
Dissertation Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Leveraging Semantic Web Technologies in
Domain-specific Information Systems

Ing. Martin Ledvinka

Supervisor: Ing. Petr Křemen, Ph.D.
Field of study: Electrical Engineering and Information Technology
Subfield: Artificial Intelligence and Biocybernetics
August 2020

ii

Acknowledgements

First and foremost, I want to thank my
family for their everlasting care and sup-
port. I would like to that my supervisor,
Dr. Petr Křemen, for teaching me that
research texts should also be good stories.
I would also like to thank my colleagues at
the Knowledge-based and Software Sys-
tems group for creating a pleasant and
challenging working environment. I would
like to thank Michal Med – our friendly
competition was a big motivation for work-
ing on this thesis.

Declaration

I declare that I have written my disserta-
tion thesis independently and consistently
quoted the sources in the submitted work.

In Prague, 2020-08-11.

iii

Abstract

Although envisioned as a successor of the
ubiquitous Web, the Semantic Web, and
its related technologies had been for a
long time primarily a matter of academic
research. Only in recent years has it
started to make its way into the main-
stream, mainly as a technology stack be-
hind Linked (Open) Data. Nevertheless,
Semantic Web technologies can be a wel-
come asset of domain-specific information
systems that are used to create, manage,
and process reusable data.

However, Semantic Web technologies
still represent rather uncharted territory
for developers of such systems. This can
be attributed to the amount of non-trivial
knowledge a Semantic Web developer has
to posses, the lack of mature tools, and
still incomparable performance of Seman-
tic storage systems in contrast to rela-
tional databases, as well as the semantic
impedance between the two.

This thesis tries to facilitate the adop-
tion of Semantic Web technologies by de-
velopers of domain-specific information
systems by building a stack of principles
and tools that they can use to seamlessly
integrate such technologies into their reg-
ular development stack. In particular, it
provides a formal framework for the of-
ten problematic access to Semantic data
and introduces a persistence library built
upon this formalization. In addition, a
tool for Semantic Web-based information
system integration is presented. The the-
sis also discusses whether the utilization
of Semantic Web technologies influences
the architecture of an information system
as a whole. Finally, several real-world
examples showcase the presented results.

Keywords: Semantic Web, Information
System, Ontology, Linked Data,
Object-oriented Programming

Supervisor: Ing. Petr Křemen, Ph.D.
Department of Computer Science,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
Karlovo náměstí 13,
121 35 Praha 2,
Czech Republic

iv

Abstrakt

Ačkoliv se měl stát nástupcem dnes všu-
dypřítomného webu, sémantický web a
jemu příbuzné technologie byly po dlou-
hou dobu předmětem především akade-
mického výzkumu. Teprve v posledních
letech začal tento koncept pronikat i do
běžného použití, hlavně jako technický
prostředek využívaný iniciativou propoje-
ných (otevřených) dat. Nicméně, techno-
logie sémantického webu mohou být víta-
nou posilou i doménových informačních
systémů používaných k tvorbě, správě a
zpracování znovupoužitelných dat.

Bohužel, sémantické technologie zatím
pro vývojáře takových systémů zůstavají
spíše neprozkoumaným územím. Tento
problém lze připsat množství nových zna-
lostí, které musí vývojář načerpat, nedo-
statku pokročilých vývojářských nástrojů
a stále ještě výrazně horšímu výkonu úlo-
žišť sémantických dat ve srovnání s relač-
ními databázemi. Dalším faktorem jsou
pak principiální rozdíly mezi oběma typy
databází.

Cílem této práce je podpořit využití
technologií sémantického webu vývojáři
doménových informačních systémů vybu-
dováním ekosystému principů a nástrojů,
díky kterým lze sémantické technologie
snadno začlenit do běžně používaných po-
stupů a knihoven. Konkrétně, text před-
stavuje formální rámec pro popis aplikač-
ního přístupu k sémantickým datům a
softwarovou knihovnu, která je na tomto
formalismu založená. Dále je prezentován
nástroj pro integraci aplikací pomocí sé-
mantických technologií. Práce též disku-
tuje, zda a do jaké míry ovlivňuje vyu-
žití sémantického webu architekturu in-
formačního systému jako takového. Nako-

nec je uvedeno několik příkladů reálných
informačních systémů vybudovaných na
základě prezentovaných výsledků.

Klíčová slova: Sémantický web,
Informační systém, Ontologie, Linked
Data, Propojená data, Objektově
orientované programování

Překlad názvu: Využití technologií
sémantického webu v doménových
informačních systémech

v

Contents

Part I
Motivation and Problem Statement

1 Introduction 3

1.1 Motivation . 4

1.2 Problem Statement 7

1.3 Thesis Goals 8

2 Background 11

2.1 RDF . 11

2.2 Linked Data 12

2.3 SPARQL and SPARQL Update . 13

2.4 Ontologies 14

2.5 RDFS . 14

2.6 OWL . 15

2.6.1 OWL Semantics 16

2.7 SROIQ(D) 17

2.7.1 SROIQ(D) Syntax 17

2.7.2 SROIQ(D) Semantics 18

2.8 Integrity Constraints 20

2.8.1 Integrity Constraints in
Description Logics 21

2.9 F-logic . 25

3 State of the Art 29

3.1 Accessing Semantic Data 30

3.1.1 Existing Tools for Semantic
Data Access 30

3.1.2 Closed World Reasoning in
Description Logics 35

3.1.3 Mapping Between Description
Logics and F-logic 36

3.2 Integrating Applications Using
Semantic Web Technologies 37

3.2.1 Data-level Integration 37

3.2.2 Service-level Integration 38

3.3 Semantic Web-based Information
Systems: A Survey 40

3.3.1 Literature Concerning Semantic
Web-based Information Systems . 40

3.3.2 Examples of Existing Semantic
Web-based Information Systems . 44

vi

Part II
Contribution

4 Theoretical Basis for Application
Access to Semantic Data 49

4.1 Comparison of Object-triple
Mapping Libraries 50

4.1.1 Design of the Comparison
Framework 51

4.1.2 Overview of Comparison
Results . 55

4.2 Formal Object-ontological
Mapping . 60

4.2.1 Mapping between Description
Logics and F-logic 61

4.2.2 Mapping between F-logic and
Programming Languages 68

4.3 Data Access Operations 71

4.3.1 Definition of the Operations . 71

4.3.2 Complexity Analysis 73

5 Practical Solutions of Thesis
Goals 75

5.1 OntoDriver 76

5.1.1 Structure of OntoDriver 76

5.1.2 Implementations 77

5.2 Java OWL Persistence API 78

5.2.1 History 80

5.2.2 Features 80

5.2.3 Structure 82

5.3 Java Binding for JSON-LD 84

5.3.1 Principles 84

Part III
Results

6 Evaluation 89

6.1 Evaluation of the
Object-ontological Mapping
Formalism . 90

6.1.1 Mapping by Example 91

6.1.2 Missing Features 95

6.2 Information Systems Built Using
the Presented Tools 96

6.2.1 INBAS 96

6.2.2 SISel . 99

6.2.3 TermIt 101

vii

6.2.4 The Others 104

6.3 Architecture of Semantic
Web-based Information Systems . 106

6.3.1 General Notes on Developing
Semantic Web-based Information
Systems . 106

6.3.2 Separating Business Logic from
Infrastructure – Pitfalls 107

6.4 Semantic Web-based Information
Systems Developer Survey 108

6.4.1 Survey Audience and
Questions . 109

6.4.2 Survey Evaluation 110

6.5 Experience with Developing
Semantic Web-based Information
Systems . 112

7 Conclusions 115

Bibliography 117

Publications by the Author 129

Journal Publications 129

Conference Publications 129

Methodologies 132

Software . 132

Appendices

A Abbreviations and Acronyms 135

B Proofs 137

B.1 Proof of Lemma 4.1 137

B.2 Proof of Theorem 4.3 139

C Mapping Examples 143

C.1 Mapping by Example – OS1 . . 143

C.2 Mapping by Example – OS2 . . 146

D Semantic Web Developer Survey
– Complete Results 149

viii

Figures

1.1 Simplified structure of a Semantic
Web-based safety data collecting and
processing system. Full edges
represent dependencies, dashed edges
represent ontology import. 7

2.1 Simple visualization of an RDF
graph using a labeled directed graph.
XML-based namespace prefixes are
used to shorted IRIs. Borderless
nodes represent literal values while
nodes with border are resources. . . 12

3.1 Linked Data-based application
components by Heitmann et al. [82].
Edges represent component
dependency. Layered structure
introduced by me. 43

4.1 Overview of the focus of this
chapter. Relevant parts are marked
with bold font and grey background.
Solid lines depict direct usage. 50

4.2 UML class diagram of the OTM
comparison performance benchmark
model. 54

4.3 Performance of the individual
libraries on a 1 GB heap. The plots
are grouped by the respective
operations. Lower is better. Taken
from [47]. 59

4.4 UML class diagram of a model
based on integrity constraints from
the running example. 66

4.5 UML object diagram of the
extended ABox OFA ′ from the
running example. 71

5.1 Simplified structure of a DSSWIS
with emphasis on software libraries
described in this chapter. Solid lines
represent invocation or direct
dependence. Dashed lines represent
various relationships indicated by the
labels on the lines. 77

5.2 Simplified visualization of the
OntoDriver structure. Components
with a bold border are a part of the
driver. 78

5.3 UML component diagram of JOPA.
UnitOfWork represents an internal
component responsible for managing
the persistence context during a
transaction. 83

6.1 Illustration of the formal and
technical object-ontological mapping.
The formal mapping is depicted using
solid edges, whereas the technical
solution is represented by the dashed
edge. 90

6.2 UML class diagram of the object
model from the first mapping
example, based on the ontology OS1.
Resources attached to a report could
be, for example, files, video and
audio recordings or photographic
evidence (or, more precisely,
references to such assets). 94

ix

6.3 Factor chain designer in the
INBAS Reporting tool. Top node
represents the reported occurrence,
its sub-nodes are events which were a
part of the occurrence. The green
node is an explanatory factor,
whereas the grey nodes are events. 98

6.4 Simplified visualization of the
various input formats a CAA SDCPS
has to deal with. 99

6.5 Detailed view of a term in TermIt.
Notice that it is classified as both a
SKOS concept and an OWL class. In
addition, it is a UFO kind and
object-type (IRI’s are in Czech). . 101

6.6 Schematic depiction of the
structure of TermIt. Oval nodes
represent ontologies (DDO is the data
description ontology), nodes with a
dotted border are functional modules,
whereas nodes with a solid border are
architectural layers of the application.
Components relevant to this thesis
are marked with a bold border. The
dashed edge means that the model is
based on the TermIt ontology. . . . 103

6.7 Pipeline for dataset descriptor
generation (see Section 6.2.4) as
visualized by the SPipes editor.
Taken from [125]. 105

6.8 Layered architecture overview.
Shows how the business logic
(emphasized by bold label and
border) is separated from external
interfaces of the system. 107

Tables

3.1 Categorization of Semantic Web
applications according to [12]. 41

4.1 Selected OTM libraries compared
using a subset of the criteria defined
in Section 4.1.1. × means no support,
◦ represents partial support, X is full
support of the feature and N/A
signifies that the feature cannot be
evaluated in the particular case.
JOPA is highlighted as it is the
framework developed by my
colleagues and me. 55

4.2 Memory utilization summary in a
benchmark running for four hours
with 40 MB heap. GCT is the total
time spent in garbage collection and
Throughput is the corresponding
application throughput. 60

4.3 Mapping of concept descriptions. x
is universally quantified over E , yi is
quantified over UE . XC (XR)
represents a concept (method) name,
i.e., a function symbol from C (R).
AtMost is defined analogously to
AtLeast and corresponds to
6nR.C. 62

4.4 Mapping of TBox and RBox
axioms. RBox axioms are mapped to
predicates, for which satisfaction
conditions on the F-structure I are
provided. ⇒ outside of an
F-molecule represents regular logical
implication. Variables are universally
quantified over UE 63

x

4.5 Integrity constraint semantics of
F-logic concept descriptions. The
right hand column specifies a
condition under which an individual
x is an instance of the concept
specified in the left hand column
under the IC semantics. 66

4.6 Integrity constraints validation
transformation rules for concepts. CA
is an atomic class name. 67

4.7 Integrity constraints validation
transformation rules for axioms. Ci is
a concept, Ri is a role and x, yi are
variables. 67

4.8 Mapping integrity constraints to
OOPL structures. The AtMost
run-time constraint mapping assumes
n > 1. Code snippets are in Java. . 70

4.9 Asymptotic time complexity of the
selected data access operations for a
materializing and query-time
reasoning storage. b is the branching
factor of the index B+ tree, n is the
size of the dataset. CR is the
reasoning cost, which depends on the
selected language expressiveness, and
m is the number of reasoning cycles
performed during materialization of
statements inserted into the
repository. 74

5.1 Correspondence of the OntoDriver
and JOPA to their relational
database-access counterparts in
Java. 76

6.1 Illustration of the ABox axiom
mapping between description logics,
F-logic and Java. 95

xi

1

..

Part I

Motivation and Problem Statement

2

Chapter 1

Introduction

The concept of the Semantic Web was popularized in the widely cited article by Tim
Berners Lee, Jim Hendler, and Ora Lassila [1]. It was envisioned as an evolution of the
Web, which consisted of websites with mostly unstructured data (text, images) and
which was intended for human consumers. The Semantic Web would add languages
and principles to allow machines to aid humans by being able to “understand”
resources accessible on the Internet. For instance, as Berners Lee et al. write, a
user’s digital assistant could validate a procedure with their insurance plan, check for
available physical therapist’s appointment slots and compare them with the user’s
schedule by being able to communicate with different services (physical therapist’s
scheduler, the insurance company, user’s calendar) without having to be previously
configured to support their data schema or the protocols they use.

The Semantic Web is built around the idea of resources with globally valid
identifiers in the form of IRIs (Internationalized Resource Identifiers). The properties
of these resources are themselves identified by IRIs. Semantic Web data are described
using structured languages like RDF [2] which are designed to be processed primarily
by machines. The types of resources, their properties, and relationships among
them are described in schemas called ontologies. Such ontologies can be shared,
allowing various Semantic Web agents, for example, to process data produced by
external entities. Consider the aforementioned example – based on an ontology, the
user’s agent can compare appointment slots with their calendar because they both
represent temporal data concerning scheduling. Moreover, based on an ontology,
software agents can infer additional knowledge not explicitly stated in the data, for
example, an ontological rule may allow inferring that a specific insurance plan covers
a certain procedure, because that procedure is defined in an inferior plan.

3

1. Introduction
For many years, the Semantic Web had been primarily confined to the area

of academic research. During this period, important standards and notions like
RDF, SPARQL [3] (a query language for Semantic data1), or Linked Data [4] (a
set of principles for publishing and interconnecting machine-readable data) were
born. Over time, Semantic Web technologies2 started to gain traction. One of the
first and most successful practical applications of Semantic Web ontologies were
medical terminologies like GALEN [5] or SNOMED CT [6], where the ability to
uniquely identify and disambiguate concepts was exploited. Linked Data caught the
attention of public institutions and governments which use them to provide open and
standards-based access to their assets.3 As global technology leaders like Facebook,4
Google,5 IBM [7], or Microsoft6 have adopted Semantic Web principles in some
of their mainstream products, the Semantic Web seems to be finally on track to
becoming as ubiquitous as the original Web, or even more, given the predicted rise
of the Internet of Things (appliances, sensors and regular hardware being connected
to the Internet).

1.1 Motivation

Upon closer examination, one finds out that many contemporary use cases of the
Semantic Web, including the examples presented so far, are centered around the
ability to retrieve or query knowledge. Indeed, even the principles of the (Semantic)
Web concern primarily the consumption of data and information.

In most cases, however, a concrete information system is responsible for data
creation, processing, and visualization. The raw data may be created by users or
gathered automatically (e.g., using sensors), but information systems provide the
necessary plumbing and business logic operating on them. Businesses and other
kinds of organizations or individuals rely daily on information systems to correctly
process and manage their data. In fact, while data are considered the most valuable
thing, it is the information systems operating on them that allow one to extract the
value. Consider a fictive civil aviation authority (CAA) and its safety data collecting
and processing system (SDCPS). Most users will use it to analyze trends in aviation
safety using its business intelligence (BI) module, view safety occurrences and follow
their investigation, or view results of safety audits in organizations. However, it is
vital that it allows the CAA employees to enter data gathered during the occurrence

1Data expressed using Semantic Web standards – usually RDF(S) and OWL, serialized as RDF.
2I shall use the term Semantic Web technologies to group standards, notions, and technologies

related to the Semantic Web. Relevant ones will be discussed in Chapter 2.
3For instance, the Czech Linked Open Data cloud https://linked.opendata.cz, the Austrian

one https://www.data.gv.at/linked-data, both accessed 2020-08-11.
4http://ogp.me, 2020-08-11.
5https://developers.google.com/knowledge-graph/, accessed 2020-08-11.
6https://concept.research.microsoft.com/Home/Introduction, accessed 2020-08-11.

4

https://linked.opendata.cz
https://www.data.gv.at/linked-data
http://ogp.me
https://developers.google.com/knowledge-graph/
https://concept.research.microsoft.com/Home/Introduction

....................................... 1.1. Motivation

investigations or audits, and other involved parties to report occurrences. In other
words, the system manipulates data in the whole create, retrieve, update, and delete
(CRUD) spectrum.

Such information systems can be classified using various categories depending on
various points of view. The one interesting for this thesis is the way they treat the
underlying domain. In this regard, two main categories can be identified [8]:..1. Domain-independent information systems..2. Domain-specific information systems

Domain-independent systems make no assumptions about the underlying domain.
Their approach is intentionally generic in order to accommodate various topics.
The most prominent examples of such systems are data editors, including triple
store or relational database management tools like GraphDB Workbench,7 TopBraid
Composer8 and PgAdmin.9 They are useful for direct data authoring and editing by
experts on the selected data paradigm, however, their value for domain experts, i.e.,
users not necessarily possessing advanced IT knowledge, is limited.

Domain-specific systems, on the other hand, are built specifically for use in a
particular domain. They contain a model of the domain and algorithms to operate
on it (the business logic). Examples include the aforementioned safety data collecting
and processing system, banking systems, systems used in offices, and many more.
Such systems are more efficient for the domain experts, as they allow to encode the
rules of the domain and the users can remain oblivious to the technologies used
for data storage, exchange, etc. In a sense, a terminology editor like Protége [9] is
both domain-independent and domain-specific. It is independent of the domain for
which the terms are created, yet, the terms, their properties, and relationships are
represented by a particular model. My interest in this work concentrates on domain-
specific information systems, as they represent the vast majority of information
systems out there and are more efficient for domain experts – their users.

The prevailing paradigm used to develop domain-specific information systems
(and one may even dare to say information systems in general) is the object-oriented
programming (OOP). OOP has been a dominant software development technique in
the last two decades, mainly due to its ability to represent the underlying domains in
a natural and understandable way [10]. The main distinguishing feature of OOP in

7http://graphdb.ontotext.com/documentation/standard/workbench.html, accessed 2020-08-
11.

8https://www.topquadrant.com/products/topbraid-composer/, accessed 2020-08-11.
9https://www.pgadmin.org/, accessed 2020-08-11.

5

http://graphdb.ontotext.com/documentation/standard/workbench.html
https://www.topquadrant.com/products/topbraid-composer/
https://www.pgadmin.org/

1. Introduction
comparison to the previously popular procedural programming is the encapsulation
of data and behavior into objects. Such objects are instances of classes, which
represent a conceptualization of domain types. The classes can be structured into
inheritance hierarchies, where each subclass inherits behavior and data from its
superclass. Object-oriented modeling – modeling of an application developed using
OOP – is in many aspects similar to ontological modeling, where a domain ontology
is created. This should not come as a surprise, as both approaches aim at describing
the structure of the domain using types, their instances, and relationships. Object-
oriented modeling adds the behavior modeling aspect, which is then realized using
OOP in the information system. For these reasons, when discussing domain-specific
information systems in this thesis, I will always mean systems developed using
object-oriented programming.

Domain-specific information systems may not appear directly relevant for the
Semantic Web, but appearances are often deceiving. Consider the aforementioned
fictive national civil aviation authority. The CAA is a public governmental body
obliged to publish its data as open data. Its officials decide to develop an SDCPS
for the oversight of aviation organizations under its jurisdiction, involving safety
occurrence reporting, the definition of safety issues, and an aviation organization
performance dashboard. First, the system is relevant for the Web, as it is likely to
be a Web application, i.e., an application with a Web-based user interface. Given the
ubiquity and performance of the Internet, most information systems are nowadays
accessed via a Web browser. Next, building this system based on Semantic Web
technologies has major advantages. The CAA has to deal with heterogeneous data
involving international and local audits, safety occurrences reported by various
parties (airlines, airports, civilians) in various formats. An ontological model can
be used for the unification of such data, allowing the system to provide a more
comprehensive picture of the situation in the domain. Global identifiers of types (like
aircraft, organization), instances (concrete organizations), and attributes (label, a
factor of an occurrence) allow the system to be interoperable with other compatible
systems like an aircraft registry, a registry of aviation organizations, etc. Taxonomies
of types of events that were a part of an occurrence (for instance, an aircraft first
lost its speed and then collided with the ground) can be internationalized because
different labels can represent the same event type. The ontological domain model
can be shared, aiding to interoperability with other systems. Based on the model,
the system can also infer knowledge not apparent from the data. For instance, if each
report contains a tree of events involved in the occurrence, it is possible to infer what
events frequently cause/contribute to other events. Last but not least, publishing
the data as 5-star Linked (Open) Data [4] not only fulfills the CAA’s obligation but
enhances their reusability. A simplified diagram depicting the structure of such an
SDCPS is shown in Figure 1.1.

6

....................................1.2. Problem Statement

Figure 1.1: Simplified structure of a Semantic Web-based safety data collecting and
processing system. Full edges represent dependencies, dashed edges represent ontology
import.

1.2 Problem Statement

Despite the aforementioned benefits of using Semantic Web technologies when
developing domain-specific information systems, their slow adoption in the area
suggests that there are obstacles in the way. Arguably the most prominent are:

Learning curve Using Semantic Web incurs a burden of learning new non-trivial
technologies. Developers who have already had to learn sophisticated program-
ming languages and technologies must also learn a new paradigm with complex
standards and data formats.

Software libraries Software development is nowadays connected with using mid-
dleware tools and auxiliary libraries that speed up the process. Yet, there is a
clear lack of mature tools supporting Semantic Web technologies. A classical
chicken and egg problem may be spotted here – application developers cannot
rely on prototypical Semantic Web tools, and developers of such tools are not
motivated to improve them due to their small user base.

Performance Contemporary Semantic storage systems have also a significant per-
formance disadvantage compared to the more widespread relational databases [11].

7

1. Introduction
Consider a software developer starting a new project – a domain-specific infor-

mation system. If they wanted to build it upon Semantic Web technologies, they
would have to learn at least basics of RDF, SPARQL, perhaps principles of Linked
Data and JSON-LD (JavaScript Object Notation for Linked Data). In addition,
they would often run into the problem of having to write a library for tasks for
which there are many alternatives in the regular, relational database-based world
(e.g., database access, serialization and deserialization of data in Web services), or,
if they are lucky, accepting the risk of using a prototype developed by researchers
funded on a per-project basis. Finally, they run into performance issues sooner than
users of relational databases, who enjoy the spoils of decades of optimization and
indexes over a static schema. Given the arguably unsure benefits of using Semantic
Web technologies – shared schemas, global identifiers and machine-readable data
formats vitally depend on other systems also supporting them – one cannot blame
such a developer for choosing the safe path of a relational database-based system
with regular REST (Representational State Transfer) Web services.

1.3 Thesis Goals

The ultimate goal of this thesis is to facilitate the adoption of Semantic Web
technologies into domain-specific information systems development by building
a stack of principles and tools for efficient software development. Such a stack
should (at least partially) solve the issues of the learning curve and the lack of tools
discussed above by allowing software developers to use techniques and approaches
they know and keeping the Semantic nature of the stack transparent in the majority
of cases. While not being able to address the performance issues directly, the tools
developed as part of this thesis provide comparable or better performance than
existing alternatives (when they exist).

A literature review [12, 11, 13] and my own experience with developing domain-
specific Semantic Web-based information systems (many authors also use the term
Domain-specific Linked Data Applications [12, 11]) suggest two areas where utilizing
Semantic Web technologies in development may be problematic:

. Application access to Semantic data. Integration of application interfaces using Semantic Web technologies

Thus, these two areas will be of particular interest to me. It is suggestive that they
concern the boundaries of an information system – be it data access, integration

8

.......................................1.3. Thesis Goals
with other systems or user interface – while the core – the business logic – remains
virtually oblivious to the choice of Semantic Web technologies (consider the SDCPS
in Figure 1.1, where Semantic Web-related components are marked with bold
borders). While it would be in accordance with software architecture best practices,
as discussed, for instance, in [14], it remains one of the goals of this thesis to confirm
or refute this idea.

The particular goals of this thesis can be thus enumerated as follows:..1. Design a framework for formally sound application access to Semantic data and
provide its implementation...2. Identify and classify the issues of building and integration of Web services based
on Semantic Web technologies. Provide a showcase implementation of such
integration...3. Analyze how the decision to build an information system based on Semantic
Web technologies influences its architecture and design. Provide guidelines for
developing such systems.

Fulfilling these goals should help expand the rather small niche of domain-specific
Semantic Web-based information systems by simplifying the use of Semantic Web
technologies by common software development folk.

The rest of the thesis is structured as follows: Chapter 2 provides the necessary
theoretical background, Chapter 3 discusses the current state of the art and works
related to my approach. The main contributions of the thesis are presented in
the following two chapters – Chapter 4 provides an overview of Semantic data
access solutions and builds a formal framework for this access, whereas Chapter 5
introduces its implementation, together with another library created as part of the
intended development stack – the Web service integration tool. Chapter 6 provides
an evaluation of the work – it shows the faithfulness of the developed data access
library to its formal underpinnings, presents several showcases of real-world domain-
specific information systems based on Semantic Web technologies, and discusses the
architecture of such systems. The thesis is concluded in Chapter 7.

9

10

Chapter 2

Background

This chapter provides the necessary background on standards, languages, and
technologies used in this thesis. It starts with the fundamental standard of the
Semantic Web – the data description language RDF. The principles of Linked Data
are discussed next, as they are closely related to RDF and important for Semantic
Web-based information system integration. SPARQL and SPARQL Update are
presented as languages for querying and manipulation of Semantic (Linked) data
respectively. Moving on, the notion of ontologies is discussed, followed by sections
presenting standard languages for their description – RDFS and OWL. Special care
is devoted to the formal logics upon which OWL is based – description logics –
more specifically, the logic SROIQ(D). Next up is another idea important for
information systems – integrity constraints and their utilization in description logics.
Finally, F-logic is introduced as a language this thesis uses to bridge the gap between
object-oriented programming languages and description logics.

2.1 RDF

The fundamental standard of the Semantic Web is the Resource Description Frame-
work (RDF) [2]. It is a data modeling language built upon the notion of statements
about resources. These statements consist of three parts, the subject of the descrip-
tion, the predicate describing the subject, and the object, i.e., the predicate value.
Such statements – triples – represent elements of a labeled directed graph, an RDF
graph, where the nodes are resources (IRIs or blank nodes1 in the roles of subjects or

1Blank nodes are resources without global identity.

11

2. Background

Figure 2.1: Simple visualization of an RDF graph using a labeled directed graph.
XML-based namespace prefixes are used to shorted IRIs. Borderless nodes represent
literal values while nodes with border are resources.

objects) or literal values (in the role of objects) and the edges are properties (in the
role of predicates) connecting them. This can be seen in a simple visualization in
Figure 2.1. Note that properties are also resources, so they can appear as nodes in an
RDF graph as well. RDF can be serialized in many formats, including RDF/XML,
Turtle, or N-triples. Listing 2.12 complements Figure 2.1 with a Turtle serialization
of the same data. Taking an RDF graph and a set of named graphs (RDF graphs
identified by IRIs), we get an RDF dataset.

Listing 2.1: An example of a small RDF dataset based on Figure 2.1 written in Turtle.
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix doc: <http://onto.fel.cvut.cz/ontologies/documentation/> .
@prefix ufo: <http://onto.fel.cvut.cz/ontologies/ufo/> .
@prefix ex: <http://example.com/> .

ex:report−buo01 doc:documents ex:occurrence−buo01 ;
dc:description "Loss of speed..." .

ex:occurrence−buo01 rdfs:label "O−BUO01 Accident" ;
ufo:has−part ex:event−buo01 .

2.2 Linked Data

The term Linked Data denotes a set of practices for publishing and connecting
structured data on the Web using W3C standards [4]. This way, the Web could be
turned into a massive, distributed database – the Web of Data. Such a database
allows one to gather data from various sources, traverse related topics by following
links between datasets, or reuse data schemas, facilitating system interoperability.

There are multiple levels of adherence to the Linked Data principles, denoted, in
an analogy to ranking systems, by the number of stars a data publisher achieves.

2Prefixes declared in listings are assumed to exist in subsequent listings as well.

12

...............................2.3. SPARQL and SPARQL Update

.F Data are available on the Web, in whatever format..FF Data are available as machine-readable structured data..FFF Data are available in a non-proprietary format..FFFF Data are published using W3C open data formats..FFFFF All of the above plus data are linked to other people’s data.

The connection to RDF can be seen in 4-star Linked Data, as RDF is the primary
W3C format for publishing machine-readable data.

If, in addition, the data are published under an open license, they become Linked
Open Data.

2.3 SPARQL and SPARQL Update

The SPARQL Query Language (SPARQL) is a query language for RDF [3]. It
is based upon the matching of triple patterns to the data. A triple pattern is
essentially a triple, where variables can appear in the position of subject, predicate,
and object. A query engine then attempts to replace the variables with existing
values and check whether the underlying database contains such a triple. A set of
triple patterns comprises a basic graph pattern – the base of most SPARQL queries.
In addition, SPARQL supports various constructs like OPTIONAL for optional
matching, FILTER for value filtering, ORDER BY for result ordering etc.

A short example of a SPARQL query selecting all distinct properties whose subject
or object is ex:report, ordered lexicographically by their identifiers, can be found
in Listing 2.2.

Listing 2.2: A SPARQL query example.
SELECT DISTINCT ?outgoing ?incoming WHERE {

{ ex:report ?outgoing ?object . }
UNION
{ ?subject ?incoming ex:report . }

} ORDER BY ?outgoing ?incoming

SPARQL Update is, on the other hand, a data manipulation language for RDF [15].
Its syntax is derived from SPARQL and allows creating, updating, and deleting RDF
data. The query in Listing 2.3 showcases how data (a type declaration in this case)
can be inserted into the repository using SPARQL Update.

13

2. Background
Listing 2.3: A SPARQL Update example.

@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

INSERT DATA {
ex:report rdf:type doc:occurrence_report .

}

2.4 Ontologies

The expressive power of RDF is rather small – it allows one to describe data, but
it is not possible to describe the structure of the data – their schema. That is
where ontologies come into play. The term Ontology originates from philosophy
where it is a discipline studying the nature and structure of reality. An ontology
in the computer science sense is a computational artifact. The most widely cited
definition of an ontology in computer science comes from Tom Gruber, who defines
an ontology as “an explicit specification of conceptualization [16].” This somewhat
cryptic definition can be informally translated as a written (or otherwise expressed)
specification of a conceptual model of a particular domain. Guarino et al. provide
a detailed definition of an ontology which can be summed up as follows: “An
ontology is a formal, explicit specification of a shared conceptualization [17].” Where
formal and explicit corresponds to a specification expressed in a formal language,
usually machine-readable, with well-defined intensional semantics, i.e., describing
the concepts and relationships using axiomatic rules rather than enumerating their
extension (instances) in all possible worlds. Shared conceptualization then indicates
that a mental model of an area of interest, again, defined in an intensional way, is
agreed on by multiple agents.

The gist for the purpose of this thesis is that an ontology is a computational
artifact describing the conceptualization (mental model) of a domain, defining its
concepts and their properties. Ontologies in computer science are thus defined using
structured languages, so that they may be processed by machines. These languages
will be discussed next.

2.5 RDFS

RDF Schema (RDFS) is a data modeling language for RDF [18]. It allows one to
declare classes (domain concepts), build hierarchies of both classes and properties,
specify ranges and domains of properties, etc. Besides, the RDF Schema reification

14

.. 2.6. OWL

vocabulary provides a way to specify provenance metadata of the data themselves.
E.g., one can declare who and when created a particular triple/resource.

The expressiveness of RDFS is still low and it does not support, for example,
declaration of equivalence of two RDFS classes, resources. Yet, RDFS is expressive
enough for a reasoner to infer certain implicit facts from explicit data, which is one
of the big benefits of Semantic Web ontologies. Consider the following triples:3

doc:occurrence_report rdfs:subClassOf doc:report .

ex:a rdf:type doc:occurrence_report .

The first triple is a part of the schema and says that doc:occurrence_report4 is
a subclass of doc:report. The second triple describes actual data. Given RDFS
interpretation rules, an RDFS-aware reasoner can infer that
ex:a rdf:type doc:report .

2.6 OWL

The Web Ontology Language (OWL) is an ontology language for the Semantic
Web [19]. It provides, besides basic modeling constructs like classes and properties,
more expressive features, such as inverse properties, equivalent classes or properties,
intersection or union of classes, etc. OWL 2 is the latest version of this W3C-
standardized language.5 The high expressiveness of OWL comes with a cost of
increased computational complexity. Indeed, depending on the chosen semantics (see
Section 2.6.1 below), reasoning in OWL is undecidable or N2EXPTIME-complete.6
Thus, several sub-languages, called profiles, were introduced to provide sets of
constructs with more favorable computational properties, suitable for particular
often appearing problems identified by the community. Examples of OWL profiles are
OWL 2 RL (allows rule-based reasoning), OWL 2 QL (supports sound, and complete
query answering with LOGSPACE complexity and was specifically designed for
ontology-based data access [20]), OWL 2 EL (a restricted profile primarily for
classification hierarchies and simple constraints), etc.

OWL ontologies are sets of structural statements which are, due to its logic roots,
3Turtle RDF serialization is used throughout the thesis.
4I will use the typewriter font to denote ontological expressions in text throughout the thesis.
5For simplicity, OWL will be used to denote both the original OWL standard as well as its

successor OWL 2. I will point out the difference if necessary.
6See https://www.w3.org/TR/owl2-profiles/#Computational_Properties, accessed 2020-08-

11.

15

https://www.w3.org/TR/owl2-profiles/#Computational_Properties

2. Background
traditionally called axioms, and statements about the data called assertions. Axioms
are used, on the one hand, to build hierarchies of classes and properties, often by
placing restrictions on other classes and properties, and, on the other hand, to
specify various characteristics of the properties, e.g., their reflexivity, or transitivity.
OWL ontologies are typically serialized as RDF, however, since OWL is a more
expressive, higher-level language, writing an OWL axiom may require several RDF
triples. Consider the following axiom declaring class Parent to be equivalent to a
union of classes Father and Mother (written in the functional-style syntax used by
the OWL specification):
EquivalentClasses(ex:Parent ObjectUnionOf(ex:Father ex:Mother))

Such an axiom is serialized in RDF (Turtle) as follows:
@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:Parent rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:unionOf (
ex:Father
ex:Mother

)
] .

OWL splits the domain into the sets of classes, properties, individuals, and literals.
In contrast to RDFS, properties in OWL can be further divided into:

. object properties, which represent relationships between two individuals,. data properties, which have literal values as objects,. annotation properties, which can have either an individual or a literal as a value,
but they do not partake in reasoning and are mainly used to provide metadata.

Such a division represents yet another data modeling feature built into the language
itself.

2.6.1 OWL Semantics

The semantics of OWL is defined in two variants:

RDF-based Semantics RDF-based semantics of OWL is fully compatible with
the semantics of RDF [21]. That is, an OWL ontology is viewed as an RDF

16

...................................... 2.7. SROIQ(D)

graph. RDF-based Semantics is a superset of the Direct Semantics (see below)
and reasoning in it is, in fact, undecidable. One of the key reasons for such a
conclusion is that under RDF-based semantics, individuals comprise the whole
domain, i.e., classes are also individuals (resources in the RDF vernacular).
An OWL ontology utilizing the RDF-based semantics is considered to use the
OWL 2 Full profile.

Direct Semantics Direct semantics of OWL is based on the formalism of descrip-
tion logics (DLs) [22]. Description logics are a set of decidable sub-languages of
the first-order logic. Thus, inference under the direct semantics is also decid-
able, because restrictions are placed on the language usage (e.g., classes and
individuals are disjoint under direct semantics7). The most expressive OWL
profile based on direct semantics is the OWL 2 DL (a successor of OWL DL)
which is based on the description logic SROIQ(D).

