq
requires p’g g aswell. If pg,q is re-achieved by an instance of other (modified) operators than of,
then p’g g s removed (step 4 of the reformulation). Then, 0/, requiring pgnq cannot be applied,
since p’g .; Will not be true.

For the strict version of the entanglement, no instance of p’ is present in the initial state;
hence, o] must be applied at some point before 0’,. For the nonstrict version of the entangle-
ment, all the instances of p’ are present in the initial state; hence, o/ does not have to be applied
after o;; however, no other (modified) operator can re-achieve an instance p in between, since,
otherwise, the corresponding instance of p’ is removed.

Straightforwardly, if z’ is a solution plan of IT’, then #’ is a solution plan of IT that satisfies
the entanglement conditions. The provided reformulation prevents only the application of o,
having p in their precondition unless o0; achieved p. Therefore, if 7’ is a solution plan of IT that
satisfies the entanglement conditions, then 7’ is a solution plan of IT'. O
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(:action pick-up

:parameters ( ?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
reffect (and (not (ontable 7?7x)) (not (clear ?x)) (not (handempty))

(stack_pick-up_both_holding ?x) (not (holding ?x)))
)

(:action put-down

:parameters ( ?x - block)
:precondition (and (holding ?x))
reffect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))

)

(:action stack

:parameters ( ?x - block ?y — block)

:precondition (and (stack_pick-up_both_holding ?x) (clear ?y))

reffect (and (not (stack_pick-up_both_holding ?x)) (not (clear ?vy))
(clear ?x) (handempty) (on ?x ?y))

)

(:action unstack

:parameters ( ?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
ceffect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty))

(not (on ?x ?y)) (not (stack_pick-up_both_holding ?x)))
)

FIGURE 4 An example of the BlocksWorld operators reformulated by both entanglements by preceding and
succeeding between pick-up, stack, and holding

There are also situations where both the (strict) entanglements by preceding and succeed-
ing hold for operators o; and o, and a predicate p. Of course, we can reformulate the problem
according to previous reformulation approaches. On the other hand, it requires two supplemen-
tary predicates, and thus, the process might not be very efficient. Given the fact that the exclusivity
of achievement and requirement of p is mutual between 0, and 0,, we can replace p by its “twin”
in the positive effects of 0; and the precondition of o0,. Therefore, we introduce a more compact
reformulation that exploits such a property.

Formally, let IT be a planning task and Ops be the set of operators defined in the domain model
of I1. Let 0, € Ops be nonstrictly entangled by succeeding 0, € Ops with p (p is defined in the
domain model of IT) in IT and o, be strictly entangled by preceding o, with p in IL.Y Then, IT is
reformulated as follows.

(1) Create a predicate p’ (not defined in the domain model of IT) having the same arguments as
p and add p’ to the domain model of I1.

(2) Modify the operator o, by replacing p by p’ in 0;'s positive effects and adding p into o;'s
negative effects.

(3) Modify the operator o, by replacing p by p’ in 0,'s precondition and (possibly) negative
effects.

(4) Modify all operatorso € Opssuchthato # o0; and having a variant of p in eff * (0) by adding
p’ into its negative effects (p’ has the same arguments as the variant of p).

Figure 4 depicts the BlocksWorld operators encoding both entanglements by preceding and
succeeding, concretely that pick-up(?x) is nonstrictly entangled by succeeding stack(?x ?y) with

IThe nonstrict entanglement by succeeding, a weaker form of the strict entanglement by succeeding, is required for cor-
rect capture of the entanglements by encoding. Enforcing the strict entanglement by succeeding would require more
complex encoding-hence mitigating benefits of the introduced compact encoding.



CHRPA ET AL. WI LEYm !h“m:“‘

holding(?x) and stack(?x ?y) is strictly entangled by preceding pick-up(?x) with holding(?x). In
our terminology, pick-up(?x) refers to o,, stack(?x ?y) refers to o,, holding(?x) refers to p, and
stack_pick-up_both_holding(?x) refers to p’. The correctness of the reformulation is proved as
follows.

Proposition 3. Let I1 be a planning task and Ops be the set of planning operators defined in
the domain model of Il. Let 0;,0, € Ops be planning operators and p be a predicate (p is
defined in the domain model of T1) such that o, is strictly entangled by preceding o, with p in I1
and o, is nonstrictly entangled by succeeding o, with p in I such that both entanglements are
compatible. Let I be a planning task obtained by reformulating I1 using the previous approach.
7' is a solution plan of T if and only if 7’ is a solution plan of TI that satisfies the conditions of
both entanglements (see Definitions 8 and 9).

Proof. Hereinafter, the modified operators 0; and o, will be denoted as o’1 and 0’2. If both the
entanglements are strict (see Definition 8), then it says that if an instance of 0, achieving an
atom pg,q (an instance of p) is applied at step i and a corresponding instance of o, requiring
Dgnd 1s applied at step j (j > i), then no corresponding instance of any operator other than
0, or 0, having pg,q in its precondition or positive effects can be applied at step k such that
i<k <}

We can observe that o] is the only operator achieving p’ but no longer achieving p. Simi-
larly, o/, is the only operator requiring p’ (having it in the precondition) but no longer requiring
p- The entanglement by preceding cannot be affected by applying any (modified) operator
o achieving p, since it removes p’ as well (see step 4 of the reformulation), thus making o/,
inapplicable. Similarly, if p is true before applying o/, it is removed after o/ is applied, and
hence, any operator requiring p becomes inapplicable. The strict entanglement by preceding
is met since no instance of p’ is in the initial state of P’. There is no restriction that pre-
vents occurrences of p’ in any of the goal states. Therefore, the entanglement by succeeding
is nonstrict.

Hence, if z’ is a solution plan of IT’, then 7’ is a solution plan of IT that satisfies the con-
ditions of both entanglements. The provided reformulation prevents only the application of
02 having p in their precondition unless 0, achieved p as well as the application of any opera-
tor other than o, having p in its precondition after o, achieved p. Therefore, if z’ is a solution
plan of TT that satisfies the entanglement conditions, then z’ is a solution plan of IT'. O

6 | THEORETICAL FOUNDATIONS OF INNER
ENTANGLEMENTS

This section is devoted to the theoretical properties of inner entanglements such as complexity
results as well as their expected impact on planners.

6.1 | Landmark theory

Landmark theory* is a useful framework for studying structures of planning tasks. We will use
a fragment of the landmark theory to prove intractability (PSPACE-completeness) of deciding
whether a given inner entanglement holds. The notions we will use are briefly introduced in the
following lines (for more details, see the work of Hoffmann et al*).
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Landmarks are atoms that must be achieved at some point in every solution plan of a given
planning task. Deciding whether atoms are landmarks is PSPACE-complete.*

Ordering landmarks is useful for computing heuristics.*” Landmarks p and q are greedily nec-
essarily ordered (we denote it as p— q) if, for every solution plan of a given planning task, p is
achieved before q is achieved for the first time. Deciding greedy necessary ordering of landmarks
is also PSPACE-complete.*

6.2 | Intractability of entanglements

The intractability (PSPACE-completeness) of deciding whether a given inner entanglement holds
in a given task is proved by the following theorem.

