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Abstrakt

Bakalářská práce se zabývá návrhem a implementaćı algoritmu pro kopresi
testu založeném na Illinois-Scan dekompresńı architektuře použ́ıvané pro tes-
továńı digitálńıch obvod̊u. Jedná se o metodu testováńı sekvenč́ıch obvod̊u,
která za účelem snadné testovatelnosti převede sekvenčńı obvody do spojené
kombinačńı logiky a klopných obvod̊u (DFFs), které jsou následně přerozděleny
do vybraných scan-chain̊u. Testovaćı vektory jsou pak vedené paralelně několika
scan-chainy, což může zp̊usobit neúplné pokryt́ı všech poruch. Proto je pro nás
užitečné hledat takové configurace scan-chain̊u, které maximalizuj́ı pokryt́ı po-
ruch a minimalizuj́ı délku testu. K tomuto účelu máme k dispozici nástroj na
generováńı testu (ATPG) - nakonec jsem použil ATPG Atalanta. Výsledky
práce jsou zhodnoceny v závěru.

Kĺıčová slova komprese testu, Illinois-Scan, scan-chain, pokryt́ı poruch, di-
gitálńı obvody, kombinačńı obvody , sekvenčńı obvody, klopné obvody, DFF,
ATPG
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Abstract

The Bachelor thesis aims to design and implement a test compression algo-
rithm based on the Illinois-Scan decompression architecture used for digital
circuits. This is a method for a sequential logic testing, which converts se-
quential circuits in the connected combinational logic and flip-flops (DFFs),
which are reordered in the chosen scan-chains. The test vectors are delivered
to multiple scan-chains in parallel, which may cause the fault coverage loss.
Therefore is very useful to find the configuration of the scan-chains, which
maximizes the faults coverage and minimizes the test length. For this pur-
pose, we use available test generation tools (ATPGs) - finally, I used ATPG
Atalanta. The outcomes of the research are evaluated in the conclusion.

Keywords test compression, Illinois-Scan, scan-chain, faults coverage, digi-
tal circuits, combinational circuits, sequential circuits, flip-flops, DFF, ATPG
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Introduction

Digital circuits have come a part of our everyday life since the 20th century.
We probably could not see them at first sight but every technology from
the electric toothbrush to the supercomputer in NASA is based on digital
circuits. Chips in our tools are created from a semiconductor wafer, which has
contained thousands and thousands of logic gates and latches. Although this
part of information technology is used to be neglected between programmers
and developers, just decades of development of the digital circuits has brought
technologies into the form, how can we see today. So, we have got many
reasons to study them.

In the beginning, I would like to explain, why is useful to be aimed at
testing digital circuits. Chips are created from semiconductor wafers. Let the
300mm (circle diameter) wafer gives 1cm2 chip, then material costs (wafer,
copper, etc. . .) gives 5%, fab (fabrication facility) operational costs gives
25%, personal costs gives 20% but testing costs gives 40% [1]. According to
other source, testing costs gives 30%[2]. So, testing is a big share of chip’s
costs. In my bachelor thesis, I will be focused on one type of sequential logic
testing algorithm based on Illinois-Scan Architecture.

The Bachelor thesis aims to design and implement a test compression al-
gorithm, which tests sequential circuits. In my work, I am focused on the
method called Illinois-Scan Architecture. Digital circuits are tested with ex-
tensive test data volume. The algorithm is saving test data volume (test
compression) and decreases test application time[1]. On the other hand, our
approach may cause fault coverage loss.

The input of our program is sequential or combinational logic (BLIF).
According to our configuration file (generated or handmade) with scan-chains,
our program generates a new file based on Illinois-Scan Architecture (BLIF).
The testing of this file with ATPG is evaluated in the experimental part. In the
experimental part we find out, how could distribution of the scan-chains affects
fault coverage and testing time and volume. The outcomes of experimental
measurement are summarized in the conclusion.
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Introduction

Structure

Bachelor thesis is divided into the six chapters with conclusion.

• Technical terms and definitions includes explanation of elementary
terms and definitions.

• Analysis and design introduces to the topic.

• Realization describes and make glosses to a implementation.

• Experimental measurement detects a effect of scan-chains in the test
compression.

• Conclusion is assuming results of the research.
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Chapter 1
Technical terms and definitions

In the beginning, I would like to introduce terms and definitions, which are
connected with my bachelor thesis. Terms and definitions could be differ-
ent according to publication because English terminology is not uniform at
all. The next terms and definitions are often simplified and taken over from
mostly using sources or from presentations of subject MI-TSP (Testing and
Reliability) teaching by my supervisor Petr Fǐser.

• Logic gate is a modeled or physically created component of logic cir-
cuits characterized by Boolean function, which has got typically one or
more inputs but only one output[3].

• Latch or the flip-flop is an elementary storage component of the sequen-
tial logic circuit. It has got two stable states, which could be changing
depends on signals applied on inputs[3].

• Digital logic (circuit) is a logic circuit, where is assigned to every
electronic signal to one discrete value. This value represents information,
which is processed. In our case, we will be working with circuits, which
use the binary representation of signals (”0”, ”1”)[4].

• Combinational logic (circuit) is time-independent logic, digital logic,
typically characterized by the Boolean logic, where the output is depen-
dent only on the present inputs[4].

• Sequential logic (circuit) is a logic circuits, where the output could
be depending on the present values of inputs but also on the sequence
of the history of the past input[4].

• Test Pattern is a testing vector, which assigns value to every input of
the circuit[5].

• Testing is a verification that produced circuit works as we wanted[2].

3



1. Technical terms and definitions

• Defect is a circuit’s wrong issue on the physical level[2].

• Fault is a circuits’ wrong issue on the logic level[2].

• Error is a real demonstration of the wrong issue (wrong numbers addition)[2].

• Failure is a real demonstration of the weighty wrong issue (collapse of
the computer)[2].

• Undetectable fault (redundant, untestable) is a fault, for which does
not exist a test pattern[5].

4



Chapter 2
Analysis and design

This chapter introduces us to testing and reliability and the basic principles
necessary to understand the issue of this work. This chapter analyzes elemen-
tary approaches to testing combinational and sequential circuits and describes
the algorithm of my solution.

Generally, testing of sequential logic is very hard – a long time of test gen-
eration, long test, small fault coverage[6]... Success solution seems to convert
sequential to combinational logic, which is a part of my study. My solution
is focused on sequential circuits but in my analysis and designs part, I am
writing some information about the testing combinational logic too.

In my work, I am not working with digital circuits on the hardware level.
My program work with combinational and sequential logic designed in BLIF
format.

5



2. Analysis and design

2.1 Testing and Reliability

2.1.1 Combinational logic testing

Signature analyzer (SA)

Figure 2.1: Testing of combinational logic[5, 7]

2.1.2 Test Pattern Generation (TPG)

Test Pattern Generator is a generator, which produces test sequences – test
patterns. We could have deterministic, pseudo-random, or mixed-mode test
patterns. Deterministic test patterns are saved in memory (RAM, ROM).
These patterns are calculated in advance and they are focused on a given
set of faults. Pseudo-random generated patterns produce “random” vectors,
which should be able to detect some faults. Mixed-mode testing patterns are
a combination of pseudorandom and deterministic test patterns[5].

Test pattern for given fault is an evaluation of primary inputs (PI)
that fault is shown in the primary outputs (PO). It does mean that result of
the output of the logic circuit is different from the fault loss logic circuit.

6



2.1. Testing and Reliability

Test pattern for given fault must do[5]:

• Excitation of fault – pattern should bring inverse value from PI.

• Propagation of fault – pattern should display change of fault on the
PO.

2.1.3 Test creation

We suppose combinational logic, stuck-at fault model – faults of type stuck-
at-1 and stuck-at-0. We want to test every this fault i.e. 100% fault coverage.
The question is asked during the creation of logic testing, which patterns
are needed to create, and how may test patterns are needed for whole fault
coverage of logic. We wanted, of course, to estimate the complexity of this
method and find an effective algorithm to solve it.

Figure 2.2: Example for single stuck-at-1 fault[8].

FaultCoverage = NumberOfDetectedFaults

NumberOfAllFaults

We have got two basic types of testing - trivial test and complete test.

• Trivial test - is based on applying all vectors on primary inputs. We
will apply 2n vectors, where n is a number of inputs. We have got
guaranteed 100% fault static coverage but it is very time-consuming[5].

• Complete test - is from definition complete test of 100% fault coverage[5].