Given the undecidability of RDF-based semantics, direct semantics is of more
relevance for most applications. It is also closer to the logic roots of OWL, which
stem from the DAML+OIL language [23]. Since the formalism for Semantic data
access developed in this thesis is based on logics, direct semantics will be meant
whenever OWL semantics is discussed in the text, unless explicitly specified otherwise.
Description logics are paramount to OWL, it is thus time to introduce the description
logic SROIQ(D) – the formalism underpinning OWL 2 DL.

2.7 SROIQ(D)

SROIQ [24] is an expressive description logic, i.e., a decidable sub-language of
the first-order logic (FOL), used to describe ontologies. SROIQ(D) is then the
description logic SROIQ extended with datatypes – a definition of literal value
types.

2.7.1 SROIQ(D) Syntax

Each SROIQ(D) ontology O is comprised of a terminology (TBox and RBox), which
describes the schema of the ontology, and a set of individual assertions representing
actual data (ABox).8 A TBox consists of a concept hierarchy where concepts can be

7Although, punning in OWL 2 DL allows to syntactically treat them as the same to some extent.
8SROIQ allows expressing individual assertions using TBox axioms with nominals. However,

ABox assertions provide a natural, easy to read syntax which I will use throughout this thesis.

17

2. Background
either atomic or concept descriptions of the following forms:

C ← ¬C, C uD, C tD, >nR.C, 6nR.C, ∃R.Self, {a}, ∀R.C, ∃R.C,
>nT.d, 6nT.d, ∀T.d, ∃T.d,

where C, D are concepts, R, T are roles (T is called concrete), n is a non-negative
integer, d is a datatype and a is an individual. Each datatype d belongs to a set
of datatypes D and is associated with a set dD ⊆ ∆D of concrete values from the
concrete domain ∆D [25, 26]. The concept hierarchy is built using general concept
inclusion (GCI) axioms of the form C v D. An RBox consists of a hierarchy of roles
(built using role inclusion axioms (RIA) of the form R v S) and axioms stating
their properties: Sym(R), Asy(R), Tra(R), Ref(R), Irr(R), and Dis(R,S). The
schema also contains built-in concepts >, ⊥ and a built-in universal role RU .

Individual assertions are of the form C(a), R(a, b), T (a, v), a = b and a 6= b, where
a and b are individuals, v is a concrete literal, C is a concept, R is a role, and T is a
concrete role. The set NC represents concept names, NR role names, NI denotes the
set of individual names, and ND denotes the union of the sets of constants assigned
to each datatype in D (datatype literal values) [26].

2.7.2 SROIQ(D) Semantics

The semantics of a SROIQ(D) ontology O is given by an interpretation I = (∆I , ·I),
where ∆I is the domain of the interpretation and ·I is the interpretation function.
∆I is disjoint from ∆D. The interpretation function assigns to every atomic concept
A a set AI ⊆ ∆I , to every atomic role R a binary relation RI ⊆ ∆I ×∆I and to
every individual an element of ∆I . >I is ∆I , ⊥I is the empty set ∅ and RIU is

18

...................................... 2.7. SROIQ(D)

∆I ×∆I . Concept descriptions are interpreted as follows:

¬CI = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(> nR.C)I = {x | #{y . 〈x, y〉 ∈ RI and y ∈ CI} > n}
(6 nR.C)I = {x | #{y . 〈x, y〉 ∈ RI and y ∈ CI} 6 n}
(∃R.Self)I = {x | 〈x, x〉 ∈ RI}

{a}I = {aI}
(∀R.C)I = {x | ∀y . 〈x, y〉 ∈ RI implies y ∈ CI}
(∃R.C)I = {x | ∃y . 〈x, y〉 ∈ RI and y ∈ CI}

(> nT.d)I = {x | #{v . 〈x, v〉 ∈ T I and v ∈ dD} > n}
(6 nT.d)I = {x | #{v . 〈x, v〉 ∈ T I and v ∈ dD} 6 n}

(∀T.d)I = {x | ∀v . 〈x, v〉 ∈ T I implies v ∈ dD}
(∃T.d)I = {x | ∃v . 〈x, v〉 ∈ T I and v ∈ dD}

Where C and D are concepts, R is a role, T is a concrete role, a is an individual, d
is a datatype, n is a non-negative integer and #M denotes the cardinality of a set
M . Terminological axioms are interpreted as follows:

I |= C v D if CI ⊆ DI

I |= R v S if RI ⊆ SI

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI

I |= Asy(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 /∈ RI

I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI imply 〈x, z〉 ∈ RI

I |= Ref(R) if ∀x ∈ ∆I . 〈x, x〉 ∈ RI

I |= Irr(R) if ∀x ∈ ∆I . 〈x, x〉 /∈ RI

I |= Dis(R,S) if RI ∩ SI = ∅

Where C and D are concepts, R and S are roles, and ∅ denotes the empty set.
Finally, ABox assertions are interpreted as follows:

I |= C(a) if aI ∈ CI

I |= R(a, b) if 〈aI , bI〉 ∈ RI

I |= T (a, v) if 〈aI , vD〉 ∈ T I

I |= a = b if aI = bI

I |= a 6= b if aI 6= bI

19

2. Background
Where C is a concept, R is a role, T is a concrete role, a and b are individuals, and
v is a concrete literal.

I is a model of an ontology O consisting of a TBox T , an RBox R, and an ABox
A (I |= O = T ∪R∪A) if it satisfies all the axioms in O. A set of axioms Θ logically
entails an axiom θ (Θ |= θ) if and only if all models of Θ are also models of θ.

Example. Ontology O below represents a simple SROIQ knowledge base. In it,
each Report has exactly one author and documents exactly one object. The class
OccurrenceReport is then a subclass of Report. Finally, some instance data are
declared.

O = {OccurrenceReport v Report,Report v= 1hasAuthor.>,
Report v= 1documents.>,
OccurrenceReport(report−buo01), Occurrence(occurrence−buo01),
User(ThomasLasky), hasAuthor(report−buo01 , ThomasLasky),
documents(report−buo01 , occurrence−buo01)}

2.8 Integrity Constraints

Description logics adopt the so-called open world assumption (OWA) – if a fact
cannot be proven from the data, it is not necessarily false, it is just unknown and
may be true in some models. This is in conformance with the distributed nature of
the Semantic Web, where a fact may be stated in a dataset somewhere on the Web
and not reachable from the data currently available to the reasoner. Nevertheless,
most domain-specific information systems operate under the closed world assumption,
that is, if a fact cannot be proven, it is treated as false. Consider the example
CAA safety management system mentioned in Chapter 1: the system may have
a condition that for an occurrence of type Runway incursion, the perpetrating
aircraft has to be specified. Such a constraint would look as follows in SROIQ:
RunwayIncursion v ∃hasParticipant.Aircraft. Now, if there is an instance of
Runway incursion without the associated aircraft: RunwayIncursion(a), a reasoner
will, because of OWA, find a model of such an ontology by introducing a fresh
individual o and connecting it with a: hasParticipant(a, o). However, this behavior
is hardly what the designers of the system intended – they wanted the user who
classifies an occurrence as a Runway incursion to fill in the perpetrator so that the
quality of the data does no suffer. OWA allows DLs to remain monotonic – new
facts added to the knowledge base do not decrease the number of possible inferences.
But, for most domain-specific information systems, CWA is more suitable.

20

................................... 2.8. Integrity Constraints

A way to resolve the issue is to introduce nonmonotonic behavior to the knowledge
base, so that new axioms may, in fact, decrease the number of inferences, e.g., by
restricting possible models to only those which contain a known value for some
property. Such restrictions are known as integrity constraints (ICs).

2.8.1 Integrity Constraints in Description Logics

As mentioned above, the ability of description logics to express integrity constraints
is, due to their adoption of OWA, limited. But since integrity constraints are such an
important data modeling concept, several approaches to augmenting DL knowledge
bases with ICs have been developed over the years. This section introduces in detail
the approach used in this thesis. Alternative solutions will be discussed in Chapter 3.

Tao et al. [27] propose to build extended knowledge bases, where, in addition
to axioms with standard semantics, a set of axioms is interpreted with constraint
semantics. This solution uses the same syntax for both regular and integrity
constraint axioms and supports the description logic SROIQ (its extension to
SROIQ(D) would be trivial).

Integrity Constraints Semantics

IC semantics is built around an IC-interpretation which is defined as a pair I, U ,
where I is a SROIQ interpretation defined over ∆I and U is a set of SROIQ
interpretations. The IC-interpretation function ·I,U then maps concepts to subsets
of ∆I and roles to subsets of ∆I ×∆I as follows:

CI,U = {xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ CJ }
RI,U = {〈xI , yI〉 | x, y ∈ NI s.t. ∀J ∈ U , 〈xJ , yJ 〉 ∈ RJ }

Where C is an atomic concept and R is a role. Such interpretation extends to inverse
roles and complex concept descriptions as one would expect, for example:

(R−)I,U = {〈xI , yI〉 | 〈xI , yI〉 ∈ RI,U}
(C uD)I,U = CI,U ∩DI,U

(¬C)I,U = NI \ CI,U

Basically, CI,U is the interpretation of all named individuals which are instances
of C in all interpretations from U . Such semantics clearly adopts the closed world
view. For example, if a named individual cannot be proved to be an instance of C
in all interpretations, it is considered to be an instance of ¬C.

21

2. Background
Axiom satisfaction under the IC semantics is analogous to regular SROIQ axiom

satisfaction, but using the IC-interpretation. For example:

I,U |= C v D iff CI,U ⊆ DI,U

I,U |= R v S iff RI,U ⊆ SI,U

I,U |= Ref(R) iff ∀x ∈ NI , 〈xI,U , xI,U 〉 ∈ RI,U

Where C, D are concepts and R, S are roles.

IC semantics neatly solves the problem discussed at be beginning of this sec-
tion – considering RunwayIncursion v ∃hasParticipant.Aircraft as an IC axiom,
RunwayIncursion(a) alone will now be inconsistent because there is no known
aircraft that would be a participant of the incursion.

Regular SROIQ semantics lacks one more notion relevant for the declaration
of integrity constraints – unique name assumption (UNA). Without UNA, any
two individuals may be considered the same in a model, unless explicitly declared
otherwise. Again, such an approach is logical in the world of the Semantic Web,
where multiple resources may easily represent the same thing. However, in a domain-
specific information system, the lack of UNA may go against the logic of the domain
model, which assumes (locally) complete knowledge. IC semantics by Tao et al.
adopts the notion of weak UNA, where two individuals are considered different unless
their equality is required to satisfy the KB axioms. Weak UNA is based on Minimal
Equality models. Informally, a model is a minimal equality model if there is no other
model with fewer equality relations between named individuals. A set of such models
is denoted by ModME(K), where K is a knowledge base. I do not introduce ME
models here formally, as an analogous notion will be formally defined in Chapter 4.
Nevertheless, a curious reader may refer to [27].

Now, with the IC semantics under our belt, given a SROIQ knowledge base K
and a SROIQ integrity constraint α, the IC-satisfaction of α by K is defined as
follows:

K |=IC α iff ∀I ∈ U , I,U |= α,where U = ModME(K)

An extended knowledge base is then a pair 〈K, C〉, where K is a SROIQ KB
interpreted with standard semantics and C is a set of SROIQ axioms interpreted
with IC semantics. 〈K, C〉 is valid if ∀α ∈ C,K |=IC α. If 〈K, C〉 is not valid, there is
an integrity constraint violation.

Example. The following set of integrity constraints can be used to constrain
ontology O from Section 2.7 in that occurrence reports document only occurrences

22

................................... 2.8. Integrity Constraints

and their authors must be instances of type User:

IC = {OccurrenceReport v ∀documents.Occurrence,
OccurrenceReport v ∀hasAuthor.User}

Integrity Constraints Validation

Tao et al. propose to validate the ICs by their translation to distinguished conjunctive
queries (DCQ) with the Negation as Failure (NAF) operator not (DCQnot). I will
first introduce DCQnot and then present the IC translation rules.

Let NV be a non-empty set of variable names disjoint from NC , NR and NI . A
query atom is an ABox axiom where variables can be used in the place of individuals,
i.e.,

q ← C(x) | R(x, y) | ¬R(x, y) | x = y | x 6= y

Where x, y ∈ NI ∪ NV , C is a concept, and R is a role. A conjunctive query is a
conjunction of query atoms, i.e.,

Q← q | Q1 ∧Q2

A distinguished conjunctive query can contain only distinguished variables – variables
mapped to elements of NI . The semantics of DCQ is given by regular SROIQ
interpretations. An assignment σ is defined as a mapping from the set of variables
used in the query into the KB’s named individuals, i.e., σ : NV → NI . σ(Q) denotes
the application of σ to the query Q. A knowledge base K entails a DCQ Q with an
assignment σ (K |=σ Q) if:

K |=σ q iff K |= σ(q)
K |=σ Q1 ∧Q2 iff K |= σ(Q1) and K |= σ(Q2)

The set of answers to a query is a set of assignments for which the knowledge base
entails the query. A query is true w.r.t. a KB K if the set of its answers is not
empty.

Now, a DCQnot query is defined as follows:

Q← q | Q1 ∧Q2 | notQ

With the semantics of not being:

K |=σ notQ iff 6 ∃σ′ s.t. K |=σ′
σ′(Q)

23

2. Background
Translation Rules from IC Axioms to DCQnot. The translation from IC axioms
to DCQnot consists of two operators – TC for concepts and T for axioms. TC takes
a concept expression and a variable as an input and returns a DCQnot as a result
according to the following rules:

TC(Ca, x) = Ca(x)
TC(¬C, x) = notTC(C, x)

TC(C uD,x) = TC(C, x) ∧ TC(D,x)
TC(> nR.C, x) =

∧
1≤i≤n

(R(x, yi) ∧ TC(C, yi))
∧

1≤i<j≤n
not(yi = yj)

TC(∃R.Self, x) = R(x, x)
TC({a}, x) = (x = a)
TC(∀R.C, x) = not(R(x, y) ∧ notTC(C, y))
TC(∃R.C, x) = R(x, y) ∧ TC(C, y)

Where Ca is an atomic concept, C and D are concepts, R is a role, a is an individual,
x is a variable, and yi is a fresh variable. T is a function that maps a SROIQ IC
axiom to a DCQnot, for example:

T (C v D) = TC(C, x) ∧ notTC(D,x)
T (R v S) = R(x, y) ∧ notS(x, y)
T (Ref(R)) = notR(x, x)

Where C andD are concepts, R and S are roles, and x and y are variables. Intuitively,
T switches the polarity of the axiom so that it is not satisfied if the query is true.

The complete list of translation rules for TC and T , together with a proof of the
translation faithfulness and restrictions on the extended knowledge base expressive-
ness, can be found in [27] or in Jiao Tao’s PhD thesis [28].

Example. The set of integrity constraints IC introduced above can be translated
using operators TC and T into the following queries:

OccurrenceReport(x) ∧ documents(x, y) ∧ not(Occurrence(y))
OccurrenceReport(x) ∧ hasAuthor(x, y) ∧ not(User(y))

If either query yields results over a knowledge base, it indicates that the corresponding
integrity constraint is violated.

24

... 2.9. F-logic

2.9 F-logic

F-logic [29, 30, 31] is a formalism rooted in FOL that can be used to describe
structural aspects of object-oriented or frame-based languages. It has model-theoretic
semantics and a sound and complete proof theory. In the discussion of F-logic syntax,
the revised version of [31] is used and w.l.o.g. the distinction between inheritable and
non-inheritable methods is omitted. F-logic allows one to specify relatively complex
programs. However, for the purpose of this thesis, where it is used to represent
object-oriented languages in the formalization of mapping between DL ontologies
and object models, this complexity is unnecessary. Therefore a restricted variant
of F-logic is introduced – it does not contain, for instance, methods with arbitrary
arity (only attributes – parameterless methods are used). Also, to provide a close
match to DLs (and SROIQ in particular), sorted F-logic is used, so that (atomic)
classes are disjoint from individuals and methods.

F-logic Syntax

The alphabet of an F-logic language L consists of:

. A set of object constructors F = C ∪R ∪ E ∪A, where C is a set of class names
(0-ary function symbols), R is a set of methods (0-ary function symbols), E is a
set of instances (0-ary function symbols), and A is a set of function symbols
(it essentially allows to parameterize concept constructors, as will be seen in
Section 4.2). C, R, E , and A are mutually disjoint,. a set of predicate symbols P,. an infinite set of variables V,. auxiliary symbols like (,), [,], →, etc.,. logical connectives and quantifiers – ∧, ∨, ¬, ∀, ∃.

An id-term is a first-order term composed of an object constructor and variables. A
variable-free object constructor is called a ground id-term and the set of all ground
id-terms is denoted U(F). Formulas in F-logic can be either molecular formulas
(F-molecules or just molecules), or complex formulas consisting of other formulas
connected using logical connectives and quantifiers. Molecular formulas can be:..1. Is-a assertions of the form A ::B or o :A, where o, A, B are id-terms,

25

2. Background ...2. Object molecules of the form O[a ’;’ separated list of method expressions]. Where
method expressions can be:. data expressions of the form m→ v, where m and v are id-terms (v is the

attribute value),. signature expressions of the form m ⇒ (T1, ..., Tn), where n ≥ 1 and m
and Ti are id-terms (Ti are the return types).

In short, data expressions represent attribute values, whereas signature expressions
represent their return types (data expressions correspond to DL (concrete) role
assertions and signature expressions to local domain/range restrictions). Listing 2.4
shows a short example of F-logic syntax. : represents class membership, whereas ::
represents the subclass relationship. The declaration of class OccurrenceReport 9

shows several signature expressions. Then, report is declared as an instance of
OccurrenceReport , together with some data expressions. The current version of F-
logic also supports built-in types based on the XML Schema datatypes,10 their names
start with an underscore, e.g., _string . occurrence-buo01 and ThomasLasky are
declared as instances of their respective types to complete the KB.

Listing 2.4: Example of a small knowledge base written in F-logic.
OccurrenceReport::Report .
OccurrenceReport[

description => _string ;
occurrence => Occurrence ;
author => User ;
created => _dateTime

] .
report−buo01:OccurrenceReport [

description −> "Loss of speed in−flight resulted in..."^^_string ;
occurrence −> occurrence−buo01 ;
author −> ThomasLasky ;
created −> "2019−08−28T01:17:00"^^_dateTime

] .
occurrence−buo01:Occurrence .
ThomasLasky:User .

F-logic Semantics

Semantics of F-logic is specified using F-structures. Before defining an F-structure,
several additional notions are needed.

For a pair of sets U , V , Total(U, V) denotes the set of all total functions from U to
V . Similarly, Partial(U, V) denotes the set of all partial functions from U to V . P(U)

9I will use the slanted typewriter font to denote ontological terms written in F-logic in text
throughout this thesis.

10See https://www.w3.org/TR/xmlschema-2/#built-in-datatypes, accessed 2020-08-11.

26

https://www.w3.org/TR/xmlschema-2/#built-in-datatypes

... 2.9. F-logic

is used to express the power set of U . P↑(U) is the set of all upward-closed subsets
of U . A set V ⊆ U is upward closed if for v ∈ V , u ∈ U , v ≺U u implies u ∈ V ,
where ≺U is an irreflexive partial order on U (see below). PartialAM≺U (U,P↑(U))
denotes the set of all partial anti-monotonic functions from U to P↑(U). A function
f is partial anti-monotonic if for vectors ~u,~v ∈ Uk, ~v ≺U ~u, if f(~u) is defined, then
f(~v) is also defined and f(~u) ⊆ f(~v).

An F-structure is then a tuple I = 〈U,≺U ,∈U , IF , IP , I→, I⇒〉, where:

. U is the domain of I consisting of disjoint subdomains UE , UC , UR, UA,.≺U is an irreflexive partial order on UC∪A representing the subclass relation-
ship,11. ∈U is a binary relationship on UE × UC∪A specifying instance membership in
classes,. IF : F →

⋃∞
k=0 Total(Uk, U) is a mapping which represents function symbols

from F by functions from Uk to U . For k = 0, IF (f) can be identified with an
element of U . IF maps names to their respective subdomains, e.g., class names
from C to UC ,. IP(p) ⊆ Un for any n-ary predicate symbol p ∈ P,. I→ : UR → Partial(UE ,P(UE)),. I⇒ : UR → PartialAM≺U (UC∪A∪E ,P↑(UC∪A)).

Remarks. The use of upward-closed sets is important for class hierarchies – it
means that along with each class, the set also contains all its superclasses. The
relationship between I→ and I⇒ is such that I⇒ defines the target type (range) of
an attribute, whereas I→ defines particular values. The definition of an F-structure
can be summarized by several properties which provide a more intuitive picture of
F-logic semantics (see [29], Sec. 7, for full discussion of F-structure properties):

. Equality (=) is, as one would expect, a congruence relation on U(F), i.e., it is
reflexive, symmetric, transitive, and supports substitution.. The subclass relationship (::) is reflexive, transitive, and acyclic.. An important relationship between the :: and : operators is called subclass
inclusion, that is: if I |= p :q and I |= q ::r, then I |= p :r.

11UC∪A is an abbreviation for UC ∪ UA

27

2. Background
. Type inheritance ensures that subclasses inherit signature expressions, i.e., if

I |= p[m⇒ s] and I |= q ::p, then I |= q[m⇒ s].. Output relaxation means that superclasses can be returned instead of subclasses,
i.e., if I |= p[m⇒ s] and I |= s ::r, then I |= p[m⇒ r].

A variable assignment ν is a mapping from the set of variables, V, to the domain
U , which extends to id-terms as follows: ν(d) = IF(d) if d ∈ F has arity 0 and
ν(f(..., t, ...)) = IF (f)(..., ν(t), ...). Intuitively, given an F-structure I and a variable
assignment ν, a molecule t[...] is true under I w.r.t. to ν, written I �ν t[...], if and
only if the object ν(t) has the properties defined by the F-molecule. For example,
I �ν (O ::P) iff ν(O) �U ν(P). For attributes, this means that there exist functions
interpreting them and they have the right return values (types), e.g., I �ν q[m→ v]
iff I→(ν(m))(ν(q)) is defined and contains ν(v). An object molecule is considered
a conjunction of method expressions. Precise definitions of logical implication in
F-logic can be found in [29], Sec. 5.2. Satisfaction of complex formulas (using logical
connectives and quantifiers) is defined in the usual first-order sense. An F-logic
theory S logically implies an axiom α (S �ν α) iff all models of S are also models of
α. Since only closed formulas will be dealt with in this work, the variable assignment
identifier will be omitted. Instead, F-logic semantic implication will be denoted by
|=F to distinguish it from DL entailment.

Queries

An F-logic query Q is a molecule. The set of answers to Q w.r.t. a set of formulas
P is the smallest set of molecules that:

. contains all instances of Q (variable assignments for all variables in Q) that are
found in the model of P ,. is closed under |=F (see [29], Sec. 12.1.2).

Example. F-logic queries traditionally use capital letters to denote variables and
the Prolog-style query prompt ?- to indicate query start. The first query bellow
searches for instances of class OccurrenceReport with author ThomasLasky , the
second then returns the value of attribute occurrence of instance report-buo01
and its type:

?− X :OccurrenceReport ∧X[author → ThomasLasky]
?− report−buo01 [occurrence→ X] ∧X :Y

28

Chapter 3

State of the Art

This chapter discusses the current state of the art of developing (domain-specific)
Semantic Web-based information systems. To improve the coherence of the thesis’
story, the chapter is split into sections corresponding to the particular sub-goals
defined in Section 1.3. The first section is devoted to an overview of approaches to
application access to ontologies and Semantic data. From a solely practical point of
view, existing solutions and their principles are discussed first. A detailed comparison
of selected tools for accessing Semantic data will be provided later (Section 4.1),
as it represents one of the contributions of my research. From the point of view of
theory, attention is paid to the different ways the closed world view is introduced to
open world assumption-based DL knowledge bases. Then, based on the choice of
F-logic as a formalism representing object-oriented programming languages, existing
approaches of mapping between description logics and F-logic are compared.

What follows is a review of the ways applications can be integrated through
Semantic Web technologies, ranging from using a shared ontological schema, over
integration via SPARQL endpoints to semantically-enriched Web services.

The chapter is concluded by taking a look at surveys, classification, and examples
of existing Semantic Web-based applications, as they help shed light on the areas
where such software already exists and what its structure is.

Nomenclature. A short side note on the nomenclature appearing in this chapter
and later in the thesis: various authors use different names for applications or
information systems based on or using Semantic Web technologies and principles.
The titles “Semantic Web applications” and “Linked Data applications” appear in

29

3. State of the Art
the literature most often, e.g., [32] or [11] respectively. I prefer “Semantic Web-based
information systems” (SWIS), as such a name indicates that the system is not
just an application, but may involve the underlying ontological model, possibly a
methodology, or a business process model. For the purpose of this chapter, I will
use the names interchangeably, and according to the referenced works. In later
chapters, I will use the term Semantic Web-based information systems, as it is, in
my opinion, more general and better captures the nature of systems at which my
research primarily aims.

3.1 Accessing Semantic Data

Access to Semantic data may be viewed from two perspectives. One is the actual
engineering problem of accessing the data efficiently. In this area, a wide variety of
solutions already exists. The most basic approaches can be based on Semantic Web
standards and require no particular tools. Applications can thus access data using a
SPARQL [33] or Linked Data Platform [34] endpoint. However, such an approach
would likely be inefficient and would require a lot of boilerplate code to transform
the data from server responses to a form usable by the application. Therefore,
specialized tools have been developed for Semantic data persistence. These will be
dealt with first. The other perspective is on which formal bases (if any) this access
is built.

3.1.1 Existing Tools for Semantic Data Access

Semantic data are typically stored in dedicated semantic databases – triple stores –
such as RDF4J (former Sesame) [35], GraphDB (former OWLIM) [36] or Virtuoso [37].
To be able to make use of them, an information system needs means of accessing
the triple store. Unfortunately, there is no common standard for accessing semantic
databases (like ODBC [38] for relational databases). This lack of standardization
gave rise to multiple approaches that can be split into two main categories [39]:

Domain-independent APIs work with the data on statement (triple or axiom,
depending on the language) level. Such an approach provides great flexibility,
as it allows to access all aspects of the data. Examples of domain-independent
APIs are Jena [40], OWL API [41], and Eclipse RDF4J (formerly known as
Sesame API) [35].

Domain-specific APIs employ a form of mapping between the data stored as
triples and a domain-specific object model of the application. This allows

30

................................. 3.1. Accessing Semantic Data

the application code to exploit the benefits of object-oriented programming
(classes representing domain concepts, encapsulating related data and behavior),
without having to deal with the statement-based nature of the data. They often
internally make use of domain-independent APIs.

Domain-independent APIs are suitable for use in generic tools like ontology editors
or vocabulary explorers, where no assumptions are made about the underlying
domain. However, domain-specific information systems are built on top of object
models representing the underlying domains. An information system using a domain-
independent API would either have to be built without an object model of the
domain, which would make it extremely difficult to develop and maintain or would
have to contain a module for mapping the statement-level data to the object model
and vice versa. But, that is exactly what domain-specific APIs, besides other
functionalities, do. Listings 3.1 and 3.2 show the difference in readability and
conciseness of data retrieval using the domain-specific and domain-independent
approach respectively. Note that class Occurrence1 from Listing 3.1 can be reused
throughout the application.

Listing 3.1: Example of a domain class and retrieval of its instances using a domain-
specific data access API.

@OWLClass(iri = Vocabulary.s_c_Occurrence)
public class Occurrence {

@Id
private URI id;

@OWLAnnotationProperty(iri = RDFS.LABEL)
private String label;

@OWLDataProperty(iri = DC.Terms.DESCRIPTION)
private String description;

@OWLDataProperty(iri = Vocabulary.s_p_has_start_time)
private LocalDateTime start;

@OWLDataProperty(iri = Vocabulary.s_p_has_end_time)
private LocalDateTime end;

@Types
private Set<String> types;

// Getters and setters follow
}

public class OccurrenceDao {
// Connection setup omitted

public Occurrence find(URI id) {
return em.find(Occurrence.class, id);

}
}

1Sans-serif font will be used throughout this thesis to denote programming language code excerpts
in text.

31

3. State of the Art
Listing 3.2: Example of retrieval of data corresponding to the domain class from
Listing 3.1, but using a domain-independent API.

public class OccurrenceDao {
public Map<String, Object> find(String id) {
final Map<String, Object> data = new HashMap<>();
try (final RepositoryConnection connection = repository.getConnection()) {
final ValueFactory vf = connection.getValueFactory();
final IRI iri = vf.createIRI(id);
final Set<String> types = new HashSet<>();
RepositoryResult<Statement> res = connection.getStatements(iri, RDF.TYPE, null, false);
boolean found = false;
while (res.hasNext()) {
final Statement s = res.next();
if (s.getObject().stringValue().equals(Vocabulary.s_c_Occurrence)) {
found = true;

}
types.add(s.getObject().stringValue());

}
if (!found) {
return Collections.emptyMap(); // Type does not match

}
data.put("types", types);
res = connection.getStatements(iri, RDFS.LABEL, null, false);
getValue(res, Literal.class).ifPresent(lit −> data.put("label", lit.stringValue()));
res = connection.getStatements(iri, DCTERMS.DESCRIPTION, null, false);
getValue(res, Literal.class).ifPresent(lit −> data.put("description", lit.stringValue()));
res = connection.getStatements(iri, vf.createIRI(Vocabulary.s_p_has_start_time), null, false);
getValue(res, Literal.class).ifPresent(lit −> data

.put("start", lit.calendarValue().toGregorianCalendar().toZonedDateTime().toLocalDateTime()));
res = connection.getStatements(iri, vf.createIRI(Vocabulary.s_p_has_end_time), null, false);
getValue(res, Literal.class).ifPresent(lit −> data

.put("end", lit.calendarValue().toGregorianCalendar().toZonedDateTime().toLocalDateTime()));
return data;
}

}

private <T> Optional<T> getValue(RepositoryResult<Statement> r, Class<T> cls) {
final Optional<Object> value = r.hasNext() ? Optional.of(r.next().getObject()) : Optional.empty();
return (Optional<T>) value.filter(v −> cls.isAssignableFrom(v.getClass()));

}
}

An analogous division into indirect (corresponding to domain-independent) and
direct (corresponding to domain-specific) models is used by Puleston et al. [42], who
argue that direct models are more suitable for domain-specific applications and
propose a hybrid approach where parts of the application are domain-independent
and parts are domain-specific.

The difference between domain-independent and domain-specific APIs is similar
to the difference between JDBC [43] and JPA [44] in the relational database access
world. JDBC is a row-based access technology requiring a lot of boilerplate code
and suffering from occasional compatibility issues. JPA, on the other hand, provides
object-relational mapping and makes access to various databases transparent.

32

................................. 3.1. Accessing Semantic Data

Domain-Specific Data Access APIs

As mentioned, domain-specific data access libraries provide a mapping between the
object-oriented and Semantic Web paradigms. This mapping is in literature called
object-ontological (OOM) or object-triple (OTM) mapping (OTM is typically used for
RDFS-based solutions). In conformity with the comparison of domain-independent
and domain-specific data access APIs above, Quasthoff and Meinel, in their survey
among developers of OTM solutions [45], show that the main reason for developing
OTM tools was increasing the productivity of programmers using Semantic data.
Indeed, using an OTM library allows developers to work in the widespread and well-
understood object-oriented paradigm and greatly simplifies access to the underlying
triple store.

OTM can take two major forms depending on the programming language used by
the library. OTM in dynamically-typed programming languages like Python or Ruby
often relies on the character of the language and does not use a predefined object
model. Oren et al., authors of one such library – ActiveRDF – argue, that this
approach more closely corresponds to the dynamic nature of RDF and OWL, where
classes are not predefined and can change at any time [46]. Similarly, the set of types
to which an instance belongs is not immutable and may change. Statically-typed
languages like Java and C++, on the other hand, require that the mapping is
specified at compilation time. In Java, this is done usually via annotations (see the
entity example in Listing 3.1). Quasthoff and Meinel challenge the claim of Oren et
al., stating that even in statically-typed languages, one can load an individual as an
instance of different classes [45]. In addition, most existing OTM libraries provide
(although often limited) ways of accessing properties and classes not mapped by the
object model.

The following paragraphs introduce five examples of contemporary object-triple
mapping solutions. A more comprehensive list can be found in a paper I published
together with my supervisor [47].

ActiveRDF. ActiveRDF [46] is an object-oriented API for Semantic Web data
access written in Ruby. ActiveRDF represents resources by object proxies, attaching
to them methods representing properties. Invocations of these methods translate
to read/write queries to the storage. In addition, it supports an object-oriented
query syntax based on PathLog [48] and can generate convenience filter methods
automatically. One caveat of the highly dynamic nature of ActiveRDF is pointed out
in [49] – it does not offer type correctness and typographical error checking present
in libraries based on statically-typed languages such as Java.

33

3. State of the Art
AliBaba. AliBaba [50] is a Java library for developing complex RDF-based ap-
plications. It is an evolution of the Elmo [51] library. AliBaba is an extension
to the Sesame API, so it supports only storage accessible via a Sesame/RDF4J
connector. It uses dynamically generated proxy objects to track updates. AliBaba
also allows using SPARQL queries to support more complex strategies of mapping
values to Java attributes. In addition to OTM, AliBaba contains an HTTP server
that can automatically make resources accessible as Web services, providing querying,
inserting, and deleting capabilities.

Empire. Empire [52] is an RDF-based implementation of the JPA standard [44].
Therefore, its API should be familiar to developers used to working with relational
databases in Java. However, since parts of JPA deal with the physical model of the
relational database under consideration (e.g., the @Table and @Column annotations),
Empire is not fully JPA-compliant. On the other hand, it does support the basic
EntityManager API, query API, and entity lifecycle. Unfortunately, Empire’s docu-
mentation is limited and it is often unclear which parts of JPA are implemented.
On top of JPA annotations, a set of RDF-specific annotations that are used to
express the mapping of Java classes and attributes to RDFS classes and properties
is provided.

KOMMA. The Knowledge Management and Modeling Architecture (KOMMA) [53]
is a Java library for building applications based on Semantic data. A part of this
system is an object-triple mapping module, but the library itself has much richer
functionality, including support for building graphical ontology editors based on
the Eclipse Modeling Framework.2 OTM in KOMMA is based on Java interfaces
representing RDFS classes, for which it generates dynamic implementations at
runtime. Parts of the KOMMA code base reuse code from AliBaba since both
frameworks are based on similar principles.

RDFBeans. RDFBeans [54] is another OTM library built on top of RDF4J. It
allows two forms of object models: 1) the object model may consist of Java classes rep-
resenting the RDFS classes; 2) the object model may consist of interface declarations
forming the mapping and RDFBeans would generate appropriate implementations
at runtime using the dynamic proxy mechanism. RDFBeans is a lightweight library
with a small memory footprint.

Contemporary OOM solutions suffer from several fundamental problems and one
of the goals of this thesis is to overcome them. One such problem is the ad hoc
nature of the existing implementations. They lack any formal basis and the mapping
principles are based solely on the convention their developers had in mind. Of course,

2http://www.eclipse.org/modeling/emf/, accessed 2020-08-11.

34

http://www.eclipse.org/modeling/emf/

................................. 3.1. Accessing Semantic Data

in most cases, this convention-based approach will work just fine. However, certain
aspects of the mapping (for example, treatment of anonymous individuals, inferred
knowledge, class hierarchies) are not straightforward and their formal underpinning
could prevent misinterpretations and inconsistent behavior.

Another issue related to the nonexistent mapping formalism is the conflict between
the CWA and the OWA. As was discussed in Section 2.8, for domain-specific
information systems, the open world assumption of DL ontologies may be unsuitable,
for instance, due to its tendency to create new anonymous instances for the sake of
knowledge base consistency.

3.1.2 Closed World Reasoning in Description Logics

The mismatch between the OWA and the CWA actually concerns all monotonic
FOL-based languages (including DLs). Therefore, several approaches introducing
(local) non-monotonic behavior to such languages have been developed.

Donini et al. [55] introduce the Minimal Knowledge and Negation as Failure
logic with autoepistemic operators K (knows) and A (assumes) as an extension
of the description logic ALC. Grimm and Motik show how it can be used for IC
definition [56]. Motik et al. [57] use minimal Herbrand models to provide integrity
constraint validation. They extend knowledge bases with a set of selected TBox
axioms which are treated as integrity constraints. Such constraints are checked when
performing ABox reasoning. Unfortunately, both of these approaches can lead to
counter-intuitive results, as was pointed out by Tao et al. [27]. Their approach will
be used in this thesis, as already discussed in Section 2.8. A more recent effort by
Patel-Schneider and Franconi [58] discusses the flaws of all of the aforementioned
solutions and proposes the use of DBox-based completely specified concepts and
roles. However, not even this approach is immune to debatable results. Consider
the following example:

T ={Employee v Person, F light v ∃hasPassenger.Person}
A ={Flight(c), F light(d)}
DB ={Person(a), Employee(b), hasPassenger(c, a), hasPassenger(d, b)}

We put hasPassenger, Person and Employee into the DBox, so that no unexpected
instances are generated. However, this will cause an IC violation, because Person(b)
will be inferred for a completely specified concept Person. In other words, DBoxes
are too coarse-grained to be effectively used for IC specification. Ren et al. [59]
replace DBoxes with NBoxes which contain concepts and roles for which negation as

35

3. State of the Art
failure reasoning will be applied. That is, inference is still possible for predicates in
an NBox, but such predicates are treated with the CWA.

