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Introduction

Quantum graphs were first studied in the 1930s but they gained importance only
in the last three decades. There are multiple reasons for it. Quantum graphs can
be used as simple, yet not trivial, models for complicated structures appearing in
many fields, such as chemistry, mathematics and engineering. For example, rapid
development in fabrication techniques allows us to produce plenty of graph like
structures of pure semiconductor material, for which quantum graphs represent a
natural model. There are plenty of other applications worth mentioning, for instance,
photonic crystals, free-electron theory, conjugated molecules, number theory, etc.,
more examples can be found in the monograph [1].

The article [6] which aimed at modeling of the anomalous Hall effect has been
published in 2015. The authors of this article created an elegant mathematical model
which described the motion of electrons in atomic orbitals using network of rings
with the δ-coupling at their junctions. This model had a drawback, though, as
electrons involved in the effect can appear only in orbitals with particular angular
momentum. If we want to model this situation using quantum graph theory, we
would have to assume that the electrons have a preferred direction of motion. How
would such a time non-invariant quantum graph look like? It turns out that this
property can be ensured by choosing a suitable vertex coupling. In the paper [3] a
new kind of coupling was proposed which is not time-reversal, unlike other, more
commonly used couplings, such as Kirchhoff’s, δ-coupling or δ′-coupling. One of the
aims of this thesis will be to examine this coupling on a simple graph having the
form of infinite rectangular lattice shape and to identify spectral properties.

These properties can be compared with those of a rectangular lattice graph with
δ-coupling at the vertices. This problem was treated in [2, 7] and we present a
summary of the results without proofs. Note that these results will be important in
our further research.

It is well known that the choice of vertex coupling has a significant impact on spectral
properties; recall that any self-adjoint coupling may be given a reasonable physical
meaning. From the point of view of applications, it is useful to have wide parametric
class of vertex coupling, which allows us to tune quantum graph properties according
to the situation. This motivates the main topic of this thesis, which is an investigation
of a new parametric set of interactions introduced in [4] interpolating between δ-
interaction and time non-invariant coupling introduced in [3]. It is known, that
the spectrum of infinite periodic system has generically the band-gap character.
The number of gaps in a rectangular lattice with a δ-coupling has an interesting

11



property, namely that in case of incommensurate rectangle sides it may depend on
the type of the irrationality: it may contain an infinite number of gaps, no gaps or, in
some cases, finite number of gaps (see [7]). Our main goal is to study these spectral
properties for the whole parametric class of couplings.

Let us take a look at the thesis’ structure.

The first chapter is dedicated to the introduction of quantum graphs, including the
basic concepts with which we will work with throughout the entire thesis. In this
part, we summarize only the information necessary in the following research. We
refer to the monograph [1] for more detailed information about the quantum graph
concept.

The second chapter is devoted to properties of an infinite rectangular lattice with
the indicated non-invariant coupling extending the result obtained in the paper
[3] for the particular case of a square lattice. We derive here the condition that
determines the spectrum. By analyzing this condition, we identify some properties
of the spectrum. We also present numerical results of the spectrum at the end of
this chapter.

The third chapter recapitulates the results of articles [2] and [7] about rectangular
lattice quantum graph with δ-coupling at the vertices. These results will be needed
in the final chapter.

The final chapter contain the main results of the thesis examining the rectangular
lattice again, now with the new parametric family of couplings. We again derive the
spectral condition and use it to find some properties of the spectrum in dependence
on the parameters of the model.
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Chapter 1

Introduction to Quantum Graphs

This chapter deals with basic notions of the theory of quantum graphs. We point
out that most of definitions and theorems are taken from monograph [1].

1.1 Graphs

Definition 1.1. A graph Γ consists of a two parts:

1. Set of vertices V := {vi}i∈I .

2. Set of edges E := {ej}j∈J .

The sets I, J are finite or countably infinite. With the convention described below,
the graph is fully determined by its adjacency matrix AΓ. The elements of the
adjacency matrix indicate if pairs of vertices are connected with an edge or not.

Figure 1.1: A Graph.

We denote by |V| the number of vertices and by |E| the number of edges. The degree
dv of a vertex v is the number of edges emanating from it.

The characterization of a graphs by its adjacency matrix makes sense because we
may assume without loss of generality that it is free of (a) single-edge loops con-
necting a vertex to itself and (b) multiple edges connecting two vertices. Should any
of these situations occur, we can eliminate it by adding "dummy" vertices of degree
two as shown in Fig. 1.2.
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Figure 1.2: Eliminating single-edge loops and multiple edges.

With this convention taken into account the |V|×|V| adjacency matrix has a simple
form:

AΓu,v = 1 if there exists edge connecting vertices u and v,
AΓu,v = 0 otherwise.

1.2 Metric graphs

Definition 1.2. A graph is said to be a metric graph, if:

1. Each edge is assigned a positive length Le ∈ (0,∞).

2. A coordinate xe ∈ [0, Le] increasing in one direction of the edge is associated with
each edge. If the opposite direction is chosen then the corresponding coordinate xē
satisfies xē = Le − xe.

Definition 1.3. We will call a graph infinite if it has infinitely many vertices
(equivalently, infinitely many edges). Otherwise the graph will be called finite. A
finite graph, whose edges all have finite lengths will be called compact.

If the sequence of edges {ei}Ni=1, N ∈ N forms a path we can define the length of
the path as

∑N
i=1 Lei . Any graph can be naturally equipped with metric in following

way. The distance ρ(v, w) between two vertices is defined as minimal length of the
path connecting them. In the same way also the distance ρ(x, y) between arbitrary
two points x, y of the graph which are not necessarily vertices may be defined.

Now we can easily introduce other useful structures on a metric graph. Every edge
of a metric graph has its coordinate xb. Hence a function f(xb) can be defined on
every edge and thus on the whole graph Γ. Using the metric structure one can
speak about continuous functions and also define the standard space of continuous
functions C(Γ) on the metric graph Γ. Moreover, the Lebesgue measure dxb can be
introduced in natural way on every edge. Having this measure, one can define other
standard function spaces on Γ, e.g. L2(e) space and Sobolev spaces W n,p(e).

Let us recall the definition of the Sobolev spaceW n,p in the one-dimensional situation
before we proceed to its definition on a metric graph.

Definition 1.4. Let a function f be locally integrable on an open interval (a, b) ⊂ R,
i.e. f ∈ L1

loc((a, b)). We say that f has weak derivative of order k ∈ N if there exist
a g ∈ L1

loc((a, b)) such that∫ b

a

f(x)∂kφ(x)dx = (−1)n
∫ b

a

g(x)φ(x)dx

14



for every φ from the space of test functions D((a, b)). We put ∂kf := g.

Remark 1.1. For p ∈ 〈1,∞〉 the Hölder inequality immediately implies that Lploc((a, b)) ⊂
L1((a, b)). Hence the weak derivative is also well defined on Lploc((a, b)).

Definition 1.5. The Sobolev space W n,p((a, b)) consists of equivalence classes of
functions from Lp((a, b)) which have weak derivatives to the order n in Lp((a, b)), i.e.
W n,p((a, b)) = {f ∈ Lp((a, b))| weak derivative ∂kf ∈ Lp((a, b)), ∀k ∈ N, k ≤ n}.
The norm is defined as:

‖f‖Wn,p(a,b) :=
( n∑
k=1

‖∂kf‖pp
) 1
p
, p ∈ (1,+∞),

‖f‖Wn,p(a,b) :=
n∑
k=1

‖∂kf‖∞, p =∞.

Remark 1.2. The notation W n,2((a, b)) = Hn((a, b)) is usually used.

Definition 1.6. 1. The space L2(Γ) on Γ consists of functions that are measurable,
square integrable on each edge e and satisfy

‖f‖2
L2(Γ) :=

∑
e∈E

‖f‖2
L2(e) <∞.

2. The Sobolev space H1(Γ) on Γ consists of all continuous functions that belong
to H1(e) for each edge e and satisfy

‖f‖2
H1(Γ) :=

∑
e∈E

‖f‖2
H1(e) <∞.

The continuity condition is a natural vertex condition for functions from the Sobolev
space H1(Γ). On the other hand there are no such natural junction conditions for
functions from Sobolev space Hk(Γ) for k > 1. As we will see further there is
a certain freedom in choosing those junction conditions and our quantum system
will have different properties in dependence how we choose them. In other words, an
appropriate junction conditions will have to be imposed in definition of the quantum
graph.

These considerations make the definition of Sobolev space Hk(Γ) complicated for
k > 1. Hence we start with the definition without junction conditions and we just
require smoothness along the edges.

Definition 1.7. By H̃k(Γ) will be denoted the space

H̃k(Γ) :=
⊕
e∈E

Hk(e)

which consist of functions f on Γ that on each edge e belong to the Sobolev space
H̃k(e) and they are

‖f‖2
H̃k(Γ)

:=
∑
e∈E

‖f‖2
Hk(e) <∞

15



1.3 Quantum graph

A metric graph equipped by a suitable differential operator is called quantum
graph. The differential operator will be called Hamiltonian and it is required to
be self-adjoint in the following text.

Example 1. Let us introduce some of the differential operators which are frequently
used as quantum graphs Hamiltonians.

1. The negative second order derivative:

f(xe) 7→ −
d2f(xe)

dx2
e

, (1.1)

where xe is the coordinate along an edge e.

2. The Schrödinger operator:

f(xe) 7→ −
d2f(xe)

dx2
e

+ V (xe)f(xe), (1.2)

where V (xe) is an electric potential.

3. The magnetic Schrödinger operator:

f(xb) 7→ (
1

i

d

dxb
− Ab(xb))2f(xb) + V (xb)f(xb), (1.3)

where V (x) is an eletric potential and A(x) is an magnetic potential.

We will be using only the first one.

We know that a differential operator is not completely defined until its domain is
described. If we take an inspiration in the one dimensional case we find out that
the domain description should include a smoothness requirement along the edges
and some junction conditions at the vertices. The junction conditions or vertex
conditions are an analogy to boundary conditions for a single interval. We have
already mentioned those junction condition and we will study them in more detail
later.

Definition 1.8. ([1], Def. 1.4.1.) Quantum graph is a metric graph equipped with
a differential operator H (Hamiltonian), accompanied by "appropriate" vertex
conditions. That is, a quantum graph is triple {metric graph Γ, Hamiltonian H,
vertex conditions}.

Looking for suitable domains of the second-order differential operator on L2(Γ) we
begin with

⊕
e∈E H

2
0 (e) where H2

0 (e) is the subspace of the Sobolev space H2(e)
with the functions and their derivatives vanishing at the vertices (i.e. at the end of
the edges). Using the standard Sturm-Liouville theory, it can be checked that such
an operator is symmetric, and our aim is to find proper vertex conditions which
produce a self-adjoint extension of this operator. Obviously, a natural candidate for
this extension is a subset of the space H̃2(Γ) specified by suitable vertex conditions.
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Example 2. Kirchhoff vertex conditions, sometimes also calledNeumann (because
at a vertex of degree one it reduces to Neumann boundary condition), standard,
or free conditions.

f(x) is continuous on Γ, (1.4)

∑
e∈Ev

df

dxe
(v) = 0 at each vertex v. (1.5)

Ev is a set of all edges incident at the vertex v. The derivatives are taken in the
directions away from the vertex (outgoing directions).

Figure 1.3: A compact star graph.

Example 3 (Spectrum of compact star graph with Kirhhoff vertex conditions). Let
us find the spectrum of a compact star graph (Figure 1.3) with Kirhhoff vertex
conditions where the Hamiltonian is of the form (1.1) acting as the negative sec-
ond order derivative. We propose that the Hamiltonian is self-adjoint and has only
discrete spectrum (see Theorem 1.1).

Taking this into account, we have to solve the following spectral equation:

−d
2f(xe)

dx2
e

= k2f(xe), k ∈ R. (1.6)

The well known general solution and its first derivative have the form:

f(xb) = Ae sin(kxe) +Be cos(kxe), (1.7)
df(xe)

dxe
= kAe cos(kxe)− kBb sin(kxe), (1.8)

where A,B are real constants.

Now we use the Kirchhoff condition at the "peripheral" vertices, i.e. f ′(0e) = 0.
Plugging the first derivative into this conditions we get

f ′(0e) = 0 = kAe cos(k · 0e)− kBe sin(k · 0e) = kA⇒ A = 0.

Thus the eigenfunction f on the edge e is equal to

f(xb) = Be cos(kxe).

The outgoing derivative at the central vertex xe = Le is equal to

f ′(Le) = kBe sin(kLe).

