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Abstract

To establish early niche in the market, vehicles being produced these days are growing
exponentially in terms of complexity (hardware and especially in software). Keeping pace with
this advancement, verifying and validating design becomes crucial steps. Hardware-in-the-loop
(HIL) tests is one of the well adopted simulation test in the industry to overcome this
challenge. HIL allows to test functionality and behavior of any vehicle component (any
actuators or sensors) as though it is on the real vehicle, simulating all driving conditions, and
identify all faults within any unit. In simple words, HIL replaces the need of assembled final
product and hence comprehensive testing can be performed at early stage, giving the engineers
and designer a head start.

Hardware-in-the-loop (HIL) simulation is used for all aspects of product development,
including safety-relevant functions, simulating behavior of vehicle performance, etc.
Nowadays, it is a standard component in the vehicle development process which provides
various methods for testing of electronic control unit (ECU) software. All the vehicles physical
parameters like temperature, air flow, vehicle speed, engine rpm, etc., are continuously
monitored by electronic sensors and communicated, over the internal vehicle communications
protocol, to the Main Control Unit for further processing.

This study present the selection of parameters used for calculation of the fuel consumption and
prediction of CO, emissions on a simple driving cycle. These measurements are retrieved from
Engine Control Module and OBD-I1I diagnostic protocol in case of HIL and real vehicle
respectively. Comparing the driving cycle HIL data with data the real vehicle measurements,
HIL is validated which help to understand the effects of various factors in the estimation of
fuel consumption and CO- emissions. Further, using the results from this validation we can get
clear depiction on how HIL will behave on WLTP cycle.

Keywords: Hardware-In-Loop, DSpace, Vehicle Diagnostics, Communication Protocols,
EXAM, DiagRA, INCA, PIDs, On-Board Diagnostics (OBD-I11), Diagnostic Trouble Code
(DTC), CAN, FlexRay, LIN, Unified Diagnostic Service (UDS), WLTP, Volumetric
efficiency, Short term fuel trim, Fuel Consumption, CO2 emissions.
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Chapter 1
Introduction

This report introduces the master’s thesis ‘HIL simulation of driving cycles and its validation’.
The work has been conducted at the Porsche Engineering Services, Prague, Czech Republic.
This chapter presents the background, objectives, tasks and structure of the thesis.

1.1 Background

As per a report published by Harvard Kennedy School, it is estimated that worldwide the
number of passenger cars will reach up to 1.5billion by 2025 compared to 750million in 2010
[1]. Following these growing numbers, in the past decade automotive industry has seen
tremendous growth in the technological advancement in electrical vehicles and systems. One
of the most important factor to continue this growth momentum is the parallel advancement in
development and testing techniques.

There are few challenges when it comes to perform reliable and comprehensive testing. First
and the foremost is the very high testing cost which then for most companies impacts their
timelines/delivery schedules and subsequently the time to market. Another important challenge
is the ability to achieve testing results at acceptable level of confidence in safety, quality and
reliability.

Lately, hardware-in-the-loop (HIL) testing method has gained recognition and has become a
principal part of control validation in the automotive product development cycle. According to
ISO 26262 standard which is mandatory for passenger car development worldwide. It explicitly
names HIL as a suitable test environment for software unit tests and integration tests, for the
verification of safety requirements at component level and names it as a appropriate method
for testing single ECUs/components and for testing ECU networks up to an entire virtual
vehicle.

HIL simulation is rapidly progressing in an automotive industry from a control prototyping
tool to a system modeling, simulation and synthesis methods which are combining many
benefits of both physical and virtual prototyping. Vehicle is a very complex ecosystem
consisting of multiple sub-processes/modules which are responsible for its smooth operations.
Each module is monitored and controlled with the usage of sophisticated sensors which inform
and collaborate with the Main Control Unit (MCU). The micro-controllers (supporting the
sensors) communicate with the MCU and with each other using typical bus-based
communications standards such as CANBus (Controller Area Network), Flexray, Local
Interconnect network (LIN), etc.

To study the ECU efficient functionality, the HIL validation plays a very important role, so this
thesis primarily focuses is on validating HIL using collecting simulated results from Engine
Control Unit and validating them with the measurements derived from the vehicle (Model-
Porsche Panamera). HIL being a very complex system architecture platform, it’s validation in
this study is mainly focused on the behavior of it in terms of fuel consumption calculation, as
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this gives us clear comparison about the engine efficiency. Another dimension of this study is
comprehensive dive into in-vehicle architecture and vehicle diagnostics further used in HIL
system validation on WLTP cycle focusing on fuel consumption.

1.2. Objectives

The objective of this work can be described in following points

1. First, to develop strong theoretical background and sound understanding of the foundation
concepts in vehicle electronics and Hardware-In-Loop systems. The successful completion of
this objective is very crucial to achieve rest of the objectives in this thesis.

2. The second objective is to gain expertise and proficiency in test automation software
(Extended Automation Method (EXAM)) and diagnostics tool (DiagRA) used for HIL setup,
specifically around functionalities and capabilities of both the software and system
respectively.

3. The third objective is to validate HIL by focusing on fuel consumption with three phase
driving cycle. The validation includes extracting the relevant data from the sensors and
actuators attached to the Electronic control unit (ECU) and comparing this data with the real
vehicle measurements via On-Board Diagnostics (OBD I1) Scantool.

4. Lastly, using the understanding of the HIL behavior and sensitivity over varying, vehicle
speed, rapid acceleration/ deceleration, and reasons behind it’s over-under estimation of the
results. The fuel consumption values via HIL are obtained on WLTP driving cycle.

1.3. Tasks of the thesis

With the aim to effectively fulfil the objective listed in 1.2, the thesis is organized under two
major goals and further sub-divided into small tasks for continuous monitoring of progress.

I. Understanding of In-Vehicle network, communication protocols and vehicle diagnostics.

e Learn about On-Board and Off-Board Diagnostics and HIL simulation method with
focus on dSpace KoVoMo HIL system which is used for all V6 and V8 Engines
Porsche Vehicle.

e Acquire knowledge about vehicle diagnostics software and diagnostic trouble codes
(DTC) and Parameter Identifiers (PI1Ds).

I1. Hardware-In-Loop (HIL) testing and its validation using real vehicle measurements.

e WLTP Implementation of standard driving cycle using manual and automation
approach on HIL system focused on fuel consumption and estimation of CO2 emissions.

e Understanding and using of Extended Automation Method (EXAM) automation tool
for test management/automation.

e Validate HIL and perform its data analysis using results from real vehicle.



1.4 Structure of the Master Thesis

The thesis work is organized in two parts: Theoretical and Practical Part.

The theoretical part covers the basics of Communication Network (Chapter 2), Vehicle
Diagnostics (Chapter 3), and Porsche Hardware-In-Loop (HIL) setup (Chapter 4).

The Practical part starts with giving insights of DiagRA D-Diagnostic Software tool and
EXAM (EXtended Automation Method) is a test management system software (Chapter 5).
Chapter 6 describes Worldwide Harmonized Light Vehicles Test Procedure (WLTP), its
implementation (manual and automated) and HIL Virtual Driver Behavior.

Chapter 7 generated the mathematical model with assumption in order to calculate fuel
consumptions and CO2 emissions. Chapter 8 discusses about HIL Validation using real vehicle
measurements. Based on the data analysis of the consumption and CO; estimations, various
cause of the effects is discussed later in this chapter. Further, the results obtained via WLTP
cycle on HIL is compared using official published data.

Finally, the last chapter 9 summarizes the final conclusion of the thesis.
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Chapter 2
Communication Networks

In the chapter in-vehicle network which is a special internal communication network that
interconnects components inside the vehicle are discussed. Further, the hardware aspects of in-
vehicle networking and its main standards for e.g. CAN, LIN, FlexRay and Ethernet are
explained as these communication protocol is widely used by Porsche Engineering Services
Hardware-in-Loop system.

2.1 In-Vehicle Networks

Electronic safety-critical control function in vehicles was first used in 1981. General Motors
implemented micro-computer based engine control for their petrol powered vehicles which
greatly improved the efficiency and performance [2]. With the introduction of laws regulating
emission control, the use of electronic engine control (ECU) was required to meet the legal
requirements as well as to maintain acceptable efficiency and performance. The ease of
implementation along with the cost/efficiency benefits motivated manufacturers to adopt
electronic control for engine management and this later spread to other domains.

Currently, in modern vehicles around 30-50 ECUs across all segments are to be found. These
ECUs consist of automotive grade micro-controllers and/or general purpose processors which
execute software implementations for control and comfort applications. The number of ECUs
in vehicles has been rising at the rate of approximately 1.45 times a year, while the application
software has been growing at a rate of 4.5 MB per year.

Depending on the domain the ECU is intended for, suppliers also provide customized
architectures that are best suited for functionality in that specific domain. For example, a body
domain controller might be
working on different network
protocols and offer little or no Class A below 10kbps  Body Domain: Low end LIN
hardware acceleration support,

Class  Throughput  Domain Leading Protocol

Class B 10 to 125 kbps Body Domain: Non-critical — Single-wire CAN

while a telematics controller and non-diagnostic (SWC) & CAN 2.0
‘_’VOUId integrate  high _speed W~ 125kbps Powertrain: Real-time High speed
interconnect  and dedlcgted Class € to 1 Mbps critical parameters CAN (HSCAN)
accelerator Dblocks for video

processing or radar interfaces. Powertrain, Chassis: FlexRay

This “right-sizing” enables Hard Real-time & Reliable ’
manufactures to control the cost Class D above 1 Mbps ~ Occupant Safety: Safe-hy-wire
(deveIOp_ment and parts) aswell as Real-time & Reliable & Byteflight
standardize the software :
framework for each domain. The Streaming Media and MOST
Society for Automotive Engineers Entertainment o

(SAE) classifies  in-vehicle

networks based on throughput and Table 1: SAE in-vehicle network classification.
domain of operation [3] as shown

in Table 1.



2.2 Communication Protocols

Every modern vehicle use different network protocols in different domains, the choice of which
is determined by factors such as the functional requirements of the domain, criticality, cost,
etc. Among the many protocols, Local Interconnect Networks (LIN), Controller Area Networks
(CAN), FlexRay, and Media Oriented Systems Transport (MOST) are the most widely used
protocols by the different manufacturers today. Special networks like safe-by-wire are used for
passenger safety systems like airbags and other active protection systems. A simplified scheme
of typical in-vehicle network architecture in a modern vehicle is as shown in Figure 1.

‘Audiol ‘Display‘ | Navi.] Network Protocols
| Front | | Rear | [Front L] [Front RH| - | —— FlexRay
—— FlexRay/HS-CAN
L —_— CAN
Aircon Door -Window Head m Safe-by-wire
Control Control Unit LIN
i Body — MOST
: Module
Seat Adaptive Instrument Commn. GPS UMTS
ECU | |FrontLights| | Console T control [ | DSRC
.
Headlight | | Headlamp | | Cluste OBD
Leveler Control Lights1 Powertrain | { Front LH
Control Brake Occupant !
Control Sensors
| | I 1] & Safety Steering :
Active | |Powertrain| | Transmission | | Engine Control | , | Crash :
Safety Sensors Control Control . Sensors
Chassis
Sensors Sauib
| ACC | [Lane Control| [ Radar | Passive] | ;
assive | | Control
Safety

Fig 1: In-vehicle network architecture [2].

A large variety of in-vehicle networks evolved primarily due to cost and performance
requirements. CAN is very expensive and complicated for simple functions like power
windows or boot release. Simpler protocols like the Local Interconnect Network (LIN) is
adoption due to its non-critical functionality at lower cost per module and power consumption.
While, CAN istoo slow for high bandwidth applications like multimedia in higher end vehicles
resulting in the development of high bandwidth protocols like Media Oriented Systems
Transport (MOST) for such applications. Time-triggered CAN (TTCAN) is an evolution of
standard CAN, which addresses the lack of its functionality by introducing a time-triggered
mechanism above the CAN framework. The FlexRay protocol, developed by the FlexRay
consortium, offers a combination of time-triggered and event-triggered communication for in-
vehicle applications to enhance reliability with higher bandwidth and is mostly used in
Porsches.



2.2.1 Controller Area Network (CAN)

CAN (Controller Area Network) bus is one of the most popular protocols in the automotive
industry, which enables different components of vehicles to communicate with each other. It
was established by Robert Bosch in 1983 and officially released in 1986. It handles a maximum
signaling rate of 1 megabit per second (bps). CAN is an International Standardization
Organization (1SO-11898: 2003) defined serial communications bus, originally developed for
the automotive industry. It is a two-wire (twisted pair) communications bus and has a high
immunity to electrical interference and can self-diagnose and repair data errors.

The 1SO-11898 [4] standard defines CAN by using the Open Systems Interconnection (OSI)
model which is defined in terms of layers. Figure 2 shows, the two lowest layers of the seven
layer OSI model: the data-link and physical layer and ISO 15765-2 [5] specifies Transport and
Network layer services.

= Logical Link Control (LLC)
Acceptance Filtering

7 Application Overload Notification

Recovery Management
6 | Presentation = Medium Access control(MAC)

Data Encapsulation/Decapsulation
5 Session Frame Coding

Error Detection/Signaling/Handling

4 | Transport

= Physical Signaling (PLS)

3 Network Bit Encoding/Decoding
Bit Time Synchronization
2 | Data Link = Physical Medium attachment(PMA)

Driver/Receiver Characteristics
=Media Dependant Interface(MDI)

Connectors

1 | Physical

——

—

-

Fig 2: CAN Bus OSI Model.

The protocol used for CAN is the carrier-sense, multiple-access with collision detection
(CSMAJ/CD). The arbitration is based on the message priority and is implemented on bit level
(bit-wise arbitration). The node with the highest priority identifier which is accomplished by
longest dominant bit levels in the identifier, prioritized as the bus access.

CAN BUS FRAME

Four different CAN messages exist in the CAN protocol [6], explained as followed:

Data frame: The CAN data frame also works with two different protocols. The first one is
called “base format” and has an identifier of 11 bits. The second one is the “extended format”
and the identifier has 29 bits. The standard says that a CAN controller must accept at least basic
frames but can or cannot accept extended frames.