Theorem 1. LetIT' be a planning task, o, and oy be planning operators, and p’’ be a predicate
defined in the domain model of II'. The problem of deciding whether o,y is strictly entangled by
succeeding oy with p'' in 11 is PSPACE-complete. The problem of deciding whether oy is strictly
entangled by preceding o, with p'' in I is also PSPACE-complete.

Proof. First, we show that the problem of deciding whether o, is strictly entangled by suc-
ceeding o, with p in IT as well as the problem of deciding whether o, is strictly entangled by
preceding o, with p in IT" belongs to the PSPACE class. To do this, we reformulate I’ by encod-
ing the given inner entanglement, as described in Section 5. Hence, the decision problem of
whether the given inner entanglement holds can be encoded as a planning task, ie, the entan-
glement holds if and only if the reformulated task is solvable. We know we can solve planning
tasks in polynomial space; hence, this decision problem belongs to PSPACE.

We reduce, in polynomial time, the problem of deciding whether landmarks p and q are
greedily necessarily ordered, ie, p— 4 g, in some planning task I, which is PSPACE-complete,
to the problem of deciding strict entanglements by succeeding or preceding between op, oy,
and p in IT". Without loss of generality, we assume that p and g are nullary predicates (atoms)
defined in the domain model of I1.

We create a planning task IT" by modifying IT as follows. Let Ops be the set of planning
operators defined in the domain model of I1. Let Ops, = {0 | 0 € Ops,p € eff (o)} be the
set of operators achieving p and Ops; = {0 | 0 € Ops,q € eff *(0)} be the set of operators
achieving q. We extend the domain model of IT by adding atoms (nullary predicates) r, p’, p”’,
q’, and q"’ (without loss of generality, we assume that none of these are defined in the domain
model of IT). Then, we add r into preconditions of every operator from Ops. Then, we modify
operators in Ops, and Ops, as follows. For every o € Ops),: replace p by p’ in eff *(0) and add
rinto eff ~(0). For every o € Ops,: add ¢’ into eff *(0) and add q"’ into eff (o). The initial state
I of TI is modified as follows. If p € I, then replace pby p’. If p ¢ I, thenadd r. If g € 1,
then add ¢’; otherwise, add q'’ (if g & I). Notice that g’ becomes and remains true when g has
been achieved and that g’/ is true only before q is achieved (if q is true in the initial state, g’/
is never true).

For the strict entanglements by succeeding case, we introduce the following operators
(without loss of generality, we assume that none of the operators are defined in the domain
model of II), ie, oy = (name(oy), {p'},{p’}. {p"}), o = (name(oy).{p".q'}.{p"}. {p.7}),
and ogr = (name(og), {p”.q"},{p"”}.{p.r}), and add them into the domain model of II.
Notice that name(op ), name(oy ), and name(oy») contain only unique operator identifiers (and
no variable symbols). We can observe that if o, is strictly entangled by succeeding oy with p”/
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in IT" (the modification of IT), then g must be true before or at the same time p is achieved.
This is because q'’ becomes true after q is achieved (as mentioned before), and according to
the entanglement, there is a solution plan z’ of IT" such that o,y always achieves p’’ for o, .
Removing instances of 0, and oy from z’ gives us a plan z, which is a solution plan of II.
Given the modification of all operators from Ops,,, p becomes true in z in the same time as )4
becomes true and r becomes false in z’. Then, only o, and o, can be applied (in this order) in
7', because other operators have rin their preconditions, and r can be re-achieved by o . From
this, we can get that " must be achieved before o, is applied in #z’. Therefore, q is achieved
before or in the same time as p in z, which is a solution plan of I1, and thus, p— 4 g does not
hold in I1. Hence, oy is strictly entangled by succeeding o, with p’’ in IT’ (the modification of
IT) if and only if p—, g does not hold in IT.

For the strict entanglement by preceding case, we introduce the following operators (with-
out loss of generality, we assume that none of the operators are defined in the domain model
of I), ie, oy = (name(oy), {p’.q'}. {p'}. {p"}), opr = (name(oy), {p’.q"}.{p"}.{p"}), and
oy = (name(og), {p"}.{p"}.{p.r}), and add them into the domain model of II. Notice that
name(oy ), name(op), and name(oy ) contain only unique operator identifiers (and no variable
symbols). Analogously to the previous case, we can observe that if oy is strictly entangled by
preceding o, with p’’ in IT’ (the modification of IT), then g must be true before or at the same
time p is achieved. Therefore, there exists z’, a solution plan of IT" where the entanglement
holds. Again, removing instances of o, and oy from z’ gives us a plan z, which is a solution
plan of I1. Analogously to the previous case, after a modified operator from Ops,, is applied in
7', then only o,y and oy (in this order) can be applied before any other operator can be applied.
Therefore, ¢’ must be achieved before o, is applied in #’, and thus, q is achieved before or in
the same time as p in x; hence, p— 4 q does not hold in II. Hence, oy is strictly entangled by
preceding o,y with p’’ in II’ (the modification of IT) if and only if p— 4 q does not hold in IT.

Clearly, the modification of IT in both cases is done in polynomial time. Hence, since
the problem of deciding whether landmarks p and q are greedily necessarily ordered in IT is
PSPACE-complete, the problem deciding whether o, is strictly entangled by succeeding oy
with p in IT" as well as the problem deciding whether oy is strictly entangled by preceding o,
with p in IT', where both problems belong to PSPACE, is PSPACE-complete as well. 0

Corollary 1. LetII' be a planning task, o,y and oy be planning operators, and p’’ be a predicate
defined in the domain model of IT'. The problem of deciding whether oy is nonstrictly entangled
by succeeding oy with p'' in II' is PSPACE-complete. The problem of deciding whether oy is
nonstrictly entangled by preceding oy with p' in 11" is also PSPACE-complete.

Proof. The problem of deciding on either of the nonstrict inner entanglements can be encoded
as a planning task (I’ is reformulated as described in Section 5); hence, it belongs to PSPACE.
Since the strict version of inner entanglements is a special case of the nonstrict version, the
problem is PSPACE-complete. O

Intractability of deciding whether a single entanglement holds for a given planning task
implies intractability of deciding whether a set of inner entanglements holds for that task.

Corollary 2. Let e; and e, be inner entanglements that hold in a planning task I1. The problem
of deciding whether a set {e;,e,} holds in I1 is PSPACE-complete.
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Proof. Without loss of generality, let II, be a planning task obtained by reformulating IT con-
sidering e;. Then, the problem of deciding whether {e;, e} holds in IT is equivalent to the
problem of deciding whether e, holds in I1, which is PSPACE-complete. 0

The presented theoretical results say that deciding whether a set of inner entanglements holds
in a planning task is (theoretically) as hard as solving the task. Hence, in order to benefit from
inner entanglements, we have to spend (much) less time on their generation than how much time
we can save by their use. Learning them from simple planning tasks is a viable option, since such
tasks can usually be solved and analyzed very quickly.