Application of integrity constraints to DL ontologies is closely related to (local)
closed world reasoning. A significant amount of work has been done in this area
in connection with rule-based languages. They often split the knowledge base
into a DL-based OWA part and a rule-based CWA part with stable [60, 61] or
well-founded [61, 62] model semantics.

Another approach similar to [58] is based on grounded circumscription where
selected concepts and roles are closed and minimized, i.e., they contain only the
minimum necessary known individuals [63].

3.1.3 Mapping Between Description Logics and F-logic

The relationship between ontologies and F-logic (my solution of choice for representing
object-oriented programming languages) can be approached from different directions.
Firstly, F-logic could be used as an ontology modeling language directly, as is
discussed by its authors themselves in [30, 64]. However, description logics are the
standard ontology definition language nowadays. Another approach, which has
been investigated by Grosof et al. [65] or Kattenstroth et al. [66], enriches a DL
knowledge base with (F-logic) rules to provide additional or more efficient inferences
([65] considers logic programming languages in general).

The last direction tries to develop a mapping between description logics and
F-logic. De Bruijn et al. exploit the fact that DLs are a subset of FOL and map
them to the FOL flavor of F-logic, i.e., concepts to unary predicates and roles to
binary predicates [67]. On the other hand, Balaban attempts to map DL constructs
to F-logic frames [68]. However, his article deals only with less expressive DLs
(ALC). Close to the approach I will introduce later in this thesis is also the work
of de Bruijn and Heymans [69] which maps SHIQ to F-logic by first translating
it to predicate-based FOL and then mapping it to F-logic. Compared to Balaban,
the approach presented in Section 4.2 deals with more expressive languages and
considers the mapping of integrity constraints as well. De Bruijn and Heymans’ work
presents, in my opinion, a less readable, although arguably more straightforward,
approach to the mapping.

36

.................. 3.2. Integrating Applications Using Semantic Web Technologies

3.2 Integrating Applications Using Semantic Web
Technologies

With the growing size of information systems and the amount of data they have to
cope with, software development trends have shifted towards more modular styles like
the service-oriented architecture and microservices. Such design allows composing
the system out of loosely coupled components, which can be developed and deployed
independently. Moreover, information systems nowadays do not interact only with
human users, but they communicate more and more with other information systems.
Consider the safety data collecting and processing system exemplified throughout
this thesis. European CAAs have to report to and, conversely, receive reports from
the European Central Repository (ECR),3 a repository for occurrence reports in
aviation. Obviously, a national SDCPS in Europe should be integrated with ECR to
spare its users having to interact with both systems separately.

On the other hand, many information systems today benefit from integrating data
from various sources, providing their users with a more comprehensive picture of
the domain of interest. For instance, Flightradar244 gathers data from different
providers (aircraft position broadcasters, radar data, map services) to provide a
realtime overview of air traffic around the world.

Both of these viewpoints illustrate how data and service integration are used to
improve information systems’ capabilities. This section reviews existing approaches
to using Semantic Web technologies to facilitate such integration.

3.2.1 Data-level Integration

Information system integration at the data level can range from systems using the
same data schema to complex issues of mapping heterogeneous schemas to a common
model. In this regard, Semantic Web technologies can be used for ontology-based data
integration [70], where heterogeneous data are mapped by an ontology representing
the common domain model. The advantage of using an ontology in such cases is that
it provides a semantically rich domain description with a formal basis. If the data
sources already use Semantic technologies, the problem becomes that of ontology
mapping – finding a way to unify the ontological schemas of the data [71]. Examples
of information systems integrating data using Semantic Web technologies will be
discussed in Section 3.3.2.

3https://bit.ly/2pBYlXK, accessed 2020-08-11.
4https://www.flightradar24.com, accessed 2020-08-11.

37

https://bit.ly/2pBYlXK
https://www.flightradar24.com

3. State of the Art
3.2.2 Service-level Integration

At the level of service integration, an information system exposes an API that can
be used by another system. Such API may allow it to query or manipulate data, or
invoke business logic.

The most basic and, at the same time, the most expressive approach is when an
application exposes a SPARQL endpoint so that other systems may invoke it using
the SPARQL Protocol [33]. However, such an approach has several disadvantages.
On the one hand, it is difficult to restrict the constructs or data available to the caller.
The same holds for data manipulation. Allowing clients to run SPARQL queries can
also incur heavy load on the target server. Verborgh et al. mention this as one of the
main reasons for developing the Linked Data Fragments (LDF) framework [72]. LDF
transfer part of the query processing workload to the client by allowing it to execute
parts of the query, fetch results in chunks, and combine them in place instead of
having the server do all the work. LDF are thus optimization of the read-only data
access. Another SPARQL-based approach is presented by Michel et al., who wrap
existing Web APIs5 so that they can be queried using SPARQL [73]. Their goal is to
present a unified interface for SPARQL endpoints and non-semantic Web APIs and
they choose SPARQL as the primary communication mechanism. Of course, since
the semantics of Web APIs is different (primarily subject-centered), only a restricted
subset of query patterns is supported. Nouwt uses a similar approach [74]. Strictly
speaking, the aforementioned approaches do not represent service-level application
integration, because SPARQL endpoints provide access to data, not application
logic. They are suitable in certain cases, like publishing open data, but, by analogy,
relational database-based information systems also do not expose the underlying
database for the client to directly run SQL queries. Besides security and access
control reasons mentioned above, using SPARQL (or SQL for that matter) also
requires the caller to understand the underlying technology – a hurdle for many
information system developers. Another issue may be schema evolution, which is
practically impossible to communicate to the clients in this scenario.

There exist other techniques which essentially provide data access similar to the
SPARQL endpoints, but do it in a more service-oriented way. That is, they provide
an HTTP-based Web API for the clients to query and manipulate data. Linked Data
Platform is a W3C standard for providing an API for Linked Data manipulation [34].
It is based upon the notion of containers of data regarding specific resources. The
API URLs are based on resource identifiers and thus can adhere to REST principles,
HTTP methods are also used to specify operations to perform with the data.
However, the data produced and consumed by the platform are purely RDF and their
vocabulary and structure are restricted by having to adhere to the container-based
design. Schröder et al., on the other hand, build a REST API on top of arbitrary

5Server-side API accessible over Web, typically REST (less frequently SOAP).

38

.................. 3.2. Integrating Applications Using Semantic Web Technologies

SPARQL endpoints, allowing one to navigate the graph by alternating resource
and property IRIs (namespace-based names to be precise) in the service URL [75].
For instance, /api/class/foaf:Person can be used to retrieve all instances of
class foaf:Person6 and /api/class/foaf:Person/dbr:George_S._Patton then
to retrieve data about the instance representing George Patton. The data are
transferred using a custom JSON structure (although, JSON-LD would be arguably
more appropriate) and the API supports also insertions, updates, and deletes. BASIL
represents a similar approach, where SPARQL endpoints are wrapped by a Web
API (BASIL API) [76]. This allows developers not familiar with Semantic Web
technologies (SPARQL in particular) to exploit their data.

Lastly, there exist approaches that provide semantic annotation of regular non-
semantic Web APIs and the data they produce. Due to the overwhelming popularity
of REST in comparison to SOAP, I will concentrate on REST APIs in this work.
Lanthaler and Gütl proposed the SEREDASj (Semantic RESTful Data Services)
framework [77]. This structured framework can be used to describe a Web API.
Based on this description, automatic translation from SPARQL queries to Web API
calls can be performed. The authors exemplify this architecture on a use case of
data integration, where the data integration layer transparently accesses data from
SPARQL endpoints, triple stores, static RDF files, and, through SEREDASj, Web
APIs. Insertion and removal are also possible, but only without using variables (they
are generally not supported by Web APIs). Lanthaler and Gütl later proposed a
new framework for semantically describing Web APIs – the Hydra vocabulary [78].
Compared to SEREDASj, Hydra is more lightweight, uses JSON-LD instead of
JSON, and is more closely integrated into the Web API. This way, clients can
retrieve Hydra description of a service – e.g., valid state transitions and available
endpoints with the structure of the data they provide/expect – and directly act upon
it. Listing 3.3 shows a short example of a Hydra description of an API endpoint.

Listing 3.3: Example of a Hydra description of a Web API entry point. issues,
register_user and users point to endpoints with supported operations.

{
"@context": "/hydra/api−demo/contexts/EntryPoint.jsonld",
"@id": "/hydra/api−demo/",
"@type": "EntryPoint",
"issues": "/hydra/api−demo/issues/",
"register_user": "/hydra/api−demo/users/",
"users": "/hydra/api−demo/users/"

}

With respect to the discussed approaches, the information system integration goal
of this thesis is arguably less ambitious. The target is to facilitate building RESTful
interfaces of domain-specific information systems using Semantic Web technologies.

6foaf is a prefix for http://xmlns.com/foaf/0.1/.

39

3. State of the Art
3.3 Semantic Web-based Information Systems: A
Survey

Although Semantic Web-based information systems are far from being mainstream,
research concentrating on the topic does exist. I will now first review the theoretical
approach – works on principles of developing Semantic Web applications, their
classification, and exploitation; second, a short survey of typical Semantic Web
applications described in the literature will be provided. Note that this section does
not concern Semantic Web tools and software libraries. Rather, end user-facing
business information systems are of interest.

3.3.1 Literature Concerning Semantic Web-based Information
Systems

In the last decade, several authors have discussed the principles upon which typical
Semantic Web-based information systems are built. Hausenblas, in his technical
report [11], first reviews several existing Linked Data applications (LDAs) and
proceeds to discuss the principles of building LDAs. He then reviews the anatomy
of typical LDAs and categorizes them into three groups: 1) Generic Linked Data
browsers, 2) Linked Data search engines and indexers, and 3) Domain-specific LDAs.
Hausenblas’ idea of a domain-specific LDA concentrates on the integration of data
from various, potentially non-Semantic, data sources, and their presentation to the
user. In his view, a triple store acts mainly as a cache for RDF-ised data needed
by the application’s business logic. While the data integration aspect is certainly
one of the big benefits of ontology-based applications, the data authoring aspect of
such systems should be taken into account as well. In contrast to accessing legacy
non-Semantic data, it is reasonable to employ Semantic technologies when new data
are created for an LDA – fewer paradigm boundaries are crossed, Semantic Web
standards and languages can be taken advantage of, etc.

Martin and Auer provide a categorization of Semantic Web applications based
on a number of criteria [12], which are briefly reproduced in Table 3.1. Their work
is referenced by the authors of project EUCLID’s [13] description of LDAs, who,
in Chapter 5 of the tutorial on the usage of Linked Data,7 also discuss the tiered
architecture of an LDA. Similar to Hausenblas, they stress the data integration
function of the data layer. For this layer, they introduce several mechanisms of
access to Linked Data:

7See http://euclid-project.eu/modules/chapter5.html, accessed 2020-08-11.

40

http://euclid-project.eu/modules/chapter5.html

..................... 3.3. Semantic Web-based Information Systems: A Survey

Criterion Value Description
Semantic technology
depth

Extrinsic Semantic Web technologies are used only on the
surface of the application, not internally.

Intrinsic Semantic Web technologies are used to replace
(at least partially) conventional technologies like
relational databases.

Information flow di-
rection

Consuming LD are consumed from a different source, e.g., in
a mashup application.

Producing Application produces LD.
Semantic richness Shallow Simple taxonomies using RDF(S).

Strong Expressive languages like OWL.
Semantic integration Isolated Limited reuse of identifiers, vocabularies, and on-

tologies.
Integrated Extensive reuse of identifiers, vocabularies, and

ontologies.

Table 3.1: Categorization of Semantic Web applications according to [12].

. Linked Data crawlers which allow crawling Linked Data datasets by following
links between RDF resources. For example, LDSpider [79] or Squirrel.8. Linked Data client libraries which allow querying the Semantic Web as a
single repository. For example, the Semantic Web Client Library.9. SPARQL client libraries which allow executing SPARQL queries on datasets.
For example, Jena [40].. Federated SPARQL engines which allow querying multiple target reposito-
ries through a single endpoint. For example, RDF4J [35].. Search engine APIs which allow searching and retrieving Semantic data on
the Web. For example, the late Sindice engine [80].

Once again, this description concentrates on applications providing primarily read
access to Semantic data. The read-only access theme is clear in the Semantic Web
literature, as is demonstrated by Barbosa et al., who, in their recent literature
review [81], show that 78% of research articles concern systems providing access to
Semantic data.

Lytras and García, on the other hand, ponder why the Semantic Web has not
been as successful in the industry [32]. They emphasize the business point of view,
where the stakeholders need to see the eventual financial or organizational benefits of
switching from traditional technologies like relational databases to a new paradigm.
One may, in their work, spot an appearance of a principle briefly touched upon in
Chapter 1 – the fact that the business logic core of a system stays virtually oblivious
to the choice of the technologies and paradigms of the system around it. In the

8https://dice-group.github.io/squirrel.github.io/, accessed 2020-08-11.
9http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/semwebclient/, accessed 2020-

08-11.

41

https://dice-group.github.io/squirrel.github.io/
http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/semwebclient/

3. State of the Art
article, Lytras and García discuss the four layers which need to be analyzed to
evaluate the switch to Semantic Web technologies:

.Data layer where data representation standards and technologies are the
primary concern. Here, Semantic Web offers the RDF and SPARQL standards.. Semantic Web and ontological engineering layer where ontologies allow
creating and reusing data schemas. In addition, relevant development tools
needed for efficient information system development are mentioned.. Semantic Web-based information systems layer concerns the integration
of Semantic Web-based components into an information system via well-defined
interfaces, Web services, etc..Business logic/intelligence layer represents the core of the system’s func-
tionality from the organization’s perspective.

In the end, the authors propose a three-tiered decision model for the adoption of
Semantic Web technologies in organizations:..1. Business strategy – Semantic Web use must be in alignment with the key

strategic objectives of the company...2. Semantic/knowledge performance – an analysis of business performance
factors that can be enhanced/supported by the Semantic Web and ontological
engineering must be performed...3. Technical aspect – finally, technical aspects need to be considered.

Heitmann et al. surveyed Linked Data applications presented at application
development challenges of two major Semantic Web conferences – the International
Semantic Web Conference (ISWC) and the European Semantic Web Conference
(ESWC) [82]. Based on this survey, they decompose a typical Linked Data application
into several components, identify four challenging areas of its implementation, and
propose ideas on how to simplify Semantic Web-based application development.
An important point they make in the survey is that one of the reasons for the low
percentage of systems allowing users to create or edit data (29% of the surveyed
applications) may have been the lack of data definition and manipulation language
at the time the survey took place (the newest examined systems were from 2009).
Indeed, the SPARQL Update language standard was proposed in 2012 (submission
had been made in 2008). Nevertheless, APIs like Jena [40] and Sesame [35] allowed
data manipulation long before the inception of SPARQL Update. The components
of a Semantic Web-based information system identified by Heitmann et al. are

42

..................... 3.3. Semantic Web-based Information Systems: A Survey

Figure 3.1: Linked Data-based application components by Heitmann et al. [82]. Edges
represent component dependency. Layered structure introduced by me.

visualized in Figure 3.1 – their names should be self-explanatory (Graph-based
navigation interface denotes user interface which exploits the underlying domain
schema). The implementation challenges identified by the authors concern:

. Integration of noisy and heterogeneous data from different sources, some
of which may not be under the control of the application developers..Mismatch of data models between the components refers to the fact
that application data are stored in RDF, but the business logic is written in
the object-oriented paradigm. In addition, data being integrated from external
sources are often stored in relational databases, so a paradigm threesome can
emerge..Distribution of application logic across the components means that
while the bulk of the application logic is in the business logic layer, parts of
it can be expressed in the ontological domain model or as rules specified for
the storage. More logic is then encoded in various techniques concerning data
integration..Missing guidelines and patterns pertain mostly to guidelines for the imple-
mentation of standards-based libraries.

The authors propose the following recommendations to simplify Linked Data applica-
tion development – 1) creation of guidelines; 2) best practices and design patterns; 3)
development of middleware software libraries and factories able to generate complete
applications based on an entered configuration. While the third goal is hard (and
often infeasible) to achieve even in traditional software development, the first two
goals are aligned with the goals of this thesis.

43

3. State of the Art
A more recent overview of trends in Semantic Web application development, this

time from the point of view of the industry, can be found in the Dagstuhl Workshop
summaries [83, 84]. In these, central European (Austria, Germany, Switzerland)
Semantic Web practitioners discuss the main challenges, benefits, and trends of using
Semantic Web technologies in the corporate environment. The first important thing
to note is the difference between the open, academic Semantic Web, and the Corporate
Semantic Web, which mostly concerns a particular domain segment. This has certain
benefits, including fewer issues with resource identity or meaning disambiguation. It
also often means that the open world nature of the Semantic Web is replaced by a
centralized closed world view of the corporate data. Nevertheless, using Semantic
Web technologies in a corporate environment has also specific challenges, ranging
from the need to fit the paradigm into the organization’s processes, the requirement
of profitability (for companies), and the need for quality data. Regarding trends in
the Corporate Semantic Web, the authors discuss ontological modeling, ontology
evolution, using machine learning and natural language processing to extract data
from plain text or, conversely, to generate unstructured text based on ontological
models. An important topic discussed in the reports is also the need for mature and
efficient tools and software libraries for the development of ontology-based corporate
information systems.

3.3.2 Examples of Existing Semantic Web-based Information
Systems

Although the literature is not overflowing with descriptions of successful Semantic
Web-based information systems, there exist many. This section introduces just a
handful of them to illustrate the typical tasks in which Semantic Web technologies
are advantageous.

Systems Providing Data Integration

A recurring topic of Semantic Web technologies exploitation is data integration.
This could have been already seen in Section 3.3. O’Riain et al. describe such an
application in the financial domain [85]. In their case study, the system integrates
data from several heterogeneous sources, including stock exchange public API, news
publishers, geospatial databases, etc. Such data are transformed to RDF, integrated
using bridge ontologies, and indexed in storage. A user interface then allows browsing
and searching the data in an intuitive way.

The GetThere system, on the other hand, allows real-time updates to the data [86].

44

..................... 3.3. Semantic Web-based Information Systems: A Survey

It gathers and integrates data about public transportation, which are then available
to users via a mobile application. The mobile application serves two purposes – it
provides users with information about public transportation services and in turn,
once the user enters a public transportation vehicle, it is able to upload sensory data
to the server, where they are used to ascertain the vehicle’s current location and
compare it to its expected schedule.

Systems with Linked Data API

One of the best-known examples of information systems providing Linked Data
API for consumers is the BBC content annotation, linking, and publishing [87].10

BBC used Semantic technologies to annotate existing content and interlinked it with
DBPedia11 thus providing machine-readable access to a large corpus of structured
and quality data.

Knowledge-based Systems

Semantic Web technologies, more specifically expressive ontologies, can play a
fundamental role in knowledge-based systems (KBSs). Based on the ontological
schema, inference can reveal hidden relationships in the data or generate explanations
for particular conclusions. Carvalho et al. describe such a knowledge-based system
– the InvestigationOrganizer [88, 89]. It was developed at NASA and serves as a
support system for mishap investigators. It allows them to enter large amounts of
heterogeneous data, build fault trees, or preserve the investigation process history. Its
ontological base also allows executing inference rules to extract additional, implicit
information from the data. Another example of the utilization of ontologies in KBSs
is described by Angele et al. [31]. In their case, F-logic ontologies are used to describe
the domain and express the rules and constraints for a test car configuration checking
system. Another example of a knowledge-based information system using ontologies
is MONDIS (MONument Damage Information System) [90]. MONDIS is based on
the Monument Damage Ontology [91], which allows describing, besides classification
of constructions, materials, etc., also causality chains relevant to damage of cultural
heritage structures. The system consists of a mobile application used to collect on-site
data, including photographic evidence and geographic location. This application, in
addition, contains an adaptable user interface generated from the ontological model.
The second part of the information system is an advanced search application, which
allows to mine information from the stored Semantic data. The authors themselves

10Also https://bbc.in/1SLBRLO, accessed 2020-08-11.
11Semantic Web-enabled Wikipedia – https://wiki.dbpedia.org/, accessed 2020-08-11.

45

https://bbc.in/1SLBRLO
https://wiki.dbpedia.org/

3. State of the Art
mention the lack of adequate software tools as a major obstacle in the development
of the system.

The preceding literature review represents a baseline for the analysis and rec-
ommendation of architectural and design guidelines for developing domain-specific
Semantic Web-based information systems, which will be provided later in this thesis.

46

47

3. State of the Art

Part II

Contribution

48

Chapter 4

Theoretical Basis for Application Access to
Semantic Data

This chapter presents my contribution to the topic of efficient application access
to Semantic data. In particular, it starts with the development of a framework
for comparison of object-triple mapping SW libraries and its application to a set
of contemporary OTM solutions (Section 4.1). The framework represents a novel,
comprehensive tool that helps software developers to choose the most suitable OTM
library for their use case.

In the sequel, theoretical foundations describing application access to Semantic
data are laid down in two phases. The first phase (Section 4.2) is devoted to a formal
definition of object-ontological mapping built on the axis description logics – F-logic
– an object-oriented programming language. This formalism comprises the bulk of
my (theoretical) contribution. The remainder of the chapter (Section 4.3) presents
a formalization of the operations an information system needs to perform on the
underlying data. Sections 4.2 and 4.3 provide means for a formal definition of the
object-ontological mapping, the lack of which concerns all contemporary OTM/OOM
solutions (as was discussed in Section 3.1). Chapter 5 will later show how these
principles are carried over to an actual implementation. Figure 4.1 illustrates the
focus of this chapter.

A short sidenote on nomenclature is again in order: borrowing the terminology of
the Java Persistence API [44], entity class is used to denote programming language
classes mapped to persistent concepts (OWL or RDFS classes in our case), an
attribute denotes an instance field together with the methods which get (getter) and
set (setter) its value. Finally, an entity is an instance (object) of an entity class.

49

4. Theoretical Basis for Application Access to Semantic Data

Figure 4.1: Overview of the focus of this chapter. Relevant parts are marked with bold
font and grey background. Solid lines depict direct usage.

4.1 Comparison of Object-triple Mapping Libraries

Chapter 3 argued that domain-specific persistence libraries are more suitable for
domain-specific Semantic Web-based information systems. Examples of such libraries
presented in that chapter comprise but a subset of existing solutions. These solutions
predominantly support accessing RDF(S) data, as more expressive languages like
OWL often represent a significant performance obstacle in the development of real-
world information systems. Thus, the term object-triple mapping (OTM) libraries
has been used to denote such tools. When a software developer decides to use
an OTM library to access Semantic data in their application, they are faced with
an uneasy task of choosing the best applicable one. Right from the start, even
discovering existing solutions is difficult. The primary culprit is that most of them
have originated in the academic sphere as small tools intended to streamline the
work on research projects. Thus, their documentation is scarce, their user base
small and it is difficult to find even basic information like features, performance
characteristics, or support for integration with application development libraries like
Spring.1 Many of them are also obsolete, as their development stopped years ago,
e.g., Elmo [51] or Owl2Java [92].

Therefore, we created a framework for comparison of OTM libraries and used it
to provide an overview of existing solutions [47]. The contributions of this endeavor
are threefold:..1. A framework for qualitative (feature-wise) and quantitative (performance-wise)

comparison of OTM libraries...2. A survey of existing OTM solutions using this framework.
1https://spring.io/, accessed 2020-08-11.

50

https://spring.io/

........................ 4.1. Comparison of Object-triple Mapping Libraries..3. Minimal working usage examples of libraries evaluated in the performance part
of the comparison.

The third point is a by-product of the performance benchmark. However, given the
lack of proper documentation for the libraries, it is a welcome result.

There exist very few comparisons of OTM libraries, as most Semantic Web-
related comparisons concentrate on the underlying storage – for example, the Berlin
SPARQL Benchmark (BSBM) [93] or the Lehigh University Benchmark (LUBM) [94].
Holanda et al. provide a minimalistic performance comparison between their solution
– JOINT-DE – and AliBaba [95]. Cristofaro compares the features of selected OTM
libraries [96], as does Sieland [97]. Sieland, in addition, reviews the development
activity, documentation, and ease of use of the compared tools. Nevertheless, these
works are rather narrow in their selection of survey subjects and shallow in the depth
of the comparison.

4.1.1 Design of the Comparison Framework

Our comparison framework consists of two parts – a set of criteria used to evaluate
the features supported by the compared libraries, and a performance benchmark.

Feature criteria

The qualitative part of the framework consists of a set of twelve criteria that can be
used to assess an OTM library’s suitability in a particular use case. The criteria
may be split into three main categories:

General (GC) General criteria are based on the principles known from application
development and relevant object-relational mapping features. The framework
contains six general criteria.

Ontology-specific (OC) These criteria take into account specific features of the
Semantic Web language stack based on RDF and its design. They are not
exclusive to OTM libraries and could be applied to libraries used to access
Semantic data in general. The framework contains three such criteria.

Mapping (MC) Mapping criteria concern important techniques used for the object-
triple mapping. They are motivated by the differences of ontologies on the one

51

4. Theoretical Basis for Application Access to Semantic Data
side and the object-model on the other [98]. The framework contains three
mapping-specific criteria.

The criteria selection is based on existing knowledge from other domains (e.g., object-
relational mapping), literature, and our own experience with developing Semantic
Web-based information systems. The following paragraphs briefly introduce the
criteria.

GC1 – Transactions Indicates whether the OTM library supports transactional
processing, as it is one of the fundamental paradigms of computer science
allowing to bind related operations into a single unit of work [99]. For the purpose
of the comparison, only atomicity, consistency, and durability of transactions
are considered.

GC2 – Storage access variability Refers to the ability to connect to storages of
different providers. This is important in order to avoid vendor locking. Since
there is no standard for Semantic storage access (besides a SPARQL endpoint),
triple store vendors provide proprietary APIs. GC2 thus checks whether the
library supports at least two different storage APIs.

GC3 – Query result mapping Checks for support for mapping between results
of a SPARQL query and the application object model. Such a mapping greatly
simplifies the usage of SPARQL in domain-specific applications.

GC4 – Object-level query language Validates the existence of a query language
enhanced by object model constructs. That is, a language allowing to use names
of classes and attributes and to perform joins by simple traversal of object
attributes (e.g., p.friends.firstName) in the query. This criterion goes one step
beyond GC3 – because SPARQL may be cumbersome to work with (mainly
due to having to deal with IRIs), queries based on the application model are
easier to write and read.

GC5 – Detached objects Refers to the possibility to detach an object from its
connection to the underlying repository, as many OTM libraries use the objects
as mere proxies to the triple store and require the objects to be tightly coupled
with the data source connection, possibly causing performance or transactional
issues.

GC6 – Code/ontology generator Indicates whether the OTM library allows
generating the object model based on the ontological model, or vice versa. Such
a generator may simplify the development (especially) in its initial phases.

OC1 – Explicit inference treatment is important since while inferred state-
ments are indistinguishable from asserted ones on retrieval, the difference is
significant on update. Mainly because inferred statements cannot be directly
removed. Therefore, OC1 validates whether an OTM library makes such a
distinction.

52

........................ 4.1. Comparison of Object-triple Mapping Libraries

OC2 – (RDF) Named graphs Named graphs allow to structure data in the
repository. OC2 evaluates whether an OTM tool supports storing and accessing
data in named graphs.

OC3 – Automatic provenance management Checks whether the library al-
lows exploiting standard Semantic Web mechanisms for data provenance (RDF
reification vocabulary [18], the PROV-O ontology [100]) to automatically gener-
ate these metadata. Provenance data are a common requirement in information
systems, due to the need for change tracking and auditing. Being able to
generate them automatically instead of having to program a routine for such a
task would again simplify development.

MC1 – Inheritance mapping Discusses whether the mapping of class hierarchies
is supported by the tool. This is one of the most important criteria, as hierarchies
of classes are one of the fundamental parts of ontology modeling.

MC2 – Unmapped data access Indicates whether it is possible to access also
data not mapped by the object model. For instance, the set of properties
concerning a particular individual may not be completely covered by the object
model, yet, the application may need to access such data in specific scenarios.

MC3 – RDF collections and containers are introduced as a means of modeling
collections of data beyond the regular set semantics of RDF/OWL, which may
be insufficient in many cases – for instance, most data are presented to the user
as lists based on different ordering criteria. Whether an OTM library supports
such concepts is validated by MC3.

Performance Benchmark

The slowest player in Semantic data access will in most cases probably always be
the repository. This is because of the volume of data it has to search, update,
and store. However, efficient strategies employed by an OTM implementation can
have a major influence on the overall performance. Therefore, the performance
benchmark allows comparing OTM libraries in terms of common operations executed
over the repository. The benchmark is based on a relatively simple ontology from the
aviation domain. The ontology is a restriction of a larger ontology used in a safety
occurrence reporting and management system (will be discussed in greater detail
in Chapter 6). An object model based on this ontology is depicted in Figure 4.2.
While relatively simple, the model exercises the most common mapping constructs
– singular and plural attributes with literal and reference values, and a subclass
relationship between Occurrence and Event.

A set of six common create, retrieve, update, and delete (CRUD) operations was
selected to simulate real-world usage scenarios.

53

4. Theoretical Basis for Application Access to Semantic Data

Figure 4.2: UML class diagram of the OTM comparison performance benchmark model.

OP1 – Create represents a typical operation performed by a domain-specific in-
formation system. It creates an instance of class OccurrenceReport with a set of
related objects and inserts them into the repository.

OP2 – Batch create simulates situations where, for instance, data are imported
into the system in bulks. Thus, the mode of operation is almost the same as
OP1, but a large number of insertions happens in a single transaction.

OP3 – Retrieve stands for an application requesting a specific instance together
with its references using its identifier. This can simulate a user viewing the
detail of one report in the system’s user interface.

OP4 – Retrieve all represents another common functionality of information sys-
tems – loading all instances of a certain type, for example, to display them in a
list or a table in the UI. In this case, all reports with relevant references are
loaded.

OP5 – Update simulates the system updating data of a single report. More
specifically, several literal attributes of a report and its related occurrence are
updated and a new reference to a Resource is added.

OP6 – Delete removes a report and all its related data except for the users set as
the report’s author and last modifier, as they are system users and cannot be
removed in this operation.

Each operation consists of setup, execution, and tear down, where only the execu-
tion phase is measured. The setup and tear down phases are used to generate test
data and/or validate operation results.

In order to make the benchmark fair, it is based only on a single platform – Java –
and was executed on a single triple store – GraphDB [36]. This narrows down the
selection of libraries to evaluate but makes their comparison more representative.

54

........................ 4.1. Comparison of Object-triple Mapping Libraries

Library GC1 GC3 GC5 OC1 MC1
ActiveRDF × ◦ × × N/A
AliBaba X X × X X
AutoRDF × × × × X
Empire ◦ X X × ◦
JAOB × × X × ×
JOPA X X X X ◦
KOMMA X X × X ◦
RDFBeans X × X × ◦
RDFReactor × × × X ◦
SF × × X × ◦
Spira × × × × ◦
SuRF X × × × N/A

Table 4.1: Selected OTM libraries compared using a subset of the criteria defined in
Section 4.1.1. × means no support, ◦ represents partial support, X is full support of the
feature and N/A signifies that the feature cannot be evaluated in the particular case.
JOPA is highlighted as it is the framework developed by my colleagues and me.

4.1.2 Overview of Comparison Results

The framework introduced above was used to compare a set of OTM libraries selected
based on their popularity, maturity, accessibility (some libraries, e.g., JOINT-DE [95]
or the Semantic Object Framework [101], are described in the literature, but their
source code is not available), and development activity (obsolete libraries were
omitted from the selection).

Feature Comparison Results

Twelve libraries were evaluated in the comparison: ActiveRDF [46], AliBaba [50],
AutoRDF [102], Empire [52], JAOB,2 JOPA, KOMMA [53], RDFBeans [54], RDF-
Reactor [103], the Semantic Framework (SF) [104], Spira,3 and SuRF.4

In general, most of them suffer from the fact that there is no formalization of
the object-triple mapping. Such a gap leads to potentially inconsistent behavior
and straightforward solutions that fail to handle less obvious cases (for example,
removal of unmapped data on update in most libraries). A detailed discussion of the
individual features is, due to its extent, out of the scope of this work and the reader

2https://github.com/yoshtec/jaob, accessed 2020-08-11.
3https://github.com/ruby-rdf/spira, accessed 2020-08-11.
4https://github.com/cosminbasca/surfrdf, accessed 2020-08-11.

55

https://github.com/yoshtec/jaob
https://github.com/ruby-rdf/spira
https://github.com/cosminbasca/surfrdf

4. Theoretical Basis for Application Access to Semantic Data
should kindly refer to the published paper [47]. To summarize the conclusions of
the comparison, in case of multi-user applications with non-trivial business logic,
support for transactions (GC1), query result mapping (GC3), detached objects
(GC5), and inheritance mapping (MC1) are crucial for any OTM library. Explicit
treatment of inferred knowledge (OC1) would be important in scenarios where the
mapped data are involved in inference. Table 4.1 presents the comparison results for
these selected criteria, the following paragraphs then provide further details.

GC1 – Transactions. AutoRDF, JAOB, and the Semantic Framework do not
support transactions likely due to their lack of support for triple stores in general.
While ActiveRDF, RDFReactor, and Spira do support access to regular triple stores
and, for example, RDFReactor internally makes use of the store’s transactional
mechanism, they do not allow the programmer to control the transactions externally.
Empire’s API hints towards support for transactional processing, but its implementa-
tion is rather strange. Operations that insert/update/remove data are automatically
committed without any way of preventing this behavior. So, for example, it is not
possible to bind updates to multiple entities into one transaction. This is analogous
to the auto-commit feature of many databases. However, the auto-commit is im-
plemented at the storage connection level, where queries in the native language of
the storage (e.g., SQL, SPARQL) are used mainly by administrators, and it can
be disabled. AliBaba, KOMMA, and RDFBeans support transactions by relying
on the underlying storage’s transaction management. SuRF, on the other hand,
tracks changes to objects by marking their updated attributes as dirty and allows
the programmer to commit the changes manually. JOPA handles transactions by
creating clones of the manipulated objects and tracking their changes locally, pushing
them into the storage on commit.

GC3 – Query Result Mapping. In contrast to JAOB, which does not provide
any query API at all, AutoRDF, RDFBeans, the Semantic Framework, and Spira
do not provide a query API either but contain at least a find all method, which
allows retrieving all instances of the specified type. SuRF allows to execute arbitrary
SPARQL queries, but cannot map their results to entities. While ActiveRDF does
not support mapping SPARQL query results to entities, its advanced object-based
query API obviates this issue by supporting almost complete SPARQL grammar.
Finally, AliBaba, Empire, JOPA, and KOMMA support mapping SPARQL query
results to entities by allowing specification of the target entity class when retrieving
query results.

GC5 – Detached Objects. ActiveRDF, AliBaba, AutoRDF, KOMMA, RDFRe-
actor, Spira, and SuRF do not support detached objects because their entities act
as proxies which load attribute values from the repository when they are accessed.
Conversely, setting attribute values causes the changes to be written into the storage

56

........................ 4.1. Comparison of Object-triple Mapping Libraries

immediately (except for SuRF which tracks changes locally). Therefore, they have to
hold onto a connection to the storage to provide basic data access functions. Empire,
JAOB, JOPA, RDFBeans, and the Semantic Framework, on the other hand, allow
working with the entities completely independently of the persistence context from
which they were retrieved because they store the data in the actual objects.