Remote frame: It works the same as the previous one but there is a difference. It is possible
that a node requires some data from another one. Then, a remote frame is requested to the
second one in order to get the information. Basically, the difference between data frames and
remote frames is that the last ones do not have data field.



Error frame: This is a special frame that is transmitted when a node detects a wrong message.
Then, the rest of nodes also transmit an error frame. There is an error counter that avoids the
blockade of the bus with continuous errors.

Overload frame: It is similar to error frame and is transmitted by a node when it is very busy.
Then the bus starts providing extra delays between the CAN messages. For further explanation
about CAN frame, please refer to the appendix.

2.2.2 FlexRay

The FlexRay communications bus is a deterministic, fault-tolerant and high-speed bus system
developed in correspondence with automobile manufacturers and leading suppliers. FlexRay
delivers the error tolerance and time-determinism performance requirements for x-by-wire
applications where x can be drive-by-wire, steer-by-wire, brake-by-wire, etc.

One of the things that differentiates FlexRay, CAN and LIN from more traditional networks
such as Ethernet, is its topology, or network layout. FlexRay supports multi-drop passive for
simple connections as well as active star connections for more complex networks. In contrast,
when FlexRay is configured to talk on a bus, it uses something called a time division multiple
access (TDMA) scheme to guarantee determinism. Its node is synchronized with the same
clock and each node waits until it is the turn to write to the bus. As the timing in a TDMA
scheme is consistent, it can guarantee determinism or the consistency of data delivery to nodes
in the network. FlexRay devices cannot automatically detect the network or addresses on the
network, so it is essential to have that information programed in at manufacturing time.

The ISO-17458 [7] standard defines FlexRay by using the Open Systems Interconnection (OSI)
model which is defined in terms of layers. Figure 3 shows, the two lowest layers of the seven
layer OSI model: the data-link and physical layer and ISO 10681-2 [8] specifies Transport and
Network layer services.

7 | Application
» | ogical Link Control (LLC)
6 Presentation —Protocol Operation Control
* Medium Access control(MAC)
5 Session —Message Framing
—Communication Cycle
4 | Transport
* Physical Signaling (PLS)
3 | Network —-Bit Encoding/Decoding
—Bit Time Synchronization
2 | Data Link = Physical Medium attachment(PMA)
—Driver/Receiver Characteristics
3 =Media Dependant Interface(MDI)
1 Phy5|cal —Connectors

Fig. 3: FlexRay OSI Model



FLEXRAY FRAME

The FlexRay frame consists of the three segments, the header segment, the payload segment
and the trailer segment.

Header Segment: The FlexRay header segment consists of five bytes (40 bits). These bytes
contain a reserved bit, the payload preamble indicator, null frame indicator, sync frame
indicator, frame ID, startup frame indicator, payload length, header CRC and the count for
cycles.

Payload Segment: The FlexRay payload segment comprises of 0 to 254 bytes data. The bytes
are identical numerically, starting at Data O for the first byte after the header segment increasing
by one with each subsequent byte.

For frames communicated in the static segment the first 0 to 12 bytes of the payload segment
may optionally be used as a network management vector. The payload preamble indicator in
the frame header shows whether the payload segment contains the network management vector.
The length of the network management vector can be configured from 0 to 12 bytes.

For the frames transmitted in the dynamic segment the first two bytes of the payload segment
can be used as a message ID field, allowing the receiving nodes to filter data based on the
contents of this field. The payload preamble indicator in the frame header indicates whether
the payload segment contains message ID.

Trailer Segment: The FlexRay trailer sesgment comprises of a single 24 bit field. This has CRC
calculations values which have been calculated by the host for the fields in the header and the
payload segments for the field.

For further explanation about FlexRay frame, please refer to the appendix.

2.2.3 Local Interconnect Network (LIN)

The LIN consortium comprises many vehicle manufacturers like Audi, Volvo, and BMW. LIN
is a cheap slow serial bus used for distributed body control electronic systems in vehicle. It
enables effective communication for sensors and actuators where bandwidth, speed and
versatility are not required (i.e inside mechatronic based subsystems generally made of an ECU
and its set of sensors and actuators). LIN is usually used as a sub bus for CAN and Flexray.

7 | Application = Concerned with establishing/terminating a
connection between two nodes
6 | Presentation = Ensuring reliable data transfer
= Implement protocols for flow-control
5 | Session between the nodes
4 | Transport ® Single Master, Multiple Slaves (up to 15
Slaves)
3 | Network = Single wire plus ground signaling: (VBAT,
GND. LIN (9 V-18 V))
2 | Data Link = From 1 kbit/s up to 20 kbit/s
= Dominant/Recessive bits (like the CAN bus)
1 | Physical * Total length of bus line: 40 meters max
® Terminations: Master 1 kQ, Slave 30 kQ

Fig. 4: LIN OSI Model



The 1SO-17987 [9] standard defines LIN by using the Open Systems Interconnection (OSI)
model which is defined in terms of layers. Figure 4 shows, the two lowest layers of the seven
layer OSI model: the data-link and physical layer 1SO-17987-3 and 1SO-17987-4 and ISO
15765-2 specifies Transport and Network layer services.

LIN FRAME

The LIN bus is a polled bus with a single master device and one or more slave devices [10].
The master device has both, a master task and a slave task. Each slave device contains only a
slave task. Communication over the LIN bus is controlled totally by the master task which is
in the master device. Frame is divided into a header and a response which is the basic unit of
transfer on the LIN bus. The header is always transmitted by the master node and it consists of
three separate fields: the break, synchronization (sync), and identifier (ID). The response is
transmitted by a slave task which resides in either the master node or a slave node. It contains
a data payload and a checksum.

Normally, the master task analyze each slave task in a loop by transmitting a header, which
consists of a break-sync-1D sequence. Before starting the LIN, each slave task is designed to
either publish data to the bus or subscribe to data in response to each received header ID. When
the header is received, each slave task verifies ID similarity and then checks the ID to decide
whether it needs to publish or subscribe. If the slave task wants to publish a response, it
transmits 1-8 data bytes to the bus after that by a checksum byte. If the slave task wants to
subscribe, it reads the data payload and checksum byte from the bus and takes appropriate
internal action.

For standard slave-to-master communication, the master transmits the identifier to the network,
and just one slave responds with a data payload.

Master-to-slave communication is done by a separate slave task in the master node. This task
receives all published data to the bus and responds as if it were an autonomous slave node. To
transmit data bytes, the master should first update its internal slave task’s response with the
data values it wants to communicate. The master then issues the suitable frame header, and the
internal slave task then sends its data payload to the bus. Further explanation is in the appendix.
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2.3 Future Communication Protocol

The automotive network architecture is currently facing the boundaries of established
technology. The gradually increasing need for bandwidth and the diversification of
performance, costs and dependability requirements lead to a modification of the networks used
throughout the vehicle. Traditional protocols such as CAN, Flexray and LIN do not meet the
bandwidth and scalability requirements, for example the Advanced Driver Assistance Systems
(ADAS).

Around 2500 signals in today’s luxury vehicles (i.e. elementary information such as the speed
of the vehicle) are exchanged by up to 70 ECUs [11]. Until the start of the 90s, the data was
exchanged through point-to-point links between ECUs. However this strategy, which required
an amount of communication channels of the order of n? where n is the number of ECUs (i.e.,
if each node is interconnected with all the others, the number of links grows in the square of
n), was unable to handle with the increasing use of ECUs due to the problems of weight, cost,
complexity and reliability induced by the wires and the connectors. CAN FD and Ethernet are
in nearly all vehicles currently in mass production in VW. For this study, CAN FD
communication protocol is used to retrieve measurement data from DiagRA Software while
FlexRay is used to flash software on the ECU.

Advanced Driver Assistance  Powertrain CAN (-FD)
Body

CAN (-FD)

Switched Ethernet

o Network

Gateway

Infotainment

Chassis FlexRay

Fig. 5: Future automotive backbone network

Ethernet and CAN-FD is the emerging technology in the automotive domain. It is capable to
address bandwidth demands of tomorrow’s advanced driver assistance systems (for example,
HD video, LIDAR) and it will also provide greater interoperability with consumer multimedia
products such as smartphones and tablets. In the following article, two of the new automotive
networking protocols, CAN-FD and Ethernet are discussed.

11



2.3.1 Controller Area Network Flexible Data-Rate (CAN-FD)

CAN FD was developed in 2011 by Robert Bosch GmbH, in Germany as an addition to the
original CAN protocol. Working closely with the prominent carmakers and other CAN experts
and answering to the need of the more powerful CAN protocol, Bosch came up with CAN-FD.
The “FD” in CAN FD means “flexible data-rate,” which is the big development, allowing
increased performance and higher bandwidth communication. This new and improved
extension to the Standard CAN protocol allows for data transfers of 8 MB/s, even with cable
lengths more than 40 meters. It can transfer up to 64 bytes of data in a single message.

CAN-FD FRAME

The CAN-FD frame format is shown in Figure 6. Similar to CAN as discussed in the previous
section, CAN-FD dominant bit is a logical 0 and a recessive bit is a logical 1. As shown in
the figure, a CAN-FD frame is consist of two phases: arbitration phase and data phase [12].

Arbitration Field Control Field Data Field CRC Field ' ACK EOF IFS
IF BIE : .

r 4-bit 0-64 Bytes |17 or 21-bit . .

7-bit 3-bit

EDH 0E| ? DLC Data CRC ' !

CAN-FD Arbitration Phase CAN-FD Data Phase CAN-FD Arbitration Phase

S| 11-bit

r
g| !dentifier 1

Fig. 6: CAN-FD Frame format

Arbitration Phase: The arbitration phase in the CAN-FD frame consist of: SOF (Start of
Frame), arbitration, part of the control field, ACK (Acknowledgment), EOF (End OF Frame),
and IFS (Inter-Frame Space). The 11-bit (or 29-bit in case of extended format) identifier
represents the priority of the frame: the lower the value of the identifier, the higher the priority.
The arbitration for transmission happens as follows:

During the idle state of the bus, all the nodes with some ready frames send the 11-bit identifier
after the SOF bit. During the transmission of the identifier bits, if a node transmits a recessive
bit but finds a dominant bit on the bus, it stops transmission due to the presence of a higher
priority node contesting for transmission. In the end, the node with the highest priority message
wins the arbitration and continues the transmission.

Data Phase: The BRS (Bit-Rate Switch) bit is one of the add-ons to the CAN-FD frame format.
It is used to decide whether the bit-rate in the data phase is the same as that of the arbitration
phase (BRS = 0) or it switches to the increased bit rate (BRS = 1). Since the focus is on CAN-
FD, the BRS bit in the frames to be recessive (i.e., BRS = 1) is considered. At the increased
rate of data transmission, each bit transmission occurs with a duration denoted by tq.

For example, if the data rate is chosen as 2 Mbps, tq = 0.5us. The 4-bit DLC (data-length code)
field stipulates the payload size (in bytes) of the data field. CAN-FD offers 16 separate payload
sizes: 0 through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.

The data field is followed by the Cyclic Redundancy Check (CRC) field, which has 17 bits for
payloads up to 16 bytes, and 21 bits otherwise. The CRC delimiter bit (recessive) is transmitted
next. After this, the bit rate is reversed to that of the arbitration phase.
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2.3.2 Automotive Ethernet

Ethernet is the evolving technology in the automotive industry. Due to its greater bandwidth
and flexibility and the promise of sharing cost of ownership with other industrial segments.
Ethernet is perfect to address the high demands of new functions in infotainment and advanced
driver assistance systems or to decrease ECU flashing speed and updating cost. With the first
generation of vehicles using Ethernet as an added communication medium, it is also considered
as a very powerful backbone advancement in the future technology which is also capable of
carrying traffic originating in CAN (-FD) or other bus subsystems as shown in figure 7.

1 Ghit/s
Ethernet

100 Mbit/s

Ethernet :
Infotainmen

Connectivity
Driver assistance
Security
Comfort
Driving

yesterday

Fig. 7: The fast-growing demand for bandwidth

FlexRay

ETHERNET FRAME

An Ethernet frame is a piece of data along with the information that is required to transport and
deliver specific piece of data. In networking reference models, such as; OSI Seven Layers
model and TCP/IP, the Ethernet frame is defined in the Data link layer same as CAN, LIN and
FlexRay.

Ethernet Packet

Ethernet Frame

min. length: 64 Byte
masx. length: 1518 Byte | 1522 Byte (with VLAN Tag)

+— VLAN Tag
(opticnal)

Payload —————

Preamble min. length: 46 Byte

42 Byte (with VLAN Tag)

CRC
Checksum

0-1500 Byte

Padding Field - variable length to ensure
minimum length of payload or Ethernet frame

Fig. 8: Ethernet Frame format [13]
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The basic frame consists of seven elements divided in three main areas as shown in figure 8:
Header

Preamble / SFD - This element in header is added by the layer 1 part of the protocol stack. It
enables the receiver to synchronize and know that a data frame is about to be sent.

e Preamble (PRE) - This is seven bytes long and it consists of a pattern of alternating
ones and zeros, and this informs the receiving stations that a frame is starting as well as
enabling synchronization.

e Start of Frame Delimiter (SFD) - This consists of one byte and contains an alternating
pattern of ones and zeros but ending in two ones.

Destination Address (DA) - This field consist of the address of station for which the data is
intended for. The left most bit shows whether the destination is an individual address or a group
address. An individual address is denoted by a zero, while a one is for a group address. The
next bit in the DA is to understand whether the address is globally administered or local. If the
address is globally administered then the bit is zero valued, and a one is when it’s locally
administered. There are then 46 remaining bits. These are used for the destination address itself.

Source Address (SA) - The source address comprises of six bytes and it’s used to recognize the
sending station. Being an individual address, the left most bit is always valued as a zero.

Length / Type - This field length consist of two bytes. It offers MAC information and specifies
the number of client data types that are contained in the data field of the frame. If the frame is
assembled using an optional format (IEEE 802.3 only) in that case it may also indicate the
frame ID type.

