
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 6, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Optimization of explosion computing in VBS4

 Student: Radovan Netík

 Supervisor: Ing Filip Hřebačka

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

VBS4 is a realtime army simulation game that is being developed by Bohemia Interactive Simulations, k. s.
This program has a slow algorithm to calculate explosions and effects of these explosions on objects placed
on the game map. The main goal is to create a better algorithm to improve the user experience from
playing VBS4.

1. Perform a search for existing ways to calculate explosions.
2. Analyze physics behind explosions.
3. Design a plug-in using Gears Studio that will manage explosion calculations.
 a) Focus on physical accuracy and performance.
 b) Users have to see the difference between the old implementation and the created implementation.
4. Analyze hardware possibilities.
5. Appropriately test the implementation.
6. Demonstrate the VBS4 improvements with the created plug-in.

References

Will be provided by the supervisor.

Bachelor’s thesis

Optimization of explosion computing in
VBS4

Radovan Net́ık

Department of Software Engineering
Supervisor: Ing. Filip Hřebačka

June 4, 2020

Acknowledgements

I would like to thank my supervisor, Ing. Filip Hřebačka, for his guidance
through each stage of the process.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Radovan Net́ık. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Net́ık, Radovan. Optimization of explosion computing in VBS4. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2020.

Abstrakt

Tato práce prezentuje základńı chemické a fyzikálńı vlastnosti exploźı společně
s algoritmy které maj́ı využit́ı v poč́ıtačové grafice. Tyto znalosti jsou poté
využity k popisu algoritmu, který dokáže simulovat efekty exploze na okolńı
objekty. Výzkum obsahuje studie a matematické definice ohledně problémů,
které se musej́ı řešit při těchto simulaćıch. Prezentované algoritmy se poté
daj́ı vyž́ıt k implementaci přesných a rychĺıch výpočt̊u efekt̊u které zp̊usobuj́ı
výbušné zbraně.

Kĺıčová slova VBS4, Exploze, Fragmentace, Poč́ıtačová grafika, Válečné
hry

Abstract

This work declares the basics of physical and chemical properties of explosions
and the algorithms used in computer graphics to create the real-time simula-
tion of explosions. The research contains studies about the problems of these
simulations and also math equations to help implement algorithms presented
in the realization part. The algorithms presented can be used to simulate
precise and relatively fast calculations of damage done by an explosion.

vii

Keywords VBS4, Explosions, Fragmentation, Computer Graphics, Wargames

viii

Contents

Introduction 1

1 Goal 3

2 State-of-the-art 5
2.1 Military Simulations . 5
2.2 VBS4 (Virtual Battle Space 4) 6
2.3 Gears Studio . 7

3 Analysis and design 9
3.1 Definition of Explosions . 9

3.1.1 What is explosion . 10
3.1.2 TNT Equivalent . 10
3.1.3 Chemical properties of explosion 11
3.1.4 Shockwave . 12
3.1.5 Fragmentation . 14

3.2 Data structures and algorithms 16
3.2.1 Octree . 16

3.2.1.1 Representation 16
3.2.1.2 Adventages . 17
3.2.1.3 Examples of usage 17

3.2.2 Quadtree . 17
3.2.3 Line-Plane Intersection 18
3.2.4 Point in polygon . 19
3.2.5 Ray-tracing . 20
3.2.6 Cylindrical projection 21
3.2.7 Cohen–Sutherland algorithm 21

3.3 Research of already existing algorithms 23
3.3.1 Tom Clancy’s Rainbow Six Siege 24
3.3.2 Discussion of RSS algorithm 26

ix

3.3.3 VBS3 . 26
3.3.4 VBS3 algorithm discussion 26
3.3.5 Unity and Unreal Engine 4 27

4 Realisation 29
4.1 Class diagram of the plugin . 30
4.2 API Implementation . 30
4.3 Geometry namespace . 35
4.4 Octree Algorithm . 37

4.4.1 Discussion about the Octree algorithm 41
4.5 Quadtree Algorithm . 41

4.5.1 Discussion about the quadtree algorithm 45
4.6 Damage calculator . 46
4.7 Testing . 46

Conclusion 51

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

x

List of Figures

2.1 Screenshot from the Doom II modification called Marine Doom. . 6
2.2 View on the air fighter flying over mountains in VBS4.[3] 7

3.1 Example of warhead explosion that intersects with tank.[5] 9
3.2 Pressure in time after detonation 11
3.3 Demonstration of the of shockwave after explosion. 12
3.4 Simulation of shell fragmentation.[14] 14
3.5 Representation of first three levels of octree. 16
3.6 Vizualization of the quadtree during rasterization. 18
3.7 Vector Projection . 19
3.8 Cylindrical projection of the world map.[19] 21
3.9 Set up regions in Cohen-Sutherland algorithm. 22
3.10 Example of possible lines tested using Cohen-Shutherland algorithm. 23
3.11 Image from the Tom Clancy’s Rainbow Six Siege.[20] 24
3.12 Example of ray casts path from epicenter. [21] 25
3.13 Example of explosion near near wall. 27
3.14 Example of unity explosion. 28
3.15 Example of Unreal Engine 4 explosion. 28

4.1 Class diagram of the plugin. 30
4.2 Communication between application and plugin. 31
4.3 Format of loading object data . 33
4.4 Process of creating polygons from set of arrays. 34
4.5 Enhanced Cohen-Sutherland algorithm example. 36
4.6 Flow chart that describes the process of inserting polygon. 39
4.7 Algorithm that counts the damage dealt percentage to object. . . . 40
4.8 Example of the 3D to 2D projection.[25] 41
4.9 Example of the transformation.[25] 43
4.10 Example of the projection and quadtree visualization. 44
4.11 Example of explosion around houses. 44

xi

4.12 Example of the hitpoints damaged by the explosion compared to
the game visualization. 45

4.13 Example of the precision on small mission. 47
4.14 CityInDesert map hitpoints asnd occlusion. 48
4.15 Rendered hitpoints on 2D projection. 48
4.16 Screen of the soldier from the forest with visible hitpoints. 49

xii

List of Tables

3.1 Table of TNT equivalent examples 10
3.2 Table of units defined by Kingery. 13
3.3 Table of K constant based on shape 15

4.1 Table of operations with vectors implemented in plugin 35
4.2 Time complexity of Quadtree algorithm and VBS4 algorithm. . . . 46

xiii

Introduction

Bohemia Interactive Simulations (BISim) is an Australian software company
founded in 2001 that is specialized in creating battlespace simulations. The
first designed product was VBS1 back in 2004. VBS1 (Virtual battlespace)
was an army simulation game that aimed for tactics and military training.
After that, the company developed VBS2 and VBS3, and today the company
is developing VBS4. All these simulation games stand on the VBS1 engine,
and because VBS4 is a significant step from all previous games, it needs lots of
upgrades. One of the upgrades is the simulation of explosions and the effects
of explosions on objects placed on a game map. The maps in previous virtual
battlespace games were limited so the user can play only in already created
areas, but VBS4 is using whole-earth rendering that allows users to move all
across the globe. Because of this, the game has more objects to deal with,
and the algorithm that was used to calculate explosion effects is not capable
of handling this in a reasonable time.

1

Chapter 1
Goal

The goal of this bachelor’s thesis explained in one sentence is to create the
algorithm for computation of what objects are affected by the explosion.

The first category, named State-of-the-art, presented in this thesis is about
resources used to create a plugin where the algorithm was developed. In the
second category called Analysis and design, the goal is separated into two
parts. The first part is about to study the physical and chemical properties
of explosions along with other effects that are present during the detonation
of explosive army weapons (fragmentation, . . .). The second part is about
the research of algorithms used in computer graphics together with already
existing ideas used to calculate explosions effects.

The third category is The Realisation chapter, where the algorithm created
for this thesis is presented as the primary goal. The purpose of the algorithm
is to calculate what happens to objects around the explosion and how much
they are affected. The algorithm will then be compared with the previous
VBS4 implementation in areas like time complexity and precision. This will
be demonstrated in real-time user experience or by automated testing.

3

Chapter 2
State-of-the-art

This chapter will explain the technology and interface used in this thesis. First,
the history and the actual state of the military simulations will be covered.
Second, there will be a description of the VBS engine and Gears Studio.