7



2. Analysis and design

2.1.4 Automatic Test Pattern Generation (ATPG)

ATPG is an algorithm tool for generating of test[5]. It finds a test pattern,
which enables ATE to recognize working properly logic and fault working logic
behavior[5]. ATPG has got two approaches to generate test patterns:

Algorithm 1: Basic ATPG algorithm[9]
Result: Generates test patterns
Input: Combinational logic
Output: Test patterns for the logic
————————
1.Generate fault-list - all fault on the PI, outputs of the logic gates
and branches;

2.Reduce fault-list - some faults are equivalent, dominance;
3.Choose the fault - random, first in the list, heuristic...;
4.Generate test pattern;
5.Simulation of test pattern - fault simulation, fault dropping;
6.if ! fault-list.empty then

repeat 3.;
7.Compaction of test - remove redundant vectors;

2.1.4.1 Intuitive path sensitization

Intuitive path sensitization is a manual test generation.
Algorithm 2: Intuitive path sensitization algorithm[9]

Result: test vector of PO
1. Choose fault of the logic;
2. signal(fault) = ! signal(fault);
3. Excitation to the PI, determine values of signals because we want
to the propagation of fault;

4. From fault, I am proceeding to PO, determine values of signals
cause we want to the propagation of fault;

5. I have often got many choices. If the conflict is there, I am
returning to 3. and 4.;

6. If I have not got conflicts, in the end, I have got a test vector of
PO;

7. If it is not possible to solve the conflict than conflict is not testable;

2.1.4.2 Algorithm approach

ATPG belongs to the NP-complete problems. Detection of test patterns could
be reduced on the Boolean satisfiability problem (SAT problem). For some
circuits, it is not possible to test all faults. The reason should be a timeout,

8



2.1. Testing and Reliability

backtracking limit (aborted faults), or undetectable faults (redundant faults).
Algorithm approaches to solve[9]:

• Structural approach is based on the passing through the logic circuit.

• Algebraic approach is based on the transfer circuits to Boolean formu-
las.

Algorithms, which improves of the Intuitive path sensitization algorithm
and solve APTG[9]:

• D-algorithm - tries to propagate the stuck-at-fault value that reverses
value D (for SA0) or not D (for SA1) to a primary output.

• Path Oriented Decision Making (PODEM) - is the improvement
of the D-algorithm.

• FAN - extension of PODEM.

• Boolean difference

• Generation test with SAT - a high-performance algorithm based on
solving the CNF-SAT problem.

• ...

9



2. Analysis and design

2.1.5 Sequential logic testing

In general terms, we know that testing of sequential logic is demanding on the
performance – long time of test generation, long test, weakly fault coverage.
Therefore it will be very useful if we will be able to sequential logic transform
to combinational logic because we know a relatively simple solution of combi-
national test generation. Since the 70s, a solution is shown to split the circuit
on combinational logic and sequential logic. The solution is simply[6].

On the other hand, we must add new logic to the test. Then circuit has
got two modes – functional and testing mode. This generation model is
simple and it brings easy testing of logic. The disadvantage of this solution is
the increasing delay, bigger area,. . . However, many test generators are based
on this idea. In my thesis, I am working with one type of model[6].

We have got two basic approachs of tests[6]:

• Test-per-clock

• Test-per-scan

2.1.5.1 Test-Per-Clock

   

 Combinational logic

DFF

PI

PPI

PO

PPO
Test Mode

Figure 2.3: Test-Per-Clock approach[6]

10



2.1. Testing and Reliability

Combinational logic is isolated from DFFs. Outputs of DFFs are connected to
multiplexor with combinational logic and we are calling them pseudo-primary
inputs (PPI). Inputs from DFFs are going to outputs and we are calling them
pseudo-primary outputs (PPO). Then inputs of our new circuit are PI + PPI
(#DFF) and a number of outputs are PO + PPO (#DFF).

In every cycle, I will be applying one test pattern. It is fast. The dis-
advantage of this method is that every DFF needs MUX and delays on the
way to every DFF. The next disadvantage is the increasing number of inputs
and outputs. In practice, it is not useful. It could be used in another method
(BIST)[6].

2.1.5.2 Test-Per-Scan

   

Combinational logic

DFFDFFDFFDFF

PI

CLK

PO

Figure 2.4: Test-Per-Scan approach[6]

Combinational logic is isolated from DFFs. All DFFs are in testing mode
connected to one chain called scan-chain. Primary inputs and outputs could
be part of the scan-chain. We are adding DFFs to the inputs and outputs.
So, we have got #PI + #PO more flip-flops. After that, we have got only
one input on a tested circuit and only one output of the tested circuit. It is
effective – we have got only three signals in addition – test-mode, scan-in, and
scan-out. The main disadvantage of this method is overhead – delay on MUX
of every DFFs way, long time of testing, area, data are serial.
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2. Analysis and design

Algorithm 3: Test-Per-Scan testing process[6]
Result: test vector of PO (+PPO)
1. Switching to the ”scan” mode.;
2. Putting test pattern to scan-chain.;
3. Switching to functional mode.;
4. Apply one clock cycle. It will be simulating combinational logic.
DFFs has got a response.;

5. Taking the response serial, clock cycles like # flip-flops.;
Putting on next pattern.;

Combined and next solutions:

• Partial Scan

• Multiple Scan Chain

• Parallel Scan

• ...

2.1.5.3 Scan-Cell

Scan-Cell based on MUX has got a small increase of area (15-30%), minimum
of inputs in addition but it has got delay cause MUX.

0          1

DFF

Scan Enable

CLK

Scan-in

Data-in
Data-out/
Scan-out

Figure 2.5: Scan-Cell[10]
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2.1. Testing and Reliability

2.1.6 Cost of Testing

During testing, we are looking at three main variable components.

• Test Application Time – Amortizing prize depends on the test time
results.

• Test Data Volume – Testers has got limited storage.

• Tester Pins – In production tester costs depend on inputs pins, which
tester supports.

2.1.7 Parallel-Scan

The scan application time should be reduced if we divide the single Scan-chain
into more parallel Scan-Chains. The output is consistent. A number of Scan-
Chains is depended on the testing tools and devices. Parallel-Scan has got an
impact on the compression of test data volume[11].

We could see the principle in Figure 2.6. A combinational compactor is a
tree of XOR gates. The output Compactor called Multiple Input Signature
Register (MISR), which converts the output to the function called the signa-
ture. Next, we compare the output signature with a fault-free signature[11].

Figure 2.6: Parrallel-Scan approach[1]
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2. Analysis and design

2.1.8 Illinois-Scan Architecture

It is a new design for the testability technique Parallel-Serial Full Scan (PSFS)
for reducing the complexity of test generation for sequential circuits to com-
binational circuits test generation problem. Test application time reduction
provides dividing the one Scan-chain into multiple parallel scan-chains and we
are shifting from the first cells of scan-chains to the last cells of scan-chains if
the scan-chain has got some cells[?].

This method decreases test data volume too because we have got the paral-
lel connection between every scan-chains cell according to the index of scan-cell
and input depends on scan-in, which has got length such a longest scan-chain
(for every index of cells I need only one value)[1].

Illinois-Scan Architecture takes advantage of a large circuit, which contains
many independent subcircuits. If subcircuits are dependent, it could because
of fault coverage loss. Every scan-chain, if it is possible, is parallel scanned
with the same scan scan-in input. Scan-ins are usually called scan-in pin in
practice. The scan-chains output is directed to a Multiple Input Signature
Register (MISR), which calculates signals to scan-out[1, 12] .

We have got two modes of Illinois-Scan:

• Broadcast Test Mode - Reduces-Scan time and scan data by a factor
#scan-chains. We need more vector to fault coverage and some faults
coverage could be reduced[1].

• Serial Test Mode - It is using for covering the loss of fault coverage
in the Broadcast Mode. It is not often used in industry[?].

14



2.1. Testing and Reliability

Figure 2.7: Illinois Modes[1]
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2. Analysis and design

Figure 2.8: One Scan-chain splitted to smaller scan-chains[1]

2.1.8.1 Scan-chains

The first long Scan-chain is created from primary inputs PI and derivated
from pseudo-primary inputs PPI created from outputs of flip-flops in arbitrary
order. This long Scan-chain is divided on more scan-chains according to our
setting. We could randomize them but mostly they are choosing similarly
long scan-chains. It reduces test data volume but fault coverage could be
decreasing.

Figure 2.9: Scan-in tester pin connected with scan-chains cells[1]
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2.2. Test Compression based on Illinois-Scan Architecture

2.1.8.2 Faults coverage in Illinois-Scan

We could solve tests in a much better time than before cause a parallel scan.
On the other hand, we could miss some faults because scan-cells on the same
index are connected with scan-in. In the picture below (Figure 3.10) we could
see connected scan-cells. You could see that for cells on the same index will
be used only 000 or 111. We could not try values 001, 100,. . . So, we are not
able to test these options and it is for us untestable[1].

However, the advantages of this method are indisputably, so this algorithm
is still using in practice[1].

Figure 2.10: Scan-chains faults coverage[1]

2.2 Test Compression based on Illinois-Scan
Architecture

Test Compression is a method for reducing the time and cost of testing digital
circuits. The Illinois-Scan compression test is trying to reduce bits of our test.
For manually generated test patterns is not possible to get good fault coverage
in a reasonable time. Therefore, we are using ATPG for test generation. It
could reduce test pattern size and if exists, we could test more test patterns
then origin circuit. In my thesis, I am using Illinois-Scan Architecture, which
reduces input’s data volume according to the max size of the biggest scan-
chain generated from the tested circuit[11].
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Chapter 3
Realization

3.1 Code source

For my bachelor thesis, I wrote three small programs, which are connected
with my topic. Programs were written in language C++. More information
about implementation and usage read in README.dm enclosed in the attach-
ment. In my text, I will be focused on describing algorithms and structures
of implemented models and data types important for my work.