VLAN tag - It contains a protocol identifier (TPID) and control information (TCI). While the
TPID consist of original type field value, the TCI comprises of a Priority (PCP), a Drop Eligible
or Canonical Form Indicator (DEI or CFIl) and an Identifier (VID). VID and PCP are mainly
used in the automotive industry. The Identifier separates the respective virtual network for the
different application areas. The Priority allows optimization of run-times through switches so
that important information is sent preferentially.

Payload

Data - This block consist of the payload data and it can be up to 1500 bytes long. Padding data
is added to increase its length up to the required minimum of 46 bytes, in case if the length of
the field is less than 46 bytes.

Trailer

Frame Check Sequence (FCS) - FCS is four bytes long. It consist of a 32 bit Cyclic Redundancy

Check which is generated over the Destination Address, Source Address, Length / Type and
Data fields.
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Chapter 3
Vehicle Diagnostics

In this chapter, on-board and off-board diagnostics signal protocols, Parameter IDs and
understanding trouble codes (DTCs) are explained. Further, basics of software Integrated
Calibration and Application Tool (INCA) along with very commonly used terms in the
diagnostics are described.

3.1 Introduction

Diagnostic determines, verifies and classifies which is focused to get an overall picture in
finding the root cause of a problem in a vehicle. The detection, improvement and
communication strategies applied to irregular operation of systems is examined by Electrical
and electronic devices. Therefore, the purpose of Diagnostic is to identify this root cause of
irregularities in its operation so a restoration can be performed. Diagnostic requirements for
OEM and supplier are defined by a common database which contains the functional diagnostic
requirements, its implementation, development, specific data concerning to it and also its
features. Every industry have a straight connection with product engineering, manufacturing,
aftersales and suppliers. Applications of diagnostic can be classified for the following fields as
OEM [14]:

Development — In this process, correct functionality of the vehicle’s components must be
authenticated. Then subsystem of the diagnostic takes part at reading out ECU's internal
information and data of sensor and actuator's values.

Production — The assembly plant uses this system for transferring calibrated/authenticated data
and software updates to the non-volatile memory of the ECUs, including EOL programming
and tests.

Aftersales — In the operating vehicle, error detection is mainly done via diagnostics. Detected
errors are stored to a persistent fault memory, and trouble codes are read out at the service
station in order to make troubleshooting possible. The diagnostic systems include both on-
board diagnostics and off-board diagnostics discussed as follow.

3.2 On-Board diagnostics (OBD)

OBD is the computer system built into vehicles that monitors the performance of the engine
components. It consists of several ECUs that uses various sensors to collect data and evaluate
the performance of the vehicle as shown in figure 9. The OBD system will detect problems
with the vehicles performance or functions before the problems become noticeable to the
driver. These services can perform tests that can control actuators and read sensor values in the
vehicle. This diagnostics can also continuously monitor sensor values and the state of the
vehicle, whenever the fault occurs in the vehicle trouble codes are generated, called DTCs.
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Vehicle Diagnostic service

Client/Tester

Fig. 9: On- board vehicle diagnostics. Diagnostic tester/client connected to a vehicle to run
diagnostic services in an ECU

Vehicle communication buss

OBD-1 mentions about the first generation of diagnostics which was developed during the
1980s, at that time, due to a lack of standardization, every vehicle manufacturer used different
connectors and communication protocols. OBD-II also written as OBD?2, is the successor to
OBD-1 and was developed in the early 1990s by the American organization Society of
Automotive Engineers (SAE) which ordered all compliant vehicles to use a standardized
connector and one of several standardized communication protocols [15]. European On-Board
Diagnostics (EOBD) is the European version of vehicle diagnostics and is technically
comparable to OBD Il but was not implemented until 2001 for petrol vehicles and 2004 for
diesel vehicles [16].

The standard requires that vehicles should have a 16-pin OBD Il port. Sensor data and
diagnostic information from the electronic control unit (ECU) of a vehicle is measured or
extracted from this port. SAE J1962 [17] defines the pinout of the connector as shown in Figure
10. There are two types of connector: Type A and Type B connector, the nominal supply
voltage at the contact 16 and the supported current supply in case of type A should be 12V DC
and 4,0 A while in type B it should be 24 VV DC and 2,0 A respectively.

Type A CONTACT GENERAL ALLOCATION
1 Discretionary
EI O0ooon l]' 2 Bus positive line SAE J1850
3 Discretionary
DDDDDDDD 4 Chassis Ground
5 Signal Ground
Type B 6 CAN_H Line of ISO 15765-4
DDDDDDDD” . K Line of ISO 9141-2 and ISO
14230-4
R NRA NI NN 8 Discretionary
- 9 Discretionary
10 Bus negative line of SAE J1850
11 Discretionary
Fig. 10: Vehicle connector 12 Discretionary
and contacts allocation 13 Discretionary
14 CAN_L line of ISO 15765-4
15 L line of 1ISO 9141-2 and ISO
14230-4
16 Permanent positive voltage
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3.2.1 OBD-II Signal Protocols

The development of OBD 11 also lead to in the development of OBD Il scanning tools, like
OBD 11 readers, which can communicate to any vehicle via the 16-pin port. A scanning tool
normally requests information from the ECU by sending a message comprising of a
hexadecimal code connected with a specific parameter. These codes are defined by the SAE
J1979 standard (explained further in the document). The message would then get interpreted
according to one of five mainly used OBD Il signaling protocols discussed as follows:

STANDARD

DESCRIPTION

SAE J1850 PWM (pulse-width
modulation 41.6 kB/sec)

Pin 2: Bus+

Pin 10: Bus—

High voltage is +5 V

Message length is restricted to 12 bytes, including
CRC (cyclic redundancy check)

SAE J1850 VPW (variable
pulse-width-10.4/41.6 kB/sec)

Pin 2: Bus+

Bus idles low

High voltage is +7 V

Decision point is +3.5 V

Message length is restricted to 12 bytes, including
CRC

ISO 9141-2 (Similar to
Recommended std. RS-232)

Pin 7: K-line

Pin 15: L-line (optional)

UART (universal asynchronous receiver-
transmitter) signaling

K-line idles high, with a 510 ohm resistor to Vpat
The active/dominant state is driven low with an
open-collector driver.

Message length is Max 260Bytes. Data field MAX
255.

ISO 14230 KWP2000
(Keyword Protocol 2000)

Pin 7: K-line

Pin 15: L-line (optional)

Physical layer identical to ISO 9141-2

Data rate 1.2 to 10.4 kBaud

Message may contain up to 255 bytes in the data
field

ISO 15765 CAN (250 kBit/s or
500 kBit/s)

Pin 6: CAN High
Pin 14: CAN Low
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3.2.2 Parameter Identification Numbers (PIDs)

OBD I uses two types of codes to request ECU data, these are Diagnostic Trouble Codes
(DTCs) and Parameter Identifiers (PIDs). DTCs (for more details refer to section 3.2.3) are
used to diagnose malfunctions in various subsystems of the vehicle and PIDs (hexadecimal
code) are used to measure real time parameters. Vehicle manufactures have power to define
their own PIDs by this means making the on-board system more sophisticated.

These codes are defined by the SAE J1979 standard [Table 2 below].

DIAGNOSTIC SERVICE

MODE OF OPERATION DESCRIPTION
$01 Request Current Powertrain Diagnostic Data
$02 Request Powertrain Freeze Frame Data
$03 Request Emission-Related Diagnostic Trouble Codes
$04 Clear/Reset Emission-Related Diagnostic Information
$05 Request Oxygen Sensor Monitoring Test Results
Request On-Board Monitoring Test Results for Specific
$06 :
Monitored Systems
Request Emission-Related Diagnostic Trouble Codes
$07 Detected During
Current or Last Completed Driving Cycle
$08 Request Control of On-Board System, Test or Component
$09 Request Vehicle Information
$0A Request Emission-Related Diagnostic Trouble Codes

with Permanent Status

Table 2: Purpose of each mode of operation. The dollar sign “$” in front of the numerical value
highlights that this is an identifier. It’s important to know that the numerical values of the
identifiers are in hexadecimal format.

The message is interpreted according to one of five OBD Il signaling protocols. The ECU sends
a hexadecimal code in response. Depending on the specific parameter being measured, the real
measurement can be extracted by simply converting the returned hexadecimal value to decimal
or by carrying out a calculation using a standard formula as defined in [18] [19] for that specific
parameter.

For most modes (explained above) there are several PIDs defined that specifies the request in
more detail. For example mode 01, PID 0D requests the current vehicle speed and mode 09
PID 02 requests the Vehicle Identification Number (VIN). Some modes do not require a PID,
for example, mode 03 requests the stored trouble codes (DTCs) and mode 04 clears it from
memory. Every PID has a defined response that is expected from the request. The responses
are defined in SAE J1979 [18] [19] and describes in detail what the response should be, how
many bytes the response contains and how the data is encoded in those bytes.
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3.2.3 Diagnostic Trouble Codes (DTCs)

DTC stands for Diagnostic Trouble Code. It is used to identify faults in nodes. This is the
foundation of Diagnostics. When fault is occurred in the vehicle, connected ECU captures it
and stores it in memory as fault code. This is specific number for type of fault is called
Diagnostic Trouble Code. This information can be retrieved either by tools at service station
(e.g. OBD2 Scantool) or by in vehicle methodologies.

e DTCs STRUCTURE

DTCs have 4 bytes, 3 bytes to identify them and 1 byte to denote the current status of the DTC
as shown in figure 11 below.

DTC
Byte 1 Byte 2 Byte 3
Root SAE Code Number FTB
8|7]|6|s|a|3[2|1]|8[7|6]|5]|4[3[2|1]|8[7]|6[5]|a[3]2]1

}

5th Character of SAE Code (0-F)
4th Character of SAE Code (0-F)
3rd Character of SAE Code (0-F)
2nd Character of SAE Code (0,1,2,3)
1st Character of SAE Code (P,C,B,U)

Fig. 11: DTCs

Byte - 1 and Byte - 2: To Identify the failed component - called as "ROOT DTC"
First two bits help identify the major system:

00 = P - Code for Powertrain

01 = C - Code for Chassis

10 = B - Code for Body

11 = U - Code for Network

Byte - 3: Failure Type Byte ("FTB") — To identify failure mode of the ECU.
There are lot of FTBs. 1SO-15031-6 has a list. Common Codes are 11 for short circuit to
ground, 13 for open circuit.
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Byte - 4: Status Information - Each DTC will
have Status byte that provides the status [ B
information of DTC. Each bit in this bytes has &
a meaning and provides different information.
This byte is widely used extract error
information while performing the various
testing scenarios at Porsche Engineering using
DiagRA software figure 12.

There are 8 different states explained as follow:

BitO: This Bit is “testFailed”. This bit gives the
information about the fault (Error) is still active
(injected) or not. If Fault is still Active/injected,
then the value is 1 otherwise the value is 0.

Bitl: This Bit is “testFailedThisOperation
Cycle”. This bit specifies whether the fault has
occurred anytime during the current operation
cycle. If Fault has occurred in the present

operation cycle, then the value is 1 otherwise _ it
the value is 0. Fig. 12: Byte 4 (red box)

<  Read X Clear DTC Cydlical Once

Bit2: This Bit is “pendingDTC”. This bit informs whether the fault has occurred anytime during
the current operation cycle. The only difference between “Bitl” and “Bit2” is that Bitl is
cleared at the end of current operation cycle (it does not bother whether the fault is still active
or not) and “pendingDTC” is cleared only when in the succeeding operation cycle, monitor
routine is run and the end result shows fault is absent (pass). So if Fault is still present in the
current operation cycle, then the value is 1 otherwise if the Fault was active in previous
operation cycle and is inactive in the present operation cycle, then the value is 0.

Bit3: This Bit is “confirmedDTC”. This bit informs that fault is constantly active for specific
monitor routines and is matured enough in the existing operation cycle so that it can be said
confirmed. If fault is active and matured, then the value is 1 otherwise it is O.

Bit4: This Bit is “testNotCompletedSinceLastClear”. This bit notifies that monitor routine is
not to be run in the existing operation cycle (once after Clearing the DTC is done). The reason
being because particular pin is inactive in the operation cycle (e.g. parked or hibernate vehicle
mode). If the monitor routine is not finished this operation cycle, then the value is 1 otherwise
the value is 0.

Bit5: This Bit is “testFailedSinceLastClear”. This bit notifies, monitor routine has reported that
test has failed (at least once BitO is set) in any operation cycle at least once after clearing the
DTC action is achieved. If the fault has happened after clear DTC is performed, then the value
is 1 otherwise the value is 0.

Bit6: This Bit is “testNotCompletedThisOperationCycle”. This bit notifies that the monitor

routine is still not running during this current operation cycle. This can be due to, the pin is not
active for this operation cycle or when the request is sent from the tester, the monitor routine
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is not run. If the monitor routine is not run this operation cycle, then the value is 1 otherwise it
is 0.

Bit7: This Bit is “warningIndicatorRequested”. This bit is used to draw the attention of the user
or driver when the fault occurs. If fault occurs and any monitor is required for that exact fault,
then the value is 1 otherwise the value is 0.

e DTC CLASSES

Class A DTCs: A class A code is a DTC that will result in the immediate illumination of the
Malfunction Indicator Light. This type of code sets as a response for gross emission failure.
For e.g., the misfire monitor can store a DTC and start flashing the MIL in response to its first
recognition of a type A misfire. (A type A misfire is categorized as a severe misfire that could
result in the overheating of the three-way catalytic converter, resulting in its damage)

Class B DTCs: Most DTCs in the engine control system are class B codes. A class B code
states to a fault that does affect the vehicle’s emissions. When a fault related to an emissions
are detected for the first time, a DTC for that fault is stored as a pending code. The Powertrain
Control Module (PCM) does not light up the MIL at this time. During the next trip or drive
cycle, the pending fault code will be erased only when the monitoring sequence that first
identified the fault is repeated and the same fault does not repeat. If the fault does recur on the
second trip or drive cycle, the pending code is then stored in memory as a confirmed code, also
commonly denoted to as a mature code. It is at this point that the freeze frame data is stored
and the MIL is illuminated by Powertrain Control Module (PCM).