6.3 | Trivial entanglements

Despite the complexity results, there are some cases where we can trivially identify inner entan-
glements (hereinafter referred to as trivial inner entanglements). The following situations refer
to special cases where there is no way to violate inner entanglements in the planning process.
However, trivial inner entanglements do not provide any new domain-specific information, and
hence, we do not have to consider them in the reformulation.

We can observe that having only one achiever or “requirer” of some predicate trivially satisfies
the conditions of exclusivity. In other words, if only one operator achieves a certain predicate,
then it is its exclusive achiever for all the operators that require this predicate. Similarly, if only
one operator requires a certain predicate, then it is its exclusive “requirer” from all the operators
that achieve this predicate.

Lemma 1. LetII be a planning task, Ops be the set of planning operators, and p be a predicate
defined in the domain model of TL. If there exists exactly one o; € Ops such thatp € eff*(0;),
then, for every o, € Ops such that p € pre(oy), it holds that oy is nonstrictly entangled by
preceding o; with p in I1.

Lemma 2. LetII be a planning task, Ops be the set of planning operators, and p be a predicate
defined in the domain model of TL. If there exists exactly one o; € Ops such that p € pre(o;),
then, for every o, € Ops such that p € eff*(oy), it holds that oy is nonstrictly entangled by
succeeding o; with p in I

6.4 | Identifying inner entanglements: case studies

This section is devoted to investigating, identifying, and (re)using inner entanglements from a
knowledge engineering perspective. Whereas it is usually feasible to consider inner entangle-
ments as domain specific rather than task specific, even small modifications in domain models
can invalidate some of the entanglements and, possibly, introduce some other entanglements.
An illustrative example we used earlier in the text identified two inner entanglements in the
BlocksWorld domain, ie, the operator putdown is entangled by the preceding operator unstack
with the predicate holding, and the operator pickup is entangled by the succeeding operator stack
with the predicate holding. Whether the entanglements are strict or nonstrict depends on whether
a block is initially held by the robotic hand or whether the same is required in the goal state.
The entanglements, in fact, prevent applying the operators pickup and putdown consecutively
since they just reverse each other's effects; thus, doing so is clearly meaningless. Extending the
BlocksWorld domain by introducing an operator paint, which paints the block while it is held
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by the robotic hand, might invalidate the entanglements in some cases. pickup can then achieve
holding for both stack and paint; thus, the exclusivity required by the entanglement is not met.
putdown can meaningfully use the predicate holding achieved by pickup since we can paint
the block (apply the paint operator) in between; thus, the entanglement by preceding might not
be met.

The Depots domain is a combination of the BlocksWorld domain and the Logistics domain
such that crates are arranged in stacks and operated by hoists in the same way as blocks in
BlocksWorld but can be also transported by trucks between different locations. The lift and drop
operators correspond with the BlocksWorld's unstack and stack operators, respectively. The load
and unload operators are variants of the BlocksWorld's putdown and pickup operators such that
instead of putting on and picking up crates from the table, they load crates on or unload crates
from trucks, respectively. In Depots, we may observe, for instance, that the operator lift is entan-
gled by the succeeding operator load with the predicate lifting, load is entangled by preceding
lift with lifting, the operator drop is entangled by the preceding operator unload with lifting, and
unload is entangled by succeeding drop with lifting. If no instance of lifting is present in the initial
state or the goal, then the entanglements are strict. If there is no truck defined in the problem,
then we cannot apply load or unload; hence, the entanglements do not hold (otherwise, it will
not be possible to apply lift and drop consecutively). Modifying the domain model in such a way
that particular trucks can move only between some locations might introduce the necessity of
reloading crates from one truck to another. This will certainly affect two of the entanglements;
in particular, load will no longer be entangled by preceding lift with lifting, and unload will no
longer be entangled by succeeding drop with lifting. However, tasks in which some crate(s) have
to be reloaded can be easily identified.

It should be noted that the aforementioned examples indicate that the nature of inner entan-
glements varies per domain model. Therefore, it seems, in our opinion, that refining not very
restrictive general rules for identifying inner entanglements might not be a feasible option.
Domain model engineers can either identify inner entanglements by hand or exploit our method
based on the “learning in planning” paradigm that is presented in Section 7.

6.5 | Expected impact of inner entanglements on the planning process

Inner entanglements eliminate unpromising alternatives in the search space, which reduces the
branching factor in search. Introducing supplementary predicates required for encoding inner
entanglements, however, introduces additional facts (atoms) planners have to deal with during
search, and moreover, memory requirements might therefore be higher. Hence, the impact of
inner entanglements is determined by considering whether the potential benefits of reducing the
branching factor outweigh overheads caused by handling supplementary predicates. An analogy
can be seen in determining whether a macro-operator is useful, which is also referred to as a utility
problem in the literature.*®

Taking a closer look on how inner entanglements are encoded provides insights into how they
may influence delete-relaxed heuristics, which is a common technique used in planning engines.
Having an operator o, strictly entangled by a preceding operator o, with a predicate p captures a
situation where an instance of 0, can be applied only if a corresponding instance of p is achieved
by an instance of o;. This is enforced by putting a supplementary predicate p’ into o;'s positive
effects and into o0,'s precondition. In delete-relaxed plans, 0; must be also applied at some point
before 0,. However, an operator o # o0, achieving p (and thus removing p’) can be placed in
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between o0; and o, in delete-relaxed plans, which does not correspond with the entanglement
conditions. Entanglements by preceding are therefore only partially taken into account while
computing delete-relaxed heuristics. Having an operator o; strictly entangled by a succeeding
operator o0, with a predicate p captures a situation where an instance of 0, achieves a correspond-
ing instance of p for an instance of o0,. This is enforced by putting a supplementary predicate p’
into 0;'s negative effects and into preconditions of operators other than o, that have p in their
preconditions. However, in delete-relaxed plans, applying 0, does not prevent applying any other
operator having p in its precondition. Therefore, entanglements by succeeding are not taken into
account while computing delete-relaxed heuristics. Intuitively, only entanglements by preceding
might be beneficial on planners based on delete-relaxed heuristics (eg, FF).

However, recent empirical results do not confirm this intuition by showing that, in some cases,
entanglements by succeeding can be very beneficial even for planners based on delete-relaxed
heuristics.?» To understand the potential benefits of entanglements by succeeding, we have to
take a different view. A heuristic may suggest applying an operator o # 0, requiring p from o;.
However, after actual application of oy, it will become impossible to apply o (due to the entangle-
ment conditions), since o, will be enforced. Although it might cause planners to be “trapped” in a
local minimum of the heuristics, it might also prevent planners to get into “deeper” local minima,
which might eventually happen if o is applied instead of o,.

If both (strict) entanglements by preceding and succeeding hold between o1, 0,, and p, the
compact encoding involves replacing p with p’ in 0,'s positive effects and 0,'s precondition. In
delete-relaxed plans, 0, cannot be applied unless o; is, which is similar to the entanglements by
preceding case, and moreover, 0, cannot achieve p for any other operator than o, (because p is
replaced by p’). Although, as in the entanglements by preceding case, an operator achieving p
can be placed in between 0; and o, in delete-relaxed plans, which does not correspond to the
entanglement conditions, both the entanglements are taken into account to a reasonable extent
while computing delete-relaxed heuristics.