17



Note that the sign has changed because the derivatives at the vertex are conven-
tionally taken in the outgoing direction.

We see that the Kirchhoff vertex conditions at the central vertex have the form

A1 cos(kL1) = A2 cos(kL2) = ... = A|E| cos(kL|E|) = C,

|E|∑
e=1

kAe cos(kLe) = 0.

For C 6= 0 we can divide the second equation by C and we get that k2 is an eigenvalue
if

F (k) :=

|E|∑
e=1

tan(kLe) = 0. (1.9)

1.4 Vertex conditions

Suppose that we have the negative second order differential operator (i.e. Hamilto-
nian (1.1)) on a metric graph Γ with the "maximum" domain H̃2(Γ) (see Definition
1.7). The main task of this section is to establish appropriate vertex conditions
which determine subsets of H̃2(Γ) such that the corresponding Hamiltonians are
self-adjoint.

For our purposes it is completely sufficient to consider only finite graphs, i.e. the
number of edges |E| and the number of vertices |V| is finite. True, the main object of
this thesis are infinite graphs, but we will deal with periodic ones the investigation
of which can be reduced to analysis of finite sub-graphs. We also consider only the
so-called local vertex conditions, i.e. those that involve the values of functions
and their derivatives at a single vertex at a time.

To describe local vertex conditions it is sufficient to consider graphs with a single
vertex, in other words, star-shaped ones; keeping in mind that an arbitrary graph
locally (i.e. close to a vertex) looks like a star graph.

The Hamiltonian H acts on a star graph Γ and its domain is subset of H̃2(Γ). If we
choose functions f1, ..., fd from this domain we can introduce notations:

1. The column vector F (v) of the values at the vertex v:

F (v) :=


f1(v)
...
...

fd(v)

 . (1.10)

2. The column vector F ′(v) of values at vertex v of derivatives of f taken in the
outgoing directions

F ′(v) :=


f ′1(v)
...
...

f ′d(v)

 . (1.11)
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The Hamiltonian acts as negative second order derivative on each edge. We know
from ODE theory that two boundary values has to be given, i.e. the values fe(v)
and f ′e(v). At every vertex the number of conditions is equal to number of edges
incident to this vertex, i.e. equal to the degree dv of the vertex v. Thus the most
general homogeneous (linear) condition has a form

AvF (v) + BvF ′(v) = 0, (1.12)

where Av and Bv are (dv × dv)-matrices.

Finally, the next theorem gives us an answer how to choose a vertex condition (i.e.
how to choose matrices in (1.12)) in order to get a self-adjoint Hamiltonian.

Theorem 1.1 (cf. [1], Thm. 1.4.4.). Let Γ be a metric graph with finitely many edges.
Consider the operator H acting as − d2

dx2e
on each edge e, with the domain consisting of

functions that belong to H̃2(Γ) and satisfying some local vertex conditions involving
vertex values of functions and their derivatives. The operator is self-adjoint if and
only if the vertex conditions can be written in one (and thus any) of the following
three forms:

A: For every vertex v of degree dv there exist dv × dv matrices Av and Bv such that

the dv × 2dv matrix (Av,Bv) has the maximal rank,

the matrix AvB∗v is self -adjoint,

and the boundary values of f satisfy

AvF (v) + BvF ′(v) = 0. (1.13)

B: For every vertex v of degree dv, there exists a unitary dv×dv matrix Uv such that
the boundary values of f satisfy

i(Uv − I)F (v) + (Uv + I)F ′(v) = 0, (1.14)

where I is the dv × dv identity matrix.

C: For every vertex v of degree dv, there are three orthogonal (and mutually orthog-
onal) projectors PD,v, PN,v and PR,v := I−PD,v−PN,v (one or two projectors can be
zero) acting in Cdv and an invertible self-adjoint operator Λv acting in the subspace
PR,vCdv , such that the boundary values of f satisfy

PD,vF (v) = 0 ”Dirichlet part”,

PN,vF
′(v) = 0 ”Neumann part”, (1.15)

PR,vF
′(v) = ΛvPR,vF (v) ”Robin part”.

Remark 1.3. The operator Λv and projectors PD,v, PN,v and PR,v satisfies

RanPD,v = KerB, RanPN,v = KerA, ΛvB
−1APD,v, (1.16)

and by definition PR,v = I− PR,v − PD,v.
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It is often useful to know the quadratic form of the operator H. The following
theorem describes how quadratic form looks like.

Theorem 1.2 ([1], Thm. 1.4.11.). The quadratic form h of H is given as

h[f, f ] =
∑
e∈E

∫
e

∣∣∣ df
dx

∣∣∣+
∑
v∈V

〈ΛvPR,vF, PR,vF 〉, (1.17)

where 〈, 〉 denotes the standard hermitian inner product in CdimPR,v . The domain of
this form consists of all functions f that belong to H1(e) on each edge e and satisfy
at each vertex v the condition PR,vF = 0.

Example 4. Vertex conditions:

The δ-type condition:

f(x) is continuous at vertex v,∑
e∈Ev

df

dxe
(v) = αvf(v),

U =
2i

4i+ a


−1 + αv

2
i 1 1 . . . 1 1

1 −1 + αv
2
i 1 1 1

... . . . ...
1 1 1 −1 + αv

2
i 1

1 1 1 . . . 1 −1 + αv
2
i

 ,

where αv is a real number.

The Dirichlet condition:

f(v) = 0.

U = I, (1.18)

where I is identity matrix.

The δ′s-type condition:

The values
df

dxe
(v) are independent of e at the vertex v,∑
e∈Ev

fe(v) = αv
df

dxe
(v),

U =
2

4 + ai


−1 + αv

2
i 1 1 . . . 1 1

1 −1 + αv
2
i 1 1 1

... . . . ...
1 1 1 −1 + αv

2
i 1

1 1 1 . . . 1 −1 + αv
2
i

 ,
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where αv is a real number.

The Neumann-type condition:

f(v) = 0.

U = iI, (1.19)

where I is identity matrix.

Definition 1.9. Let any function f(x) satisfies vertex conditions at v. We say
that the vertex conditions are scale invariant if also function f(rx) satisfies those
conditions for any r > 0.

Proposition 1.1 ( [1], Thm. 1.4.10.). Vertex conditions written in the form (1.15)
are scale invariant if and only if they do not contain any Robin part, i.e. PR,v = 0.

Remark 1.4. In [1] are all vertex conditions from the Example 4 rewritten in the
form (1.15). This allow us use the foregoing theorem and sum up results:

1. δ-type condition:

• αv = 0: scale invariant

• αv 6= 0: not scale invariant

2. δ′s-type condition:

• αv = 0: scale invariant

• αv 6= 0: not scale invariant

3. Dirichlet condition: scale invariant

1.5 Periodic graphs

Definition 1.10 ([1], Def. 4.1.1.). An infinite quantum graph Γ is called Zn-
periodic if an action of the free abelian group G = Zn is defined on it. The action
(g, x) ∈ G× Γ 7→ gx ∈ Γ has to satisfy following properties:

1. Group action:

• The mapping x 7→ gx is a bijection of Γ for every g ∈ G.

• 0 · x = x for every x ∈ Γ, where 0 is the neutral element of G.

• (g1 · g2)x = g1(g2x) for every g1, g2 ∈ G.

2. Continuity:

• The mapping x 7→ gx of Γ into itself is continuous for every g ∈ G.
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3. Faithfulness:

• If gx = x for some x ∈ Γ, then g = 0.

4. Discreteness:

• For every x ∈ Γ, there exists a neighbourhood U of x such that gx /∈ U for
g = 0.

5. Co-compactness:

• The space of orbits Γ/G is compact. Hence the G-shifts of compact subset
produce the whole graph.

6. Structure preservation:

• gu ∼ gv ⇔ u ∼ v. In particular, G acts bijectively on the set of edges.

• The group action preserves edges lengths: Lge = Le.

• The group action commutes with Hamiltonian and preserves the vertex con-
ditions.

Remark 1.5. So called dual lattice G? := 2πZn to G = Zn is often used.

Figure 1.4: A periodic graph with the fundamental domain W.

Definition 1.11 (cf. [1], Def. 4.1.2.). A fundamental domain for the action of G
on Γ is compact subset W of Γ with following two properties:

1. G-shifts of W covers Γ, i.e. ⋃
g∈G

gW = Γ.

2. For g1 6= g2 an intersection g1W ∩ g2W consists of finitely many points and there
are no vertices included.

Remark 1.6. The fundamental domain is not determined uniquely.
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1.6 Floquet-Bloch theory

Definition 1.12 ( [1], Def. 4.2.1.). A character of the group G is a homomorphism
γ : G 7→ C\{0}, i.e. γ satisfies:

1. γ(e) = 1, e is neutral element of G.
2. γ(g1g2) = γ(g1)γ(g2) for everyg1, g2 ∈ G.

Lemma 1.1 ( [1], Lem. 4.2.2.). Every character of g = Zn can be (unitary) repre-
sented by a vector θ ∈ Rn in the following way:

γ(g) = γθ(g) := eiθ·g, g ∈ G,

where k · g =
∑

j θjgj.

The vector θ is called quasi-momenta and the corresponding vectors

ω := eiθ := (eiΘ1 , ..., eiΘ1) ∈ (C\{0})n

are called Floquet multipliers. It can be clearly seen that the character γk is 2π-
periodic with respect to components of the vector θ. Thus the values of θ may be
restricted to the fundamental domain B of G? = 2πG which is called Brillouin
zone and it is often chosen as

B = [−π, π]n.

Definition 1.13 ( [1], Def. 4.2.6.). Let f be function on periodic graph (Γ,Zn). The
Floquet transformation of f is formally defined as

f 7→ f̃(x, ω) :=
∑
g∈Zn

f(gx)ω−g, x ∈ Γ, g ∈ B,

where B is the Brillouin zone.

One can see that the Floquet transformation is much similar to the Fourier trans-
formation with respect to abelian group Zn.

The Floquet transformation of a periodic operator H on (Γ,Zn) may be defined
by using Definition 1.13 (see in [1], Section 4.2.4.). This transformation reduces the
Hamiltonian H to the parametric set of operators H(ω) (resp. H(θ)) which act on
the fundamental domain. The vertex conditions are preserved after the transforma-
tion but there also appear new vertices of degree one at the fundamental domain
boundary.
Example 5. Let us have the rectangular lattice graph (Figure 1.4), the Hamilto-
nian H = − d2

dx2
and some vertex conditions. The transformed Hamiltonian H(ω) ≡

H(ω1, ω2) act on W in same way but its domain consists of functions which also
have to satisfy conditions

f(a) = eiθ1f(b), f(c) = eiθ2f(d), (1.20)
f ′(a) = −eiθ1f ′(b), f ′(c) = −eiθ2f ′(d). (1.21)
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Figure 1.5: The fundamental domain W with the peripheral vertices.

1.7 Spectral properties

Theorem 1.3 ( [1], Thm. 4.3.1.). Let Γ be a Zn-periodic quantum graph with a
periodic self-adjoint Hamiltonian H. The spectrum σ(H) of the operator H in L2(Γ)
is equal to the union of the closed intervals Ij called the spectral bands:

Ij := {k : k = k(ω), where ω are the Floquet multipliers}.

These eigenvalues are continuous and piece-wise analytic with respect to ω.

Definition 1.14 ( [1], Def. 4.3.2.). The representation

σ(H) =
∞⋃
j=1

Ij

is called the band-gap structure of σ(H).

Theorem 1.4 ( [1], Thm. 4.3.1.). The spectrum of a periodic self-adjoint Hamilto-
nian H on a quantum graph Γ has no singular continuous part.

As a consequence of previous theorem the spectrum of a periodic self-adjoint Hamil-
tonianH on a quantum graph Γ can contain only absolute continuous and pure point
parts. The bound states and also compactly supported eigenfunctions ("scars") may
exist for periodic operators due to the failure of the uniqueness of continuation
property for quantum graphs (see [1, Section 3.4])
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Chapter 2

Rectangular lattice with a preferred
orientation

Before we proceed to the following chapters we need to introduce some notions.
The momentum scale k instead of the energy scale k2 is used in the following text.
Concretely, if we solve the spectral problem for a Hamiltonian H we use k2 instead
of k, i.e.

Hψ = k2ψ, (2.1)

thus k has physical meaning of momentum and k2 has physical meaning of energy.
Consequently, if we talk about spectrum it is meant spectrum in the momentum
scale k. Occasionally we also use the energy scale but every time we are using the
energy scale there is, in order to prevent misunderstanding, explicitly written which
scale is being used.