3.2 Data collection

My programs are working with BLIF format standards. This is a wide format
standard for describing combinational and sequential logic (model references,
subfile references, ...). However, my program is working only with logic gates
and latches (DFFs), which are characteristic of the sequential logic. For the
illustrative, I would like to show one basic and simple example of a BLIF file,
which will be the pattern for the demonstration of algorithms. My experi-
mental part of the thesis will be using BLIF format too.

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# s27 . b l i f − s e q u e n t i a l c i r c u i t
. model s27 . b l i f
. inputs G0 G1 G2 G3
. outputs G17
. l a t c h G10 G5 3
. l a t c h G11 G6 3
. l a t c h G13 G7 3
. names G11 G17
0 1
. names G14 G11 G10
00 1
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3. Realization

. names G5 G9 G11
00 1
. names G2 G12 G13
00 1
. names G0 G14
0 1
. names G14 G6 G8
11 1
. names G1 G7 G12
00 1
. names G12 G8 G15
1− 1
−1 1
. names G3 G8 G16
1− 1
−1 1
. names G16 G15 G9
0− 1
−0 1
. end
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.2.1 Simply explanation and characteristic

• .model - It is parameter for the logic title[13].

• .inputs - It is a group of inputs - names of input signals[?].

• .outputs - It is a group of outputs - names of output signals[?].

• .latch - It declares DFF. The first parameter is an input signal, second is
an output, the next parameters are not important for this thesis. More
you could read in[?].

• .names - It declares a logic-gate, A logic-gate associates a logic function
with signals in the model, which can be used as an input to the other
logic functions. The first row declares input signals, the last signal on the
row is output. On the next rows are individually separated input signals
and output signals. Signal ”1” means that signal has got voltage, which
is interpreted like a ”1”. Signal ”0” means that signal has got voltage,
which is interpreted like a ”0”. ”-” means that signal is not used yet,
only could be in input.[?].

• .end - It is the end of the model (one BLIF could have more models)[?].
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3.3. Scan-chains generator

3.3 Scan-chains generator

It serves for the generating configuration files with configured scan-chains. For
serial Illinois-Scan, we are generating only one Scan-chain, where every scan-
cells are connected with primary inputs PI (+ pseudo-inputs from the output
of origin latch’s outputs PPI) and primary outputs PO (pseudo-primary out-
puts from origin latches inputs PPO). My implemented scan generator has
got three modes – it generates scan-chains with random length (set modulo),
a number of set scan-chains, and scan-chains according to scan-chain size.
Scan-cells order is randomized.

...

.........

Scan-chain 1

Origin Scan-Chain

Scan-chain NScan-chain N-1Scan-chain 3Scan-chain 2

.........

Randomized Scan-Chain

...

Figure 3.1: Scan-chain splited to scan-chains[14]
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3. Realization

3.3.1 Algorithm

Algorithm 4: Generate scan-chains according to size
Result: Configuration of scanchains
Input: BLIF - sequential logic,
A) max size of scan-chain
B) number of scan-chain
C) size of scan-chain
Output: TXT file with scan-chains according to size
————————
1. Transform Sequential logic to Combinational logic
- latch’s outputs convert to PPI, inputs = PI + PPI)
- latch’s inputs convert to PPO, outputs = PO + PPO)
2. Load inputs from Combinational logic (PI + PPI)
- you have got one big SCAN-CHAIN from inputs
- scan-chain is created from scan-cell, scan-cell is represented with
names of inputs

3. Randomize of SCAN-CHAIN
- we want to have randomize ordered scan-cells in big scan-chain for
testing

4A. Divide SCAN-CHAIN according to scan-chain’s
randomized size

- divide SCAN-CHAIN to the randomized scan-chain’s size
- scan-chains are choosen according randomized size and scan-chain is
substracted from the big SCAN-CHAIN until is empty

4B. Divide SCAN-CHAIN according to number of
scan-chains

- divide SCAN-CHAIN to the mostly uniformly scan-chains - my
method:

count integer size SIZE = size(SCAN-CHAINS) / number
count MODULO = size(SCAN-CHAINS) % number
- for every scan-chain from row 0 to MODULO => scan-chain.size =
SIZE + 1

- for every scan-chain from row MODULO + 1 to
size(SCAN-CHAINS) => scan-chain.size = SIZE

4C. Divide SCAN-CHAIN according to scan-chain’s size
- divide SCAN-CHAIN to the same size scan-chains
- extra scan-cells are saved to the new scan-chain
5. Generate scan-chains to TXT
- generate scan-chains to file and separate them with entering
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3.3. Scan-chains generator

3.3.2 Usage and examples

3.3.2.1 Scan-chains according to randomize size

We are generating a scan-chains with randomized size. Choose the max size
of scan-chains and scan-chains will be generating with this max size.

. / s can gene ra to r s27 . b l i f −scan random 3

G5 G6
G2
G1 G0 G3
G7

. / s can gene ra to r s27 . b l i f −scan random 4

G6
G2 G7
G1 G0 G3 G5

3.3.2.2 Scan-chains to number of scan-chains

We are generating a number of the most uniformly scan-chains, which could
be possible.

. / s can gene ra to r s27 . b l i f −scan number 3

G1 G5 G0
G6 G2
G7 G3

. / s can gene ra to r s27 . b l i f −scan number 4

G5 G1
G0 G6
G7 G3
G2

3.3.2.3 Scan-chains according to scan-chains size

We are generating scan-chains with assigned size. Extra scan-cells are in the
new scan-chain.

. / s can cha in s27 . b l i f −s c a n s i z e 3

G3 G7 G6
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3. Realization

G1 G2 G0
G5

. / scan cha in s27 . b l i f −s c a n s i z e 4

G5 G1 G3 G6
G7 G2 G0
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3.4. Illinois-Scan Architecture

3.4 Illinois-Scan Architecture

3.4.1 Illinois-Scan Architecture - Full Scan Technique

Figure 3.2: Illinois-Scan architecture - Parallel Serial Full Scan (PSFS)
Technique[11]

Illinois-Scan Architecture was proposed for the first time as the Parallel-Serial
Full Scan (PSFS) Architecture. The algorithm proves in practice that it has
got lower test application time compared to any normal full scan architecture.
The power of this method is in test data volume reduction too.

The structure of the PSFS technique is shown in Figure 3.2. Scan-chains
are constituted by scan-cells. I am using typical scan-cells from Figure 2.5.
Every scan-chain is connected with multiplexer with SI (Scan-in pin)[11]. Mul-
tiplexer switch between test and normal mode. Originally algorithm was pro-
posed for testing full scan embedded cores. The important advantage of this
method is that for each test pattern, the PSFS reduces the tester storage de-
mands and the amount of test data that should be transferred from the tester
to the core and from the core back to the tester[12].

My implementation divides origin serial big scan-chain according to con-
figuration and connects scan-chains and scan-in SI (and SO) with the multi-
plexer. Test mode is not realized with control flip-flop like in Figure 3.2, it
is implemented for simplicity like a normal input signal. My implementation
does not support randomize output scan-cells and output scan-chain is the
same for all variants of Illinois-Scan.
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3. Realization

3.4.1.1 Algorithm

Algorithm 5: Illinois-Scan algorithm - Full scan
Result: Generated Illinois-Scan Architecture
Input: BLIF file - sequential circuit, Configuration of
scan-chains.(file or could be created)

Output: BLIF file - combinational circuit configured by scan-chains.
————————
1. Separate DFFs and Combinational logic
- add new input for testing purpose - TEST
- add new input SI for testing mode
- add new output SO for testing mode
- latch’s outputs convert to PPI, inputs = PI + PPI + TEST)
- latch’s inputs convert to PPO, outputs = PO + PPO + SO)
2. Create scan-cells from PI, PPI and PO, PPO
- create scan-cells from PI and PPI
- create scan-cells from PO and PPO
3. Create one Scan-chain from scan-cells
- randomize scan-cells
- my implementation does not support PO and PPO scan-cells
- connect scan-cells to one Scan-chain
4. Load configuration
- randomize scan-cells order in Scan-chain
- split Scan-chain to the scan-chains according to chosen options
- you get list of scan-chains
5. Connect schan-chains and SI with multiplexer
6. Generate Header of BLIF
7. Generate scan-chains logic functions with multiplexers
8. Generate Combinational logic from 1.
9. You have got full Illinois-Scan Architecture
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3.4. Illinois-Scan Architecture

3.4.1.2 Example

scan . txt : ( with input scan−cha ins )
G2 G0 G3
G7 G1 G6
G5

. / i l l i n o i s s c a n s27 . b l i f −scan name scan . txt
# Header o f BLIF
. model N/A
. inputs SC0 SC1 SC2 SI TEST
. outputs OG17 OG10 OG11 EXTRA OG13 SO

# l a t c h e s o f input scan−cha ins
. l a t c h IG0 OG0
. l a t c h IG1 OG1
. l a t c h IG2 OG2
. l a t c h IG3 OG3
. l a t c h IG5 OG5
. l a t c h IG6 OG6
. l a t c h IG7 OG7