MC1 – Inheritance Mapping. Inheritance mapping is probably the most com-
plex feature in the comparison framework, with many subtle issues. Despite this,
several evaluated libraries take a straightforward approach which can often lead
to unexpected results. Consider Empire which does support multiple inheritance
in that it is able to work with classes that inherit mapped getters/setters5 from
multiple interfaces. However, it is unable to persist more than one type for an
entity. So if each interface declares a mapped type, only one of them gets persisted.
KOMMA and RDFBeans suffer from the same issue, i.e., they correctly interpret
inherited attributes, but always persist only a single type. To illustrate the issue,
let us have interfaces Student and Employee, which are mapped to RDFS classes
ex:Student and ex:Employee respectively. Then, declare an entity class WorkingStu-
dent, which implements both Student and Employee. Persisting an object c of type
WorkingStudent into the repository would result in either ex:c rdf:type ex:Student
or ex:c rdf:type ex:Employee being inserted, depending on the order of declarations
in the implements clause of WorkingStudent, where c is mapped to ex:c. Conversely,
a straightforward implementation of loading an instance of WorkingStudent would
require the corresponding resource to have types ex:Student and ex:Employee, map-
ping WorkingStudent to an unnamed intersection of the two, which is inconsistent
with the persist strategy. In addition, this behavior is not formalized in any way.
The Semantic Framework appears to also support multiple inheritance thanks to
its use of Java classes and interfaces. However, the implementation extracts only
attributes declared in a particular class, without regard for any fields inherited from
its superclass. JAOB does not support inheritance mapping. SuRF allows to specify
multiple superclasses when loading a resource, but they do not represent mapped
ontological classes, they are regular Python classes adding custom behavior to the
instance. On the other hand, similarly to ActiveRDF, since loaded instances contain
attributes corresponding to all properties found on the resource (thanks to Python
being a dynamic language), the concept of inheritance mapping does not apply in
this case. JOPA currently supports only class-based inheritance, so mapping classes
with multiple supertypes is not possible. Similarly, RDFReactor and Spira support
only single type inheritance. AliBaba and AutoRDF are thus the only libraries fully
supporting class hierarchy mapping. Since AliBaba is a Java library, it relies on
interfaces to support multiple inheritance. AutoRDF is able to exploit the built-in
multiple inheritance support of C++.

5Methods for retrieving/setting attribute values.

57

4. Theoretical Basis for Application Access to Semantic Data
OC1 – Explicit Inference Treatment. JOPA allows marking entity attributes as
potentially containing inferred data. Currently, this makes them effectively read-only.
However, in the future, the implementation may permit additive changes. AliBaba,
KOMMA, and RDFReactor allow marking attributes as read-only, a mechanism
that could be used to prevent attempts at modification of inferred statements.

Overall, the evaluated libraries may be split into several groups based on different
points of view. One contains solutions which appear to be proof-of-concept prototypes
with limited functionality. This group contains AutoRDF, JAOB, and the Semantic
Framework – their usability is restricted to a rather small set of specific cases.
Another group consists of tools in which entities are merely proxies of the underlying
RDF data. Such libraries could be problematic especially in larger (Web) applications
because they generally do not support detached objects. On the other hand, thanks
to the fact that they use dynamically generated proxies, they are able to support a
wide variety of shared entity behavior. In the case of ActiveRDF and SuRF, this
is enhanced by the fact that they do not require a predefined object model. The
last group may be denoted as general-purpose persistence libraries and it contains
Empire, JOPA, and RDFBeans. They attempt to provide functionality similar to
JPA but in the world of ontologies.

Benchmark Results

Since the benchmark is Java-specific and requires the OTM libraries to support
GraphDB, of the twelve tools examined in the qualitative part of the comparison,
only five were evaluated in the benchmark – AliBaba, Empire, JOPA, KOMMA,
and RDFBeans. The benchmark framework itself is scalable, so a size requiring
reasonable running time in the test environment was configured. Moreover, to
provide statistically sound results [105], each operation was executed in three runs,
where each run consisted of twenty warm-up rounds, which were not measured, and
100 measured rounds. Each run was executed in a new Java virtual machine process.
The repository was cleared after each round and GraphDB was restarted between the
operations. The benchmark was run for several values of heap size (32 MB, 64 MB,
128 MB, 256 MB, 512 MB, 1 GB) to illustrate memory scalability of the OTM tools.
The experiments were conducted on the following setup:

.OS: Linux Mint 17.3 64-bit. CPU: Intel Core i5-750 2.67 GHz (4 cores). RAM: 16 GB. Disk: Samsung SSD 850 EVO 250 GB

58

........................ 4.1. Comparison of Object-triple Mapping Libraries

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

K
O

M
M

A

R
D

FB
eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

Provider

T
im

e
(m

s)

Heap size − 1GB

Figure 4.3: Performance of the individual libraries on a 1 GB heap. The plots are
grouped by the respective operations. Lower is better. Taken from [47].

. Java: Java HotSpot JDK6 8u161, 64-bit.GraphDB 8.4.1 Free with disabled inference

Figure 4.3 shows performance of each library in each operation with 1 GB heap
size. It can be seen that JOPA exhibited the most consistent performance, in most
cases outperforming the other libraries.

It turns out that the OTM solutions are not much sensitive to heap size tuning.
As long as the heap is large enough for the data to fit in memory, the OTM libraries
perform consistently over varying heap sizes. To gain a better insight into the
memory efficiency of the OTM libraries, an additional benchmark was performed, in
which the libraries performed an equivalent of OP1, OP4, OP5, and OP6 in a cycle
for a given period. More specifically, the test period was set to four hours, with a
heap size of 40 MB. After this, Java garbage collector output was analyzed using
GCViewer.7 Simplified results of this analysis are shown in Table 4.2.

6Java Development Kit
7https://github.com/chewiebug/GCViewer, accessed 2020-08-11.

59

https://github.com/chewiebug/GCViewer

4. Theoretical Basis for Application Access to Semantic Data
Measure AliBaba Empire JOPA KOMMA RDFBeans
GCT (s) 496.98 1 326.58 147.78 65.36 40.4
Throughput (%) 96.37 84.56 98.97 99.55 99.72

Table 4.2: Memory utilization summary in a benchmark running for four hours with
40 MB heap. GCT is the total time spent in garbage collection and Throughput is the
corresponding application throughput.

Complete results of the benchmark are published online.8 The benchmark itself is
published online as well,9 including prototypes showcasing usage of the evaluated
OTM libraries.

4.2 Formal Object-ontological Mapping

A formal description of object-ontological mapping allows to precisely describe the
contract between the ontology and the object model. Such a description provides a
degree of predictability of the Semantic data access, which, as could have been seen
in Section 4.1, is often lacking in contemporary Semantic persistence libraries. The
choice of mapping OWL ontologies restricted by integrity constraints makes the task
both simpler and more difficult at the same time. Object-triple mapping for RDF(S)
is, to a certain extent, simple – map RDFS classes to entity classes, RDF properties
to attributes, and RDFS class instances to entities. However, this simplicity also
brings a lot of uncertainty. For example, properties are first-class citizens in RDF
(and in OWL as well), whereas attributes existentially depend on the class in which
they are declared in object-oriented programming languages. Therefore, domain and
range restrictions are often too general for an object model and their attachment to
specific entity classes is purely conventional.

OWL with integrity constraints allows to overcome such problems by localizing
domain and range restrictions on properties to particular concepts. For instance,

OccurrenceReport v ∀documents.Occurrence

restricts the range of the property documents to Occurrence only locally for the
concept OccurrenceReport. On the other hand, OWL is an expressive language
with various constructs that have no direct counterpart in programming languages.
For example, such a basic axiom as the above local range restriction requires a

8https://kbss.felk.cvut.cz/web/kbss/otm-benchmark, accessed 2020-08-11.
9https://github.com/kbss-cvut/otm-benchmark, accessed 2020-08-11.

60

https://kbss.felk.cvut.cz/web/kbss/otm-benchmark
https://github.com/kbss-cvut/otm-benchmark

.............................4.2. Formal Object-ontological Mapping

mapping specifying that it will become an attribute of type Occurrence in the
entity class OccurrenceReport. Advanced constructs like anonymous concepts created
by concept intersections are even more complicated. The form of the ontology-
object model contract is such that the object model is based on compile-time
integrity constraints [39]. The mapping then ensures that ABox axioms are correctly
interpreted as instance data and TBox axioms can be used to infer additional
knowledge (mainly concept membership).

Now, on the one hand, OWL ontologies are based on description logics, so one
would like to take advantage of the formal apparatus backing these languages. In
contrast, mainstream object-oriented programming languages are not based on
any logical formalism. Fortunately, F-logic has been specifically designed to allow
representing structural aspects of object-oriented languages [29]. Therefore, the
vital part of this OOM formalism deals with a mapping between description logics
and F-logic, whereas the transition between F-logic and a selected programming
language should be relatively smooth.

4.2.1 Mapping between Description Logics and F-logic

The description of the F-logic-based object-ontological mapping can be split into
three parts:..1. Ontology mapping – mapping of the TBox and ABox..2. Mapping of integrity constraints..3. Finding means of integrity constraint validation in F-logic

A simple running example will be used to illustrate the mapping, with OT
representing the DL ontology schema, OA the actual data and IC being integrity
constraints placed on the ontology. In the example, an asset is declared and specified
to have an author. It may also have a last editor. This generic ontology is restricted
by integrity constraints for a safety occurrence reporting system. The constraints
specify that reports are kinds of assets, they declare the same cardinalities of both
author and last editor as OT , but require their values to be users of the system.

OT ={Asset v=1 author.>, Asset v61 lastEditor.>,
Report v Asset, author v editor, lastEditor v editor}

OA ={User(Tom), User(Sarah), Report(report−buo01)}
IC ={Report v ∀author.User,Report v=1 author.User,

Report v ∀lastEditor.User,Report v61 lastEditor.User}

61

4. Theoretical Basis for Application Access to Semantic Data
SROIQ F-logic F-logic Semantics

A AC
¬C Not(CC) I |=F x :Not(CC) iff IF (x) /∈U IF (CC)
C uD CC and DC
C tD CC or DC
>nR.C AtLeast(n,RR, CC) I |=F x :AtLeast(n,RR, CC) iff

∃y1...yn s.t. yi ∈ I→(IF (RR))(IF (x))
∧yi ∈U IF (CC), for ¬(yi = yj)

∃R.Self HasSelf(RR) I |=F x :HasSelf(RR) iff
IF (x) ∈ I→(IF (RR))(IF (x))

{a} Nom(aE) I |=F x :Nom(aE) iff IF (x) = IF (aE)
∀R.C All(RR, CC) I |=F x :All(RR, CC) iff

∀y, y ∈ I→(IF (RR))(IF (x))⇒ y ∈U IF (CC)
∃R.C Some(RR, CC) I |=F x :Some(RR, CC) iff

∃y s.t. y ∈ I→(IF (RR))(IF (x)) ∧ y ∈U IF (CC)

Table 4.3: Mapping of concept descriptions. x is universally quantified over E , yi is
quantified over UE . XC (XR) represents a concept (method) name, i.e., a function
symbol from C (R). AtMost is defined analogously to AtLeast and corresponds to
6nR.C.

Ontology Mapping

The mapping is inspired by [68], but supports a more expressive DL. The use of
sorted F-logic and the proof of entailment equivalence are based on [69]. Table 4.3
shows mapping of concept descriptions. Similar to [68], several new function symbols
are introduced – Not , AtLeast , AtMost , HasSelf , Nom , All , Some ∈ A – which
allow representing SROIQ concept constructs which cannot be directly mapped
to F-logic. For instance, > nR.C does not correspond to [RR ⇒{n:∗} CC] because
the SROIQ version admits also R-fillers of other types than C, whereas the F-logic
signature expression would require all RR-fillers to belong to CC. Also, signature
expressions cannot be used to infer the type of values of the corresponding data
expressions. For each of the new function symbols, a condition on the underlying
F-structures ensuring correct semantics w.r.t. their SROIQ counterparts is specified.
W.l.o.g., concrete role-based concept descriptions like ∀T.d are omitted here for the
sake of brevity.

SROIQ top (bottom) concept > (⊥) is mapped to an F-logic concept >C (⊥C)
for which it must hold ∀x ∈ UE , x ∈U IF (>C) (∀x ∈ UE , x /∈U IF (⊥C)). Similarly,
SROIQ universal role RU is mapped to an F-logic method MR such that ∀x, y ∈
UE , y ∈ I→(IF (MR))(x).

TBox and RBox axiom mapping is shown in Table 4.4. It makes use of F-logic
predicates and defines conditions under which they are true.

62

.............................4.2. Formal Object-ontological Mapping

SROIQ F-logic Condition on I
C v D CC ::DD IF (CC) �U IF (DC)
R v S subPropertyOfP(RR, SR) y ∈ I→(IF (RR))(x)⇒ y ∈ I→(IF (SR))(x)
Sym(R) SymP(RR) y ∈ I→(IF (RR))(x)⇒ x ∈ I→(IF (RR))(y)
Asy(R) AsyP(RR) y ∈ I→(IF (RR))(x)⇒ x /∈ I→(IF (RR))(y)
Tra(R) TraP(RR) y ∈ I→(IF (RR))(x) ∧ z ∈ I→(IF (RR))(y)

⇒ z ∈ I→(IF (RR))(x)
Ref(R) RefP(RR) x ∈ I→(IF (RR))(x)
Irr(R) IrrP(RR) x /∈ I→(IF (RR))(x)

Dis(R,S) DisP(RR, SR) y /∈ I→(IF (RR))(x) ∨ y /∈ I→(IF (SR))(x)

Table 4.4: Mapping of TBox and RBox axioms. RBox axioms are mapped to predicates,
for which satisfaction conditions on the F-structure I are provided. ⇒ outside of an
F-molecule represents regular logical implication. Variables are universally quantified
over UE .

ABox individual assertions are mapped straightforwardly, C(a) as an is-a assertion
aE :CC , R(a, b) as a data expression aE [RR → bE] and (in)equality a = b (a 6= b) as
aE = bE (aE 6= bE).

Running Example. The running example should help illustrate the mapping. The
corresponding F-logic ontology OF looks as follows:

OFT ={AssetC ::Some(authorR,>C), AssetC ::AtMost(1, authorR,>C),
AssetC ::AtMost(1, lastEditorR,>C), Report ::Asset,
subPropertyOfP(authorR, editorR),
subPropertyOfP(lastEditorR, editorR)}

OFA ={TomE :UserC , SarahE :UserC , report−buo01 E :ReportC}

Now, it has to be shown that the mapping preservers entailment. First, I show that
a formula θ is satisfiable in a SROIQ language LDL if and only if a corresponding
formula θF is satisfiable in a corresponding F-logic language LF .
Lemma 4.1. Let θ be a formula in LDL and θF a corresponding F-logic formula in
an F-logic language LF . Then θ is satisfiable in some interpretation I of LDL if and
only if θF is satisfiable in some F-structure I of LF .

Proof. (Sketch) The lemma is proven by showing how an F-structure I can be
constructed for a SROIQ interpretation I and vice versa. The interpretation
correspondence is shown for RBox and TBox axioms, with ABox axioms being
internalized using TBox. The full proof can be found in Appendix B.1.

The lemma allows to show that entailment is preserved by the mapping.

63

4. Theoretical Basis for Application Access to Semantic Data
Theorem 4.2. Let Θ and ΘF be corresponding theories in LDL and LF . For any
formula θ in LDL holds:

Θ |= θ iff ΘF |=F θF ,

where |=F represents F-logic entailment.

Proof. The proof relies on the fact that entailment checking can be reduced to
satisfiability checking, that is, Θ |= θ (ΘF |=F θF) can be reduced to verification
that Θ ∧ ¬θ (ΘF ∧ ¬θF) is not satisfiable. Since Lemma 4.1 showed satisfiability
of a formula is equivalent if both SROIQ and F-logic, it is clear that entailment
checking is also equivalent.

Mapping Integrity Constraints

IC semantics allows imposing a closed world view on a portion of a knowledge base
K affected by the integrity constraints. Analogously to the approach of Tao et
al. [27], an augmented F-structure IIC with IC semantics is defined below. This
approach has the advantage of not introducing additional syntactic constructs and
giving the IC axioms a natural, easy-to-understand meaning. The semantics uses
the notion of minimal equality models (ModME) to support a weak form of unique
name assumption. The original definition of ModME from [27] can be carried over
to F-logic as follows:

Consider a knowledge base KF and let EI be the set of equality relations satisfied
by an F-structure I, i.e., EI = {〈a, b〉 | a, b ∈ E s.t. I |=F IF (a) = IF (b)}. A relation
I ≺F= J, where I and J are F-structures, holds iff:

. ∀C ∈ C ∪ A, if I |=F a :C, then J |=F a :C,. ∀R ∈ R, if I |=F a[R→ b], then J |=F a[R→ b],. EI ⊂ EJ.

ModFME(KF) is then defined as ModFME(KF) = {I | I is a model of KF s.t. @J J ≺F=
I}.

64

.............................4.2. Formal Object-ontological Mapping

The augmented F-structure with IC semantics is a tuple IIC = 〈U , ≺ICU , ∈ICU , IF ,
IICP , IIC→ , I⇒〉, where:

.≺ICU = {〈IF(x), IF(y)〉 | x, y ∈ C s.t. ∀J ∈ ModFME(KF),J |=F IF(x) ≺U
IF (y)},. ∈ICU = {〈IF(x), IF(y)〉 | x ∈ E , y ∈ C ∪ A s.t. ∀J ∈ ModFME(KF),J |=F

IF (x) ∈U IF (y)},. IF(y) ∈ IIC→ (IF(z))(IF(x)) iff x, y ∈ E , z ∈ R ∧ ∀J ∈ ModFME(KF),J |=F

IF (y) ∈ IIC→ (IF (z))(IF (x)),. IICP (p) = {〈IF (y1), ..., IF (yn)〉 | yi ∈ F s.t. ∀J ∈ModFME(KF),J |=F

〈IF (y1), ..., IF (yn)〉 ∈ IICP (p)}, where n is the arity of p,. And the other parts of IIC are the same as in a regular F-structure.

Based on IIC , IC semantics of concept descriptions can now be defined in Table 4.5.
One modification is the switch from All(RR, CC) to the built-in signature expression
[RR ⇒ CC]. This can be done thanks to the F-logic notion of typing, which requires
data expressions to correspond to a signature expression declaring their types, e.g., for
a signature CC [RR ⇒ DC], typing rules require d from the data expression c[RR → d]
to be of type DC , i.e., d :DC . Typing is an optional, non-monotonic, part of F-logic.
It is utilized for IC declaration because it provides a nice, succinct, frame-based
syntax. Moreover, AtLeast and AtMost restrictions combined with universal role
restriction can be expressed even more concisely using F-logic cardinality restriction
on signature expressions. The running example below demonstrates such a common
combination.

Finally, IC semantics of axioms should follow trivially from the definitions in
Table 4.5.

Running Example. Reviewing the running example, the biggest change is the use
of method signatures with cardinality constraints. This significantly reduces the
verbosity of the ICs and makes them arguable easier to understand.

ICF ={ReportC [authorR ⇒{1:1} UserC ; lastEditorC ⇒{0:1} UserC]}

Figure 4.4 illustrates how an integrity constraints-based model from the running
example may look in terms of a UML class diagram.

65

4. Theoretical Basis for Application Access to Semantic Data
Concept IIC |=F x :Concept iff
Not(CC) x ∈ E ∧ IF (x) /∈ICU IF (CC)
CC and DC x ∈ E ∧ IF (x) ∈ICU IF (CC) ∧ IF (x) ∈ICU IF (DC)
CC or DC x ∈ E ∧ IF (x) ∈ICU IF (CC) ∨ IF (x) ∈ICU IF (DC)

AtLeast(n,RR, CC) x ∈ E ∧ ∃y1, ...yn ∈ E s.t. IF (yi) ∈ IIC→ (IF (RR))(IF (x))
∧IF (yi) ∈ICU IF (CC) ∧ ¬(IF (yi) = IF (yj))

HasSelf(RR) x ∈ E ∧ IF (x) ∈ IIC→ (IF (RR))(IF (x))
Nom(aE) x ∈ E ∧ IF (x) = IF (aE)

[RR ⇒ DC] IIC is a typed F-structure [29] (Sec. 13)
Some(RR, CC) x ∈ E ∧ ∃y ∈ E s.t. IF (y) ∈ IIC→ (IF (RR))(IF (x))

∧IF (y) ∈ICU IF (CC)

Table 4.5: Integrity constraint semantics of F-logic concept descriptions. The right
hand column specifies a condition under which an individual x is an instance of the
concept specified in the left hand column under the IC semantics.

Figure 4.4: UML class diagram of a model based on integrity constraints from the
running example.

Integrity Constraint Validation

Being able to define integrity constraints for an ontology is hardly enough. It is
necessary to be able to validate them as well. While IC semantics is a convenient
theoretical construct, it is impractical, because existing F-logic implementations
do not support it. Instead, the ability to query an F-logic knowledge base can be
exploited for integrity constraint validation.

Since ICs represent a close-world view of the ontology, negation as failure (NAF)
is necessary to be able to represent it in the queries. Like in most logic programming
languages [106], the NAF operator not with the following semantics can be introduced
into F-logic: KF |= not(α) iff KF 6|= α, where α is an F-formula.

I now show how IC axioms can be translated to F-logic queries with not. The
rationale is that if the knowledge base entails the query, there is an IC violation.
The approach again follows the line of reasoning of Tao et al. [27], who introduce
two translation operators: TC for concepts and T for axioms. The definition of
analogous F-logic translation operators T FC and T F can be found in Tables 4.6
and 4.7 respectively.

66

.............................4.2. Formal Object-ontological Mapping

Concept T FC
T FC (x :CA) x :CA
T FC (x :Not(C)) not(x :T FC (C))

T FC (x : (C1 and C2)) x :T FC (C1) ∧ x :T FC (C2)
T FC (x : (C1 or C2)) x :T FC (C1) ∨ x :T FC (C2)

T FC (x :AtLeast(n,R,C))
∧

1≤i≤n x[R→ yi] ∧ yi :T FC (C)
∧

1≤i≤j≤n not(yi = yj)
T FC (x :HasSelf(R)) x[R→ x]
T FC (x :Nom(a)) x = a
T FC (x[R⇒ C]) x[R→ y]⇒ y :T FC (C)

T FC (x :Some(R,C)) x[R→ y] ∧ y :T FC (C)

Table 4.6: Integrity constraints validation transformation rules for concepts. CA is an
atomic class name.

Axiom T F
T F (C1 ::C2) T FC (x :C1) ∧ not(T FC (x :C2))

T F (subPropertyOfP(R1, R2)) x[R1 → y] ∧ not(x[R2 → y])
T F (SymP(R)) x[R→ y] ∧ not(y[R→ x])
T F (AsyP(R)) x[R→ y] ∧ y[R→ x]
T F (TraP(R)) x[R→ y] ∧ y[R→ z] ∧ not(x[R→ z])
T F (RefP(R)) not(x[R→ x])
T F (IrrP(R)) x[R→ x]

T F (DisP(R1, R2)) x[R1 → y] ∧ x[R2 → y]

Table 4.7: Integrity constraints validation transformation rules for axioms. Ci is a
concept, Ri is a role and x, yi are variables.

The universal role restriction concept comes with a little twist. Instead of rep-
resenting a standalone concept, a corresponding signature expression is attached
to the target concept, i.e., instead of mapping a GCI C v ∀R.D, we have directly
CC [RR ⇒ DC]. A corresponding IC validation query in F-logic is created by verifying
that data expressions of all instances of CC comply with the signature expression,
i.e., T FC (x[RR ⇒ DC]). This can be also seen in the running example below.

Running Example. Since a signature expression with cardinality constraints is essen-
tially a combination of multiple concept descriptions, it results in multiple validation
queries. The queries presented below can be executed in F-logic implementations like
FLORA-2,10 which already supports the NAF operator. Presence of results for any
of the queries indicates an IC violation. In this case, the constraints are violated by
the lack of an explicit author of report-buo01, which is manifested by the second
query below. Asserting an author, e.g., report−buo01 E [authorR → TomE], would
fix the IC violation.

10http://flora.sourceforge.net/, accessed 2020-08-11.

67

http://flora.sourceforge.net/

4. Theoretical Basis for Application Access to Semantic Data

T F ={x :Report ∧ x[authorR → y] ∧ not(y :UserC),
x :ReportC ∧ not(x[authorR → y] ∧ y :UserC),
x :ReportC ∧ x[authorR → {y1, y2}]

∧
1≤i≤2

yi :UserC ∧ not(y1 = y2)

x :Report ∧ x[lastEditorR → y] ∧ not(y :UserC),
x :ReportC ∧ x[lastEditorR → {y1, y2}]

∧
1≤i≤2

yi :UserC ∧ not(y1 = y2)}

Finally, it remains to show that the validation queries faithfully represent the
IC semantics, i.e., that validation queries generated from IC axioms return results
whenever any of the IC axioms are violated by the knowledge base.
Theorem 4.3. Consider a knowledge base KF , a set of integrity constraint axioms
IC and a set of IC validation queries Q, constructed by applying the translation
operator T F on each IC axiom α in IC. If KF violates any of the IC axioms in IC,
then ∃ q ∈ Q such that KF |=F q.

Proof. (Sketch) The proof shows for RBox and TBox integrity constraint axioms
that if there is a model which violates an IC axiom, it satisfies the corresponding
IC validation query. Thus, integrity constraint checking can be reduced to query
answering in F-logic. The full proof can be found in Appendix B.2.

4.2.2 Mapping between F-logic and Programming Languages

The F-logic model represents a convenient intermediate step between a DL ontology
and an object model in an object-oriented programming language (OOPL). However,
from the description of the mapping so far, one may become reasonably skeptical of
the simplicity of the mapping between F-logic and an OOPL. In this section, I will
describe this mapping and illustrate its form on an example model in Java.

Mapping Principles

The mapping between an ontology and an application consists of two parts:

. An object model structure based on integrity constraints,

68

.............................4.2. Formal Object-ontological Mapping

. Instance data (objects with attributes and relationships) based on the ontology
ABox.

The role of the ontological schema (TBox) is mainly in that it may allow inferring
additional instance knowledge.

Mapping Object Model Structure. Křemen and Kouba have shown [39] that not
all IC axioms can be mapped to an object model directly. The main culprits are
the inability of programming languages to declare anonymous classes based on
restrictions of other existing classes and the fact that class attributes can be either
singular or a collection of an unspecified number of values (so an arbitrary number
cannot be by default provided). For example, it is not possible to map an IC axiom
AC [RR ⇒ (BR and CR)] to an OOPL directly, because it does not allow to declare
an attribute with an anonymous type being an intersection of classes B and C. On
the other hand, it can be argued that anonymous classes are less relevant for object
models of most information systems and that it is possible to work around such
a restriction. Precise cardinalities, as I will show presently, can be treated using
different means.

Adhering to the terminology of Křemen and Kouba, the IC axioms relevant for an
object model can be split into three categories:

Compile-time which can be built directly into the object model,

Run-time which can be checked efficiently by predefined procedures at execution
time,

Reasoning-time which require validation by a reasoner.

My work extends their categorization of IC axioms translatable to OOPLs by
showing how additional IC axioms can be mapped. Table 4.8 presents this extended
categorisation. For compile-time constraints, the table also provides corresponding
code examples in Java. Several comments can be made here. First, the AC [RR ⇒ CC]
and A ::AtMost(1, RR, CC) constraints are typically combined together to denote a
singular attribute with a value of type CC (AC [RR ⇒{0,1} CC]). Second, due to the
lack of class-level multiple inheritance in languages like Java, superclass conjunction
(AC :: (BC and CC)) requires the use of interfaces on the code level. Languages like
C++, which support multiple inheritance for classes, do not need such a workaround.

Mapping Instance Data. Mapping instance data, as has been already shown, is
relatively straightforward – individuals become instances of the respective classes,

69

4. Theoretical Basis for Application Access to Semantic Data
IC Category Constraint Code Snippet
Compile-time AC [RR ⇒ CC] Set<C> r

AC ::AtMost(1, RR, CC) C r
AC :: (BC and CC) interface A extends B, C
AC ::Nom(aE) enum A {a}

Run-time AC ::AtLeast(n,RR, CC)
AC ::AtMost(n,RR, CC)
AC ::Some(RR, CC)
AC ::HasSelf(RR)

Reasoning-time AC :: (BC or CC)
AC ::Not(BC)

Table 4.8: Mapping integrity constraints to OOPL structures. The AtMost run-time
constraint mapping assumes n > 1. Code snippets are in Java.

the values of their ontological properties become values of their attributes (literal
values or references to other instances). From a more technical standpoint, while
the same individual can be an instance of multiple unrelated classes in an ontology,
in an OOPL, each object has to have only one primary class.11 However, there exist
ways to treat multiple separate objects as the same using equality.

Running Example. The running example can now be finished by showing the
resulting class Report with its attributes in Listing 4.1. Configuration of the mapping,
e.g., to what ontological class entity class Report corresponds, is not expressed in
this example, because various solutions use various methods and vocabularies, e.g.,
annotations in the case of Java. Note that the minimal cardinality on attribute
author has to be checked separately as well, because it is a run-time constraint. A
UML object diagram presenting data from an ABox OFA ′ is displayed in Figure 4.5.
OFA ′ is an extension of the original ABox OFA , demonstrating references between the
objects:

OFA ′ =OFA ∪ {report−buo01 E [authorR → TomE ; lastEditorR → SarahE]}

Listing 4.1: Java class corresponding to the integrity constraint axioms of the running
example. Note that mapping configuration is not specified here.

public class Report {
// Identifier attribute

private User author;

private User lastEditor;

// Additional attributes, getters, setters
}

11The most specific class of which it is an instance.

70

..................................4.3. Data Access Operations

Figure 4.5: UML object diagram of the extended ABox OF
A

′ from the running example.

4.3 Data Access Operations

Object-ontological mapping formalized in the previous section represents a static
artifact consisting of a domain model and a snapshot of the data described by this
model. This can be complemented by the definition of the operations performed on
the knowledge base. The operations are not as much interesting in the sense of their
effects on the data – as has been discussed, individual assertion mapping is relatively
straightforward – but it provides an overview of the kinds of requests a repository
backing an application using OOM will face. Therefore, arbitrary SPARQL (Update)
statements are out of the scope of this section, the focus is on create, retrieve,
update, and delete (CRUD) operations exploiting the domain model. In addition, as
Chapter 5 will show, such operations represent the core of a data access layer API
which allows separating (possibly) vendor-specific triple store access from generic
object-ontological mapping code.

4.3.1 Definition of the Operations

The operations are described using DLs because that is the paradigm in which the
data are ultimately stored. But an equivalent F-logic description could be provided.
Consider thus a SROIQ(D) ontology O and a set of integrity constraints IC. A
multi-context ontology is a tupleM = (Od,O1, ...,On), where each Oj is an ontology
identified by a unique IRI (denoted by IRI(Oj)) and is called a context. Od denotes
the default context. M is analogous to an RDF dataset with named graphs [2]. This
structure is supported by most contemporary triple stores – including the notion
of the default context, which is used in the operations when no specific context is
selected. For the purpose of this section, assume that each axiom α in Od ∪

⋃n
j=1Oj

has assigned a boolean status indicating whether it is asserted or inferred. While this
technique has no formal foundation in DLs, it is used (in various forms) by virtually
all contemporary triple stores mainly to facilitate axiom removal (remember that
inferred axioms cannot be removed directly).

71

4. Theoretical Basis for Application Access to Semantic Data
An axiom descriptor δa is a tuple (i, {(r1, b1, o1), ..., (rk, bk, ok)}), where i ∈ NI ,

rm ∈ NR, bm ∈ {0, 1}, om is a context IRI or it is empty (indicating the default
context), and m ∈ 1...k. The bms indicate whether inferred values for the given role
should be included as well. The axiom descriptor is used to specify data retrieval
parameters. An axiom value descriptor δv is a tuple (i, {(r1, v1, o1), ..., (rk, vk, ok)}),
where i ∈ NI , rm ∈ NR, vm ∈ NI ∪ND, om is an IRI of one of the ontologies inM
or it is empty (indicating the default context), and m ∈ 1...k. The vms represent
values for the given individual and role. The axiom value descriptor specifies data
which should be inserted into the storage and is essentially an extension of an axiom
descriptor where all inference markers bm are set to 0 and values are provided for
the roles.

The following list defines the five basic Semantic data access operations needed
by OOM persistence libraries. Besides CRUD operations, there is also one allowing
to validate reasoning-time integrity constraints.

. find(M, δa): 2M ×NI ×Nk
R × {0, 1}k ×Mk → 2NI×NR×(NI∪ND),.Given an individual i, find axioms representing assertions of its roles rm

specified by δa,. persist(M, δv): M × δv → M′, where M′ = (O′d,O′1, ...,O′n), where each
O′t = Ot ∪ αv, with αv = (i, rs, vs) such that os = IRI(Ot), where t ∈ 1...n and
s ∈ 1...k,. Insert axioms representing the specified values of roles rm of individual i

into the corresponding contexts,. remove(M, δa): M × δa → M′, where M′ = (O′d,O′1, ...,O′n), where each
O′t = Ot \ αv, with αv = (i, rs, x) such that os = IRI(Ot), where t ∈ 1...n,
s ∈ 1...k, and x ∈ (NR ∪ND),. Remove axioms representing values of roles rm of individual i from the

corresponding contexts,. update(M, δv): persist(remove(M, δv), δv),. Update M by first removing old values of roles rs (where s ∈ 1...k) of
individual i specified by δv and then inserting new values specified by δv,. validateIC(M, {γ1, ..., γk}): 2M×2NI×NR×(NI∪ND)×IC → {0, 1}, where γm ∈

IC and m ∈ 1...k,. Validate reasoning-time integrity constraints from the set IC.

72

..................................4.3. Data Access Operations

4.3.2 Complexity Analysis

The formal definition of the CRUD operations from Section 4.3.1 can be used to
estimate their computational complexity. This theoretical analysis has an important
input parameter – the inference strategy. There are two main ways of approaching
inference in a triple store:

.Materialization.Query-time reasoning

Materialization

Materialization means that inference is performed on statement insertion and its
results are in turn inserted into the storage as well. On insertion, a set of inferred
statements K0

I is derived from the set of new statements KE inserted into the
knowledge base. K0

I is then also processed by the reasoner, generating a set K1
I

of further inferences. For total materialization, the reasoning phase is repeated
until a set of statements Kn

I yields no new results. Statement removal is even more
interesting. For example, the triple store GraphDB [36] performs a combination of
forward and backward chaining: in the forward chaining phase, inferences are found
for the asserted statements being removed. These inferred results are then used as
the starting point of a backward chaining procedure which checks whether there are
any other explicit data from which the inferred knowledge can be derived. If not,
the inferred statements need to be removed as well.

Materialization is thus theoretically favorable for read-only scenarios because the
query engine can directly retrieve the data, but performance may suffer on insertion
and removal. For more expressive languages, materialization can also cause major
inflation of the database size. For example, a repository in one of our projects,
with a relatively inexpressive ontological model, consists of approximately 300 000
asserted and 700 000 inferred statements.

Query-time Reasoning

Query-time reasoning does not materialize inference results and performs reasoning
at the moment a query is executed. While most reasoners cache certain inferences, in

73

4. Theoretical Basis for Application Access to Semantic Data
Strategy Tfind Tpersist Tremove

Materialization O(logbn) O(
m∑
i=0

CRi × logbn) O(
m∑
i=0

CRi × logbn)

Query-time O(CR) +O(logbn) O(logbn) O(logbn)

Table 4.9: Asymptotic time complexity of the selected data access operations for a
materializing and query-time reasoning storage. b is the branching factor of the index
B+ tree, n is the size of the dataset. CR is the reasoning cost, which depends on the
selected language expressiveness, and m is the number of reasoning cycles performed
during materialization of statements inserted into the repository.

principle, reasoning has to be performed whenever answering a query. On the other
hand, statement insertion or removal requires no reasoner involvement. In addition,
inference expressiveness can be selected per query, whereas total materialization
typically has to be configured with the language of choice before inserting any data.
Stardog12 is an example of a triple store supporting query-time reasoning.

Another important factor of the complexity analysis of operations over storage is
its data indexing strategy. Most triple stores nowadays use B+ trees [107] (including
GraphDB and Stardog), an evolution of B-trees [108]. These trees are built over
different combinations of statement constituents – (s)ubject, (p)redicate, (o)bject,
and (c)ontext. For the sake of simplicity, let me omit the statement context from
the discussion. Since all indexes have to be updated when data change, triple stores
attempt to balance the number of indexes needed for efficient querying and updating.
For example, GraphDB uses PSO and POS indexes by default, whereas RDF4J uses
SPOC and POSC.

From the structure of the axiom descriptor δa introduced in Section 4.3.1, it should
be clear that the SPO and possibly PSO (predicates are bound in the descriptor)
indexes are the most relevant. Assuming the presence of either of them, Table 4.9
presents the asymptotic complexity of find, persist and remove (update consists of
remove and persist and its complexity can thus be derived).

The theoretical findings suggest that a materializing store like GraphDB is more
suitable for read-oriented applications, especially when reasoning expressiveness
increases. In this case, the inference cost is paid when data are loaded into the
repository and the actual queries should then be faster. On the other hand, applica-
tions performing lots of data modifications would benefit from the non-materializing
approach of query-time reasoning stores. However, as our benchmark paper has
shown [109], the actual performance greatly depends on the implementation effi-
ciency, and a materializing store may outperform a non-materializing one even for
data modifying operations.

12https://www.stardog.com/, accessed 2020-08-11.