Compact encoding (when both entanglements by preceding and succeeding hold between
a pair of operators and a predicate) is intuitively beneficial for planners. The potential impact
of inner entanglements seems to be correlated with the shape of search space, in other words,
whether inner entanglements can prevent planners to end up in undesirable states (eg, dead
ends, “deep” local minima). We believe that maximizing sets of compatible inner entanglements
does not imply maximizing planners' performance, because some of the entanglements might,
in fact, have a negative impact, for instance, by introducing supplementary predicates planners
might deal with or introducing local minima in the heuristics landscape. Possible examples of
“bad” inner entanglements are those that consist of operators whose instances appear sporadi-
cally in plans, because such inner entanglements bring only little information for possibly high
overheads. Moreover, if an inner entanglement prunes only a few alternatives, then overheads
introduced with it might be higher than its possible benefit. For example, after picking up a block,
we might either put it down or stack it on some other clear block. Clearly, the number of clear
blocks might be up to n — 1, where n is the number of all blocks. If pickup(?x) is (strictly)
entangled by succeeding stack(?x ?y) with holding(?x), then we cannot apply putdown(?x) after
pickup(?x). Hence, we prune one alternative, keeping n — 1 alternatives in the worst case. Sim-
ilarly, after unstacking a block from another block, we can either put it down or stack it on
some clear block. If putdown(?x) is (strictly) entangled by preceding unstack(?x ?y), then we
cannot apply stack(?x ?z) after unstack(?x ?y). Hence, we keep only one alternative, pruning
n — 1 alternatives in the best case. Given this observation, the latter entanglement is much more
informative than the former one. Intuitively, the former entanglement is not helpful and very
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likely will worsen the planning process. The latter entanglement, on the other hand, seems to be
helpful and should improve the planning process.

7 | EXTRACTING INNER ENTANGLEMENTS

Deciding whether a given set of inner entanglements holds in a given task is generally
PSPACE-complete (as discussed in Section 6). Moreover, trivial entanglements (see Section 6.3)
are not informative and, thus, not considered for task reformulation. Therefore, we have to devise
an effective approximation technique for extracting sets of inner entanglements. We assume that
tasks having the same domain model have a similar structure; thus, the same set of inner entan-
glements holds in all of them. We can then select a representative set of simple tasks for each
domain model as training tasks; thus, those can be solved easily by standard planning engines.
Generated training plans, which are the solutions of these training tasks, are then explored in
order to find what inner entanglements hold in them.

The above approach can be formalized as follows. Let P be a class of planning tasks that has
the same domain model. Let Pr C P be a set of training tasks. In our approximation method, we
assume that ENTp, = ENTp; in other words, a set of inner entanglements holding on training
planning tasks also holds on the whole class of planning tasks. This assumption is, of course, a
source of incompleteness, since enforcing incorrect entanglements may cause some tasks becom-
ing unsolvable. On the other hand, planning tasks having the same domain model are of similar
structure (eg, they differ only by number of objects), which is the case for most of the IPC bench-
marks. Hence, we believe that selecting a small set of these tasks such that selected tasks are
easy but not trivial can alleviate the incompleteness issue and, thus, support the assumption. Our
empirical study that also explores these issues is provided in Section 8.

The method for extracting inner entanglements from (training) plans works as follows. For
every action, we check which actions achieved atoms for it, or vice versa. This information is used
to determine the cases where the exclusivity of the predicate’s achievement or the requirement
between a pair of operators applies. This concept is elaborated in Algorithm 1. For this purpose,
we define an array counter, which stores information on how many instances of given operators
occur in the training plans, 3D arrays entP, entS, which count how many times a given operator
achieves/requires a predicate to/from another operator. Function is_inst(arg) returns either an
operator if arg (action) is an instance of it or a predicate if arg (atom) is an instance of it. Function
last_achiever(p, {ai, ...,ax)) returns the last action in the sequence ({a;, ..., ax)) that has p in its
positive effects, or NULL if no such action exists (ie, p is an initial atom).

Algorithm 1 requires linear time with respect to the lengths of given training plans if the num-
ber of atoms in actions’ preconditions and effects is much lower than lengths of training plans;
thus, it can be bounded by a constant. Notice that information retrieved by the last_achiever
function can be stored in a hash table; hence, constant time is needed.

7.1 | Flaw ratio

From Algorithm 1, it is easy to determine whether a given set of inner entanglements holds in all
the training plans. However, it is often not a very efficient way to determine a useful set of inner
entanglements. There are two main reasons. First, training plans might contain redundant actions
or very suboptimal subplans, which can prevent detecting some useful entanglements. Second,
there might be several strategies on how a task can be solved, where only some of these lead into



416 WI LEYm gt-'ﬁl-ﬂiﬁlnl CHRPA ET AL.

the discovery of some useful entanglements. For example, in BlocksWorld, we might “put aside”
blocks in two different ways: put them on the table or stack them on other blocks. Only the former
way leads to the discovery of two useful inner entanglements, ie, unstack is (strictly) entangled
by succeeding putdown with holding, and stack is (strictly) entangled by preceding pickup with
holding.

Algorithm 1 Checking how many times a given operator achieves (requires) a predicate to (from)
another operator in the training plans

1: initialize_ent_arrays(); > create empty arrays entP, entS of size
[Ops,Ops,Preds]|
2: initialize_op_counter(); > create an empty array counter of size [Ops]
3: for each training plan 7 = (ay, ..., a,) do
4: fori:=1tondo
for each p € pre(a;) do
a := last_achiever(p,{a, ..., ai_1));
if a # NULL then
entPlis_inst(a;), is_inst(a), is_inst(p)] + +;
entSlis_inst(a), is_inst(a;), is_inst(p)] + +;
10: end if
11: end for
12: counterlis_inst(a;)] + +;
13: end for
14: end for

© ® 2 axw

Introducing a flaw ratio n € [0; 1], which is a parameter referring to an allowed percentage
of “flaws” in training plans, can identify inner entanglements that can be discovered in plans
that are “close” to the training plans. In other words, the exclusivity of predicate achievement or
requirement between a pair of operators might only be satisfied to some extent in the training
plans, whereas in some other solution plans, the exclusivity can be fully satisfied. For example, in
BlocksWorld, the blocks might occasionally be “put aside” to other blocks in the training plans
and, thus, cause that the useful inner entanglements (as above) are not detected. By considering
flaw ratio, these inner entanglements can be found.

Let n be the flaw ratio, then the following equations determine when a given inner entangle-
ment can be considered (sprec and ssucc stand for the strict version of entanglements by preceding
and succeeding, respectively):

entP[o1,0,p] <

rec, 01,05, p) < entP[o1,0,,p] > 0 AVo # 0, : 1
( 1,02,D) [01, 02, p] # 0, counterjo] S 1)
entS[o;, 0,
(succ, 01,02, p) & entS[01,02,p] > 0AVO # 0, : M <7 (2)
counter|[o1]
entP[oq, 05, entP[oq, 0,
(sprec,ol,oz,p)c)M21—11/\V07é02:Msn 3)
counter|oq ] counter|oq ]
entS[o1, 0,9, entS[oq, 0,
(ssucc,ol,oz,p)c»M21—11/\V07602' ) p]< (4)

counter[o; ] " counter[o1]
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7.2 | Filtering unpromising inner entanglements

Following the discussion from Section 6.5, we can derive that the pruning power of inner entan-
glements is crucial for having a positive impact on the planning process. In other words, inner
entanglements are more likely to be beneficial if they can prune a relatively large number of search
alternatives. Otherwise, inner entanglements might have a detrimental effect on the performance
of planning engines because of the overhead caused by their representation.