Class C DTCs: A class C code is a DTC that defines a fault that does not adversely affect the
vehicle’s emissions. Depending upon the vehicle, it may result in illumination of the MIL or
“Service Engine Soon” light instead.

Class D DTCs: A class D code is a DTC that denotes to a fault that does not adversely affect
the vehicle’s emissions and nor does it illuminate the MIL. These codes are the least important
of the code types.

21



3.3 Off-Board diagnostics

Off-board diagnostics defines a systems outside the vehicle that can use the diagnostic services
to read out data or start the execution of an on-board diagnostic test implemented as a part of
an ECU. The Off-board diagnostics (UDS, KWP 2000, etc.) is typically some tool used on a
computer in a repair shop or an end-of-line tester (tool that checks new-built vehicles at the
end of the production line).

Off-board diagnostics can also be done on a server that is remotely connected to the vehicle,
this is often called remote diagnostics and gives other possibilities to gather data and find faults.
Remote diagnostics uses a diagnostic client that is employed in an ECU inside the vehicle and
then this ECU is connected to an off-board server system which perform the diagnostic tasks,
shown in Figure 13.

Vehicle
P ~ Diagnostic service
= =
[ | Sensor
Off-board server Client/Tester
system

Vehicle communication bus

Fig. 13: Remote Vehicle diagnostics. Off-board server connected
to a diagnostic tester/client in an ECU in the vehicle.

3.3.1 Unified Diagnostics Service (UDS)

Off-board vehicle diagnostics is used for the diagnostics of every other vehicle ECU function
other than emission. There are several protocol standards defined for off-board diagnostics,
however, Unified Diagnostics Services (UDS) [20] is the most popular diagnostic protocol.
UDS (ISO 14229-1) is an International Standard that expands the individual properties which
are different from data link layer requirements of an automotive diagnostic service in a road
vehicle. It is based on the idea of Keyword Protocol (KWP2000) to fulfill common
requirements for diagnostic systems on CAN buses. The UDS Protocol was created by merging
the ISO Standards 14230-3 (KWP 2000) and 15765-3 (Diagnostics on CAN). This carried out
to greatly decrease the costs which to date have arisen for the development of diagnostic
communication. This standard provides a unified set of diagnostic services for ECUs.

There are five types of Diagnostics functions described in the specification as explained in table
3 below.
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DIAGNOSTICS
FUNCTIONS

EXAMPLES

Communication Management

Communication Control

Session Control, Device Reset, Security Access,

Data

Memory

Read Identifiers or Memory Write Identifiers or

Stored Data

Information

Read Diagnostics Information Clear Diagnostics

1/0 Control

Control Input or Output

Reprogramming

Download and Upload of Data

Table 3: UDS Diagnostics Functions

Basically it covers the implementation details of 1ISO 14229 services over CAN figure 14. The
standard is based on Open Systems Interconnection (OSI). The services used by a diagnostic
tester (client) and an ECU (server) are distinguished as: Unified diagnostic services (layer 7)
and Communication services (layers 1 to 6).

Application

Diagnostic application

e+ + .+ S 4 S— .+ S— . — . .  + " . 4 — . S— . . % . . e 44 .

ISO 14229-1
Unified diagnostic services (UDS)
Part 1: Specification and requirements

Application layer

Part 1: Implementation of united diagnostic

ISO 15765-3
Diagnostics on CAN

services (UDS)

Network layer

ISO 15765-2
Diagnostic on CAN
Part 2: Network layer services

Data link layer

Part 1: Data link layer and physical signalling

ISO 11898-1
Controler Area Network (CAN)

Physical layer

User defined
(e.g. ISO 11898-2, ISO 11898-3)

Physical media |

Fig. 14: Implementation of UDS protocol over CAN
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3.3.2 UDS Request/Response

The main intension of UDS protocol is to communicate with all electronic data units that are
positioned and interconnected in the vehicle, it also provide maintenance to check errors,
actualizing the firmware, etc. In a diagnostic session, the network consist of tester (Client) and
the ECU being tested (Server). A diagnostic service request is sent from the client to the server.
The client starts with a service request and always ends with positive, negative or no response
from the ECU (Figure 15). The transport protocol of UDS consists of ISO-TP [21]. ISOTP is
an International Standard for transmitting data over the CAN bus which allows maximum data
length up to 4095 bytes in a single data frame.

The three types of frames in UDS protocol.

1. Request Frame

2. Positive Response Frame

3. Negative Response Frame

Service ID — It is basically 1 byte ID belongs to the service well-defined in 14229-1. Server

see this Identifier and perform that particular task related to this service.

Request
1001 FF

Positive response
50 05 00 FF 00 03

Negative response
7TF1012

) Payload R
Ser\éilc[e)z ID Request Data
SID + 0x40 Response Data
Error ID Service ID Response
Ox7F SID Code
Byte 1 Byte 2 Byte 3

Fig. 15: UDS message format

Byte n
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3.4 Diagnostic Management Software

An OBD Il Powertrain control module (PCM) includes diagnostic management software to
organize the complex testing procedures. The terms used for this diagnostic management
software differ by manufacturer. In Porsche Engineering the most commonly used diagnostic
software is INCA and DiagRA (which is used in this thesis work and explained in Section 5.1).

34.1 Integrated Calibration and Application Tool (INCA)

INCA is a measuring, calibration, and diagnostic system that provides wide-range of measuring
support. INCA supports in all essential tasks during control unit calibration, evaluates the
measured data, and documents the calibration results [22].

INCA can be used to read measured data from the control unit and the engine in parallel. This
program helps to determine measured engine data such as lambda, different temperatures and
voltage values, etc. INCA, is not just a tool that will adapt to a variety of different control units,
but also a system that will optimize a wide range of different vehicle components.

It is an "open system". With consistent implementation of the ASAM-MCD standard and
support for data exchange formats that are established in the environment allow this program
to be used for any manufacturer's ECU interfaces and to be integrated in existing data
processing infrastructures.

Guided and
automated calibration Measurement, ECU calibration and diagnostics
and validation

Measurement data
analysis

INCA-FLOW

Guided Calibration MDA

Measure Data

and Automation of
Analyzer

INCA

Add-ons Add-ons

EHOOKS-CAL/
INCA-FLOW CANTRANSMIT EHOOKS-BYP INCA-EIP
Sending of CAN Experimental Target
fooliEaaes messages IS i Integration Package
& ECU Hooks E 3

INCA-MCE
Measurement
and Calibration

Embedded

INCA-FLEXRAY INCA-LIN
Flexray Integration LIN Integration
Package Package

INCA-QM-BASIC INCA-RDE
Basic Quality and Real Driving
Maturity Tracking Emissions Package

INCA-MIP
MATLAB Integration

INCA-TOUCH
Measuring and
Calibration During
Test Drives

ODX-LINK VOICE-RECORDER
Diagnostics Voice in parallel to
Integration Package measurement

Fig. 16: INCA System Overview
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INCA consists of a measurement and calibration core system which can be enhanced by several
add-ons and custom-made extensions (e.g. INCA-MIP, INCA-QM-BASIC, INCA-
FLEXRAY) that can be integrated in INCA as shown in figure 16. In addition to that, INCA
proposes open interfaces which allow for the adaptation of its core capabilities as well as the
remote control of INCA by other applications.

INCA Measurement and ECU Calibration

ES720
Drive Recorder

Synchronous
Measurements

Ethernet

Measurement
Modules

ES59x

ECU and
Bus Interface E563x Lambda Module ES400 Daisy Chain
Module
XCP, % I %] B %’ D Y -

CCP,

ETKXETK L || T | T | T T T T T T T T - = -
<
ECU
@ Lambda Temperature Voltage Voltage and Time, Count,

l Sensor Supply  Frequency

CAN, LIN, FlexRay, Ethernet

Fig. 17: INCA Interface for Measurement and ECU Calibration

It enables the adjustment of function parameters, maps, and tables either offline or during ECU
runtime. This tool manages the ECU’s volatile and non-volatile data memory and resolves
parameter dependencies. Using powerful editors present scalars, curves, or maps as tables or
graphs in physical or hexadecimal format. Calibration scenarios consists of multiple parameter
values of specific functions and ease the comparison of different settings.

For offline management of calibration data, it generates sophisticated functions for listing,
comparing and merging datasets. In addition, INCA supports handling of meta-data describing
the history and maturity of a parameter or function calibration with its Basic Quality and
Maturity Tracking add-on.

In parallel to calibration, INCA provides for the acquisition of data from the ECU and vehicle
buses such as CAN, LIN, Ethernet, and FlexRay as shown in figure 17. In addition, INCA
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measures various parameters from sensors and the vehicle environment. Quantities extracted
from measurements and calibration variables can be calculated and displayed online. Using
sophisticated trigger conditions data recording with several independent recorders may be
started and stopped. Parallel recording of data associated with different trigger conditions is
also possible. Data records comprises of the measured and calculated signals, calibration
parameters, trigger options as well as user comments.

INCA Diagnostics

ODX-LINK tool adds ECU diagnostics capabilities to the measurement and calibration
functionality of the INCA basic product. As the calibration and diagnostics related signals are
acquired in parallel, therefore it can be used for triggering and calculation of derived signals in
the same manner. All data is recorded in single measurement file and displayed in the same
views. A single ECU and bus interface module can provide connections for both ECU
diagnostics and calibration as shown in figure 18 below.

Acquisition of Diagnostic Data,
e.g., via OBD Protocol and Flash
Programming

CAN @

ETK

Electronic Control
Unit (ECU)

ES59x
ECU and Bus
Interface

Acquisition of ECU Signals via
Calibration Interface

Fig. 18: INCA Interface with ODX-LINK

ODX-LINK integrates Scantool functions based on diagnostic services required by OBD
emission regulations. Based on the services explained in ISO 15031-5 and SAE J1979, the easy
to use OBD Scantool visualizes fault memory entries, status information of monitoring
functions, vehicle information, in-use monitor performance ratios, and environmental data
known as freeze frames.

Beyond OBD, ODX-LINK facilitates full diagnostics of ECUs compliant to the ODX standard
(Open diagnostics data exchange). In addition, INCA can match a service tester and execute
troubleshooting functions. Using this technique, service diagnostics can be validated long
before service tester hardware is available. Using ODX-FLASH tool in INCA, a complete
solution for validating ODX-based vehicle diagnostics and ECU reprogramming can be
performed.
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3.4.2 Important terms in Diagnostics

OBD |1 standards require that the engine management system should be able to detect faults,
turn the MIL on or off, set DTCs in memory, and run drive cycles and trips for each monitored
circuit according to the particular sets of operating conditions. Few of the important diagnostics
concepts are explained further [23].

FREEZE FRAME DATA

Apart from storing detected DTCs, the diagnostic management software keeps a full record of
all the relevant engine parameters for a given circuit.

If a fault is detected and logged, that information is stored as a snapshot. This data, known as
freeze frame data, is used by the diagnostic management software for comparison and
identification of comparable operating conditions when they recur. This data is used to provide
further assistance in determining what might be a problem in the system. Also, this data can be
used to help in duplicating the symptom during a road test. Freeze frame data can be retrieved
with a Scantool through the data stream and typically includes the following:

e The DTC involved

e Engine RPM

e Engine load

e Fuel trim (short- and long-term)

e Engine coolant temperature

e MAP and/or MAF values

e Throttle position

e Operating mode (open or closed loop)
e Vehicle speed

On the basic system, freeze frame data store information only of the DTC that occurred first,
unless a later DTC is of higher priority, such as a severe misfire or fuel system DTC. In this
case, the diagnostic management software interchanges the stored data from the lower priority
DTC with the freeze frame data related to the misfire or fuel system DTC.

According to the previous tests performed the freeze frame data which is recorded by the PCM
starts recording after five seconds after it records the DTC in memory. As the driving conditions
are measured during freeze frame, recording are most often the same as they were when the
DTC was recorded. There is a small possibility for change during this five-second period, if
the driver suddenly hit the brakes or hit the throttle to the floor.
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WARNING LIGHTS (MIL AND EPC)

e Malfunction Indicator Light (MIL):

The MIL is also known as the Check Engine Light. The main purpose of

this warning light is to indicate a detected problem and alert the driver

about the issue with the vehicle.

The OBD Il system turn on MIL when there is a problem with the vehicle

engine, transmission or emission control system. There is always a

reason if light turns so it’s always recommended not to ignore it and to

investigate the cause. But it is totally normal for the light to illuminate for a few seconds after
starting the engine and it should go out when the engine is running.

The Malfunction Indicator Light indicates three different types of problems:

1. Occasional flashes indicate temporary engine malfunctions. In this case, it is good to be
aware of the probable forthcoming issues which can later on turn to more serious ones.

2. The most common case is when the indicator light stays on constantly. It indicates more
serious problem that requires action to be taken as soon as possible. Yet, sometimes the
issues aren’t that serious for example it can affect the emissions of the vehicle in a long
run.

3. The most serious type of signaling is when the MIL flashes all the time. It is a sign that the
engine is misfiring. This issue is very important and should stop the engine immediately
to prevent serious damage. For instance, it can lead to overheating of the catalytic converter
and even can cause fire.

OBD Il scan tool is used to detect issue with the vehicle with the help of accompanied software
through which it reads the Diagnostic Trouble Code(s) from the system. Every time the OBD
system illuminate the MIL, it will also store a Diagnostic Trouble Code (DTC) in the electronic
control unit. The OBD I system can turn the MIL off automatically if the conditions for the
problem stop to exist. After checking a system or component for three consecutive times
without spotting any problem, the light can be turned off, otherwise, usually it remains on.
With diagnostic software, the MIL reset is also possible. It is important to clear the MIL after
fixing the problem. Because, for example, the vehicle will fail emissions testing if the MIL
light is ON when tested.

e Electronic Power Control Light (EPC)

The EPC warning light is found in the instrument cluster and found on all

Volkswagen, Audi, Seat and Skoda vehicles fitted with a drive-by-wire

system. EPC stands for Electronic Power Control. This EPC light when

illuminated displays the letters EPC to primarily warns the driver that

there is problems in the engine's torque system (acceleration system).

