

Czech Technical University in Prague

Faculty of Mechanical Engineering

Department of Automotive, Combustion Engine and Railway

Engineering

Master’s Thesis Title

HIL simulation of driving cycles and its validation

by

Bc. Harshaan Singh

Thesis supervisors:

doc. Ing. Jiří Novák, Ph.D., Czech Technical University, Prague

doc. Ing. Tomáš Haubert, Ph.D., Porsche Engineering Services, s.r.o., Prague

I dedicate this thesis to my nephew (Kuwarveer Singh) and my two nieces
(Mehr Kaur and Sohila Kaur)

Acknowledgement

Firstly, I would like to extend my gratitude to both my supervisors Dr. Jiri Novak at Czech

Technical University, Prague and Dr. Tomas Haubert at Porsche Engineering Services for

giving this opportunity to pursue my Master’s Thesis on this exciting problem space.

I am extremely thankful to all my team members Mr. Martin Florian, Mr. Josef Nemet, Mr.

Tomas Kamenca and Mr. Daniel Soares, of Electronics Integration Department for providing

a good working atmosphere and assistance in day to day activities. I am fortunate to have spent

my time at Porsche Engineering and gaining better understanding about Vehicle Diagnostics

and Hardware-in-the-loop simulations.

Last but not the least, I would like to thank my family and friends for their immense support

and love.

Abstract

To establish early niche in the market, vehicles being produced these days are growing

exponentially in terms of complexity (hardware and especially in software). Keeping pace with

this advancement, verifying and validating design becomes crucial steps. Hardware-in-the-loop

(HIL) tests is one of the well adopted simulation test in the industry to overcome this

challenge. HIL allows to test functionality and behavior of any vehicle component (any

actuators or sensors) as though it is on the real vehicle, simulating all driving conditions, and

identify all faults within any unit. In simple words, HIL replaces the need of assembled final

product and hence comprehensive testing can be performed at early stage, giving the engineers

and designer a head start.

Hardware-in-the-loop (HIL) simulation is used for all aspects of product development,

including safety-relevant functions, simulating behavior of vehicle performance, etc.

Nowadays, it is a standard component in the vehicle development process which provides

various methods for testing of electronic control unit (ECU) software. All the vehicles physical

parameters like temperature, air flow, vehicle speed, engine rpm, etc., are continuously

monitored by electronic sensors and communicated, over the internal vehicle communications

protocol, to the Main Control Unit for further processing.

This study present the selection of parameters used for calculation of the fuel consumption and

prediction of CO2 emissions on a simple driving cycle. These measurements are retrieved from

Engine Control Module and OBD-II diagnostic protocol in case of HIL and real vehicle

respectively. Comparing the driving cycle HIL data with data the real vehicle measurements,

HIL is validated which help to understand the effects of various factors in the estimation of

fuel consumption and CO2 emissions. Further, using the results from this validation we can get

clear depiction on how HIL will behave on WLTP cycle.

Keywords: Hardware-In-Loop, DSpace, Vehicle Diagnostics, Communication Protocols,

EXAM, DiagRA, INCA, PIDs, On-Board Diagnostics (OBD-II), Diagnostic Trouble Code

(DTC), CAN, FlexRay, LIN, Unified Diagnostic Service (UDS), WLTP, Volumetric

efficiency, Short term fuel trim, Fuel Consumption, CO2 emissions.

Table of Contents

Theoretical Part

1. Introduction .. 1

1.1 Background .. 1

1.2. Objectives ... 2

1.3. Tasks of the thesis .. 2

1.4 Structure of the Master Thesis .. 3

2. Communication Networks .. 5

2.1 In-Vehicle Networks ... 5

2.2 Communication Protocols .. 6

2.2.1 Controller Area Network (CAN).. 7

2.2.2 FlexRay ... 8

2.2.3 Local Interconnect Network (LIN) .. 9

2.3 Future Communication Protocol .. 11

2.3.1 Controller Area Network Flexible Data-Rate (CAN-FD) .. 12

2.3.2 Automotive Ethernet ... 13

3. Vehicle Diagnostics ... 15

3.1 Introduction ... 15

3.2 On-Board diagnostics (OBD) .. 15

3.2.1 OBD-II Signal Protocols... 17

3.2.2 Parameter Identification Numbers (PIDs) .. 18

3.2.3 Diagnostic Trouble Codes (DTCs) ... 19

3.3 Off-Board diagnostics ... 22

3.3.1 Unified Diagnostics Service (UDS) .. 22

3.3.2 UDS Request/Response .. 24

3.4 Diagnostic Management Software... 25

3.4.1 Integrated Calibration and Application Tool (INCA) .. 25

3.4.2 Important terms in Diagnostics .. 28

4. Hardware-in-the-Loop (HIL) .. 33

4.1 Introduction ... 33

4.2 V-cycle development process .. 34

4.3 Porsche Engineering HIL Setup .. 35

Practical Part

5. Software Study .. 39

5.1 DiagRA D – Diagnostic Software tool ... 39

5.1.1 Basics of the Software .. 39

5.1.2 DaigRA D as a Diagnostic tool .. 41

5.1.3 DaigRA D as a Scan tool .. 42

5.2 Extended Automation Method (EXAM) ... 44

5.2.1 Modeler Perspective .. 44

5.2.2 Testrunner Perspective .. 46

5.2.3 Reportmanager Perspective... 47

6. Worldwide Harmonized Light Vehicles Test Procedure (WLTP) 49

6.1 Implementation of WLTP cycle .. 50

6.1.2 Manual Implementation .. 50

6.1.2 Automation Method Implementation ... 52

6.2 HIL Virtual Driver Behavior ... 55

7. Calculations and Assumptions .. 57

7.1 Fuel Consumption .. 57

7.1.1 Mass Air Flow (MAF) .. 57

7.1.2 Mass Fuel Flow (MFF) .. 60

7.2 Emissions (CO2) .. 61

8. Results and Discussion .. 63

8.1 HIL Validation .. 63

8.1.1 Approach for HIL Validation ... 64

8.1.2 Implementation of driving cycle on HIL ... 66

8.1.3 Results of Acceleration Phase .. 67

8.1.4 Results of Constant driving Phase .. 68

8.1.5 Results of De-acceleration Phase ... 69

8.1.6 Results of Full Driving Cycle ... 70

8.2 WLTP cycle results .. 72

8.2.1 Fuel Consumption .. 73

8.2.2 Estimated CO2 Emissions .. 75

8.3 dSpace HIL Fault Code Diagnostics .. 75

9. Conclusion ... 77

9.1 Summary .. 77

9.2 Contribution of thesis .. 78

10. References .. 79

Appendix .. 82

List of Figures

Fig. 1: In-vehicle network architecture.

Fig. 2: CAN Bus OSI Model.

Fig. 3: FlexRay OSI Model

Fig. 4: LIN OSI Model

Fig. 5: Future automotive backbone network

Fig. 6: CAN-FD Frame format

Fig. 7: The fast-growing demand for bandwidth

Fig. 8: Ethernet Frame format [13]

Fig. 9: On- board vehicle diagnostics. Diagnostic tester/client connected to a vehicle to run

diagnostic services in an ECU

Fig. 10: Vehicle connector and contacts allocation

Fig. 11: DTCs Structure

Fig. 12: Byte 4 (red box) DiagRA Software

Fig. 13: Remote Vehicle diagnostics. Off-board server connected to a diagnostic tester/client

in an ECU in the vehicle.

Fig. 14: Implementation of UDS protocol over CAN

Fig. 15: UDS message format

Fig. 16: INCA System Overview

Fig. 17: INCA Interface for Measurement and ECU Calibration

Fig. 18: INCA Interface with ODX-LINK

Fig. 19: OBD II Trip

Fig. 20: Signal flows in a real system and in HIL simulation.

Fig. 21: V-Model of development process

Fig. 22: Schematic setup of HIL System

Fig. 23: dSpace Control Desk

Fig. 24: Layout of the main window

Fig. 25: (a) Fault code memory (b) DTCStatusMask

Fig. 26: The tab-sheet Scan-Tool Mode 1

Fig. 27: Selection of IDs (SAE 1979)

Fig. 28: EXAM Test Process

Fig. 29: EXAM modeler perspective

Fig. 30: EXAM testrunner perspective

Fig. 31: EXAM reportmanager perspective

Fig. 32: WLTP class 3 v5.3 driving cycle

Fig. 33: WLTP cycle manual implementation (red area)

Fig. 34: WLTP cycle sequence diagram

Fig. 35: Vehicle driver system

Fig. 36: HIL Virtual driver behavior on WLTP Cycle

Fig. 37: Comparison of calculated mass air flow with mass air flow reported by the ECU

Fig. 38: (a) Results of heat-release analysis showing the combustion inefficiency and the

corrections due to heat transfer and crevice effect [35]. (b) Mass fraction dependency on one

of the many factors on the amount of dilution [36].

Fig. 39: Fuel consumption dependency diagram

Fig. 40: Vehicle Velocity phases 1. Acceleration 2. Constant driving 3. De-acceleration

Fig. 41: Volumetric efficiency at different phases at HIL driving cycle

Fig. 42: Real driving Cycle TestCase

Fig. 43: Real driving Cycle TestSequence Diagram

Fig. 44: HIL and Real fuel consumption at acceleration phase

Fig. 45: HIL (blue) and Real (orange) results comparison at acceleration phase

Fig. 46: HIL and Real fuel consumption at constant driving phase

Fig. 47: HIL (blue) and Real (orange) results comparison at constant driving phase

Fig. 48: HIL and Real fuel consumption at de-acceleration driving phase

Fig. 49: HIL (blue) and Real (orange) results comparison at de-acceleration phase

Fig. 50: HIL (blue) and Real (orange) results of fuel consumption on full driving cycle

Fig. 51: Coolant temperature of HIL and real vehicle comparison

Fig. 52: Vehicle speed versus WLTP cycle fuel consumption showing Low Phase (orange),

Medium Phase (Green), High Phase (Purple) and Extra High Phase (Red).

Fig. 53: Vehicle acceleration versus WLTP cycle fuel consumption.

Fig. 54: CAN-Frame in base format (11 bits)

Fig. 55: CAN bus levels

Fig. 56: FlexRay Hybrid Network

Fig. 57: FlexRay Frame Format

Fig. 58: FlexRay Signal [41]

Fig. 59: LIN Frame Format

Fig. 60: LIN Signal

List of Tables

Table 1: SAE in-vehicle network classification.

Table 2: Purpose of each mode of operation. The dollar sign “$” in front of the numerical value

highlights that this is an identifier. It’s important to know that the numerical values of the

identifiers are in hexadecimal format.

Table 3: UDS Diagnostics Functions

Table 4: Descriptive parameters of the WLTP driving cycle

Table 5: PID and Parameters selected for measurement in real vehicle

Table 6: HIL and real vehicle CO2 emission average values.

Table 7: Fuel consumption over the WLTP cycle different

Table 8: Estimated CO2 over the WLTP cycle different

Table 9: HIL Fault codes and description

http://x-engineer.org/undergraduate-engineering/mathematics/arithmetics/numbers-representation-systems-decimal-binary-octal-and-hexadecimal/

1

Chapter 1
Introduction

This report introduces the master’s thesis ‘HIL simulation of driving cycles and its validation’.

The work has been conducted at the Porsche Engineering Services, Prague, Czech Republic.

This chapter presents the background, objectives, tasks and structure of the thesis.

1.1 Background

As per a report published by Harvard Kennedy School, it is estimated that worldwide the

number of passenger cars will reach up to 1.5billion by 2025 compared to 750million in 2010

[1]. Following these growing numbers, in the past decade automotive industry has seen

tremendous growth in the technological advancement in electrical vehicles and systems. One

of the most important factor to continue this growth momentum is the parallel advancement in

development and testing techniques.

There are few challenges when it comes to perform reliable and comprehensive testing. First

and the foremost is the very high testing cost which then for most companies impacts their

timelines/delivery schedules and subsequently the time to market. Another important challenge

is the ability to achieve testing results at acceptable level of confidence in safety, quality and

reliability.

Lately, hardware-in-the-loop (HIL) testing method has gained recognition and has become a

principal part of control validation in the automotive product development cycle. According to

ISO 26262 standard which is mandatory for passenger car development worldwide. It explicitly

names HIL as a suitable test environment for software unit tests and integration tests, for the

verification of safety requirements at component level and names it as a appropriate method

for testing single ECUs/components and for testing ECU networks up to an entire virtual

vehicle.

HIL simulation is rapidly progressing in an automotive industry from a control prototyping

tool to a system modeling, simulation and synthesis methods which are combining many

benefits of both physical and virtual prototyping. Vehicle is a very complex ecosystem

consisting of multiple sub-processes/modules which are responsible for its smooth operations.

Each module is monitored and controlled with the usage of sophisticated sensors which inform

and collaborate with the Main Control Unit (MCU). The micro-controllers (supporting the

sensors) communicate with the MCU and with each other using typical bus-based

communications standards such as CANBus (Controller Area Network), Flexray, Local

Interconnect network (LIN), etc.

To study the ECU efficient functionality, the HIL validation plays a very important role, so this

thesis primarily focuses is on validating HIL using collecting simulated results from Engine

Control Unit and validating them with the measurements derived from the vehicle (Model-

Porsche Panamera). HIL being a very complex system architecture platform, it’s validation in

this study is mainly focused on the behavior of it in terms of fuel consumption calculation, as

2

this gives us clear comparison about the engine efficiency. Another dimension of this study is

comprehensive dive into in-vehicle architecture and vehicle diagnostics further used in HIL

system validation on WLTP cycle focusing on fuel consumption.

1.2. Objectives

The objective of this work can be described in following points

1. First, to develop strong theoretical background and sound understanding of the foundation

concepts in vehicle electronics and Hardware-In-Loop systems. The successful completion of

this objective is very crucial to achieve rest of the objectives in this thesis.

2. The second objective is to gain expertise and proficiency in test automation software

(Extended Automation Method (EXAM)) and diagnostics tool (DiagRA) used for HIL setup,

specifically around functionalities and capabilities of both the software and system

respectively.

3. The third objective is to validate HIL by focusing on fuel consumption with three phase

driving cycle. The validation includes extracting the relevant data from the sensors and

actuators attached to the Electronic control unit (ECU) and comparing this data with the real

vehicle measurements via On-Board Diagnostics (OBD II) Scantool.

4. Lastly, using the understanding of the HIL behavior and sensitivity over varying, vehicle

speed, rapid acceleration/ deceleration, and reasons behind it’s over-under estimation of the

results. The fuel consumption values via HIL are obtained on WLTP driving cycle.

1.3. Tasks of the thesis

With the aim to effectively fulfil the objective listed in 1.2, the thesis is organized under two

major goals and further sub-divided into small tasks for continuous monitoring of progress.

I. Understanding of In-Vehicle network, communication protocols and vehicle diagnostics.

 Learn about On-Board and Off-Board Diagnostics and HIL simulation method with

focus on dSpace KoVoMo HIL system which is used for all V6 and V8 Engines

Porsche Vehicle.

 Acquire knowledge about vehicle diagnostics software and diagnostic trouble codes

(DTC) and Parameter Identifiers (PIDs).

II. Hardware-In-Loop (HIL) testing and its validation using real vehicle measurements.

 WLTP Implementation of standard driving cycle using manual and automation

approach on HIL system focused on fuel consumption and estimation of CO2 emissions.

 Understanding and using of Extended Automation Method (EXAM) automation tool

for test management/automation.

 Validate HIL and perform its data analysis using results from real vehicle.

3

1.4 Structure of the Master Thesis

The thesis work is organized in two parts: Theoretical and Practical Part.

The theoretical part covers the basics of Communication Network (Chapter 2), Vehicle

Diagnostics (Chapter 3), and Porsche Hardware-In-Loop (HIL) setup (Chapter 4).

The Practical part starts with giving insights of DiagRA D–Diagnostic Software tool and

EXAM (EXtended Automation Method) is a test management system software (Chapter 5).

Chapter 6 describes Worldwide Harmonized Light Vehicles Test Procedure (WLTP), its

implementation (manual and automated) and HIL Virtual Driver Behavior.

Chapter 7 generated the mathematical model with assumption in order to calculate fuel

consumptions and CO2 emissions. Chapter 8 discusses about HIL Validation using real vehicle

measurements. Based on the data analysis of the consumption and CO2 estimations, various

cause of the effects is discussed later in this chapter. Further, the results obtained via WLTP

cycle on HIL is compared using official published data.