# l a t c h e s o f output scan−chain
. l a t c h IG17 OG17
. l a t c h IG10 OG10
. l a t c h IG11 EXTRA OG11 EXTRA
. l a t c h IG13 OG13

# scan−chain 1
. names SI SC0 TEST IG2
1−0 1
−11 1
. names OG2 G2
1 1
. names G2 SC1 TEST IG0
1−0 1
−11 1
. names OG0 G0
1 1
. names G0 SC2 TEST IG3
1−0 1
−11 1
. names SI OG3 TEST G3
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3. Realization

1−0 1
−11 1

# scan−chain 2
. names SI SC0 TEST IG7
1−0 1
−11 1
. names OG7 G7
1 1
. names G7 SC1 TEST IG1
1−0 1
−11 1
. names OG1 G1
1 1
. names G1 SC2 TEST IG6
1−0 1
−11 1
. names SI OG6 TEST G6
1−0 1
−11 1

# scan−chain 3
. names SI SC0 TEST IG5
1−0 1
−11 1
. names SI OG5 TEST G5
1−0 1
−11 1

# scan−chain 4 − output scan−chain
. names G17 OG10 TEST IG17
1−0 1
−11 1
. names G10 OG11 EXTRA TEST IG10
1−0 1
−11 1
. names G11 EXTRA OG13 TEST IG11 EXTRA
1−0 1
−11 1
. names G13 G5 TEST IG13
1−0 1
−11 1
. names OG17 G17 TEST SO
1−1 1
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3.4. Illinois-Scan Architecture

−01 1

# combinat ional l o g i c
. names G14 G11 G10
00 1
. names G5 G9 G11
00 1
. names G11 G11 EXTRA
1 1
. names G1 G7 G12
00 1
. names G2 G12 G13
00 1
. names G0 G14
0 1
. names G12 G8 G15
00 1
. names G3 G8 G16
00 1
. names G11 G17
0 1
. names G14 G6 G8
11 1
. names G16 G15 G9
11 1
. end
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3. Realization

3.4.2 Illinois-Scan Architecture Generation - Reduced for
ATPG testing purpose

Combinational 
logic

...

.........1 0011 0 ...

.........1 0011 0 ...

.........1 0011 0 ...

.........1 0011 0 ...

.........1 0011 0 ...

.........1 0011 0 ...

Scan-in pin

Scan-chains 1

Scan-chains 3

Scan-chains 2

Scan-chains N-1

Scan-chains N

Figure 3.3: Reduced Illinois-scan architecture using for our ATPG testing[15]

For our ATPG testing purpose, we reduced architecture only on combinational
logic and scan-chains, which are connected with the circuit’s PI and PPI.
Outputs are PO and PPO for our new architecture. We throw all latches and
create from origin inputs of latches pseudo-primary outputs PPO and from
outputs of latches we create new pseudo-primary inputs PPI. Scan-cells are
created simply from input signals and output signals, which are not changed
during the algorithm. Origin combinational logic is not changed too.
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3.4. Illinois-Scan Architecture

3.4.3 Model stucture

In my thesis, I am using a class model like an internal representation of the
BLIF file. It represents inputs, outputs, all logic gates, and their connections
and other basic information from BLIF. It does print a logic gates connection.

# s27 . b l i f model s t r u c t u r e p r i n t i n g
# inputs are in [ ] b racket s
# outputs are in ( ) bracket s
# N/A i s the model t i t l e

N/A+−(G17)−G11+−[G5 ]
| \−G9+−G16+−[G3 ]
| | \−G8+−G14−[G0 ]
| | \−[G6 ]
| \−G15+−G12+−[G1 ]
| | \−[G7 ]
| \−G8
|−(G10)+−G14
| \−G11
|−(G11 EXTRA)−G11
\−(G13)+−[G2 ]

\−G12

3.4.4 Configuration

Illinois scan is configured with a list of scan-chains. We could generate a list
with illinois scan parameters (scan generator) or we could create manually the
list of scan-chains. The configuration file has got on every line one scan-chains,
which is a list of logic gates.

3.4.4.1 Examples

. / s can gene ra to r . . / samples / s27 . b l i f −s c a n s i z e 4
G0 G2 G5 G1
G3 G6 G7

. / s can gene ra to r . . / samples / s27 . b l i f −scan number 4
G1 G5
G6 G2
G7 G3
G0

. / s can gene ra to r . . / samples / s27 . b l i f −scan random 4
G0

31



3. Realization

G5 G2
G6
G1 G7 G3
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3.4. Illinois-Scan Architecture

3.4.5 Algorithm

Algorithm 6: Illinois-Scan algorithm
Result: Generated Illinois-Scan Architecture
Input: BLIF file - sequential circuit, Configuration of
scan-chains.(file or could be created)

Output: BLIF file - combinational circuit configured by scan-chains.
————————
1. Transform Sequential logic to Combinational logic
- latch’s outputs convert to PPI, inputs = PI + PPI)
- latch’s inputs convert to PPO, outputs = PO + PPO)
2. Load configuration
- create your own or generate from scan generator (or use illinois scan
parameters)

- you get list of scan-chains
3. Create new inputs
- new inputs will be indexes of scan-chains #new inputs number = N
= #max( size of scan-chain from loaded scan-chains )

=> we have got new inputs = SC0, SC1, SC2, ... SCN-1 (SC -
scan-cell)

- outputs are unchanged
4. Generate header of Illinois-scan architecture
- generates title, inputs, outputs...
5. Generate scan-chain logic gate function
- generates for every scan-chain cell new logic gate function according
to index

- every input SC$i is connected with every scan-chain[$i] from
scan-chains and they are connected with the same value i.e.:

for scan-chain from scan-chains do
for i=0; i¡scan-chain.size(); ++i do

.names SC$i scan-chain[$i]
0 1

end
end
6. Generate Combinational logic from 1.
- generate same combinational logic, which was transformed in step 1.
7. Illinois Scan Architecture
- You generated Illinois Scan Architecture according to configuration
- test compression is depended on scan-chains - the size of the test
pattern will be the max size of scan-chain from origin scan-chains
configuration

3.4.6 Usage and examples
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in scan . txt :
G1 G6
G3 G0 G5
G7 G2

. / i l l i n o i s s c a n . . / samples / s27 . b l i f −scan name scan . txt

. model N/A

. inputs SC0 SC1 SC2

. outputs G17 G10 G11 EXTRA G13

. names SC0 G1
1 1
. names SC1 G6
1 1
. names SC0 G3
1 1
. names SC1 G0
1 1
. names SC2 G5
1 1
. names SC0 G7
1 1
. names SC1 G2
1 1

. names G14 G11 G10
00 1
. names G5 G9 G11
00 1
. names G11 G11 EXTRA
1 1
. names G1 G7 G12
00 1
. names G2 G12 G13
00 1
. names G0 G14
0 1
. names G12 G8 G15
00 1
. names G3 G8 G16
00 1
. names G11 G17
0 1
. names G14 G6 G8
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3.4. Illinois-Scan Architecture

11 1
. names G16 G15 G9
11 1
. end
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Chapter 4
Experimental measurement

4.1 Introduction

Finally, we are going to the experimental part of my thesis. As I said in
the previous capture, experimental data comes from a reduced Illinois-Scan
algorithm and you could see measured data in the appendix B - Experimental
data. Our generated files based on Illinois-Scan Architecture was measured on
the ATPG Atalanta. This ATPG is a modified ATPG tool and fault simulator,
which was developed by Virginia Tech University[16]. At the beginning of the
experimental chapter, I would like to explain data from the tables in the
appendix. I am proceeding from ATPG Atalanta manual desctiption[16]:

• gates - It means a number of CUT gates in the circuit.

• iv - It means a number of CUT primary inputs.

• ov - It means a number of CUT primary outputs.

• i patterns - It is a number of test patterns before compaction (or final,
if no compaction).

• patterns - It is a number final test patterns (after compaction).

• faults - It is a number of processed faults.

• d faults – It is a number of detected faults.

• r faults – It is a number of identified redundant faults.

• time – It is a CPU time [s].

• FC – It is a fault coverage [

• #scan-chains – It is a number of scan-chains in our circuit.
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4. Experimental measurement

4.2 Dependence fault coverage and scan-chains

In the first test set, I was analyzing dependence faults coverage on the number
of scan-chains. In the second test set, I was analyzing dependence faults
coverage on the randomized scan-chains cell with the same length. I took
origin combinational circuits such a model and pattern, which was compared
with the results of measurement circuits based on Illinois-Scan architecture.
If you look at the columns called fault, d fault, r fault in the tables, you could
see that detected faults are in most cases lower. It is important to realize, that
not every fault could be detected (or it is hard to measure them in a reasonable
time). This is a reason, why fault coverage is measured from detected faults,
not from total faults on the circuit. I am calculating fault coverage from the
following equation:

FC = DetectedFaultsOnCircuit

DetectedFaultsInOriginCircuit

4.2.1 Number of scan-chains

I chose selected numbers from 2 until 100. We could see the results of the
measurement in Table B.2. In Figure 4.1, which is generated from Table
B.2, we could see that an amount of scan-chains has got the most impact on
the smaller circuits. You could see that smaller Illinois-Scan dropped on the
5% caused an increase in the number of scan-chains. It is caused by cutting
options of the original inputs. If inputs are dependent on combinational logic,
it will be shown on the fault coverage loss.