2.1 Military Simulations

Military simulations, commonly known as war games, are games where the
main goal is to create a simulation to perform warfare theories. They are a
useful way to develop tactical and strategic solutions without the need for ac-
tual hostilities. They can simulate a broad spectrum of army operations, such
as field exercise or command post-exercise. The first known game modeled
on war was a board game called Petteia created in the 5th century B.C [1].
Then, in the 6th century A.D., the commonly known game called Chess was
built [1]. In the 19th century, the Prussian army made the Kriegssipiel, which
is the first game that can be named as a wargame [1]. Now, we have more ad-
vanced wargames that are using new technologies to introduce the player into
military conflicts. In 1995, the U.S.Marines developed a game called Marine
Doom - the first computer-simulated combat simulator, which was a hack of
the popular video game Doom II [1].

5

2. State-of-the-art

Figure 2.1: Screenshot from the Doom II modification called Marine Doom.

Because technology became more and more powerful, the needs for larger-
scale and reality-like army simulations became standard. The software com-
panies realize this and start developing more sophisticated wargames, where
the armies can simulate war exercise on the whole earth, and players can use
virtual reality headsets.

2.2 VBS4 (Virtual Battle Space 4)

VBS4 is a wargame that was first released in December of 2019. It is a suc-
cessor of VBS3. VBS has been continuously developed since Operation Flash-
point (OFP). VBS1 was created using code from OFP, and VBS2 was created
by modifying ArmA2. VBS3 is a successor of VBS2 and first introduced the
implementation of PhysX and some other features, like procedurally generated
snow or large maps with detailed graphics (2000 km x 2000 km). The main
difference between VBS3 and VBS4 is that VBS4 starts using VBS Blue IG.
VBS Blue IG is a high-performance, CIGI-compliant, 3D whole-earth image
generator designed to support the full spectrum of land, sea, air and space use
cases for collective and individual training [2].

The game itself allows a user to create any imaginable scenario. It can
create “Battlespaces’, which is a collection of terrain edits, missions plans,
scenario files, and after-action reviews [3]. A great feature is that a large
portion of attributes can be modified in real-time. Because of the after-action
review, missions can be replayed many times for lessons to learn [3].

6

2.3. Gears Studio

Figure 2.2: View on the air fighter flying over mountains in VBS4.[3]

About technology, the game itself is written in C++. The DirectX library
handles the graphic, and Nvidia PhysX takes responsibility for physics. The
game should be officially finished before the summer of 2021.

2.3 Gears Studio

Gears is a software development framework that defines a standard way for
components to communicate through formal interfaces [4]. It uses component-
based architecture to build applications for systems. Individual components
communicate thought formally interfaces [4]. This results in that functionality
of components can be reused for multiple systems.

Bohemia Interactive Simulations are developing Gears Studio since 2015,
and it is widely used in VBS4.

7

Chapter 3
Analysis and design

3.1 Definition of Explosions

As the first part of this thesis, it is needed to introduce the reader to the
physical model and the chemical behavior of blasts and explosions. Overall,
the physical model is the core thing to have for almost every simulation of the
real world. Without it, there is a small probability that the final solution will
be accurate. On the start, a short description of chemical reactions is covered,
and then the physical model is explained.

Figure 3.1: Example of warhead explosion that intersects with tank.[5]

9

3. Analysis and design

3.1.1 What is explosion

An explosion is a rapid increase in volume and release of energy in an extreme
manner [6]. In moments of explosion, the gases are released and, depending on
the type of blast, the supersonic shock wave can happen. There exist differ-
ent types of explosions, but for this thesis are important chemical explosions
known as exothermic reactions. They are mostly used in explosive weapons.

When the exothermic reaction happens, the great quantity of energy can
be deposited into a relatively small volume, then the manifest itself by a
rapid expansion of hot gases, which in turn can create a shock wave or propel
fragments outwards at high-speed [7]. The first explosives use gunpowder
as the main force of power, but the first widely used explosive weapon was
dynamite patented in 1867 by the Swedish chemist and engineer Alfred Nobel.

In wargames, there are many types of explosive weapons, from light ar-
maments (hand-held weapons) to long-range weapons (missiles, rockets, . . .).
These differ by the ways damage is dealt with surrounding objects. For ex-
ample, the grenade can use fragmentation to cause harm, and missiles can
damage the same way or use a blast or shaped charge.

3.1.2 TNT Equivalent

Chemical reactions and physics of explosions will be demonstrated using sec-
ondary explosive material called TNT (2,4,6 — trinitrotoluene). Because the
behavior of TNT is well explored, the energy density of other types of explo-
sions (nuclear, thermonuclear, . . .) is measured using TNT equivalent. TNT
equivalent is a convention for expressing energy [9]. One t (a ton of TNT) has
an energy of 1.168 MW h or 4.184 GJ. Conversion factors for other types of
explosive materials are given in table 3.1.

Explosive TNT
equivalent

TNT 1.000
RDX (Cyclonite) 1.185
PETN 1.282
Compound B (60% RDX 40% TNT) 1.148
Pentolite 50/50 1.129
Dynamite 1.300
Semtex 1.250

Table 3.1: Table of TNT equivalent examples

This means, for example, that 200 kg of Semtex has a TNT equivalent
about 200 * 1.250 = 250 kg TNT.

10

3.1. Definition of Explosions

3.1.3 Chemical properties of explosion

Damage can be caused by different types of warheads but in the most general
sense, the damage is caused by the transfer of energy from the warhead to the
target [7]. The power takes the form of a shock wave or the kinetic energy of
fragments [7]. In most warheads, the energy is stored in the form of chemical
reactions. Here is an example of what will happen upon detonation of TNT
that goes through a decomposition equivalent to the reaction:

2 C7H5N3O6 −−→ 3 N2 + 7 CO + 5 H2O + 7 C

A significant positive entropy change drives the explosion. Which means a
release of gases such as Nitrogen (N2), Hydrogen (H2) and Carbon Monoxide
(CO). Production of Carbon (C) adds a sooty appearance to TNT explosions
[10]. Rapidly expanded gas compress the surrounding air and creates a shock
wave that travel outwards near the detonation velocity of approximately 6.4
km s [10]. There is also high exothermic change (great release of heat) that
makes the process thermodynamically favorable.

Released shock wave (blast wave) is almost the same as an ordinary acous-
tic wave created by sound, but it has great energy and limited duration. The
shock wave effect goes through a few phases over time. The start phase is
a positive phase that has risen to a peak pressure (up to 19.13 GPa for 1
TNT [11]) and linear decay to atmospheric pressure. As seen in figure 3.2,
the peak pressure is achieved almost instantly after detonation. The second is
negative phase and has pressure that is lower than atmospheric pressure and
then converges gradually back to atmospheric pressure [8].

Figure 3.2: Pressure in time after detonation

11

3. Analysis and design

3.1.4 Shockwave

The damage that has the most significant impact on fixed objects is done by
blast shockwave 1 . After detonation, the shockwave travels to all directions in
shape based on the strength of the explosion and distance from the epicenter.
It is also influenced by the objects and terrain it collides. Those objects are
then also affected by it, and it can result in different scenarios - from nothing
special up to total destruction of collided objects. Besides, the reflected shock
wave is created after the impact.

Figure 3.3: Demonstration of the of shockwave after explosion.

Fortunately, there exist ways to calculate these effects without the need to
simulate it in the real world. The most known and widely used calculations
are from Charles Kingery, who developed with his coworker Gerald Bulmash
equation called Kingery-Bulmash equation. This equation is a polynomial
function that can approximate properties listed with symbols and units in
table 3.2.

1To kill a man, it is needed around 200 kPa compared to just 83 kPa that is needed for
destroying a building.

12

3.1. Definition of Explosions

Symbol Name Unit
Ps Peak Incident Overpressure MPa
Pr Peak Reflected Overpressure MPa
Is/W

1/3 Incident Impulse MPa ·ms/kg1/3

Ir/W
1/3 Reflected Impulse MPa ·ms/kg1/3

Ta/w
1/3 Arrival Time ms/kg1/3

To/w
1/3 Positive Phase Duration ms/kg1/3

U Shock Velocity m/ms

Table 3.2: Table of units defined by Kingery.