Finally, the last chapter 9 summarizes the final conclusion of the thesis.

4

Theoretical Part

5

Chapter 2
Communication Networks

In the chapter in-vehicle network which is a special internal communication network that

interconnects components inside the vehicle are discussed. Further, the hardware aspects of in-

vehicle networking and its main standards for e.g. CAN, LIN, FlexRay and Ethernet are

explained as these communication protocol is widely used by Porsche Engineering Services

Hardware-in-Loop system.

2.1 In-Vehicle Networks

Electronic safety-critical control function in vehicles was first used in 1981. General Motors

implemented micro-computer based engine control for their petrol powered vehicles which

greatly improved the efficiency and performance [2]. With the introduction of laws regulating

emission control, the use of electronic engine control (ECU) was required to meet the legal

requirements as well as to maintain acceptable efficiency and performance. The ease of

implementation along with the cost/efficiency benefits motivated manufacturers to adopt

electronic control for engine management and this later spread to other domains.

Currently, in modern vehicles around 30–50 ECUs across all segments are to be found. These

ECUs consist of automotive grade micro-controllers and/or general purpose processors which

execute software implementations for control and comfort applications. The number of ECUs

in vehicles has been rising at the rate of approximately 1.45 times a year, while the application

software has been growing at a rate of 4.5 MB per year.

Depending on the domain the ECU is intended for, suppliers also provide customized

architectures that are best suited for functionality in that specific domain. For example, a body

domain controller might be

working on different network

protocols and offer little or no

hardware acceleration support,

while a telematics controller

would integrate high speed

interconnect and dedicated

accelerator blocks for video

processing or radar interfaces.

This “right-sizing” enables

manufactures to control the cost

(development and parts) as well as

standardize the software

framework for each domain. The

Society for Automotive Engineers

(SAE) classifies in-vehicle

networks based on throughput and

domain of operation [3] as shown

in Table 1.

Table 1: SAE in-vehicle network classification.

6

2.2 Communication Protocols

Every modern vehicle use different network protocols in different domains, the choice of which

is determined by factors such as the functional requirements of the domain, criticality, cost,

etc. Among the many protocols, Local Interconnect Networks (LIN), Controller Area Networks

(CAN), FlexRay, and Media Oriented Systems Transport (MOST) are the most widely used

protocols by the different manufacturers today. Special networks like safe-by-wire are used for

passenger safety systems like airbags and other active protection systems. A simplified scheme

of typical in-vehicle network architecture in a modern vehicle is as shown in Figure 1.

A large variety of in-vehicle networks evolved primarily due to cost and performance

requirements. CAN is very expensive and complicated for simple functions like power

windows or boot release. Simpler protocols like the Local Interconnect Network (LIN) is

adoption due to its non-critical functionality at lower cost per module and power consumption.

While, CAN is too slow for high bandwidth applications like multimedia in higher end vehicles

resulting in the development of high bandwidth protocols like Media Oriented Systems

Transport (MOST) for such applications. Time-triggered CAN (TTCAN) is an evolution of

standard CAN, which addresses the lack of its functionality by introducing a time-triggered

mechanism above the CAN framework. The FlexRay protocol, developed by the FlexRay

consortium, offers a combination of time-triggered and event-triggered communication for in-

vehicle applications to enhance reliability with higher bandwidth and is mostly used in

Porsches.

Fig 1: In-vehicle network architecture [2].

7

2.2.1 Controller Area Network (CAN)

CAN (Controller Area Network) bus is one of the most popular protocols in the automotive

industry, which enables different components of vehicles to communicate with each other. It

was established by Robert Bosch in 1983 and officially released in 1986. It handles a maximum

signaling rate of 1 megabit per second (bps). CAN is an International Standardization

Organization (ISO-11898: 2003) defined serial communications bus, originally developed for

the automotive industry. It is a two-wire (twisted pair) communications bus and has a high

immunity to electrical interference and can self-diagnose and repair data errors.

The ISO-11898 [4] standard defines CAN by using the Open Systems Interconnection (OSI)

model which is defined in terms of layers. Figure 2 shows, the two lowest layers of the seven

layer OSI model: the data-link and physical layer and ISO 15765-2 [5] specifies Transport and

Network layer services.

The protocol used for CAN is the carrier-sense, multiple-access with collision detection

(CSMA/CD). The arbitration is based on the message priority and is implemented on bit level

(bit-wise arbitration). The node with the highest priority identifier which is accomplished by

longest dominant bit levels in the identifier, prioritized as the bus access.

CAN BUS FRAME

Four different CAN messages exist in the CAN protocol [6], explained as followed:

Data frame: The CAN data frame also works with two different protocols. The first one is

called “base format” and has an identifier of 11 bits. The second one is the “extended format”

and the identifier has 29 bits. The standard says that a CAN controller must accept at least basic

frames but can or cannot accept extended frames.

Remote frame: It works the same as the previous one but there is a difference. It is possible

that a node requires some data from another one. Then, a remote frame is requested to the

second one in order to get the information. Basically, the difference between data frames and

remote frames is that the last ones do not have data field.

Fig 2: CAN Bus OSI Model.

8

Error frame: This is a special frame that is transmitted when a node detects a wrong message.

Then, the rest of nodes also transmit an error frame. There is an error counter that avoids the

blockade of the bus with continuous errors.

Overload frame: It is similar to error frame and is transmitted by a node when it is very busy.

Then the bus starts providing extra delays between the CAN messages. For further explanation

about CAN frame, please refer to the appendix.

2.2.2 FlexRay

The FlexRay communications bus is a deterministic, fault-tolerant and high-speed bus system

developed in correspondence with automobile manufacturers and leading suppliers. FlexRay

delivers the error tolerance and time-determinism performance requirements for x-by-wire

applications where x can be drive-by-wire, steer-by-wire, brake-by-wire, etc.

One of the things that differentiates FlexRay, CAN and LIN from more traditional networks

such as Ethernet, is its topology, or network layout. FlexRay supports multi-drop passive for

simple connections as well as active star connections for more complex networks. In contrast,

when FlexRay is configured to talk on a bus, it uses something called a time division multiple

access (TDMA) scheme to guarantee determinism. Its node is synchronized with the same

clock and each node waits until it is the turn to write to the bus. As the timing in a TDMA

scheme is consistent, it can guarantee determinism or the consistency of data delivery to nodes

in the network. FlexRay devices cannot automatically detect the network or addresses on the

network, so it is essential to have that information programed in at manufacturing time.

The ISO-17458 [7] standard defines FlexRay by using the Open Systems Interconnection (OSI)

model which is defined in terms of layers. Figure 3 shows, the two lowest layers of the seven

layer OSI model: the data-link and physical layer and ISO 10681-2 [8] specifies Transport and

Network layer services.

Fig. 3: FlexRay OSI Model

9

FLEXRAY FRAME

The FlexRay frame consists of the three segments, the header segment, the payload segment

and the trailer segment.

Header Segment: The FlexRay header segment consists of five bytes (40 bits). These bytes

contain a reserved bit, the payload preamble indicator, null frame indicator, sync frame

indicator, frame ID, startup frame indicator, payload length, header CRC and the count for

cycles.

Payload Segment: The FlexRay payload segment comprises of 0 to 254 bytes data. The bytes

are identical numerically, starting at Data 0 for the first byte after the header segment increasing

by one with each subsequent byte.

For frames communicated in the static segment the first 0 to 12 bytes of the payload segment

may optionally be used as a network management vector. The payload preamble indicator in

the frame header shows whether the payload segment contains the network management vector.

The length of the network management vector can be configured from 0 to 12 bytes.

For the frames transmitted in the dynamic segment the first two bytes of the payload segment

can be used as a message ID field, allowing the receiving nodes to filter data based on the

contents of this field. The payload preamble indicator in the frame header indicates whether

the payload segment contains message ID.

Trailer Segment: The FlexRay trailer segment comprises of a single 24 bit field. This has CRC

calculations values which have been calculated by the host for the fields in the header and the

payload segments for the field.

For further explanation about FlexRay frame, please refer to the appendix.

2.2.3 Local Interconnect Network (LIN)

The LIN consortium comprises many vehicle manufacturers like Audi, Volvo, and BMW. LIN

is a cheap slow serial bus used for distributed body control electronic systems in vehicle. It

enables effective communication for sensors and actuators where bandwidth, speed and

versatility are not required (i.e inside mechatronic based subsystems generally made of an ECU

and its set of sensors and actuators). LIN is usually used as a sub bus for CAN and Flexray.

Fig. 4: LIN OSI Model

10

The ISO-17987 [9] standard defines LIN by using the Open Systems Interconnection (OSI)

model which is defined in terms of layers. Figure 4 shows, the two lowest layers of the seven

layer OSI model: the data-link and physical layer ISO-17987-3 and ISO-17987-4 and ISO

15765-2 specifies Transport and Network layer services.

LIN FRAME

The LIN bus is a polled bus with a single master device and one or more slave devices [10].

The master device has both, a master task and a slave task. Each slave device contains only a

slave task. Communication over the LIN bus is controlled totally by the master task which is

in the master device. Frame is divided into a header and a response which is the basic unit of

transfer on the LIN bus. The header is always transmitted by the master node and it consists of

three separate fields: the break, synchronization (sync), and identifier (ID). The response is

transmitted by a slave task which resides in either the master node or a slave node. It contains

a data payload and a checksum.

Normally, the master task analyze each slave task in a loop by transmitting a header, which

consists of a break-sync-ID sequence. Before starting the LIN, each slave task is designed to

either publish data to the bus or subscribe to data in response to each received header ID. When

the header is received, each slave task verifies ID similarity and then checks the ID to decide

whether it needs to publish or subscribe. If the slave task wants to publish a response, it

transmits 1-8 data bytes to the bus after that by a checksum byte. If the slave task wants to

subscribe, it reads the data payload and checksum byte from the bus and takes appropriate

internal action.

For standard slave-to-master communication, the master transmits the identifier to the network,

and just one slave responds with a data payload.

Master-to-slave communication is done by a separate slave task in the master node. This task

receives all published data to the bus and responds as if it were an autonomous slave node. To

transmit data bytes, the master should first update its internal slave task’s response with the

data values it wants to communicate. The master then issues the suitable frame header, and the

internal slave task then sends its data payload to the bus. Further explanation is in the appendix.

11

2.3 Future Communication Protocol

The automotive network architecture is currently facing the boundaries of established

technology. The gradually increasing need for bandwidth and the diversification of

performance, costs and dependability requirements lead to a modification of the networks used

throughout the vehicle. Traditional protocols such as CAN, Flexray and LIN do not meet the

bandwidth and scalability requirements, for example the Advanced Driver Assistance Systems

(ADAS).

Around 2500 signals in today’s luxury vehicles (i.e. elementary information such as the speed

of the vehicle) are exchanged by up to 70 ECUs [11]. Until the start of the 90s, the data was

exchanged through point-to-point links between ECUs. However this strategy, which required

an amount of communication channels of the order of n2 where n is the number of ECUs (i.e.,

if each node is interconnected with all the others, the number of links grows in the square of

n), was unable to handle with the increasing use of ECUs due to the problems of weight, cost,

complexity and reliability induced by the wires and the connectors. CAN FD and Ethernet are

in nearly all vehicles currently in mass production in VW. For this study, CAN FD

communication protocol is used to retrieve measurement data from DiagRA Software while

FlexRay is used to flash software on the ECU.

Ethernet and CAN-FD is the emerging technology in the automotive domain. It is capable to

address bandwidth demands of tomorrow’s advanced driver assistance systems (for example,

HD video, LIDAR) and it will also provide greater interoperability with consumer multimedia

products such as smartphones and tablets. In the following article, two of the new automotive

networking protocols, CAN-FD and Ethernet are discussed.

Fig. 5: Future automotive backbone network

12

2.3.1 Controller Area Network Flexible Data-Rate (CAN-FD)

CAN FD was developed in 2011 by Robert Bosch GmbH, in Germany as an addition to the

original CAN protocol. Working closely with the prominent carmakers and other CAN experts

and answering to the need of the more powerful CAN protocol, Bosch came up with CAN-FD.

The “FD” in CAN FD means “flexible data-rate,” which is the big development, allowing

increased performance and higher bandwidth communication. This new and improved

extension to the Standard CAN protocol allows for data transfers of 8 MB/s, even with cable

lengths more than 40 meters. It can transfer up to 64 bytes of data in a single message.

CAN-FD FRAME

The CAN-FD frame format is shown in Figure 6. Similar to CAN as discussed in the previous

section, CAN-FD dominant bit is a logical 0 and a recessive bit is a logical 1. As shown in

the figure, a CAN-FD frame is consist of two phases: arbitration phase and data phase [12].

Arbitration Phase: The arbitration phase in the CAN-FD frame consist of: SOF (Start of

Frame), arbitration, part of the control field, ACK (Acknowledgment), EOF (End OF Frame),

and IFS (Inter-Frame Space). The 11-bit (or 29-bit in case of extended format) identifier

represents the priority of the frame: the lower the value of the identifier, the higher the priority.

The arbitration for transmission happens as follows:

During the idle state of the bus, all the nodes with some ready frames send the 11-bit identifier

after the SOF bit. During the transmission of the identifier bits, if a node transmits a recessive

bit but finds a dominant bit on the bus, it stops transmission due to the presence of a higher

priority node contesting for transmission. In the end, the node with the highest priority message

wins the arbitration and continues the transmission.

Data Phase: The BRS (Bit-Rate Switch) bit is one of the add-ons to the CAN-FD frame format.

It is used to decide whether the bit-rate in the data phase is the same as that of the arbitration

phase (BRS = 0) or it switches to the increased bit rate (BRS = 1). Since the focus is on CAN-

FD, the BRS bit in the frames to be recessive (i.e., BRS = 1) is considered. At the increased

rate of data transmission, each bit transmission occurs with a duration denoted by td.

For example, if the data rate is chosen as 2 Mbps, td = 0.5µs. The 4-bit DLC (data-length code)

field stipulates the payload size (in bytes) of the data field. CAN-FD offers 16 separate payload

sizes: 0 through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.

The data field is followed by the Cyclic Redundancy Check (CRC) field, which has 17 bits for

payloads up to 16 bytes, and 21 bits otherwise. The CRC delimiter bit (recessive) is transmitted

next. After this, the bit rate is reversed to that of the arbitration phase.

Fig. 6: CAN-FD Frame format

13

2.3.2 Automotive Ethernet

Ethernet is the evolving technology in the automotive industry. Due to its greater bandwidth

and flexibility and the promise of sharing cost of ownership with other industrial segments.

Ethernet is perfect to address the high demands of new functions in infotainment and advanced

driver assistance systems or to decrease ECU flashing speed and updating cost. With the first

generation of vehicles using Ethernet as an added communication medium, it is also considered

as a very powerful backbone advancement in the future technology which is also capable of

carrying traffic originating in CAN (-FD) or other bus subsystems as shown in figure 7.

ETHERNET FRAME

An Ethernet frame is a piece of data along with the information that is required to transport and

deliver specific piece of data. In networking reference models, such as; OSI Seven Layers

model and TCP/IP, the Ethernet frame is defined in the Data link layer same as CAN, LIN and

FlexRay.

Fig. 7: The fast-growing demand for bandwidth

Fig. 8: Ethernet Frame format [13]

14

The basic frame consists of seven elements divided in three main areas as shown in figure 8:

Header

Preamble / SFD - This element in header is added by the layer 1 part of the protocol stack. It

enables the receiver to synchronize and know that a data frame is about to be sent.

 Preamble (PRE) - This is seven bytes long and it consists of a pattern of alternating

ones and zeros, and this informs the receiving stations that a frame is starting as well as

enabling synchronization.

 Start of Frame Delimiter (SFD) - This consists of one byte and contains an alternating

pattern of ones and zeros but ending in two ones.

Destination Address (DA) - This field consist of the address of station for which the data is

intended for. The left most bit shows whether the destination is an individual address or a group

address. An individual address is denoted by a zero, while a one is for a group address. The

next bit in the DA is to understand whether the address is globally administered or local. If the

address is globally administered then the bit is zero valued, and a one is when it’s locally

administered. There are then 46 remaining bits. These are used for the destination address itself.

Source Address (SA) - The source address comprises of six bytes and it’s used to recognize the

sending station. Being an individual address, the left most bit is always valued as a zero.

Length / Type - This field length consist of two bytes. It offers MAC information and specifies

the number of client data types that are contained in the data field of the frame. If the frame is

assembled using an optional format (IEEE 802.3 only) in that case it may also indicate the

frame ID type.