74

https://www.stardog.com/

Chapter 5

Practical Solutions of Thesis Goals

This chapter builds upon the theoretical foundations provided in Chapter 4 and
presents the Java OWL Persistence API (JOPA) – a Java persistence library for
accessing Semantic data. Analogously to the world of relational databases, data
access is split into the object-ontological mapping part represented by JOPA and the
layer responsible for communication with the underlying repository – the OntoDriver.
Typically, applications would directly use the higher-level API of JOPA and leave the
OntoDriver as an implementation detail of storage access. Table 5.1 illustrates how
the OntoDriver and JOPA correspond to their standard counterparts in the world
of relational database access in Java. The OntoDriver and JOPA are introduced in
Sections 5.1 and 5.2 respectively.

In addition, this chapter deals with another interface of a Semantic Web-based
information system – the Web services. The Java Binding for JSON-LD (JB4JSON-
LD), presented in Section 5.3, is, as its name suggests, a library for translating Java
objects into JSON-LD and vice versa. Such a library allows exploiting some of the
Semantic Web capabilities in a regular Web service interface (for example, a REST
API).

Figure 5.1 illustrates the structure of a domain-specific Semantic Web-based
information system utilizing the software stack proposed in this thesis. The libraries
described in this chapter are emphasized with bold borders. Note that the stack is
built in Java – one of the most popular programming languages and a prominent
language in the Semantic Web community as well.

75

5. Practical Solutions of Thesis Goals
Level Relational World Semantic Web World
Storage access JDBC OntoDriver
Mapping JPA JOPA

Table 5.1: Correspondence of the OntoDriver and JOPA to their relational database-
access counterparts in Java.

5.1 OntoDriver

The OntoDriver is a data access layer that mediates access to the underlying Semantic
data storage. In its nature, it is similar to a JDBC [43] driver (for Java) or an
ODBC [38] driver (in general) for relational databases. The main motivation for
separating storage access from the object-ontological mapping is to enable the
development of drivers for various storage implementations, ranging from simple
RDF files to SPARQL protocol [33] endpoints and vendor-specific APIs. The last
point is actually the most important – different triple store vendors provide different
APIs which are optimized for accessing the respective implementations. Therefore,
it is logical to attempt to exploit these optimized APIs. This is, again, analogous
to various JDBC driver implementations accessing different relational databases.
Another important advantage of using vendor-specific APIs is that the most popular
ones – Jena [40], OWL API [41], and RDF4J [35] – allow distinguishing asserted
and inferred statements. While this may seem superfluous for read access, it is vital
for data modifications, because, as has been discussed, inferred knowledge cannot
be directly removed and attempts to do so should have no effect.

5.1.1 Structure of OntoDriver

The OntoDriver layer is described by a unified API that abstracts away the specifics
of access to different storages. The API operates with the concept of an Axiom
which represents a statement – either an RDF triple or an OWL axiom. A client
(usually JOPA) instantiates an implementation of the DataSource implementation,
which provides it with Connection instances – the main means of communication
between the client and the driver. Connection realizes the operations defined in
Section 4.3.1. In addition, it allows to create and execute SPARQL and SPARQL
Update statements and contains transaction management methods.

In the current OntoDriver implementations, there is an adapter underneath the
Connection [110]. This adapter ensures correct mapping of the Axiom-based API to
the API of the underlying storage and implements the data access methods declared
in Connection. The described structure is visualized in Figure 5.2.

76

....................................... 5.1. OntoDriver

Figure 5.1: Simplified structure of a DSSWIS with emphasis on software libraries
described in this chapter. Solid lines represent invocation or direct dependence. Dashed
lines represent various relationships indicated by the labels on the lines.

5.1.2 Implementations

There currently exist OntoDriver implementations for all three major Java Semantic
data access libraries – Jena, OWL API, and RDF4J. Together, they cover a wide
variety of use cases – files containing RDF and OWL data can be accessed using
the Jena or OWL API driver; local repositories supported by Jena and RDF4J
can be used as well as remote RDF4J-compatible servers (including GraphDB).
This range also covers various levels of data expressiveness – from simple RDFS
up to OWL 2 DL – depending on the reasoner used by the underlying platform
(OWL API-compatible reasoners like Pellet [111] support OWL 2 DL inference).

77

5. Practical Solutions of Thesis Goals

Figure 5.2: Simplified visualization of the OntoDriver structure. Components with a
bold border are a part of the driver.

An important feature of the existing OntoDriver implementations is their support
for caching transactional changes. When a driver-level transaction is started, a local
cache of changes is created. Transactional data modifications are stored in this cache
and used to augment results of read operations performed during the transaction.
Such a strategy has two main benefits:..1. It allows isolating client transactions,..2. Inference can be applied to the transactional changes as well (currently supported

only in the OWL API driver).

On commit, this transactional cache is written into the repository.

Source code of the OntoDriver API and all the OntoDriver implementations are
publicly available as part of the JOPA repository on GitHub.1

5.2 Java OWL Persistence API

The Java OWL Persistence API (JOPA) is a persistence library for efficient access to
Semantic data from object-oriented Java applications. Its main goal is to streamline

1https://github.com/kbss-cvut/jopa, accessed 2020-08-11.

78

https://github.com/kbss-cvut/jopa

................................ 5.2. Java OWL Persistence API

the development of Semantic Web-based applications by allowing the developers
to work with domain objects and taking care of the object-ontological mapping.
This allows to reduce the extent of knowledge of Semantic Web technologies and
principles developers need to possess and the amount of boilerplate code usually
required by lower-level APIs like the OWL API.

The API of JOPA is designed to be as similar to the Java Persistence API
(JPA) [44] as possible, so that developers used to working with relational databases
can more easily transition to Semantic Web-based development. This means, for
example, that ontological concepts are mapped to entity classes, the mapping is
based on annotations, and objects processed during one transaction are gathered in a
persistence context which is accessed via an instance of the EntityManager. However,
in contrast to Empire [52], JOPA is not an implementation of JPA, because there
are differences in both underlying paradigms which have to be taken into account,
for instance, named graphs, inferred knowledge, or unmapped properties. Listing 5.1
provides an example entity class declaration, which will be referenced throughout this
section when explaining some of the features of JOPA. It follows the running example
from the previous chapter and adds new attributes to showcase the functionalities
of the library and mapping configuration.

Listing 5.1: Example of an entity class declaration in JOPA. Mapping is specified via
annotations. Important notions are explained in the text.

1 @Namespaces({
2 @Namespace(prefix="ex", namespace="http://example.org/"),
3 @Namespace(prefix="rdfs", namespace="http://www.w3.org/2000/01/rdf−schema#")
4 })
5 @OWLClass(iri="ex:Report")
6 public class Report {
7
8 @Id
9 private URI id;

10
11 @ParticipationConstraints(nonEmpty=true)
12 @OWLDataProperty(iri="rdfs:label")
13 private String headline;
14
15 @ParticipationConstraints(nonEmpty=true)
16 @OWLObjectProperty(iri="ex:author")
17 private User author;
18
19 @OWLObjectProperty(iri="ex:lastEditor")
20 private User lastEditor;
21
22 @Types
23 private Set<String> types;
24
25 @Properties
26 private Map<String, Set<Object>> properties;
27
28 // getters, setters
29 }

79

5. Practical Solutions of Thesis Goals
5.2.1 History

My supervisor, Dr. Petr Křemen, developed the first version of JOPA in the late 2000s
as a more formally-grounded alternative to persistence libraries like AliBaba [50]
or Empire [52]. The formalism was based on OWL integrity constraints [39], but
the mapping tried to bridge the gap between DLs and Java directly, without any
intermediate steps. The original implementation supported only OWL API and did
not support transactions.

I first encountered JOPA when I was working on my bachelor thesis. Since then,
I gradually took over its development and extended the original formalism-based
implementation with features improving its applicability. These extensions include:

. Support for transactions,. Caching and performance improvements in general,. Support for inheritance and other new mapping features,. Design and development of the OntoDriver API and its implementations, which
allowed to support access to production-ready triple stores,. Publishing the source code on GitHub,2. Deploying the build artifacts to Maven Central3 for easier access.

Up until now, JOPA has been used in at least seven real-world information systems
(some of them will be discussed in Chapter 6). The statistics from Maven Central
show almost 10 000 downloads of the main JOPA artifact between December 2018
and December 2019.

5.2.2 Features

The main features of JOPA can be split into OOM-related and technical. While
the OOM-related features had been a part of JOPA from the start, they have been
extended in my work as well. Moreover, their implementation is in alignment with
the theoretical apparatus developed throughout the previous chapter (as will be
demonstrated in Chapter 6).

2https://github.com/kbss-cvut/jopa, accessed 2020-08-11.
3https://search.maven.org/search?q=cz.cvut.kbss.jopa, accessed 2020-08-11.

80

https://github.com/kbss-cvut/jopa
https://search.maven.org/search?q=cz.cvut.kbss.jopa

................................ 5.2. Java OWL Persistence API

Object-ontological Mapping Features

Explicit treatment of inference allows the developer to mark attributes that
may contain inferred values (or even specify that they can contain only inferred
values). Since inferred statements cannot be directly removed, this enables
JOPA to ensure that such attempts are not even made. Currently, marking an
attribute as inferred makes it effectively read-only, prohibiting any modifications
to its content. This strategy is unnecessarily strict but is safe w.r.t. the inference
results removal problem. In the future, it is planned to allow at least additive
changes to inferred attributes, i.e., allow adding values to plural attributes
containing inferred values.

Participation constraints fall into the category of run-time integrity constraints
(see Section 4.2.2) and thus can be verified at execution time using predefined
programming procedures. JOPA contains a validator that checks on load and
on save (persist or update) that the number of attribute values corresponds to
the declared constraint. The constraint specification can be seen on lines 11
and 15 in Listing 5.1.

Types attributes are attributes containing data about the ontological classes to
which an individual belongs. In many ontologies, an individual is an instance
of multiple classes, because classification is one of the most natural ways of
categorizing objects [112]. An attribute annotated with @Types (as on lines
22 and 23 in Listing 5.1) contains the set of types to which, besides the type
mapped by the object’s entity class, the corresponding individual belongs.

Unmapped properties represent properties and values which are not covered
by the application object model. While many other OOM solutions expect
the mapping to cover the full extent of the ontology schema, it is conceivable
that it may not be the case. Consider a terminology editor based on Semantic
Web technologies (similar to VocBench [113]). Initially, it is rather difficult
to determine the set of properties that users need to fill in. Therefore, it can
be beneficial to start with a more generic tool able to add new properties
when necessary, and over time adjust the static object model of the application
according to the most relevant data. Unmapped properties in JOPA allow this
type of access – they are represented by a generic map containing property-set
of values pairs allowing to access data which are possibly beyond the current
model based on the object-ontological mapping. The map can contain both
literal values and identifiers of individuals. Listing 5.1 demonstrates this support
on lines 25 and 26.

81

5. Practical Solutions of Thesis Goals
Technical Features

Transactional processing allows applications to group related operations on en-
tities into indivisible, independent aggregates [99]. JOPA handles transactional
changes on objects similarly to EclipseLink4 (the JPA reference implementation)
by providing the client with clones of instances read from the storage. Upon
commit, these clones are compared to the unchanged original and only the
necessary updates are made. In case of a rollback, the clones are simply thrown
away.

Caching is an important aspect allowing to improve the performance of a persistence
library. The first-level cache is represented by the persistence context, it ensures
that asking twice for an object with the same identifier returns the same instance
and is required for correct transactional semantics. JOPA, similarly to JPA, also
supports the second-level cache which spans multiple persistence contexts and
stores objects for faster lookup, because this cache is consulted before retrieving
data from the storage.

Query result mapping represents the ability to map the results of SPARQL
queries to entities. For example, when a developer uses a SPARQL query to
select all reports matching some criteria, JOPA is able to automatically return
instances of entity class Report, absolving the developer from having to map
the results to the Report class manually.

Separate storage access layer has been already discussed in Section 5.1, the
main benefit being the ability to easily implement access to new repositories.

Object model generator OWL2Java is a tool capable of generating a Java object
model based on OWL integrity constraints. It allows to quickly set up the
object-ontological mapping with minimum manual effort. Its main current
disadvantage is that it completely overwrites the object model on rerun, removing
any potential manual adjustments made by the developer. A less invasive feature
of OWL2Java is the ability to generate a vocabulary file – a file containing
constants for classes and properties discovered in the ontology. These can be
used to manually configure the OOM, reducing the risk of typos.

5.2.3 Structure

Figure 5.3 displays a UML component diagram illustrating the high-level architecture
of JOPA together with its relationship to OntoDriver. The Persistence Unit com-
ponent represents infrastructure for accessing one repository, with the second-level
cache available to all persistence contexts. It is also responsible for initializing

4https://www.eclipse.org/eclipselink/, accessed 2020-08-11.

82

https://www.eclipse.org/eclipselink/

................................ 5.2. Java OWL Persistence API

Figure 5.3: UML component diagram of JOPA. UnitOfWork represents an internal
component responsible for managing the persistence context during a transaction.

the connection to the underlying repository via the DataSource interface. When
a persistence unit starts, it also builds a metamodel of the object model. This
metamodel contains the necessary configuration of the object-ontological mapping
(depicted by the Metamodel component). The application can request an instance of
EntityManager for opening a new persistence context via the EntityManagerFactory
interface and manage the second-level cache via a dedicated API.

The Persistence Context Management component then, as the name suggests,
manages the persistence context. It is intended to be accessed by a single thread
(typically) during one transaction. In contrast, a persistence unit exists since its
initialization till its shutdown (usually coinciding with application startup and
shutdown), spans a number of transactions and can be accessed from multiple
threads. A UnitOfWork represents the actions and objects participating in a single
transaction [114] and JOPA uses this concept to encapsulate the persistence context
during one transaction. When a persistence context is initialized, JOPA opens a
Connection to the underlying OntoDriver, so that data can be read and eventually
saved to the repository. A persistence context is outwardly represented by the
EntityManager interface. In addition, during a transaction, the application can also
use the query API and the transaction management API.

83

5. Practical Solutions of Thesis Goals
5.3 Java Binding for JSON-LD

This thesis hypothesizes is that the choice of using Semantic Web technologies for the
development of a domain-specific information system mainly influences the interfaces
of the system (of course, this applies to the actual design and programming phase
and does not concern, for example, conceptual modeling of the domain). So far, this
chapter has dealt with the interface between an application and the underlying data
source. However, arguably even more important is the ability to provide Semantic
Web-based services for the clients. This can shift the information system towards
supporting machine-readable Linked Data. There exist solutions capable of providing
Linked Data-compatible access to the data stored in a triple store – one of the most
popular being Pubby [115]. But such tools provide direct read-only access to the
repository, without any high-level operations or control over the structure of the
data.

The Java Binding for JSON-LD (JB4JSON-LD) chooses a different path. It is
a small software library allowing Web services to produce and consume JSON-LD.
Typical Web services – software components providing services over the Web –
nowadays rely on JSON or XML as their primary data exchange format. However,
neither of these allows to easily convey relationships of the data and their schema to
other structures outside of the processed document. JSON-LD,5 on the other hand,
allows to serialize Linked Data in JSON – a popular and easy-to-use format. The
goal of JB4JSON-LD is to allow REST Web services to use JSON-LD as another
data exchange format so that Linked Data can be not only read directly from the
triple store but also produced and consumed by Web services with (domain-specific)
business logic.

The approaches of Pubby and JB4JSON-LD are not mutually exclusive. On the
contrary, they work best together. One can use a Web service to retrieve domain-
specific data and, by dereferencing IRIs from the provided JSON-LD document, get
to a Pubby endpoint containing further information, perhaps outside of the scope of
the domain model of the Web service which provided the data in the first place.

5.3.1 Principles

JB4JSON-LD uses JOPA metamodel annotations to determine the types and proper-
ties to which the corresponding Java classes and their attributes should be mapped.
Consider the example entity class in Listing 5.1 and an object of this class roughly

5JavaScript Object Notation for Linked Data

84

................................ 5.3. Java Binding for JSON-LD

corresponding to Figure 4.5. Such an object would be serialized into JSON-LD shown
in Listing 5.2. Notice that the author and last editor reference the same instance –
since last editor is the second occurrence of this instance, it is only referenced by
its IRI. This effortlessly breaks circular dependencies, a common problem when
serializing object graphs to JSON.

Listing 5.2: Sample output of JB4JSON-LD serializing an entity into JSON-LD.
{

"@id": "http://example.org/report−buo01",
"@type": ["http://example.org/Report"],
"http://www.w3.org/2000/01/rdf−schema#label": "Report BUO01",
"http://example.org/author": {

"@id": "http://example.org/Tom",
"@type": ["http://example.org/User"],
"http://example.org/firstName": "Tom",
"http://example.org/lastName": "Lasky"

},
"http://example.org/lastEditor": {

"@id": "http://example.org/Tom"
}

}

JSON-LD is a flexible format with multiple ways of structuring the data. One
possibility allowing to improve backward compatibility with JSON is to gather the
prefixes into an attribute called @context. That way, the rest of the document
resembles regular JSON serialization even more and applications can thus support
both formats easily. A context-based version of the JSON-LD from Listing 5.2 is
shown in Listing 5.3.
Listing 5.3: JSON-LD with a context definition. It is structurally more similar to
regular JSON serialization in Java.

{
"@context": {
"id": "@id",
"headline": "http://www.w3.org/2000/01/rdf−schema#label",
"types": "@type",
"author": "http://example.org/author",
"lastEditor": "http://example.org/lastEditor",
"firstName": "http://example.org/firstName",
"lastName": "http://example.org/lastName"

},
"id": "http://example.org/report−buo01",
"types": "http://example.org/Report",
"author": {
"id": "http://example.org/Tom",
"types": "http://example.org/User",
"firstName": "Tom",
"lastName": "Lasky"

},
"lastEditor": {
"id": "http://example.org/Tom"

},
"headline": "Report BUO01"

}

JB4JSON-LD consists of a core module which processes the object graph and

85

5. Practical Solutions of Thesis Goals
performs the mapping based on JOPA annotations, and integration modules for
existing JSON processing libraries. These integration modules are responsible for
the actual handling of the JSON-LD input and output. Currently, there is an
integration module available for the Jackson JSON library.6 The source code of
both JB4JSON-LD and JB4JSON-LD-Jackson is publicly available on GitHub7,8

and their build artifacts are deployed to Maven Central,9 from which the Jackson
integration of JB4JSON-LD has been downloaded over 3500 times between December
2018 and December 2019.

6https://github.com/FasterXML/jackson, accessed 2020-08-11.
7https://github.com/kbss-cvut/jb4jsonld, accessed 2020-08-11.
8https://github.com/kbss-cvut/jb4jsonld-jackson, accessed 2020-08-11.
9https://search.maven.org/search?q=g:cz.cvut.kbss.jsonld, accessed 2020-08-11.

86

https://github.com/FasterXML/jackson
https://github.com/kbss-cvut/jb4jsonld
https://github.com/kbss-cvut/jb4jsonld-jackson
https://search.maven.org/search?q=g:cz.cvut.kbss.jsonld

87

5. Practical Solutions of Thesis Goals

Part III

Results

88

Chapter 6

Evaluation

This chapter provides an evaluation of the ideas and solutions presented in the
previous part. It shows how the presented approach allows to efficiently build
(domain-specific) Semantic Web-based information systems and thus fulfills the
thesis goals.

It starts in Section 6.1 by validating that the object-ontological mapping imple-
mented by JOPA corresponds to the formalism developed in Section 4.2. Most
importantly, it shows that the object model generator provided by JOPA generates
models consistent with the formal transformation rules and that the instance data
are equivalent under both models.

Next, several domain-specific Semantic Web-based information systems built using
the toolset described in Chapter 5 are introduced in Section 6.2. These systems
cover several different domains and show that the approach of this work is viable
for various scenarios. Section 6.3 follows this presentation with a discussion of the
architecture of the exemplified information systems and its general applicability.
Lastly, the results of a short survey among Semantic Web-based information system
developers are discussed in Section 6.4.

89

6. Evaluation ..

Figure 6.1: Illustration of the formal and technical object-ontological mapping. The
formal mapping is depicted using solid edges, whereas the technical solution is represented
by the dashed edge.

6.1 Evaluation of the Object-ontological Mapping
Formalism

The evaluation of the object-ontological mapping formalism needs to show that the
ontological and application models are equivalent so that the operations performed
over data based on these models have corresponding results on both levels.

The mapping formalism is built along the axis description logics – F-logic – OO
programming languages. As already discussed, F-logic was chosen because of being a
logic-based language (similarly to DLs) intended to represent the structural aspects
of OO programming languages. Thus, the correctness of the translation between DLs
and F-logic presented in this work can be proven using the apparatus of the FOL
(already done in Section 4.2). The mapping between F-logic and OOPLs is then
based on F-logic’s ability to express basic OOP notions such as classes, attributes,
or inheritance, with a frame-based syntax and semantics [29]. Of course, in real
scenarios, such a two-step translation would be impractical and persistence libraries
like JOPA translate data directly between DLs and object models (as is illustrated
by Figure 6.1). It is, therefore, necessary to show that this direct mapping is faithful
w.r.t. its formal counterpart.

Since the translation between F-logic and OOPLs is not fully formally grounded
(i.e., there is no formalism connecting, for instance, F-logic and Java), it is not
possible to provide a rigorous proof of equivalence of the DLs – F-logic – OOPLs and

90

................... 6.1. Evaluation of the Object-ontological Mapping Formalism

DLs – OOPLs translations. Therefore, this section resorts to a different strategy. It
provides example ontologies and sets of integrity constraints covering all the basic DL
concept descriptions. These examples illustrate the process of the formalism-based
mapping between the DL ontology and its ICs and F-logic, and finally, a Java object
model built in JOPA. Next, the same model is generated directly by the OWL2Java
tool, which is a part of JOPA. Both of these models are then compared with the
expectation that they would be equivalent.

6.1.1 Mapping by Example

Two sample ontologies with corresponding sets of integrity constraints were created
to showcase the mapping. OS1 continues in the topic of the running example of
Section 4.2, whereas OS2 slightly deviates and presents a hierarchy of safety and
security events, threats and their targets. The mapping demonstration is available
online.1 The artifact contains, besides OS1, OS2, and their integrity constraints,
also IC validation queries, sample valid and invalid (w.r.t. integrity constraints)
datasets, and a small test application. The F-logic data are written in a format
compatible with Flora-2,2 an open-source F-logic implementation [116]. Mapping of
OS1 is presented here, whereas mapping of OS2 is provided in Appendix C.2.

The excerpt below shows that, in addition to the previously introduced schema,
the occurrence now also has a severity assessment, whose values come from an
enumeration, and the user has some basic data attributes. The integrity constraints
ensure cardinality and range of the properties on the mapped classes. Namespaces
are omitted for the sake of readability.

OS1 ={Asset v=1 author.>, Asset v61 lastEditor.>, Resource v Asset,
Report v Asset, author v editor, lastEditor v editor,
Report v=1 documents.Occurrence,
Occurrence v=1hasSeverity.Severity,
Severity ≡ {observation, incident, accident},
User v=1 firstName.string, User v=1 lastName.string,
User v=1username.string}

1Available at https://kbss.felk.cvut.cz/gitblit/summary/ml-oom-validation.git, ac-
cessed 2020-08-11.

2http://flora.sourceforge.net/, accessed 2020-08-11.

91

https://kbss.felk.cvut.cz/gitblit/summary/ml-oom-validation.git
http://flora.sourceforge.net/

6. Evaluation ..
ICS1 ={Report v=1 author.User,Report v ∀ author.User,

Report v61 lastEditor.User,Report v ∀ lastEditor.User,
Report v=1 documents.Occurrence,Report v ∀ documents.Occurrence,
Report v ∀hasAttachment.Resource,
Occurrence v=1hasSeverity.Severity,
Occurrence v ∀hasSeverity.Severity,
User v=1 firstName.string, User v ∀ firstName.string,
User v=1 lastName.string, User v ∀ lastName.string,
User v=1username.string, User v ∀username.string}

Since the ontological schema itself is not important for the mapping between F-logic
and the object model, the example here continues only with the set of corresponding
F-logic integrity constraints ICFS1 (the full mapping is shown in Appendix C.1):3

ICFS1 ={ReportC [authorR{1,1} => UserC ;
lastEditorR{0,1} => UserC ;
documentsR{1,1} => OccurrenceC ;
hasAttachmentR => ResourceC],

OccurrenceC [hasSeverityR{1,1} => SeverityC],
UserC [firstNameR{1,1} => _string;

lastNameR{1,1} => _string;
usernameR{1,1} => _string]}

Mapping to a Java object model based on these integrity constraints is relatively
straightforward. Figure 6.2 displays a UML class diagram of the object model, while
listings 6.1 and 6.2 show the class Report as an example mapped manually and
automatically resp.

3Remember that _string is a built-in F-logic string type (see Section 2.9).

92

................... 6.1. Evaluation of the Object-ontological Mapping Formalism

Listing 6.1: Class Report mapped
manually based on the evaluated
OOM formalism.

@Namespace(prefix = "ev",
namespace =
"http://example.org/evaluation−01/")

@OWLClass(iri = "ev:Report")
public class Report implements Serializable {

@Id
private String id;

@ParticipationConstraints(nonEmpty = true)
@OWLObjectProperty(iri = "ev:documents")
private Occurrence documents;

@OWLObjectProperty(iri =
"ev:hasAttachment")

private Set<Resource> hasAttachment;

@ParticipationConstraints(nonEmpty = true)
@OWLObjectProperty(iri = "ev:author")
private User author;

@ParticipationConstraints(nonEmpty = true)
@OWLObjectProperty(iri = "ev:lastEditor")
private User lastEditor;

// Getters and setters follow
}

Listing 6.2: Class Report mapped auto-
matically by OWL2Java. Empty lines be-
tween attributes were added manually.

@OWLClass(iri = Vocabulary.s_c_Report)
public class Report implements Serializable {

@Id(generated = true)
protected String id;

@OWLAnnotationProperty(iri = RDFS.LABEL)
protected String name;

@OWLAnnotationProperty(iri =
DC.Elements.DESCRIPTION)

protected String description;

@Types
protected Set<String> types;

@Properties
protected Map<String, Set<String>> properties;

@OWLObjectProperty(iri =
Vocabulary.s_p_author)

@ParticipationConstraints({
@ParticipationConstraint(owlObjectIRI =
Vocabulary.s_c_User, min = 1, max = 1)

})
protected User author;

@OWLObjectProperty(iri =
Vocabulary.s_p_documents)

@ParticipationConstraints({
@ParticipationConstraint(owlObjectIRI =
Vocabulary.s_c_Occurrence, min = 1, max
= 1)

})
protected Occurrence documents;

@OWLObjectProperty(iri =
Vocabulary.s_p_hasAttachment)

protected Set<Resource> hasAttachment;

@OWLObjectProperty(iri =
Vocabulary.s_p_lastEditor)

@ParticipationConstraints({
@ParticipationConstraint(owlObjectIRI =
Vocabulary.s_c_User, max = 1)

})
protected User lastEditor;

// Getters and setters follow
}

Although it may not appear so, both versions of the class Report are effectively
equivalent and most differences are purely technical.

.Whether identifier value is generated or not upon instance persist is up to the

93

6. Evaluation ..

Figure 6.2: UML class diagram of the object model from the first mapping example,
based on the ontology OS1. Resources attached to a report could be, for example, files,
video and audio recordings or photographic evidence (or, more precisely, references to
such assets).

entity class configuration. Even if the identifier is configured for auto-generation,
it can be set by the application.. The name and description attributes are added to all entity classes generated by
OWL2Java regardless of the underlying ontology to provide basic information
about each instance. Admittedly, it should be possible to disable this feature.. Similarly, @Types and @Properties attributes are also generated automatically.
As the reader may remember from Section 5.2, these attributes allow to capture
parts of the ontology not directly described by the object model.. @ParticipationConstraints(nonEmpty = true) is equivalent to @ParticipationCon-
straint(min = 1).. Configuration of participation constraints with a maximum of 1 is superfluous
for singular attributes.. Similarly, @ParticipationConstraint annotations with target type (owlObjectIRI)
are not necessary if it can be inferred from the target type of the attribute itself.

As can be seen, OWL2Java in some cases generates unnecessary configuration which
may clutter the code. On the other hand, the mapping corresponds to the formalism
developed in this thesis and manual fine-tuning is generally more precise and efficient
(in terms of code quality and verbosity) than an automatic generation.

The example ontology OS2 showcases additional constructs like a hierarchy with
multiple superclasses or disjunction in a property range. Remember, however, that

94

................... 6.1. Evaluation of the Object-ontological Mapping Formalism

DL F-logic Java
Report(r) rE :ReportC r instanceof Report
documents(r, o) rE [documentsR → oE] r.getDocuments() == o

Table 6.1: Illustration of the ABox axiom mapping between description logics, F-logic
and Java.

only compile-time and run-time constraints are reflected in the object model. And
run-time constraints only in the form of auxiliary Java annotation-based configuration
for verification procedures in the OOM library itself. This is the case of the minimum
participation constraints in class Report, for example.

Mapping Data

The mapping of the ABox axioms is, as has been already stated, relatively straight-
forward. DL class assertions map to F-logic is-a assertions between the instance and
its class which in turn map to Java instances of the respective classes. Similarly,
property assertions translate to data expressions in F-logic and further to instance
attribute values in Java. Table 6.1 illustrates this on a couple of examples.

The example ontologies are accompanied by sample databases that demonstrate
ABox mapping. In the case of OS1, AS11 represents a database corresponding to the
ontology and application integrity constraints. On the other hand, AS12 is invalid
w.r.t. the integrity constraints ICS1. Validation queries which fail on AS12 (there
exist results for at least one query) are provided in SPARQL (for the DL version,
can be verified by uploading the ontology and the dataset into a repository with
reasoning support, e.g., Stardog4 or GraphDB) and in Flora-2 syntax (for the F-logic
version, can be verified directly in Flora-2). In addition, a simple Java application
shows that the instance data under both manual and generated models are equivalent
and that JOPA validates runtime integrity constraints, throwing an IC violation
exception in case of AS12. Analogous examples are provided for OS2. However, since
it cannot be currently fully mapped in JOPA (see below), no sample application
exists for it.

6.1.2 Missing Features

There are several features of the object-ontological mapping formalism missing in its
implementation in JOPA. Namely, support for compile-time integrity constraints

4https://www.stardog.com/, accessed 2020-08-11.

95

https://www.stardog.com/

6. Evaluation ..
AC :: (BC and CC) and AC ::Nom(aE) and the run-time constraint AC ::HasSelf(RR).
However, Table 4.8 has already shown how the compile-time constraints would be
mapped to Java and the validation of the run-time local reflexivity constraint would
be straightforward to implement. All of these features are planned in the future
development of JOPA.

6.2 Information Systems Built Using the Presented
Tools

Over the last few years, the Knowledge-based Software Systems group,5 of which
I am a member, has developed several Semantic Web-based information systems
in multiple domains. These systems were mostly built in cooperation with domain
experts and relied on the tools and procedures advocated in this thesis. Let me
introduce three of these systems in greater detail and at least briefly mention the other
ones. This discussion should convince the reader that the approach introduced in the
previous chapters is an effective way of creating Semantic Web-based information
systems.

6.2.1 INBAS

INBAS 6 (INdicator BAsed Safety) is an information system for safety occurrence
reporting and investigation in high-risk industries. Its goal is to help improve safety
culture in organizations by allowing its users to manage, investigate, and analyze
safety occurrences and apply corrective measures based on this analysis. The system
was built in the aviation domain, but its applicability is not limited to it. On the
contrary, what ties INBAS to aviation is a part of the underlying modular ontology
– the Aviation Safety Ontology (ASO) [117]. However, this module can be easily
switched for a module from another high-risk industry, such as power engineering or
railroad transportation. The ASO consists of the following main modules:

. Documentation ontology. Safety ontology. Aviation ontology
5https://kbss.felk.cvut.cz/, accessed 2020-08-11.
6https://www.inbas.cz, accessed 2020-08-11.

96

https://kbss.felk.cvut.cz/
https://www.inbas.cz

..................... 6.2. Information Systems Built Using the Presented Tools

Moreover, the aviation ontology can be complemented by submodules suitable for
different types of aviation organizations, for example, airports, airline operators,
maintenance providers, or air navigation services centers. All of the core ontologies
of the ASO are based on the top-level Unified Foundational Ontology (UFO) [112],
which improves their reusability and anchors them in a more general modeling
framework.

System Principles

Besides the underlying ontology, the Reporting tool 7 is the most important (or
perhaps most visible) part of INBAS. The Reporting tool is a Semantic Web-based
Web application through which users manage safety occurrence reports. Upon
signing in, the user can create new occurrence reports, view or edit existing reports,
and view statistical data.

In each report, the user can fill in basic information about the occurrence like its
date and time, location, and, most importantly, classification and severity assessment.
Then the user can model the chain of factors – a graph of events that were a part of
the occurrence and their relationships. This factor chain is the primary investigation
tool – an analysis of relevant factor chains in the statistics can reveal patterns of
interest that need to be acted upon by the organization. For example, if most
vehicle collisions on an airport are caused by problems with situational awareness
and disorientation, the organization should take steps to improve the clarity and
visibility of the signs and routes at the premises. Figure 6.3 shows the factor chain
designer component of the INBAS Reporting tool. In addition, for each event, a
generated form specific for the given occurrence category can be used to provide
more relevant information.

The statistics view in the Reporting tool provides the user with trends in reported
occurrence severity, most frequent occurrence categories and event types, and a
graph of event factors, i.e., for a selected event type, event types which caused,
contributed to, or mitigated it are summarized.

Relevance to the Thesis

INBAS is an example of a domain-specific Semantic Web-based information system.
It is based on an ontological conceptualization of the domain, it uses ontological

7Source code is available at https://github.com/kbss-cvut/reporting-tool, accessed 2020-
08-11.

97

https://github.com/kbss-cvut/reporting-tool

6. Evaluation ..

Figure 6.3: Factor chain designer in the INBAS Reporting tool. Top node represents
the reported occurrence, its sub-nodes are events which were a part of the occurrence.
The green node is an explanatory factor, whereas the grey nodes are events.

taxonomies of event types and occurrence categories. These taxonomies are based on
existing taxonomies of the ECCAIRS ecosystem,8 but their ontologization allowed
to fix some of the structural and semantic problems they suffer from [118]. The
taxonomies are stored in a triple store, so various combinations can be created just
by changing the queries which load the classification options. The data backing the
system have relatively low expressiveness, and the Reporting tool itself does not
rely on any inference on the storage level. However, the SPARQL queries providing
statistics for the system to perform some basic inference, e.g., using transitivity of
property paths and property and class hierarchies.

The Reporting tool uses a triple store to save all its data and JOPA to access
the repository. The application itself is a regular Web application written in Java,
with user interface written in JavaScript using the React framework.9 JOPA-based
data access objects [114] are integrated with the transactional system of the popular
Spring framework10 used to power the application.

The Web services of the published version of the Reporting tool do not support
JSON-LD as a data exchange format, however, an experiment with integrating
JB4JSON-LD in the existing application showed that it could be done relatively
easily. Such integration would increase the relevance of the system for the Semantic
Web. On the other hand, this shows that using Semantic Web technologies at this
level is noninvasive in terms of the application structure. This has been further
proven in another manner, where we used the Reporting tool as a demonstration
application in an advanced programming course at the university by simply switching

8https://eccairsportal.jrc.ec.europa.eu/, accessed 2020-08-11.
9https://reactjs.org/, accessed 2020-08-11.

10https://spring.io/, accessed 2020-08-11.

98

https://eccairsportal.jrc.ec.europa.eu/
https://reactjs.org/
https://spring.io/

..................... 6.2. Information Systems Built Using the Presented Tools

Figure 6.4: Simplified visualization of the various input formats a CAA SDCPS has to
deal with.

to a relational database and reimplementing the data access objects to use JPA
instead of JOPA. The rest of the application did not have to change.

6.2.2 SISel

SISel is a safety data collecting and processing system (SDCPS) developed for
the Civil Aviation Authority (CAA) of the Czech Republic. The philosophy and
principles of the system are similar to INBAS, but its use case is specific to the
Czech CAA. While INBAS is intended for organizations that, in the case of aviation,
are mandated to report safety-related occurrences to an authority, SISel is used by
this authority to collect and process the received reports.

The CAA has a bit broader requirements on the system. It must be able to
import reports sent to the CAA by the overseen organizations. However, not all
organizations use the standardized ECCAIRS-compatible data format. In addition,
voluntary reports from other organizations or even individuals are received in various
formats. Besides occurrence reports, the CAA has another type of relevant reports.
European CAAs perform safety audits in organizations and even aircraft under their
jurisdiction. In case of an audit of a foreign aircraft, the audit results are shared via
the European Union Aviation Safety Agency with the CAA of the country of origin
of the aircraft’s operator. This represents yet another source of data coming into
SISel, as is visualized in Figure 6.4.