A periodic rectangular lattice quantum graph with time-reversal non-invariant cou-
pling is rigorously defined in this chapter. A spectral condition which completely
determines the spectrum of this system is found. Some spectral properties of the
system are established. Numeric solutions are shown at the end of the chapter.

2.1 Spectral condition

Consider a quantum graph with a periodic rectangular lattice structure (Figure 1.4)
where the edges are l1, l2 > 0 long and its Hamiltonian is given as the negative
second order derivative (1.1).

The boundary conditions which we study in this chapter are given by A = U − I,
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B = i(U− I) where I is the unit matrix and the matrix U has the form

U =



0 1 0 . . . 0 0
0 0 1 0 0
... . . .
0 0 0 1 0
0 0 0 0 1
1 0 0 . . . 0 0


. (2.2)

This conditions can be written in the matrix form as

(U− I)Ψ(0+) + i(U + I)Ψ′(0+). (2.3)

It holds that UU? = U?U = I. Thus the matrix U is unitary. Using Theorem 1.1 we
see that the Hamiltonian is self-adjoint.

Remark 2.1. If we solve the spectral problem det(U − λI) then we find out that
eigenvalues are determined by equation

λN − 1 = 0, N ≥ 3. (2.4)

In our case N = 4. This imply that the eigenvalues are

σ(U(4)) = {±1,±i}. (2.5)

We know that the vertex conditions are scale invariant if and only if the Robin part
is missing (see Theorem 1.1) but absence of the Robin part is equivalent to absence
of values other than ±1 in the spectrum of U. In other words, vertex conditions are
scale invariant if and only if the matrix U has only eigenvalues ±1. Our matrix U
does not satisfy this property thus we conclude that the vertex conditions are not
scale invariant.

The vertex condition can be rewritten in the component form as

(ψj+1 − ψj) + i(ψ′j+1 + ψ′j) = 0, j ∈ Z (mod N), (2.6)

where ψj(x) ∈ ⊕Nj=1H
2(e) and ψj := ψj(0+), ψ′j := ψ′j(0+). The time-reversion

corresponds to the complex conjugate in the quantum mechanic. If we make complex
conjugation of the expression (2.6) we get

(−ψj+1 + ψj) + i(ψ′j+1 + ψ′j) = 0, j ∈ Z (mod N). (2.7)

We can see that coupling is not time-reversal. Now we illustrate how the time-
reversion is connected with the orientation of the quantum graph. Let us introduce
the reversion operator

Rψj(x) := ψN+1−j(x), j ∈ N. (2.8)

If we use this operator on the (2.6) we get (2.7). This brings us to the fact that the
time-reversal is equivalent to the change of orientation of our quantum graph.
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Now we try to establish spectrum of our quantum graph. In order to do that we
have to solve the spectral equation

−d
2ψ(x)

dx2
= k2ψ(x), k ∈ R. (2.9)

The fundamental domain is the star-shaped graph sketched on Figure 1.5. The
general solution and its derivative have the form

ψj(x) = aje
ikx + bje

−ikx, (2.10)
ψ′j(x) = ikaje

ikx − ikbje−ikx, (2.11)

for j ∈ {1, 2, 3, 4}. Moreover, the Floquet-Bloch theory establishes additional con-
ditions at the peripheral vertices (see conditions (1.20) and (1.21)). If we use those
results and we choose coordinates increasing in the direction up and right we find
that

ψ3(a) ≡ a3e
ika + b3e

−ika = ω1(a1e
ikb + b1e

−ikb) ≡ ψ1(b), (2.12)
ψ′3(a) ≡ −(ika3e

ika − ikb3e
−ika) = −ω1(ika1e

ikb − ikb1e
−ikb) ≡ −ψ′1(b). (2.13)

We remind that ωj = eiθj are the Floquet multipliers for quasi-momenta θj from the
Brillouin zone (−π, π], j ∈ {1, 2}. Note that derivatives are taken in the direction
away from the vertex. By adding and subtracting these equations we get

a3 = a1ω1e
ik(b−a), b3 = b1ω1e

−ik(b−a), (2.14)

and similarly we obtain

a4 = a2ω2e
ik(d−c), b4 = b2ω2e

−ik(d−c). (2.15)

Finally, we write an Ansatz:

ψ1(x) = a1e
ikx + b1e

−ikx,

ψ2(x) = a2e
ikx + b2e

−ikx,

ψ3(x) = ω1(a1e
ik(x+l1) + b1e

−ik(x+l1)), (2.16)
ψ4(x) = ω2(a2e

ik(x+l2) + b2e
−ik(x+l2)).

If we enumerate those functions at zero we get

ψ1(0+) = a1 + b1, ψ′1(0+) = ik(a1 + b1),

ψ2(0+) = a2 − b2, ψ′2(0+) = ik(a2 − b2),

ψ3(0+) = ω1(a1e
ikl1 + b1e

−ikl1), ψ′3(0+) = ikω1(a1e
ikl1 + b1e

−ikl1), (2.17)
ψ4(0+) = ω2(a2e

ikl2 − b2e
−ikl2), ψ′4(0+) = ikω2(a2e

ikl2 − b2e
−ikl2).

By plugging these values into the boundary conditions we get a system of linear
equations for coefficients aj and bj, j ∈ {1, 2}. Once again we point out that deriva-
tives are taken in the direction away from the vertex. The system has the form

a1(−1− k) + a2(1− k) + b1(−1 + k) + b2(1 + k) = 0,

a1ω1e
ikl1(1 + k) + a2(−1 + k) + b1ω1e

−ikl1(1− k) + b2(−1 + k) = 0,

a1ω1e
ikl1(−1 + k) + a2ω2e

ikl2(1 + k) + b1ω1e
−ikl1(−1− k) + b2ω2e

−ikl2(1− k) = 0,

a1(1− k)a2ω2e
ikl2(−1 + k) + b1(1 + k)b2ω2e

−ikl2(−1− k) = 0,
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and it is solvable if the determinant

D(k, l1, l2, ω1, ω2) =

∣∣∣∣∣∣∣∣
−1 −η η 1
ω1L

+
1 ω1L

−
1 η −1 −η

−ω1L
+
1 η −ω1L

−
1 ω2L

+
2 ω2L

−
2 η

η 1 −ω2L
+
2 η −ω2L

−
2

∣∣∣∣∣∣∣∣ (2.18)

is equal to zero. There the abbreviations η = 1−k
1+k

, L±1 = e±ikl1 , L±2 = e±ikl2 are used.
By subtracting the first row from the others rows the determinant takes the form

D =

∣∣∣∣∣∣∣∣∣∣
−1 0 0 0
ω1L

+
1 ω1L

−
1 η − ω1L

+
1 η −1 + ω1L

+
1 η −η + ω1L

+
1

−ω1L
+
1 η −ω1L

−
1 − ω1L

+
1 η

2 ω2L
+
2 − ω1L

+
1 η

2 ω2L
−
2 η − ω1L

+
1 η

η 1− η2 −ω2L
+
2 η + η2 −ω2L

−
2 + η

∣∣∣∣∣∣∣∣∣∣
.

Finally we can use the Sarus rule to get

D =
k

(1 + k)4
16iei(θ1+θ2)

{(
k2 − 1

)(
sin(kl2) cos(θ1) + sin(kl1) cos(θ2)

)
+

+
(
k2 + 1

)
sin(k(l1 + l2))

}
. (2.19)

Using a goniometric identity for cos(k(l1 + l2)) we get spectral condition in the
following form

Φ1

(
k, θ1, θ2

)
:= sin(kl2)

[(k2 − 1)

(k2 + 1)
cos(θ1) + cos(kl1)

]
+ sin(kl1)

[(k2 − 1)

(k2 + 1)
cos(θ2) + cos(kl2)

]
. (2.20)

However, this condition does not describe all the spectrum. The star graph with
the vertex condition (2.6) has also negative spectrum. This spectrum is obtained by
substituting k = iκ with κ > 0 (see [3]). If we do this substitution for our periodic
quantum graph we get

Φ̃2(κ, θ1, θ2) := sinh(κl2)
[
(κ2 + 1) cos(θ1) + (κ2 − 1) cosh(κl1)

]
+ sinh(κl1)

[
(κ2 + 1) cos(θ2) + (κ2 − 1) cosh(κl2)

]
. (2.21)

In other words, the foregoing two conditions completely determine the spectrum of
our quantum graph.

Proposition 2.1. Let us have the periodic rectangular lattice quantum graph (Figure
1.4) with the Hamiltonian H := − d2

dx2
and with the vertex conditions determined by

the matrix

U =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.22)

Then its spectrum has following properties:

Positive spectrum
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• For every l1, l2 > 0 there are infinitely many gaps. The gaps are located in the
vicinity of the points {mπ

l1
, nπ
l2
}, m,n ∈ N.

• If l1
l2

is rational number then there are infinitely many infinitely degenerate
eigenvalues.

• If l1 ≥ 2 ∧ l2 ≥ 2 then the first positive band starts at zero.

• If l1 < 2 ∧ l2 < 2 then the first positive band is separated from zero.

Negative spectrum

• Energy -1 always belongs to the spectrum, thus inf σ(H) < −1.

• If l1 > 2 ∧ l2 > 2 then negative spectrum is separated from zero.

• If l1 ≤ 2 ∧ l2 ≤ 2 then the spectrum extends to zero.
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2.2 Analytic solution - illustrated by plots

Let us demonstrate figures which could provide us a better understanding to the
spectrum structure. The figures consists of two parts: the positive one and the neg-
ative one. The momentum k is taken as the variable on the positive part of the
horizontal axis. Similarly, −iκ is taken as the variable on the negative part of the
horizontal axis. In other words, the horizontal axis shows positive and negative part
of the spectrum if the edges lengths are fixed. The vertical axis shows values of func-
tions which depends on k and κ, respectively. Those values have no physical meaning.

Positive part

Functions k 7→ cos(kl1) and k 7→ cos(kl2) are shown in red and blue color, re-
spectively. We also plot the region bordered from below and above by the curves
k 7→ ±k2−1

k2+1
for fixed values of t ∈ [0, 1] in the grey colour.

The cosine functions are plotted with a solid line if they both intersect the grey
region, i.e. if the conditions

| cos(kl1)| <
∣∣∣k2 − 1

k2 + 1

∣∣∣ ∧ | cos(kl2)| <
∣∣∣k2 − 1

k2 + 1

∣∣∣.
are fulfilled. In other words, the cosine functions are solid if we can certainly establish
that k belongs to the positive spectrum. Otherwise they are plotted with a dotted
line.

Negative part

The negative part is similar the positive one if we swap functions: cos(kl1) →
cosh(κl1), cos(kl2)→ cosh(κl2), k 7→ ±k2−1

k2+1
→ κ 7→ ±κ2+1

κ2−1
.

On the vertical axis are also shown: the spectrum (black color), the gaps (no color)
and in blue color are drawn cases where we are not able to analytically establish if
k belongs to the spectrum or not.

We also point out that the last picture illustrates the case l1 = l2 (i.e. square lattice
graph) which was discussed in [3, Chapter 2].
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Figure 2.1: The situation for edge lengths l1 = 1 and l2 = 1+
√

5
2

.

Figure 2.2: The situation for edge lengths l1 = 1 and l2 = 3.1.
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Figure 2.3: The situation for edge lengths l1 = 2.5 and l2 = 3.

Figure 2.4: The situation for edge lengths l1 = 1 and l2 = 1. The l1 = l2 case was
discussed in [3].
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2.3 Numerical solutions

The numerical solutions show how the spectrum depends on edge length. For this
purpose we fixed one edge and the second one is taken as variable. Both the mo-
mentum scale and the energy scale are displayed in these figures.

One can see gaps in the vicinity of points {mπ
l1
}m∈N as expected due to the Theorem

4.1. Moreover, it can be seen that the gap width decreases as the momentum k grows
in accordance with Proposition 4.3.

We also point out that the figures in the logarithmic scale nicely illustrate that our
vertex condition is not scale invariant.
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Figure 2.5: The momentum scale solution for l1 = 1.

Figure 2.6: The momentum scale solution for l1 = 1 in
the logarithmic scale on the horizontal axis.
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Figure 2.7: The energy scale solution for l1 = 1.

Figure 2.8: The energy scale solution for l1 = 1 in the
logarithmic scale on the horizontal axis.
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Figure 2.9: The momentum scale solution for l1 = 3.