On the other hand, we could see that fault coverage of big circuits is
descending slowly compared to smaller files. In bigger circuit is less chance
that randomized inputs are dependent on logic, fault coverage will be higher.
You could see in Figure 4.1 that the fault coverage of the circuit is still more
than 80% after dividing inputs to twenty scan-chains but the test data volume
is much less. The test pattern is twenty smaller than the original test pattern.

So, a number of scan-chains are considerable for smaller circuits and we
could have marked fault coverage loss. For big circuits, it has not got marked
fault coverage but the size of test patterns is very reduced.

4.2.2 Randomized scan-cells in scan-chains

In the second test set of this part, I chose ten randomized scan configurations
for every circuit and with the same number of scan-chains. I chose number
10. We could see data from measurement in Table B.3. Figure 4.2 proceeds
from this table. From the chart, we could see that randomized scan-cells have
not got a significant impact on the results of the measurement.

So, randomizing scan-cells has not got a significant impact on our mea-
surement. We could see it in the charts on the next page.
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4.2. Dependence fault coverage and scan-chains

Figure 4.1: Dependence faul coverage on the scan-chains[17]

Figure 4.2: Dependence fault coverage on the randomized scan-chains[18]
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4.3 Dependence test patterns and scan-chains

In this part, we are finding the dependencies between a number of generated
test patterns and scan-chains. Similarly, as the previous page, the number of
the test pattern depends on the number of scan-chains

4.3.1 Number of scan-chains

In the beginning, I would like to explain that test patterns generated from
the Illinois-Scan are smaller than the original logic. It is caused by Illinois
scan architecture. During Illinois-Scan architecture, we have got compressed
inputs according to the size of scan-chains. Fewer inputs, we need smaller
test pattern. On the other side, at the same time, according to studdies, we
should generate more test patterns because we get more time for the testing
and saved data volume. This hypothesis did not confirm on our experimental
data. When I was finding the root of this problem I find out that cause could
be in generating test patterns [11]. If we have got relatively small data volume,
our biggest circuits have got more than 22 thousand of logic gates (chips have
got hundreds of thousands), it is possible to calculate it in a reasonable time.
For hundreds of thousands, it will be hard to count it.

So, in Figure 4.3, we could see similarly distribution of data like in Figure
4.1.

4.3.2 Randomized scanchains

In this part, I was finding dependencies between a number of the test pat-
terns and randomized scan-cells in scan-chains with the same number of scan-
chains. We could see in Figure 4.4. that some configuration of scan-chains
gets changed a number of test patterns. If we compare it with Figure 4.2,
we find out that randomized scan-chains could have a bigger effect on test
patterns than fault coverage.
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Figure 4.3: Dependence generated test patterns on the scan-chains[19]

Figure 4.4: Dependence generated test patterns on the randomized scan-
chains[20]
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4.4 Dependence fault coverage and test patterns

For illustration, I decided to show the dependence between fault coverage and
the number of test patterns. According to studies[1], test data volume has got
an effect on fault coverage. If you will try every existing test pattern, you get
100% coverage of detectable faults. As you see in Figure 4.5, this prediction
was fulfilled on the experimental measurement.

Figure 4.5: Dependence generated test patterns on the randomized scan-
chains[21]
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Conclusion

My bachelor thesis had two main aims. The first aim was to implement and
describe a Test compression algorithm based on Illinois-Scan Architecture.
The algorithm was described in the bachelor thesis and implemented in pro-
gramming language C++. The required theory for my thesis was described
in the first chapter.

The second aim of my thesis was testing generated Illinois-Scan Archi-
tecture on ATPG. Illinois-Scan Architecture was generated according to the
configuration of scan-chains. For this purpose, was written Scan Genera-
tor, which generates configuration files according to our requirements. My
program, which generates Illinois-Scan Architecture, could be generated like
a full-scan architecture PSFS or it could be generated in reduced form for
purpose of ATPG testing. The experimental part was evaluated in the Ex-
perimental measurement chapter.

We could see from experimental measurement that fault coverage of cir-
cuits could be rapidly changed according to scan-chain configuration. From
experimental measurement, we could see too that this algorithm matches bet-
ter to extensively circuits. My implementation used only one Scan-in pin. So,
I can see the possibility of my research that it could be extended by more
Scan-in pins, and I believe that fault coverage of every measured logic could
be better.
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[14] KRÁLÍK, Daniel. Splitted scan-chain in /src/tehsis/FITthesis-
template/scan-chain-split.pdf. Prague: FIT CTU, Faculty of information
technology, 15.6.2020
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[18] KRÁLÍK, Daniel. Chart in /src/tehsis/FITthesis-template/chart-fc-
randomized-sc.png. Prague: FIT CTU, Faculty of information technol-
ogy, 20.7.2020
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Appendix A
Acronyms

ATPG Automatic Test Pattern Generation / Generator

TPG Test Pattern Generation / Generator

BLIF Berkeley Logic Interchange Format

ATE Automatic Test Equipment

MUX Multiplexer

PI Primary Inputs

PPI Pseudo-Primary Inputs

PO Primary outputs

PPO Pseudo-Primary Outputs
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Appendix B
Experimental data

Benchmarks for experimental measurement of my bachelor thesis are on this
references[22][23]. This tables were created from experimental data[24].
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B.1 Origin combinational logic

In this section are measured data from ATPG tested on the combinational logic.

file gates iv ov patterns faults d faults r faults time FC
c3540.rep 1669 50 22 154 3428 3291 137 0.052 1
c5315.rep 2307 178 123 119 5350 5291 59 0.056 1
c6288.rep 2416 32 32 29 7744 7720 34 0.115 1
c7552.rep 3512 207 108 211 7550 7417 71 0.238 1

s13207 1.rep 7979 700 790 468 9815 9664 142 0.398 1
s15850 1.rep 9775 611 684 426 11725 11336 380 0.563 1

s27.rep 11 7 4 8 32 32 0 0 1
s38417.rep 22257 1664 1742 891 31180 31015 161 5.501 1

s38584 1.rep 19405 1464 1730 652 36303 34797 1482 3.353 1
s5378.rep 2836 214 213 243 4551 4511 40 0.091 1

s9234 1.rep 5597 247 250 381 6927 6475 404 0.455 1

Table B.1
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B.2 Illinois scan - different number of scan-chains

In this section are measured data from ATPG tested on the Illinois-scan architecture with different number of scan-chains.
Scan-chains are generated consistent size.

file gates iv ov patterns faults d faults r faults time FC #scan-chains
c3540-sc10.rep 1719 5 22 11 3438 157 3279 0.341 0.048 10
c3540-sc16.rep 1719 4 22 7 3436 166 3269 0.323 0.050 16
c3540-sc20.rep 1719 3 22 3 3434 99 3335 0.24 0.030 20
c3540-sc22.rep 1719 3 22 4 3434 104 3330 0.277 0.032 22
c3540-sc24.rep 1719 3 22 3 3434 100 3334 0.243 0.030 24
c3540-sc26.rep 1719 2 22 3 3432 100 3332 0.243 0.030 26
c3540-sc28.rep 1719 2 22 3 3432 97 3335 0.229 0.029 28
c3540-sc2.rep 1719 25 22 59 3478 814 2436 0.467 0.247 2
c3540-sc30.rep 1719 2 22 3 3432 171 3261 0.241 0.052 30
c3540-sc32.rep 1719 2 22 3 3432 171 3261 0.223 0.052 23
c3540-sc34.rep 1719 2 22 3 3432 171 3261 0.227 0.052 34
c3540-sc36.rep 1719 2 22 3 3432 180 3252 0.221 0.055 36
c3540-sc38.rep 1719 2 22 3 3432 180 3252 0.232 0.055 38
c3540-sc3.rep 1719 17 22 18 3462 293 2741 0.664 0.089 3
c3540-sc40.rep 1719 2 22 3 3432 97 3335 0.257 0.029 40
c3540-sc48.rep 1719 2 22 3 3432 87 3345 0.239 0.026 48
c3540-sc4.rep 1719 13 22 23 3454 463 2807 0.481 0.141 4
c3540-sc8.rep 1719 7 22 13 3442 251 3177 0.311 0.076 8