We identified two main cases in which inner entanglements do not have a strong pruning
power. The first case is where inner entanglements with operators that are rarely applied in plans
are involved. Training plans can provide a good indication of “rare” operators. Therefore, we can
assume that if an operator appears rarely in training plans, then it will be used rarely also for other
planning problems in a given domain. Hence, we define a threshold e and filter out such inner
entanglements where any of the involved operators (0; and 0,) have less instances in the training
plans, ie,

counter[o1] < € V counter[o;] < €.

The second case is comparing the number of arguments that “entangled” and “prohibited”
operators have. Recall the example from Section 6.5, where pickup(?x) is (strictly) entangled by
succeeding stack(?x ?y) with holding(?x). The entanglements prohibit applying putdown(?x)
after pickup(?x). In our words, stack(?x ?y) is the “entangled” operator, and putdown(?x) is the
“prohibited” operator. Clearly, only one alternative is pruned (only one instance of putdown(?x)
can be applied after pickup(?x)), whereas up to n — 1 alternatives are allowed (up to n — 1 instances
of stack(?x ?y) can be applied after pickup(?x)); hence, the pruning power of the entanglement
is poor. The number of operators' arguments is thus a good indicator for estimating the numbers
of pruned search alternatives. Hence, if the number of arguments of the “entangled” operator is
higher than that of all the “prohibited” operators, then the entanglement is unpromising. For-
mally, let arg(o) denote the number of arguments of an operator o. Let an operator o; be (strictly)
entangled by a succeeding operator o, with a predicate p, then the entanglement is considered as
unpromising if

Vo # 0,,p € pre(o) : arg(o) < arg(o;).

Analogously, let an operator o, be (strictly) entangled by a preceding operator o; with a predicate
D, then the entanglement is considered as unpromising if

Yo # 01,p € eff (o) : arg(o) < arg(oy).

Unpromising inner entanglements are filtered out except cases where both types of inner entan-
glements hold for the operators 0, and o0, and the predicate p, and only one of the entanglements
is unpromising. Such an exception follows the observation discussed in Section 6.5 that the com-
pact encoding of such entanglements does not introduce more overheads than the encoding of a
single (inner) entanglement.

7.3 | Inner-entanglement extraction

Algorithm 2 wraps up the method for extracting inner entanglements. Given generated train-
ing plans, we can fill the arrays entP, entS, and counter by running Algorithm 1. An initial value
init-fr of the flaw ratio # is assigned. The main loop (Lines 4-12) iteratively validates whether
using the given flaw ratio does not lead to the extraction of entanglements that do not hold
in the training tasks. The validation is done by extracting the nontrivial inner entanglements



418 WI LEYm Et-lﬁl-ﬂiﬁ'“l CHRPA ET AL.

using the current flaw ratio # (Line 5), filtering unpromising inner entanglements (Line 6), gen-
erating reformulated training problems considering the extracted entanglements (Line 7), and
running a planner on these reformulated problems (Line 8). Introducing the flaw ratio may
cause that the set of extracted inner entanglements does not even hold for the training prob-
lems. If such a situation occurs, the flaw ratio is decreased by step (Line 11), and the process (for
Line 4) is repeated. Clearly, if = 0, then the set of extracted inner entanglements holds for the
training tasks.

Algorithm 2 Extraction of entanglements with the flaw ratio
1: generate training plans
2: fill arrays (Algorithm 1)

3: n =init-fr
4: while n > 0do
5 extract inner entanglements considering # (see Equations (1)-(4))
6 filter unpromising inner entanglements (see Section 7.2)
7: generate reformulated training problems
8 if reformulated training problems are solvable then
9 break
10: end if

11: n = max(0, n — step)
12: end while
13: generate reformulated (testing) problems

8 | EXPERIMENTAL EVALUATION

This section is devoted to the empirical evaluation of the impact of entanglements in the plan gen-
eration process. The aims of the experiments are to analyze the impact of inner entanglements
on state-of-the-art planning engines and how quality of training plans influences the detec-
tion and extraction of inner entanglements. For empirical evaluation purposes, we used all the
domains from the learning track of IPC-7; since inner entanglements are automatically extracted
domain-specific knowledge, the learning track benchmarks seem to be appropriate. This test set
is thus independent, is open, and gives a relatively wide coverage.

In each domain, the planning tasks have the same domain model and, thus, differ only by
planning problem specifications. Henceforth, training problems denote tasks that are used for
learning entanglements, and testing problems denote tasks that are used as benchmarks.

8.1 | Benchmark planners

In order to perform our analysis, we selected a number of planners according to (i) their per-
formance in the IPCs and (ii) the variety of techniques they exploit. The selected planners are
Metric-FF,” LPG-td,”® LAMA,**" Probe,”*>* MpC,**> Yahsp3,’® and Mercury.”’

Metric-FF* is an extension of the well-known FF planner>® that won the 2nd IPC. The FF's
search strategy is a variation of hill-climbing over the space of the world states, and in FF, the
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goal distance is estimated by solving a relaxed task for each successor world state. Compared to
the first version of FF, Metric-FF is enhanced with the goal ordering pruning technique and with
the ordering knowledge provided by a goal agenda.

LPG-td won the 3rd IPC. It uses stochastic local search in a space of partial plans represented
through linear action graphs, which are variants of the very well-known planning graph.?® The
search steps are graph modifications, transforming an action graph into a different one.

LAMA*"** won the 6th and 7th IPC (sequential satisficing track). LAMA translates the PDDL
problem specification into a multivalued state variable representation (“SAS+") and searches for
a plan in the space of the world states using a heuristic derived from the causal graph, which is
a particular graph representing the causal dependencies of SAS+ variables. Its core feature is the
use of a pseudo-heuristic derived from landmarks.

Probe*> was successful in IPC-7 and IPC-8. It implements a dual-search architecture for plan-
ning, which is based on the idea of probes: single-action sequences computed without search from
a given state that can quickly go deep into the state space, terminating either in the goal or in
failure.

MpC>** was a runner-up in the agile track of IPC-8. MpC is a SAT-based planner that exploits
an extremely compact SAT representation of planning tasks and an integrated SAT solver.

Yahsp3*® won the agile track of IPC-8. Yahsp is a heuristic search-based planner that exploits
information obtained from the computation of the heuristics, which is similar to the heuristic
used in FF. Such information is used to find “lookahead states” that are reachable but “far” from
the current state.

Mercury’” was a runner-up in the satisficing track of IPC-8. Similarly to LAMA, Mercury
translates the PDDL representation into a SAS+ multivalued state variable representation. It then
exploits the Red-Black heuristics, which uses only partial delete-relaxation.