System Principles

The goal of the system is to gather a broader range of data to provide a more
comprehensive picture of the safety situation. For this reason, data from audit and
occurrence reports are transformed into a common model based on the Aviation
safety ontology. An external analytical module (developed by a third-party company)
then provides safety inspectors at the CAA with various statistical views. Two types

99

6. Evaluation ..
of outcomes of the situation analysis are expected. First, based on the nature and
number of occurrences and audit findings related to an organization, CAA safety
inspectors can plan audits concentrating on problematic areas. Second, a board of
experts – the safety action group – at the Czech CAA uses outputs of SISel to review
the safety situation in the country and possibly provide guidelines or regulations to
address areas of interest.

To facilitate the investigation of occurrences, SISel supports a third kind of reports
– safety issues. Safety issues are based on frequently occurring patterns of factor
chains discovered in the data.

SISel is based on INBAS and uses an extended version of the Reporting tool, with
the added support for the new types of reports. It employs an external statistical
module implemented using Pentaho.11 Moreover, it provides connectors to external
services to be able to import the different kinds of reports. Namely, it has a connector
to the ECCAIRS system and a mail server connector, because most of the reports
the Czech CAA receives come via email.

Relevance to the Thesis

All the arguments discussed in Section 6.2.1 apply to SISel as well. In addition,
given the variety of input formats it has to process, ontology-based data integration
using the extended Aviation safety ontology comes into play.

From a technical point of view, SISel is a modular information system whose core
(the extended Reporting tool) is based on Semantic Web technologies, but whose
other components (namely the analytical module) need not be. This shows that
Semantic Web technologies can be noninvasively integrated with other paradigms.
We published our experience with designing and developing the system in a journal
article [119].

11https://www.hitachivantara.com/en-us/products/data-management-analytics/
pentaho-platform.html, accessed 2020-08-11.

100

https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html
https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html

..................... 6.2. Information Systems Built Using the Presented Tools

Figure 6.5: Detailed view of a term in TermIt. Notice that it is classified as both a
SKOS concept and an OWL class. In addition, it is a UFO kind and object-type (IRI’s
are in Czech).

6.2.3 TermIt

TermIt 12 [120] is a vocabulary manager and glossary editor for domain experts.
Consider the following sentences: “The construction of the Large Hadron Collider
took ten years.” and “The construction of the Large Hadron Collider is hidden in a
27 km-long underground tunnel.” The word construction is used in different meanings
conveyed by the context. These two meanings represent two terms which happen
to have an identical label. In complex domains (for example, various regulations),
unambiguous terms whose definition has been agreed upon are an important asset.

TermIt enables domain experts, who need not be fluent in the Semantic Web, to
create and maintain glossaries organized using the Simple Knowledge Organization
System (SKOS) [121] – a scheme allowing to build simple hierarchies of related terms.
The reason for providing domain experts primarily with such a simple organization
tool as SKOS is that, from our experience, their ability to exploit advanced modeling
techniques and languages is usually limited [122]. Our proposal is to split the work
between a domain expert who maintains a glossary of the vocabulary with terms,
their definitions and simple (hierarchical) relationships, and an ontology engineer
who can create a model of the vocabulary, expressing the complex relationship of
the terms. Figure 6.5 shows the term detail view in TermIt. The term in question
comes from the metropolitan plan of Prague, but it is assigned to a single resource –
a file containing the text of the Planning and Building Act of Norway.

12Source code available at https://github.com/kbss-cvut/termit and https://github.com/
kbss-cvut/termit-ui, accessed 2020-08-11.

101

https://github.com/kbss-cvut/termit
https://github.com/kbss-cvut/termit-ui
https://github.com/kbss-cvut/termit-ui

6. Evaluation ..
System Principles

TermIt is a DSSWIS with a strong formal background. It is based on a hierarchy
of ontologies starting with the Unified Foundational Ontology [112], containing an
ontology for data description,13 and finally an application-specific technical ontology.
The data description ontology is based on both UFO and SKOS so that the glossaries
managed by TermIt are SKOS-compatible.

TermIt provides two main modules. In the vocabulary management module, the
user can maintain domain vocabularies. They are able to manage the vocabulary’s
glossary and, to a certain extent, also view and modify the ontological model of the
vocabulary. However, the main focus of TermIt is on glossaries and the model editing
features are limited. Vocabularies can be structured in hierarchies, for example, a
vocabulary of a law would be more general than the vocabulary of a city’s building
regulations. Terms from more specific vocabularies can then depend on terms from
more general vocabularies.

The second module supports resource management. The users can register var-
ious resources in TermIt and use the vocabulary terms to annotate them. These
annotations can be used for a more accurate search. For instance, a dataset can be
annotated by the terms it contains. Later, the user can search for terms they are
interested in. Once such a term is found, all relevant resources are readily available
for it. In fact, related resources can be discovered in a similar manner as well –
the current version supports resources related by being annotated by a common
term, but more complex relationships can be utilized. TermIt is also integrated
with Annotace,14 a semantic text analysis service which is able to discover term
occurrences in text files and even suggest new terms based on their significance in
the text. Figure 6.6 illustrates the structure of the TermIt system.

From a technical standpoint, TermIt stores all the data in a single repository,
but each vocabulary has its own named graph. The repository is configured with
a set of custom rules which allow inference combining selected RDFS (class and
property hierarchies) and OWL (inverse properties) features. It is also planned
that TermIt would allow importing a vocabulary from a remote location so that
the network of TermIt instances managing vocabularies can be decentralized. For
instance, a top-level deployment would contain vocabularies of the basic laws in the
country, whereas specific ministries and their departments would manage lower-level
vocabularies based on the generic ones in their instances of TermIt.

13Available at http://onto.fel.cvut.cz/ontologies/slovnik/agendovy/popis-dat/current/
index-en.html, accessed 2020-08-11.

14https://github.com/kbss-cvut/annotace, accessed 2020-08-11.

102

http://onto.fel.cvut.cz/ontologies/slovnik/agendovy/popis-dat/current/index-en.html
http://onto.fel.cvut.cz/ontologies/slovnik/agendovy/popis-dat/current/index-en.html
https://github.com/kbss-cvut/annotace

..................... 6.2. Information Systems Built Using the Presented Tools

Figure 6.6: Schematic depiction of the structure of TermIt. Oval nodes represent
ontologies (DDO is the data description ontology), nodes with a dotted border are
functional modules, whereas nodes with a solid border are architectural layers of the
application. Components relevant to this thesis are marked with a bold border. The
dashed edge means that the model is based on the TermIt ontology.

Relevance to the Thesis

TermIt is a complex DSSWIS which fully exploits the stack described in this thesis.
It uses a domain-specific ontology derived from higher-level ontologies and non-trivial
inference over a triple store with application data accessed via JOPA. The triple
store is at the same time accessible via a Pubby [115] Linked Data endpoint. The
development deployment of TermIt works with a repository with approximately
2 million statements, over 1 million of which are inference results.

The structure of the application represents a standard layered Web application
with a Java backend and a JavaScript frontend. The Java backend uses Spring with
declarative transactions, security, and automatic validation of data. In addition, the
backend REST API supports both JSON and JSON-LD (thanks to JB4JSON-LD)
as data formats.

103

6. Evaluation ..
6.2.4 The Others

There are several other information systems developed mostly by my colleagues that
use the tools presented in this thesis. They are briefly introduced below.

Dataset Dashboard

The Dataset Dashboard [123] is a tool for getting an overview of a SPARQL endpoint,
or a graph inside a SPARQL endpoint. It can analyze the content of a dataset
and generate descriptors – easy to interpret and visualize RDF summaries of the
dataset. Dataset Dashboard is a Web application based on a formal ontology, it uses
a JOPA-accessed repository to cache the calculated descriptors, and visualizes them
via various widgets.

Study Manager

The Study Manager [124] is an ontology-based manager for clinical trials. Its model
consists of a static part concerning user and organization management and a dynamic
part which deals with actual studies. Each type of study requires the users to enter
different data, so declaratively described forms are used for the individual studies.
These forms are generated dynamically at runtime by an RDF data processing
pipeline using the SPipes framework.15 JOPA is used to store the data – both the
static and dynamic parts of the model (the dynamic part is represented by a generic
tree of questions and answers). The stored data are then analyzed by different tools.
The Study Manager has been used in several international clinical trials, mostly in
the area of cancer treatment research.

SPipes Editor

The SPipes editor [125],16 as the name suggests, is a tool for creating and editing
data processing pipelines using the SPipes framework. Figure 6.7 shows a data
pipeline visualized by the editor.

15https://kbss.felk.cvut.cz/web/kbss/s-pipes, accessed 2020-08-11.
16Source code available at https://github.com/kbss-cvut/s-pipes-editor, accessed 2020-08-

11.

104

https://kbss.felk.cvut.cz/web/kbss/s-pipes
https://github.com/kbss-cvut/s-pipes-editor

..................... 6.2. Information Systems Built Using the Presented Tools

Figure 6.7: Pipeline for dataset descriptor generation (see Section 6.2.4) as visualized
by the SPipes editor. Taken from [125].

The SPipes editor implementation differs from all the tools and information
systems presented so far in that it does not use a triple store. SPipes modules
are described using RDF files containing a declarative description of the module,
so the editor uses these files for storage. JOPA is able to provide access to them
via its Jena [40] OntoDriver. This architecture allows immediate feedback when
editing a pipeline – once a change is made, the pipeline can be run based on the
module declaration files being edited and the user can see the effects of the change
at once. The frontend of the SPipes editor communicates with the REST services
of the backend using JSON-LD, which is a natural representation of the module
descriptions. Besides the specific nature of the storage, the SPipes editor is a
regular Web application with a layered architecture. It is actually written in Scala,
a programming language using the Java virtual machine (JVM) for execution, but
providing a different syntax. This shows that the technological stack introduced
in this thesis is not restricted to Java, but can be used in connection with other
programming languages from the JVM ecosystem, e.g., Kotlin, Groovy, Clojure, or
the aforementioned Scala.

105

6. Evaluation ..
6.3 Architecture of Semantic Web-based Information
Systems

Sections 3.3.2 and 6.2 have shown that useful real-world information systems can
be built using Semantic Web technologies. It is important, however, to be able to
develop such systems efficiently. This section first provides some general guidelines to
the development of Semantic Web-based information systems, followed by trade-offs
and pitfalls one may face when developing them.

6.3.1 General Notes on Developing Semantic Web-based
Information Systems

It has been the goal of certain parts of this thesis (Section 3.1) and several other
works I co-authored (e.g., [119, 47]) to convince the reader that the development of
most Semantic Web-based information systems is more efficient when a domain model
is used and data are accessed using a software library providing object-ontological
mapping. There are cases where a generic, statement-based, approach is more
suitable, but these arguably concern mainly data editors. Even systems dealing
with dynamic data, like terminology editors, can benefit from at least a rudimentary
domain model (as the example of TermIt has shown in Section 6.2.1).

Once a domain model is established, business logic can be built around it. Such
a structure then allows one to leverage the large amount of existing research and
software development experience. Indeed, with a domain model-based business logic
core, the underlying technology becomes an implementation detail [14]. Similar
principles can be found in Alistair Cockburn’s hexagonal architecture (also known
as ports and adapters) [126] where adapters are used to transform data to and from
a format used by the business core of the system. The adapters are connected to
ports – endpoints of the system API. Palermo’s Onion architecture [127] also pushes
infrastructure components, which include data access and Web services, to the outer
layer of the architectural onion.

The layered architectural style [128], known nowadays mainly from the development
of Web applications, supports isolation of business logic as well. In its typical form,
the business logic layer is stacked on top of the persistence layer, which consists of
data access objects [114] separating the technicalities of accessing the underlying
data source from the domain logic. Figure 6.8 illustrates this separation of concerns.

106

................... 6.3. Architecture of Semantic Web-based Information Systems

Figure 6.8: Layered architecture overview. Shows how the business logic (emphasized
by bold label and border) is separated from external interfaces of the system.

All the aforementioned architectural styles have in common their effort to keep
infrastructural details such as database technology or the means of communication
with clients separate from the business logic core of the system. That way, the
infrastructure can change (of course, to a limited extent) without causing ripple
effects in the core implementation.17 If one adheres to these best practices of software
design, introducing Semantic Web technologies into the information system should
be feasible. There are, however, questions and trade-offs that may be encountered.

6.3.2 Separating Business Logic from Infrastructure – Pitfalls

Using Semantic Web technologies can bring subtle design issues a developer should
be aware of. The following paragraphs describe them and discuss their repercussions.

17In fact, one of my students has recently developed a document management system, in which a
triple store or a relational database can be used to store data. The choice of the underlying storage
is made by changing just one configuration parameter, the business logic of the system remains
oblivious of the storage paradigm and the domain model is the same as well.

107

6. Evaluation ..
Is the model stable enough? This problem concerns mainly compiled languages
with static typing like Java. Most OOM libraries in such languages declare the
mapped model and do not consider any other data. However, certain scenarios
require the possibility of reading and writing values of properties which are not a
part of the static model. For instance, in the case of a terminology editor, users
from different domains may need to specify custom properties (responsible personnel,
publication status, etc.) which the original model did not foresee. Or, as discussed
in the feature criterion MC2 in [47], an application may start with only a small
mapped model, leaving most of its parts dynamic until the structure is stable enough
to become a part of the static model. In these cases, the developer needs to choose
an OOM library capable of working with dynamic unmapped parts of the ontology
schema.

Is the model expressive? One of the benefits of formal ontologies is the expressive
languages that can be used to describe the domain model. Such a model then allows
to infer implicit knowledge from the data. This, however, is a double-edged blade,
because it essentially causes the spreading of business logic across multiple places in
the system – the core of the implementation and the underlying repository (which is
typically responsible for reasoning). Such a concern has been already identified by
Heitmann et al. in their survey of Linked Data applications [82]. On the other hand,
by building a model with no expressiveness, one would rob themselves of one of the
key benefits of using formal ontologies. Thus the takeaway can be to be aware of
this trade-off and clearly document what parts of business logic are covered by the
domain model.

Does the system utilize ontology-based data integration? This question is closely
related to the previous one because answering ‘yes’ has similar effects – the business
logic of the system seeps into the data-integration module built usually directly in
the storage using SPARQL queries and ontology matching. Once again, awareness
and caution should be recommended here, as ontology-based data integration is an
important selling point of utilizing Semantic Web technologies in an information
system.

6.4 Semantic Web-based Information Systems
Developer Survey

A survey was conducted among developers of Semantic Web-based information
systems. The main goal of the survey was to gain insight into which technologies

108

.................. 6.4. Semantic Web-based Information Systems Developer Survey

such developers use (mainly w.r.t. data access), what are the reasons for choosing
specific technologies and the experience developers have.

6.4.1 Survey Audience and Questions

The survey consisted of seven questions, which were:..1. Sent to a selected set of developers of information systems related to the ones
discussed in Section 6.2. More specifically, the following were contacted:. Developers of VocBench [113] – a collaborative terminology and ontology

editor,. Developers of the GetThere system [86],. Developers of LinkedPipes ETL [129] – a data processing framework similar
to the SPipes framework,. The developer of the SPipes Editor [125]..2. Made into an online form18 which was then sent to:. Users discussion group of the RDF4J framework,19. Users email list of the Apache Jena framework at users@jena.apache.org,. Email list of OWL API at owlapi-developer@lists.sourceforge.net,. The Linked Data Web20 and Ontologies, OWL-S, SPARQL interest group21

LinkedIn groups

The questions were as follows:..1. What technology do you use to access Semantic data?. This was a choice question with the following options:..a. Domain-independent API like Jena or RDF4J..b. Domain-specific API like Empire or JOPA..c. SPARQL/SPARQL Update or the Linked Data Platform..d. Other
18https://forms.gle/yde5oKR6QY6DYM2B6, accessed 2020-08-11.
19https://groups.google.com/forum/#!forum/rdf4j-users, accessed 2020-08-11.
20https://www.linkedin.com/groups/60636, accessed 2020-08-11.
21https://www.linkedin.com/groups/86246, accessed 2020-08-11.

109

https://forms.gle/yde5oKR6QY6DYM2B6
https://groups.google.com/forum/#!forum/rdf4j-users
https://www.linkedin.com/groups/60636
https://www.linkedin.com/groups/86246

6. Evaluation ..2. What led you to select the data access technology you use? Did you consider
other options?. This was an open-ended question...3. If you are not using higher-level libraries: Do you think you would benefit from
using such an API? If not, what are the reasons?. This was an open-ended question...4. Do you need to edit data across multiple triple stores (resp. multiple named
graphs in a single triple store)? How do you do it?. This was an open-ended question...5. What is the expressiveness of the data your application works with? What are
the inference tasks the application business logic benefits from?. This was an open-ended question...6. What were the biggest development obstacles you had to overcome?. This was an open-ended question...7. Any additional comments, experiences, feedback...

In addition, due to its anonymity, respondents of the online survey form were asked
for at least basic information about the systems they develop.

6.4.2 Survey Evaluation

In total, eleven answers were gathered for the survey, which makes it, unfortunately,
statistically insignificant. Nevertheless, there is some knowledge to be gathered. In
the following, responses to each question are summarized and important points are
highlighted. Afterward, an overall commentary is provided. The complete set of
answers is available in Appendix D...1. Eight out of the eleven respondents use primarily statement-based domain-

independent APIs, the GetThere system relied directly on SPARQL queries.
One respondent of the online survey uses all of the options provided in the
question, depending on the use case. This result may seem as though domain-
specific APIs do not attract users, but answers to the next question will shed
more light on the reasons.

110

.................. 6.4. Semantic Web-based Information Systems Developer Survey..2. Almost none of the respondents of the survey works on a domain-specific
information system. Some come close (for instance, one of the developers works
on RDF-based power system models), but others work on highly generic tools
like a custom triple store, ontology and terminology modeling tools (VocBench),
or a SPARQL engine for continuous reasoning (C-SPARQL [130])...3. Answers to this question are closely related to the previous one – developers
of generic Semantic Web-based tools do not see benefits of switching to a
domain-specific API. Often cited reasons are limited optimization options of
the higher-level APIs or loss of expressiveness. On the other hand, one of the
respondents is currently developing a similar high-level API...4. Most of the developers utilize named graphs in a triple store, some even access
multiple triple stores at the same time...5. Answers to this question varied in scope and technical level. Three respondents
specified reasoning levels in terms of OWL profiles (which was the original
intention of the question), some mentioned the nature of the data their system
deals with, which included power system planning and operation, data streams,
or call data records. Three answers indicate that no reasoning is used by their
system...6. Various obstacles were encountered by the survey respondents, ranging from a
lack of mature tools (apparently a recurring topic in the Semantic Web world),
problematic performance when dealing with highly expressive data, to limited
compliance with standards (triple store SPARQL engines in particular).

General Observations

The survey results do not support the approach of this thesis. However, they do not
contradict it either. This is mainly because most of the systems whose developers
answered the questions are not domain-specific information systems in the sense
discussed throughout the thesis.

Nevertheless, several conclusions may be drawn from the survey results.

. The topic of performance and optimizations is recognized and considered im-
portant by Semantic Web developers,. Similarly, the maturity of Semantic Web-based software tools is often problem-
atic,. A conclusion not directly following from the survey is that there is arguably
a lack of information about Semantic Web-based software libraries and tools.

111

6. Evaluation ..
There exist sources and repositories with such tools, but they are often outdated
(like the list at W3C’s Wiki22) or not well-known (like the list of tools at Awesome
Semantic Web23). This indirectly also represents a lack of a communication
platform where new developers could get information or usage examples.

Overall, the survey certainly does not represent a significant contribution to the
thesis, mainly due to the small number of responses. Perhaps the target audience
should have been chosen differently, or more direct communications mechanisms
should have been used. Nevertheless, some of its conclusions are aligned with this
thesis’ topic (tool maturity, performance, accessibility of information sources).

6.5 Experience with Developing Semantic Web-based
Information Systems

My experience with developing DSSWISs can be characterized as a journey from
basic to more sophisticated programming techniques employed in SW development.
At its beginning stands INBAS. While the Aviation Safety Ontology is relatively
expressive (SHIQ(D)), the Reporting tool is based on plain RDF and does not utilize
any reasoning over the data. In addition, the system’s transaction management is
procedural and the REST API is based on JSON.

SISel extends INBAS in many ways. From this thesis’ point of view, the biggest
addition is the ontology-based integration of data from different sources. SISel
also has an external statistical module built in Pentaho. This statistical module is
fed by data exported from the application triple store into a relational database.
Nevertheless, the object model remains based on RDF, transactions are procedural
and the REST API uses JSON.

TermIt is, from the perspective of incorporating Semantic Web technologies into
information systems, the most advanced system I have worked on to date. Its domain
model is backed by an expressive ontology and the inference results are actually
used in it. Transaction management is declarative, thanks to a Spring integration
library I created for JOPA,24 and the REST API primarily uses JSON-LD. In
addition, several Semantic Web-based external services that will be used by TermIt
are currently under development (an authorization service, a document management
system). This should turn TermIt into a modern service-oriented information system
with the added benefit of using Semantic Web technologies.

22https://www.w3.org/2001/sw/wiki/Tools, accessed 2020-08-11.
23https://github.com/semantalytics/awesome-semantic-web, accessed 2020-08-11.
24https://github.com/ledsoft/jopa-spring-transaction, accessed 2020-08-11.

112

https://www.w3.org/2001/sw/wiki/Tools
https://github.com/semantalytics/awesome-semantic-web
https://github.com/ledsoft/jopa-spring-transaction

............. 6.5. Experience with Developing Semantic Web-based Information Systems

As tighter integration of Semantic Web software libraries into common develop-
ment frameworks and tools like Spring emerges, developing Semantic Web-based
applications becomes easier and more efficient. For example, although based on
purely subjective opinion, the increase of development productivity from INBAS
to TermIt has been, thanks to the improvements in JOPA, JB4JSON-LD, and
their integration with Spring, quite substantial. What is showing as increasingly
problematic is the performance of such applications when dealing with large amounts
of data. Therefore, more effort will need to be devoted to developing optimization
techniques for Semantic Web-based information systems.

113

114

Chapter 7

Conclusions

This thesis explored the problematique of developing Semantic Web-based informa-
tion systems and their domain-specific variant in particular. The main motivation
was that while the Semantic Web has been getting traction as a paradigm for
publishing and consuming data, its utilization in information systems with complex
business logic is still limited. Indeed, a survey of relevant literature and existing
Semantic Web-based information systems has revealed that the main focus is on
Linked Data publishing, consumption, and semantic search. One of the rare use cases
of Semantic Web technologies in domain-specific information systems is ontology-
based data integration. I argued that a steep learning curve, the lack of mature
software libraries, and problematic performance are among the chief reasons for such
a slow adoption. Two areas of possible improvement were identified – application
access to Semantic data and integration of application interfaces via Semantic Web
technologies. Thus, the goals of the thesis were to analyze and describe the design
principles of domain-specific Semantic Web-based information systems and improve
the client and data source-facing boundaries of such systems.

In case of application access to Semantic data, the contribution is threefold – a
feature and performance-based comparison of existing object-triple mapping libraries
is provided. Its purpose is to help developers in deciding which tool would be the
most suitable for their project. As an added benefit, the performance comparison test
applications may act as configuration demonstrations in an area where documentation
is scarce. The second part of this thesis’ contributions w.r.t. data access is a formal
framework describing object-ontological mapping. This framework represents a
logic-based description of the contract between an ontology and an application
object model. Adhering to this formalism allows to precisely specify the shape and
behavior of the object-ontological mapping. Lastly, the Java OWL Persistence API –
a persistence library for Semantic data – is presented as an implementation of this

115

7. Conclusions
formalism. JOPA has been developed for the past decade, originally maintained by
my supervisor, Dr. Petr Křemen. Its popularity has been slowly growing especially
in the last few years and it has transitioned from a purely prototypical project to a
tool usable in real-world Semantic Web-based applications.

The contribution in the area of Semantic Web-based application integration is
more subtle. Since a large body of work has been already done in the area of
describing application interfaces using Semantic Web technologies (e.g., Hydra [78]),
this thesis merely introduces the JB4JSON-LD library, which allows Java applications
to effortlessly consume and produce JSON-LD data. Such an extension could be
used to build Semantic REST APIs.

When it comes to the architecture of an information system based on Semantic
Web technologies, it turns out that if the developer adheres to the best practices
of separating business logic from infrastructural code, which mainly deals with the
system’s outward interfaces, there is not much difference in developing an information
system utilizing the Semantic Web or other well-known paradigms (e.g., relational).
There are trade-offs one needs to be aware of, but their significance is rather minor
and depends on other factors as well.

Turning our gaze into the future, there are several directions worthy of expansion.
First, the missing features in JOPA (see Section 6.1.2) should be addressed. Further
work could be also directed into the simplification of generating Semantic Web-
compatible REST API documentation. Either by extending the capabilities of
Hydra (which has currently a generator only for PHP, descriptions of APIs in other
languages have to be created manually) or by adding support for JSON-LD into
the OpenAPI standard [131]. Finally, more attention will have to be devoted to
the performance of Semantic Web tools and libraries, as it becomes more and more
crucial to real-world Semantic Web-based information systems that have to cope
with an evergrowing amount of data.

116

Bibliography

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific
American, vol. 284, no. 5, pp. 28–37, 2001.

[2] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and Ab-
stract Syntax,” W3C, W3C Recommendation, 2014, http://www.w3.org/TR/
rdf11-concepts/, accessed 2020-08-11.

[3] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language,” W3C, W3C
Recommendation, 2013, http://www.w3.org/TR/sparql11-query/, accessed
2020-08-11.

[4] D. Wood, M. Zaidman, L. Ruth, and M. Hausenblas, Linked Data: Structured
Data on the Web, J. Bleiel, Ed. Shelter Island, NY, USA: Manning Publications
Co., 12 2013. ISBN 9781617290398

[5] A. Rector, J. Rogers, and P. Pole, “The GALEN High Level Ontology,” in
Fourteenth International Congress of the European Federation for Medical
Informatics, MIE-96, Copenhagen, Denmark, 1996.

[6] D. Lee, N. de Keizer, F. Lau, and R. Cornet, “Literature review of SNOMED
CT use,” Journal of the American Medical Informatics Association, vol. 21,
no. e1, pp. e11–e19, 7 2013. DOI 10.1136/amiajnl-2013-001636

[7] A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W. Murdock, A. Lally,
C. Welty, J. M. Prager, B. Coppola, A. Fokoue-Nkoutche, L. Zhang, Y. Pan,
and Z. M. Qiu, “Structured Data and Inference in DeepQA,” IBM Jour-
nal of Research and Development, vol. 56, no. 3, pp. 351–364, 5 2012. DOI
10.1147/JRD.2012.2188737

[8] P. Křemen, “Building Ontology-Based Information Systems,” Ph.D. disserta-
tion, Czech Technical University in Prague, Prague, 2012.

117

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/

Bibliography ..
[9] M. A. Musen, “The Protégé Project: A Look Back and a Look Forward,” AI

Matters, vol. 1, no. 4, pp. 4–12, 6 2015. DOI 10.1145/2757001.2757003

[10] G. Booch, Object-oriented Analysis and Design with Applications (2nd Ed.).
Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc., 1994.
ISBN 0-8053-5340-2

[11] M. Hausenblas, “Linked Data Applications—The Genesis and the Challenges
of Using Linked Data on the Web,” DERI, Tech. Rep., 2009.

[12] M. Martin and S. Auer, “Categorisation of Semantic Web Applications,” in
Proceedings of the 4th International Conference on Advances in Semantic
Processing (SEMAPRO2010) 25 October – 30 October, Florence, Italy, 10
2010.

[13] E. Simperl, M. Acosta, M. Dimitrov, J. Domingue, P. Haase, M. Maleshkova,
A. Mikroyannidis, B. Norton, and M.-E. Vidal, “EUCLID: EdUcational Cur-
riculum for the usage of LInked Data,” in 11th European Semantic Web
Conference (ESWC 2014), 25-29 May 2014, Anissaras/Hersonissou, Crete,
Greece, 2014.

[14] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure
and Design, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2017.
ISBN 0134494164, 9780134494166

[15] P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update,” W3C, W3C
Recommendation, 2013, https://www.w3.org/TR/sparql11-update/, accessed
2020-08-11.

[16] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge
sharing,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5-6, pp. 907–928, 12 1995.
DOI 10.1006/ijhc.1995.1081

[17] N. Guarino, D. Oberle, and S. Staab, What Is an Ontology? Springer-Verlag
Berlin Heidelberg, 2009, ch. 1, pp. 1–17.

[18] D. Brickley and R. V. Guha, “RDF Schema 1.1,” W3C, W3C Recommendation,
2014, https://www.w3.org/TR/rdf-schema/, accessed 2020-08-11.

[19] B. Motik, B. Parsia, and P. F. Patel-Schneider, “OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax,” W3C, W3C
Recommendation, 2012, https://www.w3.org/TR/owl2-syntax/, accessed 2020-
08-11.

[20] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and
M. Zakharyaschev, “Ontology-Based Data Access: A Survey,” in Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18. International Joint Conferences on Artificial Intelligence
Organization, 7 2018. DOI 10.24963/ijcai.2018/777 pp. 5511–5519.

118

https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-syntax/

...Bibliography
[21] M. Schneider, “OWL 2 Web Ontology Language RDF-Based Seman-

tics,” W3C, W3C Recommendation, 2012, https://www.w3.org/TR/
owl2-rdf-based-semantics/, accessed 2020-08-11.

[22] B. Motik, P. F. Patel-Schneider, and B. C. Grau, “OWL 2 Web Ontology
Language Direct Semantics,” W3C, W3C Recommendation, 2012, https://
www.w3.org/TR/owl2-direct-semantics/, accessed 2020-08-11.

[23] I. Horrocks, “DAML+OIL: A Reason-able Web Ontology Language,” in Ad-
vances in Database Technology — EDBT 2002, C. S. Jensen, S. Šaltenis,
K. G. Jeffery, J. Pokorny, E. Bertino, K. Böhn, and M. Jarke, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002. ISBN 978-3-540-45876-0 pp.
2–13.

[24] I. Horrocks, O. Kutz, and U. Sattler, “The Even More Irresistible SROIQ,”
in Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2006). AAAI Press, 2006. ISBN 978-1-57735-271-6 pp. 57–67.

[25] I. Horrocks and U. Sattler, “Ontology Reasoning in the SHOQ(D) Description
Logic,” in Proceedings of the 17th International Joint Conference on Artificial
Intelligence - Volume 1, ser. IJCAI’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001. ISBN 1-55860-812-5, 978-1-558-60812-2 pp.
199–204.

[26] B. Motik and I. Horrocks, “OWL Datatypes: Design and Implementation,” in
The Semantic Web - ISWC 2008, A. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. Finin, and K. Thirunarayan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008. DOI 10.1007/978-3-540-88564-1_20. ISBN
978-3-540-88564-1 pp. 307–322.

[27] J. Tao, E. Sirin, J. Bao, D. L. McGuinness, and D. L. McGuinness,
“Integrity Constraints in OWL,” in Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, 2010. ISBN 9781577354666 pp. 1443–1448. [Online]. Available: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1931/2229

[28] J. Tao, “Integrity Constraints for the Semantic Web: An OWL 2 DL Extension,”
Ph.D. dissertation, Rensselaer Polytechnic Institute. ISBN 978-1-267-67967-3
2012.

[29] M. Kifer, G. Lausen, and J. Wu, “Logical Foundations of Object-oriented and
Frame-based Languages,” Journal of the Association for Computing Machinery,
vol. 42, no. 4, pp. 741–843, 7 1995. DOI 10.1145/210332.210335

[30] M. Kifer, “Rules and Ontologies in F-Logic,” in Reasoning Web: First Interna-
tional Summer School 2005, Msida, Malta, July 25-29, 2005, Revised Lectures,
N. Eisinger and J. Małuszyński, Eds. Springer Berlin Heidelberg, 2005, pp.
22–34. ISBN 978-3-540-31675-6

119

https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-direct-semantics/
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1931/2229
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1931/2229

Bibliography ..
[31] J. Angele, M. Kifer, and G. Lausen, “Ontologies in F-Logic,” in Handbook on

Ontologies, S. Staab and R. Studer, Eds. Springer Berlin Heidelberg, 2009,
pp. 45–70. ISBN 978-3-540-92673-3

[32] M. Lytras and R. García, “Semantic Web Applications: A framework for indus-
try and business exploitation - What is needed for the adoption of the Semantic
Web from the market and industry,” International Journal of Knowledge and
Learning, vol. 4, pp. 93–108, 1 2008. DOI 10.1504/IJKL.2008.019739

[33] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres, “SPARQL 1.1
Protocol,” W3C, W3C Recommendation, 2013, https://www.w3.org/TR/
sparql11-protocol/, accessed 2020-08-11.

[34] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,” online,
W3C, W3C Recommendation, 2013, http://www.w3.org/TR/ldp/, accessed
2020-08-11.

[35] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema,” in Proceedings
of the First International Semantic Web Conference on The Semantic Web,
2002, pp. 54–68.

[36] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R. Velkov,
“OWLIM: A family of scalable semantic repositories,” Semantic Web – Inter-
operability, Usability, Applicability, 2010.

[37] O. Erling, “Virtuoso, a Hybrid RDBMS/Graph Column Store,” IEEE Data
Engineering Bulletin, vol. 35, no. 1, pp. 3–8, 2012.

[38] Microsoft, “Microsoft Open Database Connectivity (ODBC),” online, Microsoft
Corporation, Tech. Rep., 2016, https://cdn.simba.com/wp-content/uploads/
2016/03/ODBC_specification.pdf, accessed 2020-08-11.

[39] P. Křemen and Z. Kouba, “Ontology-Driven Information System Design,”
IEEE Transactions on Systems, Man, and Cybernetics: Part C, vol. 42, no. 3,
pp. 334–344, 5 2012.

[40] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkin-
son, “Jena: Implementing the Semantic Web Recommendations,” in Proceed-
ings of the 13th international World Wide Web conference (Alternate Track
Papers & Posters), 2004, pp. 74–83.

[41] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL ontolo-
gies,” Semantic Web – Interoperability, Usability, Applicability, 2011.

[42] C. Puleston, B. Parsia, J. Cunningham, and A. Rector, “Integrating Object-
Oriented and Ontological Representations: A Case Study in Java and OWL,”
in The Semantic Web - ISWC 2008, A. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. Finin, and K. Thirunarayan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008. DOI 10.1007/978-3-540-88564-1_9. ISBN
978-3-540-88564-1 pp. 130–145.

120

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/ldp/
https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf
https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf

...Bibliography
[43] JCP, “JDBCTM 4.2 Specification,” Java Community Process, Tech. Rep.,

2014.

[44] JCP, “JSR 317: JavaTM Persistence API, Version 2.0,” Java Community
Process, Tech. Rep., 2009.

[45] M. Quasthoff and C. Meinel, “Supporting Object-Oriented Programming
of Semantic-Web Software,” Transactions on Systems, Man, and Cyber-
netics, Part C: Applications, vol. 42, no. 1, pp. 15–24, 1 2012. DOI
10.1109/TSMCC.2011.2151282

[46] E. Oren, B. Heitmann, and S. Decker, “ActiveRDF: Embedding Semantic Web
data into object-oriented languages,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 6, no. 3, 2008.

[47] M. Ledvinka and P. Křemen, “A comparison of object-triple mapping libraries,”
Semantic Web, vol. 11, no. 3, pp. 483–524, 2020. DOI 10.3233/SW-190345

[48] J. Frohn, G. Lausen, and H. Uphoff, “Access to objects by path expressions
and rules,” in Proceedings of the International Conference on Very Large Data
Bases (VLDB), 1994, pp. 273–284.

[49] G. Stevenson and S. Dobson, “Sapphire: Generating Java Runtime Artefacts
from OWL Ontologies,” in Advanced Information Systems Engineering Work-
shops, C. Salinesi and O. Pastor, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. DOI 10.1007/978-3-642-22056-2_46. ISBN 978-3-642-22056-2
pp. 425–436.

[50] J. Leigh, “AliBaba,” Online, 2007, https://bitbucket.org/openrdf/alibaba/,
accessed 2020-08-11.

[51] P. Mika, “Social Networks and the Semantic Web,” Ph.D. dissertation, Vrije
Universiteit Amsterdam, 2006, https://research.vu.nl/ws/portalfiles/portal/
77648468/complete+dissertation.pdf, accessed 2020-08-11.

[52] M. Grove, “Empire: RDF & SPARQL Meet JPA,” Dataversity, April 2010.
[Online]. Available: http://www.dataversity.net/empire-rdf-sparql-meet-jpa/
,accessed2020-08-11

[53] K. Wenzel, “KOMMA: An Application Framework for Ontology-based Soft-
ware Systems,” Semantic Web – Interoperability, Usability, Applicability,
2010, http://www.semantic-web-journal.net/sites/default/files/swj89_0.pdf,
accessed 2020-08-11.

[54] A. Alishevskikh, “RDFBeans,” online, 2017, https://rdfbeans.github.io, ac-
cessed 2020-08-11.