VLAN tag - It contains a protocol identifier (TPID) and control information (TCI). While the

TPID consist of original type field value, the TCI comprises of a Priority (PCP), a Drop Eligible

or Canonical Form Indicator (DEI or CFI) and an Identifier (VID). VID and PCP are mainly

used in the automotive industry. The Identifier separates the respective virtual network for the

different application areas. The Priority allows optimization of run-times through switches so

that important information is sent preferentially.

Payload

Data - This block consist of the payload data and it can be up to 1500 bytes long. Padding data

is added to increase its length up to the required minimum of 46 bytes, in case if the length of

the field is less than 46 bytes.

Trailer

Frame Check Sequence (FCS) - FCS is four bytes long. It consist of a 32 bit Cyclic Redundancy

Check which is generated over the Destination Address, Source Address, Length / Type and

Data fields.

15

Chapter 3
Vehicle Diagnostics

In this chapter, on-board and off-board diagnostics signal protocols, Parameter IDs and

understanding trouble codes (DTCs) are explained. Further, basics of software Integrated

Calibration and Application Tool (INCA) along with very commonly used terms in the

diagnostics are described.

3.1 Introduction

Diagnostic determines, verifies and classifies which is focused to get an overall picture in

finding the root cause of a problem in a vehicle. The detection, improvement and

communication strategies applied to irregular operation of systems is examined by Electrical

and electronic devices. Therefore, the purpose of Diagnostic is to identify this root cause of

irregularities in its operation so a restoration can be performed. Diagnostic requirements for

OEM and supplier are defined by a common database which contains the functional diagnostic

requirements, its implementation, development, specific data concerning to it and also its

features. Every industry have a straight connection with product engineering, manufacturing,

aftersales and suppliers. Applications of diagnostic can be classified for the following fields as

OEM [14]:

Development – In this process, correct functionality of the vehicle’s components must be

authenticated. Then subsystem of the diagnostic takes part at reading out ECU's internal

information and data of sensor and actuator's values.

Production – The assembly plant uses this system for transferring calibrated/authenticated data

and software updates to the non-volatile memory of the ECUs, including EOL programming

and tests.

Aftersales – In the operating vehicle, error detection is mainly done via diagnostics. Detected

errors are stored to a persistent fault memory, and trouble codes are read out at the service

station in order to make troubleshooting possible. The diagnostic systems include both on-

board diagnostics and off-board diagnostics discussed as follow.

3.2 On-Board diagnostics (OBD)

OBD is the computer system built into vehicles that monitors the performance of the engine

components. It consists of several ECUs that uses various sensors to collect data and evaluate

the performance of the vehicle as shown in figure 9. The OBD system will detect problems

with the vehicles performance or functions before the problems become noticeable to the

driver. These services can perform tests that can control actuators and read sensor values in the

vehicle. This diagnostics can also continuously monitor sensor values and the state of the

vehicle, whenever the fault occurs in the vehicle trouble codes are generated, called DTCs.

16

OBD-I mentions about the first generation of diagnostics which was developed during the

1980s, at that time, due to a lack of standardization, every vehicle manufacturer used different

connectors and communication protocols. OBD-II also written as OBD2, is the successor to

OBD-I and was developed in the early 1990s by the American organization Society of

Automotive Engineers (SAE) which ordered all compliant vehicles to use a standardized

connector and one of several standardized communication protocols [15]. European On-Board

Diagnostics (EOBD) is the European version of vehicle diagnostics and is technically

comparable to OBD II but was not implemented until 2001 for petrol vehicles and 2004 for

diesel vehicles [16].

The standard requires that vehicles should have a 16-pin OBD II port. Sensor data and

diagnostic information from the electronic control unit (ECU) of a vehicle is measured or

extracted from this port. SAE J1962 [17] defines the pinout of the connector as shown in Figure

10. There are two types of connector: Type A and Type B connector, the nominal supply

voltage at the contact 16 and the supported current supply in case of type A should be 12 V DC

and 4,0 A while in type B it should be 24 V DC and 2,0 A respectively.

CONTACT GENERAL ALLOCATION

1 Discretionary

2 Bus positive line SAE J1850

3 Discretionary

4 Chassis Ground

5 Signal Ground

6 CAN_H Line of ISO 15765-4

7
K Line of ISO 9141-2 and ISO

14230-4

8 Discretionary

9 Discretionary

10 Bus negative line of SAE J1850

11 Discretionary

12 Discretionary

13 Discretionary

14 CAN_L line of ISO 15765-4

15
L line of ISO 9141-2 and ISO

14230-4

16 Permanent positive voltage

Fig. 9: On- board vehicle diagnostics. Diagnostic tester/client connected to a vehicle to run

diagnostic services in an ECU

Type A

Type B

Fig. 10: Vehicle connector

and contacts allocation

17

3.2.1 OBD-II Signal Protocols

The development of OBD II also lead to in the development of OBD II scanning tools, like

OBD II readers, which can communicate to any vehicle via the 16-pin port. A scanning tool

normally requests information from the ECU by sending a message comprising of a

hexadecimal code connected with a specific parameter. These codes are defined by the SAE

J1979 standard (explained further in the document). The message would then get interpreted

according to one of five mainly used OBD II signaling protocols discussed as follows:

STANDARD DESCRIPTION

SAE J1850 PWM (pulse-width

modulation 41.6 kB/sec)

 Pin 2: Bus+

 Pin 10: Bus–

 High voltage is +5 V

 Message length is restricted to 12 bytes, including

CRC (cyclic redundancy check)

SAE J1850 VPW (variable

pulse-width-10.4/41.6 kB/sec)

 Pin 2: Bus+

 Bus idles low

 High voltage is +7 V

 Decision point is +3.5 V

 Message length is restricted to 12 bytes, including

CRC

ISO 9141-2 (Similar to

Recommended std. RS-232)

 Pin 7: K-line

 Pin 15: L-line (optional)

 UART (universal asynchronous receiver-

transmitter) signaling

 K-line idles high, with a 510 ohm resistor to Vbatt

 The active/dominant state is driven low with an

open-collector driver.

 Message length is Max 260Bytes. Data field MAX

255.

ISO 14230 KWP2000

(Keyword Protocol 2000)

 Pin 7: K-line

 Pin 15: L-line (optional)

 Physical layer identical to ISO 9141-2

 Data rate 1.2 to 10.4 kBaud

 Message may contain up to 255 bytes in the data

field

ISO 15765 CAN (250 kBit/s or

500 kBit/s)

 Pin 6: CAN High

 Pin 14: CAN Low

18

3.2.2 Parameter Identification Numbers (PIDs)

OBD II uses two types of codes to request ECU data, these are Diagnostic Trouble Codes

(DTCs) and Parameter Identifiers (PIDs). DTCs (for more details refer to section 3.2.3) are

used to diagnose malfunctions in various subsystems of the vehicle and PIDs (hexadecimal

code) are used to measure real time parameters. Vehicle manufactures have power to define

their own PIDs by this means making the on-board system more sophisticated.

These codes are defined by the SAE J1979 standard [Table 2 below].

The message is interpreted according to one of five OBD II signaling protocols. The ECU sends

a hexadecimal code in response. Depending on the specific parameter being measured, the real

measurement can be extracted by simply converting the returned hexadecimal value to decimal

or by carrying out a calculation using a standard formula as defined in [18] [19] for that specific

parameter.

For most modes (explained above) there are several PIDs defined that specifies the request in

more detail. For example mode 01, PID 0D requests the current vehicle speed and mode 09

PID 02 requests the Vehicle Identification Number (VIN). Some modes do not require a PID,

for example, mode 03 requests the stored trouble codes (DTCs) and mode 04 clears it from

memory. Every PID has a defined response that is expected from the request. The responses

are defined in SAE J1979 [18] [19] and describes in detail what the response should be, how

many bytes the response contains and how the data is encoded in those bytes.

DIAGNOSTIC SERVICE

MODE OF OPERATION
DESCRIPTION

$01 Request Current Powertrain Diagnostic Data

$02 Request Powertrain Freeze Frame Data

$03 Request Emission-Related Diagnostic Trouble Codes

$04 Clear/Reset Emission-Related Diagnostic Information

$05 Request Oxygen Sensor Monitoring Test Results

$06
Request On-Board Monitoring Test Results for Specific

Monitored Systems

$07

Request Emission-Related Diagnostic Trouble Codes

Detected During

Current or Last Completed Driving Cycle

$08 Request Control of On-Board System, Test or Component

$09 Request Vehicle Information

$0A
Request Emission-Related Diagnostic Trouble Codes

with Permanent Status

Table 2: Purpose of each mode of operation. The dollar sign “$” in front of the numerical value

highlights that this is an identifier. It’s important to know that the numerical values of the

identifiers are in hexadecimal format.

http://x-engineer.org/undergraduate-engineering/mathematics/arithmetics/numbers-representation-systems-decimal-binary-octal-and-hexadecimal/

19

3.2.3 Diagnostic Trouble Codes (DTCs)

DTC stands for Diagnostic Trouble Code. It is used to identify faults in nodes. This is the

foundation of Diagnostics. When fault is occurred in the vehicle, connected ECU captures it

and stores it in memory as fault code. This is specific number for type of fault is called

Diagnostic Trouble Code. This information can be retrieved either by tools at service station

(e.g. OBD2 Scantool) or by in vehicle methodologies.

 DTCs STRUCTURE

DTCs have 4 bytes, 3 bytes to identify them and 1 byte to denote the current status of the DTC

as shown in figure 11 below.

Byte - 1 and Byte - 2: To Identify the failed component - called as "ROOT DTC"

First two bits help identify the major system:

00 = P - Code for Powertrain

01 = C - Code for Chassis

10 = B - Code for Body

11 = U - Code for Network

Byte - 3: Failure Type Byte ("FTB") – To identify failure mode of the ECU.

There are lot of FTBs. ISO-15031-6 has a list. Common Codes are 11 for short circuit to

ground, 13 for open circuit.

Fig. 11: DTCs

Structure

20

Byte - 4: Status Information - Each DTC will

have Status byte that provides the status

information of DTC. Each bit in this bytes has

a meaning and provides different information.

This byte is widely used extract error

information while performing the various

testing scenarios at Porsche Engineering using

DiagRA software figure 12.

There are 8 different states explained as follow:

Bit0: This Bit is “testFailed”. This bit gives the

information about the fault (Error) is still active

(injected) or not. If Fault is still Active/injected,

then the value is 1 otherwise the value is 0.

Bit1: This Bit is “testFailedThisOperation

Cycle”. This bit specifies whether the fault has

occurred anytime during the current operation

cycle. If Fault has occurred in the present

operation cycle, then the value is 1 otherwise

the value is 0.

Bit2: This Bit is “pendingDTC”. This bit informs whether the fault has occurred anytime during

the current operation cycle. The only difference between “Bit1” and “Bit2” is that Bit1 is

cleared at the end of current operation cycle (it does not bother whether the fault is still active

or not) and “pendingDTC” is cleared only when in the succeeding operation cycle, monitor

routine is run and the end result shows fault is absent (pass). So if Fault is still present in the

current operation cycle, then the value is 1 otherwise if the Fault was active in previous

operation cycle and is inactive in the present operation cycle, then the value is 0.

Bit3: This Bit is “confirmedDTC”. This bit informs that fault is constantly active for specific

monitor routines and is matured enough in the existing operation cycle so that it can be said

confirmed. If fault is active and matured, then the value is 1 otherwise it is 0.

Bit4: This Bit is “testNotCompletedSinceLastClear”. This bit notifies that monitor routine is

not to be run in the existing operation cycle (once after Clearing the DTC is done). The reason

being because particular pin is inactive in the operation cycle (e.g. parked or hibernate vehicle

mode). If the monitor routine is not finished this operation cycle, then the value is 1 otherwise

the value is 0.

Bit5: This Bit is “testFailedSinceLastClear”. This bit notifies, monitor routine has reported that

test has failed (at least once Bit0 is set) in any operation cycle at least once after clearing the

DTC action is achieved. If the fault has happened after clear DTC is performed, then the value

is 1 otherwise the value is 0.

Bit6: This Bit is “testNotCompletedThisOperationCycle”. This bit notifies that the monitor

routine is still not running during this current operation cycle. This can be due to, the pin is not

active for this operation cycle or when the request is sent from the tester, the monitor routine

Fig. 12: Byte 4 (red box)

DiagRA Software

21

is not run. If the monitor routine is not run this operation cycle, then the value is 1 otherwise it

is 0.

Bit7: This Bit is “warningIndicatorRequested”. This bit is used to draw the attention of the user

or driver when the fault occurs. If fault occurs and any monitor is required for that exact fault,

then the value is 1 otherwise the value is 0.

 DTC CLASSES

Class A DTCs: A class A code is a DTC that will result in the immediate illumination of the

Malfunction Indicator Light. This type of code sets as a response for gross emission failure.

For e.g., the misfire monitor can store a DTC and start flashing the MIL in response to its first

recognition of a type A misfire. (A type A misfire is categorized as a severe misfire that could

result in the overheating of the three-way catalytic converter, resulting in its damage)

Class B DTCs: Most DTCs in the engine control system are class B codes. A class B code

states to a fault that does affect the vehicle’s emissions. When a fault related to an emissions

are detected for the first time, a DTC for that fault is stored as a pending code. The Powertrain

Control Module (PCM) does not light up the MIL at this time. During the next trip or drive

cycle, the pending fault code will be erased only when the monitoring sequence that first

identified the fault is repeated and the same fault does not repeat. If the fault does recur on the

second trip or drive cycle, the pending code is then stored in memory as a confirmed code, also

commonly denoted to as a mature code. It is at this point that the freeze frame data is stored

and the MIL is illuminated by Powertrain Control Module (PCM).

Class C DTCs: A class C code is a DTC that defines a fault that does not adversely affect the

vehicle’s emissions. Depending upon the vehicle, it may result in illumination of the MIL or

“Service Engine Soon” light instead.

Class D DTCs: A class D code is a DTC that denotes to a fault that does not adversely affect

the vehicle’s emissions and nor does it illuminate the MIL. These codes are the least important

of the code types.

22

3.3 Off-Board diagnostics

Off-board diagnostics defines a systems outside the vehicle that can use the diagnostic services

to read out data or start the execution of an on-board diagnostic test implemented as a part of

an ECU. The Off-board diagnostics (UDS, KWP 2000, etc.) is typically some tool used on a

computer in a repair shop or an end-of-line tester (tool that checks new-built vehicles at the

end of the production line).

Off-board diagnostics can also be done on a server that is remotely connected to the vehicle,

this is often called remote diagnostics and gives other possibilities to gather data and find faults.

Remote diagnostics uses a diagnostic client that is employed in an ECU inside the vehicle and

then this ECU is connected to an off-board server system which perform the diagnostic tasks,

shown in Figure 13.

3.3.1 Unified Diagnostics Service (UDS)

Off-board vehicle diagnostics is used for the diagnostics of every other vehicle ECU function

other than emission. There are several protocol standards defined for off-board diagnostics,

however, Unified Diagnostics Services (UDS) [20] is the most popular diagnostic protocol.

UDS (ISO 14229-1) is an International Standard that expands the individual properties which

are different from data link layer requirements of an automotive diagnostic service in a road

vehicle. It is based on the idea of Keyword Protocol (KWP2000) to fulfill common

requirements for diagnostic systems on CAN buses. The UDS Protocol was created by merging

the ISO Standards 14230-3 (KWP 2000) and 15765-3 (Diagnostics on CAN). This carried out

to greatly decrease the costs which to date have arisen for the development of diagnostic

communication. This standard provides a unified set of diagnostic services for ECUs.

There are five types of Diagnostics functions described in the specification as explained in table

3 below.

Fig. 13: Remote Vehicle diagnostics. Off-board server connected

to a diagnostic tester/client in an ECU in the vehicle.

23

Basically it covers the implementation details of ISO 14229 services over CAN figure 14. The

standard is based on Open Systems Interconnection (OSI). The services used by a diagnostic

tester (client) and an ECU (server) are distinguished as: Unified diagnostic services (layer 7)

and Communication services (layers 1 to 6).