Figure 2.10: The energy scale solution for l1 = 3.
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Chapter 3

Rectangular lattice quantum graph -
δ-coupling

3.1 Spectral condition

We recapitulate the existing results about rectangular lattice quantum graph with
δ-coupling in this chapter. Those results will play important role in the following
research where we will study a new parametric class of coupling which interpolates
between δ-coupling and time-reversal non-invariant coupling which was introduced
in the previous chapter. It is important to study the couplings between which the
interpolation takes place in order to properly understand to the whole interpolation
class of couplings.

The δ-coupling was widely examined in [2] and [7]. The results introduced here are
mostly taken from those two articles and we recapitulate them here without proofs
and further details. In order to get better insight about the problem we recommend
to reader to study those articles.

The δ-coupling is, particularly for the rectangular lattice quantum graph, defined as
follows

ψ(v) is continuous at vertex v,
4∑
i=1

ψ′(v) = αψ(v), α ∈ R,

or this coupling can be described by unitary matrix

U = −I +
2

n+ iα
J, α ∈ R. (3.1)

where I is unit matrix and J denotes the matrix with all the elements equal to one.

The spectral condition is given as

cos θ2 − cos kl2
sin kl1

+
cos θ1 − cos kl1

sin kl2
− α

2k
= 0. (3.2)
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According to [2] the number k2 > 0 does not belong to the spectrum if and only if

tan
(kl1

2
− π

2

⌊kl1
π

⌋)
+ tan

(kl2
2
− π

2

⌊kl2
π

⌋)
<

α

2k
, for α > 0 (3.3)

and
cot
(kl1

2
− π

2

⌊kl1
π

⌋)
+ cot

(kl2
2
− π

2

⌊kl2
π

⌋)
<
|α|
2k
, for α < 0 (3.4)

where b·
⌋
is the floor function. Note that for α = 0 is spectrum the positive half-line,

i.e. σ(H) = [0,∞].

3.2 Number theory notions

Before we step further let us introduce some notions from the number theory. A
number θ ∈ R is called badly approximable if there exist a c > 0 such that∣∣∣θ − p

q

∣∣∣ > c

q2
(3.5)

for all p, q ∈ Z with q 6= 0. A counterpart to badly approximable numbers are so-
called Last admissible numbers. A number θ ∈ R is Last admissible if there are
sequences {qr}∞r=1, {pr}∞r=1 of pairwise relatively prime integers such that

lim
r→∞

q2
r

∣∣∣θ − pr
qr

∣∣∣ = 0. (3.6)

The so-called Markov constant µ(θ) of θ ∈ R is defined as

µ(θ) = inf
{
c > 0

∣∣∣ (∃∞(p, q) ∈ Z2)
∣∣∣(|θ − p

q
| < c

q2
.
)}
. (3.7)

where ∃∞ means "there exist infinitely many". The Markov constant is positive if
and only if θ is badly approximable. Moreover, the Hurwitz theorem states that for
every θ ∈ R there are infinitely many integers p, q such that∣∣∣θ − p

q

∣∣∣ < c√
5q2

. (3.8)

As consequence we see that µ(θ) ∈ [0, 1√
5
] for all θ ∈ R. Note that if θ is rational or

Last admissible then Markov constant is equal to zero, i.e. µ(θ) = 0.

The following definition may be considered as one-side version of the Markov con-
stant.

Definition 3.1. For any θ > 0, we set

ν(θ) := inf
{
c > 0

∣∣∣ (∃∞(p, q) ∈ Z2)
∣∣∣(0 < θ − p

q
<

c

q2
.
)}
. (3.9)

Proposition 3.1 ([7], Proposition 3.2.).

ν(θ) := inf{c > 0 | (∃∞m ∈ N) |(m(mθ − bmθc) < c.)}.
ν(θ−1) := inf{c > 0 | (∃∞m ∈ N) |(m(dmθe −mθ) < c.)}.
µ(θ) = min{ν(θ), ν(θ−1)}

(3.10)
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3.3 Spectral properties

Following the notation from [7] we denote θ = l1
l2
. Note that we omit the case α = 0

since in this case the spectrum is trivial. Now we can collect some spectral properties:

Proposition 3.2 ([2], Proposition 3.1.). 1. The spectrum has band-gap structure,
σ(H) =

⋃N
k=1[αk, βk] for some N ≥ 1, where αk < βk < αk+1.

2. Let α > 0. Every gap in the spectrum has the left (lower) endpoint equal to
k2 =

(
mπ
l1

)2 or k2 =
(
mπ
l2

)2 for some m ∈ N.
A gap with the left endpoint at k2 =

(
mπ
l1

)2 is present if and only if

2mπ

l1
tan
(π

2
(mθ−1 − bmθ−1c)

)
< α. (3.11)

A gap with the left endpoint at k2 =
(
mπ
l2

)2 is present if and only if

2mπ

l2
tan
(π

2
(mθ − bmθc)

)
< α. (3.12)

In particular, if

2mπ

l1
tan
(π

2
(mθ−1−bmθ−1c)

)
≥ α∧ 2mπ

l2
tan
(π

2
(mθ−bmθc)

)
≥ α. (3.13)

for all m ∈ N, then there are no gaps in the spectrum.

3. Let α < 0. Every gap in the spectrum has the right (lower) endpoint equal to
k2 =

(
mπ
l1

)2 or k2 =
(
mπ
l2

)2 for some m ∈ N.
A gap with the left endpoint at k2 =

(
mπ
l2

)2 is present if and only if

2mπ

l1
tan
(π

2
(dmθ−1e −mθ−1)

)
< |α|. (3.14)

A gap with the left endpoint at k2 =
(
mπ
l1

)2 is present if and only if

2mπ

l2
tan
(π

2
(dmθe −mθ)

)
< |α|. (3.15)

In particular, if

2mπ

l1
tan
(π

2
(dmθ−1e −mθ−1)

)
≥ |α|. ∧ 2mπ

l2
tan
(π

2
(dmθe −mθ)

)
≥ |α|.
(3.16)

for all m ∈ N, then there are no gaps in the spectrum.

4. ±α1 > 0 holds if and only if ±α > 0.

5. If α < −4

√
l1
l2

+
√
l2
l1√

l1l2
then β1 < 0 and α2 =

(
π

max(l1,l2)

)2
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6. σ(H)(α′) ∩ R+ ⊂ σ(H)(α) ∩ R+ for |α′| > |α|

7. All gaps above the threshold are finite. If there is an infinite number of them,
their widths are asymptotically bounded,

αk+1 − βk < 2|α| 1

l1 + l2
+O

(1

k

)
(3.17)

The following theorems describe the number of gaps it the spectrum. Those theorems
can be found in [7, Chapter 2].

Let α > 0:

Proposition 3.3. 1. If

α < π2 ·min
{ν(θ)

l2
,
ν(θ)−1

l1

}
, (3.18)

then the number of gaps in the spectrum is at most finite.

2. If

α > π2 ·min
{ν(θ)

l2
,
ν(θ)−1

l1

}
(3.19)

then the spectrum has infinitely many gaps.

Theorem 3.1. Let

γ := min
{

inf
m∈N

{2mπ

l1
tan
(π

2
(mθ−1−bmθ−1c)

)}
,min
m∈N

{2mπ

l2
tan
(π

2
(mθ−bmθc)

)}}
.

(3.20)
If the coupling constant α satisfies

γ < α < π2 ·min
{ν(θ)

l2
,
ν(θ)−1

l1

}
, (3.21)

then there is a nonzero and finite number of gaps in the spectrum.

Let α < 0:

Proposition 3.4. 1. If

|α| < π2 ·min
{ν(θ)

l1
,
ν(θ)−1

l2

}
, (3.22)

then the number of gaps in the spectrum is at most finite.

2. If

|α| > π2 ·min
{ν(θ)

l1
,
ν(θ)−1

l2

}
(3.23)

then the spectrum has infinitely many gaps.
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Theorem 3.2. Let

γ := min
{

inf
m∈N

{2mπ

l1
tan
(π

2
(dmθ−1e−mθ−1)

)}
,min
m∈N

{2mπ

l2
tan
(π

2
(dmθe−mθ)

)}}
.

(3.24)
If the coupling constant α satisfies

γ < α < π2 ·min
{ν(θ)

l1
,
ν(θ)−1

l2

}
, (3.25)

then there is a nonzero and finite number of gaps in the spectrum.

Remark 3.1. At the first sight the foregoing theorems looks similar for α > 0 and
α < 0 but there are slight differences. Of course there is taken the absolute value
of α in case of α < 0 but also min

{
ν(θ)
l2
, ν(θ)−1

l1

}
and min

{
ν(θ)
l1
, ν(θ)−1

l2

}
are different

expressions.

Corollary 3.1. 1. If θ id rational number or Last admissible then the spectrum
has infinitely many gaps for α 6= 0.

2. For badly approximable θ there exist γ > 0 such that γ < α < π2·min
{
ν(θ)
l2
, ν(θ)−1

l1

}
for α > 0, resp. γ < |α| < π2 · min

{
ν(θ)
l1
, ν(θ)−1

l2

}
for α < 0 the spectrum has

no gaps above the threshold.

3. For all θ ∈ R the spectrum has infinitely many gaps if α > π2 ·min
{
ν(θ)
l2
, ν(θ)−1

l1

}
for α > 0, resp. |α| > π2 ·min

{
ν(θ)
l1
, ν(θ)−1

l2

}
for α < 0

The following theorem illustrates how the spectrum changes when l1
l2
is equal to the

golden ration. The golden ratio is the "worst" approximable number in sense that
µ(θ) = ν(θ) = ν(θ−1) = 1√

5
. Particularly, this case illustrates that there can occur

situations when infinite periodic quantum graphs have no-zero finitely many gaps
in the spectrum. Those quantum graphs are sometimes called Bethe-Sommerfeld
graphs or we say that a quantum graph has Bethe-Sommerfeld property.

Theorem 3.3. Let θ = l1
l2

=
√

5+1
2

, then the following claims are valid:

1. If α > π2
√

5a
or α ≤ − π2

√
5a
, there are infinitely many spectral gaps.

2. If

−2π

a
tan
(3−

√
5

4
π
)
≤ α ≤ π2

√
5a

(3.26)

there are no gaps in the spectrum.

3. If

− π2

√
5a

< α < −2π

a
tan
(3−

√
5

a
π
)

(3.27)

there is a nonzero and finite number of gaps in the spectrum.
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Chapter 4

Rectangular lattice quantum graph -
interpolating couplings

We follow idea of the paper [4] where a new parametric family of vertex coupling
have been introduced. This parametric coupling interpolates between δ-coupling
introduced in Chapter 3 and the coupling introduced in Chapter 2.

Similarly to the previous chapters we will be interested in infinite rectangular lattice
quantum graphs. The goal of this chapter is to find the spectral condition and
establish spectral properties of this graph.

4.1 Vertex coupling - symmetries

One way how to classify vertex coupling is to use symmetries.

Definition 4.1. Symmetry is an invertible map in the space of boundary values,
µ : Cn 7→ Cn, or a family of such maps. A vertex coupling is symmetric with respect
to µ if the condition (1.14) is equivalent to

(U− I)µΨ(0+) + i(U + I)µΨ′(0+) (4.1)

or in other words, if U obeys the identity

µ−1Uµ = U. (4.2)

Symmetries examples:

• Mirror symmetric coupling has the conditions (1.14) invariant to the simulta-
neous permutation (1, ..., n) 7→ (n, ..., 1) of the indexes of Ψ(0+) and Ψ′(0+),
i.e.

µ =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . . . ...

0 1
. . . 0 0

1 0 . . . 0 0

 . (4.3)
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is anti-diagonal matrix.

• Permutation-invariant couplings is invariant to any simultaneous permutation
of the entries of Ψ(0+) and Ψ′(0+) in (1.14). In other words, the matrices µ
form a representation of the symmetry group Sn.

• Time-reversal-invariant coupling: the µ is the anti-linear operator describing
the switch in the time direction. In our case it will just be complex conjugation.
Using relations UT Ū = ŪUT = I we find out that the coupling must be
invariant with respect to transposition, i.e. U = UT .

• Rotationally symmetric couplings is invariant to cyclic permutation of the
entries of Ψ(0+) and Ψ′(0+) in (1.14). The map µ has the following form,

R := µ =



0 1 0 . . . 0 0
0 0 1 0 0
... . . .
0 0 0 1 0
0 0 0 0 1
1 0 0 . . . 0 0


. (4.4)

Proposition 4.1 ([4], Proposition 2.1.). A rotationally symmetric vertex coupling
is mirror symmetric if and only if it is time-reversal-invariant.