c5315-sc100.rep 2485 2 123 4 5354 957 4397 0.404 0.181 100
c5315-sc10.rep 2485 18 123 47 5386 1896 3380 0.458 0.358 10
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c5315-sc16.rep 2485 12 123 47 5374 1843 3486 0.428 0.348 16
c5315-sc20.rep 2485 9 123 37 5368 1710 3628 0.442 0.323 20
c5315-sc22.rep 2485 9 123 33 5368 1670 3669 0.46 0.316 22
c5315-sc24.rep 2485 8 123 27 5366 1414 3916 0.501 0.267 24
c5315-sc26.rep 2485 7 123 35 5364 1619 3725 0.445 0.306 26
c5315-sc28.rep 2485 7 123 23 5364 1269 4074 0.502 0.240 28
c5315-sc2.rep 2485 89 123 62 5528 2192 3157 0.42 0.414 2
c5315-sc30.rep 2485 6 123 20 5362 1288 4060 0.486 0.243 30
c5315-sc32.rep 2485 6 123 28 5362 1619 3737 0.408 0.306 32
c5315-sc34.rep 2485 6 123 20 5362 1284 4072 0.442 0.243 34
c5315-sc36.rep 2485 5 123 21 5360 1244 4107 0.444 0.235 36
c5315-sc38.rep 2485 5 123 18 5360 1272 4082 0.412 0.240 38
c5315-sc3.rep 2485 60 123 57 5468 2148 3162 0.404 0.406 3
c5315-sc40.rep 2485 5 123 21 5360 1511 3843 0.4 0.286 40
c5315-sc48.rep 2485 4 123 16 5358 1319 4037 0.398 0.249 48
c5315-sc4.rep 2485 45 123 53 5440 2082 3207 0.408 0.393 4
c5315-sc64.rep 2485 3 123 8 5356 1182 4173 0.375 0.223 64
c5315-sc8.rep 2485 23 123 51 5396 1949 3345 0.438 0.368 8

c6288-sc10.rep 2448 4 32 13 7752 7139 437 0.327 0.925 10
c6288-sc16.rep 2448 2 32 4 7748 6134 1105 0.706 0.795 16
c6288-sc20.rep 2448 2 32 4 7748 6107 1078 0.737 0.791 20
c6288-sc22.rep 2448 2 32 4 7748 6010 1221 0.781 0.778 22
c6288-sc24.rep 2448 2 32 4 7748 5795 1349 0.864 0.751 24
c6288-sc26.rep 2448 2 32 4 7748 5593 1531 1.003 0.724 26
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c6288-sc28.rep 2448 2 32 4 7748 5356 1808 1.106 0.694 28
c6288-sc2.rep 2448 16 32 24 7776 7720 56 0.082 1.000 2
c6288-sc30.rep 2448 2 32 3 7748 5037 2286 1.298 0.652 30
c6288-sc32.rep 2448 1 32 2 7746 4592 2837 1.457 0.595 32
c6288-sc3.rep 2448 11 32 25 7766 7671 95 0.085 0.994 3
c6288-sc4.rep 2448 8 32 26 7760 7608 148 0.1 0.985 4
c6288-sc8.rep 2448 4 32 15 7752 7290 320 0.215 0.944 8

c7552-sc100.rep 3719 3 108 7 7556 583 6973 0.903 0.079 100
c7552-sc10.rep 3719 21 108 19 7592 740 6707 1.313 0.100 10
c7552-sc16.rep 3719 13 108 20 7576 726 6784 1.243 0.098 16
c7552-sc20.rep 3719 11 108 21 7572 680 6860 1.179 0.092 20
c7552-sc22.rep 3719 10 108 20 7570 713 6819 1.206 0.096 22
c7552-sc24.rep 3719 9 108 20 7568 668 6866 1.231 0.090 24
c7552-sc26.rep 3719 8 108 15 7566 638 6914 1.165 0.086 26
c7552-sc28.rep 3719 8 108 14 7566 635 6924 1.099 0.086 28
c7552-sc2.rep 3719 104 108 22 7756 841 6640 1.383 0.113 2
c7552-sc30.rep 3719 7 108 17 7564 675 6880 1.068 0.091 30
c7552-sc32.rep 3719 7 108 17 7564 656 6900 1.065 0.088 32
c7552-sc34.rep 3719 7 108 13 7564 644 6912 1.1 0.087 34
c7552-sc36.rep 3719 6 108 13 7562 610 6946 1.115 0.082 36
c7552-sc38.rep 3719 6 108 12 7562 610 6950 1.078 0.082 38
c7552-sc3.rep 3719 69 108 21 7688 809 6638 1.403 0.109 3
c7552-sc40.rep 3719 6 108 12 7562 658 6894 1.032 0.089 40
c7552-sc48.rep 3719 5 108 14 7560 626 6931 0.943 0.084 4855
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c7552-sc4.rep 3719 52 108 21 7654 795 6655 1.316 0.107 4
c7552-sc64.rep 3719 4 108 9 7558 547 7009 0.916 0.074 64
c7552-sc8.rep 3719 26 108 25 7602 753 6694 1.269 0.102 8

s13207 1-sc100.rep 8679 7 790 53 9829 4964 4864 1.073 0.514 100
s13207 1-sc10.rep 8679 70 790 194 9955 6347 3586 0.873 0.657 10
s13207 1-sc16.rep 8679 44 790 230 9903 6431 3453 0.911 0.665 16
s13207 1-sc20.rep 8679 35 790 226 9885 6323 3540 0.964 0.654 20
s13207 1-sc22.rep 8679 32 790 153 9879 6097 3768 0.935 0.631 22
s13207 1-sc24.rep 8679 30 790 136 9875 5856 4002 0.995 0.606 24
s13207 1-sc26.rep 8679 27 790 153 9869 5966 3894 0.918 0.617 26
s13207 1-sc28.rep 8679 25 790 126 9865 5736 4118 1.103 0.594 28
s13207 1-sc2.rep 8679 350 790 290 10515 7276 3210 0.835 0.753 2
s13207 1-sc30.rep 8679 24 790 180 9863 5845 3999 1.097 0.605 30
s13207 1-sc32.rep 8679 22 790 159 9859 5864 3969 1.051 0.607 32
s13207 1-sc34.rep 8679 21 790 111 9857 5580 4265 0.963 0.577 34
s13207 1-sc36.rep 8679 20 790 142 9855 5611 4243 0.941 0.581 36
s13207 1-sc38.rep 8679 19 790 134 9853 5794 4047 1.14 0.600 38
s13207 1-sc3.rep 8679 234 790 219 10281 6724 3537 0.776 0.696 3
s13207 1-sc40.rep 8679 18 790 107 9851 5666 4175 0.907 0.586 40
s13207 1-sc48.rep 8679 15 790 105 9845 5652 4192 0.892 0.585 48
s13207 1-sc4.rep 8679 175 790 269 10165 6845 3289 0.835 0.708 4
s13207 1-sc64.rep 8679 11 790 91 9837 5441 4396 1.003 0.563 64
s13207 1-sc8.rep 8679 88 790 228 9991 6427 3533 0.843 0.665 8
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s15850 1-sc100.rep 10386 7 684 34 11739 6103 5625 2.252 0.538 100
s15850 1-sc10.rep 10386 62 684 245 11847 7925 3819 1.453 0.699 10
s15850 1-sc16.rep 10386 39 684 198 11803 7743 4007 1.365 0.683 16
s15850 1-sc20.rep 10386 31 684 171 11787 7501 4211 1.57 0.662 20
s15850 1-sc22.rep 10386 28 684 160 11781 7112 4546 2.254 0.627 22
s15850 1-sc24.rep 10386 26 684 129 11777 7266 4404 1.833 0.641 24
s15850 1-sc26.rep 10386 24 684 155 11773 7473 4194 1.877 0.659 26
s15850 1-sc28.rep 10386 22 684 153 11769 7357 4319 1.643 0.649 28
s15850 1-sc2.rep 10386 306 684 298 12335 8804 3456 1.231 0.777 2
s15850 1-sc30.rep 10386 21 684 129 11767 7373 4326 1.713 0.650 30
s15850 1-sc32.rep 10386 20 684 119 11765 7193 4485 1.892 0.635 32
s15850 1-sc34.rep 10386 18 684 107 11761 6908 4753 2.06 0.609 34
s15850 1-sc36.rep 10386 17 684 117 11759 7153 4578 1.582 0.631 36
s15850 1-sc38.rep 10386 17 684 112 11759 7099 4611 2.124 0.626 38
s15850 1-sc3.rep 10386 204 684 291 12133 8562 3496 1.241 0.755 3
s15850 1-sc40.rep 10386 16 684 117 11757 7193 4514 2.056 0.635 40
s15850 1-sc48.rep 10386 13 684 99 11751 6682 4968 2.72 0.589 48
s15850 1-sc4.rep 10386 153 684 273 12031 8414 3543 1.257 0.742 4
s15850 1-sc64.rep 10386 10 684 81 11745 6471 5243 1.905 0.571 64
s15850 1-sc8.rep 10386 77 684 218 11879 8032 3776 1.644 0.709 8

s38417-sc100.rep 23921 17 1742 215 31214 22489 8295 28.232 0.725 100
s38417-sc10.rep 23921 167 1742 759 31514 25922 5261 13.935 0.836 10
s38417-sc16.rep 23921 104 1742 669 31388 25661 5438 19.226 0.827 16
s38417-sc20.rep 23921 84 1742 564 31348 24673 5642 29.188 0.796 2057



B
.