DIAGNOSTICS

FUNCTIONS
EXAMPLES

Communication Management
Session Control, Device Reset, Security Access,

Communication Control

Data
Read Identifiers or Memory Write Identifiers or

Memory

Stored Data
Read Diagnostics Information Clear Diagnostics

Information

I/O Control Control Input or Output

Reprogramming Download and Upload of Data

Table 3: UDS Diagnostics Functions

Fig. 14: Implementation of UDS protocol over CAN

24

3.3.2 UDS Request/Response

The main intension of UDS protocol is to communicate with all electronic data units that are

positioned and interconnected in the vehicle, it also provide maintenance to check errors,

actualizing the firmware, etc. In a diagnostic session, the network consist of tester (Client) and

the ECU being tested (Server). A diagnostic service request is sent from the client to the server.

The client starts with a service request and always ends with positive, negative or no response

from the ECU (Figure 15). The transport protocol of UDS consists of ISO-TP [21]. ISOTP is

an International Standard for transmitting data over the CAN bus which allows maximum data

length up to 4095 bytes in a single data frame.

The three types of frames in UDS protocol.

1. Request Frame

2. Positive Response Frame

3. Negative Response Frame

Service ID – It is basically 1 byte ID belongs to the service well-defined in 14229-1. Server

see this Identifier and perform that particular task related to this service.

Fig. 15: UDS message format

Request Data
Service ID

SID

SID + 0x40

Error ID

0x7F

Response Data

Service ID

SID

Response

Code

Request

10 01 FF

FF

Positive response

50 05 00 FF 00 03

Negative response

7F 10 12

Byte 1 Byte 2 Byte 3 … Byte n

Payload

25

3.4 Diagnostic Management Software

An OBD II Powertrain control module (PCM) includes diagnostic management software to

organize the complex testing procedures. The terms used for this diagnostic management

software differ by manufacturer. In Porsche Engineering the most commonly used diagnostic

software is INCA and DiagRA (which is used in this thesis work and explained in Section 5.1).

3.4.1 Integrated Calibration and Application Tool (INCA)

INCA is a measuring, calibration, and diagnostic system that provides wide-range of measuring

support. INCA supports in all essential tasks during control unit calibration, evaluates the

measured data, and documents the calibration results [22].

INCA can be used to read measured data from the control unit and the engine in parallel. This

program helps to determine measured engine data such as lambda, different temperatures and

voltage values, etc. INCA, is not just a tool that will adapt to a variety of different control units,

but also a system that will optimize a wide range of different vehicle components.

It is an "open system". With consistent implementation of the ASAM-MCD standard and

support for data exchange formats that are established in the environment allow this program

to be used for any manufacturer's ECU interfaces and to be integrated in existing data

processing infrastructures.

Fig. 16: INCA System Overview

26

INCA consists of a measurement and calibration core system which can be enhanced by several

add-ons and custom-made extensions (e.g. INCA-MIP, INCA-QM-BASIC, INCA-

FLEXRAY) that can be integrated in INCA as shown in figure 16. In addition to that, INCA

proposes open interfaces which allow for the adaptation of its core capabilities as well as the

remote control of INCA by other applications.

INCA Measurement and ECU Calibration

It enables the adjustment of function parameters, maps, and tables either offline or during ECU

runtime. This tool manages the ECU’s volatile and non-volatile data memory and resolves

parameter dependencies. Using powerful editors present scalars, curves, or maps as tables or

graphs in physical or hexadecimal format. Calibration scenarios consists of multiple parameter

values of specific functions and ease the comparison of different settings.

For offline management of calibration data, it generates sophisticated functions for listing,

comparing and merging datasets. In addition, INCA supports handling of meta-data describing

the history and maturity of a parameter or function calibration with its Basic Quality and

Maturity Tracking add-on.

In parallel to calibration, INCA provides for the acquisition of data from the ECU and vehicle

buses such as CAN, LIN, Ethernet, and FlexRay as shown in figure 17. In addition, INCA

Fig. 17: INCA Interface for Measurement and ECU Calibration

27

measures various parameters from sensors and the vehicle environment. Quantities extracted

from measurements and calibration variables can be calculated and displayed online. Using

sophisticated trigger conditions data recording with several independent recorders may be

started and stopped. Parallel recording of data associated with different trigger conditions is

also possible. Data records comprises of the measured and calculated signals, calibration

parameters, trigger options as well as user comments.

INCA Diagnostics

ODX-LINK tool adds ECU diagnostics capabilities to the measurement and calibration

functionality of the INCA basic product. As the calibration and diagnostics related signals are

acquired in parallel, therefore it can be used for triggering and calculation of derived signals in

the same manner. All data is recorded in single measurement file and displayed in the same

views. A single ECU and bus interface module can provide connections for both ECU

diagnostics and calibration as shown in figure 18 below.

ODX-LINK integrates Scantool functions based on diagnostic services required by OBD

emission regulations. Based on the services explained in ISO 15031-5 and SAE J1979, the easy

to use OBD Scantool visualizes fault memory entries, status information of monitoring

functions, vehicle information, in-use monitor performance ratios, and environmental data

known as freeze frames.

Beyond OBD, ODX-LINK facilitates full diagnostics of ECUs compliant to the ODX standard

(Open diagnostics data exchange). In addition, INCA can match a service tester and execute

troubleshooting functions. Using this technique, service diagnostics can be validated long

before service tester hardware is available. Using ODX-FLASH tool in INCA, a complete

solution for validating ODX-based vehicle diagnostics and ECU reprogramming can be

performed.

Fig. 18: INCA Interface with ODX-LINK

28

3.4.2 Important terms in Diagnostics

OBD II standards require that the engine management system should be able to detect faults,

turn the MIL on or off, set DTCs in memory, and run drive cycles and trips for each monitored

circuit according to the particular sets of operating conditions. Few of the important diagnostics

concepts are explained further [23].

FREEZE FRAME DATA

Apart from storing detected DTCs, the diagnostic management software keeps a full record of

all the relevant engine parameters for a given circuit.

If a fault is detected and logged, that information is stored as a snapshot. This data, known as

freeze frame data, is used by the diagnostic management software for comparison and

identification of comparable operating conditions when they recur. This data is used to provide

further assistance in determining what might be a problem in the system. Also, this data can be

used to help in duplicating the symptom during a road test. Freeze frame data can be retrieved

with a Scantool through the data stream and typically includes the following:

 The DTC involved

 Engine RPM

 Engine load

 Fuel trim (short- and long-term)

 Engine coolant temperature

 MAP and/or MAF values

 Throttle position

 Operating mode (open or closed loop)

 Vehicle speed

On the basic system, freeze frame data store information only of the DTC that occurred first,

unless a later DTC is of higher priority, such as a severe misfire or fuel system DTC. In this

case, the diagnostic management software interchanges the stored data from the lower priority

DTC with the freeze frame data related to the misfire or fuel system DTC.

According to the previous tests performed the freeze frame data which is recorded by the PCM

starts recording after five seconds after it records the DTC in memory. As the driving conditions

are measured during freeze frame, recording are most often the same as they were when the

DTC was recorded. There is a small possibility for change during this five-second period, if

the driver suddenly hit the brakes or hit the throttle to the floor.

29

WARNING LIGHTS (MIL AND EPC)

 Malfunction Indicator Light (MIL):

The MIL is also known as the Check Engine Light. The main purpose of

this warning light is to indicate a detected problem and alert the driver

about the issue with the vehicle.

The OBD II system turn on MIL when there is a problem with the vehicle

engine, transmission or emission control system. There is always a

reason if light turns so it’s always recommended not to ignore it and to

investigate the cause. But it is totally normal for the light to illuminate for a few seconds after

starting the engine and it should go out when the engine is running.

The Malfunction Indicator Light indicates three different types of problems:

1. Occasional flashes indicate temporary engine malfunctions. In this case, it is good to be

aware of the probable forthcoming issues which can later on turn to more serious ones.

2. The most common case is when the indicator light stays on constantly. It indicates more

serious problem that requires action to be taken as soon as possible. Yet, sometimes the

issues aren’t that serious for example it can affect the emissions of the vehicle in a long

run.

3. The most serious type of signaling is when the MIL flashes all the time. It is a sign that the

engine is misfiring. This issue is very important and should stop the engine immediately

to prevent serious damage. For instance, it can lead to overheating of the catalytic converter

and even can cause fire.

OBD II scan tool is used to detect issue with the vehicle with the help of accompanied software

through which it reads the Diagnostic Trouble Code(s) from the system. Every time the OBD

system illuminate the MIL, it will also store a Diagnostic Trouble Code (DTC) in the electronic

control unit. The OBD II system can turn the MIL off automatically if the conditions for the

problem stop to exist. After checking a system or component for three consecutive times

without spotting any problem, the light can be turned off, otherwise, usually it remains on.

With diagnostic software, the MIL reset is also possible. It is important to clear the MIL after

fixing the problem. Because, for example, the vehicle will fail emissions testing if the MIL

light is ON when tested.

 Electronic Power Control Light (EPC)

The EPC warning light is found in the instrument cluster and found on all

Volkswagen, Audi, Seat and Skoda vehicles fitted with a drive-by-wire

system. EPC stands for Electronic Power Control. This EPC light when

illuminated displays the letters EPC to primarily warns the driver that

there is problems in the engine's torque system (acceleration system).

If this light turn on, the vehicle’s throttle valve (butterfly) may be limited in order to protect

the engine from damage. It avoids the engine rpm from revving above 2000rpm. This is known

as limp mode and the ECU allows sufficient power to drive the vehicle to a service center for

repairs. In order to remove this problem, the vehicle’s ECU should be scanned with an

automotive diagnostic tool, in order to extract the DTC's related to the torque problem.

30

Mostly common problems cause this light to turn on is: the vehicle's knock sensors, its throttle

system, its cruise control, its mass air flow system, its engine speed verification system or any

of the other associated systems that cooperate in the drive-by-wire scheme. Few of them are

explained as follow:

1. The Engine Speed Sensor is known to cause the EPC light to turn on. The engine speed

sensor is a proximity magnetic transducer counting the rpm of the flywheel/crankshaft and

sends a steady stream of pulses to the ECU. So when this stream of data is disturbed for

whatsoever reason for only a fraction of a second, the ECU detects this and turns on the

EPC light and cuts power to the engine. It does this to save the engine from damage. The

following DTC error code, 17745 /P1337, 17746 / P1338, 17747 / P1339 and 17748 /

P1340 are the troubles codes [24] which tells that the engine speed sensor is either loose

or faulty.

2. The Accelerator Pedal is often also the main cause of EPC problems. The sign is that the

engine idles a lot faster than it ought to. To verify this, physical pull the accelerator pedal

away from the floor board while the vehicle is idling. If it reduces the engine's revs back

to normal, then it is time to replace it, because the potentiometers that's built into the

accelerator pedal, have gone faulty. Accelerator pedal problems are many and the

following DTC, 16504/P0120, 16505/P0121, 16506/P0122, 16507/P0123, 18038/P1630,

18039/P1631, 18040/P1632, 18041/P1633, 18042/P1634, are linked to accelerator pedal

errors.

3. Mass air flow sensor is another engine component that can cause the EPC light to turn on.

Cleaning the mass air flow sensor with compressed air does often solve the problem but if

the issue continues, then it’s time to replace mass air flow sensor. But before changing it,

check to see if any of the rubber hoses in its surrounding area isn't perished. A leak in Air

Intake System will permits unmonitored air to enter the intake which will throw a P2279 /

15093 error or a P0068/ 15101 error.

4. The Throttle body is by far the most common cause of an EPC problem though in many

cases it is not the throttle body that's at fault but rather that the needs to be recalibrated

(adaptation). The scan codes like P2135 / P2136 / P2137 / P2138 / P2139 and P2140, will

give a good idea if the throttle body needs replacement. But in many cases it turns out to

be the problem with wiring harness. The plugs that connects the throttle drive motor and

the throttle position sensors is fairly troublesome and should be checked before throttle is

replace.

5. The Brake light switch can also cause the EPC light to come on because the torque control

circuit uses the brake light signal as an ECU input signal when the vehicle decelerates.

6. The Injectors and the Ignition Coils can also cause the EPC light to turn on. In case of

spark plugs an incorrect gap can cause it while in injectors, driving with very less petrol in

the tank can also cause the EPC light to turn on because the high pressure fuel pump may

lose pressure which then informs the ECU to constrain the torque circuit and switch on the

EPC light and make the vehicle go into limp mode.

31

OBD DRIVING CYCLE AND TRIP

 OBD Driving cycles

Warm-Up Cycle: OBD II standards define a warm-up cycle as a period of vehicle operation,

after the engine is started in which coolant temperature rises by at least 4.4°C and reaches at

least 71.1°C. Most OBD II DTCs are removed automatically after 40 warm-up cycles following

the PCM turning off the MIL if the failure is not detected again.

Drive Cycle: A drive cycle is a series of operating conditions that allows the PCM to test all of

the OBD II emissions-related monitors. When all of the driving conditions (known as enable

criteria) have been met and all of the monitors have been run, the system is said to be

inspection/ maintenance (I/M) equipped.

A drive cycle’s enable criteria may be run in any order, but when the Powertrain control module

sees all of the enable criteria performed that apply to a specific monitor, it will check off that

monitor as being “complete.” A scan tool can be used to regulate the status of each monitors,

by observing which monitors have run successfully and which have not yet run and are still

needed to complete the full drive cycle.

If the scan tool shows “N/A” for a monitor, that monitor is not applicable to that particular

vehicle. If the Scantool indicates that the monitor has completed, this does not shows whether

the monitor has passed or failed, only that the monitor’s tests have been run. If the monitor has

run and passed, there should be no stored DTCs in memory for that monitor; on the other hand,

if the monitor has run and failed, there have to be a DTC stored in memory for that monitor.

 Trip

A trip is a diagnostic test that is designed to allow the PCM to determine a particular fault or

DTC. It is generally run when a drive cycle has caused in the PCM setting a pending code in

memory. A trip contains of a key cycle that includes ignition on, engine run, specific enable

criteria met that let the PCM to run a diagnostic test, and ignition off long enough for the PCM

to power down as shown in figure 19.

Fig. 19: OBD II Trip

32

A trip is used by the PCM to approve a pending code. If the fault is absent, then PCM will erase

the pending code from its memory. If the fault is still present, the former pending code is turned

into a confirmed code and the MIL is turned on. A trip can also be used by the PCM to confirm

a repair after a DTC has been cleared from the PCM’s memory with a scan tool or diagnostic

software.

As every DTC and its related symptoms are unique, the enable criteria for the various DTCs

are also unique to each DTC that the PCM may need to evaluate. Information is readily

available that allows us to look up the specific enable criteria for any DTC.

33

Chapter 4
Hardware-in-the-Loop (HIL)

4.1 Introduction

Hardware-in-the-Loop simulation is one of the process used in the product development cycle

in which one or more real components interact with components that are simulated in real time

(dynamic models). The part of the system that is not simulated comprises of real devices,

machines, or mechanical test benches. Nowadays, this term is mainly mentions to a real system

which consists of one or more ECUs, controllers, or intelligent mechatronic modules for which

a virtual environment is simulated electrically and dynamically. The simulated subsystem has

to perform the following actions within one simulation step [25]:

 Read in the measurement signals (actuator control by the ECU)

 Calculate and perform numeric integration (simulate the entire dynamic model of a real

system)

 Output the results (sensor simulation for the ECU).

The outcome is a closed loop between the real controller and the simulated plant. Failure to

meet real-time conditions can result in unstable simulation and even damage of the real

technical device. Figure 20 shows a signal flow that illustrates this structure.

Fig. 20: Signal flows in a real system and in HIL [25]

simulation.

34

4.2 V-cycle development process

Figure 21 illustrates the V-Cycle that defines a common control system development process.

 The process begins by defining a set of functional requirements for a system from which

a simulation model of the control system has to be developed.

 The step following system specification is function specification, which can be

supported by Model-In-the Loop simulation (MIL). Model-in-the loop simulation takes

place on a PC with simulation models of both the specified functions as well as the

vehicle. This step reports development of the functions as software models in

graphically oriented programmer systems such as MATLAB/ Simulink.

 Following the development and testing of a simulation model, a Rapid Prototype phase

comprises direct testing and optimization of the software models of the functions, with

the appropriate software and hardware tools: on computer in the vehicle or on a test

bench. MIL simulation and rapid prototyping assists in finding and eliminating any

specification errors in an early phase.

 Next phase Software-In-Loop simulation (SIL). The software model used previously in

model-in-the-loop simulation is replaced here by the later series code, and is

incorporated into the simulation. This phase is typically performed by a supplier with

specialist knowledge of a particular system.