Remark 4.1. Let us point out that the δ-coupling introduced in Chapter 3 posses all
the symmetries. On the other hand the coupling introduced in Chapter 2 associated
with the choice

U = R (4.5)

is rotationally symmetric but is not mirror symmetric and thus also is not time-
reversal-invariant.

4.2 Circulant matrix

Let us proceed to definition of parametric family of vertex coupling. First we intro-
duce what the circulant matrix is.

Any matrix which have the form

C =


c0 c1 . . . cn−2 cn−1

cn−1 c0 c1 cn−2
... cn−1 c0

. . . ...

c2
. . . . . . c1

c1 c2 . . . cn−1 c0

 . (4.6)

is called circulant matrix. Its normalized eigenvectors have the form

νk =
1√
n

(1, ωk, ω2k, ..., ω(n−1)k)T , k = 0, 1, ..., n− 1,
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where ω := e( 2πi
n

). The corresponding eigenvalues are

λk = c0 + c1ω
k + c2ω

2k + ...+ cn−1ω
(n−1)k. (4.7)

Moreover, every circulant matrix can be diagonalized using the discrete Fourier
transform matrix

F =


1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ω(n−1)

1 ω2 ω4 ω6 . . . ω2(n−1)

...
...

...
...

...

1 ω(n−1) ω2(n−1) ω3(n−1) . . . ω(n−1)2

 .

Using this we can write following identities

D =
1

n
F ∗CF and C =

1

n
FDF ∗ (4.8)

where D is diagonal matrix with λ0, λ1, ..., λn−1 on the diagonal.

4.3 Class of interpolating couplings

The class of interpolating couplings introduced in [4] is given by family of unitary
matrices U(t) : t ∈ [0, 1] such that

U(0) = −I +
2

n+ iα
J and U(1) = R,

the map t 7→ U(t) is continuous on [0, 1],

U(t) is unitary circulant for all t ∈ [0, 1].

Indeed, we can see that this coupling is an interpolation between the δ coupling
described by a unitary matrix

U(0) = −I +
2

n+ iα
J, α ∈ R.

where I is unit matrix and J denotes the matrix with all elements equal to one, and
between coupling which we have studied earlier, namely

U(1) = R :=



0 1 0 . . . 0 0
0 0 1 0 0
... . . .
0 0 0 1 0
0 0 0 0 1
1 0 0 . . . 0 0


.

If we use (4.7) it is not hard to find (see [4]) that eigenvalues of U(t) have the form

λk(t) = e−i(1−t)γ for k = 0,

λk(t) = −eiπt(
2k
n
−1) for k ≥ 1,

where γ := argn+iα
n−iα ∈ (−π, π), i.e. n+iα

n−iα = e−iγ. Moreover, by using identities (4.8)
we can easily compute matrices U(t) for all t ∈ [0, 1].
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4.4 Spectral condition

We find the spectral condition of a rectangular lattice quantum graph (Figure 1.4)
in the same way as we did in Chapter 2 but this time we use the vertex coupling
described by U(t) from the previous section. In other words we have vertex condition
in the following form

(U(t)− I)


ψ1(0+)
ψ2(0+)
ψ3(0+)
ψ4(0+)

+ i(U(t) + I)


ψ′1(0+)
ψ′2(0+)
−ψ′3(0+)
−ψ′4(0+)

 = 0

where ψi, i = 1, 2, 3, 4 are functions in Ansatz (2.16). Substituting (2.17) into this
condition we get system of linear equations for coefficients a1, a2, b1, b2 in the matrix
from

[(U(t)− I)M − k(U(t) + I)N ]


a1

b1

a2

b2

 = 0,

where matrices M,N are given by

M =


1 1 0 0
0 0 1 1

ei(θ1+kl1) ei(θ1−kl1) 0 0
0 0 ei(θ2+kl2) ei(θ2−kl2)

 ,

N =


1 −1 0 0
0 0 1 −1

−ei(θ1+kl1) ei(θ1−kl1) 0 0
0 0 −ei(θ2+kl2) ei(θ2−kl2)

 .

Using the second identity in (4.8) and putting determinant equal to zero we get

det[(D − I)F ∗M − k(D + I)F ∗N ] = 0,

where

D =


e−i(1−t)α 0 0 0

0 −e− i
2
tπ 0 0

0 0 −1 0

0 0 −e i2 tπ

 , (4.9)

F ∗ =


1 1 1 1
1 −1 −1 i
1 −1 1 −1
1 −i −1 i

 . (4.10)

This determinant is equal to

D = 512ei(θ1+θ2)e−i
(1−γ)t

2 [V3k
3 + V2k

2 + V1k + V0] (4.11)
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where

V3 = − cos
(1− t)γ

2
sin2 πt

4

[
sin(kl1)

(
cos(θ2) + cos(kl2)

)
+ sin(kl2)

(
cos(θ1) + cos(kl1)

)]
,

V2 = 2 sin
(1− t)γ

2
sin2 πt

4

[(
cos(θ1) + cos(kl1)

)(
cos(θ2) + cos(kl2)

)]
,

V1 = cos
(1− t)γ

2
cos2

πt

4

[
sin(kl1)

(
cos(θ2)− cos(kl2)

)
+ sin(kl2)

(
cos(θ1)− cos(kl1)

)]
,

V0 = −2 sin (1− t)γ
2

cos2
πt

4

[
sin(kl1) sin(kl2)

]
.

We can check the correctness of this spectral condition by comparison with the
previous results. First, if we put l := l1 = l2 then we obtain the spectral condition
in the same form as it is in [4].

Moreover, if we put t = 1 then the terms V2 and V0 disappear thus by using simple
mathematical operations on V3 and V1 we get the spectral condition in the form
(2.20).

On the other hand if we put t = 0 then we get the spectral condition has the form

sin kl1
(
cos θ2 − cos kl2

)
+ sin kl2

(
cos θ1 − cos kl1

)
− 2

k
tan(

γ

2
) sin kl1 sin kl2 = 0.

If we use the fact that for n = 4 is tan(γ
2
) = α

4
then we obtain the spectral condition

exactly in the form (3.4).

We do not have to forgot the negative spectrum which we obtain by substituting
κ = ik:

κ3V̂3 + V̂2κ
2 + κV̂1 − V̂0 = 0 (4.12)

where

V̂3 = − cos
(1− t)γ

2
sinh2

πt

4

[
sinh(κl1)

(
cos(θ2) + cosh(κl2)

)
+ sinh(κl2)

(
cos(θ1) + cosh(κl1)

)]
,

V̂2 = 2 sin
(1− t)γ

2
sin2

πt

4

[(
cos(θ1) + cosh(κl1)

)(
cos(θ2) + cosh(κl2)

)]
,

V̂1 = cos
(1− t)γ

2
cos2

πt

4

[
sinh(κl1)

(
cos(θ2)− cosh(κl2)

)
+ sinh(κl2)

(
cos(θ1)− cosh(κl1)

)]
,

V̂0 = −2 sin (1− t)γ
2

cos2
πt

4

[
sinh(κl1) sinh(κl2)

]
.

4.5 Quadratic form

Before we star to analyze the spectral condition we find out the quadratic form of
the Hamiltonian H. In order to do that we use Remark 1.3 and Theorem 1.2. First
we have to find out matrices A(t) = U(t)− I and B(t) = i(U(t) + I). We know that

A(t) = U(t)− I =
1

4
F (D − I)F ?,

B(t) = i(U(t) + I) =
i

4
F (D + I)F ?,
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where D, resp. F are defined in (4.9), resp. (4.10). Computing those expressions we
obtain

A(t) =

 e−i(1−t)γ−5−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

)

e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ−5−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

)

e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ−5−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

)

e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ−5−2 cos(πt
2

)

 ,

B(t) =

 e−i(1−t)γ+3−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

)

e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ+3−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

)

e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ+3−2 cos(πt
2

) e−i(1−t)γ+1+2 sin(πt
2

)

e−i(1−t)γ+1+2 sin(πt
2

) e−i(1−t)γ−1+2 cos(πt
2

) e−i(1−t)γ+1−2 sin(πt
2

) e−i(1−t)γ+3−2 cos(πt
2

)

 .

Using Remark 1.3 we find out that

RanPD = KerB = Span{(−1, 1,−1, 1)T}
RanPN = KerA = ∅,
PR = I− PN − PD.

Now we can compute Λ = B−1APR and we get

Λ =


(cos πt2 +sin πt2 −1)e−i(1−t)γ−cos πt2 +sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)
− sin(πt2 )

cos(πt2 )−1

(cos πt2 +sin πt2 −1)e−i(1−t)γ−cos πt2 +sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)

(cos πt2 +sin πt2 −1)e−i(1−t)γ−cos πt2 +sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)
0

(cos πt2 −sin πt2 −1)e−i(1−t)γ−cos πt2 −sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)

(cos πt2 −sin πt2 −1)e−i(1−t)γ−cos πt2 −sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)
− sin(πt2 )

cos(πt2 )−1

(cos πt2 −sin πt2 −1)e−i(1−t)γ−cos πt2 −sin πt2 +1

2(e−i(1−t)γ+1)(cos(πt2 )−1)


Finally, the Theorem 1.2 claims that

h[f, f ] =
∑
e∈E

∫
e

∣∣∣ df
dx

∣∣∣2 +
∑
v∈V

〈ΛvPR,vF, PR,vF 〉,

If we maintain notation which we use in this chapter the quadratic form takes the
following form for t ∈ (0, 1]:

h[ψ,ψ] =

4∑
i=1

∫
ei

∣∣∣dψ
dx

∣∣∣2 +
1

2(e−i(1−t)γ + 1)(cos(πt
2

)− 1)
×

×
[(

(ψ3 + ψ1)(ψ1 + ψ2 + ψ3) cos(
πt

2
) + (ψ1 − ψ3)(ψ3 − ψ2 + ψ1) sin(

πt

2
)− (ψ3 − ψ1)(ψ1 + ψ2 + ψ3)

)
e−i(1−t)γ−

(ψ3 + ψ1)(ψ1 + ψ2 + ψ3) cos(
πt

2
) + (ψ1 − ψ3)(ψ3 − ψ2 + ψ1) sin(

πt

2
)− (ψ3 − ψ1)(ψ1 + ψ2 + ψ3)

]
,

where we for sake of simplicity used the following notation
ψ1

ψ2

ψ3

ψ4

 ≡

ψ1(0+)
ψ2(0+)
ψ3(0+)
ψ4(0+)


In case t = 0 the quadratic form takes a simpler form

h[ψ, ψ] =
4∑
i=1

∫
ei

∣∣∣dψ
dx

∣∣∣2 + α|ψ(0+)|2

where ψ(0+) := ψ1(0+) = ψ2(0+) = ψ3(0+) = ψ4(0+) since coupling is continuous
at the vertex.
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4.6 Spectrum of a rectangular lattice: case α = 0

Let us put α = 0. This imply that γ is also equal to zero and the δ-coupling becomes
the Kirchhoff coupling introduced above. Since γ = 0 we can see that terms V0 and
V2 in (4.11) disappear. Taking only V1 and V3 into account we can simplify the
positive, resp. negative spectral conditions into the following form

sin kl1

(k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos θ2 + cos kl2

)
+

sin kl2

(k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos θ1 + cos kl1

)
= 0,

(4.13)

resp.

sinhκl1

(κ2 sin2 π
4
t+ cos2 π

4
t

κ2 sin2 π
4
t− cos2 π

4
t

cos θ2 + coshκl2

)
+

sinhκl2

(κ2 sin2 π
4
t+ cos2 π

4
t

κ2 sin2 π
4
t− cos2 π

4
t

cos θ1 + coshκl1

)
= 0,

We can see that those conditions are much similar to those in Chapter 2, namely
(2.20) and (2.21). On the other hand this time there is a family of functions

f
(p)
t (k) :=

k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

t ∈ [0, 1],

resp.

f
(n)
t (k) :=

κ2 sin2 π
4
t+ cos2 π

4
t

κ2 sin2 π
4
t− cos2 π

4
t

t ∈ [0, 1]

which interpolate between

f
(p)
0 (k) = −1 and f

(p)
1 (k) =

(k2 − 1)

(k2 + 1)
,

resp.

f
(n)
0 (κ) = −1 and f

(n)
1 (κ) =

(κ2 + 1)

(κ2 − 1)
.

Let us first study the case t = 0. The spectral conditions take the form

sin kl1

(
− cos θ2 + cos kl2

)
+ sin kl2

(
− cos θ1 + cos kl1

)
= 0,

sinhκl1

(
− cos θ2 + coshκl2

)
+ sinhκl2

(
− cos θ1 + coshκl1

)
= 0.