E
xperim

ental
data

s38417-sc22.rep 23921 76 1742 662 31332 25454 5528 13.046 0.821 22
s38417-sc24.rep 23921 70 1742 660 31320 25354 5571 13.262 0.817 24
s38417-sc26.rep 23921 64 1742 498 31308 24568 5884 17.164 0.792 26
s38417-sc28.rep 23921 60 1742 559 31300 24412 6078 17.298 0.787 28
s38417-sc2.rep 23921 832 1742 822 32844 27370 5165 15.096 0.882 2
s38417-sc30.rep 23921 56 1742 600 31292 25183 5817 11.645 0.812 30
s38417-sc32.rep 23921 52 1742 475 31284 24264 5992 18.978 0.782 32
s38417-sc34.rep 23921 49 1742 571 31278 25000 5874 13.577 0.806 34
s38417-sc36.rep 23921 47 1742 535 31274 24505 5890 18.737 0.790 36
s38417-sc38.rep 23921 44 1742 431 31268 24181 6120 21.797 0.780 38
s38417-sc3.rep 23921 555 1742 800 32290 26818 5160 13.463 0.865 3
s38417-sc40.rep 23921 42 1742 479 31264 24563 6372 13.707 0.792 40
s38417-sc48.rep 23921 35 1742 382 31250 23871 6492 26.495 0.770 48
s38417-sc4.rep 23921 416 1742 803 32012 26498 5234 14.106 0.854 4
s38417-sc64.rep 23921 26 1742 400 31232 24016 6781 18.483 0.774 64
s38417-sc8.rep 23921 208 1742 766 31596 25984 5311 26.466 0.838 8

s38584 1-sc100.rep 20869 15 1730 148 36333 25140 11184 16.565 0.722 100
s38584 1-sc10.rep 20869 147 1730 524 36597 29763 6816 9.778 0.855 10
s38584 1-sc16.rep 20869 92 1730 412 36487 28819 7639 7.7 0.828 16
s38584 1-sc20.rep 20869 74 1730 457 36451 28950 7488 8.487 0.832 20
s38584 1-sc22.rep 20869 67 1730 455 36437 29023 7395 6.347 0.834 22
s38584 1-sc24.rep 20869 61 1730 360 36425 28320 8062 7.212 0.814 24
s38584 1-sc26.rep 20869 57 1730 322 36417 27993 8348 9.142 0.804 26
s38584 1-sc28.rep 20869 53 1730 366 36409 28485 7907 6.935 0.819 28
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s38584 1-sc2.rep 20869 732 1730 530 37767 31109 6616 6.023 0.894 2
s38584 1-sc30.rep 20869 49 1730 410 36401 28416 7971 7.348 0.817 30
s38584 1-sc32.rep 20869 46 1730 351 36395 27921 8447 7.416 0.802 32
s38584 1-sc34.rep 20869 44 1730 384 36391 28428 7942 7.511 0.817 34
s38584 1-sc36.rep 20869 41 1730 277 36385 27386 8952 7.605 0.787 36
s38584 1-sc38.rep 20869 39 1730 372 36381 28171 8187 7.985 0.810 38
s38584 1-sc3.rep 20869 488 1730 547 37279 30546 6709 6.462 0.878 3
s38584 1-sc40.rep 20869 37 1730 379 36377 28256 8109 8.654 0.812 40
s38584 1-sc48.rep 20869 31 1730 278 36365 27445 8890 7.25 0.789 48
s38584 1-sc4.rep 20869 366 1730 530 37035 30218 6777 5.837 0.868 4
s38584 1-sc64.rep 20869 23 1730 205 36349 26217 10074 9.075 0.753 64
s38584 1-sc8.rep 20869 183 1730 512 36669 29770 6880 5.656 0.856 8

s5378-sc100.rep 3050 3 213 8 4557 2251 2306 0.277 0.499 100
s5378-sc10.rep 3050 22 213 84 4595 3655 932 0.123 0.810 10
s5378-sc16.rep 3050 14 213 68 4579 3331 1218 0.276 0.738 16
s5378-sc20.rep 3050 11 213 68 4573 3363 1208 0.143 0.746 20
s5378-sc22.rep 3050 10 213 45 4571 3253 1317 0.327 0.721 22
s5378-sc24.rep 3050 9 213 59 4569 3461 1108 0.364 0.767 24
s5378-sc26.rep 3050 9 213 45 4569 3208 1361 0.272 0.711 26
s5378-sc28.rep 3050 8 213 39 4567 2950 1617 0.42 0.654 28
s5378-sc2.rep 3050 107 213 111 4765 4224 529 0.089 0.936 2
s5378-sc30.rep 3050 8 213 35 4567 3046 1520 0.422 0.675 30
s5378-sc32.rep 3050 7 213 27 4565 2817 1743 0.305 0.624 32
s5378-sc34.rep 3050 7 213 33 4565 2974 1590 0.504 0.659 3459
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s5378-sc36.rep 3050 6 213 33 4563 3135 1427 0.208 0.695 36
s5378-sc38.rep 3050 6 213 36 4563 3147 1415 0.276 0.698 38
s5378-sc3.rep 3050 72 213 119 4693 4116 562 0.098 0.912 3
s5378-sc40.rep 3050 6 213 32 4563 3025 1537 0.338 0.671 40
s5378-sc48.rep 3050 5 213 21 4561 2952 1609 0.184 0.654 48
s5378-sc4.rep 3050 54 213 102 4659 4042 603 0.103 0.896 4
s5378-sc64.rep 3050 4 213 14 4559 2710 1849 0.24 0.601 64
s5378-sc8.rep 3050 27 213 102 4605 3906 687 0.115 0.866 8

s9234 1-sc100.rep 5844 3 250 8 6933 2264 4669 0.76 0.350 100
s9234 1-sc10.rep 5844 25 250 122 6977 3741 3190 0.643 0.578 10
s9234 1-sc16.rep 5844 16 250 111 6959 3653 3290 0.637 0.564 16
s9234 1-sc20.rep 5844 13 250 93 6953 3372 3564 0.651 0.521 20
s9234 1-sc22.rep 5844 12 250 95 6951 3524 3397 1.046 0.544 22
s9234 1-sc24.rep 5844 11 250 85 6949 3384 3556 0.994 0.523 24
s9234 1-sc26.rep 5844 10 250 84 6947 3246 3692 0.709 0.501 26
s9234 1-sc28.rep 5844 9 250 63 6945 3014 3919 0.921 0.465 28
s9234 1-sc2.rep 5844 124 250 230 7173 4660 2396 0.626 0.720 2
s9234 1-sc30.rep 5844 9 250 73 6945 3120 3818 0.894 0.482 30
s9234 1-sc32.rep 5844 8 250 51 6943 2983 3958 0.689 0.461 32
s9234 1-sc34.rep 5844 8 250 52 6943 2893 4043 0.854 0.447 34
s9234 1-sc36.rep 5844 7 250 46 6941 2970 3966 0.8 0.459 36
s9234 1-sc38.rep 5844 7 250 45 6941 2905 4032 0.732 0.449 38
s9234 1-sc3.rep 5844 83 250 249 7091 4651 2311 0.638 0.718 3
s9234 1-sc40.rep 5844 7 250 40 6941 2844 4097 0.805 0.439 40
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s9234 1-sc48.rep 5844 6 250 31 6939 2664 4275 0.747 0.411 48
s9234 1-sc4.rep 5844 62 250 193 7051 4346 2637 0.561 0.671 4
s9234 1-sc64.rep 5844 4 250 16 6935 2584 4351 0.718 0.399 64
s9234 1-sc8.rep 5844 31 250 192 6989 4324 2593 0.606 0.668 8

Table B.2
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B.3 Illinois scan - randomized scan-chains

In this section are measured data from ATPG tested on the Illinois-Scan architecture with different number of scan-chains.
Scan-chains are generated consistent size and number of scan-chains is for every case 10.

file gates iv ov patterns faults d faults r faults time FC Order
c3540-sc10 10.rep 1719 5 22 10 3438 152 3285 0.339 0.046 1
c3540-sc10 1.rep 1719 5 22 10 3438 152 3285 0.347 0.046 2
c3540-sc10 2.rep 1719 5 22 9 3438 152 3285 0.343 0.046 3
c3540-sc10 3.rep 1719 5 22 9 3438 152 3285 0.348 0.046 4
c3540-sc10 4.rep 1719 5 22 9 3438 152 3285 0.364 0.046 5
c3540-sc10 5.rep 1719 5 22 9 3438 152 3285 0.408 0.046 6
c3540-sc10 6.rep 1719 5 22 9 3438 152 3285 0.372 0.046 7
c3540-sc10 7.rep 1719 5 22 9 3438 152 3285 0.345 0.046 8
c3540-sc10 8.rep 1719 5 22 12 3438 152 3285 0.365 0.046 9
c3540-sc10 9.rep 1719 5 22 12 3438 152 3285 0.343 0.046 10