 Following delivery of the ECU and software, HIL systems are used to carry out various

forms of functional testing generally involves integration into the simulation loop of a

number of real parts (actuators and sensors) e.g. a throttle-valve actuator.

 Physical test applications use transducer-based measurements (e.g. of temperature,

pressure, stress / strain, sound, acceleration, etc.) to test the physical properties of the

respective system components. Applications include the NVH test (noise, vibration,

Fig. 21: V-Model of development process

35

harshness), which includes sound and vibration measurements from microphones and

accelerometers.

 The final phase of the V-cycle is the use of vehicle testing for final verification of the

software, hardware and its calibration. In this phase the vehicle is imitated on engine

test benches – with transmission, driver, and driving resistance – in order to be able to

“drive” e.g. WLTP cycle (world harmonized light-duty vehicles test cycle).

4.3 Porsche Engineering HIL Setup

The description of the HIL setup as shown in figure 22 is as follows [26]:

User Operating Software: Software which is used for the interactive interaction with the user.

It is used to perform control and monitor tests, e.g. dSpace ControlDesk.

ECU Diagnostics Software: This software is used to read the error conditions detected by the

ECUs connected to the HIL System. This software can also be used for the calibration id the

ECU instead of diagnostics.

Diagnostic Device: A device which is used to provide access to the ECUs, it’s connected to

the host PC for diagnostics or flash programming purposes.

HIL Simulator: Simulator substitutes the real environment of one or more ECUs by simulating

the environment and its interaction with the ECUs in real-time in a closed loop.

Host PC
dSpace ControlDesk –

User operating software.

DiagRA/INCA/EXAM –

ECU diagnostic software.

Diagnostic

Device
ECUs

Real Loads

Throttle Body,

Fuel Injectors, etc.

ECU/

Load

Connecto

I/O

Boards

Signal

Conditioning

FIU Loads

Processor Board
Plant model and I/O

Model

Internal

Wiring

HIL SIMULATOR

PC

Interface
Cable

Harness

Fig. 22: Schematic setup of HIL System

36

Host PC: It is used to set up plant models, to build and to download real-time applications for

the HIL Simulator. It consists of the operating and diagnostic software which is used to

configure, control and analyze tests on the HIL Simulator, dSpace ControlDesk is shown in

figure 23.

F
ig

.
2
3
:

d
S

p
ac

e
C

o
n
tr

o
l

D
es

k

37

Processor Board: It is a hardware component of the HIL Simulator for the real-time

calculation of plant models and I/O models. Processor boards has the interfaces to the I/O

boards in the HIL Simulator and to the host PC.

Plant Model: It is a model for real-time simulation of the system components (e.g. soft ECU,

communication buses) and the systems environment (e.g. road model for test of an ESP ECU)

that is not part the test as a real component. It enables closed loop operation of the ECU under

test. A soft ECU is a real time model of an ECU that is required for the tests but not part of the

tests as a real part. A restbus model is a reduced soft ECU variant, simulating bus

communication.

I/O Model: Part of the real-time model with which the plant model input/output accesses the

input/output physical channels of HIL system. The model for the restbus simulation is part of

the I/O model.

I/O Boards: It is the hardware component which provides the HIL simulator Input/output

channels. These channels are the interface to the input/output channels of the ECU to be tested.

Loads: ECU outputs are connected to the loads as a substitute for real loads that are part of the

environment controlled by the ECU. These substitute loads enforce realistic currents on ECU

outputs, which is a prerequisite for the proper operation of the connected ECUs, especially for

diagnostics functions.

Internal Wiring: All wiring that are required to interconnect the hardware components within

the HIL Simulator.

Signal Conditioning: It is also the hardware component which is used to match the signal level

of the I/O boards to the signal levels of the connected ECUs.

Fault Insertion Unit (FIU): Component which generate electric faults on the inputs/outputs

of the ECUs (actuators, sensors and bus channels). Typical error condition are, broken wire,

short circuit to the ground, short circuit tot the supply voltage, short circuit between two

terminals and loose contact.

ECU/Load Connector: One or more connection to the HIL system. The cable harness is

connected to them in order to connect the HIL system to the ECUs under test.

ECU (Electronic Control Unit): One or more ECUs to be tested with the HIL system.

Real Loads: These are the real components which are used if they are tested in conjunction

with the ECU.

Cable harness or external wiring: All wiring that is required to interconnect the HIL

simulator with the ECUs and real loads.

Power Supply: Electrical circuits and connections for power supply of the HIL system,

including connections to main supply it is not shown in the figure.

38

Practical Part

39

Chapter 5

Software Study

In this Chapter the software which are widely used in this work are discussed. DiagRA software

is used to extract the relevant sensor or actuator data from the ECU using CAN-FD data-

communication protocol. While to implement any driving cycle and generate it’s TestCase

Extended Automation Method (EXAM) is used.

5.1 DiagRA D – Diagnostic Software tool

5.1.1 Basics of the Software

DiagRA D is used worldwide by all major international automotive OEMs and 1st tier suppliers

as a powerful diagnostics tool throughout all development stages. The functionality can be

expanded by adding optional plugins.

The tool functions can be divided into three basic sections:

1. OEM specific workshop tester diagnostics – This function is a customer-specific part of the

program, which is adapted by the different vehicle manufacturers. DiagRA can be used for all

ECUs which are inside the vehicle.

2. Scan-Tool for OBDII/EOBD/HD-OBD/WWH-OBD diagnostics – The Scantool function is

employed in compliance with SAE J1979 (OBDII/EOBD), SAE J1939 (HD-OBD) and ISO

27145 (WWHOBD). After the automatic configuration the supported data of all OBD

significant ECUs is displayed. The SAE J1979 scan tool function supports all 10 services

(Service $01 – Service $0A) as well as all the sub-functions (PIDs) defined by the market’s

relevant legislatures. The SAE J1939 scan tool function supports all essential diagnostic

messages and parameter groups. WWH-OBD (World Wide Harmonized Onboard Diagnostics)

is also involved according to ISO 27145 as part of this functional group and is complete for the

vital diagnostic services including all DIDs (Data Identifier).

3. Advanced developer functions – The advanced developer functions are designed for

automotive development engineers. By loading an A2L file the tool is able to read out and

exhibit (depending on type of the fault memory manager): Display of Status-bits, detailed

display of fault-code memory, reading memory locations and adaptation memory maps.

Further in this document, the workshop tester diagnostics function and the scan tool function

will be discussed to make this study focused to the thesis work. And all the information in this

chapter is from DiagRA user Manual [27].

40

LAYOUT OF THE MAIN WINDOW

MENU BAR - At the top, menu bar is to be found and right to it two drop-down lists. Here,

the address word of the ECU is chosen, on which diagnostics has to be carried out, and the

corresponding diagnostic protocol.

TOOL BAR - Right below the menu bar there is tool bar which allows access to the most

important functions quickly via a single mouse-click.

STATUS BAR - At the bottom the status bar is situated. Here DiagRA D status information

and basic settings is shown. In the far left there is a counter that runs from 0-255 during live

communications to indicate each message exchanged between the PC and the ECU (This

includes messages that form part of the communication structure). The counter provide

feedback that the communication is running and serves as an indicator of the communication

speed.

Next to it there is a textual description of what DiagRA D is doing at that particular moment:

e.g. “Initializing Communication” or “Communication aborted”. To the right, the diagnostic

data set and the diagnostic interface which are currently in used is to be found. Any loaded

additional files, their names are shown in the status bars hint text.

WORKING AREA - The largest and most important area of the main window is the working

area. It is divided into a series of tabsheets. Depending on the mode of application of DiagRA

D at the current time that could be 10 or more. On the tab-sheets almost all functions that

DiagRA D provides can be found.

Fig. 24: Layout of the main window

MENU BAR

TOOL BAR

STATUS BAR

WORKING

AREA

41

DiagRA D currently distinguishes about 30 different variations of communication protocols.

The protocols differ in the physical communication layer (CAN, FlexRay, K-Line, Single-

Wire-CAN or J1850), the transport layer (e.g. CAN TP 1.6, CAN TP 2.0, ISO-CAN) and often

OEM specific variant of the topmost protocol layer (e.g. KWP 2000 5 Baud, KWP 2000 Fast

Init, UDS). At Porsche Engineering the mostly used protocols are UDS VAG (ISO CAN).

DaigRA D combines the possible options into a diagnostic protocol and makes them available

for selection in a list.

5.1.2 DaigRA D as a Diagnostic tool

This section will discuss about which workshop tester functions have been implemented in

DiagRA D. In the main window all of the tester-functions on the Standard, Extended and

Memory tab-sheets are to be found. These functions do not need a description file.

The classical workshop diagnostics is a manufacturer specific often even ECU specific

procedure and can have significant differences ranging from the implementation to the

operation. The specific peculiarities are handled in DiagRA D by selecting the proper

diagnostic data set and the corresponding diagnostic protocol. The parameterization, e.g. of

fault codes, measurement values and identification data are handled by external files which are

in turn organized into so called diagnostic data sets.

READ DTCs AND FREEZE FRAME DATA

Trouble codes are displayed on the Standard tab-sheet in the working area. This function is

located on the left under Fault Code Memory. DTCs can be read cyclically and once “Cyclical”

means that the DTCs will be read continuously, so once they have been read, they will be read

again immediately thereafter. This selection is based on the requirements.

Fig .25: (a) Fault code memory (b)

DTCStatusMask

(b)

(a)

42

If the ECU supports the reading of freeze-frame data, these will be shown at the same time.

This function can be toggled on and off by the Freeze Frames button. The Clear DTC button is

located next to the Read. For safety reasons, clearing the fault memory is only allowed after

the fault memory was read once. If ECU allows to clear single trouble codes, the option will

be provided with a dialog to make the selection.

DTC status mask is set to select the DTC types which is to be read. To set this mask, right-

click on the Read button and choose the option DTCStatusMask (Figure 25b). The following

window will appear from which the DTC types which are relevant is selected. The selection

will be carried out by clicking OK.

5.1.3 DaigRA D as a Scan tool

With DiagRA D reading of emission related information is done by using one of the OBD

protocols or by using SAE J1939/ISO 27145. The address-word, which is used to initiate

communication is 33 7DF 7E8 Scan-Tool. Using the SAE J1979 OBD II is used to measure

real time data of vehicle which is further used in validating HIL.

When running Scan-Tool diagnostics, communication takes place simultaneously between all

ECUs that support emission-related diagnostics. DiagRA D shows the measurement results of

multiple ECUs at the same time. The upper area of the Scan-Tool tab-sheet is laid out for this

purpose. The functionality of SAE J1979 is distributed on 10 functions, referred to as Mode 01

to Mode 0A (see also Section 3.2.2: Parameter identification numbers). Some of these functions

have sub-functions, which may not be supported by all ECUs.

The functionality of SAE J1939 and SAE1979 is logically divided to different areas, e.g.

Readiness, Freeze frames or Fault Codes. Switching between the different functionalities is

done by clicking on the proper button at the bottom of the window.

SAE J1979

Fig. 26: The tab-sheet Scan-Tool

Mode 1

43

DiagRA D check which ECUs respond and which modes and sub-functions they support.

Correspondingly, in the lower area of the J1979 tab, the buttons Mode 1 ... Mode A are laid out

consecutively. Please note that Mode 4 (= Clear DTCs) is only made available after reading

out the DTCs by calling either Mode 3, Mode 7 or Mode A. Also, each mode can be read (apart

from Mode 4) cyclical as well as shown is figure 26.

SELECTION OF IDS (SAE 1979)

In order to keep the number of reported PIDs manageable, DiagRA D allows to select the IDs

that should be displayed in Mode 1, 6 and 9.

1. Open the Select IDs for Mode X dialog (shown in figure 27) with Select button, where X

is the current mode.

2. Using the button Show all IDs, toggle between the desired selection and all IDs. If no IDs

are selected here, all IDs will be displayed.

Fig. 27: Selection of IDs (SAE 1979)

44

5.2 Extended Automation Method (EXAM)

EXAM (EXtented Automation Method) is a test management system software (in other words-

automation tool) used by Porsche AG (parent company) in their large HIL system to test

complete electronic vehicle functionality. This thesis conducted at The Porsche Engineering

Services also utilizes EXAM distributed by MicroNova AG, commissioned by the VW-

concern as test management system. WLTP cycle is implemented using TestCase generated by

EXAM automation tool. Detailed discussion is in next chapter.

EXAM is built on Java and couples a ’drag-and-drop’ graphical user interface (GUI) onto HiL

or SiL test systems. This test management system uses Python as programming language. The

test case descriptions are written in Rational DOORS (a requirement program built by IBM).

These requirements have to be synchronized with EXAM and specific test cases can then be

created in EXAM regarding these requirements [28]. Any EXAM test process management is

performed in a specific steps as shown in figure 28

The three most important views in EXAM are the Modeler explorer, the Testrunner perspective

and the Reportmanager perspective.

5.2.1 Modeler Perspective

In the modeler perspective, the tree structure shows how the system is built out of all the

available functions. This tree structure consists of packages with unique names. In these

Fig. 28: EXAM Test Process

45

packages classes are created with functions and parameters. These are the functions that can be

used during the creation of test cases as shown in figure 29. To be able to reuse functions of

the Testhaus and vice-versa, the whole tree structure of the Testhaus testing department is

included in the workspace of EXAM.

P
ac

k
ag

es

T
es

tC
as

e

T
es

tS
eq

u
en

ce
 D

ia
g
ra

m

F
ig

.
2
9
:

E
X

A
M

 m
o

d
el

er
 p

er
sp

ec
ti

v
e

46

Modeler perspective in general:

- Test case modeling and implementation

- User defined filters can be applied to the model browser

- Object compositions are automatically generated as far as possible

- Object properties, descriptions and relations as well as project properties are available

from views (tab) and generated python code for object is also accessible.

5.2.2 Testrunner Perspective

The second window is the testrunner perspective as shown in figure 30. To understand this

perspective, the definition of test suite is very important. TestSuite defines a self-contained test

topic and its content. It is organized by TestGroups (the order in which TestCases and

AdministrativeCases are executed). When test cases are coupled together with test suites, they

can be selected to run automatically in EXAM. Together with the test suites, the right

configuration of the test suite, where all the right classes are coupled onto the interfaces, are

loaded when executing a test suite.

F
ig

.
3
0

:
E

X
A

M
 T

es
tr

u
n
n

er
 p

er
sp

ec
ti

v
e

47

Testrunner perspective in general:

- Run TestSuites

- Open and save individual test runs in an execution file with python code path (XML)

- Monitor and control runs in the testrun monitor view and console

- Property to set alterative python code path for test run

- View test run duration and estimated time

- Record all test case relevant data and offline reply of test cases with relevant data for

additional analysis to save eg. HIL usage time

5.2.3 Reportmanager Perspective

F
ig

.
3
1
:

E
X

A
M

 R
ep

o
rt

m
an

ag
er

 p
er

sp
ec

ti
v
e

48

After the execution of the test suite, a report will be generated by EXAM where the failed and

successful test cases are listed as shown in figure 31. If the test cases are written correctly, the

reason in case of failure of the test case will be shown in the reports. The reports are sent to a

specific folder on the server where it is managed, analyzed and processed in the reportmanager

perspective of EXAM.

Reportmanager perspective in general:

- Report data can be saved in multiple report databases as well as simultaneously

managed

- Test results are structured into sub-tests to allow an efficient test analysis

- Some report elements can be edited in order to correct and comment on test results

- Report can be exported to XML and PDF files

- OpenSource BIRT framework handles PDF exports, featuring custom report templates.

49

Chapter 6

Worldwide Harmonized Light

Vehicles Test Procedure (WLTP)

WLTP cycle (world harmonized light-duty vehicles test procedure) is a worldwide, harmonized

standard used for estimation of the levels of pollutants, CO2 emissions and fuel consumption

of conventional, hybrid and electric vehicles. This new protocol was developed by the United

Nations Economic Commission for Europe (UNECE) aiming to replace the new European

driving cycle (NEDC) as the European vehicle homologation procedure. Its final class 3

version 5.3 was released in 2015 which is further used for the study as shown in figure 32 [29].

This test procedure is responsible for a very strict regulation regarding dynamometer tests and

road load (motion resistance), gear shifting, total vehicle weight (by including optional

equipment, load and passengers), fuel quality, ambient temperature, and tire selection and

pressure.

Three different WLTP cycles are applied, depending on vehicle class differentiated by

power/weight ratio PW in W/kg (rated engine power/curb weight): Class 1 – low power

vehicles with PW ≤ 22, Class 2 – vehicles with 22 < PW ≤ 34 and Class 3 – high-power vehicles

with PW > 34. In this study class 3 test cycle is used as the Porsche KOVOMO V6 and V8

engines PW is more than 150 W/kg.