Kingery-Bulmash equations are defined as

Y = 10(C0+C1U+C2U2+...+CnUn)

Where Y is one of the Units listed in list 1, C0 Cn are constants and U is

U = K0 +K1 logZ

Where K0 . . .K1 are constants and Z is the common logarithm of scaled
distance described by:

Z = R

W 1/3

Where R is distance from epicenter in meters, W is the TNT weight, which
can be calculated using the already introduced TNT equivalent.

Because the Kingery-Bulmash equations were created based on real life
observations, they involve a lot of constants and also the polynomial degree
for properties can differ. This can be unpleasantly to implement it using a
programming language. So in 2017, a Kingery-Bulmash modified equation of
shock wave parameters was created by Doojin Jeon, KiTae Kim and SengEul
Han at Inha University in Korea. There were established conditions for this
modified equation. Some of them were that the range of scaled distances must
be the same as in the conventional equation, the calculation of variable U must
be omitted and the number of constants in the modified equation must be less
or equal to five and the constants [8].
Modified Equation is then defined as:

Y = 10(C0+C1 log Z+C2(log Z)2+C3(log Z)3+C4(log Z)4)

Where: C0. . .Cn are constants, and Z is called scaled distance.

13

3. Analysis and design

3.1.5 Fragmentation

Blast waves can cause a lot of damage, but the strength of it decays fast.
Considering this, the military using fragmentation. The fragmentation term
refers to the act or process of breaking or making something break into small
pieces or parts [12]. Weapons that use fragmentation have a relatively small
explosive charge necessary to fragment the metallic shell of the ammunition
and to give the fragments the required initial speed to fly to a relatively long
distance, to hit and incapacitate the objects in the distance [13]. The proba-
bility of lethal effect of pieces on a random person can be achieved in a few
seconds if that person is hit by at least one fragment that has a kinetic en-
ergy of at least 78 Joules [13]. This value is called the lethal threshold value,
and it is an essential value for the construction of fragmentation ammunition.
Example of fragmentation is demonstrated using computer on Figure 3.4.

Figure 3.4: Simulation of shell fragmentation.[14]

The fragments are projectiles. The damage they inflict on impact and
the distance they travel are functions of their initial kinetic energy [15].The
nature of the explosive charge and its case are used to calculate the theoretical
velocity of the fragments.

v2 = 2∆E mc/me

1 +K(mc/me)
In this equation the quantity ∆E is the heat of explosion of the explosive

charge [15]. This value is for example 2.175∗106 J/kg for TNT. The value mc

is the mass of explosive charge and me is the mass of the charge case. The
quantity K is a geometrical constant [15]. The values of this constant are
shown in table 3.3 and are based on the shape of the case.

Once the initial velocity of the fragments is known, they can be treated
like any other projectile [15]. The aerodynamics and gravity forces will slow
down the fragment the same way as a projectile.

14

3.1. Definition of Explosions

Shape K
Flat plate 1/3
Cylinder 1/2
Sphere 3/5

Table 3.3: Table of K constant based on shape

There are some assumptions that can be made to decide if the projectile
hits the target. The distribution of fragments is assumed to be spherical and
also that they are distributed uniformly around the sphere. The sphere has
surface area equaled to

A = 4πr2

The number of fragments per unit area, n is then equal to the total number
of fragments, N, divided by surface area of the sphere [15].

n = N

4πr2

Using this equation is then possible to approximate the total number of
fragments that hit an object. It is done by multiplying the total area of that
object by the number of pieces in one area unit.

15

3. Analysis and design

3.2 Data structures and algorithms

This part is describing computer graphics algorithms that can be used to solve
the problem of searching the objects influenced by the explosion.

3.2.1 Octree

An octree is a hierarchical spatial structure which is widely used in Computer
Graphics algorithms. [16]. It is used to speed up many applications, from
searching objects in a given space or computation of intersections between
octree voxels and straight lines.

The study of octrees was first published in 1980 by Donald Meagher at
Rensselaer Polytechnic Institute. The following description is based on his
research.

3.2.1.1 Representation

Octree utilizes a hierarchical N-dimensional binary tree that represents an N-
dimensional space [17]. Since VBS4 is a three-dimensional game, a 3-D binary
tree can be used and will be described here. Each internal node is the parent
of 8 children nodes at the next lower level forming an 8-ary tree or “octree”
[17]. Region of space is represented by a node and has one or more values that
define the region. If the value of the node completely defines the area, it is a
terminal node (leaf). If not, an ambiguity exists and the node contains eight
children, which represent the eight subregions or octants of the parent node
[17].

Figure 3.5: Representation of first three levels of octree.

16

3.2. Data structures and algorithms

3.2.1.2 Adventages

There are several advantages of this data structure. First, only a compact set
of manipulation algorithms is required for separate space to small regions and
all these regions have a single primitive shape, the cube. A second advantage
arises because of the hierarchical structure [17]. The root node represents the
entire object [17]. The other nodes at some level, together with the higher
nodes, completely describe space as the whole. Thus, algorithms can operate
at a level appropriate for the task and avoid the bulk of data contained in a
lower level. Another advantage is that objects are partially pre-sorted. By
traversing the tree in proper sequence, the regions of the tree will be visited
in a uniform direction.

3.2.1.3 Examples of usage

Collision checks
Octree can be used to quickly check collision between objects such as
dynamic entities (soldiers, animals, etc.) and static objects (house, wall,
fence, etc.).

Color quantization
The advantage of the octree for color quantization is that it is simple to
generate both a good partitioning of the color space and a fast inverse
color table to find the color index for each pixel in the image [18].

3.2.2 Quadtree

An octree is a hierarchical spatial structure that is widely used in fields like
image processing. The stand-alone structure will not be explained in detail
because it is similar to the Octree data structure described before. The dif-
ference is that quadtree uses two-dimensional space. This means that every
node of the structure resembles the square. Every parent node of area N has
four sons area N/4. The hierarchy is visible in Figure 3.6.

17

3. Analysis and design

Figure 3.6: Vizualization of the quadtree during rasterization.

The advantages of quadtree are almost the same as octree advantages but
can be applied only on two-dimensional space. Mentioned image processing
uses quadtrees for operations that need to locate some areas of the image
quickly.

3.2.3 Line-Plane Intersection

This section is about finding a cross point between the line and the plane.
The method presented is using basic linear algebra to calculate the point
coordinates in 3D space. The result of an intersection can be determined by
one equation. But to fully understands it, it is needed to explain how to have
line and plane defined and also what means the term vector projection.

Many ways can define the position and direction of the line. Yet for the
presented method is essential to describing the line either by two points or
a point and a vector. The plane will be defined using two properties—the
normal vector n of this plane and the point c that lies on this plane.

The vector projection is an equation that takes two vectors ~a,~b, and project
one of them on the second, for example, veca to ~b. This can be better under-
stood by looking at figure 3.7 .

As can be seen, the result of vector projection gives a new vector ~a on the
vector ~a or ~b. Vector projection equation:

~a1 = ~b
~a ·~b

||~b|| ||~b||

The point of the intersection I is then calculated using equation:

I = x0 + k~v

18

3.2. Data structures and algorithms

Figure 3.7: Vector Projection

Where the x0 is the starting point of line and ~v is the is the vector difference
between the line startpoint and endpoint.

The variable k is calculated using the ratio between the vector ~w′ and the
vector ~v′ which are results of vector projections defined as:

~v′ = ~v
~v · ~n

||~n|| ||~n||
and ~w′ = ~w

~w · ~n
||~n|| ||~n||

The ~n is defined as the normal vector of the plane and the ~w is the vector
difference between the line startpoint and the point c that is on the plane.

If this is substituted into I = x0 + k ∗ ~v and then simplified, the final
definition of I is

I = X0 + ~w · ~n
~v · ~n

~v

3.2.4 Point in polygon

Now, that the process of getting the point that intersects the plane and line is
known. The line-convex polygon intersection needs to be introduced. Firstly,
the term polygon will be explained and then take place the algorithm that
can determine if a random point is inside a convex polygon.