[55] F. M. Donini, D. Nardi, and R. Rosati, “Description Logics of Minimal
Knowledge and Negation As Failure,” ACM Trans. Comput. Logic, vol. 3,
no. 2, pp. 177–225, Apr. 2002. DOI 10.1145/505372.505373

121

https://bitbucket.org/openrdf/alibaba/
https://research.vu.nl/ws/portalfiles/portal/77648468/complete+dissertation.pdf
https://research.vu.nl/ws/portalfiles/portal/77648468/complete+dissertation.pdf
http://www.dataversity.net/empire-rdf-sparql-meet-jpa/, accessed 2020-08-11
http://www.dataversity.net/empire-rdf-sparql-meet-jpa/, accessed 2020-08-11
http://www.semantic-web-journal.net/sites/default/files/swj89_0.pdf
https://rdfbeans.github.io

Bibliography ..
[56] S. Grimm and B. Motik, “Closed World Reasoning in the Semantic Web

through Epistemic Operators,” in Proceedings of the OWLED*05 Workshop
on OWL: Experiences and Directions, ser. CEUR Workshop Proceedings,
B. C. Grau, I. Horrocks, B. Parsia, and P. Patel-Schneider, Eds., vol. 250.
CEUR-WS.org, 1 2005, pp. 1–10.

[57] B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between OWL and
relational databases,” Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 7, no. 2, 2009.

[58] P. F. Patel-Schneider and E. Franconi, “Ontology Constraints in Incomplete
and Complete Data,” in Proceedings of the 11th International Conference
on The Semantic Web - Volume Part I, ser. ISWC’12. Berlin, Heidelberg:
Springer-Verlag, 2012. DOI 10.1007/978-3-642-35176-1_28. ISBN 978-3-642-
35175-4 pp. 444–459.

[59] Y. Ren, J. Z. Pan, and Y. Zhao, “Closed World Reasoning for OWL2 with
NBox,” Tsinghua Science and Technology, vol. 15, no. 6, pp. 692 – 701, 12
2010. DOI 10.1016/S1007-0214(10)70117-6

[60] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits, “Combin-
ing answer set programming with description logics for the Semantic Web,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 11, pp.
1577–1592, 2010. DOI 10.1109/TKDE.2010.111

[61] C. V. Damásio, A. Analyti, G. Antoniou, and G. Wagner, “Supporting Open
and Closed World Reasoning on the Web,” in Principles and Practice of
Semantic Web Reasoning, J. J. Alferes, J. Bailey, W. May, and U. Schw-
ertel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. DOI
10.1007/11853107_11 pp. 149–163.

[62] M. Knorr, J. J. Alferes, and P. Hitzler, “Local closed world reasoning with
description logics under the well-founded semantics,” Artificial Intelligence,
vol. 175, no. 9-10, pp. 1528–1554, 2011. DOI 10.1016/j.artint.2011.01.007

[63] K. Sengupta, A. A. Krisnadhi, and P. Hitzler, “Local closed world semantics:
Grounded circumscription for OWL,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 7031 LNCS, no. PART 1, pp. 617–632, 2011. DOI
10.1007/978-3-642-25073-6_39

[64] G. Yang and M. Kifer, Reasoning about Anonymous Resources and Meta State-
ments on the Semantic Web. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 69–97. ISBN 978-3-540-39733-5

[65] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs:
Combining logic programs with description logic,” in Proceedings of the 12th
International Conference on World Wide Web, ser. WWW ’03. New York,
NY, USA: ACM, 2003. DOI 10.1145/775152.775160. ISBN 1-58113-680-3 pp.
48–57.

122

...Bibliography
[66] H. Kattenstroth, W. May, and F. Schenk, “Combining OWL with F-Logic

Rules and Defaults,” in Proceedings of the ICLP’07 Workshop on Applications
of Logic Programming to the Web, Semantic Web and Semantic Web Services,
ALPSWS 2007, 2007.

[67] J. de Bruijn, R. Lara, A. Polleres, and D. Fensel, “OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning for the Semantic Web,” in Proceedings
of the 14th International Conference on World Wide Web, ser. WWW ’05.
ACM, 2005. DOI 10.1145/1060745.1060836. ISBN 1-59593-046-9

[68] M. Balaban, “The F-Logic Approach for Description Languages,” Annals of
Mathematics and Artificial Intelligence, vol. 15, no. 1, pp. 19–60, 1995. DOI
10.1007/BF01535840

[69] J. de Bruijn and S. Heymans, “Translating ontologies from predicate-based to
frame-based languages,” in Proceedings of the 2nd International Conference
on Rules and Rule Markup Languages for the Semantic Web (RuleML2006),
2006.

[70] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, Ontology-
Based Data Access and Integration. New York, NY: Springer New York, 2018,
pp. 2590–2596. ISBN 978-1-4614-8265-9

[71] Y. Kalfoglou and M. Schorlemmer, “Ontology mapping: The state of the art,”
The Knowledge Engineering Review, vol. 18, no. 1, pp. 1–31, 1 2003. DOI
10.1017/S0269888903000651

[72] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D.
Meester, G. Haesendonck, and P. Colpaert, “Triple Pattern Fragments: A Low-
cost Knowledge Graph Interface for the Web,” Journal of Web Semantics, vol.
37-38, pp. 184 – 206, 2016. DOI https://doi.org/10.1016/j.websem.2016.03.003

[73] F. Michel, C. F. Zucker, and F. Gandon, “SPARQLMicro-Services: Lightweight
Integration of Web APIs and Linked Data,” in LDOW Workshop of the 2018
World Wide Web Conference (WWW’18), 4 2018.

[74] B. Nouwt, “Tight integration of Web APIs with Semantic Web,” in
SEMANTiCS-WS 2017 Workshops of SEMANTiCS 2017, A. Fensel and
L. Daniele, Eds. CEUR-WS.org, 2017.

[75] M. Schröder, J. Hees, A. Bernardi, D. Ewert, P. Klotz, and S. Stadt-
müller, “Simplified SPARQL REST API,” in The Semantic Web: ESWC
2018 Satellite Events, A. Gangemi, A. L. Gentile, A. G. Nuzzolese, S. Rudolph,
M. Maleshkova, H. Paulheim, J. Z. Pan, and M. Alam, Eds. Cham: Springer
International Publishing, 2018. ISBN 978-3-319-98192-5 pp. 40–45.

[76] E. Daga, L. Panziera, and C. Pedrinaci, “A BASILar Approach for Building
Web APIs on Top of SPARQL Endpoints,” in SALAD 2015 Services and
Applications over Linked APIs and Data, M. Maleshkova, R. Verborgh, and
S. Stadtmüller, Eds. CEUR-WS.org, 2015, pp. 22–32.

123

Bibliography ..
[77] M. Lanthaler and C. Gütl, “Aligning Web Services with the Semantic Web to

Create a Global Read-Write Graph of Data,” in 2011 IEEE Ninth European
Conference on Web Services, G. Zavattaro, U. Schreier, and C. Pautasso, Eds.
Piscataway, NJ, USA: IEEE, 2011. DOI 10.1109/ECOWS.2011.17 pp. 15–22.

[78] M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for Hypermedia-Driven
Web APIs,” in LDOW2013 Linked Data on the Web, C. Bizer, T. Heath,
T. Berners-Lee, M. Hausenblas, and S. Auer, Eds. CEUR-WS.org, 2013.

[79] R. Isele, J. Umbrich, C. Bizer, and A. Harth, “LDSpider: An
open-source crawling framework for the web of linked data,” in
Proceedings of 9th International Semantic Web Conference (ISWC 2010)
Posters and Demos. Aachen: CEUR-WS.org, 2010. [Online]. Available:
http://iswc2010.semanticweb.org/pdf/495.pdf

[80] G. Tummarello, R. Delbru, and E. Oren, “Sindice.com: Weaving the Open
Linked Data,” in The Semantic Web, K. Aberer, K.-S. Choi, N. Noy, D. Alle-
mang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, and P. Cudré-Mauroux, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007. DOI 10.1007/978-3-540-76298-0_40. ISBN 978-3-540-76298-0
pp. 552–565.

[81] A. Barbosa, I. I. Bittencourt, S. W. M. Siqueira, R. d. A. Silva, and I. Calado,
“The Use of Software Tools in Linked Data Publication and Consumption: A
Systematic Literature Review,” Int. J. Semant. Web Inf. Syst., vol. 13, no. 4,
pp. 68–88, 10 2017. DOI 10.4018/IJSWIS.2017100104

[82] B. Heitmann, R. Cyganiak, C. Hayes, and S. Decker, Linked Data Management.
Chapman and Hall/CRC, 2014, ch. Architecture of Linked Data Applications,
pp. 69–91.

[83] T. Hoppe, B. Humm, U. Schade, T. Heuss, M. Hemmje, T. Vogel, and B. Gern-
hardt, “Corporate Semantic Web – Applications, Technology, Methodology,”
Informatik-Spektrum, vol. 39, no. 1, pp. 57–63, 2 2016. DOI 10.1007/s00287-
015-0939-0

[84] H. Bense, B. Gernhardt, T. Hoppe, M. Hemmje, B. Humm, U. Schade,
R. Schäfermeier, A. Paschke, M. Schmidt, P. Haase, M. Siegel, T. Vogel,
and R. Wenning, “Emerging Trends in Corporate Semantic Web,” Informatik
Spektrum, vol. 39, no. 6, pp. 474–480, 12 2016.

[85] S. O’Riain, A. Harth, and E. Curry, “Linked Data Driven Information Systems
as an Enabler for Integrating Financial Data,” in Information Systems for
Global Financial Markets: Emerging Developments and Effects. IGI Global,
2012, pp. 239–270.

[86] D. Corsar, P. Edwards, J. Nelson, C. Baillie, K. Papangelis, and N. Ve-
laga, “Linking Open Data and the Crowd for Real-time Passenger Informa-
tion,” Journal of Web Semantics, vol. 43, no. C, pp. 18–24, 3 2017. DOI
10.1016/j.websem.2017.02.002

124

http://iswc2010.semanticweb.org/pdf/495.pdf

...Bibliography
[87] G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst,

C. Bizer, and R. Lee, “Media Meets Semantic Web — How the BBC Uses
DBpedia and Linked Data to Make Connections,” in Proceedings of the 6th
European Semantic Web Conference on The Semantic Web: Research and
Applications. Springer-Verlag, 2009. DOI 10.1007/978-3-642-02121-3_53.
ISBN 978-3-642-02120-6 pp. 723–737.

[88] R. Carvalho, J. Williams, I. Sturken, R. Keller, and T. Panontin, “Investigation
Organizer: the development and testing of a Web-based tool to support
mishap investigations,” in 2005 IEEE Aerospace Conference, 3 2005. DOI
10.1109/AERO.2005.1559302. ISSN 1095-323X pp. 89–98.

[89] R. Carvalho, S. Wolfe, D. Berrios, and J. Williams, “Ontology Development
and Evolution in the Accident Investigation Domain,” in 2005 IEEE Aerospace
Conference, 3 2005. DOI 10.1109/AERO.2005.1559634. ISSN 1095-323X pp.
1–8.

[90] R. Cacciotti, J. Valach, P. Kuneš, M. Čerňanský, M. Blaško, and P. Křemen,
“Monument Damage Information System (MONDIS): An Ontological Approach
to Cultural Heritage Documentation,” ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. II-5/W1, pp. 55–60, 07
2013. DOI 10.5194/isprsannals-II-5-W1-55-2013

[91] M. Blaško, R. Cacciotti, P. Křemen, and Z. Kouba, “Monument Damage Ontol-
ogy,” in Progress in Cultural Heritage Preservation, M. Ioannides, D. Fritsch,
J. Leissner, R. Davies, F. Remondino, and R. Caffo, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34234-9 pp. 221–230.

[92] M. Zimmermann, “Owl2Java – A Java Code Generator for OWL,” Online,
2009, http://www.incunabulum.de/projects/it/owl2java/, accessed 2020-08-11.

[93] C. Bizer and A. Schultz, “The Berlin SPARQL benchmark,” International
Journal On Semantic Web and Information Systems, vol. 5, no. 2, pp. 1–24,
2009.

[94] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL Knowledge
Base Systems,” Journal of Web Semantics, vol. 3, no. 2-3, pp. 158–182, 2005.

[95] O. Holanda, S. Isotani, I. I. Bittencourt, D. Dermeval, and W. Alcantara, “An
Object Triple Mapping System Supporting Detached Objects,” Engineering
Applications of Artificial Intelligence, vol. 62, no. C, pp. 234–251, 6 2017. DOI
10.1016/j.engappai.2017.04.010

[96] P. Cristofaro, “Virtuoso RDF Triple Store Analysis Benchmark & mapping
tools RDF / OO,” Online, 12 2013, https://tinyurl.com/virt-rdf-map-tools,
accessed 2020-08-11.

[97] M. Sieland, “Selecting an RDF mapping library for cross-media enhancements,”
online, March 2015, https://tinyurl.com/sel-rdf-map-lib, accessed 2020-08-11.

125

http://www.incunabulum.de/projects/it/owl2java/
https://tinyurl.com/virt-rdf-map-tools
https://tinyurl.com/sel-rdf-map-lib

Bibliography ..
[98] W. V. Siricharoen, “Ontologies and Object models in Object Oriented Software

Engineering,” IAENG International Journal of Computer Science, vol. 33,
no. 1, 2 2007.

[99] G. Weikum and G. Vossen, Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2002. ISBN 9780080519562

[100] T. Lebo, S. Sahoo, and D. McGuinness, “PROV-O: The PROV Ontology,”
W3C, W3C Recommendation, April 2013, http://www.w3.org/TR/prov-o/,
accessed 2019-10-24.

[101] P.-H. Chiu, C.-C. Lo, and K.-M. Chao, “Integrating Semantic Web and
Object-Oriented Programming for Cooperative Design,” Journal of Universal
Computer Science, vol. 15, no. 9, pp. 1970–1990, 5 2009.

[102] F. Chevalier, “AutoRDF - Using OWL as an Object Graph Mapping (OGM)
Specification Language,” in The Semantic Web, H. Sack, G. Rizzo, N. Stein-
metz, D. Mladenić, S. Auer, and C. Lange, Eds. Cham: Springer International
Publishing, 2016. ISBN 978-3-319-47602-5 pp. 151–155.

[103] M. Völkel and Y. Sure, “RDFReactor – From Ontologies to Programmatic
Data Access,” in POSTER AND DEMO AT INTERNATIONAL SEMANTIC
WEB CONFERENCE (ISWC) 2005, GALWAY, IRELAND, 2005.

[104] P. Ježek and R. Mouček, “Semantic framework for mapping object-oriented
model to semantic web languages,” Frontiers in Neuroinformatics, vol. 9, no. 3,
2015. DOI 10.3389/fninf.2015.00003

[105] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java Perfor-
mance Evaluation,” in Proceedings of the 22Nd Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming Systems and Applications, ser. OOPSLA
’07. New York, NY, USA: ACM, 2007. DOI 10.1145/1297027.1297033. ISBN
978-1-59593-786-5 pp. 57–76.

[106] J. W. Lloyd, Foundations of Logic Programming. Berlin, Heidelberg: Springer-
Verlag, 1984. ISBN 0-387-13299-6

[107] S. Heymans, L. Ma, D. Anicic, Z. Ma, N. Steinmetz, Y. Pan, J. Mei, A. Fokoue,
A. Kalyanpur, A. Kershenbaum, E. Schonberg, K. Srinivas, C. Feier, G. Hench,
B. Wetzstein, and U. Keller, Ontology Reasoning with Large Data Repositories.
Boston, MA: Springer US, 2008, pp. 89–128. ISBN 978-0-387-69900-4

[108] D. Comer, “Ubiquitous B-Tree,” ACM Computing Surveys, vol. 11, no. 2, pp.
121–137, 6 1979. DOI 10.1145/356770.356776

[109] M. Ledvinka and P. Křemen, “Object-UOBM: An Ontological Benchmark
for Object-Oriented Access,” in Knowledge Engineering and Semantic Web,
P. Klinov and D. Mouromtsev, Eds. Cham: Springer International Publishing,
2015. DOI 10.1007/978-3-319-24543-0_10. ISBN 978-3-319-24543-0 pp. 132–
146.

126

http://www.w3.org/TR/prov-o/

...Bibliography
[110] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995. ISBN 0-201-63361-2

[111] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 5, no. 2, pp. 51–53, 6 2007.

[112] Giancarlo Guizzardi, “Ontological Foundations for Structural Conceptual
Models,” Ph.D. dissertation, University of Twente, 2005.

[113] A. Stellato, A. Turbati, M. Fiorelli, T. Lorenzetti, E. Costetchi, C. Laaboudi,
W. V. Gemert, and J. Keizer, “Towards VocBench 3: Pushing Collaborative
Development of Thesauri and Ontologies Further Beyond,” in Proceedings
of the 17th European Networked Knowledge Organization Systems Workshop,
co-located with the 21st International Conference on Theory and Practice
of Digital Libraries 2017 (TPDL 2017). CEUR-WS.org, 2017, pp. 39–52.
[Online]. Available: http://ceur-ws.org/Vol-1937/paper4.pdf

[114] M. Fowler, Patterns of Enterprise Application Architecture. Boston, Mas-
sachusetts, USA: Addison-Wesley Professional, 2002. ISBN 0321127420

[115] R. Cyganiak and C. Bizer, “Pubby – A Linked Data Frontend for SPARQL End-
points,” Online, 2007, http://wifo5-03.informatik.uni-mannheim.de/pubby/,
accessed 2020-08-11.

[116] G. Yang, M. Kifer, and C. Zhao, “F lora-2: A Rule-Based Knowledge Rep-
resentation and Inference Infrastructure for the Semantic Web,” in On The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,
R. Meersman, Z. Tari, and D. C. Schmidt, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003. ISBN 978-3-540-39964-3 pp. 671–688.

[117] B. Kostov, J. Ahmad, and P. Křemen, Towards Ontology-Based Safety Infor-
mation Management in the Aviation Industry. Cham: Springer International
Publishing, 2017, pp. 242–251. ISBN 978-3-319-55961-2

[118] P. Křemen, B. Kostov, M. Blaško, J. Ahmad, V. Plos, A. Lališ, S. Stojić,
and P. Vittek, “Ontological Foundations of European Coordination Centre for
Accident and Incident Reporting Systems,” Journal of Aerospace Information
Systems, vol. 14, no. 5, pp. 279–292, 2017, https://doi.org/10.2514/1.I010441.

[119] M. Ledvinka, A. Lališ, and P. Křemen, “Towards Data-Driven Safety: An
Ontology-Based Information System,” Journal of Aerospace Information Sys-
tems, vol. 16, no. 1, pp. 22–36, 2019. DOI 10.2514/1.I010622

[120] M. Ledvinka, P. Křemen, L. Saeeda, and M. Blaško., “TermIt: A Practical
Semantic Vocabulary Manager,” in Proceedings of the 22nd International
Conference on Enterprise Information Systems - Volume 1: ICEIS, INSTICC.
SciTePress, 2020. DOI 10.5220/0009563707590766. ISBN 978-989-758-423-7
pp. 759–766.

127

http://ceur-ws.org/Vol-1937/paper4.pdf
http://wifo5-03.informatik.uni-mannheim.de/pubby/

Bibliography ..
[121] A. Miles and S. Bechhofer, “SKOS Simple Knowledge Organization System

Reference,” W3C, W3C Recommendation, 2009, http://www.w3.org/TR/
skos-reference, accessed 2020-08-11.

[122] P. Křemen and M. Nečaský, “Improving discoverability of open govern-
ment data with rich metadata descriptions using semantic government vo-
cabulary,” Journal of Web Semantics, vol. 55, pp. 1 – 20, 2019. DOI
https://doi.org/10.1016/j.websem.2018.12.009

[123] P. Křemen, L. Saeeda, M. Blaško, and M. Med, “Dataset Dashboard - a
SPARQL Endpoint Explorer,” in Proceedings of the Fourth International
Workshop on Visualization and Interaction for Ontologies and Linked Data co-
located with the 17th International Semantic Web Conference, VOILA@ISWC
2018, Monterey, CA, USA, October 8, 2018, 2018, pp. 70–77, http://ceur-ws.
org/Vol-2187/paper7.pdf, accessed 2020-08-11.

[124] T. Klíma, “Sémantický manažer prospektivní klinické studie,” B.S. thesis,
České vysoké učení technické v Praze. Vypočetní a informační centrum., 2018,
in Czech.

[125] Y. Doroshenko, “Semantic Pipeline Editor,” B.S. thesis, České vysoké učení
technické v Praze. Vypočetní a informační centrum., 2018.

[126] A. Cockburn, “Hexagonal architecture,” Online, 2017, https://alistair.
cockburn.us/hexagonal-architecture/, accessed 2020-08-11.

[127] J. Palermo, “The Onion Architecture,” Online, 2008, https://jeffreypalermo.
com/2008/07/the-onion-architecture-part-1/, accessed 2020-08-11.

[128] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture Volume 1: A System of Patterns. Wiley, 1996,
vol. 1.

[129] J. Klímek, P. Škoda, and M. Nečaský, “LinkedPipes ETL: Evolved Linked
Data Preparation,” in The Semantic Web, H. Sack, G. Rizzo, N. Steinmetz,
D. Mladenić, S. Auer, and C. Lange, Eds. Cham: Springer International
Publishing, 2016. DOI 10.1007/978-3-319-47602-5_20. ISBN 978-3-319-47602-5
pp. 95–100.

[130] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus, “Querying
RDF Streams with C-SPARQL,” SIGMOD Rec., vol. 39, no. 1, p. 20–26, Sep.
2010. DOI 10.1145/1860702.1860705

[131] D. Miller, J. Whitlock, M. Gardiner, M. Ralphson, R. Ratovsky, and U. Sarid,
“OpenAPI Specification,” OpenAPI Initiative, Tech. Rep., 2020, http://spec.
openapis.org/oas/v3.0.3, accessed 2020-08-11.

128

http://www.w3.org/TR/skos-reference
http://www.w3.org/TR/skos-reference
http://ceur-ws.org/Vol-2187/paper7.pdf
http://ceur-ws.org/Vol-2187/paper7.pdf
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3

Publications by the Author

Journal Publications..1. M. Ledvinka (80%) and P. Křemen, “A comparison of object-triple mapping
libraries,” Semantic Web, vol. 11, no. 3, pp. 483–524, 2020. DOI 10.3233/SW-
190345. IF(2018) = 3.524..2. M. Ledvinka (45%), A. Lališ, and P. Křemen, “Towards Data-Driven Safety:
An Ontology-Based Information System,” Journal of Aerospace Information
Systems, vol. 16, no. 1, pp. 22–36, 2019. DOI 10.2514/1.I010622. IF(2018) =
0.787

. Cited by..a. W. Gao and Y. Chen, “Approximation analysis of ontology learning al-
gorithm in linear combination setting,” in Journal of Cloud Computing,
vol. 9, 2020. DOI 10.1186/s13677-020-00173-y..b. Richard M. Keller, “Building a Knowledge Graph for the Air Traffic
Management Community”, in Companion of the World Wide Web
Conference (WWW 2019), 2019, pp. 700-704..c. M. Chen, B. Liu, D. Zeng, and W. Gao, “A Framework for Ontology-
Driven Similarity Measuring Using Vector Learning Tricks”, in Engi-
neering Letters, vol. 27, no. 3, 2019. ISSN 1816-093X, pp. 549-558

129

Publications by the Author
Conference Publications..1. M. Ledvinka (40%), P. Křemen, L. Saeeda, and M. Blaško, “TermIt: A Prac-
tical Semantic Vocabulary Manager,” in Proceedings of the 22nd International
Conference on Enterprise Information Systems - Volume 1: ICEIS, INSTICC.
SciTePress, 2020. DOI 10.5220/0009563707590766. ISBN 978-989-758-423-7,
pp. 759–766..2. M. Ledvinka (80%) and P. Křemen, “Formalizing Object-Ontological Mapping
Using F-logic,” in Rules and Reasoning. Cham. Springer, 2019. Lecture Notes
in Computer Science. vol. 11784. ISSN 0302-9743. ISBN 978-3-030-31094-3,
pp. 97-112..3. M. Ledvinka (60%), M. Blaško and P. Křemen, “Factors of Efficient Semantic
Web Application Development,” in On the Move to Meaningful Internet Systems.
OTM 2018 Conferences, vol. 2. Basel. Springer, 2018. ISSN 0302-9743. ISBN
978-3-030-02670-7, pp. 565-572..4. J. Ahmad, P. Křemen, and M. Ledvinka (10%), “Optimization of Queries
Based on Foundational Ontologies,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Springer, 2018. ISSN 0302-9743. ISBN 978-3-030-02670-7,
pp. 351-367..5. M. Ledvinka (80%), P. Křemen, B. Kostov, and M. Blaško, “SISel: Aviation
Safety Powered by Semantic Technologies”, in Data a znalosti 2017, Plzeň.
Západočeská univerzita v Plzni, 2017. ISBN 978-80-261-0720-0, pp. 77-82..6. M. Ledvinka (80%), P. Křemen and B. Kostov, “JOPA: Efficient Ontology-
based Information System Design”, in The Semantic Web: ESWC 2016 Satellite
Events, Cham. Springer International Publishing AG, 2016. ISSN 0302-9743.
ISBN 978-3-319-47601-8, pp. 156-160. Cited by..a. G. Bajaj, R. Agarwal, P. Singh, N. Georgantas, and V. Issarny, “4W1H

in IoT Semantics,” in IEEE Access, vol. 6, 2018. ISSN 2169-3536, pp.
65488 - 65506..b. J. Kraus, A. Lališ, V. Plos, P. Vittek, and S. Stojić, “Utilizing Ontolo-
gies and Structural Conceptual Models for Safety Data Management
in Aviation Maintenance, Repair and Overhaul Organizations,” in
Transportation Research Procedia, 35, pp. 35-43..7. M. Ledvinka (80%), P. Křemen, “JOPA: Stay Object-Oriented When Persist-

ing Ontologies”, in 17th International Conference on Enterprise Information
Systems ICEIS 2015 (Softcover), Porto. SciTePress, 2015. Softcover. DOI
10.1007/978-3-319-29133-8. ISSN 1865-1348. ISBN 978-3-319-29132-1, pp.
408-428

130

....................................Conference Publications..8. M. Ledvinka (80%) and P. Křemen, “Object-UOBM: An Ontological Bench-
mark for Object-Oriented Access,” in Knowledge Engineering and Semantic
Web, P. Klinov and D. Mouromtsev, Eds. Cham: Springer International Pub-
lishing, 2015. DOI 10.1007/978-3-319-24543-0_10. ISBN 978-3-319-24543-0, pp.
132–146. Cited by..a. C. Allocca, M. Alviano, F. Calimeri, C. Civili, R. Costabile, B. Cuteri,

A. Fiorentino, D. Fuscà, S. Germano, G. Laboccetta, N. Leone, M.
Manna, S. Perri, K. Reale, F. Ricca, P. Veltri, and J. Zangari, “Query-
ing Large Expressive Horn Ontologies,”, in Proceedings of the 27th
Italian Symposium on Advanced Database Systems, CEUR Workshop
Proceedings, 2019,..b. C. Allocca, F. Calimeri, C. Civili, R. Costabile, B. Cuteri, A. Fiorentino,
D. Fuscà, S. Germano, G. Laboccetta, M. Manna, S. Perri, K. Reale, F.
Ricca, P. Veltri and J. Zangari, “Large-scale Reasoning on Expressive
Horn Ontologies,” in Datalog 2.0 2019 3rd International Workshop on
the Resurgence of Datalog in Academia and Industry, CEUR Workshop
Proceedings, Volume 2368, 2019, pp. 10-21..9. M. Ledvinka (80%), and P. Křemen, “JOPA: Accessing Ontologies in an

Object-oriented Way,” in Proceedings of the 17th International Conference on
Enterprise Information Systems, Porto. SciTePress, 2015.
DOI 10.5220/0005400302120221. ISBN 978-989-758-097-0, pp. 212-221. Cited by..a. R. Pinka, J. Kaiser, “Multipurpose digital platform in the construction

industry development processes for risk and life-cycle assessment,” in
Proceedings of the 29th International Business Information Manage-
ment Association Conference - Education Excellence and Innovation
Management through Vision 2020: From Regional Development Sus-
tainability to Global Economic Growth, 2017, pp. 2602-2616..b. P. Vittek, A. Lališ, S. Stojić, and V. Plos, “Challenges of implemen-
tation and practical deployment of aviation safety knowledge man-
agement software,” in Communications in Computer and Information
Science, 518, 2016, DOI 10.1007/978-3-319-45880-9_24, pp. 132-146...10. M. Ledvinka (80%) and P. Křemen, “JOPA: Developing Ontology-Based

Information Systems,” in Proceedings of the 13th Annual Conference Znalosti
2014, Praha. VŠE, 2014. ISBN 978-80-245-2054-4, pp. 108-117...11. P. Křemen, M. Blaško, M. Šmíd, Z. Kouba, M. Ledvinka (5%), and B.
Kostov, “MONDIS: Using Ontologies for Monument Damage Descriptions,” in
Proceedings of the 13th Annual Conference Znalosti 2014, Praha. VŠE, 2014.
ISBN 978-80-245-2054-4, pp. 66-69

131

Publications by the Author
Methodologies..1. M. Strouhal, P. Vittek, P. Křemen, V. Plos, M. Lánský, S. Szabo, M. Novák,
E. Endrizalová, et al., “Possibilities of using SISel to create SSP and SSp,”
Methodology, 2016..2. P. Vittek, A. Lališ, S. Stojić, V. Plos, J. Kraus, M. Lánský, S. Szabo, V. Němec,
et al., “The methodology for the implementation of safety indicators and their
use for the purposes of safety management in aviation organizations,” Applied
Certified Methodology (certified by the Ministry of Transport of the Czech
Republic), 2016..3. M. Strouhal, P. Vittek, V. Plos, M. Lánský, S. Szabo, M. Novák, E. Endrizalová,
J. Kraus, et al., “The methodology for establishing, operating and maintain-
ing a national system for the management of safety and supervision of the
safety performance of organizations engaged in civil aviation,” Applied Certified
Methodology (certified by the Ministry of Transport of the Czech Republic),
2015

Software..1. M. Ledvinka, B. Kostov, P. Křemen, M. Blaško, A. Lališ, S. Stojić, V. Plos,
P. Vittek, et al., “SISel,” Software, 2016..2. M. Ledvinka, B. Kostov, M. Blaško, P. Křemen, P. Vittek, J. Kraus, S. Stojić,
V. Plos, and A. Lališ, “Reporting Tool,” Software, 2016

132

133

Publications by the Author

Appendices

134

Appendix A

Abbreviations and Acronyms

Symbol Meaning

API Application Programming Interface
ASO Aviation Safety Ontology
CAA Civial Aviation Authority
CPU Central Processing Unit
CRUD Create, Retrieve, Update, Delete
CWA Closed World Assumption
DAO Data Access Object
DL Description logic
ECCAIRS European Coordination Centre for Accident and Incident

Reporting Systems
ETL Extract, transform, load
FOL First-order Logic
GeoSPARQL a spatial extension to the SPARQL query language
HTTP Hypertext Transfer Protocol
IC Integrity Constraint
IRI Internationalized Resource Identifier
JDBC Java Database Connectivity
JDK Java Development Kit
JOPA Java OWL Persistence API
JPA Java Persistence API
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
JVM Java Virtual Machine
KBS Knowledge-Based System
NAF Negation as Failure

135

A. Abbreviations and Acronyms
ODBC Open Database Connectivity
OOM Object-ontological Mapping
OOPL Object-oriented Programming Language
OS Operating System
OTM Object-triple Mapping
OWA Open World Assumption
OWL Web Ontology Language
POJO Plain Old Java Object
RAM Random Access Memory
RDF Resource Description Framework
RDFS RDF Schema
REST Representational State Transfer
SDCPS Safety Data Collecting and Processing System
SKOS Simple Knowledge Organization System
SOAP Simple Object Access Protocol
SPARQL SPARQL Query Language
SQL Structured Query Language
UFO Unified Foundational Ontology
UI User Interface
UML Unified Modeling Language
UNA Unique Name Assumption
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
XML Extensible Markup Language

136

Appendix B

Proofs

B.1 Proof of Lemma 4.1

As a reminder, let me first replicate Lemma 4.1 here:
Lemma B.1. Let θ be a formula in LDL and θF a corresponding F-logic formula in
an F-logic language LF . Then θ is satisfiable in some interpretation I of LDL if and
only if θF is satisfiable in some F-structure I of LF .

Proof. The lemma can be proven by showing how an F-structure I can be constructed
for a SROIQ interpretation I and vice versa. We will demonstrate that they will
have the same truth value for the corresponding axioms.

Let us begin with the RBox axioms.

. I is a model of Sym(R) iff 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI . An F-structure
I can be constructed such that x, y are mapped to elements IF (xE), IF (yE)
such that IF (yE) ∈ I→(IF (RR))(IF (xE)) implies IF (xE) ∈ I→(IF (RR))(IF (yE)).
Then, I is a model of SymP(RR).

Conversely, suppose J is a model of SymP(RR), thus, it has to adhere to the
condition defined in Table 4.4. For such IF (xE), IF (yE), we can create an
interpretation J with elements x, y such that 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI .
Thus, the mapping for symmetric role is equivalent.

137

B. Proofs ...
. The proof for Asy, Tra, Ref , Irr and Dis is analogous. One can easily verify

the equivalence of conditions on an interpretation I described in [24] and the
F-structure I conditions in Table 4.4.. Consider a role inclusion axiom R v S. For its model I must hold RI ⊆
SI . This can be expanded as 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ SI . Once again,
we can construct an F-structure I containing elements IF (xE) and IF (yE),
corresponding to x and y. Now, whenever 〈x, y〉 ∈ RI , we will have IF (yE) ∈
I→(IF (RR))(IF (xE)) in I. The same for S and SR. This corresponds to the
I-condition for subPropertyOfP(RR, SR).
It should be clear that the converse holds as well. Thus, role inclusion axioms
can be faithfully mapped to the subPropertyOfP predicate and vice versa.

A general concept inclusion axiom (GCI) C v D is mapped to an is-a expression
CC ::DC. For a DL model I must hold CI ⊆ DI . Written explicitly, this means
that for all x ∈ ∆I , x ∈ CI implies x ∈ DI . In an F-structure I which is a model
of CC ::DC must hold IF (CC) � IF (DC). The semantics defined in [29] specifies
that if x ∈U IF (CC) and IF (CC) � IF (DC), then x ∈U IF (DC). Simply put, in both
DL and F-logic, the relationship is that whenever an element is an instance of a
subconcept/subclass, it is also an instance of its superconcept/superclass. Therefore,
the mapping between DL GCI axioms and subclass expressions in F-logic is equivalent.
To ensure a correct baseline for GCI mapping, we will show the correspondence
between the basic DL concept descriptions and their F-logic counterparts. Of
particular interest are the newly introduced function symbols Not, AtLeast etc. We
have to ensure that the extensions of the corresponding concepts are equivalent. The
extension of a DL concept C is the set of elements CI ⊆ ∆I . In F-logic, a class’
extension is the set of domain elements which are in ∈U relation with its domain
representation IF (CC). Let us now process the concept mapping from Table 4.3.

. For C an atomic concept name the equivalence is trivial.. For C ← ¬D, (¬D)I = {x ∈ ∆I | x /∈ DI}. We can construct an F-structure I
where we map xI to IF (xE), the fact that xI does not belong into DI would
be mapped to I as the lack of ∈U -relationship between elements IF (xE) and
IF (DC). Such elements represent the extension of Not(DC) which proves the
DL to F-logic direction.
Now, for the other direction, the extension of Not(DC) in its model J is the set of
all IF (xE) such that IF (xE) /∈U IF (DE). To build an equivalent SROIQ model
J , IF (xE) will be mapped to xJ , IF (DE) to DJ ⊂ ∆J such that xJ /∈ DJ .
These xJ s represent the extension of (¬D), so the mapping allows to build
equivalent models in both directions.. For C ← B uD, its extension in a model I is the intersection of extensions of
B and D, i.e., (B uD)I = BI ∩DI . In F-logic, the semantics of (BC and DC)
is the same, i.e., class intersection.