Also, the WLTP is divided into 4 different sub-parts shown in figure 32, each one with a

different maximum speed:

Fig. 32: WLTP class 3 v5.3 driving

cycle

50

 Low, up to 56.5 km/h

 Medium, up to 76.6 km/h

 High, up to 97.4 km/h

 Extra-high, up to 131.3 km/h

These driving phases mimic urban, sub-urban, rural and highway situations respectively, with

an equal separation between urban and non-urban paths (52% and 48%). Table 4 quantifies

the main descriptive parameters of the driving cycle.

6.1 Implementation of WLTP cycle

Implementation of the WLTP driving cycle on the dSpace HIL to study about fuel consumption

and CO2 emissions, is done via two methods (manual and automation method) which are

discussed in following section.

6.1.2 Manual Implementation

Manual implementation of WLTP driving cycle is done by controlling the driver model through

HIL ControlDesk manually marked as red area in figure 33, by activating acceleration pedal,

brake pedal and gear shifter. This method is only useful to understand the behavior of the

vehicle performance as by using this method other tests cannot be performed in parallel

consisting WLTP cycle.

Table 4: Descriptive parameters of the WLTP driving cycle

51

F
ig

.
3
3
:

W
L

T
P

 c
y
cl

e
m

an
u
al

 i
m

p
le

m
en

ta
ti

o
n
 (

re
d

 a
re

a)

52

The steps involved controlling driver model manually and implementation of WLP cycle are

as follows:

6.1.2 Automation Method Implementation

Implementation using automation method is done by preparing the TestCase in EXAM

automation software which will automate all the commands which earlier has to be done

manually. The test cases and the functions necessary for it are programmed manually using

specific functions in EXAM starting from the requirements of DOORS.

Few important terms and definitions are discussed below to understand the EXAM automation

method and executing the TestCase and preparing SequenceDiagram:

1. Package: Packages are the collection of model elements of any type. They can be used

to divide the overall model into smaller, more manageable units. A package defines a

namespace i.e. names of the elements contained in the package must be unique. Each

model element can be referenced from the multiple package, however it belongs to only

one home package.

Activate Clamp 15 Ignition on

Click on Start/StopStarting of the vehicle

Putting vehicle of Drive

Enabling of Virtueller Fahrer (virtual

driver)

Enabling of Acceleration pedal, brake

pedal and gear shifter

Starting of WLTP driving cycle

Press D

Activate Enable

Activate Pedal Quelle Virt.

Select WLTC from drop

down

Start DiagRAStart the measurements of the sensors

Wait 30 minutesWait for finishing of the driving cycle

Stop DiagRAStop the measurements of the sensors

Disable of Virtueller Fahrer and Pedal

Quelle Virt.
Disable everything

Deactivate Clamp 15 Ignition off

53

2. TestCase: TestCase represents exactly one test flow in an abstract, formal and

structured form. Each TestCase has a unique ID with a distinct test flow. Each variant

of a common test flow is a separate TestCase. It can only be called by TestGroups

(TestSuite).

3. SystemConfiguration: It is required for execution tests on a test system (HIL). It defines

which implementation class will be used for each interface.

4. TestSuite: TestSuite defines a self-contained test topic and its content. It is organized

by TestGroups referencing TestCase.

5. Variable Mapping: It is a container for mapping class instances and represents the

interface to external platform variables (dspace hil). Variable mapping defines the

signal path of EXAM mapping attributes in order to access the corresponding platform

variable. As a result platform variables are accessible within EXAM using the get- and

set- functions.

6. Test Case Generator (TCG) Syntax: TCG Syntax enables a formal description of test

cases in DOORS, that can be synched to EXAM with the Synchronizer Plugin and then

automatically generate the Implementation of the test case with the TCG plugin. This

enables a fast and convenient workflow from specification to test execution.

7. Porsche Master Implementation (PMI): To simplify the programming work when

programming test cases in EXAM, Porsche created the Porsche Master Implementation

(PMI), representing ’functions’ that will run before every test suite starts. It is an

obligation to use this PMI whenever new testing systems are developed, especially

when those systems have to use ECU diagnostics. EXAM has to be configured in a way

that this PMI will run before every test suite will start.

8. SequenceDiagram: It is a Unified Modeling Language (ULM) diagram and it is the

most important diagrams in EXAM. They model a series of messages (operation calls)

between objects over a specific period.

To prepare SequenceDiagram various TCG commands and shortname functions are

used, which are prepared by the Porsche Engineering Services engineers in past. These

commands simplify and help engineers to prepare a TestCases quickly

EXAM gives the possibility to create functions in Python and drag-and-drop them into the right

order to create a specific test cases. After the execution of the TestCase, coupled into a

TestSuite, EXAM generates reports. These reports are then studied over and relevant decision

is made whether or not to run the failed test case again, manually or even automated and starts

to search for the causes of the failure of the test case. To implement the WLTP cycle, the driver

model of HIL is controlled via acceleration pedal, brake pedal and gear shifting. To automate

this process, steps are prepared in the SequenceDiagram using TCG functions (in blue box)

and TCG FlexRay writevalue paths as shown in figure 34.

54

Fig. 34: WLTP cycle sequence diagram

55

6.2 HIL Virtual Driver Behavior

The vehicle driver system is shown in Figure 35. The driver controls the vehicle using steering,

acceleration, and braking as an inputs. The vehicle responds, according to the information

driver provided in terms of path to be followed, orientation (i.e. yaw angle), lead time and

vehicle in front distance.

Vibrations and vehicle acoustic variations are feedback values used by the driver to assess the

current and future vehicle status, with respect to the intended response. In addition, the driver

receives information through the control devices. For e.g. in a low road friction condition,

driver will reduce the torque feedback on the steering wheel and activation of ABS is noticed

through vibrations in the brake pedal. Further, the vehicle will face external disturbances such

as aerodynamic forces, road irregularities, and road friction differences.

Consequently, the vehicle will not respond in the same way to the driver want it to be according

the inputs. This is due to the impact of external disturbances and the limited ability of the driver

to control the vehicle accurately means that the driver is constantly correcting his input to the

vehicle. The driver responds to the vehicle behavior to fulfill a certain task, which is closed-

loop behavior, in contrast to the situation where one is considering vehicle response to driver

input without driver feedback is open-loop behavior. In dSpace HIL system, close loop

behavior model is used.

Above is the overview of how the driver model behavior is simulated in the HIL System. As

shown in the figure 36, where the vehicle behavior is studied on the basis of the WLTP cycle.

The behavior of the driver is quite prominent, HIL virtual driver almost completely followed

the inputs of the cycle.

Fig. 35: Vehicle driver system [30]

56

F
ig

.
3
6

:
H

IL
 V

ir
tu

al
 d

ri
v

er
 b

eh
av

io
r

o
n
 W

L
T

P
 C

y
cl

e

57

Chapter 7

Calculations and Assumptions

In this chapter, the calculations and assumptions are discussed which are required to calculate

the fuel consumptions and CO2 emissions on WLTP cycle. The cycle is run on the dSpace

KoVoMo HIL system control desk via the EXAM TestCase. The sensors data are extracted

from DiagRA Software which are used for the calculations.

7.1 Fuel Consumption

The accurate calculation of following two parameters are very important to estimate fuel

efficiency and vehicle emissions.

1. The amount of air entering in the engine combustion chamber i.e. Mass Air Flow (MAF)

discussed in section 7.1.1

2. The amount of fuel entering in the engine combustion chamber i.e. Mass Fuel Flow (MFF)

discussed in section 7.1.2

In urban vehicular pollution monitoring tool, the speed density method is most adopted

technique to determine Mass Air Flow (MAF). In this work as well, this method has been

implemented to calculate Mass Air Flow (MAF) which will be used to further calculate Mass

Fuel Flow (MFF).

It is important to note that, to carry out perfect combustion, ECU control several components

which perform the task of defining the amount of air required. In addition, ECU calculate the

ideal air temperature and pressure, the current value of the vehicle and the actual air flow that

the engine needs at any given time.

7.1.1 Mass Air Flow (MAF)

Speed density method is used to measure mass air flow, it performs an estimation based on the

ideal gas law. To do this, it uses readings of intake manifold temperature and air pressure

sensors in the vehicle, in addition to using the volumetric efficiency of the engine.

This method can be used with the manifold absolute pressure sensor, as it measures the absolute

pressure. This way of predicting Mass air flow is done when MAF sensor is not available in

the vehicle (which is the case in this thesis)

Starting with the law of physics, we observe a series of relations between the temperature,

pressure, and volume of the gas, Equation (1) is the mathematical representation of this law

𝑃. 𝑉 = 𝑛. 𝑅. 𝑇 (1)

The terms of above Equation are explained as follows:

58

 P is the pressure in the combustion chamber and can be determined by means of the

MAP (Manifold Absolute Pressure) sensor in kPa

 V is the volume of the combustion chambers in the engine cylinders and can be

measured in units of volume as Liters (L) or cubic centimeters (cm3)

 R is the ideal gas constant. Its value is approximately 8.3145 J/mol.K

 T is the gas temperature. It can be acquired by the IAT (Intake Absolute Temperature)

sensor in K.

 n is the number of moles.

By rearranging the terms of equation (1) the amount of moles (n) of the given amount of air

flowing through the air intake before the combustion can be calculated.

Using number of moles, the mass of air (mair) can be calculated by multiplying it by the

molecular weight (molar mass, represented by Mair) of the air, as described in Equation (2).

𝑚𝑎𝑖𝑟 = 𝑛. 𝑀𝑎𝑖𝑟 (2)

Using the equation (1) and (2) air mass can be obtained in the form of equation (3)

𝑚𝑎𝑖𝑟 =
𝑃. 𝑉

𝑅. 𝑇
 . 𝑀𝑎𝑖𝑟 (3)

Equation (3) is only valid if the engine has a Volumetric Efficiency (VE) of 100%. VE is the

ratio between the air-fuel mixture volume that each cylinder admits and the nominal cylinder

capacity, The VE can be found using the following relation (4):

𝑉𝐸 =
𝑉𝑖𝑛𝑡𝑎𝑘𝑒

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
× 100% (4)

Where, Vintake represents the real volume of intake air supported by the cylinders and Vnominal

is the theoretical volume of the engine. According to the [31] the turbocharged V8 engine range

of VE varies from 80% to 92% so for the calculation of MAF on a real vehicle it’s estimated

using HIL MAF volumetric efficiency.

Thus, using Equation (3 and 4) coupled with the engine Revolutions per Minute (RPM), we

can finally obtain the mass flow through the intake at given amount of time. The RPM the

engine is working can be obtained via OBD-II or via CAN-FD using DiagRA.

During the vehicle operation, in a four-stroke engine, there are two steps of air intake, i.e. in a

complete cycle, air flows inside the engine two times. With that information, we can calculate

the number of times air enters the engine per second by dividing the RPM by 2×60.

Incorporating this into above equations gives the mass air flow (�̇�air), shown by (5).

�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄) =
𝑃. 𝑉

𝑅. 𝑇
 . 𝑀𝑎𝑖𝑟 . 𝑉𝐸.

𝑅𝑃𝑀

120
 (5)

The value obtained of turbocharged engine by this equation corresponds to an equivalent to

that obtained directly by the MAF sensor without EGR (Exhaust gas recirculation) as shown

in figure 37. As explained in [36] the overall results suggest that the unpredictability of the

generic speed-density method is in the order of 10% throughout most of the engine operating

59

range, but increasing to tens of percent where high-volume exhaust gas recirculation (EGR) is

used.

For validation of results (discussed in chapter 7), the MAF calculation is based on speed density

method due to the unavailability of the MAF sensor values from OBD II in Porsche Panamera

4. On the other hand, while calculating fuel consumption on the WLTP cycle, the MAF values

are used from CAN communication using DiagRA. Few of the assumptions are discussed as

followed:

 The assumption of ignoring EGR can affect the final results as all the Porsche vehicles

are equipped with EGR system. EGR is mainly active during partial engine loads and

at low and medium engine speed areas, where oxygen is in excess. In the high engine

load (torque), the EGR system is disabled, the cylinders being filled only with air, ready

for combustion [37]. According to [38] the research results indicate improvement of

fuel consumption improvement with cooled EGR under conditions where

stoichiometric operation cannot be maintained.

 Effect of Volumetric Efficiency: Volumetric efficiency in a combustion engine depends

on many factors like Fuel type, Air/Fuel ratio, fuel heat of vaporization, Intake manifold

temperature and pressure, Engine speed, Compression ratio, port design intake and

exhaust, etc. [34]. So, the assumption in calculating the MAF using a generic value can

affect the final results as the volumetric efficiency is not fixed and it varies according

to the above mentioned factors.

Fig. 37: Comparison of calculated mass air flow with mass air flow reported by the ECU [36]

60

7.1.2 Mass Fuel Flow (MFF)

Mass fuel flow �̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄) depends on actual air fuel ratio (A/F) and Mass air flow

�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄). Before going into detailed calculation, it is important to define the equivalence

Air-Fuel Ratio (λ) and understand how this relates to �̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄) and �̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄).

For a certain amount of fuel, there is a perfect amount of oxygen required for the combustion

to be ideal. This factor is called the Stoichiometric Air-Fuel Ratio (A/FStioc). For the perfect

combustion of petrol without any reactants, the proportion considered to be an ideal mix of fuel

and oxygen has A/FStioc of 14.7:1. That is, it takes 14.7 kilogram of air for every 1 kilogram of

fuel entering the combustion chamber. In alcohol vehicles, this ratio is 9:1, while in diesel

vehicles, it is 14.6:1.

The equivalence Air-Fuel Ratio (λ) can be mathematically described by Equation (6), being

only a division between the actual air/fuel ratio (A/F) and stoichiometric air/fuel ratio (A/Fstoic).

This value is controlled and monitored by the oxygen sensors attached before and after (for

few vehicle models) catalytic convertor.

𝜆 =
𝐴/𝐹

𝐴/𝐹𝑆𝑡𝑜𝑖𝑐
 (6)

To calculate A/F from a given λ, the measured λ is multiplied by the stoichiometric AFR

(A/Fstoic) for that fuel. The actual air/fuel ratio (A/F) is calculated as equation (7).

𝐴/𝐹 = 𝜆 × 𝐴/𝐹𝑆𝑡𝑜𝑖𝑐 =
�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄)

�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄)
 (7)

The OBD-II standard establishes codes to acquire the mass air flow directly, or, in case the

vehicle does not have an MAF sensor, it also provide with the access to other sensors that can

be used to obtain such a value (speed density method). However, it does not provide a method

to directly obtain the amount of fuel injected in the combustion chamber, which is ideal for this

study. Considering that the λ is a known value and mass air flow as calculated in section 7.1.1,

the mass of fuel can be found by reordering Equation (7) as presented in Equation (8).

�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄) =
�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄)

𝐴/𝐹
 (8)

The fuel volume flow rate (represented in units of volume over time) to find the relation

between the volume of fuel consumed. To get this ratio of the fuel mass flow rate and the

respective fuel density is calculated as Equation (9).

�̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄) =
�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄)

𝜌𝑓𝑢𝑒𝑙(𝑘𝑔 𝑙⁄)
 (9)

Petrol fuel is used for the study, and in Czech Republic its density is in the range 0.73 Kg/l -

0.78 Kg/l, so ρfuel = 0.75 Kg/l is assumed [32]

61

Now, using the equation (8) and multiplying it vehicle velocity obtained from sensor, fuel

consumption is calculated as in Equation (10)

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙 100 𝑘𝑚⁄) =
�̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄) . 100

𝑉𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑘𝑚 ℎ⁄)
 (10)

7.2 Emissions (CO2)

As CO2 is a greenhouse gas and plays important role in global warming, the scope of this study

will be limited to study of CO2 in the emissions. To estimate the amount of CO2 in this work,

complete combustion [33] is assumed without any pollutants e.g. UHC, CO, PM, NOx, etc. It

is important to note that, complete oxidation of simple hydrocarbon fuels (CnHm) forms carbon

dioxide (CO2) from all of the carbon and water (H2O) from the hydrogen.

The mass of emitted CO2 is closely linked to the volume of fuel burned stated in equation (8).

This relationship is expressed in the Equation (10), where the fuel volume flow rate is

multiplied by the mass of CO2 generated by the combustion of one liter of fuel. The outcome

of this equation is the estimate of the CO2 mass flow rate released per second.