We can immediately see that the first condition can be satisfied everywhere and the
second one nowhere. Thus the positive spectrum consists of whole positive half-line
and the negative spectrum is empty.

The case t = 1 was studied in Chapter 2. Now the cases where t ∈ (0, 1) are similar
to the case t = 1 because all the functions f (p)

t (k), resp. f (n)
t (κ) have similar form

for t ∈ (0, 1] (see Figure 4.1). This observation allows us to use similar generalized
methods to establish the spectral properties as we used in Chapter 2.
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Figure 4.1: Interpolation of functions ±f (p)
t (k) and f

(n)
t (κ), t ∈ [0, 1]. Note that

±f (p)
0 (k) = ±1 and f (n)

0 (κ) = ±1. Red: t = 0.02. Blue: t = 0.07. Green: t = 1.

Proposition 4.2. Let l1
l2

be rational number, i.e. l1
l2

= m
n
for some m,n ∈ N. Then

k = mπ
l1
≡ nπ

l2
is an infinitely degenerate eigenvalue.

Proof. The expression (4.13) claims that k belongs to the spectrum if

sin(kl1) = 0 ∧ sin(kl2) = 0⇔ (∃m,n ∈ N)
(
k =

mπ

l1
∧ k =

nπ

l2

)
⇔

⇔ (∃m,n ∈ N)
( l1
l2

=
m

n

)
. (4.14)

Thus k = mπ
l1

= nπ
l2

belongs to the spectrum.

We will see later that in the vicinity of this point there are spectral gaps (see Theorem
4.1 below). This fact together with Theorem 1.4 imply that k belongs to the point
spectrum. Moreover, the fact that this solution does not depend on θ1, θ2 imply that
this point is infinitely degenerate eigenvalue.

Corollary 4.1. If l1
l2

is a rational number then the number of infinitely degenerate
eigenvalues is infinite.

Proof. It is clear that if l1
l2

is a rational number then there is an infinite number of
points such that (4.14) is fulfilled. All those points are infinitely degenerate eigen-
values by Proposition 4.2.

Lemma 4.1. Suppose that t ∈ (0, 1] is fixed and (cos(kl1) 6= ±1 ∧ cos(kl2) 6= ±1).
Then a number k satisfying

| cos(kl1)| >
∣∣∣k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

∣∣∣ ∧ | cos(kl2)| >
∣∣∣k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

∣∣∣ (4.15)
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and
sgn
[

sin(kl2) cos(kl1)
]

= sgn
[

sin(kl1) cos(kl2)
]

(4.16)

does not belong to the spectrum.

Proof. The first condition (4.15) ensures that the both expressions in the square
brackets in the (4.13) are not equal to zero. The second condition (4.16) ensures
that the both summands in the (4.13) have the same sign. Consequently, left-hand
side of the condition (4.13) can not vanish.

Theorem 4.1. For every t ∈ (0, 1] and every l1, l2 > 0 there exists a spectral gap in
the vicinity of each point of a set {mπ

l1
, nπ
l2
}, m,n ∈ N.

Remark 4.2. In particular, the points of the set {mπ
l1
, nπ
l2
}m,n∈N may or may not

belong to the spectrum in dependence if l1
l2

is rational or not.

Proof. Let t ∈ (0, 1] be fixed. We show this statement for an arbitrary point of
the set {nπ

l1
}, n ∈ N. For the points of the set {mπ

l2
}, m ∈ N, the proof would be

analogous.

Let k′ be an arbitrary fixed point of the set {nπ
l1
}n∈N. This, in particular, means

that cos(k′l1) = ±1. Now we divide the proof into two cases. The first case refers to
cos(k′l2) 6= ±1 and the second one to cos(k′l2) = ±1.

1. Let’s start with the first case. We have k′ ∈ {nπ
l1
}n∈N such that

cos(k′l1) = ±1⇔ sin(k′l1) = 0 ∧ cos(k′l2) 6= ±1⇔ sin(k′l2) 6= 0.

It can be immediately seen from (2.20) that k′ does not belong to the spectrum since
the second summand is equal to zero and the first one is not.

Now let us consider a neighborhood of this point. Since sin(k′l2) 6= 0 and function
x 7→ sin(x) is a continuous then there exists a δ1 > 0 and a constant C1 > 0 such
that

| sin(kl2)| > C1 for all k such that |k′ − k| < δ1. (4.17)

Hence for all k from the δ1-neighborhood we can divide the condition (2.20) by
sin(kl2) and we get

Φ1

(
k, θ1, θ2

)
:=
[(k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos θ1 + cos kl1

)]
+

sin(kl1)

sin(kl2)

[(k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos θ2 + cos kl2

)]
. (4.18)

Moreover, using assumption we know that sin(k′l1) = 0. Thus for every ε > 0 there
exists 0 < δ2 < δ1 such that∣∣∣∣∣sin(kl1)

sin(kl2)

[k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θ2) + cos(kl2)
]∣∣∣∣∣ <

∣∣∣∣∣sin(kl1)

C1

· 2

∣∣∣∣∣ < ε, (4.19)
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for all k in δ2-neighborhood H
(1)
k′ of k′, i.e. H(1)

k′ := { k ∈ R
∣∣ |k′ − k| < δ2}.

There we considered (4.17) and the fact that∣∣∣∣∣k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θ2) + cos(kl2)

∣∣∣∣∣ ≤ 2.

On the other hand cos(k′l2) = ±1. Hence there exist δ3 > 0 and a constant C2 > 0
such that ∣∣∣k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θ1) + cos(kl1)
∣∣∣ > C2

for all k in the δ3-neighborhood H
(2)
k′ := { k ∈ R

∣∣ |k′ − k| < δ3} of k′.

Now if we choose ε in (4.19) as ε := C2 then we get∣∣∣k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θ1) + cos(kl1)
∣∣∣ > C2 ∧ (4.20)∣∣∣∣∣sin(kl1)

sin(kl2)

[k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θ2) + cos(kl2)
]∣∣∣∣∣ < C2

for all k ∈ Hk′ := H
(1)
k′ ∩ H

(2)
k′ . This implies that for every k ∈ Hk′ the expression

(4.18) can not be equal to zero and thus Hk′ can not belong to the spectrum.

2. The second part of the proof takes into account the case when

cos(k′l1) = ±1⇔ sin(k′l1) = 0 ∧ cos(k′l2) = ±1⇔ sin(k′l2) = 0

for some k′ ∈ {nπ
l1
}n∈N.

Using Proposition 4.2 we find that k′ is an infinitely degenerate eigenvalue.

On the other hand in the vicinity of this point the Lemma 4.1 the assumptions are
fulfilled.

Indeed, since cos(k′l1) = cos(k′l2) = ±1 we can find δ > 0 such that the first
condition (4.15) is fulfilled on the interval (k′ − δ, k′ + δ):

If cos(k′l1) = cos(k′l2) = 1 then functions cos(kl1), cos(kl2) are positive for all
k ∈ (k′− δ, k′+ δ). In addition to that, the functions sin(kl1), sin(kl2) have the same
sign on (k′ − δ, k′), resp. on (k′, k′ + δ). This implies that the condition (4.16) is
satisfied on (k′ − δ, k′), resp. on (k′, k′ + δ).

On the other hand if cos(k′l1) = 1 and cos(k′l2) = −1 then functions cos(kl1), cos(kl2)
have opposite signs on (k′ − δ, k′ + δ). The same statement is valid for functions
sin(kl1), sin(kl2) on (k′− δ, k′), resp. on (k′, k′+ δ). Thus the condition (4.16) is also
satisfied on (k′ − δ, k′), resp. on (k′, k′ + δ).

The other cases are similar to the previous ones.

Finally, Lemma 4.1 implies that the intervals (k′−δ, k′) and (k′, k′+δ) do not belong
to the spectrum.
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Proposition 4.3. The gap width tends asymptotically to zero at the momentum
scale for every t ∈ (0, 1].

Proof. It can be seen from the condition (4.13) that gaps can only appear somewhere
where k satisfy

| cos(kl1)| >
∣∣∣k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

∣∣∣ ∨ | cos(kl2)| >
∣∣∣k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

∣∣∣.
If we formally send k to infinity then we get

| cos(kl1)| > 1 ∨ | cos(kl2)| > 1.

Function k 7→ k2 sin2 π
4
t−cos2 π

4
t

k2 sin2 π
4
t+cos2 π

4
t
is strictly monotonous thus the gap width monotoni-

cally decreases to zero when momentum goes to infinity.

Theorem 4.2. Let us have the periodic rectangular lattice quantum graph (Figure
1.4) with the Hamiltonian H := − d2

dx2
and with the vertex conditions determined by

the matrix U(t), t ∈ (0, 1]. Then its spectrum has the following properties:

Positive spectrum

• For every l1, l2 > 0 there are infinitely many gaps. The gaps are located in the
vicinity of the points {mπ

l1
, nπ
l2
}, m,n ∈ N in the momentum scale.

• If l1
l2

is a rational number then there are infinitely many infinitely degenerate
eigenvalues.

• The gap width goes asymptotically to zero in the momentum scale.

Negative spectrum

• Point − cot(π
4
t) always belongs to the spectrum. There exist spectral band in

the vicinity of this point. Thus inf σ(H) < − cot(π
4
t).
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4.7 Analytic solution α = 0 - illustrated by plots

This section is a generalization of Section 2.2. Namely, t ∈ [0, 1] instead of t = 1 and
correspondingly k 7→ ±k2 sin2 π

4
t−cos2 π

4
t

k2 sin2 π
4
t+cos2 π

4
t
, κ 7→ κ2 sin2 π

4
t+cos2 π

4
t

κ2 sin2 π
4
t−cos2 π

4
t
instead of k 7→ ±k2−1

k2+1
,

κ 7→ κ2+1
κ2−1

, respectively. We refer reader to this section where the detailed description
can be found.

Figure 4.2: The situation for edge lengths l1 = 1, l2 = 2 and t = 0.

Figure 4.3: The situation for edge lengths l1 = 1, l2 = 2 and t = 0.02.
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Figure 4.4: The situation for edge lengths l1 = 1, l2 = 2 and t = 0.07.

Figure 4.5: The situation for edge lengths l1 = 1, l2 = 2 and t = 1.
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4.8 Numerical solutions α = 0

The numerical solution shows that there are the gaps around the points {mπ
2
, nπ

2
},

m,n ∈ N for every t ∈ (0, 1]. It can be seen how the gaps are closing around those
points if we send t→ 0. On the other hand at the bottom part of the figure we can
see how the negative spectrum nicely follows the cotangent curve.
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Figure 4.6: Numerical solution for l1 = 1 and l2 = 2.

Figure 4.7: Numerical solution for l1 = 1 and l2 = 2.
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Figure 4.8: Numerical solution for l1 = 1 and l2 = 1+
√

5
2

.

Figure 4.9: Numerical solution for l1 = 1 and l2 = 1+
√

5
2

.
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4.9 Momentum and energy as function of θ1, θ2

In this section is shown low momentum resp. energy as function of θ1, θ2 ∈ (−π, π].
The case for t = 0 can be compared with computations which are made in [8, Section
V.]

Figure 4.10: The momentum k as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.

Figure 4.11: The energy k2 as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.
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Figure 4.12: The momentum k as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.191.

Figure 4.13: The energy k2 as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.191.
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Figure 4.14: The momentum k as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.575.

Figure 4.15: The energy k2 as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.575.
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Figure 4.16: The momentum k as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.848.

Figure 4.17: The energy k2 as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.848.
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Figure 4.18: The momentum k as function of θ1, θ2. l1 = 1, l2 = 2, t = 1.

Figure 4.19: The energy k2 as function of θ1, θ2. l1 = 1, l2 = 2, t = 0.314.
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4.10 Spectrum of a rectangular lattice: case α 6= 0

4.10.1 Positive spectrum

Spectral condition:

sin(kl1)
(

cos(kl2) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ2)

)
+ sin(kl2)

(
cos(kl1) +

k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ1)

)
− 2

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θ1 + cos kl1)(cos θ2 + cos kl2)

+
2

k
tan(

1− t
2

γ)
cos2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

sin(kl1) sin(kl2) = 0

(4.21)

Theorem 4.3. Let α 6= 0 and l1
l2
∈ Q then for every t ∈ (0, 1) there is an infinitely

many gaps in the spectrum.