If this light turn on, the vehicle’s throttle valve (butterfly) may be limited in order to protect
the engine from damage. It avoids the engine rpm from revving above 2000rpm. This is known
as limp mode and the ECU allows sufficient power to drive the vehicle to a service center for
repairs. In order to remove this problem, the vehicle’s ECU should be scanned with an
automotive diagnostic tool, in order to extract the DTC's related to the torque problem.
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Mostly common problems cause this light to turn on is: the vehicle's knock sensors, its throttle
system, its cruise control, its mass air flow system, its engine speed verification system or any
of the other associated systems that cooperate in the drive-by-wire scheme. Few of them are
explained as follow:

1.

The Engine Speed Sensor is known to cause the EPC light to turn on. The engine speed
sensor is a proximity magnetic transducer counting the rpm of the flywheel/crankshaft and
sends a steady stream of pulses to the ECU. So when this stream of data is disturbed for
whatsoever reason for only a fraction of a second, the ECU detects this and turns on the
EPC light and cuts power to the engine. It does this to save the engine from damage. The
following DTC error code, 17745 /P1337, 17746 / P1338, 17747 / P1339 and 17748 /
P1340 are the troubles codes [24] which tells that the engine speed sensor is either loose
or faulty.

The Accelerator Pedal is often also the main cause of EPC problems. The sign is that the
engine idles a lot faster than it ought to. To verify this, physical pull the accelerator pedal
away from the floor board while the vehicle is idling. If it reduces the engine's revs back
to normal, then it is time to replace it, because the potentiometers that's built into the
accelerator pedal, have gone faulty. Accelerator pedal problems are many and the
following DTC, 16504/P0120, 16505/P0121, 16506/P0122, 16507/P0123, 18038/P1630,
18039/P1631, 18040/P1632, 18041/P1633, 18042/P1634, are linked to accelerator pedal
errors.

Mass air flow sensor is another engine component that can cause the EPC light to turn on.
Cleaning the mass air flow sensor with compressed air does often solve the problem but if
the issue continues, then it’s time to replace mass air flow sensor. But before changing it,
check to see if any of the rubber hoses in its surrounding area isn't perished. A leak in Air
Intake System will permits unmonitored air to enter the intake which will throw a P2279 /
15093 error or a P0O068/ 15101 error.

The Throttle body is by far the most common cause of an EPC problem though in many
cases it is not the throttle body that's at fault but rather that the needs to be recalibrated
(adaptation). The scan codes like P2135 / P2136 / P2137 / P2138 / P2139 and P2140, will
give a good idea if the throttle body needs replacement. But in many cases it turns out to
be the problem with wiring harness. The plugs that connects the throttle drive motor and
the throttle position sensors is fairly troublesome and should be checked before throttle is
replace.

The Brake light switch can also cause the EPC light to come on because the torque control
circuit uses the brake light signal as an ECU input signal when the vehicle decelerates.

The Injectors and the Ignition Coils can also cause the EPC light to turn on. In case of
spark plugs an incorrect gap can cause it while in injectors, driving with very less petrol in
the tank can also cause the EPC light to turn on because the high pressure fuel pump may
lose pressure which then informs the ECU to constrain the torque circuit and switch on the
EPC light and make the vehicle go into limp mode.
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OBD DRIVING CYCLE AND TRIP
e OBD Driving cycles

Warm-Up Cycle: OBD 11 standards define a warm-up cycle as a period of vehicle operation,
after the engine is started in which coolant temperature rises by at least 4.4°C and reaches at
least 71.1°C. Most OBD |1 DTCs are removed automatically after 40 warm-up cycles following
the PCM turning off the MIL if the failure is not detected again.

Drive Cycle: A drive cycle is a series of operating conditions that allows the PCM to test all of
the OBD I1 emissions-related monitors. When all of the driving conditions (known as enable
criteria) have been met and all of the monitors have been run, the system is said to be
inspection/ maintenance (1/M) equipped.

A drive cycle’s enable criteria may be run in any order, but when the Powertrain control module
sees all of the enable criteria performed that apply to a specific monitor, it will check off that
monitor as being “complete.” A scan tool can be used to regulate the status of each monitors,
by observing which monitors have run successfully and which have not yet run and are still
needed to complete the full drive cycle.

If the scan tool shows “N/A” for a monitor, that monitor is not applicable to that particular
vehicle. If the Scantool indicates that the monitor has completed, this does not shows whether
the monitor has passed or failed, only that the monitor’s tests have been run. If the monitor has
run and passed, there should be no stored DTCs in memory for that monitor; on the other hand,
if the monitor has run and failed, there have to be a DTC stored in memory for that monitor.

o Trip

A trip is a diagnostic test that is designed to allow the PCM to determine a particular fault or
DTC. It is generally run when a drive cycle has caused in the PCM setting a pending code in
memory. A trip contains of a key cycle that includes ignition on, engine run, specific enable
criteria met that let the PCM to run a diagnostic test, and ignition off long enough for the PCM
to power down as shown in figure 19.

Ignition ON
| PCM determines enable criteria |
|
|

| Enable criteria met | | Enable criteria not met |

| PCM runs diagnostic test | |Diagnostic test is not runl

|
| PCM updates test results |

I

| Ignition OFF |
I

| PCM powers down |

|Trip successfully completedl

Fig. 19: OBD Il Trip
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A trip is used by the PCM to approve a pending code. If the fault is absent, then PCM will erase
the pending code from its memory. If the fault is still present, the former pending code is turned
into a confirmed code and the MIL is turned on. A trip can also be used by the PCM to confirm
a repair after a DTC has been cleared from the PCM’s memory with a scan tool or diagnostic
software.

As every DTC and its related symptoms are unique, the enable criteria for the various DTCs
are also unique to each DTC that the PCM may need to evaluate. Information is readily
available that allows us to look up the specific enable criteria for any DTC.
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Chapter 4
Hardware-in-the-Loop (HIL)

4.1 Introduction

Hardware-in-the-Loop simulation is one of the process used in the product development cycle
in which one or more real components interact with components that are simulated in real time
(dynamic models). The part of the system that is not simulated comprises of real devices,
machines, or mechanical test benches. Nowadays, this term is mainly mentions to a real system
which consists of one or more ECUs, controllers, or intelligent mechatronic modules for which
a virtual environment is simulated electrically and dynamically. The simulated subsystem has
to perform the following actions within one simulation step [25]:

e Read in the measurement signals (actuator control by the ECU)

e Calculate and perform numeric integration (simulate the entire dynamic model of a real
system)

e Output the results (sensor simulation for the ECU).

The outcome is a closed loop between the real controller and the simulated plant. Failure to
meet real-time conditions can result in unstable simulation and even damage of the real
technical device. Figure 20 shows a signal flow that illustrates this structure.

ECU 7) ECU ECU

Electronical
interface

Electronical
interface

Electronical
interface

Electronical
interface

Controller Controller

Signal
conditioning

Output
drivers

Signal
conditioning

Output
drivers

Electrical
interface

Electrical
interface

Electrical
interface

Electrical
interface

Electrical
interface

Electrical
interface

Actuator
simulation

Sensor

Actuators :
simulation

Sensors

Model of
the vehicle

.l

Vehicle process

process

Real-time simulation Real-time simulation

Fig. 20:

Signal flows in a real system and in HIL [25]
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4.2 V-cycle development process

e
. MIL Testing p @
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4

Rapid

Prototyping
Code Generation
and ECU
Flashing

Fig. 21: V-Model of development process
Figure 21 illustrates the V-Cycle that defines a common control system development process.

e The process begins by defining a set of functional requirements for a system from which
a simulation model of the control system has to be developed.

e The step following system specification is function specification, which can be
supported by Model-In-the Loop simulation (MIL). Model-in-the loop simulation takes
place on a PC with simulation models of both the specified functions as well as the
vehicle. This step reports development of the functions as software models in
graphically oriented programmer systems such as MATLAB/ Simulink.

e Following the development and testing of a simulation model, a Rapid Prototype phase
comprises direct testing and optimization of the software models of the functions, with
the appropriate software and hardware tools: on computer in the vehicle or on a test
bench. MIL simulation and rapid prototyping assists in finding and eliminating any
specification errors in an early phase.

e Next phase Software-In-Loop simulation (SIL). The software model used previously in
model-in-the-loop simulation is replaced here by the later series code, and is
incorporated into the simulation. This phase is typically performed by a supplier with
specialist knowledge of a particular system.

¢ Following delivery of the ECU and software, HIL systems are used to carry out various
forms of functional testing generally involves integration into the simulation loop of a
number of real parts (actuators and sensors) e.g. a throttle-valve actuator.

e Physical test applications use transducer-based measurements (e.g. of temperature,
pressure, stress / strain, sound, acceleration, etc.) to test the physical properties of the
respective system components. Applications include the NVH test (noise, vibration,
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harshness), which includes sound and vibration measurements from microphones and
accelerometers.

e The final phase of the VV-cycle is the use of vehicle testing for final verification of the
software, hardware and its calibration. In this phase the vehicle is imitated on engine
test benches — with transmission, driver, and driving resistance — in order to be able to
“drive” e.g. WLTP cycle (world harmonized light-duty vehicles test cycle).

4.3 Porsche Engineering HIL Setup

HIL SIMULATOR

Processor Board

Plant model and I/O
Lo sl Host PC
Boards Conditioning dSpace ControlDesk —
I I Real Loads User operating software.
Throttle Body, DiagRA/INCA/EXAM —
FlU Loads Fuel Injectors, etc. ECU diagnostic software.
Cable — PC
e Harness Interface
Internal e ECU/ ECU Diagnostic
Load 3 Device

Fia. 22: Schematic setup of HIL System

The description of the HIL setup as shown in figure 22 is as follows [26]:

User Operating Software: Software which is used for the interactive interaction with the user.
It is used to perform control and monitor tests, e.g. dSpace ControlDesk.

ECU Diagnostics Software: This software is used to read the error conditions detected by the
ECUs connected to the HIL System. This software can also be used for the calibration id the
ECU instead of diagnostics.

Diagnostic Device: A device which is used to provide access to the ECUs, it’s connected to
the host PC for diagnostics or flash programming purposes.

HIL Simulator: Simulator substitutes the real environment of one or more ECUs by simulating
the environment and its interaction with the ECUs in real-time in a closed loop.
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Processor Board: It is a hardware component of the HIL Simulator for the real-time
calculation of plant models and 1/0O models. Processor boards has the interfaces to the 1/0
boards in the HIL Simulator and to the host PC.

Plant Model: It is a model for real-time simulation of the system components (e.g. soft ECU,
communication buses) and the systems environment (e.g. road model for test of an ESP ECU)
that is not part the test as a real component. It enables closed loop operation of the ECU under
test. A soft ECU is a real time model of an ECU that is required for the tests but not part of the
tests as a real part. A restous model is a reduced soft ECU variant, simulating bus
communication.

I/0 Model: Part of the real-time model with which the plant model input/output accesses the
input/output physical channels of HIL system. The model for the restbus simulation is part of
the 1/0 model.

I/0 Boards: It is the hardware component which provides the HIL simulator Input/output
channels. These channels are the interface to the input/output channels of the ECU to be tested.

Loads: ECU outputs are connected to the loads as a substitute for real loads that are part of the
environment controlled by the ECU. These substitute loads enforce realistic currents on ECU
outputs, which is a prerequisite for the proper operation of the connected ECUs, especially for
diagnostics functions.

Internal Wiring: All wiring that are required to interconnect the hardware components within
the HIL Simulator.

Signal Conditioning: Itis also the hardware component which is used to match the signal level
of the 1/0 boards to the signal levels of the connected ECUs.

Fault Insertion Unit (FIU): Component which generate electric faults on the inputs/outputs
of the ECUs (actuators, sensors and bus channels). Typical error condition are, broken wire,
short circuit to the ground, short circuit tot the supply voltage, short circuit between two
terminals and loose contact.

ECU/Load Connector: One or more connection to the HIL system. The cable harness is
connected to them in order to connect the HIL system to the ECUs under test.

ECU (Electronic Control Unit): One or more ECUs to be tested with the HIL system.

Real Loads: These are the real components which are used if they are tested in conjunction
with the ECU.

Cable harness or external wiring: All wiring that is required to interconnect the HIL
simulator with the ECUs and real loads.

Power Supply: Electrical circuits and connections for power supply of the HIL system,
including connections to main supply it is not shown in the figure.
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Chapter 5
Software Study

In this Chapter the software which are widely used in this work are discussed. DiagRA software
is used to extract the relevant sensor or actuator data from the ECU using CAN-FD data-
communication protocol. While to implement any driving cycle and generate it’s TestCase
Extended Automation Method (EXAM) is used.

5.1 DiagRA D — Diagnostic Software tool

5.1.1 Basics of the Software

DiagRA D is used worldwide by all major international automotive OEMs and 1st tier suppliers
as a powerful diagnostics tool throughout all development stages. The functionality can be
expanded by adding optional plugins.

The tool functions can be divided into three basic sections:
1. OEM specific workshop tester diagnostics — This function is a customer-specific part of the

program, which is adapted by the different vehicle manufacturers. DiagRA can be used for all
ECUs which are inside the vehicle.

2. Scan-Tool for OBDII/EOBD/HD-OBD/WWH-0OBD diagnostics — The Scantool function is
employed in compliance with SAE J1979 (OBDII/EOBD), SAE J1939 (HD-OBD) and 1SO
27145 (WWHOBD). After the automatic configuration the supported data of all OBD
significant ECUs is displayed. The SAE J1979 scan tool function supports all 10 services
(Service $01 — Service $0A) as well as all the sub-functions (PIDs) defined by the market’s
relevant legislatures. The SAE J1939 scan tool function supports all essential diagnostic
messages and parameter groups. WWH-OBD (World Wide Harmonized Onboard Diagnostics)
is also involved according to 1ISO 27145 as part of this functional group and is complete for the
vital diagnostic services including all DIDs (Data Identifier).

3. Advanced developer functions — The advanced developer functions are designed for
automotive development engineers. By loading an A2L file the tool is able to read out and
exhibit (depending on type of the fault memory manager): Display of Status-bits, detailed
display of fault-code memory, reading memory locations and adaptation memory maps.