�̇�𝐶𝑂2
 (𝑔/ℎ) = �̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄) . 𝐶𝑂2 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒 (10)

Where, CO2 per litre is 2392 g/l, and is calculated as followed:

1 liter of petrol weighs 750 grams (ρfuel = 0.75 Kg/l). Petrol contains for 87% of carbon or 652

grams of carbon per liter of petrol. In order to convert this carbon to CO2 1740 grams of oxygen

is needed. The sum is then 652 + 1740 = 2392 grams of CO2/liter of petrol.

Therefore,

�̇�𝐶𝑂2
 (𝑔/𝑘𝑚) =

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙 100𝑘𝑚⁄) . 𝐶𝑂2 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒

100
 (11)

Fig. 38: (a) Results of heat-release analysis showing the combustion inefficiency and the

corrections due to heat transfer and Crevice effect [34]. (b) Mass fraction dependency on

one of the many factors on the amount of dilution [35].

(a) (b)

62

This value gives an estimate in the calculation of the CO2 emissions and few of the assumptions

are discussed as followed:

 The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) shows the amount of

fuel burned and the rate of burning throughout the combustion process in an internal

combustion engine. These value are predicted using two zone complex models, to make

calculation simple, combustion efficiency and mass fraction burned is assumed to be

hundred percent. But in reality it is not the case as shown in figure 38.
 Effect of dissociation: At very high combustion temperatures usually around 1700K

[34], the CO2 formed during combustion, starts to break (dissociate) into CO and O2.

This dissociation is an endothermic reaction and it absorbs heat from its environment,

resulting in a loss in the net energy created and therefore, reducing the efficiency of the

IC engine. This effect is also neglected for this study.

𝐶𝑂2 ⥂ 𝐶𝑂 + 𝑂2 (𝑎𝑡 ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

63

Chapter 8

Results and Discussion

This chapter is mainly divided into two sections, first section (section 8.1.) involves the

validation of the dSpace Hardware in loop (HIL) at different driving cycle phases measured on

the real vehicle (Porsche Panamera 4) with primary focus on fuel consumption calculations.

The second section (section 8.2.) utilizes the validation results from first section and applies

them to calculate the WLTP cycle on HIL discussing in detail the fuel consumption and CO2

emissions. At the end, in section 8.3 the dSpace HIL Fault Code Diagnostics is discussed in

detail.

8.1 HIL Validation

To validate the dSpace HIL a simple driving cycle is performed on a real vehicle (Porsche

Panamera 4).

For Real data collection from Porsche Panamera 4, the OBD-II communication interface is

used. Few of the codes values of Mode 1 PIDs are used to require data from the ECU as shown

in table 5.

For Hardware-In-Loop (HIL) ECU data collection, CAN-FD communication protocol and

DiagRA software are used.

It is important to note that the only difference between both Real and HIL data extraction values

is absence of Mass Air Flow sensor (MAF) real vehicle (Porsche Panamera 4). As discussed in

section 7.1.1 the real vehicle MAF values were calculated using speed density method using

HIL volumetric efficiency values at different phases of the driving cycle.

PID PARAMETER

0 X 05 Engine Coolant Temperature

0 X 06 Short Term Fuel trim

0 X 34 Lambda

0 X 87 Intake Manifold Absolute Pressure

0 X 77 Intake Absolute Temperature

0 X 0C Engine RPM

0 X 0D Vehicle Speed

Table 5: PID and Parameters selected for measurement in real vehicle

64

8.1.1 Approach for HIL Validation

The approach which is used to validate HIL is by Dependency Method. As shown in the

dependency diagram (figure 39), the fuel consumption is dependent on various factors which

subsequently dictate other parameters. This approach will help to move close to pointing the

problem in the performance of the HIL.

To focus on the HIL performance the real driving cycle which is performed on the road and

HIL is divided into three phases as shown in figure 40.

1. Acceleration Phase: In this phase the vehicle is accelerated using full throttle to reach

the desired speed. As the real vehicle is already driving until 10 seconds with varying

throttle so first ten seconds are ignored. This phase is only studied when the throttle of

both HIL and real vehicle are at maximum value i.e. after 10 sec.

2. Constant driving Phase: In this the vehicle is driven in the constant velocity for few

seconds.

3. De-acceleration Phase: This phase is same as engine braking, with no acceleration and

no braking the vehicle is deaccelerated using the engine brake.

Further, using these results and observation from HIL validation in different phases, a good

conclusion can be achieved about the behavior of HIL driving on WLTP cycle.

Fig. 39: Fuel consumption dependency diagram

65

Before moving forward with the results and observation of every phases, as mentioned above

the calculation of the Mass Air Flow is done using the average values of HIL Volumetric

Efficiency i.e. 87%, 67% and 67 % for phase 1, 2 and 3 resp. as shown in figure 41. As it’s

observed in the acceleration phase the efficiency is going above hundred percent this is typical

values of Turbocharged V6 engine.

Fig. 40: Vehicle Velocity phases 1. Acceleration 2. Constant driving 3. De-acceleration

Fig. 41: Volumetric efficiency at different phases at HIL driving cycle

66

8.1.2 Implementation of driving cycle on HIL

To understand the behavior of HIL, the HIL driving cycle should be very similar to the real

driving cycle and it is implemented using TCG functions using EXAM automation software.

The TestCase (figure 42) and the TestSequence Diagram (figure 43) of the cycle is as follows:

Precondition:

1: Ignition on

2: Pre readiness to drive

Action:

3: Drive 146kmph

4. Wait 10s

5: Throttle pedal 0%

6. Wait 50s

7. Brake pedal 100%

8. Wait 10s

Postcondition:

9: Drive program P

10: Ignition off

Fig. 42: Real driving Cycle TestCase

Fig. 43: Real driving Cycle TestSequence

Diagram

67

8.1.3 Results of Acceleration Phase

 Fig. 44: HIL and Real fuel consumption at acceleration phase

(a)

(b)

Fig. 45: HIL (blue) and Real (orange) results

comparison at acceleration phase

(a) (d)

(b)

(c)

(e)

68

As shown in figure 44, the fuel consumption of real vehicle and HIL results are almost

following each other. The fuel consumption during acceleration phase of real vehicle is 113.0

l/100km, while consumption calculated from HIL is 110.0 l/100km.

According to the comparison results as shown in figure 45, few of the observations are as

follows:

1. The behavior of all graphs is based on the transmission shifting curve [figure 45 (b)].

To reach 0-120 Km/h real vehicle is on 2nd gear while HIL driver model is on 3rd gear.

2. Throttle actuation [figure 45 (a)] by the real driver is gradual while at HIL it’s sudden.

3. As fuel consumption is inversely proportional to the Intake Manifold temperature, the

HIL is unable to maintain the constant temperature while real vehicle can. This is one

of the vital reason for the overestimation of the HIL consumption.

8.1.4 Results of Constant driving Phase

Fig. 46: HIL and Real fuel consumption at constant driving phase

As shown in figure 46, the fuel consumption of real vehicle and HIL results are almost

following each other. The fuel consumption during constant speed phase of real vehicle is 5

l/100km, while consumption calculated from HIL is 7.5 l/100km.

In this phase, the overdrive plays a very important role to improve the fuel consumption. It is

the operation in which vehicle is cruising at sustained speed with reduced engine revolutions

per minute (rpm), leading to better fuel consumption.

(b)

(a)

(b)

(a)

69

According to the comparison results as shown in figure 47, few of the observations are as

follows:

1. The fuel consumption depends upon the overdrive, which further depends upon engine

speed, as observed from the [figure 47 (b)] the real vehicle rpm is less than HIL rpm.

2. Throttle actuation [figure 47 (a)] by the real driver is gradual while at HIL it’s sudden.

Also, throttle of HIL even at constant engine speed is increasing.

8.1.5 Results of Deceleration Phase

As shown in figure 48, the fuel consumption of real vehicle and HIL results are almost

following each other. The fuel consumption during deceleration phase of real vehicle is 1.5

l/100km, while consumption calculated from HIL is 3.2 l/100km. In this phase the engine-

braking is focused as it plays very important part for the observation of the HIL performance.

"Engine braking" refers to the braking effect occurs when the throttle valve is completely

closed – which causes a strong manifold vacuum for which the cylinders have to work against.

During engine braking, instead of applying footbrake the vehicle is forced to slowed down by

releasing the accelerator and shifting down through gears. This causes fuel injection to cease

and greatly restricting forced airflow.

 Fig. 48: HIL and Real fuel consumption at de-acceleration driving phase

Fig. 47: HIL (blue) and Real (orange)

results comparison at constant driving

phase

(c)

(b)

(a)

70

According to the comparison results as shown in figure 49, few of the observations are as

follows:

1. With the no accelerator pedal according to the figure 49 (a) there is still some throttle

of the HIL while in real vehicle throttle is constant at 15%.

2. The short term fuel trim is varying of the HIL while real values are at zero.

3. The lambda sensor is also at stoichiometric (λ=1) for HIL and for real vehicle it’s at

lean region (λ>1). All these factors affect the fuel consumption.

8.1.6 Results of Full Driving Cycle

FUEL CONSUMPTION

As shown in figure 50, the fuel consumption of real vehicle and HIL results are almost

following each other. The total fuel consumption during full driving cycle of real vehicle is

17.9 l/100km, while consumption calculated from HIL is 17.0 l/100km.

Fig. 49: HIL (blue) and Real (orange)

results comparison at de-acceleration

phase

(a)

(e) (b)

(d)

(c)

71

As observed from the figure 50 (a), during accerlation phase (from 10s-19s) the fuel

consumption is maximum and during idling its minimum. During the engine braking (from

35s-70s) (no braking, no throttle but vehicle in gear) the fuel injector shuts off, therefore the

fuel consumption is least.

Few reasons about variation in the calculation of the fuel consumption in every phase are

discussed as follows: (more reasons are explained in conclusion chapter)

Effect of lambda: The proportion of oxygen in the exhaust gases as measured by the Lambda

Sensor. Lambda (λ) sensor retrieves the stoichiometric Air–fuel ratio (14.7:1 for gasoline

engines with the ideal value for the combustion being 1) and this signal is sent to the ECU

(Electronic Control Unit). A perfect reading is zero amps for Ideal Value. Each milliamp above

zero is a part point lean and each milliamp below zero is a part point rich. According to the

figure 49 (d), the lambda sensor is working perfectly for real vehicle but for the HIL it’s not

sending the lean values (λ=2). Lambda value two is set by default, even it’s above two, and

usually this happens during engine braking when fuel is cut-off.

Effect of Short term Fuel trim: The adjustment of the fuel quantity as measured by the Short-

Term Fuel Trim (STFT) sensor. Depending on the signal value, in case of lean signal the ECU

will increase the pulse width of the injectors to either add fuel to the air/fuel mixture (Positive

fuel trim), or decrease the injector pulse width to subtract fuel from the air/fuel mixture

(Negative fuel trim) in case of rich mixture and this process of adapting the injector pulse width

is known as fuel trims.

As observed in figure 49(e), during acceleration and driving at constant speed the real vehicle

fuel trim is adjusting the lambda (λ=1) and λ=2 during engine braking phase. But in case of

Short term Fuel trim of HIL, it is unable to control fuel according to HIL Lambda values, it can

be observed during engine braking phase STFT is still maintaining the lambda λ=1. This proves

improper functionality of HIL as the fuel injection should stop and lambda value should go to

λ=2. So HIL short term fuel trim is not performing as the real vehicle.

Effect of Engine Coolant Temperature: The temperature of the engine coolant as measured by

the Engine Coolant Temperature Sensor (ECT). The PCM recognizes this signal and starts

other components (such as the engine’s cooling fan to maintain appropriate operating

temperature). It uses different approaches which are programmed into its lookup tables for hot

and cold operating conditions. This signal affects EGR (Exhaust Gas Recirculation) valve flow,

PCM will not allow the (EGR) valve to open until the engine has warmed up to improve

Fig. 50: HIL (blue) and Real (orange) results of fuel consumption on full driving cycle

(a)

(b)

72

drivability [39]. If the (EGR) is allowed while the engine is still cold; it may cause a rough idle;

or stalling. As shown in the figure 51, in the dSpace HIL the value is set to be constant while,

as observed on the real vehicle data, the coolant temperature varies. This assumption strongly

effects the EGR which in turn effects the fuel consumption.

ESTIMATED CO2 EMISSIONS

As explained in the previous section 7.2 of WLTP CO2 emission, the estimation is based on

the assumption of complete combustion of fuel. The results obtained at different phases are as

shown in table 6. The difference in CO2 emission numbers between dSpace HIL and Real

vehicle can be observed. As we have established that CO2 emission depends on fuel

consumption, the differences recorded are the result of values obtained fuel consumption at

different driving phases.

8.2 WLTP cycle results

With Porsche Panamera ECU attached to the dSpace HIL, the collection of the desired data

from Engine Control Module is retrieved via DiagRA software. The sensor and ECU values

which are used for estimating instantaneous fuel consumption (l/100km) and CO2 emissions

are as follows:

 Vehicle Speed

 Engine RPM

 Mass Air Flow (MAF)

 Intake Manifold Absolute Pressure (MAP)

Driving Phase dSpace HIL
Real Full

Driving cycle

Full driving cycle 406.6 428.16

Acceleration Phase 2631.2 2702.9

Constant driving Phase 179.4 119.6

De-acceleration Phase 76.5 35.8

Table 6: HIL and real vehicle CO2 emission average values.

Fig. 51: Coolant temperature of HIL and real vehicle

comparison

73

 Intake Absolute Temperature (IAT)

 Lambda

 Short term fuel trim

8.2.1 Fuel Consumption

As showed in figure 52, the vehicle speed has effect on the fuel consumption in different phases

of WLTP cycle. The fuel consumption increases when the vehicle speed increases (during

acceleration), meaning that it is mainly affected by ineffective driving and traffic.

F
ig

.
5
2

:
V

eh
ic

le
 s

p
ee

d
 v

er
su

s
W

L
T

P
 c

y
cl

e
fu

el
 c

o
n
su

m
p
ti

o
n

 s
h
o
w

in
g
 L

o
w

 P
h
as

e
(o

ra
n

g
e)

,
M

ed
iu

m
 P

h
as

e

(G
re

en
),

 H
ig

h
 P

h
as

e
(P

u
rp

le
)

an
d
 E

x
tr

a
H

ig
h
 P

h
as

e
(R

ed
).

74

At 20s and 110s sudden acceleration and braking occurs respectively. During this time, spike

in fuel consumption is recorded whereas during normal driving (without aggressive

acceleration–deceleration) the fuel consumption is reduced. While, low fuel consumption has

been seen when vehicle is cruising at higher speeds because vehicle tend to go into overdrive

mode to save fuel. The reason of this behavior is that while cruising vehicle load is minimum,

same is applicable while idling.

Figure 53 shows the cause of acceleration on the fuel consumption during WLTP cycle medium

phase. According to the observation, peaks of fuel consumption are more prominent during

aggressive driving.

F
ig

.
5
3
:

V
eh

ic
le

 a
cc

el
er

at
io

n
 v

er
su

s
W

L
T

P
 c

y
cl

e
fu

el
 c

o
n
su

m
p
ti

o
n

.

75

The obtained fuel consumption over the WLTP cycle on a different phases according to values

from dSpace HIL are shown in Table 7.

WLTP Cycle Phase
Fuel consumption

(l/100km)

Low Phase 29.50

Medium Phase 19.04

High Phase 15.2

Extra High Phase 10.8

Overall Average 19.15

8.2.2 Estimated CO2 Emissions

The estimation of CO2 is based on the fuel consumption complete combustion calculation

assumption. And the results at different phases are as shown in table 8.

WLTP Cycle Phase CO2 emissions (g/km)

Low Phase 705.5

Medium Phase 455.5

High Phase 363.7

Extra High Phase 259.3

Overall Average 458.1

As observed, the emissions also are completely dependent on the fuel consumption. Emissions

are more in the phase where aggressive driving (more engine load phase) has occurred.

8.3 dSpace HIL Fault Code Diagnostics

As explained in the literature review chapters, a vehicle stores the trouble code in its memory

when it detects a component or system that’s not operating within acceptable limits. The code

will helps to identify and fix the issue within the vehicle.