Proof. Suppose we have point k′ such that cos(k′l1) = cos(k′l2) = 1. We have already
proved that there exist a vicinity (k′− δ, k′), resp. (k′, k′+ δ) of this point where the
first two expressions in the (4.21) are both negative, resp. both positive. Indeed, we
can use the second part of Theorem 4.1 and Lemma 4.1 and the following inequalities

0 < cos(kl2)−

∣∣∣∣∣k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)

∣∣∣∣∣ < cos(kl2) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ2),

0 < cos(kl1)−

∣∣∣∣∣k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)

∣∣∣∣∣ < cos(kl1) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ1).

(4.22)

Now for arbitrary fixed k we see that function φ(θ1, θ2) = (cos θ1 + cos kl1)(cos θ2 +
cos kl2) has its minimum and maximum as follows

min
θ1,θ2∈(−π,π]

φ(θ1, θ2) = min{(cos kl1 − 1)(cos kl2 + 1), (cos kl1 + 1)(cos kl2 − 1)},

max
θ1,θ2∈(−π,π]

φ(θ1, θ2) = (cos kl1 + 1)(cos kl2 + 1). (4.23)

Without loss of generality we can assume that the minimum corresponds to the first
case. Moreover, let tan(1−t

2
γ) > 0. Under these assumptions we have the following

inequalities

−2
1

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θ1 + cos kl1)(cos θ2 + cos kl2) >

−2
1

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos kl1 − 1)(cos kl2 + 1) > −C1(cos kl1 − 1),

(4.24)
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where we used (4.23) in the first inequality and the fact that there exist C1 < 0 such
that

−2
1

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos kl2 + 1) > −C1, ∀k > 0

in the second inequality. Next we use the following limit

lim
k→k′

1− cos(kl1)

sin(kl1)
= 0

which by the definition of a limit means that

(∀ε1 > 0)(∃H(1)
k′ )(∀k ∈ H(1)

k′ )(|1− cos(kl1)| < ε1| sin(kl1)|). (4.25)

Let us choose ε1 > 0 as follows

ε1 =
1

2|C1|

(
cos(kl1)−

∣∣∣∣∣k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)

∣∣∣∣∣
)

(4.26)

Note that for some δ > 0 this number is positive at least on (k′−δ, k′) and (k′, k′+δ)
by (4.22). Substituting ε2 into (4.25) we obtain

2
1

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θ1 + cos kl1)(cos θ2 + cos kl2) <

< C1(cos kl1 − 1) < |C1(cos kl1 − 1)| <

1

2

(
cos(kl2)−

∣∣∣∣∣k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)

∣∣∣∣∣
)
| sin(kl1)| <

1

2
sin(kl1)

(
cos(kl2) +

k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ2)

)
(4.27)

In the first inequality we used (4.24), the second inequality is the property of absolute
value, the third one is obtained by substitution of (4.26) into (4.25) and in the last
one we used (4.22). Note that the last inequality is valid only on H(1)

k′ since function
sin(kl1) is positive on this interval thus we can omit the absolute value, i.e. sin(kl1) =

| sin(kl1)|. The foregoing inequalities thus hold on the interval (k′, k′ + δ) ∩H(1)
k′ .

Similarly, we use the limit

lim
k→k′

sin(kl1) sin(kl2)

sin(kl1)
= 0

and we find out that there exists a H(2)
k′ such that on (k′, k′+ δ)∩H(2)

k′ the following
inequality hold

− 2
1

k
tan(

1− t
2

γ)
cos2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

sin(kl1) sin(kl2) <

1

2
sin(kl2)

(
cos(kl1) +

k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ1)

) (4.28)
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Finally inequalities (4.27) and (4.28) prove that the sum of last three terms in the
spectral condition (4.21) is positive for all k ∈ (k′, k′+ δ)∩H(1)

k′ ∩H
(2)
k′ and we know

that the first term is positive on k ∈ (k′, k′+δ). In other words the spectral condition
can not be zero on k ∈ (k′, k′ + δ)∩H(1)

k′ ∩H
(2)
k′ thus this interval can not belong to

the spectrum.

It is not hard to see that if we would assume that tan(1−t
2
γ) < 0 we would get similar

result on k ∈ (k′ − δ, k′) ∩ H(1)
k′ ∩ H

(2)
k′ . Moreover, in the same way we would have

proved that there are the gaps in the left, resp. right vicinity of all points k′ where
cos(k′l1) = ±1 ∧ cos(k′l2) = ±1. Since we know that there is an infinite number of
those points we proved that there are infinitely many gaps in the spectrum.

Theorem 4.4. Let α 6= 0, l1
l2
∈ R \Q and t ∈ (0, 1) then for every l1, l2 > 0 hold:

1. If l1
l2

is Last admissible then there are infinitely many gaps in the spectrum.

2. For an arbitrary l1
l2
there exists an ε1 > 0 such that for all t > 1− ε1 there are

infinitely many gaps in the spectrum.

3. For an arbitrary l1
l2

there exists an ε2 > 0 such that for all t < ε2 there are
infinitely many gaps in the spectrum.

4. For an arbitrary l1
l2

there exists an ε3 > 0 such that for all |α| < ε3 there are
infinitely many gaps in the spectrum.

Proof. Without of loss of generality we may suppose that l1 ≥ l2. First consider the
following sequences

an =
2π

l1
(n+

a

n
) =

2πn

l1
+
a2π

l1n
, n ∈ N0, (4.29)

resp.

a′n =
2π

l1
(−a
n

+ n) = −a2π

l1n
+

2πn

l1
, n ∈ N0. (4.30)

where a is a so far unspecified real parameter.

Now let us consider three limit indicated below. We compute those limits only for
the sequence {an}∞n=1. It can be easily done for the sequence {a′n}∞n=1 and we will
find that the limits have the same values.
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lim
n→∞

1− cos(anl1)

cos(anl1)− a2n sin2(πt
4

)−cos2(πt
4

)

a2n sin2(πt
4

)+cos2(πt
4

)

= (4.31)

= lim
n→∞

1− cos a2π
n

cos 2πn+ sin a2π
n

sin 2πn

cos a2π
n

cos 2πn+ sin a2π
n

sin 2πn− a2n sin2(πt
4

)−cos2(πt
4

)

a2n sin2(πt
4

)+cos2(πt
4

)

= lim
n→∞

(
−
∑∞

k=1

(−1)k( 2πa
n )

2k

2k!

)(
sin2 πt

4
(4π2

l21
(n2 + 2a+ a2

n2 )) + cos2 πt
4

)
(∑∞

k=1

(−1)k( 2πa
n )

2k

2k!

)(
sin2 πt

4
(4π2

l21
(n2 + 2a+ a2

n2 )) + cos2 πt
4

)
+ 2 cos2 πt

4

=
sin2(πt

4
)4π4a2

− sin2(πt
4

)π4a2 + l21 cos2 πt
4

lim
n→∞

sin(anl1)
1
an

= lim
n→∞

(
sin

a2π

n
cos 2πn+ cos

a2π

n
sin 2πn

)(2πn

l1
+
a2π

l1n

)
= (4.32)

=
2π

l1
lim
n→∞

sin a2π
n

1
n

=
4π2a

l1

lim
n→∞

1

an

cos2 πt
4

a2n sin2 πt
4 +cos2 πt

4

cos(anl1)−
a2n sin2(πt4 )−cos2(πt4 )

a2n sin2(πt4 )+cos2(πt4 )

= (4.33)

lim
n→∞

cos2 πt4[
2π
l1
(n+ a

n )

][(∑∞
k=1

(−1)k( 2πa
n )

2k

2k!

)(
sin2 πt4 ( 4π

2

l21
(n2 + 2a+ a2

n2 )) + cos2 πt4

)
+ 2 cos2 πt4

] = 0

Now let us introduce a new parameter a′ ∈ (0, a). This way we can get intervals
An := (2πn

l1
, 2πn
l1

+ 2πa
l1n

) and A′n := (2πn
l1
− 2πa

l1n
, 2πn
l1

) if we use the parameter a′ instead
of the parameter a in (4.29) and (4.30), respectively. This allows us to rewrite the
foregoing sequences of numbers as sequences of functions and immediately write
their limits.

lim
n→∞

1− cos(kl1)

cos(kl1)− k2 sin2(πt
4

)−cos2(πt
4

)

k2 sin2(πt
4

)+cos2(πt
4

)

=
sin2(πt

4
)4π4a′2

− sin2(πt
4

)π4a′2 + l21 cos2 πt
4

, (4.34)

lim
n→∞

1
k

sin(kl1)
=

l1
4π2a′

, (4.35)

lim
n→∞

1

k

cos2 πt
4

k2 sin2 πt
4

+cos2 πt
4

cos(kl1)− k2 sin2(πt
4

)−cos2(πt
4

)

k2 sin2(πt
4

)+cos2(πt
4

)

= 0, (4.36)

where k = 2πn
l1

+ 2πa′

l1n
, resp. k = 2πn

l1
− 2πa′

l1n
on k ∈ An, resp. k ∈ A′n.
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Moreover, we can repeat this procedure for l2 and for the sequences

bn = 2π(
n

l2
+

a

nl2
) =

2πn

l2
+

2πa

l2n
, n ∈ N0,

resp.

b′n = 2π(− a

nl2
+
n

l2
) = −2πa

l2n
+

2πn

l2
, n ∈ N0,

and we get similar results. Namely,

lim
n→∞

1− cos(kl2)

cos(kl2)− k2 sin2(πt
4

)−cos2(πt
4

)

k2 sin2(πt
4

)+cos2(πt
4

)

=
sin2(πt

4
)4π4a′2

− sin2(πt
4

)π4a′2 + l22 cos2 πt
4

(4.37)

lim
n→∞

1
k

sin(kl2)
=

l2
4π2a′

(4.38)

lim
n→∞

1

k

cos2 πt
4

k2 sin2 πt
4

+cos2 πt
4

sin(kli)

cos(kli)−
k2 sin2(πt

4
)−cos2(πt

4
)

k2 sin2(πt
4

)+cos2(πt
4

)

= 0 (4.39)

where k = 2πn
l2

+ 2πa′

l2n
, resp. k = 2πn

l2
− 2πa′

l2n
on Bn := (2πn

l2
, 2πn
l2

+ 2πa
l2n

), resp. B′n :=

(2πn
l2
− 2πa

l2n
, 2πn
l2

).

Now let us use the Dirichlet approximation theorem which implies that for every
irrational number l1

l2
there are infinitely many fractions p

q
such that∣∣∣ l1

l2
− p

q

∣∣∣ < 1

q2
. (4.40)

Since l1 < l2 by assumption, it is not hard to see that we can find an infinite sequence
of fractions in the form pn

qn
, n ∈ N with the following properties

1. {qn}∞n=1 is strictly growing: qn < qn+1, ∀n ∈ N.
2. {pn}∞n=1 is strictly growing: pn < pn+1 ∀n ∈ N.
3. pn < qn, ∀n ∈ N.

Using this we can rewrite the (4.40) as follows∣∣∣2πqn
l1
− 2πpn

l2

∣∣∣ < a2π

l1qn
. (4.41)

and by using the third property we also get∣∣∣2πqn
l1
− 2πpn

l2

∣∣∣ < a2π

l1pn
. (4.42)

Let us for all n ∈ N define an interval

δn =

{
(2πqn

l1
, 2πpn

l2
), if 2πqn

l1
< 2πpn

l2
,

(2πpn
l2
, 2πqn

l1
), if 2πqn

l1
> 2πpn

l2
.
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We see that one of the following possibilities hold for every n ∈ N:

δn ⊂ Apn ∧ δn ⊂ B′qn

or
δn ⊂ A′pn ∧ δn ⊂ Bqn .