c5315-sc10 10.rep 2485 18 123 59 5386 1997 3264 0.504 0.377 1
c5315-sc10 1.rep 2485 18 123 43 5386 1814 3480 0.444 0.343 2
c5315-sc10 2.rep 2485 18 123 43 5386 1814 3480 0.51 0.343 3
c5315-sc10 3.rep 2485 18 123 49 5386 1814 3480 0.63 0.343 4
c5315-sc10 4.rep 2485 18 123 41 5386 1814 3480 0.472 0.343 5
c5315-sc10 5.rep 2485 18 123 41 5386 1814 3480 0.613 0.343 6
c5315-sc10 6.rep 2485 18 123 55 5386 1997 3264 0.589 0.377 7
c5315-sc10 7.rep 2485 18 123 55 5386 1997 3264 0.495 0.377 8
c5315-sc10 8.rep 2485 18 123 55 5386 1997 3264 0.511 0.377 9
c5315-sc10 9.rep 2485 18 123 55 5386 1997 3264 0.564 0.377 10
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c6288-sc10 10.rep 2448 4 32 15 7752 7215 419 0.288 0.935 1
c6288-sc10 1.rep 2448 4 32 14 7752 7224 446 0.215 0.936 2
c6288-sc10 2.rep 2448 4 32 13 7752 7224 446 0.203 0.936 3
c6288-sc10 3.rep 2448 4 32 13 7752 7224 446 0.225 0.936 4
c6288-sc10 4.rep 2448 4 32 13 7752 7224 446 0.216 0.936 5
c6288-sc10 5.rep 2448 4 32 13 7752 7224 446 0.221 0.936 6
c6288-sc10 6.rep 2448 4 32 13 7752 7224 446 0.26 0.936 7
c6288-sc10 7.rep 2448 4 32 15 7752 7224 446 0.24 0.936 8
c6288-sc10 8.rep 2448 4 32 15 7752 7224 446 0.211 0.936 9
c6288-sc10 9.rep 2448 4 32 15 7752 7215 419 0.279 0.935 10

c7552-sc10 10.rep 3719 21 108 16 7592 728 6745 1.402 0.098 1
c7552-sc10 1.rep 3719 21 108 17 7592 708 6768 1.62 0.095 2
c7552-sc10 2.rep 3719 21 108 23 7592 708 6768 1.275 0.095 3
c7552-sc10 3.rep 3719 21 108 19 7592 708 6768 1.318 0.095 4
c7552-sc10 4.rep 3719 21 108 18 7592 708 6768 1.448 0.095 5
c7552-sc10 5.rep 3719 21 108 22 7592 708 6768 1.341 0.095 6
c7552-sc10 6.rep 3719 21 108 25 7592 708 6768 1.268 0.095 7
c7552-sc10 7.rep 3719 21 108 23 7592 708 6768 1.533 0.095 8
c7552-sc10 8.rep 3719 21 108 24 7592 708 6768 1.317 0.095 9
c7552-sc10 9.rep 3719 21 108 20 7592 708 6768 1.244 0.095 10

s13207 1-sc10 10.rep 8679 70 790 188 9955 6255 3685 0.813 0.647 1
s13207 1-sc10 1.rep 8679 70 790 247 9955 6523 3414 0.875 0.675 263
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s13207 1-sc10 2.rep 8679 70 790 243 9955 6523 3414 0.906 0.675 3
s13207 1-sc10 3.rep 8679 70 790 261 9955 6620 3308 1.184 0.685 4
s13207 1-sc10 4.rep 8679 70 790 278 9955 6620 3308 0.953 0.685 5
s13207 1-sc10 5.rep 8679 70 790 264 9955 6620 3308 0.909 0.685 6
s13207 1-sc10 6.rep 8679 70 790 272 9955 6620 3308 0.969 0.685 7
s13207 1-sc10 7.rep 8679 70 790 178 9955 6255 3685 0.824 0.647 8
s13207 1-sc10 8.rep 8679 70 790 178 9955 6255 3685 0.972 0.647 9
s13207 1-sc10 9.rep 8679 70 790 178 9955 6255 3685 0.918 0.647 10

s15850 1-sc10 10.rep 10386 62 684 231 11847 8016 3760 1.583 0.707 1
s15850 1-sc10 1.rep 10386 62 684 276 11847 8144 3636 1.705 0.718 2
s15850 1-sc10 2.rep 10386 62 684 250 11847 8047 3686 1.728 0.710 3
s15850 1-sc10 3.rep 10386 62 684 258 11847 8047 3686 1.7 0.710 4
s15850 1-sc10 4.rep 10386 62 684 254 11847 8046 3686 1.802 0.710 5
s15850 1-sc10 5.rep 10386 62 684 236 11847 8020 3761 1.803 0.707 6
s15850 1-sc10 6.rep 10386 62 684 239 11847 8020 3761 1.617 0.707 7
s15850 1-sc10 7.rep 10386 62 684 235 11847 8021 3761 1.337 0.708 8
s15850 1-sc10 8.rep 10386 62 684 225 11847 8021 3761 1.394 0.708 9
s15850 1-sc10 9.rep 10386 62 684 226 11847 8015 3760 1.284 0.707 10

s38417-sc10 10.rep 23921 167 1742 746 31514 25938 5281 11.076 0.836 1
s38417-sc10 1.rep 23921 167 1742 720 31514 25889 5301 10.679 0.835 2
s38417-sc10 2.rep 23921 167 1742 766 31514 25843 5392 11.257 0.833 3
s38417-sc10 3.rep 23921 167 1742 744 31514 25870 5330 10.754 0.834 4
s38417-sc10 4.rep 23921 167 1742 767 31514 25867 5330 10.542 0.834 5
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s38417-sc10 5.rep 23921 167 1742 616 31514 24798 5721 15.165 0.800 6
s38417-sc10 6.rep 23921 167 1742 763 31514 25860 5348 10.464 0.834 7
s38417-sc10 7.rep 23921 167 1742 754 31514 25866 5348 10.829 0.834 8
s38417-sc10 8.rep 23921 167 1742 764 31514 25935 5273 10.079 0.836 9
s38417-sc10 9.rep 23921 167 1742 764 31514 25932 5273 10.382 0.836 10

s38584 1-sc10 10.rep 20869 147 1730 466 36597 29426 7146 6.223 0.846 1
s38584 1-sc10 1.rep 20869 147 1730 530 36597 29765 6809 6.143 0.855 2
s38584 1-sc10 2.rep 20869 147 1730 541 36597 29765 6809 5.989 0.855 3
s38584 1-sc10 3.rep 20869 147 1730 523 36597 29778 6803 5.731 0.856 4
s38584 1-sc10 4.rep 20869 147 1730 452 36597 29444 7117 5.826 0.846 5
s38584 1-sc10 5.rep 20869 147 1730 451 36597 29444 7117 5.839 0.846 6
s38584 1-sc10 6.rep 20869 147 1730 461 36597 29384 7192 5.619 0.844 7
s38584 1-sc10 7.rep 20869 147 1730 497 36597 29419 7164 5.837 0.845 8
s38584 1-sc10 8.rep 20869 147 1730 489 36597 29419 7164 5.997 0.845 9
s38584 1-sc10 9.rep 20869 147 1730 464 36597 29426 7146 5.774 0.846 10

s5378-sc10 10.rep 3050 22 213 96 4595 3864 729 0.112 0.857 1
s5378-sc10 1.rep 3050 22 213 94 4595 3771 816 0.139 0.836 2
s5378-sc10 2.rep 3050 22 213 94 4595 3771 816 0.136 0.836 3
s5378-sc10 3.rep 3050 22 213 94 4595 3771 816 0.136 0.836 4
s5378-sc10 4.rep 3050 22 213 94 4595 3771 816 0.137 0.836 5
s5378-sc10 5.rep 3050 22 213 94 4595 3771 816 0.138 0.836 6
s5378-sc10 6.rep 3050 22 213 94 4595 3771 816 0.136 0.836 7
s5378-sc10 7.rep 3050 22 213 97 4595 3864 729 0.114 0.857 865
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s5378-sc10 8.rep 3050 22 213 97 4595 3864 729 0.126 0.857 9
s5378-sc10 9.rep 3050 22 213 97 4595 3864 729 0.115 0.857 10

s9234 1-sc10 10.rep 5844 25 250 175 6977 3942 2978 0.71 0.609 1
s9234 1-sc10 1.rep 5844 25 250 140 6977 3781 3137 0.661 0.584 2
s9234 1-sc10 2.rep 5844 25 250 140 6977 3781 3137 0.662 0.584 3
s9234 1-sc10 3.rep 5844 25 250 134 6977 3781 3137 0.66 0.584 4
s9234 1-sc10 4.rep 5844 25 250 134 6977 3781 3137 0.658 0.584 5
s9234 1-sc10 5.rep 5844 25 250 173 6977 3942 2978 0.694 0.609 6
s9234 1-sc10 6.rep 5844 25 250 173 6977 3942 2978 0.691 0.609 7
s9234 1-sc10 7.rep 5844 25 250 178 6977 3942 2978 0.684 0.609 8
s9234 1-sc10 8.rep 5844 25 250 183 6977 3942 2978 0.715 0.609 9
s9234 1-sc10 9.rep 5844 25 250 183 6977 3942 2978 0.712 0.609 10

Table B.3
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm......implementation sources, samples - generated Illinois-Scan,
configuration of scan-chains, structures
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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