By definition, the polygon is the closed plane figure bounded by three or
more line segments [23]. Convex polygon means that every angle between the
connected line segments is lower than 180 degrees. One of the useful properties
of a polygon is that is should always be planar. That means all line segments
are on the same plane. In VBS4 are used convex polygons that have three
or four segments. Because of that, the presented algorithm is most useful for
a three-sided convex polygon, alias triangle. But can be easily adapted for a

19

3. Analysis and design

four-sided convex polygon.

The algorithm itself works with a triangle using the barycentric coordi-
nates. Barycentric coordinates are triples of numbers (a, b, c) corresponding
to masses placed at the vertices of a triangle ∆ABC [24]. The point P deter-
mined by the (a, b, c) is the geometric centroid. The vertices of the triangle
are given by (1,0,0),(0,1,0),(0,0,1).

When it is needed to determine if the point I lie within the boundary of
the triangle ∆ABC. The barycentric coordinates are calculated for this point.
The first coordinate t1 can be calculated by the equation:

a = 1− ~v · ~AI
~v · ~AB

Where the ~AI is the difference vector between the point A and the point
I. The ~AB is calculated the same way but the point I is replaced by the point
B. The vector ~v is defined as:

~v = ~AB −
~AB · ~CB

|| ~CB|| || ~CB||

Where the vector ~CB is calculated like ~AB but the points A and B are
replaced by points C and B . As can be seen, the already explained sum called
vector projection is used in this equation.

When the variable a is known, the variables c and b are calculated analog-
ically.

Each variable of the (a, b, c) triple is then tested if it has a value between
0 and 1. If this test is true for all values, the point I lies within the triangle’s
boundary. If the test is false, then at least one variable has the value outside
the 0,1 interval, and thus the point I lie outside the triangle’s boundary.

To determine if the point is in the four-segments polygon (A,B,C,D).
The test is done for each opposite triangle. In this case, it could be tested
with the triangle (A,B,C) and the triangle (C,D,A).

3.2.5 Ray-tracing

This part is describing method called ray-tracing that is widely used in com-
puter graphics algorithms. Because of the attitude to ray-tracing differ in
many ways in algorithms. It is presented here in a way that is closest to the
solution presented in this thesis.

The idea behind ray tracing use in this thesis is not complicated. It is
a method to find or display objects that are in a line of sight from a point
in space. To determine if the objects intersect the line, the ray is cast from
the point to the position of that object. Two scenarios can come from this
process. One of them is that object is not intersecting, and thus there can be

20

3.2. Data structures and algorithms

some other obstacle in front, or the object is not in that direction. The second
scenario is that object can be visible and thus intersect on the ray.

This usage was widely present in older first-person shooting games to de-
termine if the shot bullet hit the target.

3.2.6 Cylindrical projection

For the second solution algorithm, it is needed to introduce a cylindrical pro-
jection. By definition, the cylindrical projection is a map projection in which
the surface of a globe is depicted as if projected onto a cylinder [23]. Is it is
often used to view the world map, as shown on Figure 3.8.

Figure 3.8: Cylindrical projection of the world map.[19]

The projection is made by calculating the angle within 0 and 180 degrees
between the projected object’s height. The y coordinate is then set to that
angle. The x coordinate is equal to the angle within 0 and 360 degrees between
the projected object’s width. The resulted projection has a rectangular shape
in the ratio 2:1.

3.2.7 Cohen–Sutherland algorithm

Cohen–Sutherland algorithm is a line clipping algorithm. Clipping, which
is a fundamental operation to several aspects of computer graphics, includes
two elements: the clipping window, which could be a rectangle, circle, convex
window, concave window, or open window, And the object to be clipped,
which could be a line, polygon, circle, character, or irregular curves [22]. The
Cohen-Sutherland algorithm is clipping against a rectangular window, which
is the most used shape to clip against.

21

3. Analysis and design

It is almost essential for processes like rendering visible parts of a scene
with a specific field of view.

The algorithm uses nine regions set up about the boundaries, as shown in
3.9. Every area has assigned a four-digit binary code, called a region code.
This code identifies the location of every line endpoint relative to the bound-
aries of the clipping rectangle. Each bit position in the region code is used to
indicate one of the four relative coordinate areas of the endpoint concerning
the clip window: to the left, right, top, or bottom [22].

Figure 3.9: Set up regions in Cohen-Sutherland algorithm.

After the assignation of region codes for both lines endpoints, the deter-
mination which lines are entirely inside the clip window and witch are clearly
outside can be done quickly. If both endpoints of a line have region code 0000,
the line is inside the window. If the endpoints have at least one true bit in the
result of bitwise AND operator between region codes, the line does not cross
the clipping window and thus is rejected.

Lines that cannot be identified as entirely inside or entirely outside a clip
window by these tests are checked for intersection with the window boundaries
[22]. As can be seen in Fig 3.10, these lines may or may not cross into the
window interior.

22

3.3. Research of already existing algorithms

Figure 3.10: Example of possible lines tested using Cohen-Shutherland algo-
rithm.

For finding an intersection within a clipping boundary, the slopt-intercept
form of the line equation is used. For example, the Y1 coordinate between the
line with endpoints (x1, y1), (x2, y2), and a vertical boundary can be calculated
using y = y1 + m(x − x1). Where the X1 value is either Xwmin or Xwmax.
The m variable is calculated using m = (y2 − y1)/(x2 − x1). After we get the
(X1, Y1) coordinate of the first endpoint, the second coordinates (X2, Y2) can
be calculated analogically.

Next, the processes presented at the start of this section are used to test
line with (X1, Y1) and (X2, Y2) endpoints. That gives us the final result if the
line (x1, y1), (x2, y2) is in the window boundary.

3.3 Research of already existing algorithms

Because the problem presented in this thesis occurs in many games, some
solutions already exist. This chapter will explain solutions presents in games
Rainbow Six Siege, VBS3 and also in game engines like Unreal Engine 4 and
Unity.

23

3. Analysis and design

3.3.1 Tom Clancy’s Rainbow Six Siege

Tom Clancy’s Rainbow Six Siege, referred to as RSS, is a game published in
2015. It is developed by Ubisoft Montreal studio. Since it is the first-person
shooter, the explosions has a significant role in the gameplay [21]. In this
section, all ideas presented are from this game.

Figure 3.11: Image from the Tom Clancy’s Rainbow Six Siege.[20]

In RSS, the damage and destruction that happens once an explosion goes
off are calculated in a matter of milliseconds. Players will receive visual and
audio cues and take damage if they are caught in the blast [21]. To make all
of this possible, RSS engine must go through several steps.

When the blast occurs, the game engine uses the origin of detonation and
the explosion shape to return a list of entities (operators and objects) present
in the blast radius. The shape and the radius is defined by multiple data
points defined for each type of the explosion. The final list is then full of
potential entities to be affected by the explosion [21].

With the list of potential entities from within the blast AOE, RSS physics
engine executes ray-casts 2 [21]. These ray-casts will then travel from the
epicenter towards any entity from the list. Each entity has many individual
query points that are used to determine whether or not damage is taken [21].
These points are special points used for this use-case. They help to decide
better if the entity should be vulnerable to blast damage while still optimizing
performance and minimalizing latency [21]. Ray-casts travel to all these points
for all entities on the list. Data returned from this process help determine the
damage output.

2Described in Ray-tracing section.

24

3.3. Research of already existing algorithms

All objects in Siege contain metadata that define what the object is and
how it interacts with other elements in the game. Particular objects contain
metadata that block the explosion damage. (Castle walls, shields, etc.). If the
ray-cast path collides with an object that has the metadata to block explosive
damage before reaching the query points on the entity, the entity is safe [21].
If the ray-cast hits nothing, or objects without metadata to block damage, the
entity takes damage. Example of this process is shown on picture 3.12.

Figure 3.12: Example of ray casts path from epicenter. [21]

The damage output to entity is then calculated based on the distance
from the epicenter of blast together with the data from ray casts. Explosions
commonly have two effects - destruction and damage. Damage deals damage
to players and destruction is what causes any environmental destruction . The
shapes and ranges can be different depending on explosion. These effects are
limited based on the data returned from ray-casts. However, this is not ideal
for some cases. For example if the blast happend inside a building. The walls
can cap the damage radius and there is no simulation of reflection wave.