Finally, since {qn}∞n=1 and {qn}∞n=1 are strictly growing sub-sequences of {n}∞n=1 we
see that all the limits (4.34)-(4.36) and (4.37)-(4.39) hold for {δn}∞n=1. In other
words, the Dirichlet approximation theorem implies the existence of the sequence of
intervals {δn}∞n=1 such that the following limits hold for all i ∈ {1, 2}:

lim
n→∞

1− cos(kli)

cos(kli)−
k2 sin2(πt

4
)−cos2(πt

4
)

k2 sin2(πt
4

)+cos2(πt
4

)

=
sin2(πt

4
)4π4a′2

− sin2(πt
4

)π4a′2 + l2i cos2 πt
4

, (4.43)

lim
n→∞

1
k

sin(kli)
=

li
4π2a′

, (4.44)

lim
n→∞

1

k

cos2 πt
4

k2 sin2 πt
4

+cos2 πt
4

sin(kli)

cos(kli)−
a2n sin2(πt

4
)−cos2(πt

4
)

a2n sin2(πt
4

)+cos2(πt
4

)

= 0, (4.45)

when k ∈ δn.
Now we combine the first two limits and we obtain for all i, j ∈ {1, 2}, i 6= j the
following limit

lim
n→∞

1
k2 tan

(
1−t
2 γ
)

sin(klj)

1− cos(kli)

cos(kli)−
k2 sin2(πt4 )−cos2(πt4 )

k2 sin2(πt4 )+cos2(πt4 )

= 2 tan
(1− t

2
γ
) lj l2i
π2

sin2(πt4 )

−a′ sin2(πt4 ) +
l2i
π2a′ cos

2 πt
4

(4.46)

Let us make an assumption that this limit is equal to zero. We will discus the
conditions required to this assumption to be fulfilled later. Now, if the limit is equal
to zero we find out that for all i, j ∈ {1, 2}, i 6= j:

(∀ε2 > 0)(∃n2 ∈ N)(∀n > n2)(∀k ∈ δn)∣∣∣1
k

2 tan
(1− t

2
γ
) k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(1 + cos kli)(1− cos klj)
∣∣∣ < (4.47)

< 2
∣∣∣1
k

2 tan
(1− t

2
γ
)
(1− cos klj)

∣∣∣ < 2ε2

∣∣∣ sin(kli)
(

cos(klj)−
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)

)∣∣∣
< 2ε2

∣∣∣ sin(kli)
(

cos(klj) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos θj

)∣∣∣,
where we used that∣∣∣ k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(1 + cos kli)
∣∣∣ < 2, ∀k ∈ R.

Now we use the first expression in (4.23) and we divide inequality (4.47) into two
cases:
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1. tan
(

1−t
2
γ
)
> 0:

−1

k
2 tan

(1− t
2

γ
) k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θi − cos kli)(cos θj − cos klj) <

(4.48)

< 2ε2

∣∣∣ sin(kli)
(

cos(klj) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos θj

)∣∣∣
2. tan

(
1−t

2
γ
)
< 0:

1

k
2 tan

(1− t
2

γ
) k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θi − cos kli)(cos θj − cos klj) < (4.49)

< ε2

∣∣∣ sin(kli)
(

cos(klj) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos θj

)∣∣∣
Similarly, by using the limit (4.45) we get

(∀ε3 > 0)(∃n3 ∈ N)(∀n > n3)(∀k ∈ δn)

|1
k

cos2 πt
4

k2 sin2 πt
4

+ cos2 πt
4

sin kli sin klj| < ε3

∣∣∣ sin(kli)
(

cos(klj)−
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)

)∣∣∣
(4.50)

< ε3

∣∣∣ sin(kli)
(

cos(klj) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos θj

)∣∣∣.
Finally, we refer reader to Theorem 4.1, namely to the expression (4.19), where if we
re-scale the ε sufficiently we get, for arbitrary n ∈ N, existence of the neighborhood
H

(n)
j of point 2πn

lj
such that for all ε1 > 0 the following inequalities hold∣∣∣∣∣ sin(klj)

(k2 sin2 π
4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θi) + cos(kli)
)∣∣∣∣∣ < (4.51)

< ε1

∣∣∣∣∣ sin(kli)
(k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θj) + cos(klj)
)∣∣∣∣∣.

and ∣∣∣∣∣ sin(klj)
(k2 sin2 π

4
t− cos2 π

4
t

k2 sin2 π
4
t+ cos2 π

4
t

cos(θi) + cos(kli)
)∣∣∣∣∣ > 0. (4.52)

Note that the two expressions in (4.52) have different sign on δn for all n ∈ N.

Now if we choose ε1 = ε2 = ε3 = 1
6
then if we use all those inequalities on the spectral

condition 4.21) we get existence of n0 such that for all n > n0 this condition is neither
strictly positive or strictly negative on δn∩H(n)

j . In other words, the infinite sequence
of intervals δn ∩H(n)

j does not belong to the spectrum.

The last thing to do is to discuss cases when the limit (4.46) is equal to zero:
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1. a→ 0:
Indeed, since a′ ∈ (0, a) also goes to zero it is not hard to see that this limit is
equal to zero.

This condition can be satisfied only for Last admissible numbers (3.6). We
know that for those numbers there for every a > 0 exist infinitely many pairs
(p, q) ∈ Z2 such that | l1

l2
− p

q
| < a

q2
thus the existence of sequence δn is ensured.

2. t→ 0, t→ 1:
Again we see that the limit is equal to zero. In contrast with the first case now
the condition is satisfied for all rational numbers.

3. γ → 0:
Similarly to the second case the condition is satisfied for all rational numbers.

Let us take a closer look on the previous cases. We consider only the second case.
We would have proved the other cases by following the same arguments. Now let
be parameters l1, l2, α in the limit (4.46) chosen arbitrary. For every ε > 0 we can
choose sufficiently t such that the limit is equal to ε, i.e.

lim
n→∞

1
k
2 tan

(
1−t

2
γ
)

sin(klj)

1− cos(kli)

cos(kli)−
k2 sin2(πt

4
)−cos2(πt

4
)

k2 sin2(πt
4

)+cos2(πt
4

)

= ε. (4.53)

Using the definition of the limit we obtain

(∀ε̃ > 0)(∃n0 ∈ N)(∀n > n0)(∀k ∈ δn), (4.54)∣∣∣∣∣ 1
k
2 tan

(
1−t

2
γ
)

sin(klj)

1− cos(kli)

cos(kli)−
k2 sin2(πt

4
)−cos2(πt

4
)

k2 sin2(πt
4

)+cos2(πt
4

)

− ε

∣∣∣∣∣ < ε̃, (4.55)

which is equivalent to

∣∣∣∣∣ 1
k
2 tan

(
1−t

2
γ
)

sin(klj)

1− cos(kli)

cos(kli)−
k2 sin2(πt

4
)−cos2(πt

4
)

k2 sin2(πt
4

)+cos2(πt
4

)

∣∣∣∣∣ < ε̃+ ε =: ε2. (4.56)

There we used well known inequality |a| − |b| < |a− b|. Since ε2 > 0 can be chosen
arbitrary we see that inequality (4.10.1) is used correctly.

71



4.10.2 Negative spectrum

We get the spectral condition by substituting κ = ik into (4.21):

sinh(κl1)

((
κ2 sin2 πt

4
− cos2 πt

4

)
cosh(κl2) +

(
κ2 sin2(

πt

4
) + cos2(

πt

4
)
)

cos(θ2)

)

+ sinh(κl2)

((
κ2 sin2 πt

4
− cos2 πt

4

)
cosh(κl1) +

(
κ2 sin2(

πt

4
) + cos2(

πt

4
)
)

cos(θ1)

)
+

2

κ
tan(

1− t
2

γ)κ2 sin2 πt

4
(cos θ1 + coshκl1)(cos θ2 + coshκl2)

− 2

κ
tan(

1− t
2

γ) cos2 πt

4
sinh(κl1) sinh(κl2) = 0

(4.57)
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4.11 Numerical solution α 6= 0

Figure 4.20: Numerical solution for l1 = 1, l2 = 2 and α = 1

Figure 4.21: Numerical solution for l1 = 1, l2 = 2 and α = 10
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Figure 4.22: Numerical solution for l1 = 1, l2 = 2 and α = 100

Figure 4.23: Numerical solution for l1 = 1, l2 = 2 and α = −1

74



Figure 4.24: Numerical solution for l1 = 1, l2 = 2 and α = −10

Figure 4.25: Numerical solution for l1 = 1, l2 = 2 and α = −100
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Conclusion

We have studied the rectangular lattice quantum graph with class of interpolating
couplings which is given by family of unitary matrices U(t) : t ∈ [0, 1], α ∈ R such
that

U(0) = −I +
2

n+ iα
J and U(1) = R,

the map t 7→ U(t) is continuous on [0, 1], (4.58)
U(t) is unitary circulant for all t ∈ [0, 1].

where I is unit matrix, J denotes the matrix with all elements equal to one and
U(1) is defined as

U(1) = R :=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Figure 4.26: The rectangular lattice quantum graph.

We established the spectral condition which determines the spectrum:

77



Positive spectrum

sin(kl1)
(

cos(kl2) +
k2 sin2(πt

4
)− cos2(πt

4
)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ2)

)
+ sin(kl2)

(
cos(kl1) +

k2 sin2(πt
4

)− cos2(πt
4

)

k2 sin2(πt
4

) + cos2(πt
4

)
cos(θ1)

)
− 2

1

k
tan(

1− t
2

γ)
k2 sin2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

(cos θ1 + cos kl1)(cos θ2 + cos kl2)

+ 2
1

k
tan(

1− t
2

γ)
cos2 πt

4

k2 sin2 πt
4

+ cos2 πt
4

sin(kl1) sin(kl2) = 0

(4.59)

Negative spectrum

sinh(κl1)

((
κ2 sin2 πt

4
− cos2 πt

4

)
cosh(κl2) +

(
κ2 sin2(

πt

4
) + cos2(

πt

4
)
)

cos(θ2)

)

+ sinh(κl2)

((
κ2 sin2 πt

4
− cos2 πt

4

)
cosh(κl1) +

(
κ2 sin2(

πt

4
) + cos2(

πt

4
)
)

cos(θ1)

)
+

2

κ
tan(

1− t
2

γ)κ2 sin2 πt

4
(cos θ1 + coshκl1)(cos θ2 + coshκl2)

− 2

κ
tan(

1− t
2

γ) cos2 πt

4
sinh(κl1) sinh(κl2) = 0

(4.60)

Theorem 4.5. Let us have the periodic rectangle lattice quantum graph (Figure
4.26) with the Hamiltonian H := − d2

dx2
and with the vertex conditions determined by

(4.58). Then its spectrum has following properties:

1. t = 0:

(a) α = 0:

i. Positive spectrum:
• The spectrum is the positive half-line, i.e. σ(H) = [0,∞].

ii. Negative spectrum:
• The negative spectrum is empty.

(b) α 6= 0:

i. Positive spectrum:
• If θ is rational or Last admissible number then the spectrum has
infinitely many gaps for α 6= 0.
• For badly approximable θ there exist γ > 0 such that γ < α < π2 ·

min
{
ν(θ)
l2
, ν(θ)−1

l1

}
for α > 0, resp. γ < |α| < π2 ·min

{
ν(θ)
l1
, ν(θ)−1

l2

}
for α < 0 the spectrum has no gaps above the threshold.
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• For all θ ∈ R the spectrum has infinitely many gaps if α > π2 ·
min

{
ν(θ)
l2
, ν(θ)−1

l1

}
for α > 0, resp. |α| > π2 ·min

{
ν(θ)
l1
, ν(θ)−1

l2

}
for

α < 0.
ii. Negative spectrum:

• The negative spectrum is non-empty if and only if α > 0.

2. t = 1:

(a) α ∈ R (the spectral condition does not depend on α):

i. Positive spectrum:
• For every θ ∈ R there is an infinitely many gaps. The gaps are
located in the vicinity of the points {mπ

l1
, nπ
l2
}, m,n ∈ N.

• If θ is rational number then there is an infinitely many infinitely
degenerate eigenvalues.
• The gap width goes asymptotically to zero in the momentum scale.

ii. Negative spectrum:
• Momentum −1 always belongs to the spectra. There exist a spec-
tral band in the vicinity of this point. Thus inf σ(H) < −1.

3. t ∈ (0, 1):

(a) α = 0:

i. Positive spectrum:
• For every θ ∈ R there is an infinitely many gaps. The gaps are
located in the vicinity of the points {mπ

l1
, nπ
l2
}, m,n ∈ N.

• If θ is rational number then there is an infinitely many infinitely
degenerate eigenvalues.
• The gap width goes asymptotically to zero in the momentum scale.

ii. Negative spectrum:
• Momentum − cot(π

4
t) always belongs to the spectra. There exist

a spectral band in the vicinity of this point. Thus inf σ(H) <
− cot(π

4
t).

(b) α 6= 0:

i. Positive spectrum:
• If θ is rational or Last admissible number then there is infinitely
many gaps in the spectrum.
• For arbitrary θ there exist ε1 > 0 such that for all t > 1−ε1 there
is infinitely many gaps in the spectrum.
• For arbitrary θ there exist ε2 > 0 such that for all α < ε2 there
is infinitely many gaps in the spectrum.
• For an arbitrary l1

l2
there exists an ε3 > 0 such that for all |α| < ε3

there are infinitely many gaps in the spectrum.
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