To perform the TestCase smoothly without check engine light on, some of these error codes

are masked out or put to the default value by the Porsche Engineers as it does not affect their

tasks. The masking of the error are done using INCA Software, these code validate the results

which is observed in the study of prediction of fuel consumption. Few of the relevant error

codes which are masked/default valued are discussed along with its description in table 9:

Table 7: Fuel consumption over the WLTP cycle different

phases

Table 8: Estimated CO2 over the WLTP cycle different

phases

76

FAULT CODE NAME OBD DTC CODE DESCRIPTION

IVGdiCtlCvoErrMax_x P02CD,.. All Cylinder Fuel Injector

IVGdiCtlCvoErrMinMax P0149 Fuel Timing Error

HEGOS2B1ElecNpl P0136
O2 Sensor Circuit

Malfunction

GEVlvPhaSlowIntkB1 and B2 P000A and P000C

Camshaft Position Slow

Response Bank 1 and Bank

2

GEVlvPhaPsOpenLoadOutlB2 P0023
Camshaft Position Actuator

Circuit (Bank2)

OilPPlaus P0521
Engine Oil Pressure (EOP)

Sensor

DFRMmax and DFRM2max P0171 and P0174
Fuel Trim, System too Lean

Bank 1 and Bank 2

DFRMmin and DFRM2min P0172 and P0175
Fuel Trim, System too Rich

Bank 1 and 2

SCtPmp2DiagGrdKeyErr P261B
Coolant Pump, Control

Circuit Range/Performance

FanErrNEngLim P10EF
Function limitation due to

failure of cooling fan

Fan1_KLERespErr U0632
Lost Communication With

Fan 1 and 2

ExhTSnsr4SentData U14A1
Exhaust temperature bank 2

implausible message

PSRPmax P0236
Turbocharger/Supercharger

Boost Sensor

PSRPmax P0106
Manifold Absolute Pressure

Sensor

DSKVRmax P0191

Fuel Rail Pressure Sensor

Circuit

Range/Performance

TWCDPriCatB1 and

TWCDPriCatB2
P0420 and P430

Catalyst System Efficiency

Below Threshold Bank 1

and 2

Table 9: HIL Fault codes and description

77

Chapter 9

Conclusion

9.1 Summary

The theoretical part of this thesis provides in-depth understanding of various concepts from

Communication between In-Vehicle Networks, Vehicle Diagnostics, and lastly Hardware-in-

the-Loop (HIL). To obtain optimal results and successfully implement the practical part, it is

imperative to acquire the theoretical knowledge of these concepts.

For example, the topic of Vehicle Diagnostics is presented in detail to understand the meaning

of the error and fault codes occurring in the vehicle memory during simulation results.

As one of the main objective of this work involves Hardware-In-Loop and driving cycles, this

work provides a very clear understanding of requirements and functionality of the Porsche

Engineering HIL setup.

The implementation methods of WLTP cycle are described using manual and EXAM TestCase

(automation method).

Main conclusion

1. The TestCase was generated in EXAM with implementation of WLTP cycle.

2. This work also defined the various calculations and factors which are needed in

estimating the fuel consumption and CO2 emissions.

3. It has been verified that driving behavior affects the consumption, as random starts and

stops present massive fuel consumption whereas normal driving without aggressive

acceleration–deceleration provides good fuel economy.

4. Validation studies were carried out on HIL, using data collection from the real vehicle.

Reasons for HIL results over or underestimate by validation:

1. Modelled values of Short term fuel trim – From the results, the overestimate of fuel

consumption is observed in case of HIL as short term fuel trim is unable to run HIL

engine into lean region (λ=2) during engine braking phase. This effect the functioning

of the Lambda sensor which influence the consumption.

2. Actuation of throttle valve – With the results, in all phases the throttle is not performing

according to the real vehicle. This can be due to difference in the driving behavior of

the driver model (real and HIL) or can be due to the modelled values in HIL. In the

acceleration phase the HIL actuation from 80 to 40% is occurring in 0.5 sec while in

real vehicle it’s in 2.5 sec. This actuation can affect the engine load/MAF which plays

a very significant role in the fuel consumption.

3. Intake Manifold Temperature of HIL – The inability of HIL to maintain the constant

intake temperature in intake manifold after the turbocharger can also prove the reason

78

of the underestimation. The HIL values are in the range of 50ᴼC - 60ᴼC, while in real

vehicle it is around 30ᴼC, this variation can affect the density of the air which will

further will effect fuel consumption. This effect can also be due to the improper

modeling of the intercooler or the ambient temperature in the HIL.

4. Modeling of the gear shifting – According to the results 0 -120 Km/h real vehicle is on

2nd gear while HIL driver model is on 3rd gear, proves that the modeling of the gear

shifting can be a problem.

Reasons for Real results over or underestimate by validation:

1. Grade (slope) on road – Measured results are performed on the Stuttgart, Germany

roads and they have a little bit of slope on the road, this can affect the engine load.

2. Effect of Volumetric Efficiency (VE) – This effect played a very important role in

determining the consumption of the real vehicle data. Due to absence of the MAF sensor

values VE values are estimated according to the HIL values at different phases.

3. Effect of EGR – As MAF values of real vehicle are calculated using the speed density

method, which assumes ignoring EGR. As the dilution effect of due to EGR is very

important for the petrol air/fuel mixture combustion, this also influence fuel

consumption.

4. Effect of Coolant temperature: This effect is also related to the Exhaust gas recirculation

(EGR) which in turn improve the fuel consumption. But it observed that the dSpace

HIL is not varying the temperature values, the HIL engine coolant temperature is set on

default at 88ᴼC while the real vehicle is running between 94ᴼC - 97ᴼC. This can also be

due to the improper modeling of the coolant pump and cooling fan.

9.2 Contribution of thesis

 A test case in EXAM was generated that use WLTP cycle to validate HIL system

focusing on fuel consumption.

 This TestCase can potentially help the future engineers working on this system to test

the vehicle using WLTP cycle and advance their work more timely and reliably.

 Moreover, in future, using this study, calculations and development for estimation of

fuel consumption, the emissions model for the HIL can be generated which can further

be validated using real values from exhaust analyzers fitted on the vehicle.

 Also, WLTP cycle real results can be used to validate the HIL system in future.

 Using the fault code diagnostic analysis of HIL, in future it can be resolved and the

performance of the Hardware-in-loop can be improved.

79

References

[1] Will Electric Cars Transform the U.S. Car Market? by Lee, H. et. Al, Harvard Kennedy

School, Belfer Center for Science and International Affairs, July 2011.

[2] Enhancing Automotive Embedded Systems with FPGAs, Shreejith Shanker.

[3] In-Vehicle Networking, B.K.Ramesh, K. Srirama Murthy, Dearborn Electronics.

[4] ISO 11898-1-Road vehicles – Controller Area Network (CAN) – Part 1: Data link layer and

physical signaling, 2003.

[5] ISO 15765-2 - Road vehicles – Diagnostics on CAN – Part 2: Network layer services.

[6] Wikipedia, CAN bus — Wikipedia, the free encyclopedia.

[7] ISO 17458-2 Road vehicles — FlexRay communications system — Part 2: Data link layer

specification, 2013.

[8] ISO 10681-2 Road vehicles — Communication on FlexRay — Part 2: Communication

layer services, 2010.

[9] ISO 17987-3 Road vehicles — Local Interconnect Network (LIN), 2016

[10] Introduction to the Local Interconnect Network (LIN) Bus, National Instruments, 2019

[11] Ethernet as Future Automotive Communication Backbone by Rolf Ernst, Philip Axer,

Daniel Thele, Technische Universitat Braunschweig, Germany

[12] The Multi-Domain Frame Packing Problem in CAN-FD by Prachi Joshi, June 2017

[13] Automotive Ethernet by Vector Informatik GmbH, 2020.

[14] In-Vehicle Execution Environment for Diagnostic Scripts on Heavy Commercial Vehicles

by TOBIAS GUSTAFSSON, KTH Sweden, 2016

[15] Wikipedia, On-board diagnostics — Wikipedia, the free encyclopedia [accessed 14-

March-2020].

[16] EUR-Lex - 31998L0069 - EN. European Parliament, 1998.

[17] SAE J1962: Diagnostics Connector Equivalent to ISO/DIS 15031

[18] SAE J1979 / ISO 15031-5 Diagnostic Test Modes [accessed 15-March-2020]

80

[19] Wikipedia, OBD-II_PIDs— Wikipedia, the free encyclopedia [accessed 15-March-2020]

[20] ISO 14229-1: Road vehicles — Unified diagnostic services (UDS)

[21] UDS Message Structure, https://embedclogic.com/uds-protocol/uds-frame-type/

[22] INCA Software products, https://www.etas.com/en/products/inca_software_products-

details.php

[23] Computerized engine controls 11th edition book, by Steve V. Hatch

[24] What is a VW EPC warning light, https://volkswagen-polo-highline.blogspot.com/

[25] Hardware-in-the-Loop: The Technology for Testing Electronic Controls in Vehicle

Engineering, Dr. Peter Waeltermann dSPACE Inc. 6th Paderborn Workshop on Designing

Mechatronic Systems, 2009

[26] Hardware-in-the-Loop Testing in the Context of ISO 26262, Andreas Himmler, Klaus

Lamberg and Michael Beine, dSPACE GmbH

[27] DiagRA® D: The diagnostics tool for developers: Version 7.41.40.42644 by RA

Consulting GmbH, 2020

[28] EXAM Modeler training hardcopy by Micronova Software und Systeme

[29] Development of a World-wide Worldwide harmonized Light duty driving Test Cycle

(WLTC) technical report by Monica Tutuianu et al, United Nations Economic Commission

for Europe, 2013

[30] Essentials of Vehicle Dynamics by P.Pauwelussen, 2015

[31] Engine Breathing - Steady Speed Volumetric Efficiency and Its Validity Under

Transient Engine Operation by L. A. Smith et al, SAE International in United States, 1999

[32] Spalovací motory Komplexní přehled problematiky pro všechny typy technických

automobilních škol by Jan Hromádko, 2011.

[33] Theory of Internal combustion engine lecture presentations by doc. Ing. Oldřich Vítek,

CVUT, 2019.

[34] Internal Combustion Engine Fundamental by John B Heywood, McGraw Hill.

[35] Premixed Combustion in Spark Ignition Engines and the Influence of Operating

Variables by Fabrizio Bonatesta, 2012.

[36] Estimation of engine intake air mass flow by Michal Vojtíšek, Czech Technical

University, Prague, 2014

https://embedclogic.com/uds-protocol/uds-frame-type/
https://www.etas.com/en/products/inca_software_products-details.php
https://www.etas.com/en/products/inca_software_products-details.php
https://volkswagen-polo-highline.blogspot.com/

81

[37] Exhaust Gas Recirculation (EGR) complete guide – introduction by x-engineer.org

[38] Exhaust gas recirculation boosted direct injection gasoline engines by A. Cairns et al,

MAHLE Powertrain Ltd, UK, 2009.

[39] Engine Coolant Temperature (ECT) Sensor – Function – Failure And Testing by Danny

Bender, https://dannysengineportal.com/

[40] Linking Received Packet to the Transmitter Through Physical-Fingerprinting of

Controller Area Network by Omid Avatefipour, et al, University of Michigan, 2018.

[41] Next Generation Car Network- FlexRay by Fujitsu Microelectronics (Shanghai) Co., Ltd,

2006

https://dannysengineportal.com/

Appendix

CONTROLLER AREA NETWORK (CAN)

FIELD NAME
LENGTH

(BITS)
PURPOSE

Start of frame 1 Denotes the start of frame transmission

Identifier (green) 11
A (unique) identifier which also

represents the message priority

Remote Transmission

Request (RTR) (blue)
1

Must be dominant (0) for data frames

and recessive (1) for remote request

frames

Identifier Extension Bit

(IDE)
1

Must be dominant (0) for base frame

format with 11- bit identifiers

Reserved bit (r0) 1

Reserved bit. Must be dominant (0) but

accepted as either dominant or

recessive.

Data length code (DLC)

(yellow)
4 Number of bytes of data (0–8 bytes)

Data Field (red) 0-64 (or 0-8)
Data to be transmitted (length in bytes

dictated by DLC field)

CRC 15 Cyclic redundancy check

CRC delimiter 1 Must be recessive (1)

ACK slot 1
Transmitter sends recessive (1) and any

receiver can assert a dominant (0)

ACK delimiter 1 Must be recessive (1)

End of Frame (EOF) 7
Bit indicates the end of the messages

and disables the bitstuffing.

The ISO-11898:2003 standard was originally created for messages with an 11-bit identifier

(ID). The standard was later amended with the extended 29-bit identifier. The 11-bit IDs

provide 2048 valid different messages identifiers, where the 29-bit IDs provide room for 537

million possible message identifiers.

Fig. 54: CAN-Frame in base format (11

bits)

CAN Bus Signal

On the physical level, a CAN bus exists out of a twisted pair where in rest 2,5V is applied on

in case for high-speed variant. When a node wants to send a recessive bit (associated with a

logic 1), the voltage of 2,5V is not changed. When a dominant bit has to be sent (associated

with a logic 0), one wire of the twisted pair is pulled to 1.5V (the CAN Low wire) and the other

one is lifted to 3.5V (the CAN High wire) in case of high speed variant. Both wires are closed

with a 120Ω resistor to suppress reflections on the bus (Figure 55). The nodes have to ensure

their own synchronization to the messages on the bus. As CAN is event-triggered

communication and not time-triggered therefore, no clock will be transmitted with the CAN

messages.

FLEXRAY

Multi-drop Bus

The Multi-drop Bus topology is the same as in CAN and LIN systems, and it uses a single bus

to connect multiple processors together. This system is helpful in implementing with other

systems due to the similar layout of CAN and LIN networks.

Star Network

The Star Network topology consists of multiple ECUs connected to a central active node. This

layout is useful in that if one processor is cut or disconnected, the other processors continue

functioning.

Fig. 55: CAN bus levels [40]

Time

Bus Voltage

Fig. 56: FlexRay Hybrid

Network topology

Hybrid Network

The Hybrid Network topology is a mix between Multi-bus and Star Networks. This layout

combines the reliability and cost efficient advantages of the other two layouts, and it will most

likely be the future of FlexRay technology as shown in the Figure 56 above.

Fig. 57: FlexRay Frame Format

FlexRay Signal

At the physical layer, FlexRay communicates using the differential signals BP and BM,

corresponding to the voltages uBP and uBM (Figure 58).

The differential voltage between the signals (Vdiff) is due to represent four different sates which

can occur on the bus: Idle_LP: low-power state, Idle: no-communication state, Data_1: logical

HIGH and Data_0: logical LOW

LOCAL INTERCONNECT NETWORK (LIN)

Master Header

Sync Break: Every LIN frame begins with the break, which comprises 13 dominant bits

(nominal) followed by a break delimiter of one bit (nominal) recessive. This works as a start-

of-frame notice to all nodes on the bus.

Sync Field: The master task in the header transmit the sync field as a second field. Sync is

well-defined as the character x55. The sync field permits slave devices that perform automatic

baud rate detection to measure the period of the baud rate and adjust their internal baud rates

to synchronize with the bus.

Fig. 58: FlexRay Signal [41]

Fig. 59: LIN Frame Format

Identifier: This field is the final field transmitted by the master task in the header. It provides

identification for each message on the network and ultimately decides which nodes in the

network receive or respond to each transmission. All slave tasks repeatedly listen for ID fields,

verify their parities and determine if they are publishers or subscribers for this specific

identifier. The LIN bus consist of a total of 64 IDs. IDs 0 to 59 are intended for signal-carrying

(data) frames, 60 and 61 are used to transfer diagnostic data, 62 is kept for user-defined

extensions and 63 is reserved for future protocol developments. The Identifier is communicated

over the bus as one protected ID byte, with the lower six bits consisting of the raw ID and the

upper two bits comprising the parity.

Slave Response

Data Bytes: These bytes field are transmitted by the slave task in the response. This field

comprises from one to eight bytes of payload data bytes.

Checksum: This field is transmitted by the slave task in the response. The LIN bus states the

use of one of two checksum algorithms to calculate the value in the 8 bit checksum field.

Classic checksum is computed by adding the data bytes alone and enhanced checksum is

computed by adding the data bytes and the protected ID.

LIN Signal

It was the goal of the LIN design to accomplish a simplistic wiring topology. The simple single-

wire bus connects to each node in the collection and switches from ground to battery-level

voltage as shown: Signal Levels (Figure 60)

 Dominant - Bus LOW - Logic 0

 Recessive - Bus HIGH - Logic 1

Fig. 60: LIN Signal