With version Y5S1, the shrapnel concept was introduced into explosions
in RSS. That means that destructible objects no longer limits the damage
to player. So the blasts will be more realistic as the damage from explosion
will be reduced by the number of destructible objects between the entity and
the epicentre. Explosions will also be more transparent as shrapnel holes will
provide much more visual feedback on the direction from which the explosion
damage is oriented.

25

3. Analysis and design

3.3.2 Discussion of RSS algorithm

The core of the solution used by RSS is present in many FPS games. If it is
used with some computer graphics structure like octrees, it is a relatively fast
and precise solution. But it can be slow with massive explosions. The main
problem is that every object is used more than once when iterating over all
ray-casts. And the precision depends on the number of points that are used as
the destination of ray-casts. In VBS4, the problem would be that it expects
the ray-casts to intersects with the ground. And as was written, the VBS4
uses the whole earth as a map. To get the information about the intersection
with it could take a higher time, even with the implementation of computer
graphics algorithms.

3.3.3 VBS3

As VBS4 is a game based on VBS3, the variation of the algorithm that solves
explosion damage calculations is implemented from there. In the next section
the algorithm is described.

VBS3 uses ray casting implementation alike RSS. But it also adds few
optimizations that help the time complexity. When are all objects in radius
loaded from a map, the iteration through them start. While the iteration
runs, every center of the object is checked if it is in a direct hit. While the
checking is in action, every other object visited is added to the sorted array
by distance. The next iteration, the first controlled objects are taken from
the sorted array. That improves the time complexity because the selection of
objects is made from more to less important.

For a damage calculation, the methods described in the first part of State-
of-the-art are used. One difference is that it use the non-enhanced version of
Kingery-Bulmash equation.

3.3.4 VBS3 algorithm discussion

Part of the VB3 solution was discussed in the RSS algorithm discussion. The
reason why the implementation of this algorithm to VBS4 is the same as
described there. Even with the storing already iterated objects by distance.
What is good about the VBS3 process is that it optimizes the algorithm and
still is saves precision. It is also fast in cases when the explosion takes place
near the massive wall or house because it blocks a large portion of the hit
area. An example of this case is shown in figure 3.13.

26

3.3. Research of already existing algorithms

Figure 3.13: Example of explosion near near wall.

3.3.5 Unity and Unreal Engine 4

Because many games are created using game engines, it can be assumed that
the mentioned problem is solved in them. For this reason, the two best-known
game engines were tested - Unity and Unreal Engine. There is no discussion
about presented solutions because they are similar to RSS solution that was
discussed before.

The resolution from testing3 both of the game engines was surprising. By
default, neither one of them takes care of what happens when some target is
behind a bulletproof object. They basically select all objects in radius and
does damage to them appropriately or creates only visual effect and ends. An
example of only visual effect is shown in Figure 3.14 demonstrated in Unity.
The Figure 3.15 shows the explosion in Unreal Engine 4. As can be seen, the
power of explosion affect also the blocks behind the wall.

3The testing was done using the basic possibilities that game engines provide. No ex-
panding plugins were used.

27

3. Analysis and design

Figure 3.14: Example of unity explosion.

Figure 3.15: Example of Unreal Engine 4 explosion.

When game developers want to implement occlusion, they need to create
their algorithms. As far as unity implementation goes, the most solutions
discussed on the official unity forum was similar to the method used in RSS -
cast rays from the epicenter to every hitpoint of every object and checked for
a direct hit. The same is offered as a solution for projects in Unreal Engine 4.

28

Chapter 4
Realisation

This chapter explains the process of developing the explosion calculator plugin
for VBS4. The first part is about a class view and design of the plugin.
The second part describes the API interface and the rest sections explains
the damage calculator and the two algorithms and their application as the
result of this bachelor’s thesis. The damage calculator will use the knowledge
described in the first part of the Analysis and design chapter. It will do the
exact thing as the name says - calculate the damage done to the object based
on the defined parameters.

The result of the two algorithms is the value of how much the object gets
damaged, which is used as one of the arguments to the explosion damage
calculator. Both of the algorithms have a similar core, and both are useful
for different scenarios. The first algorithm presented, called Octree algorithm.
is more inspired by Tom Clancy’s Rainbow Six Siege algorithm explained in
the previous chapters. The second algorithm, called Quadtree algorithm, is
more innovative but requires more steps to be done to calculate the result.
Both algorithms will also have a discussion part where the advantages and
disadvantages take place.

29

4. Realisation

4.1 Class diagram of the plugin

This section shows the class diagram 4.1 of the created plugin. It mainly
describes the relations between the classes and structs. For the algorithm
that calculates the occlusion is selected the Quadtree algorithm that will be
introduced later.

Figure 4.1: Class diagram of the plugin.

4.2 API Implementation

This part presents the API created for the Explosion Damage Calculator Plu-
gin. First, the functions for communication are presented using sequence
diagram in figure 4.2. Then, the description of API functions is presented.

30

4.2. API Implementation

Figure 4.2: Communication between application and plugin.

There are also two debug functions that could, for example, create visible
lines between explosion and objects vertexes to control if the hit points are
correctly aimed. The second debug function can draw the collision boxes that
are used to check bullet or shrapnel collisions. The implementation of these
functions is done on the application side. In the following text, the detailed
description of the for listed functions takes place. They are also described
in the same order as are called in the runtime. One exception is function to
calculate damage results async.

At first, when the application (VBS4) wants to calculate explosion damage,
the function to set explosion parameters needs to be called. The parameters
that are passed to it are the epicenter, explosion weight, blast radius, TNT
equivalent, number of fragments, the initial energy of fragments, and the ex-

31

4. Realisation

plosion position. These values are passed using the structure called Explosion
Info. In the scope of the function, the Explosion Manager singleton class is
called, and all named data are passed to it. Behind that, it also loads the
necessary data like polygons or objects in area.

The second function, called CalculateDamageResult, takes no parameters.
It is because it reads One explosion data from the explosion manager, that
were posted to it by service that sets explosion parameters. This, by the way,
implies that the task to set explosion data needs to be called every time before
calculation of the explosion takes place.

In the scope of this API function is a call to the explosion manager sin-
gleton class that calculate damage results. The process of calculating is the
most time consuming, and thus has the most significant impact on gameplay
from the whole API. It does, what its says, calculate everything that’s needed
when an explosion occurs.

The third function GetObjectsInArea is called from the plugin to the ap-
plication. That is done after it is check in the explosion manager that the
calculation should be synchronous. This function returns all objects that are
in the explosion radius. The returned value is an array of DataOfOneOb-
ject structures together with the size of that array. Because the Gears Studio
uses API based on the C programming language, a pointer passes these values.

The four function, called GetObjectsPolygons, is more complicated. The
values passed to it are the C array and size of all objects previously loaded
from the map. It requires the particular format of data to be loaded to buffer
from the application. The format could be harder to understand and thus is
better described in the Figure 4.3 below:

32

4.2. API Implementation

Figure 4.3: Format of loading object data

As can be seen, the format data contains three arrays, each of the different
lengths.

The array of vertices is filled with the world position of the vertices of the
object. If that array were taken and rendered, the displayed object would be
transparent and visible will only be the dots that represent the vertices. That
is a problem, and thus it the function needs to load indexes called indices.
These are saved to the indices array and are used to determine what vertices
from the vertex array make a polygon. To decide how many vertexes have one
polygon, the array full of polygon sizes is created.

One additional crucial variable is the size of the polygon sizes array. It is
used to loop through the polygon sizes array and create individual polygons.

33

4. Realisation

As was said, the format can be non-intuitive, and thus, the Figure 4.4
shows the process of creating polygons from introduced arrays.

Figure 4.4: Process of creating polygons from set of arrays.

The arrays presented needs follow a few rules. All ranges need to be non-
empty, and the minimal value of one element in indices sizes array has to be
more significant or equal to three.

There is also one additional array not shown in figure 4.3. It is a thickness
array. It needs to have one value inside for each polygon. That implies that
its size is the same as the size of the polygons sizes array. Every value of this
array should be between zero and one. Where the one says that the object is
non-permeable and zero says that is permeable and destructive.