Further in this document, the workshop tester diagnostics function and the scan tool function
will be discussed to make this study focused to the thesis work. And all the information in this
chapter is from DiagRA user Manual [27].
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LAYOUT OF THE MAIN WINDOW
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Fig. 24: Layout of the main window

MENU BAR - At the top, menu bar is to be found and right to it two drop-down lists. Here,
the address word of the ECU is chosen, on which diagnostics has to be carried out, and the
corresponding diagnostic protocol.

TOOL BAR - Right below the menu bar there is tool bar which allows access to the most
important functions quickly via a single mouse-click.

STATUS BAR - At the bottom the status bar is situated. Here DiagRA D status information
and basic settings is shown. In the far left there is a counter that runs from 0-255 during live
communications to indicate each message exchanged between the PC and the ECU (This
includes messages that form part of the communication structure). The counter provide
feedback that the communication is running and serves as an indicator of the communication
speed.

Next to it there is a textual description of what DiagRA D is doing at that particular moment:
e.g. “Initializing Communication” or “Communication aborted”. To the right, the diagnostic
data set and the diagnostic interface which are currently in used is to be found. Any loaded
additional files, their names are shown in the status bars hint text.

WORKING AREA - The largest and most important area of the main window is the working
area. It is divided into a series of tabsheets. Depending on the mode of application of DiagRA
D at the current time that could be 10 or more. On the tab-sheets almost all functions that
DiagRA D provides can be found.
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DiagRA D currently distinguishes about 30 different variations of communication protocols.
The protocols differ in the physical communication layer (CAN, FlexRay, K-Line, Single-
Wire-CAN or J1850), the transport layer (e.g. CAN TP 1.6, CAN TP 2.0, ISO-CAN) and often
OEM specific variant of the topmost protocol layer (e.g. KWP 2000 5 Baud, KWP 2000 Fast
Init, UDS). At Porsche Engineering the mostly used protocols are UDS VAG (ISO CAN).
DaigRA D combines the possible options into a diagnostic protocol and makes them available
for selection in a list.

5.1.2 DaigRA D as a Diagnostic tool

This section will discuss about which workshop tester functions have been implemented in
DiagRA D. In the main window all of the tester-functions on the Standard, Extended and
Memory tab-sheets are to be found. These functions do not need a description file.

The classical workshop diagnostics is a manufacturer specific often even ECU specific
procedure and can have significant differences ranging from the implementation to the
operation. The specific peculiarities are handled in DiagRA D by selecting the proper
diagnostic data set and the corresponding diagnostic protocol. The parameterization, e.g. of
fault codes, measurement values and identification data are handled by external files which are
in turn organized into so called diagnostic data sets.

READ DTCs AND FREEZE FRAME DATA

Trouble codes are displayed on the Standard tab-sheet in the working area. This function is
located on the left under Fault Code Memory. DTCs can be read cyclically and once “Cyclical”
means that the DTCs will be read continuously, so once they have been read, they will be read
again immediately thereafter. This selection is based on the requirements.

f@ DiagRA [ 6.1.33.13852 (DataScan) Beta - 01 7E0 7EB Engine Contral Module]
Eile Trigger Functions Exiras View Options Help 0L 7ED7
b B R [eN FE A ( i
e & oL N DTCStatusMask LLJ
Standard mended| Memary
E CU identifization DTCStatusMask:
ECU ldentiication
TestFailed
TestFailedThisOperationCycle
| PendingDTC
¥ | ConfirmedDTC
Fault memon
Fault mermiory TestNotCompleteSincelastClear
V| TestFailedSinceLastClear
TestNotCompletedThisOperationCycle
WarningIndicatorRequested
[ 0K | [ Cancel
L
™+ Read | ear DT Cyclica @ Once o | Freeze frar
(a)

Fig .25: (a) Fault code memory (b)
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If the ECU supports the reading of freeze-frame data, these will be shown at the same time.
This function can be toggled on and off by the Freeze Frames button. The Clear DTC button is
located next to the Read. For safety reasons, clearing the fault memory is only allowed after
the fault memory was read once. If ECU allows to clear single trouble codes, the option will
be provided with a dialog to make the selection.

DTC status mask is set to select the DTC types which is to be read. To set this mask, right-
click on the Read button and choose the option DTCStatusMask (Figure 25b). The following
window will appear from which the DTC types which are relevant is selected. The selection
will be carried out by clicking OK.

5.13 DaigRA D as a Scan tool

With DiagRA D reading of emission related information is done by using one of the OBD
protocols or by using SAE J1939/ISO 27145. The address-word, which is used to initiate
communication is 33 7DF 7E8 Scan-Tool. Using the SAE J1979 OBD Il is used to measure
real time data of vehicle which is further used in validating HIL.

When running Scan-Tool diagnostics, communication takes place simultaneously between all
ECUs that support emission-related diagnostics. DiagRA D shows the measurement results of
multiple ECUs at the same time. The upper area of the Scan-Tool tab-sheet is laid out for this
purpose. The functionality of SAE J1979 is distributed on 10 functions, referred to as Mode 01
to Mode OA (see also Section 3.2.2: Parameter identification numbers). Some of these functions
have sub-functions, which may not be supported by all ECUs.

The functionality of SAE J1939 and SAE1979 is logically divided to different areas, e.g.
Readiness, Freeze frames or Fault Codes. Switching between the different functionalities is
done by clicking on the proper button at the bottom of the window.
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Fig. 26: The tab-sheet Scan-Tool
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DiagRA D check which ECUs respond and which modes and sub-functions they support.
Correspondingly, in the lower area of the J1979 tab, the buttons Mode 1 ... Mode A are laid out
consecutively. Please note that Mode 4 (= Clear DTCs) is only made available after reading
out the DTCs by calling either Mode 3, Mode 7 or Mode A. Also, each mode can be read (apart
from Mode 4) cyclical as well as shown is figure 26.

SELECTION OF IDS (SAE 1979)

In order to keep the number of reported PIDs manageable, DiagRA D allows to select the IDs
that should be displayed in Mode 1, 6 and 9.

1. Open the Select IDs for Mode X dialog (shown in figure 27) with Select button, where X

is the current mode.
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Calculated load value

Engine coolant temperature
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Ignition timing advance for #1 cylinder

Intake air temperature

Air flow rate from mass air flow sensor

Absolute throttle position
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Oxygen sensor output voltage, Short term fuel trim
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Time since engine start
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Fuel rail pressure
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Distance traveled since DTCs cleared

Barometric pressure

Equivalence ratio, Oxygen sensor current

[ oK J|  canes

Fig. 27: Selection of IDs (SAE 1979)

2. Using the button Show all IDs, toggle between the desired selection and all I1Ds. If no IDs
are selected here, all IDs will be displayed.
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5.2 Extended Automation Method (EXAM)

EXAM (EXtented Automation Method) is a test management system software (in other words-
automation tool) used by Porsche AG (parent company) in their large HIL system to test
complete electronic vehicle functionality. This thesis conducted at The Porsche Engineering
Services also utilizes EXAM distributed by MicroNova AG, commissioned by the VW-
concern as test management system. WLTP cycle is implemented using TestCase generated by
EXAM automation tool. Detailed discussion is in next chapter.

EXAM is built on Java and couples a ’drag-and-drop’ graphical user interface (GUI) onto HiL
or SiL test systems. This test management system uses Python as programming language. The
test case descriptions are written in Rational DOORS (a requirement program built by IBM).
These requirements have to be synchronized with EXAM and specific test cases can then be
created in EXAM regarding these requirements [28]. Any EXAM test process management is
performed in a specific steps as shown in figure 28

The three most important views in EXAM are the Modeler explorer, the Testrunner perspective
and the Reportmanager perspective.

Test Management
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Test Report l

Generated Test Result
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Fig. 28: EXAM Test Process

Modeler Perspective

In the modeler perspective, the tree structure shows how the system is built out of all the
available functions. This tree structure consists of packages with unique names. In these
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packages classes are created with functions and parameters. These are the functions that can be

used during the creation of test cases as shown in figure 29. To be able to reuse functions of

the Testhaus and vice-versa, the whole tree structure of the Testhaus testing department is

included in the workspace of EXAM.
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Modeler perspective in general:

- Test case modeling and implementation

- User defined filters can be applied to the model browser

- Object compositions are automatically generated as far as possible

- Object properties, descriptions and relations as well as project properties are available
from views (tab) and generated python code for object is also accessible.

5.2.2 Testrunner Perspective

The second window is the testrunner perspective as shown in figure 30. To understand this
perspective, the definition of test suite is very important. TestSuite defines a self-contained test
topic and its content. It is organized by TestGroups (the order in which TestCases and
AdministrativeCases are executed). When test cases are coupled together with test suites, they
can be selected to run automatically in EXAM. Together with the test suites, the right
configuration of the test suite, where all the right classes are coupled onto the interfaces, are
loaded when executing a test suite.
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in an execution file with python code path (XML)

Monitor and control runs in the testrun monitor view and console
Property to set alterative python code path for test run

View test run duration and estimated time
Record all test case relevant data and offline reply of test cases with relevant data for

additional analysis to save eg. HIL usage time

Open and save individual test runs

Testrunner perspective in general:
Run TestSuites
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After the execution of the test suite, a report will be generated by EXAM where the failed and
successful test cases are listed as shown in figure 31. If the test cases are written correctly, the
reason in case of failure of the test case will be shown in the reports. The reports are sent to a
specific folder on the server where it is managed, analyzed and processed in the reportmanager
perspective of EXAM.

Reportmanager perspective in general:

- Report data can be saved in multiple report databases as well as simultaneously
managed

- Test results are structured into sub-tests to allow an efficient test analysis

- Some report elements can be edited in order to correct and comment on test results

- Report can be exported to XML and PDF files

- OpenSource BIRT framework handles PDF exports, featuring custom report templates.
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Chapter 6
Worldwide Harmonized Light

Vehicles Test Procedure (WLTP)

WLTP cycle (world harmonized light-duty vehicles test procedure) is a worldwide, harmonized
standard used for estimation of the levels of pollutants, CO2 emissions and fuel consumption
of conventional, hybrid and electric vehicles. This new protocol was developed by the United
Nations Economic Commission for Europe (UNECE) aiming to replace the new European
driving cycle (NEDC) as the European vehicle homologation procedure. Its final class 3
version 5.3 was released in 2015 which is further used for the study as shown in figure 32 [29].

140

120

0

Fig. 32: WLTP class 3 v5.3 driving

This test procedure is responsible for a very strict regulation regarding dynamometer tests and
road load (motion resistance), gear shifting, total vehicle weight (by including optional
equipment, load and passengers), fuel quality, ambient temperature, and tire selection and
pressure.

Three different WLTP cycles are applied, depending on vehicle class differentiated by
power/weight ratio PW in W/kg (rated engine power/curb weight): Class 1 — low power
vehicles with PW <22, Class 2 — vehicles with 22 < PW <34 and Class 3 — high-power vehicles

with PW > 34. In this study class 3 test cycle is used as the Porsche KOVOMO V6 and V8
engines PW is more than 150 W/kg.

Also, the WLTP is divided into 4 different sub-parts shown in figure 32, each one with a
different maximum speed:
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e Low, upto 56.5 km/h

e Medium, up to 76.6 km/h

e High, up to 97.4 km/h

e Extra-high, up to 131.3 km/h

These driving phases mimic urban, sub-urban, rural and highway situations respectively, with
an equal separation between urban and non-urban paths (52% and 48%). Table 4 quantifies
the main descriptive parameters of the driving cycle.

Units WLTP
Start Condition Cold
Duration s 1800
Distance Km 23.27
Mean Velocity Km/h 46.5
Max. Velocity Km/h 131.3
Stop phases 9
Durations:
Stop S 226
Constant driving s 66
Acceleration S 789
Deceleration s 719
Shares:
Stop % 12.6
Constant driving % 2:7
Acceleration % 43.8
Deceleration % 39.9
Mean positive acceleration m/sec’ 0.41
Max. positive acceleration  m/sec’ 1.67

Table 4: Descriptive parameters of the WLTP driving cycle

6.1 Implementation of WLTP cycle

Implementation of the WLTP driving cycle on the dSpace HIL to study about fuel consumption
and CO> emissions, is done via two methods (manual and automation method) which are
discussed in following section.

6.1.2 Manual Implementation

Manual implementation of WLTP driving cycle is done by controlling the driver model through
HIL ControlDesk manually marked as red area in figure 33, by activating acceleration pedal,
brake pedal and gear shifter. This method is only useful to understand the behavior of the
vehicle performance as by using this method other tests cannot be performed in parallel
consisting WLTP cycle.
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The steps involved controlling driver model manually and implementation of WLP cycle are

as follows:

Activate Clamp 15

Starting of the vehicle

Start the measurements of the sensors

Putting vehicle of Drive

Enabling of Virtueller Fahrer (virtual
driver)

Enabling of Acceleration pedal, brake
pedal and gear shifter

Starting of WLTP driving cycle

Wait for finishing of the driving cycle

Stop the measurements of the sensors

Disable of Virtueller Fahrer and Pedal
Quelle Virt.

Deactivate Clamp 15

6.1.2

Ignition on

l

Click on Start/Stop

!

Start DiagRA

l

Press D

!

Activate Enable

!

Activate Pedal Quelle Virt.

!

Select WLTC from drop
down

|

Wait 30 minutes

1

Stop DiagRA

1

Disable everything

l

Ignition off

Automation Method Implementation

Implementation using automation method is done by preparing the TestCase in EXAM
automation software which will automate all the commands which earlier has to be done
manually. The test cases and the functions necessary for it are programmed manually using
specific functions in EXAM starting from the requirements of DOORS.

Few important terms and definitions are discussed below to understand the EXAM automation
method and executing the TestCase and preparing SequenceDiagram:

1. Package: Packages are the collection of model elements of any type. They can be used
to divide the overall model into smaller, more manageable units. A package defines a
namespace i.e. names of the elements contained in the package must be unique. Each
model element can be referenced from the multiple package, however it belongs to only

one home package.
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2. TestCase: TestCase represents exactly one test flow in an abstract, formal and
structured form. Each TestCase has a unique ID with a distinct test flow. Each variant
of a common test flow is a separate TestCase. It can only be called by TestGroups
(TestSuite).