8.2 | Experimental setup

In machine learning, it is important to have a good-quality training set in order to maximize
the outcome of the learning process. From the planning perspective, training plans should well
capture the important structural aspects that are generalizable to the whole class of planning
tasks. If training plans are too short, their structure might be over-constrained, and thus, we might
extract some inner entanglements that do not hold for many typical tasks of a given class. On the
other hand, planning is computationally very expensive, and thus, obtaining long training plans
might be too time consuming or even impossible. Hence, we have observed that a reasonable
size for a training problem is when the length of its solution plan is between 20 and 100 actions,
depending on the number of defined operators in the domain models (having more operators
yields longer solution plans). Moreover, the number of training problems does not have to be
high. This follows the observation made by Chrpa et al® that the set of extracted entanglements
often does not change, or changes are very small, with increasing number of training problems.
Similar observations have been made when configuring portfolios of planners.®® On the other
hand, using very few training problems increases the risk of extracting inner entanglements that
do not hold (we might be “lucky” to have a very atypical problem as a training one). Following
these observations, five training problems per domain were used. Notice that in the learning track
of IPC-7,%! a set of training problems is not explicitly provided, and thus, the training problems
were generated by existing problem generators.
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Strict versions of inner entanglements were learned.” The benchmark planners were used
to generate training plans. The flaw ratio (r) was initially set to 0.2, and, in case where any of
the training problems became unsolvable after incorporating entanglements,! the flaw ratio was
iteratively reduced by 0.05 until all the training problems became solvable while entanglements
were considered, or the flaw ratio dropped to 0.0 (for details, see Algorithm 2). Although, in the
previous work,” the flaw ratio is set to 0.1, we observed on some preliminary experiments, per-
formed on a small set of benchmarks (not included in the rest of this experimental analysis), that
such a value is too conservative. On the other hand, setting the value above 0.2 led to the extrac-
tion of inner entanglements that often did not hold in the training problems. The threshold e
(see Section 7.2) is set to 20, which means that the operator must be used at least four times, on
average, in each training plan.

A CPU-time cutoff of 900 seconds (15 minutes, as in learning tracks of IPC) was used for both
learning and testing runs. All the experiments were run on a quad-core 2.8-GHz CPU machine
with 4 GB of RAM. In this experimental analysis, IPC scores as defined in IPC-7 are used. For a
planner C and a problem p, Time(C, p) is 0 if p is unsolved, and 1/(1 + log,,(T,(C)/T, o)) where
Tp(C) is the CPU time needed by planner C to solve problem p and T}, is the CPU time needed by
the best considered planner, otherwise. Similarly, Qual(C, p) is 0 if p is unsolved, and N; /N,(C),
where Nj(C) is the cost of the plan, solution of p, obtained by C and Nj is the minimal cost of
the solution plan of p among all the considered planners, otherwise. The IPC score on a set of
problems is given by the sum of the scores achieved on each considered problem.

8.3 | Experimental results: the learning phase

As discussed in the literature,™ the structure of solution plans might differ according to a planner
that generated them, and hence, the set of inner entanglements extracted from such plans can
differ as well. In order to improve sets of extracted inner entanglements (ie, maximize the number
of useful entanglements and minimize the number of “peculiar” entanglements), we selected, for
each training problem, the best-quality (shortest) plan from those produced by all the considered
planners. These best-quality training plans were then used in the entanglement extraction method
(see Section 7). Hereinafter, a set of inner entanglements extracted by exploiting this approach
will be denoted as the “best-plan set” of inner entanglements.

Intuitively, using good-quality training plans leads to extracting good-quality DCK (inner
entanglements in this case). To test this intuition, we also considered the worst-quality plans from
those produced by all the considered planners (hereinafter denoted as “worst-plan set” of inner
entanglements).

The results of the learning phase are as follows.

« In Gripper, Rovers, Satellite, and Spanner, no inner entanglements have been extracted, ie, both
the best-plan and worst-plan sets are empty.

« In Depots, Parking, and TPP, the best-plan and worst-plan sets are the same.

« In BlocksWorld (Bw), the worst-plan set is empty, whereas the best-plan set is not empty.

« In Barman, both the best-plan and worst-plan sets are not empty but different.

# Although the compact encoding for situations where both types of inner entanglements are involved requires the
nonstrict version of entanglements by succeeding, correctness is not compromised, since the strict versions of inner

entanglements are special cases of the nonstrict versions.
I By “unsolvable,” we mean those problems where the planner did not find a solution in the time limit of 600 seconds.
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In the first case, the structure of the domain models prevents capturing any nontrivial inner
entanglements. In the second case, the quality of training plans does not make any difference.
This is due to the fact that the “important” part of the training plan structure does not change
that much than the quality of these training plans, and by using the flaw ratio, small structural
changes of training plans are “absorbed.” The third case refers to the situation where good-quality
plans usually follow the strategy of putting blocks to the table whereas bad-quality plans usu-
ally temporarily stack blocks on other blocks. In the last case, the worst-plan set is a superset
of the best-plan set. Although such a result is counterintuitive, we observed that in the Barman
domain, drinks can be prepared by using clean shots or by reusing “dirty” shots if the same ingre-
dient is put into them. Using always clean shots provides a “narrower” structure of solution plans;
however, these plans are of worse quality since shots have to be always cleaned. It should be
noted that best-plan and worst-plan sets were different only in two out of nine domains. Although
the work of Chrpa et al® indicates that the differences should be larger, incorporating the filter-
ing technique for unpromising inner entanglements (see Section 7.2) into the learning method
“absorbs” some of these differences.

8.4 | Experimental results: the testing phase

The results shown in Table 1 demonstrate the positive impact of inner entanglements on the plan-
ning process. It can be seen that only Probe solved all original testing problems in Bw and Depots.
While inner entanglements (best-plan sets) were considered, in Bw, Depots, and TPP, some plan-
ners were able to solve all the testing problems. In Parking and Barman, the results are mixed.
In Parking, the overall results are rather negative; in Barman, Probe (best-plan set) and Lama
(worst-plan set) benefit from inner entanglements, whereas Mercury, on the other hand, has
much worse performance on inner entanglement-enhanced problems. Assuming that we can run
all planners with original and inner entanglement-enhanced domain models in parallel, then, by
using inner entanglements, we can solve two more problems in Parking and three more problems
in Barman. In addition, nine problems in Barman can be solved faster when inner entanglements
are considered.

Whereas the results generally support the claim that inner entanglements can effectively
prune search space by eliminating unpromising alternatives, some results, however, require more
attention. Lama does not perform well for the best-plan set in Bw, whereas it performs consider-
ably well in the worst-plan set in Barman. This might lead to an observation that Lama performs
well in the worst-plan sets rather than in the best-plan sets. We, however, believe that this obser-
vation is of domain- and planner-specific nature and, thus, might not be generalized. The reason
for Lama's good performance in the worst-plan set in Barman is in the fact that enforcing the plan-
ner to use only clean shots makes the landmark-based heuristics more informative. On the other
hand, the best-plan set in Bw enforces the planner to put blocks on the table before stacking them
in goal positions. Lama, however, has already a good performance on the original setting—its
heuristics is well informed. Inner entanglements, in this case, might introduce some subopti-
malities (as the quality results indicate) and, thus, slow down the planning process of Lama.
In Mercury's case, we can observe that it already performs well on the original Barman prob-
lems. Inner entanglements, however, seem to introduce overheads and possibly make Mercury's
heuristics less informative.