Overall, the thickness is used to calculate the effects on the object that is
behind some permeable structure—for example, the glass or thin wood.

Last but not least, the function GetResults needs to be introduced. This
function is used from the application, and the primary purpose is to load all
pieces of information about damage dealt to objects. It takes array of dam-
age results and size of that array as arguments. These arguments are filled
with the results calculated in the function that calculates the damage. The

34

4.3. Geometry namespace

application of these results depends on the application side. It could then be
loaded to a physics engine, for example.

Because the calculating process of the plugin can be time-consuming for
massive explosions, the asynchronous implementation is added to guarantee
flawless gameplay. Asynchronous workflow has a similar scheme as sync work-
flow. There are two main differences - the function to set explosion parameters
is not called, the task to calculate damage result is asynchronous, and the re-
sults are saved to the thread-safe structure.

The set center position is not called because from the developer’s perspec-
tive to calls two functions where one is asynchronous could be unpleasant.

The advantages of asynchronous implementation are that it could be called
every time during the frame from the parent thread, and the game does not
stutter. The disadvantage is that the developer who uses it needs to be care-
ful. If the get results function is not called from the parent thread after the
calculation ends, then the zombie threads could occur.

4.3 Geometry namespace

In namespace called Geometry are declared crucial parts of this plugin used
many times in algorithms described in the next section. The namespace con-
sists mainly of the math functions and structures.

The most basic structures used are Vector2 and Vector3 that present pri-
mary math vectors. The central part they contain are variables that define the
vector positions. It is x,y for Vector2 and x,y,z for Vector3. They also include
some math operations that can be done with them. They are all shown in the
table 4.1

Operation name Returns
Size Magnitude of the vector
DotProduct Angle between two vectors
Normalize Vector that has a magnitude size 1
CrossProduct Vector that is perpendicular two vectors
Inverse Vector that is inverted

Table 4.1: Table of operations with vectors implemented in plugin

It’s good to say that only the operation Size is implemented for the Vector2
because it is unnecessary to have other functions implemented to Vector2 —
they are not used elsewhere in the code.

Vector2 and Vector3 are used in many parts of the code. Overall are used
for almost every math operation in the plugin. But for example, they are used
to represent polygons and to calculate normals.

35

4. Realisation

Another math-like operation is the implementation of the enhanced Cohen-
Sutherland algorithm. In the plugin, it is called PolygonSquareIntersection.
It returns true if the square crosses the line segments or is inside the polygon.
The scope of the function goes thought the same process as is described in the
theoretical part with only one difference. At the start, it defines the variable
called isInside and sets it to number fifteen. That is because the number fifteen
is represented as 1111 in binary. On the isInside variable is then performed
a binary ”And” operation with every code that is assigned to every line start
point. The outcome of isInside variable is then checked on the end of the
PolygonSquareIntersection’s scope. If its value is more than zero, the square
is not entirely inside the polygon. If its zero, the polygon is entirely inside.
An example of how it works is presented using polygon P in figure 4.5.

Figure 4.5: Enhanced Cohen-Sutherland algorithm example.

Last thing to say about PolygonSquareIntersection operation is that is
used only in Quadtree algorithm.

Lots of math equations are also used in the function called GetDistance,
which is crucial for both algorithms described next. It calculates the distance
from the epicenter to the point that crosses ray and polygon. Thus the two
arguments are needed to be passed to the function—the ray from the epicenter
and a requested polygon. In the scope, it uses two algorithms/math equations
described in the theoretical part.

The first is the ray-plane intersection. For the calculation of point I, it uses
the last equation described in that chapter just with a small difference. There
is no need to add up the point X0 because the epicenter is always centered on
the coordinates (0, 0, 0).

36

4.4. Octree Algorithm

The second is the point in polygon algorithm. It has an implementation
of this algorithm for two situations that are selected based on the number
of polygon points. If the polygon is composed of three nodes, it goes by the
standard way defined in the named chapter. When it has four nodes, it is
separated into two triangles, and the operation is done for both.

As far as structures go, one basic structure is called a sorted linked list.
It is the structure that can sort polygons by their distance from the center.
It has four main variables called first, last, prev, and next. These are used
to determine where the polygon should be added. The structure has three
methods. They are called Insert, CheckFirst and IsEmpty.

Insert function does what the name says. It inserts the required element
to the linked list based on its attributes. In the case of this plugin, the item
is a polygon handle. On the start, it checks if the first attribute from the
linked list is filled. If no, it is set to be the inserted element and the function
ends. Otherwise, it continues to select the right place for that element. That
means it will find the site where the epicenter’s distance is smaller than the
next element and place it in that position. If the element has a gap more
significant then the other items in the list, it is placed to the variable called
last.

The functions called CheckFirst and IsEmpty has an effortless course.
They are both used in the condition statements. The check first function
checks, if the first element is empty. If yes, the value passed with the function
is assigned to the first element, and the CheckFirst returns true. In another
case, the function ends right away and returns false. The IsEmpty checks if
the variable first is empty. If yes, its return true. Otherwise, it returns false.

4.4 Octree Algorithm

As was said, this algorithm is inspired by Tom’s Clancy’s Rainbow Six Siege.
It is inspired in the way that it uses raycasting to determine if the object we
want to check is in some direction. To better explain how the whole algorithm
works, the next list describes the steps for getting damage deal to all objects
in the scene. The steps will then be explained further.

1. Select all objects that are in blast radius.
2. Select which polygons of those objects will be used.
3. Add those polygons to octree.
4. Iterate through selected polygons and, using octree, check, if it is visible

from the point of explosion.
5. If the polygon is at least partially visible, calculate the damage dealt.

37

4. Realisation

Step one and two are the same for both algorithms presented here. The
first step is vital because it helps the performance to have selected objects
that can be damaged. There can be an edge case that only one object is se-
lected. If so, the algorithm jumps over the third and four steps because it is
unnecessary. The selection speed highly depends on the program that uses the
plugin presented here. The best thing would be it uses some faster structures
like R-Tree or Octree. The VBS4, for example, uses R-Tree.

When are all possibly affected objects selected, the algorithm then iterates
through every object polygons. While doing this, it will select all polygons
that are facing in the direction of the explosion. To decide if some polygon (A,
B, C) meets this requirement, it calculates the normal vector of this polygon
and the vector difference between the epicenter and point A. If the angle of
these two vectors is less than 90 degrees, it is selected to process next. This
process is called polygon culling and is essential for rendering. In this case, it
is done because of the performance, and because it is useless to have back faces.

The third step is one of the most computationally hard to do. Every
selected polygon needs to be added to octree for faster searching in the next
level. But it is unnecessary to add a polygon to octree on the maximal depth
every time. The process of adding an algorithm to octree is revealed in the
Flow chart 4.6:

38

4.4. Octree Algorithm

Figure 4.6: Flow chart that describes the process of inserting polygon.

Step four is to decide which object is wholly or partially hit. That is done
by iterating through vertexes of selected polygons and testing them if they are
in direct sight or behind some bulletproof objects. For this purpose is needed
to get polygons from octree nodes that intersect with the ray R defined by
two points - the epicenter of the explosion and the vertex. In order to achieve
this, the standard recursive or iterative function can be used.

After the algorithm obtain that polygons from octree. The iteration
through them starts. In that phase is every polygon tested with r using the
ray-plane and ray-triangle algorithm. If it is confirmed that polygon lies on r,
the magnitude m of the vector difference between the epicenter and ray-plane
intersection point is calculated. The magnitude of m is then compared with

39

4. Realisation

the s, which is the magnitude of r. If m has a smaller value than s, the tested
vertex is behind the polygon and is needed to take further actions. Such as
calculate the percentage from full damage based on the toughness of polygon
material. These results are then saved to the array of pairs. The first value of
the pair is the ray R, and the second value is the damage percentage. These
are used for determining what should happen with the object that contains
tested vertex if it should be moved or destroyed. The whole process is outlined
in the Figure 4.7.

Figure 4.7: Algorithm that counts the damage dealt percentage to object.