3. SystemConfiguration: It is required for execution tests on a test system (HIL). It defines
which implementation class will be used for each interface.

4. TestSuite: TestSuite defines a self-contained test topic and its content. It is organized
by TestGroups referencing TestCase.

5. Variable Mapping: It is a container for mapping class instances and represents the
interface to external platform variables (dspace hil). Variable mapping defines the
signal path of EXAM mapping attributes in order to access the corresponding platform
variable. As a result platform variables are accessible within EXAM using the get- and
set- functions.

6. Test Case Generator (TCG) Syntax: TCG Syntax enables a formal description of test
cases in DOORS, that can be synched to EXAM with the Synchronizer Plugin and then
automatically generate the Implementation of the test case with the TCG plugin. This
enables a fast and convenient workflow from specification to test execution.

7. Porsche Master Implementation (PMI): To simplify the programming work when
programming test cases in EXAM, Porsche created the Porsche Master Implementation
(PMI), representing ’functions’ that will run before every test suite starts. It is an
obligation to use this PMI whenever new testing systems are developed, especially
when those systems have to use ECU diagnostics. EXAM has to be configured in a way
that this PMI will run before every test suite will start.

8. SequenceDiagram: It is a Unified Modeling Language (ULM) diagram and it is the
most important diagrams in EXAM. They model a series of messages (operation calls)
between objects over a specific period.

To prepare SequenceDiagram various TCG commands and shortname functions are
used, which are prepared by the Porsche Engineering Services engineers in past. These
commands simplify and help engineers to prepare a TestCases quickly

EXAM gives the possibility to create functions in Python and drag-and-drop them into the right
order to create a specific test cases. After the execution of the TestCase, coupled into a
TestSuite, EXAM generates reports. These reports are then studied over and relevant decision
is made whether or not to run the failed test case again, manually or even automated and starts
to search for the causes of the failure of the test case. To implement the WLTP cycle, the driver
model of HIL is controlled via acceleration pedal, brake pedal and gear shifting. To automate
this process, steps are prepared in the SequenceDiagram using TCG functions (in blue box)
and TCG FlexRay writevalue paths as shown in figure 34.
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[© calle

1) Signals for
RealtimeCapturing
2| Signals for
CalibrationCapturing

i

TCG_

TCG_SetSignalsForRealtimeCapturing ([] )

TCG_SetSignalsForCalibrationCapturing ( [])

o ~ o v s w

|2t Pre readiness to drMal

TCG_PreconditionBefore ()
TCGStep (1)

[Llontionon 177G Vehicle ignition (‘'on, 2000) Activating Clamp 15 Preconditions |
TCG Step (2)

TCG_Vehicle_PreReadinessToDrive ()

o

Starting testcase until drivetrain ready

TCG_PreconditionAfter ()

L R ]

TCG_ActionBefore ()

TCG_ActionAfter ()

12 TCG_Step (3)

13| DiagRA start Diagra_Recording { 'START, 'WLTPcycle.csv’, iResStart ) Starting DiagRA measurement

14} V_Manual Speed writeValue ( ‘MDL vRegler Zielgeschwindigkeit, 0, 0)

15| WLTP mode writeValue ( VirtualDriverMode’, 1, 0)

16] Enable writeValue ( MDL Fahrer Modus, 2. 0) Enabling of Virtueller Fahrer (virtual driver)

17 |[Pedal Quell- Acc Pedal |i7CG FiexrayWriteValue ( Motor 02/~ - o+ o o e e P s e, 7)
TCG_FlexrayWriteValue ( ‘Motor_02/1* "' ~ * Enabling of Acceleration pedal, brake pedal =~ inaie|1, )
] and gear shifter
TCG_FlexrayWriteValue { MOtor_02/ . rowwv v SR [T
writeValue ( VirtualriverMode;, 7, 0) Starting of WLTP driving cycle —_

. TCG_TC_Wait (1800000) Waiting 30 minutes to finish he cycle | Action |

22| DiagRA Stop Diagra_Recording ( ‘STOP, WLTPcycle.csv, iResStop ) Stopping DiagRA measurement

B TCG_Step (4)

24 Enable writeValue (' MDL_Fahrer_Mogus, 0, 0)

25 TCG_Step (5)

26| Pedal Quelhirt. writeValue ( PedalsAliowed., 0, 0) Disabling virtual driver, pedals and cycle

21 O] and setting hil to default

28| v_Manuell mode writeValue ( VirtualDriverMode’, 1, 0)

29 TCG_Step (7)

30 |[4-Brake pedal 100% 1! 7cG vehicle_BrakePedal { 1000, None ) Setting brake pedal to 100%

Bl TCG_Step (8)

32 |(Throttle pedal 0% TCG_Vehicle_ThrottiePedal ( 0.0, None )

33

1 S—S—S—

35 TCG_PostconditionBefore ()

* TCG.5tep (9) || Post/Condition
37 |[iZ lanition of 175 Veicle Ignition ( off, 2000) Deactivating Clamp 15 ‘

38

TCG_PostconditionAfter ()

Fig. 34: WLTP cycle sequence diagram
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6.2 HIL Virtual Driver Behavior

The vehicle driver system is shown in Figure 35. The driver controls the vehicle using steering,
acceleration, and braking as an inputs. The vehicle responds, according to the information
driver provided in terms of path to be followed, orientation (i.e. yaw angle), lead time and
vehicle in front distance.

Vibrations and vehicle acoustic variations are feedback values used by the driver to assess the
current and future vehicle status, with respect to the intended response. In addition, the driver
receives information through the control devices. For e.g. in a low road friction condition,
driver will reduce the torque feedback on the steering wheel and activation of ABS is noticed
through vibrations in the brake pedal. Further, the vehicle will face external disturbances such
as aerodynamic forces, road irregularities, and road friction differences.

Consequently, the vehicle will not respond in the same way to the driver want it to be according
the inputs. This is due to the impact of external disturbances and the limited ability of the driver
to control the vehicle accurately means that the driver is constantly correcting his input to the
vehicle. The driver responds to the vehicle behavior to fulfill a certain task, which is closed-
loop behavior, in contrast to the situation where one is considering vehicle response to driver
input without driver feedback is open-loop behavior. In dSpace HIL system, close loop
behavior model is used.

External
disturbances
,f"'"""::::::::::::.’:::,‘i:::l___“.:\

¢+ Closed |00p / Open |Oop \\\\

] | Iy

| | I

1 | 1)

Road ! : Steering h '
conditions = control Vehicle | @i+
: Driver [ : :

. I I
Required | L '
: »| Throttle 1
— . .

trajectory I . brake ; :
[ A A7

[ N e ==== |

I |

| |

I |

I |

-
-

-

Fig. 35: Vehicle driver system [30]

Above is the overview of how the driver model behavior is simulated in the HIL System. As
shown in the figure 36, where the vehicle behavior is studied on the basis of the WLTP cycle.
The behavior of the driver is quite prominent, HIL virtual driver almost completely followed
the inputs of the cycle.
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Chapter 7
Calculations and Assumptions

In this chapter, the calculations and assumptions are discussed which are required to calculate
the fuel consumptions and CO. emissions on WLTP cycle. The cycle is run on the dSpace
KoVoMo HIL system control desk via the EXAM TestCase. The sensors data are extracted
from DiagRA Software which are used for the calculations.

7.1 Fuel Consumption

The accurate calculation of following two parameters are very important to estimate fuel
efficiency and vehicle emissions.

1. The amount of air entering in the engine combustion chamber i.e. Mass Air Flow (MAF)
discussed in section 7.1.1
2. The amount of fuel entering in the engine combustion chamber i.e. Mass Fuel Flow (MFF)
discussed in section 7.1.2

In urban vehicular pollution monitoring tool, the speed density method is most adopted
technique to determine Mass Air Flow (MAF). In this work as well, this method has been
implemented to calculate Mass Air Flow (MAF) which will be used to further calculate Mass
Fuel Flow (MFF).

It is important to note that, to carry out perfect combustion, ECU control several components
which perform the task of defining the amount of air required. In addition, ECU calculate the
ideal air temperature and pressure, the current value of the vehicle and the actual air flow that
the engine needs at any given time.

7.1.1 Mass Air Flow (MAF)

Speed density method is used to measure mass air flow, it performs an estimation based on the
ideal gas law. To do this, it uses readings of intake manifold temperature and air pressure
sensors in the vehicle, in addition to using the volumetric efficiency of the engine.

This method can be used with the manifold absolute pressure sensor, as it measures the absolute
pressure. This way of predicting Mass air flow is done when MAF sensor is not available in
the vehicle (which is the case in this thesis)

Starting with the law of physics, we observe a series of relations between the temperature,
pressure, and volume of the gas, Equation (1) is the mathematical representation of this law

P.V=n.R.T (1)

The terms of above Equation are explained as follows:
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e P is the pressure in the combustion chamber and can be determined by means of the
MAP (Manifold Absolute Pressure) sensor in kPa

e V is the volume of the combustion chambers in the engine cylinders and can be
measured in units of volume as Liters (L) or cubic centimeters (cm?®)

e Risthe ideal gas constant. Its value is approximately 8.3145 J/mol.K

e T isthe gas temperature. It can be acquired by the IAT (Intake Absolute Temperature)
sensor in K.

e nisthe number of moles.

By rearranging the terms of equation (1) the amount of moles (n) of the given amount of air
flowing through the air intake before the combustion can be calculated.

Using number of moles, the mass of air (mair) can be calculated by multiplying it by the
molecular weight (molar mass, represented by Mair) of the air, as described in Equation (2).

My = N Mgy (2)
Using the equation (1) and (2) air mass can be obtained in the form of equation (3)

P.V

ﬁ -Mair (3)

Myir =
Equation (3) is only valid if the engine has a Volumetric Efficiency (VE) of 100%. VE is the
ratio between the air-fuel mixture volume that each cylinder admits and the nominal cylinder
capacity, The VE can be found using the following relation (4):

Vintake

VE =

x 100% (4)

Vnominal

Where, Vintake represents the real volume of intake air supported by the cylinders and Vnominal
is the theoretical volume of the engine. According to the [31] the turbocharged V8 engine range
of VE varies from 80% to 92% so for the calculation of MAF on a real vehicle it’s estimated
using HIL MAF volumetric efficiency.

Thus, using Equation (3 and 4) coupled with the engine Revolutions per Minute (RPM), we
can finally obtain the mass flow through the intake at given amount of time. The RPM the
engine is working can be obtained via OBD-I11 or via CAN-FD using DiagRA.

During the vehicle operation, in a four-stroke engine, there are two steps of air intake, i.e. in a
complete cycle, air flows inside the engine two times. With that information, we can calculate
the number of times air enters the engine per second by dividing the RPM by 2x60.
Incorporating this into above equations gives the mass air flow (air), shown by (5).

, P.V RPM
Mair(kg/h) = o= - Mair VE. —— (%)

The value obtained of turbocharged engine by this equation corresponds to an equivalent to
that obtained directly by the MAF sensor without EGR (Exhaust gas recirculation) as shown
in figure 37. As explained in [36] the overall results suggest that the unpredictability of the
generic speed-density method is in the order of 10% throughout most of the engine operating
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range, but increasing to tens of percent where high-volume exhaust gas recirculation (EGR) is
used.

120 7 A a— T
= MAF- calculated [kg/h] ! . - ! o !
e== Linear (MAF- calculated [kg/h]) :‘ {:,. '._: .: L] :
100 + - - -= T~ |- T ._ -t ._’ '_l':--.'r- e r -
" . e m e ot 2 TR I
=) I r 50, \'
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Fig. 37: Comparison of calculated mass air flow with mass air flow reported by the ECU [36]

For validation of results (discussed in chapter 7), the MAF calculation is based on speed density
method due to the unavailability of the MAF sensor values from OBD Il in Porsche Panamera
4. On the other hand, while calculating fuel consumption on the WLTP cycle, the MAF values
are used from CAN communication using DiagRA. Few of the assumptions are discussed as
followed:

e The assumption of ignoring EGR can affect the final results as all the Porsche vehicles
are equipped with EGR system. EGR is mainly active during partial engine loads and
at low and medium engine speed areas, where oxygen is in excess. In the high engine
load (torque), the EGR system is disabled, the cylinders being filled only with air, ready
for combustion [37]. According to [38] the research results indicate improvement of
fuel consumption improvement with cooled EGR under conditions where
stoichiometric operation cannot be maintained.

e Effect of Volumetric Efficiency: Volumetric efficiency in a combustion engine depends
on many factors like Fuel type, Air/Fuel ratio, fuel heat of vaporization, Intake manifold
temperature and pressure, Engine speed, Compression ratio, port design intake and
exhaust, etc. [34]. So, the assumption in calculating the MAF using a generic value can
affect the final results as the volumetric efficiency is not fixed and it varies according
to the above mentioned factors.
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7.1.2 Mass Fuel Flow (MFF)

Mass fuel flow 1y, (kg/h) depends on actual air fuel ratio (A/F) and Mass air flow
myir(kg/h). Before going into detailed calculation, it is important to define the equivalence
Air-Fuel Ratio (}) and understand how this relates to m,¢; (kg /h) and mg;,.(kg/h).

For a certain amount of fuel, there is a perfect amount of oxygen required for the combustion
to be ideal. This factor is called the Stoichiometric Air-Fuel Ratio (A/Fstioc). For the perfect
combustion of petrol without any reactants, the proportion considered to be an ideal mix of fuel
and oxygen has A/Fstioc Of 14.7:1. That is, it takes 14.7 kilogram of air for every 1 kilogram of
fuel entering the combustion chamber. In alcohol vehicles, this ratio is 9:1, while in diesel
vehicles, it is 14.6:1.

The equivalence Air-Fuel Ratio (A) can be mathematically described by Equation (6), being
only a division between the actual air/fuel ratio (A/F) and stoichiometric air/fuel ratio (A/Fstoic).
This value is controlled and monitored by the oxygen sensors attached before and after (for
few vehicle models) catalytic convertor.