We have also observed that using good-quality training plans is useful for the learning process
since the structure of the plans has less noise (eg, redundant actions). Despite some results of
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TABLE1 Comparing planners’ performance on (O)riginal and (B)est- and
(W)orst-plan sets of inner-entanglement encodings. A IPC Score refers to a
difference in the International Planning Competition (IPC) score between the
reformulated and original encodings (positive values—higher score for the

@

reformulated encoding).

Planner

FF

LPG
Lama
Probe
MpC
Yahsp
Mercury

FF

LPG
Lama
Probe
MpC
Yahsp
Mercury

FF

LPG
Lama
Probe
MpC
Yahsp
Mercury

FF

LPG
Lama
Probe
MpC
Yahsp
Mercury

FF

LPG
Lama
Probe
MpC
Yahsp
Mercury
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Coverage
O B W
0O 0 o0
0O 0 o0
1 14
5 12 2
0 0
0 0
25 21 2
0 o
25 30 -
28 28 -
30 30 -
0 14 -
29 30 -
19 29 -
1 3 3
10 24 24
0 2 2
30 30 30
19 30 30
22 30 30
0 0 o0
1 9 9
0O 0 o0
8 7 7
7 6 6
5 5 5
0O 0 o0
8 7 7
3 3
29 29
20 30 30
15 30 30
15 21 21
20 20 20
26 30 30

means no inner entanglements were produced

A IPC Score—Speed A IPC Score—Quality

B W
Barman
0.0 0.0
0.0 0.0
0.0 +13.4
+7.5 -3.0
0.0 0.0
0.0 0.0
—8.5 -24.1
Bw
0.0 -
+14.5 -
-1.4 -
+4.1 -
+14.0 -
+12.9 -
+11.0 -
Depots
+2.3 +2.3
+16.7 +16.7
+2.0 +2.0
-3.2 -3.2
+17.6 +17.6
+18.7 +18.7
0.0 0.0
Parking
-3.0 -3.0
0.0 0.0
24 2.4
-0.9 —0.9
+0.4 +0.4
0.0 0.0
-1.7 -1.7
TPP
+3.0 +3.0
+29.0 +29.0
+20.3 +20.3
+23.6 +23.6
+14.1 +14.1
+1.7 +1.7
+15.4 +15.4

B

0.0
0.0
0.0
+7.1
0.0
0.0
-3.9

0.0
+7.9
2.3
+2.8

+14.0
=71
+7.0

+1.8
+14.1
+2.0
+2.0
+11.3
+20.8
0.0

—-2.2
0.0
-0.7
—0.8
-0.1
0.0
-0.9

+3.0
+29.0
+10.3
+14.7
+6.0
+0.0
+2.4

W

0.0
0.0
+12.6
-3.0
0.0
0.0
—23.5

+1.8
+14.1
+2.0
+2.0
+11.3
+20.8
0.0

—-2.2
0.0
-0.7
—0.8
-0.1
0.0
-0.9

+3.0
+29.0
+10.3
+14.7
+6.0
+0.0
+2.4
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TABLE 2 Comparing planners' performance on (O)riginal, (N)o flaw ratio nor filtering, Flaw (R)atio only,
(Fliltering only, and (A)Il (flaw ratio and filtering) on the best-plan sets of inner-entanglement encodings. A IPC
Score refers to a difference in the International Planning Competition (IPC) score between the reformulated and
original encodings (positive values—higher score for the reformulated encoding). “-”
entanglements were produced

means no inner

Coverage A TPC Score—Speed A TPC Score—Quality
Planner O N R F A N R F A N R F A
Barman
Lama 1 0 0 - 1 -1.0 -1.0 - 0.0 -1.0 -1.0 - 0.0
Probe 5 0O O = 12 -5.0 -5.0 = +7.5 =5.0 =5.0 = +7.1
Mercury 25 0 - 21 =250 -25.0 - -8.5 —=25.0 -25.0 - -3.9
Bw
LPG 25 - 1 - 30 - —-24.4 - +14.5 - —-24.1 - +7.9
Lama 28 - 0 - 28 = —28.0 = -14 = —28.0 = -2.3
Probe 30 - 0 - 30 - -30.0 - +4.1 - -30.0 - +2.8
MpC 0 - 0 - 14 - 0.0 = +14.0 = 0.0 = +14.0
Yahsp 29 - 21 - 30 - -14.0 - +12.9 - —27.2 - -7.1
Mercury 19 - 0 - 29 = —19.0 = +11.0 = —-19.0 = +7.0
Depots
FF 1 1 3 1 3 +0.4 +2.3 +0.4 +2.3 —0.1 +1.8 —0.1 +1.8
LPG 10 18 24 18 24 +8.0 +16.7 +8.0 +16.7 +6.5 +14.1 +6.5 +14.1
Lama 0 0 2 0 2 0.0 +2.0 0.0 +2.0 0.0 +2.0 0.0 +2.0
Probe 30 27 30 27 30 -9.3 -3.2 -9.3 -3.2 —6.7 +2.0 —-6.7 +2.0
MpC 19 30 30 30 30 +16.2 +17.6 +16.2 +17.6 +13.2 +11.3 +13.2 +11.3

Yahsp 22 30 30 30 30 +18.7 +18.7 +18.7 +18.7 +23.0 +20.8 +23.0 +20.8

Lama that contradicts the observation, we believe that the “best plan” strategy will be useful also
in other learning-based techniques (eg, generating macros).

8.5 | Impact of flaw ratio and filtering

Table 2 provides a comparison of the impact of the heuristics (flaw ratio, filtering) on the “qual-
ity” of the learned set of inner entanglements. Only the best-plan sets were considered for this
comparison. Noticeably, in Parking and TPP, the sets are the same regardless of which heuristics
is used or not, and thus, these domains are not listed in Table 2. Moreover, planners that did not
solve any task in any of the encodings in a given domain are not listed in Table 2. The results pro-
vide clear evidence, mainly in Barman and Bw, that both heuristics—flaw ratio and filtering—are
useful when applied together.

Technically speaking, when only flaw ratio is considered, the set of inner entanglements is the
superset or equal to the set of inner entanglements without considering flaw ratio. Filtering, on
the other hand, removes possibly unpromising inner entanglements from the learned set. In other
words, flaw ratio and filtering heuristics provide a useful synergy for maximizing the potential of
inner entanglements.