As can be seen on the start, the algorithm saves the vertices that were al-
ready calculated. That is because of the vertices can be repetitive in polygons.
And to keep what vertices were used is faster than to calculate the damage
again. Also, it needs to be mentioned that the thickness represents the value
of how much the object is bulletproof. Thus it is between 0 and 1.

40

4.5. Quadtree Algorithm

4.4.1 Discussion about the Octree algorithm

The presented algorithm is relatively fast if it is done with some preparations.
One of the preparation is to have a scene already inserted to octree. In that
case, the third step can be completely removed, and the algorithm is then just
checking the intersection only with the different epicenter. The advantage of
this algorithm against the quadtree algorithm presented next is that it has
the third dimension. This means it is possible to simulate other effects of an
explosion as reflected shockwave. But the implementation could cause a large
overhead to the time complexity. Also, one advantage was already written,
and it is a possibility to create octree before the explosion occurs.

4.5 Quadtree Algorithm

The Quadtree algorithm is the innovative part of this thesis. The idea behind
this is that it is almost possible to remove the third space from algorithms to
calculate explosions. That means that it is achievable to use only the vertical
angle and horizontal engle to determine where the object is in perspective to
the epicenter. The aspects can then be used to display an object in a two-
dimensional space. This project will be called a 2D projection in the further
text. An example could be seen in the Figure 4.8.

Figure 4.8: Example of the 3D to 2D projection.[25]

41

4. Realisation

As in the Octree algorithm, this algorithm goes through some stages that
are sometimes alike. All the stages are listed below:

1. Select all objects that are in blast radius

2. Select which polygons of those objects will be used.

3. Calculate the projection of those polygons.

4. Add projected polygons to the quadtree.

5. Iterate thought the selected polygons.

6. If the polygon is at least partially visible, calculate the damage dealt.

The first two steps are described in the Octree algorithm section. The
third step needs more explanation that is presented next.

The stand-alone calculation of the one polygons projection is straightfor-
ward. The result of one polygon point projection of the vertex (x, y, z) is two
values (α, β). These values are calculated using basics trigonometric functions.

The β point has a value between 0 and 180 and equals to the angle between
the up vector and the vector between the point and epicenter. The angle is
calculated using the dot product that is then transferred from radians to
degrees.

The α point equals to the angle ratio between the x value and z value. To
do this, the function atan2 is used because it is needed to have an interval of
x1 from zero to three sixty degrees. Atan2 is a function that is implemented in
most programming languages. It works as an arctangent function but more-
over takes care of some edge cases. For example, the divisor in arctg role
might be zero. That could result in unhandled behavior. But, the atan2 will
return a π/2 or 3/2π based on the dividend value.

The example with picture of this transformation can be seen on Figure
4.9.

42

4.5. Quadtree Algorithm

Figure 4.9: Example of the transformation.[25]

The example 4.9 shows point A, defined by coordinates (4, 3, -2). The
following math operations describe how to get its 2D projection A’ represented
by (333, 31).

α = atan2(−2, 4), β =
~(0, 1, 0) · ~(4, 3,−2)

|| ~(0, 1, 0)|| ||(4, 3,−2)||
The α equals 333 and the β equals 31 after the results are rounded.

Against Octree implementation, there is needed to do one other process.
It is the premise that cylindrical projection works perfectly for all polygons
that do not cross the up vector. It is because the nature of this method is
directed to control all objects around the explosion but not directly inside the
explosion. The solution to this problem is that all these polygons need to
be tested whenever the algorithm calculates some polygons’ direct hit. The
testing is achieved by storing these polygons to some structure, for example,
vector and iterate over them every time in the function GetDamageResults.

Every polygon is then inserted into the quadtree. The process of adding
is similar to octree insertion. The only difference is that it is inserted into
nodes with square shape. The inserted polygon is checked using the Polygon-
SquareIntersection function described in the geometry section. If it returns
true, it continues to another node or creates a new node. When it travels
to the last node, it is inserted into the polygon list of that node. As in the
octree algorithm, the nodes in the polygon list are sorted by the distance of
the closest point of the polygon.

The algorithm to check damage results is also almost the same as in the
octree Algorithm 4.7. The main difference was already mentioned. It is that
is needed to check every polygon that intersects up vector.

43

4. Realisation

The beautiful thing about quadtree implementation is that it can be vi-
sualized by rendering the whole projection to one picture. One example is
shown in the figure 4.10

Figure 4.10: Example of the projection and quadtree visualization.

The figure 4.10 is from a mission with many warehouses and one soldier,
shown in Figure 4.11. The soldier, surrounded by warehouses, is nicely visible
in the left part. The green lines shown on Figure 4.11 are hit points. Also the
occlusion is nicely visible.

Figure 4.11: Example of explosion around houses.

44

4.5. Quadtree Algorithm

Figure 4.12: Example of the hitpoints damaged by the explosion compared to
the game visualization.

4.5.1 Discussion about the quadtree algorithm

The quadtree algorithm presented is an innovative way to calculate occlu-
sion and explosion damage. The advantages are that the precision and time
complexity can be adjusted by changing the depth of quadtree. The 2D visu-
alization can be used for many cases, like showing the soldier where has been
hit and where he makes mistakes, as shown in Figure 4.12.

It also reduces the time complexity based on the range of the explosion -
the larger the explosion gets, the quadtree build time gets shorter against its
ratio. That is because the quadtree was already allocated, and no new nodes
are created. It is also proof that the algorithm would work even when the
calculations were made on GPU.

The disadvantages are that the 2D projection works only for one posi-
tion, and against octree implementation, it cant be used again with the same
quadtree. There is also needed to use some additional data, like storing all pro-
jected polygons and polygons that cross the center in a vertical direction. The
algorithm also has some limitations as calculating the reflected shockwaves or
fend fragments.

45

4. Realisation

4.6 Damage calculator

The damage calculator is a class that takes results from the octree or quadtree
algorithm. Mainly the distance from the epicenter to the hitpoint and the
percentage of damage reduction. The reduction is based on how many objects
prevents the direct hit.

The class alone calculates the power that affects objects using the equa-
tions presented at the start of the State-of-the-art chapter. The enhanced
Kingery-Bulmash equation is used to calculate blast overpressure and reflected
pressure. The fragment energy, together with the fragment count, is used to
calculate damage from fragment impact.

The class is allocated in the function that calculates the damage result
with settings that differ for every explosion. The calculator also needs to
set up parameters that are used for damage estimating as TNT equivalent,
fragment energy, fragment count, etc.

4.7 Testing

The performance of the presented quadtree algorithm was tested against the
existing VBS4 algorithm. The tests were done on three missions that have
ascended complexity. The first mission, called HouseAndSoldier, is placed in
the desert, where there are only one house and one soldier. The second mission,
called CityInDesert, is also on the desert, where are multiple buildings and
one soldier. And the third mission, called Forest, is in the dense forest with
one soldier. As can be seen, the number of objects surrounding the epicenter
is higher in every next mission. If the exact numbers were taken to account,
the maps have 6,28,1104 objects, sequentially. The results are in miliseconds
and are shown in Table 4.2

Mission Number of objects VBS4 algorithm Quadtree algorithm
HouseAndSoldier 6 0 12
CityInDesert 28 1 84
Forest 1104 18 1296

Table 4.2: Time complexity of Quadtree algorithm and VBS4 algorithm.

As can be seen on table, the results of testing are unsatisfactory. The
time complexity of the Quadtree algorithm is higher than the complexity of
the already existing VBS4 algorithm. The reason for that is that the VBS4
algorithm uses only bounding boxes for collisions. That means the algorithm
should not be so precise. Let’s take a look at figures that compare the algo-
rithms by precision.

The first figure 4.13 shows the soldier that is hiding behind a house. The
green lines show the soldier’s and house’s hitpoints generated by the Quadtree

46

4.7. Testing

algorithm, and the red line shows the hitpoint calculated by the VBS4 algo-
rithm. As can be seen, the VBS4 algorithm decided that the soldier is wholly
hiding and dealt damage based on that. The Quadtree algorithm decided
that only part of the soldier is hiding and calculates damage dealt only by the
approximation of the area that is shown. The yellow polygons shows collision
polygons used to calculate hitpoints in Quadtree algorithm.

Figure 4.13: Example of the precision on small mission.