138

.................................. B.2. Proof of Theorem 4.3

. For C ← B tD, the reasoning analogous to B uD.. Take C ←> nR.D. For its instances x ∈ ∆I in a model I must hold |{y ∈
∆I | 〈x, y〉 ∈ RI ∧ y ∈ DI}| ≥ n. We can again construct an equivalent
F-structure I where for each DL domain element y we create a new domain
element yF which belongs to I→(IF (RR))(IF (xE)) and is in a ∈U -relationship
with IF (DC). All such xE constitute the extension of AtLeast(n,RR, DC).. For C ← ∃R.Self , its extension in a model I is the set of all x ∈ ∆I such that
〈x, x〉 ∈ RI . An equivalent F-structure I is built by mapping x to elements
IF (xE) such that IF (xE) ∈ I→(IF (RR))(IF (xE)). Such elements comprise the
extension of HasSelf(RR). For C ← {a}, ({a})I = {x ∈ ∆I | x = aI} in a model I. The interpretation of
Nom(aE) also relies on equality of domain elements.. Take C ← ∀R.D and a model I, (∀R.D)I = {x ∈ ∆I | ∀y ∈ ∆I s.t. 〈x, y〉 ∈
RI ⇒ y ∈ DI}. x and y are mapped to F-structure I elements IF (xE) and IF (yE)
in such a way that ∀IF (yE) ∈ I→(IF (RR))(IF (xE)) holds that IF (yE) ∈U IF (DC).
Such an F-structure provides an extension for All(RR, DC). Clearly, this
transformation also works in the other direction.. Finally, let C ← ∃R.D. Its extension in a model I corresponds to (∃R.D)I =
{x ∈ ∆I | ∃ y ∈ ∆I s.t. 〈x, y〉 ∈ RI ∧ y ∈ DI}. A corresponding F-structure I
contains an element IF (yE) such that IF (yE) ∈ I→(IF (RR))(IF (xE))∧IF (yE) ∈U
IF (DC). It can be seen that this transformation again works in both directions.
Moreover I provides an extension of Some(RR, DC), so we can conclude that
the mapping is again faithful.

The last part of this proof needs to deal with ABox axioms. However, ABox
axioms can be internalized using nominals as follows: C(a) to {a} v C, R(a, b) to
{a} v ∃R.{b}, a = b to {a} ≡ {b}1 and a 6= b to {a} 6≡ {b}. This way, there is no
need to treat them explicitly.

B.2 Proof of Theorem 4.3

For reference, here is Theorem 4.3 replicated again:
Theorem B.2. Consider a knowledge base K, a set of integrity constraint axioms
IC and a set of IC validation queries Q, constructed by applying the translation
operator T on each IC axiom α in IC. If K violates any of the IC axioms in IC,
then ∃ q ∈ Q such that K |=F q.

1C ≡ D corresponds to C v D ∧D v C.

139

B. Proofs ...
Proof. First, let me show the equivalence of RBox IC axioms to their validation
queries.

. The IC semantics of axiom α = subPropertyOfP(R,Q) requires an F-structure
IIC to satisfy IF (y) ∈ IIC→ (IF (R))(IF (x)) ⇒ IF (y) ∈ IIC→ (IF (Q))(IF (x)) for
all individuals x, y ∈ E . Recall that IIC is the smallest model w.r.t. equality.
For the axiom to be violated, we need to find a model in which the axiom
is not true, i.e., an F-structure J such that J |=F ∃x, y ∈ E s.t. IF (y) ∈
I→(IF (R))(IF (x)) ∧ IF (y) /∈ I→(IF (Q))(IF (x)).
Now, the corresponding validation query, as specified in Table 4.7, is x[R →
y] ∧ not(x[Q → y]), where not represents the absence of knowledge. The
query is looking for an F-structure H |=F IF (y) ∈ I→(IF (R))(IF (x)) and
H 6|=F IF (y) ∈ I→(IF (Q))(IF (x)), where x, y ∈ E are existentially quantified.
Thus, the two parts can be combined as follows: H |=F ∃x, y ∈ E s.t. IF (y) ∈
I→(IF (R))(IF (x)) ∧ IF (y) /∈ I→(IF (Q))(IF (x)). It can be seen that the query
returns results if and only if integrity constraint axiom α is violated.. For α = SymP(R), IC semantics demands an F-structure IIC |=F IF (y) ∈
IIC→ (IF (R))(IF (x))⇒ IF (x) ∈ IIC→ (IF (R))(IF (y)). A series of transformations
analogous to the sub-property case above will lead to IC violation in case of an F-
structure J such that J |=F ∃x, y ∈ E s.t. IF (y) ∈ I→(IF (R))(IF (x)) ∧ IF (x) /∈
I→(IF (R))(IF (y)) and is a model of the knowledge base containing IC axiom α.
The validation query x[R → y] ∧ not(y[R → x]) will be looking for an F-
structure H such that H |=F ∃x, y ∈ E s.t. IF (y) ∈ I→(IF (R))(IF (x))∧IF (x) /∈
I→(IF (R))(IF (y)). Thus, we have again arrived at equivalent formulas for IC
violation.. IC axiom and validation query equivalence for α = AsyP(R) (α = TraP(R),
α = RefP(R), α = IrrP(R), and α = DisP(R,Q)) are proven analogously.

The second part of the proof deals with general concept inclusion axioms for
various concept descriptions. Once again, the goal is to show that, for each concept
description, the GCI axiom, when taken as an integrity constraint, is violated if and
only if a corresponding validation query, constructed using the transformation rules
from Table 4.6, finds results.

. Let α = C :: Not(D) be an integrity constraint axiom. An F-structure IIC
satisfies it if IIC |=F IF (C) �ICU IF (Not(D)). α is violated if there exists an
F-structure J such that J 6|=F IF (C) �U IF (Not(D)), i.e., J |=F ¬(IF (C) �U
IF (Not(D))). Now, from the properties of F-structures, we know that if a ∈U
b ∧ b �U c, then a ∈U c [29]. So, in J, we have that ¬(IF (C) �U IF (Not(D)))
iff ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ x /∈U IF (Not(D)). Given the interpretation of
Not(D), this can be rewritten as ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ x ∈U IF (D).

140

.................................. B.2. Proof of Theorem 4.3

The validation query for GCI involving Not(D) is as follows: x :C ∧ not(x :
Not(D)). Thus, it searches for an F-structure H such that H |=F IF (x) ∈U
IF (C) and H 6|=F IF (x) ∈U IF (Not(D)), with x ∈ E existentially quantified.
This can be rewritten as H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U
IF (Not(D)). Again, flipping the /∈U and Not(D), the result is H |=F ∃x ∈ E s.t.
IF (x) ∈U IF (C) ∧ IF (x) ∈U IF (D). So the query has results iff α is violated.. For an IC axiom α = C :: (B and D) an F-structure IIC must satisfy IF (C) �ICU
IF (B)∧IF (C) �ICU IF (D). α is violated if there exists a model of the knowledge
base J such that J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ ¬(IF (x) ∈U IF (B) ∧
IF (x) ∈U IF (D)), so, J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ (IF (x) /∈U IF (B) ∨
IF (x) /∈U IF (D)).

The validation query for α – x : C ∧ not(x : (B and D)) – searches for an
F-structure H such that H |=F IF (x) ∈U IF (C) and H 6|=F IF (x) ∈U IF (B) ∧
IF (x) ∈U IF (D), where x is existentially quantified over both formulas. This
is again combined into a single query formula H |=F ∃x ∈ E s.t. IF (x) ∈U
C ∧ (IF (x) /∈U IF (B) ∨ IF (x) /∈U IF (D)). Once again, the query corresponds
to the formula for violation of α.. For an IC axiom α = C :: (B or D), the proof goes along the same lines as for
C :: (B and D). Thus, α is violated if there is a model J such that J |=F ∃x ∈ E
s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U IF (B) ∧ IF (x) /∈U IF (D).

Similarly, the validation query x :C∧not(x : (B orD)) searches for an F-structure
H such that H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U IF (B) ∧ IF (x) /∈U
IF (D), so the validation query corresponds to an IC violation.. Take an IC axiom α = C :: AtLeast(n,R,D). To be satisfied, it requires
an F-structure IIC such that IIC |=F IF (x) ∈ICU IF (C) → (∃y1..k ∈ E s.t.
IF (yi) ∈ I→(IF (R))(IF (x)) ∧ IF (yi) ∈ICU IF (D) ∧ ¬(IF (yi) = IF (yj)) for k ≥ n.
Now, for α to be violated, we have to find a model J in which k < n. Thus,
α is violated if J |=F ∃x ∈ E s.t. IF (x) ∈ICU IF (C) ∧ ∃y1..k ∈ E s.t. IF (yi) ∈
I→(IF (R))(IF (x)) ∧ IF (yi) ∈ICU IF (D) ∧ ¬(IF (yi) = IF (yj) for k < n. Here, k
is treated as maximum, i.e., there can be no more that k ys.

α is validated by x :C ∧ not(
∧

1≤i≤n x[R→ yi] ∧ yi :D
∧

1≤i≤j≤n not(yi = yj)).
Let us now rewrite it at the F-structure level. We will also replace the outer big
conjunction with existential quantifier (makes no difference in terms of semantics)
to allow us to match it to the IC violation formula. Thus, the query is looking
for a model H such that H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ ∃y1..l ∈ E s.t.
IF (yi) ∈ I→(IF (R))(IF (x)) ∧ IF (y) ∈U IF (D) ∧

∧
1≤i≤j≤n not(IF (yi) = IF (yj))

for l < n. Again, l is a maximum, so no more unique ys can exist.. Let α = C ::HasSelf(R) be an IC axiom. It is violated if we find a model J
such that J |=F ∃x ∈ E s.t. IF (x) ∈ IF (C) ∧ IF (x) /∈ I→(IF (R))(IF (x)).

The corresponding validation query searches for a model H for which it holds
that H |=F IF (x) ∈U IF (C) and H 6|=F IF (x) ∈U IF (HasSelf(R)) for some
x from E . Putting the formulas together and replacing HasSelf(R) with the

141

B. Proofs ...
corresponding interpretation, we get H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧
IF (x) /∈ I→(IF (R))(IF (x)).. An IC axiom α = C ::Nom(a) is violated in a model J such that J |=F ∃x ∈ E
s.t. IF (x) ∈ IF (C) ∧ IF (x) 6= IF (a). It should be easy to see that the same
formula can be constructed from the corresponding validation query.. As was stated earlier, universal quantification integrity constraints are written
using signature expressions in F-logic. Thus, an IC axiom α now takes the
form of α = C[R ⇒ D]. This requires an IC model IIC to satisfy IF (x) ∈ICU
IF (C) ⇒ (IF (y) ∈ IIC→ (IF (R))(IF (x)) ⇒ IF (y) ∈ICU IF (D)) for any x, y ∈ E .
α is violated in a model J if J |=F ∃x, y ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (y) ∈
I→(IF (R))(IF (x)) ∧ IF (y) /∈U IF (D).
Now, for the validation query, we have T (C[R ⇒ D]) = x :C ∧ not(x[R ⇒
D]) (recall that signature expressions propagate from classes to instances).
According to well-typing rules [29], a matching F-structure H satisfies IF (x) ∈U
IF (C) ∧ ¬(IF (y) ∈U I→(IF (R))(IF (x)) ⇒ IF (y) ∈U IF (D)), thus IF (x) ∈U
IF (C) ∧ IF (y) ∈U I→(IF (R))(IF (x)) ∧ IF (y) /∈U IF (D) for some x, y ∈ E .. Lastly, consider an integrity constraint axiom α = C :: Some(R,D), which
requires F-structures to satisfy ∀x ∈ E IF (x) ∈ICU IF (C)⇒ ∃y ∈ E s.t. IF (y) ∈
IIC→ (IF (R))(IF (x)) ∧ IF (y) ∈ICU IF (D). α is violated if we find a model J such
that J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ ∀y ∈ E IF (y) /∈ I→(IF (R))(IF (x)) ∨
IF (y) /∈U IF (D).
Transformation of validation query T (C :: Some(R,D)) = x : C ∧ not(x :
Some(R,D)) follows the path treated several times above and arrives at the
same expression as the IC α violation, i.e. ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ ∀y ∈
E IF (y) /∈ I→(IF (R))(IF (x)) ∨ IF (y) /∈U IF (D).

Thus, it has been shown that for both RBox axioms and the GCI axiom involving
various concept descriptions integrity constraint checking can be reduced to query
answering in F-logic.

142

Appendix C

Mapping Examples

C.1 Mapping by Example – OS1

This section reproduces the mapping example based on OS1. The main purpose is
to show the F-logic ontology OFS1, which was not presented in Section 6.1. Let us
start with the DL versions of the domain ontology and its integrity constraints.

OS1 ={Asset v=1 author.>, Asset v61 lastEditor.>, Resource v Asset,
Report v Asset, author v editor, lastEditor v editor,
Report v=1 documents.Occurrence,
Occurrence v=1hasSeverity.Severity,
Severity ≡ {observation, incident, accident},
User v=1 firstName.string, User v=1 lastName.string,
User v=1username.string}

ICS1 ={Report v=1 author.User,Report v ∀ author.User,
Report v61 lastEditor.User,Report v ∀ lastEditor.User,
Report v=1 documents.Occurrence,Report v ∀ documents.Occurrence,
Report v ∀hasAttachment.Resource,
Occurrence v=1hasSeverity.Severity,
Occurrence v ∀hasSeverity.Severity,
User v=1 firstName.string, User v ∀ firstName.string,
User v=1 lastName.string, User v ∀ lastName.string,
User v=1username.string, User v ∀username.string}

143

C. Mapping Examples
This is then followed by the corresponding F-logic variants. Notice that the

hasAttachment attribute of Report has no cardinality constraint, only its target
type is restricted to Resource .

OFS1 ={AssetC ::Some(authorR, ThingC), AssetC ::AtMost(1, authorR, ThingR),
subPropertyOf(authorR, editorR), subPropertyOf(lastEditorR, editorR),
ResourceC ::AssetC ,
ReportC ::AssetC , ReportC ::Some(documentsR, OccurrenceC),
Report ::AtMost(1, documentsR, OccurrenceC),
OccurrenceC ::Some(hasSeverityR, SeverityC),
Severity = Nom(observationE , incidentE , accidentE),
UserC ::All(firstNameR,_string), UserC ::All(lastNameR,_string),
UserC ::All(usernameR,_string),
observationE :SeverityC , incidentE :SeverityC , accidentE :SeverityC}

ICFS1 ={ReportC [authorR{1,1} => UserC ;
lastEditorR{0,1} => UserC ;
documentsR{1,1} => OccurrenceC ;
hasAttachmentR => ResourceC],

OccurrenceC [hasSeverityR{1,1} => SeverityC],
UserC [firstNameR{1,1} => _string;

lastNameR{1,1} => _string;
usernameR{1,1} => _string]}

The Java object model is not reproduced here, but can be found in the published
project.1 Below are the two sample ABoxes, AS11 is valid w.r.t. integrity constraints,

1https://kbss.felk.cvut.cz/gitblit/summary/ml-oom-validation.git, accessed 2020-08-
11.

144

https://kbss.felk.cvut.cz/gitblit/summary/ml-oom-validation.git

................................C.1. Mapping by Example – OS1

while AS12 is not.

AS11 ={Occurrence(occurrence01), hasSeverity(occurrence01 , observation),
Occurrence(occurrence02), hasSeverity(occurrence02 , accident),
User(tom), firstName(tom, ”Thomas”), lastName(tom, ”Lasky”),
username(tom, ”lasky@unsc.org”),
User(sarah), firstName(sarah, ”Sarah”), lastName(sarah, ”Palmer”),
username(sarah, ”palmer@unsc.org”),
Report(report01), Report(report02),
author(report01 , tom), documents(report01 , occurrence01),
author(report02 , tom), documents(report02 , occurrence02),
lastEditor(report02 , sarah)}

AS12 ={Occurrence(occurrence01), Report(report01),
documents(report01 , occurrence01)}

Finally, the F-logic versions of the ABoxes look as follows:

AFS11 ={occurrence01 E : OccurrenceC , occurrence02 E : OccurrenceC ,
occurrence01 E [hasSeverityR → observationE],
occurrence02 E [hasSeverityR → accidentE],
tomE :UserC , sarahE :UserC ,
tomE [firstNameR → ”Tom”ˆˆ_string;

lastNameR → ”Lasky”ˆˆ_string;
usernameR → ”lasky@unsc.org”ˆˆ_string],

sarahE [firstNameR → ”Sarah”ˆˆ_string;
lastNameR → ”Palmer”ˆˆ_string;
usernameR → ”palmer@unsc.org”ˆˆ_string],

report01 E :ReportR, report02 E :ReportR,
report01 E [authorR → tomE ;

documentsR → occurrence01 E],
report02 E [authorR → tomE ;

documentsR → occurrence02 E ;
lastEditorR → sarahE]}

AFS12 ={occurrence01 E : OccurrenceC , report01 E :ReportR,
report01 E [documentsR → occurrence01 E]}

145

C. Mapping Examples
C.2 Mapping by Example – OS2

This section presents the second mapping example mentioned in Section 6.1. It is
based on an ontology of safety and security events, and particularly concerns threats
to airborne and ground objects. Below is the DL ontology OS2 and its corresponding
set of integrity constraints ICS2.

OS2 ={GroundObject v ¬AirborneObject, SafetyEvent v Event,
SecurityEvent v SafetyEvent,
UnlawfulAction v (Action u SafetyEvent),
UnlawfulAction v ∃hasPunishment.Punishment,
BombThreat v (SecurityEvent u UnlawfulAction),
BombThreat v ∃ against.(AirborneObject tGroundObject)}

ICS2 ={GroundObject v ¬AirborneObject,
BombThreat v (SecurityEvent u UnlawfulAction),
UnlawfulAction v ∃hasPunishment.Punishment,
UnlawfulAction v ∀hasPunishment.Punishment,
BombThreat v ∃ against.(AirborneObject tGroundObject),
BombThreat v ∀ against.(AirborneObject tGroundObject)}

The F-logic versions – OFS2 and ICFS2 are presented next. Of particular importance
is the set of integrity constraints ICFS2, which serves as the base of the final Java
object model.

OFS2 ={GroundObjectC ::Not(AirborneObjectC), SafetyEventC ::EventC ,
SecurityEventC ::SafetyEventC ,
UnlawfulActionC :: (ActionC and SafetyEventC),
UnlawfulActionC ::Some(hasPunishmentR, PunishmentC)}
BombThreatC :: (SecurityEvent and UnlawfulActionC),
BombThreatC ::Some(againstR, AirborneObjectC or GroundObject),

ICFS2 ={UnlawfulActionC [hasPunishmentR{1,∗} ⇒ PunishmentC],
BombThreatC [againstR{1,∗} ⇒ AirborneObjectC or GroundObjectC],
BombThreatC :: (SecurityEvent and UnlawfulActionC),
GroundObjectC ::Not(AirborneObjectC)}

Now, Section 6.1.2 discussed some mapping features missing in JOPA. The most

146

................................C.2. Mapping by Example – OS2

prominent of them is arguably multiple inheritance. Listings C.1 and C.2 provide at
least a glimpse of how its mapping should eventually look like in the context of the
current example. Since Java does not support multiple inheritance at the class level,
interfaces are utilized to realize this relationship.

Listing C.1: Mapping of multiple in-
heritance in Java based on ICF

S2 to
Java interfaces.

@Namespace(prefix = "ev",
namespace =
"http://example.org/evaluation−02/")

@OWLClass(iri = "ev:UnlawfulAction")
public interface UnlawfulAction {

@ParticipationConstraints(nonEmpty = true)
@OWLObjectProperty(iri =
"ev:hasPunishment")

Set<Punishment> getPunishments();

void setPunishments(Set<Punishment>
punishments);

}

@OWLClass(iri = "ev:SecurityEvent")
public interface SecurityEvent {
}

@OWLClass(iri = "ev:BombThreat")
public interface BombThreat extends
SecurityEvent, UnlawfulAction {

@ParticipationConstraints(nonEmpty = true)
@OWLObjectProperty(iri = "ev:against")
Set<Thing> getTargets();

void setTargets(Set<Thing> targets);
}

Listing C.2: Concrete class
BombThreatImpl implements the
corresponding interfaces.

class BombThreatImpl implements BombThreat {

@Id
private String id;

private Set<Punishment> punishments;

private Set<Thing> targets;

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;

}

@Override
public Set<Punishment> getPunishments() {

return punishments;
}

@Override
public void setPunishments(Set<Punishment>
punishments) {
this.punishments = punishments;

}

@Override
public Set<Thing> getTargets() {

return targets;
}

@Override
public void setTargets(Set<Thing> targets) {

this.targets = targets;
}

}

The sample data consist of two examples, where the first (AS21) is valid w.r.t.
integrity constraints and the second (AS22) is invalid. The datasets can be expressed

147

C. Mapping Examples
in description logics as follows:

AS21 ={Punishment(fine), Punishment(imprisonment),
Punishment(probation),
AirborneObject(oceanic815), GroundObject(pragueAirport),
BombThreat(threat01), against(threat01 , oceanic815),
hasPunishment(threat01 , imprisonment),
BombThreat(threat02), against(threat02 , pragueAirport),
hasPunishment(threat02 , probation)}

AS22 ={Punishment(fine), Punishment(imprisonment),
Punishment(probation),
AirborneObject(oceanic815), GroundObject(pragueAirport),
BombThreat(threat01), against(threat01 , oceanic815),
BombThreat(threat02), hasPunishment(threat02 , probation),
BombThreat(threat03), hasPunishment(threat03 , probation),
against(threat03 , unknownObject)}

Their F-logic translation then has the following structure:

AFS21 ={fineE :PunishmentC , imprisonmentE :PunishmentC ,
probationE :PunishmentC ,
oceanic815 E :AirborneObjectC , pragueAirportE :GroundObjectC ,
threat01 E :BombThreatC , threat02 E :BombThreatC ,
threat01 E [againstR → oceanic815 E ;

hasPunishmentR → imprisonmentE],
threat02 E [againstR → pragueAirportE ;

hasPunishmentR → probationE]}
AFS22 ={fineE :PunishmentC , imprisonmentE :PunishmentC ,

probationE :PunishmentC ,
oceanic815 E :AirborneObjectC , pragueAirportE :GroundObjectC ,
threat01 E :BombThreatC , threat02 E :BombThreatC ,
threat01 E [againstR → oceanic815 E],
threat02 E [hasPunishmentR → probationE],
threat03 E :BombThreatC ,
threat03 E [againstR → unknownObjectE ;

hasPunishmentR → imprisonmentE]}

As already explained in Section 6.1, all the examples are available in the sample
project, together with the corresponding IC validation queries. The examples from
the project can be evaluated using a triple store with at least RDFS inference
capabilities (in case of the DL version) or Flora-2 (in case of the F-logic variant).

148

Appendix D

Semantic Web Developer Survey – Complete
Results

This section presents the complete answers of the survey among Semantic Web
developers, described in Section 6.4. In the following, each sub-section represents
a single question of the survey. Answers are enumerated under each questions.
Answers with the same number in different questions are by the same respondent.
Answers were not edited, besides correcting occasional typos. Answers of the Linked
Pipes ETL editor developers (no. 10) were translated from Czech to English. Empty
item means no answer was provided for the respective question.

Special thanks go to Armando Stellato (Semantic Turkey and VocBench), David
Corsar (GetThere), and Petr Škoda (Linked Pipes ETL) for their detailed answers.

0. Please, provide a short description of the nature of Semantic
Web-based information systems you develop. Names, links to source code
or Web page are welcome...1. C-SPARQL Engine: an RDF Stream Processing engine with stream reasoning
capabilities...2...3.

149

D. Semantic Web Developer Survey – Complete Results4. Model Shape Validation of RDF based power system models (https://www.
entsoe.eu/digital/cim/cim-for-grid-models-exchange/)...5. Apache Jena..6. Schema managers, datacube-mapping tools, metadata management software,
custom applications for multiple domains. Everything that was done with other
technologies before...7...8. GetThere system..9. VocBench + Semantic Turkey...10. Linked Pipes ETL editor. RDF is used both by backend and frontend directly,
but its specifics are limited to minimum....11. SPipes Editor

1. What technology do you use to access Semantic data?..1. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..2. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..3. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..4. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..5. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..6. Radio button is not smart here. All of the above,1 depending on the app...7. Statement/axiom-based APIs (Jena, OWLAPI, RDF4J, rdflib, RDF.rb, etc.)..8. We hosted data in triplestores (Fuseki or RDF4J (or Sesame as it was known),
and accessed, queried, updated the data via SPARQL endpoints using Jena’s
Fuseki SPARQL API...9. Definitely low-level. In particular I use RDF4J (but I have been a Jena user
more than a decade ago). There’s a rationale for my choice on low-level. We
develop core applications for RDF management, not general applications that
simply store data as RDF. While the second could use AliBaba and the likes
as the equivalent of what ORMs are for DBs, an application for core dev of
RDF needs core access to it Within low-level APIs, then a second question
could be: do we use their triple oriented APIs or even higher level, as in Jena,

1That is, domain-independent APIs, domain-specific APIs, SPARQL and Linked Data Platform.

150

https://www.entsoe.eu/digital/cim/cim-for-grid-models-exchange/
https://www.entsoe.eu/digital/cim/cim-for-grid-models-exchange/

......................D. Semantic Web Developer Survey – Complete Results

for instance, they provide a sort of OO API with methods attached to a given
resource type, and asking the relations of that resource, e.g. for a Class, they
may have getSubClasses()) or low-level SPARQL access? In the past, Semantic
Turkey made large use of triple oriented APIs of Sesame (the old name for
RDF4J). However, the necessity to create complex queries and the possibility
we gave to connect to external triple stores made this choice inefficient from the
point of view of performances. Currently, we go for RDF4J using 99% SPARQL
queries and updates. We actually have further query builders and assemblers
developed by us for providing more layers of engineerization to the developer of
our Web API for ST....10. RDF4J in the Java-based backend, JS on frontend has custom handling. It was
planned to use LDP, but never got to it....11. JOPA and SPARQL, depending on the use case.

2. What led you to select the data access technology you use? Did you
consider other options?..1. Jena is part of the C-SPARQL engine...2. Maturity of the tools and license (free software)...3. Support for GeoSPARQL...4. Simple API and little overhead; Need to work on the graph directly...5. Developing and maintaining a custom quad store required low level API access...6. Depends on the use-case, there is not one right or wrong way...7. OWL 2, expressivity that can be compare to what Natural language can do..8. We wanted to use semantic technologies so that we could keep the different
datasets separate to simplify updating each independently, but still maintaining
the ability to link easily between them. We did consider using a more traditional
solution (e.g. database) but data integration required too much coupling between
the database and the program code - using linked data it was much easier...9. I think the answer above mostly replies to this. To add some more history. In
past versions of STs (before development of VocBench 3 started, so we are also
talking about VB2) we actually created a further middle-layer with our own
API (OWLART API). These were meant as bridges over different possible APIs.
And, for a while, there has been the possibility to use both Sesame and Jena
by switching the implementation of OWLART. With the move to the heavy
reengineering we made in ST for the VB3 endeavour, we decided that it was
simply too costly to keep up maintaining our abstraction API over different

151

D. Semantic Web Developer Survey – Complete Results
APIs which were, in turn, middleware as well. So, since we were not interested
in the peculiar OO-like API of Jena and since RDF4J seemed to meet more
our requirements (we particularly appreciated the sail mechanism) we opted for
fully embracing RDF4J....10. RDF4J (Sesame at the time, 7 years ago) was not chosen for any particular
reason over Jena. Since then, we have stuck with it. Using an OTM library
like Empire was not considered cost effective – would introduce additional
complexity, current RDF handling is short and simple enough....11. JOPA was chosen due to convenient object-ontology mapping and SPARQL
comes in handy for queries where OOM is less desirable.

3. If you are not using higher level libraries: Do you think you would
benefit from using such an API? If not, what are the reasons?..1...2...3. Likely yes, even though I do not know of any that would suit my use case...4. Currently developing a higher level framework for the power system modeling
domain...5. Higher levels of abstraction make low level optimisation far more difficult...6. Again it depends on what one wants to do. Abstractions might be helpful but
not always. The point of RDF is the open world model and some of these
higher-level libraries might not be able to benefit from that...7. Expressivity is generally lost at high level. Performance of low level (SPARQL)
is also a point when data are big...8. This was developed before the Linked Data Platform existed, but using SPARQL
1.1 made everything much easier in terms of code for the web services managing
the data. Rather than having to worry about mapping data objects to the
data store schema, we simply created some template SPARQL queries that
were instantiated with values at run time. Also, given the scale of the data,
using just Jena or OWL API wouldn’t really have been appropriate if it wasn’t
combined some form of SPARQL querying. It also meant it was easy to test
out different triple stores to see which worked well with different datasets...9. Again, largely answer to 1 replies to this as well....10. We did not see any benefits in it. Libraries for transformation of RDF to POJOs
usually require annotations. Our code has one extra class for dealing with the
mapping and the model itself stays simple.

152

......................D. Semantic Web Developer Survey – Complete Results...11.
4. Do you need to edit data across multiple triple stores (resp. multiple
named graphs in a single triple store)? How do you do it?..1. I need to edit multiple named graphs in a single triple store. I use Jena API...2. I do it with a text editor because better tools are not available...3. I don’t have this need at the moment...4. Situation: single triple store with multiple named graphs; Data editing by
adding/deleting triples directly; It is defined which kind of information goes in
which graph, so easy mapping...5. Yes, with SPARQL Update...6. We do that by taking care of it in the application design. Again hard to
generalize...7. No..8. Yes both. Different triple stores stored different data, and within them each
had different named graphs for different versions of the dataset. This was all
done by adapting the SPARQL query templates and having a configuration file
that sets up Jena SPARQL client with the correct SPARQL endpoint address.
Then everything was done via SPARQL. Although, we didn’t update across
multiple stores / graphs in a single query...9. In VB3, we adopt a repository per project approach. Each repository can be
on the same triple store or on different ones but this doesn’t change much. In
some rare cases (some services for rendering resources in our alignment tool),
we adopt internally federated queries (which is a feature of GraphDB), only if
the two repositories are on the same triple store instance and this is GraphDB.
ST provides aspects in all of its APIs for changing data in different graphs. The
"working graph" can be specified in a context of the API (a context is something
that can be passed through each API, and thus is not even part of the signature)
and can be any of the graphs being maintained by the application. This is
powerful at the level of API as the user (and even developer writing the service)
can simply use the same services, switching graphs, without even needing to
use the GRAPH keyword. However, to the purpose of VocBench application
model, we simply have one "main graph" that is meant to contain the data
to be edited, while other graphs can be used for putting imported read-only
data, application support data (e.g. our staging-graph: http://vocbench.
uniroma2.it/doc/user/history_and_validation.jsf#validation) that is
only managed by the system, inference data etc... So while the WebAPI allow

153

http://vocbench.uniroma2.it/doc/user/history_and_validation.jsf#validation
http://vocbench.uniroma2.it/doc/user/history_and_validation.jsf#validation

D. Semantic Web Developer Survey – Complete Results
to switch graphs, our normal policy within the application keeps the main graph
as the only “working graph” of the API....10. We try to avoid triple stores, all the pipelines are stored in RDF files. We
haven’t had a use case for a classic triple store, yet. We favour approach of
avoiding a database as long as it is not strictly necessary to use it....11. No

5. What is the expressiveness of the data your application works with?
What are the inference tasks the application business logic benefits from?..1. Rich Data Streams from Social Media, Call Data Records and Video Analytics
IoT devices...2...3. The data would in general fit in the Observations & Measurements standard. I
am not yet experimenting with reasoning, the hurdles I currently face are at
much lower level...4. The data is the business model; Whole European power system planning
and operation depend on it; Business logic: from optimization, over market
prediction to accountant...5. N/A..6. Reasoning is helpful on many levels: Finding more generic things, describing
rules etc...7. OWL-DL-Full, reflexivity, co-graph, transitivity, dynamic extension, coherency
check. Business logic is help with the one shoot learning possibilities that are
particular system offer...8. The ontologies were OWL 2 RL. Because of the scale of the data and limited
computational resources available to us at the time, there was hierarchical
reasoning for subclasses and subproperties but we kept the rest reasonable
straightforward with little additional inferencing to ensure the responsiveness
of the app (it was using streaming data from users)...9. VocBench fully supports core editing in RDF, RDFS, OWL, OWL2, SKOS,
SKOS-XL, Ontolex Lemon. What does “support” mean? Obviously, a pure
RDF editor would allow to edit content for any of those core vocabularies. But
we know that all these vocabularies have complex expressions that would be
humanly unmanageable through a simple RDF editor (think of owl:Restrictions,
for which a DL/Manchester syntax is definitely required! Or of Ontolex-lemon
looong indirections or even trivially, of SKOS-XL reified labels. In our domain,

154

......................D. Semantic Web Developer Survey – Complete Results

all of them (as a mean to analyze what can be inferred given a certain ontology
and the data modeled after it) and, strictly, none of them. Like I said, we work
on core data development so I guess this question doesn’t apply to us....10. Nothing besides resolving duplicate imports....11. No

6. What were the biggest development obstacles you had to overcome?..1. Coupling Jena with a Stream Processing system...2. Lack of decent editors for RDF data, especially for huge datasets...3. I am yet to find a triple store that can both support GeoSPARQL and is mature
enough for production...4. Complex data model; numerous edits which need to be traceable and revertible...5...6. The RDF JavaScript domain was not well developed when we started so we
had to bootstrap a whole ecosystem around RDFJS...7. Volume, even short volume of data make inference hard for computer (OWL-
DL-Full is the solution and it’s own problem)...8. We created all the SPARQL templates as Java formatted strings; having some
Java object to SPARQL mapping (similar to POJO / Spring) would have maybe
made it a bit easier. Most of the effort was in writing boilerplate code to convert
URL parameters into SPARQL queries and process the results of the SPARQL
query into a simple JSON structure that was more compact that SPARQL
JSON to send over a mobile data connection with limited connectivity so needed
to be simple to process on, potentially old, mobile phones without draining too
much resources of the device...9. Well, there are many and this would require time to reply properly. However,
one important thing that comes to my mind is: low interoperability. Despite
Semantic Web standards should be all about interoperability, still it’s not
possible to switch two triplestores and hope to have a 100% compliancy over
SPARQL. And this is not only about the coverage of functional aspects (e.g.
a certain aspect of SPARQL being implemented or not). Another big issue
is that SPARQL is declarative but, obviously, the processes that implement
the resolution of its queries are not. And, unfortunately, this might mean
even very strong differences in performance. The problem is not that a triple
store is simply better than one another. The problem is that knowing how a
triple store approaches the resolution of a query influences the way we have to

155

D. Semantic Web Developer Survey – Complete Results
write the query. In some stores, writing a query in a way could lead to huge
computation time because simply it postpones evaluation of a variable which
would enormously restrict the evaluation of other variables, thus resulting in
explosion of the latter. Our solution has been to use often nested queries, as
they guarantee on the order of resolution between the inner and outer....10. Not really. There were obstacles in using RDF and Linked Data, but most of
them have been avoiding by not using a triple store. Maybe just the problem
of RDF4J being demanding in terms of memory consumption and having a
dynamic schema and incomplete RDF....11. Inconsistency of in-place data modification.

7. Any additional comments, experiences, feedback.....1. Jena is a wonderful project with some grey unmaintained areas...2. We badly need better editors for RDF data...3. The Semantic Web is a great idea, but in most tasks the tools are not really
there yet...4...5...6...7. Bugs in tools are the main concern today. Tomorrow continuous data stream
will have to be manage by ontology...8...9....10....11.

156

	Motivation and Problem Statement
	Introduction
	Motivation
	Problem Statement
	Thesis Goals

	Background
	RDF
	Linked Data
	SPARQL and SPARQL Update
	Ontologies
	RDFS
	OWL
	OWL Semantics

	SROIQ(D)
	SROIQ(D) Syntax
	SROIQ(D) Semantics

	Integrity Constraints
	Integrity Constraints in Description Logics

	F-logic

	State of the Art
	Accessing Semantic Data
	Existing Tools for Semantic Data Access
	Closed World Reasoning in Description Logics
	Mapping Between Description Logics and F-logic

	Integrating Applications Using Semantic Web Technologies
	Data-level Integration
	Service-level Integration

	Semantic Web-based Information Systems: A Survey
	Literature Concerning Semantic Web-based Information Systems
	Examples of Existing Semantic Web-based Information Systems

	Contribution
	Theoretical Basis for Application Access to Semantic Data
	Comparison of Object-triple Mapping Libraries
	Design of the Comparison Framework
	Overview of Comparison Results

	Formal Object-ontological Mapping
	Mapping between Description Logics and F-logic
	Mapping between F-logic and Programming Languages

	Data Access Operations
	Definition of the Operations
	Complexity Analysis

	Practical Solutions of Thesis Goals
	OntoDriver
	Structure of OntoDriver
	Implementations

	Java OWL Persistence API
	History
	Features
	Structure

	Java Binding for JSON-LD
	Principles

	Results
	Evaluation
	Evaluation of the Object-ontological Mapping Formalism
	Mapping by Example
	Missing Features

	Information Systems Built Using the Presented Tools
	INBAS
	SISel
	TermIt
	The Others

	Architecture of Semantic Web-based Information Systems
	General Notes on Developing Semantic Web-based Information Systems
	Separating Business Logic from Infrastructure – Pitfalls

	Semantic Web-based Information Systems Developer Survey
	Survey Audience and Questions
	Survey Evaluation

	Experience with Developing Semantic Web-based Information Systems

	Conclusions
	Bibliography
	Publications by the Author
	Journal Publications
	Conference Publications
	Methodologies
	Software

	Appendices
	Abbreviations and Acronyms
	Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.3

	Mapping Examples
	Mapping by Example – OS1
	Mapping by Example – OS2

	Semantic Web Developer Survey – Complete Results