8.6 | Discussion of results

This subsection is devoted to discussing the interesting aspects of the experimental analysis
results.
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8.6.1 | Summary of performance improvement

Inner entanglements eliminate unpromising alternatives in the search space. As already discussed
in the paper, the pruning power of inner entanglements is a key factor for their usefulness. There-
fore, we proposed a method for filtering inner entanglements whose pruning power is small (see
Section 7.2). Our experiments confirmed that the filtering method often manages to filter out
unpromising inner entanglements while keeping the promising ones. Inner entanglements are
efficient if the exclusivity of both predicate achievement and requirement between a pair of oper-
ators holds. The reason mainly lies in the compact and informative encoding (see Section 5). Such
inner entanglements were extracted in Bw (ie, putting the block on the table always after it is
unstacked), in Depots (ie, loading a crate always after it is lifted), and in TPP (ie, loading goods
always after buying it). Our experiments showed a performance improvement among the plan-
ners in these domains. Such results indicate that inner entanglements have a good potential for
improvement. We have also identified a few cases where inner entanglements have a detrimen-
tal effect on planners (eg, Mercury in Barman). As discussed in Section 6.5, the representation of
inner entanglements has an impact on heuristics computation. Generally speaking, despite prun-
ing the search space, the representation of inner entanglements might introduce local minima
of heuristic functions that, in consequence, might have a detrimental effect on planning engines
since they need to search more nodes to escape such minima.

8.6.2 | Completeness issues

As discussed earlier, our method for extracting inner entanglements follows an assumption that a
set of inner entanglements that holds for a set of training planning tasks also holds for the whole
class of planning tasks (ie, the testing ones). If this assumption does not hold for some tasks in
the class, they become unsolvable if inner entanglements are enforced. We observed in our exper-
iments that the majority of reformulated tasks (by encoding inner entanglements) was solved by
at least one of the planners. In Barman and Parking, 5 and 16 reformulated tasks, respectively,
have not been solved by any of the planners. However, no evidence was obtained whether this
was caused by their unsolvability or whether these tasks were too hard for the planners. In other
words, the planners on these tasks run out of time or memory.

To alleviate the incompleteness issue, we can try to solve the original task after the refor-
mulated one failed. Specifically, we run the planner on the reformulated task, and if the task is
considered unsolvable before the time limit is reached, then we run the planner on the original
task. Theoretically, the unsolvability of a planning task can be identified in finite time if a com-
plete planning engine is considered. In practice, we can identify some unsolvable tasks in little
time if the reachability analysis reveals that the goal cannot be reached.* Since we have not identi-
fied any unsolvable reformulated task in the given time limit, the same results as for the best-plan
or the worst-plan set of entanglements would have applied for the aforementioned approach.
Alternatively, we can alleviate the incompleteness issue by manually verifying the correctness of
extracted inner entanglements or by incorporating reformulated tasks along with original tasks
into planning portfolios such as PbP.*

8.6.3 | Improvement to the quality of plans generated

In general, inner entanglements do not guarantee the optimality of solution plans. Strengthening
definitions of inner entanglements to guarantee plan optimality is, of course, theoretically possi-
ble. Given the complexity results of “normal” inner entanglements, we can expect the same for
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“optimal” inner entanglements. Using the approximation algorithm for extracting inner entan-
glements on optimal training plans with zero flaw ratio might extract some useful “optimal” inner
entanglements. However, we believe that there is a high risk of extracting incorrect “optimal”
inner entanglements. For example, the recently mentioned inner entanglements in the Depots
domain are “optimal” for problems where each crate must be delivered to a different location.
If, in some problem, a crate must be stacked on a different pallet but within the same location,
such inner entanglements will force the planner (even the optimal one) to extract suboptimal
plans. Speaking about satisficing planning, these entanglements will prevent planners from find-
ing a plan only if no truck is available. Such a problem is very atypical. Hence, there is a very
low risk of extracting incorrect “normal” inner entanglements, and similar observations can be
made in other domains. Our experimental results have not clearly indicated any case in which
the extracted set of inner entanglements did not hold.

8.6.4 | Relationship to other pruning or problem reformulation
techniques

Although there are several techniques based on pruning or problem reformulation techniques
(discussed in the Related Work section), inner entanglements are complementary to these tech-
niques. Pruning techniques are often an inseparable part of advanced planning engines. We used
several of such planning engines, which were successful in the past IPCs, for our experiments.
We demonstrated that inner entanglements can often significantly improve their performance.
Outer entanglements'* prune unpromising instances of the planning operator according to
their relations with initial or goal atoms. Inner entanglements are complementary to outer
entanglements as has already been demonstrated in the previous work.? Another well-known
technique for reformulating domain models is learning macros. A recent work introducing ASAP,
which is a planner based on the algorithm selection approach that selects the best couple (plan-
ner,encoding) for a given domain, has shown that inner entanglements and the combination of
outer and inner entanglements often outperformed macros.*® Exploiting a natural property of
inner entanglements, ie, exclusivity of predicate achievement or requirement, has been also used
for generating macros.?® Such macros can be, in some cases, beneficial; however, such an approach
cannot be used in cases where operators in an inner-entanglement relation cannot be applied
consecutively. Inner entanglements can support also other learning techniques that are used in
planning. Roller is a system that learns decision trees that are then used to guide depth-first
search. Combining Roller with entanglements (both inner and outer), such a system is called
Rollent, brought promising results as well.®*

9 | CONCLUSIONS AND FUTURE WORK

In this paper, we have presented inner entanglements, which are relations between pairs of plan-
ning operators and predicates such that an operator exclusively achieves a predicate for another
operator or an operator exclusively requires a predicate from another operator. To deal with the
intractability of deciding whether a given inner entanglement holds for a given planning task
(see Section 6), we used an approximation method for extracting “domain-specific” sets of inner
entanglements from training plans, solution plans of simple tasks. Inner entanglements can be
encoded into domain models without extending the input language of a planner (see Section 5),
and therefore, they can be understood and exploited as planner-independent knowledge.
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Inner entanglements are able to considerably improve the planning process as our experi-
ments demonstrated. In Bw, Depots, and TPP, the considerable performance improvement was
observed among almost all the planners. As discussed before, inner entanglements are especially
powerful if the exclusivity of both predicate achievement and requirement between a given pair
of operators holds, which is the case of Bw, Depots, and TPP. Generally, inner entanglements have
a good potential for a performance improvement if they are not “clashing” with a given planning
technique, as demonstrated in Barman (Mercury) and Bw (Lama).

The pruning power of inner entanglements is a crucial aspect for their success. In particular,
we need to avoid creating them with rarely used operators and when the argument count of an
entangled operator is higher than certain other operators in the domain model (as explained in
Section 7.2). Incorporating the aforementioned filtering technique into the inner-entanglement
learning method alleviated most of the performance concerns raised in the previous works.**!

We identified several avenues for future research. First, we believe that inner entanglements
can be considered directly in heuristics—rather than being encoded in PDDL—by, for instance,
penalizing possibilities that violate these entanglements. Second, we believe that inner entangle-
ments can be encoded, for instance, in decision trees or control rules. This might improve the
performance of related planners, ie, Roller'® or TALplanner.'? Third, we will investigate in which
cases deciding nontrivial inner entanglements is tractable. Given the insights in this paper (see
Section 6.4), we believe that by analyzing the domain structure, we can identify some useful inner
entanglements in polynomial time. Finally, given the encouraging spread of results among sets of
planners and domains, we intend to work toward including an inner entanglement-generating
facility as part of a knowledge engineering workbench.
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