The second figure 4.14 demonstrates the damaged CityInDesert map. It is
ruined because a high explosive with a large radius was dropped to the center.
The hitpoints were already defined in the description for figure 4.13. As can
be seen, the occlusion of the Quadtree algorithm is more precise. An example
of that is especially on the left building. The VBS4 algorithm recognizes that
the building is wholly hit (red line). But the Quadtree algorithm (green lines)
shows, that it is hitted only partially.

47

4. Realisation

Figure 4.14: CityInDesert map hitpoints asnd occlusion.

The hitpoints calculated by the Quadtree algorithm are visible also on the
2D projection of the map as can be seen on Figure 4.15.

Figure 4.15: Rendered hitpoints on 2D projection.

48

4.7. Testing

The third figure 4.16 presenting the explosion in the mission Forest. The
soldier is standing behind the tree and thus it will be damaged only to some
parts of body. The red line, as was said, shows the VBS4 algorithm. It finds
that the soldier is behind the tree and deals reduced damage based on the
thickness of the tree.

Figure 4.16: Screen of the soldier from the forest with visible hitpoints.

The precision testing proves that the Quadtree algorithm is more precise
than the VBS4 algorithm. And thus, it helps to simulate a better real-life
experience.

49

Conclusion

The conclusion of this thesis is interesting. The testing proved that the main
algorithm of this thesis, Quadtree algorithm is slower than the algorithm used
in VBS4. But it is also more precise to calculate what area was hit by the
explosion. Because the VBS4 is the game that aims for real-life simulation,
accurate calculations are essential. The algorithm alone is innovative, and
all ideas and methods used to create it should compress the time complexity.
The lesson from it is that during game development, it is necessary to account
that the data preparation for processes is a crucial part of any algorithm and
should be fast. The Quadtree algorithm also proves that it is possible to
calculate explosions effects using the rendering method. That means that it
could run on the GPU for better time complexity. Also, the theoretical part
introduces examples of explosion damage calculations in other games together
with needed math and explosion equations. That gives an excellent summary
of these problems to everyone who will come across similar interests.

51

Bibliography

[1] Homans, Charles. “War Games: A Short History.” Foreign Policy, Foreign
Policy, 31 Aug. 2011, foreignpolicy.com/2011/08/31/war-games-a-short-
history/. [online]

[2] “Bohemia Interactive Simulations.” BISim, Bohemia Interactive Simula-
tions, bisimulations.com/products/vbs-blue-ig.[online][03.03.2020]

[3] “Bohemia Interactive Simulations.” BISim, Bohemia Interactive Simula-
tions, bisimulations.com/products/vbs4.[online][03.03.2020]

[4] Alexion, A. (2020). Simplify and Standardize Your Software Development
Process.[online] Retrieved May 25, 2020, from https://gears.studio/

[5] Baker, E. (2017). Warhead Technology. Retrieved May 28, 2020,
from https://www.msiac.nato.int/areas-of-expertise/warhead-technology
[online]

[6] MADIGAN, Michael L., 2017, First Responders Handbook: An Introduc-
tion, Second Edition. Boca Raton, FL : CRC Press.

[7] Payne, Craig. Principles of Naval Weapons Systems. Vol. 2, Naval Institute
Press, 2010.

[8] JEON, Doojin, KIM, Kitae and HAN, Sangeul, 2017, Modified Equation
of Shock Wave Parameters. Computation. 2017. Vol. 5, no. 4p. 41. DOI
10.3390/computation5030041.

[9] Šumbera, Michal, Nuclear Explosion[lecture][02.05.2020]

[10] Girard, James. Criminalistics: Forensic Science and Crime. Jones and
Bartlett Publishers, 2008.

53

Bibliography

[11] BAJIC, Zoran, BOGDANOV, Jovica and JEREMIĆ, Radun, [no date],
Blast-Effects-Evaluation-Using-TNT-Equivalent. Academia.edu. [Accessed
2 May 2020]. Available from: https://www.academia.edu/8055261/Blast-
Effects-Evaluation-Using-TNT-Equivalent [online]

[12] Oxford advanced learners dictionary, 2005. , Oxford : Oxford University
Press.

[13] Klimi, George. (1990). Estimation of Casualties from Fragmentation Am-
munitions.

[14] Shrestha, R. (2019, November 24). Camera Calibra-
tion in OpenCV-python. Retrieved May 24, 2020, from
https://medium.com/@rashikshrestha01/camera-calibration-in-opencv-
python-dffed958f7e4 [online]

[15] PALMER, Grant, 2005, Physics for game programmers. Berkeley, CA :
Apress.

[16] Revelles, Jorge Ureña, Carlos Lastra, M. Lenguajes, Dpt Informaticos,
Sistemas Informatica, E.. (2000). An Efficient Parametric Algorithm for
Octree Traversal.

[17] Meagher, Donald. (1980). Octree Encoding: A New Technique for the
Representation, Manipulation and Display of Arbitrary 3-D Objects by
Computer.

[18] BLOOMBERG, Sam S., 2008, Color quantization using octrees.
[online]. 4 September 2008. [Accessed 3 May 2020]. Available from:
http://leptonica.org/papers/colorquant.pdf

[19] Cylindrical Projection: Mercator, Transverse Mercator and
Miller. (2020, March 06). Retrieved May 26, 2020, from
https://gisgeography.com/cylindrical-projection/

[20] Mccaffrey, R. (2015, January 24). Rainbow Six Siege: 5v5 or Bust –
IGN First. Retrieved May 26, 2020, from https://sea.ign.com/rainbow-six-
siege/85961/feature/rainbow-six-siege-5v5-or-bust-ign-first

[21] DEV BLOG: EXPLOSIONS SHRAPNEL IN Y5S1, [no date]. DEV
BLOG: EXPLOSIONS SHRAPNEL IN Y5S1 [online], [Accessed 30 April
2020]. Available from: https://www.ubisoft.com/en-us/game/rainbow-
six/siege/news-updates/1QkezaGoRkDWqcQ6duGvtk/dev-blog-
explosions-shrapnel-in-y5s1 [online]

[22] Iraji, ms Mazandarani, Ayda Motameni, Homayun. (2011). An Effi-
cient Line Clipping Algorithm based on Cohen-Sutherland Line Clipping
Algorithm. 65-71.

54

Bibliography

[23] The American Heritage dictionary of the English language, 2016. , Boston
: Houghton Mifflin Harcourt.

[24] Weisstein, Eric W. ”Barycentric Coordinates.”
From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/BarycentricCoordinates.html [online]

[25] Shrestha, R. (2019, November 24). Camera Calibra-
tion in OpenCV-python. Retrieved May 24, 2020, from
https://medium.com/@rashikshrestha01/camera-calibration-in-opencv-
python-dffed958f7e4 [online]

55

Appendix A
Acronyms

AOE Area of effect

RSS Tom Clancy’s Rainbow Six Siege

TNT Trinitrotoluen

57

Appendix B
Contents of enclosed CD

README.txt...........................the file with description of plugin
bin the directory with the plugin dll
build.....................................the directory of source codes
src.................................. the directory of API source codes
thesis.................the directory of LATEX source codes of the thesis

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

include.......................the directory with the plugin header files

59

	Introduction
	Goal
	State-of-the-art
	Military Simulations
	VBS4 (Virtual Battle Space 4)
	Gears Studio

	Analysis and design
	Definition of Explosions
	What is explosion
	TNT Equivalent
	Chemical properties of explosion
	Shockwave
	Fragmentation

	Data structures and algorithms
	Octree
	Representation
	Adventages
	Examples of usage

	Quadtree
	Line-Plane Intersection
	Point in polygon
	Ray-tracing
	Cylindrical projection
	Cohen–Sutherland algorithm

	Research of already existing algorithms
	Tom Clancy's Rainbow Six Siege
	Discussion of RSS algorithm
	VBS3
	VBS3 algorithm discussion
	Unity and Unreal Engine 4

	Realisation
	Class diagram of the plugin
	API Implementation
	Geometry namespace
	Octree Algorithm
	Discussion about the Octree algorithm

	Quadtree Algorithm
	Discussion about the quadtree algorithm

	Damage calculator
	Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