AJF

A=
A/FStoic

(6)

To calculate A/F from a given A, the measured A is multiplied by the stoichiometric AFR
(A/Fstoic) for that fuel. The actual air/fuel ratio (A/F) is calculated as equation (7).

Mair(kg/h)

A/F = A X A[Fsoic = et (kg /1)
ue

(7)

The OBD-II standard establishes codes to acquire the mass air flow directly, or, in case the
vehicle does not have an MAF sensor, it also provide with the access to other sensors that can
be used to obtain such a value (speed density method). However, it does not provide a method
to directly obtain the amount of fuel injected in the combustion chamber, which is ideal for this
study. Considering that the A is a known value and mass air flow as calculated in section 7.1.1,
the mass of fuel can be found by reordering Equation (7) as presented in Equation (8).

mair (kg/h)

mfuel(kg/h) = A/JF

(8)

The fuel volume flow rate (represented in units of volume over time) to find the relation
between the volume of fuel consumed. To get this ratio of the fuel mass flow rate and the
respective fuel density is calculated as Equation (9).

mfuel(kg/h)

Vw1 = 2 ka7

€)

Petrol fuel is used for the study, and in Czech Republic its density is in the range 0.73 Kg/I -
0.78 Kg/l, so pruer = 0.75 Kg/l is assumed [32]
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Now, using the equation (8) and multiplying it vehicle velocity obtained from sensor, fuel
consumption is calculated as in Equation (10)

Viuer(1/h) . 100

Fuel Consumption (1/100 km) = V. (km/h)
velocity

(10)

7.2 Emissions (CO5)

As COz is a greenhouse gas and plays important role in global warming, the scope of this study
will be limited to study of CO: in the emissions. To estimate the amount of CO in this work,
complete combustion [33] is assumed without any pollutants e.g. UHC, CO, PM, NOX, etc. It
is important to note that, complete oxidation of simple hydrocarbon fuels (CnHm) forms carbon
dioxide (COz) from all of the carbon and water (H.O) from the hydrogen.

The mass of emitted CO: is closely linked to the volume of fuel burned stated in equation (8).
This relationship is expressed in the Equation (10), where the fuel volume flow rate is
multiplied by the mass of CO> generated by the combustion of one liter of fuel. The outcome
of this equation is the estimate of the CO2 mass flow rate released per second.

teo, (9/R) = Veyet(1/R) . CO per titre (10)

Where, CO2 per itre 1S 2392 g/l and is calculated as followed:

1 liter of petrol weighs 750 grams (pfuel = 0.75 Kg/l). Petrol contains for 87% of carbon or 652
grams of carbon per liter of petrol. In order to convert this carbon to CO, 1740 grams of oxygen
is needed. The sum is then 652 + 1740 = 2392 grams of CO2/liter of petrol.

Therefore,
oo, (g/km) = Fuel consumption (1/100km) . CO; per titre an
co -
z 100
Inefficiency
1000 T T T T H
mQuuy . Tt e Qo " E B
- ,-/////////////j/l/ﬁ/////////////_o . g: :
' Heat transfer " o i
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Fig. 38: (a) Results of heat-release analysis showing the combustion inefficiency and the
corrections due to heat transfer and Crevice effect [34]. (b) Mass fraction dependency on
one of the many factors on the amount of dilution [35].
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This value gives an estimate in the calculation of the CO, emissions and few of the assumptions
are discussed as followed:

e The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) shows the amount of
fuel burned and the rate of burning throughout the combustion process in an internal
combustion engine. These value are predicted using two zone complex models, to make
calculation simple, combustion efficiency and mass fraction burned is assumed to be
hundred percent. But in reality it is not the case as shown in figure 38.

e Effect of dissociation: At very high combustion temperatures usually around 1700K
[34], the CO> formed during combustion, starts to break (dissociate) into CO and Oo.
This dissociation is an endothermic reaction and it absorbs heat from its environment,
resulting in a loss in the net energy created and therefore, reducing the efficiency of the
IC engine. This effect is also neglected for this study.

CO, 2 CO + 0, (at high temperature)

62



Chapter 8
Results and Discussion

This chapter is mainly divided into two sections, first section (section 8.1.) involves the
validation of the dSpace Hardware in loop (HIL) at different driving cycle phases measured on
the real vehicle (Porsche Panamera 4) with primary focus on fuel consumption calculations.
The second section (section 8.2.) utilizes the validation results from first section and applies
them to calculate the WLTP cycle on HIL discussing in detail the fuel consumption and CO-
emissions. At the end, in section 8.3 the dSpace HIL Fault Code Diagnostics is discussed in
detail.

3.1 HIL Validation

To validate the dSpace HIL a simple driving cycle is performed on a real vehicle (Porsche
Panamera 4).

For Real data collection from Porsche Panamera 4, the OBD-Il communication interface is
used. Few of the codes values of Mode 1 PIDs are used to require data from the ECU as shown
in table 5.

For Hardware-In-Loop (HIL) ECU data collection, CAN-FD communication protocol and
DiagRA software are used.

PID PARAMETER
0 X 05 Engine Coolant Temperature
0 X 06 Short Term Fuel trim
0X34 Lambda
0 X 87 Intake Manifold Absolute Pressure
0X77 Intake Absolute Temperature
0XO0C Engine RPM
0 X 0D Vehicle Speed

Table 5: PID and Parameters selected for measurement in real vehicle

It is important to note that the only difference between both Real and HIL data extraction values
is absence of Mass Air Flow sensor (MAF) real vehicle (Porsche Panamera 4). As discussed in
section 7.1.1 the real vehicle MAF values were calculated using speed density method using
HIL volumetric efficiency values at different phases of the driving cycle.
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8.1.1 Approach for HIL Validation

The approach which is used to validate HIL is by Dependency Method. As shown in the
dependency diagram (figure 39), the fuel consumption is dependent on various factors which
subsequently dictate other parameters. This approach will help to move close to pointing the
problem in the performance of the HIL.

Fuel Consumption

./{\,

Vehicle Velocity Mass Fuel Flow Fuel Density ~ Engine Load

/\

Mass Air Flow Lambda
Manifold Temperature Manifold Pressure Engine rpm Volumetric Efficiency Throttle Position Mass Air Flow Fuel Trim

Fuel Consumption

/Engi@'m\‘
Manifold Temperature Manifold Pressure Engine rpm Mass Fuel Flow Throttle Position

Fig. 39: Fuel consumption dependency diagram

To focus on the HIL performance the real driving cycle which is performed on the road and
HIL is divided into three phases as shown in figure 40.

1. Acceleration Phase: In this phase the vehicle is accelerated using full throttle to reach
the desired speed. As the real vehicle is already driving until 10 seconds with varying
throttle so first ten seconds are ignored. This phase is only studied when the throttle of
both HIL and real vehicle are at maximum value i.e. after 10 sec.

2. Constant driving Phase: In this the vehicle is driven in the constant velocity for few
seconds.

3. De-acceleration Phase: This phase is same as engine braking, with no acceleration and
no braking the vehicle is deaccelerated using the engine brake.

Further, using these results and observation from HIL validation in different phases, a good
conclusion can be achieved about the behavior of HIL driving on WLTP cycle.
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Fig. 40: Vehicle Velocity phases 1. Acceleration 2. Constant driving 3. De-acceleration

Before moving forward with the results and observation of every phases, as mentioned above
the calculation of the Mass Air Flow is done using the average values of HIL Volumetric
Efficiency i.e. 87%, 67% and 67 % for phase 1, 2 and 3 resp. as shown in figure 41. As it’s
observed in the acceleration phase the efficiency is going above hundred percent this is typical
values of Turbocharged V6 engine.
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Fig. 41: Volumetric efficiency at different phases at HIL driving cycle

65



8.1

2 Implementation of driving cycle on HIL

To understand the behavior of HIL, the HIL driving cycle should be very similar to the real
driving cycle and it is implemented using TCG functions using EXAM automation software.
The TestCase (figure 42) and the TestSequence Diagram (figure 43) of the cycle is as follows:

Precondition:
1: Ignition on

Action:
3: Drive 146kmph

2: Pre readiness to drive 4, Wait 10s
5: Throttle pedal 0%

6. Wait 50s

8. Wait 10s

Postcondition:
9: Drive program P
10: Ignition off

7. Brake pedal 100%

Fig. 42: Real driving Cycle TestCase

1| Signals for
RealtimeCapturing

TCG_SetSignalsForRealtimeCapturing ([])

2| Signals for
CalibrationCapturing

TCG_SetSignalsForCalibrationCapturing ( [1)

‘0 TCG_Core‘ ‘0 TCG_TestFra me‘ |(I TCG_Functions_VehicleOperation_B ETAl ‘0 TCG_Functions_Testcas

TCG_PreconditionBefore ()

TCG Step (1)

- lanition on

TCG_Vehicle_Ignition { 'on’, 2000 )

TCG Step (2)

2: Pre readiness to drive

TCG_Vehicle_PreReadinessToDrive ()

TCG_PreconditionAfter ()

TCG_ActionBefore ()

TCG_Step (3)

Diagra_Recording ( 'START, 'EXAM testinoslope.csv’, iResStart

TCG_Step (4)

TCG_Vehicle_Drive ( 146.0, None, 'D")

TCG_Step (5)

TCG_TC_Wait (10000 )

TCG_ Step (6)

TCG_Vehicle_ThrottlePedal ( 0.0, None )

TCG Step (7)

TCG_TC_Wait ( 50000 )

TCG_Step (8)

TCG_Vehicle_BrakePedal ( 100.0, None )

TCG_Step (9)

10

11

12

13| DiagRA start

14

15
16

7
18

19
20

21
22

2
24

25
26

27| DiagRA Stop

28

29

30

31

32|10 Drive program P

w
)

34111 Ignition off

TCG_TC_Wait ( 10000 )

TCG_ Step (10)

Diagra_Recording ( 'STOP', 'EXAM test1noslope.csv’, iResStop )

TCG_ActionAfter ()

TCG_PostconditionBefore ()

TCG Step (12)

TCG_Vehicle_DriveProgram ('P')

TCG Step (13)

TCG_Vehicle_Ignition ( 'off, 2000)

TCG_PostconditionAfter ()

Fig. 43: Real driving Cycle TestSequence



8.1.3

Results of Acceleration Phase
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Fig. 44: HIL and Real fuel consumption at acceleration phase
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As shown in figure 44, the fuel consumption of real vehicle and HIL results are almost
following each other. The fuel consumption during acceleration phase of real vehicle is 113.0
1/100km, while consumption calculated from HIL is 110.0 I/100km.

According to the comparison results as shown in figure 45, few of the observations are as
follows:

1. The behavior of all graphs is based on the transmission shifting curve [figure 45 (b)].
To reach 0-120 Km/h real vehicle is on 2nd gear while HIL driver model is on 3rd gear.

2. Throttle actuation [figure 45 (a)] by the real driver is gradual while at HIL it’s sudden.

3. As fuel consumption is inversely proportional to the Intake Manifold temperature, the
HIL is unable to maintain the constant temperature while real vehicle can. This is one
of the vital reason for the overestimation of the HIL consumption.

8.1.4 Results of Constant driving Phase

. Vehicle Velocity Fuel Consumption
_ | 100

E HI i
——HIL Consumption
= —HiL Velocity S 80 )
£ —Real Velocity 2 \ —— Real Consumption VE 67%
. = 60
g -
2% k<] —\
@ 8 40
2 60 / (=8
2" f E
g, J/ | 3
“ / g 20
o
. | @ ||3 N R ( )
0
o |
0 5 10 15 20 25 30 35 40 15 20 25 30 35 40

Time (s) Time (S}

Fig. 46: HIL and Real fuel consumption at constant driving phase

As shown in figure 46, the fuel consumption of real vehicle and HIL results are almost
following each other. The fuel consumption during constant speed phase of real vehicle is 5
1/100km, while consumption calculated from HIL is 7.5 1/100km.

In this phase, the overdrive plays a very important role to improve the fuel consumption. It is
the operation in which vehicle is cruising at sustained speed with reduced engine revolutions
per minute (rpm), leading to better fuel consumption.
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According to the comparison results as shown in figure 47, few of the observations are as

follows:

1. The fuel consumption depends upon the overdrive, which further depends upon engine
speed, as observed from the [figure 47 (b)] the real vehicle rpm is less than HIL rpm.

2. Throttle actuation [figure 47 (a)] by the real driver is gradual while at HIL it’s sudden.
Also, throttle of HIL even at constant engine speed is increasing.

8.1.5

Results of Deceleration Phase
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Fig. 48: HIL and Real fuel consumption at de-acceleration driving phase

As shown in figure 48, the fuel consumption of real vehicle and HIL results are almost
following each other. The fuel consumption during deceleration phase of real vehicle is 1.5
1/100km, while consumption calculated from HIL is 3.2 1/100km. In this phase the engine-
braking is focused as it plays very important part for the observation of the HIL performance.
"Engine braking" refers to the braking effect occurs when the throttle valve is completely
closed — which causes a strong manifold vacuum for which the cylinders have to work against.
During engine braking, instead of applying footbrake the vehicle is forced to slowed down by
releasing the accelerator and shifting down through gears. This causes fuel injection to cease
and greatly restricting forced airflow.
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According to the comparison results as shown in figure 49, few of the observations are as
follows:

1. With the no accelerator pedal according to the figure 49 (a) there is still some throttle
of the HIL while in real vehicle throttle is constant at 15%.

2. The short term fuel trim is varying of the HIL while real values are at zero.

3. The lambda sensor is also at stoichiometric (A=1) for HIL and for real vehicle it’s at
lean region (A>1). All these factors affect the fuel consumption.

8.1.6 Results of Full Driving Cycle

FUEL CONSUMPTION

As shown in figure 50, the fuel consumption of real vehicle and HIL results are almost
following each other. The total fuel consumption during full driving cycle of real vehicle is
17.9 1/200km, while consumption calculated from HIL is 17.0 I/100km.
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Fig. 50: HIL (blue) and Real (orange) results of fuel consumption on full driving cycle

As observed from the figure 50 (a), during accerlation phase (from 10s-19s) the fuel
consumption is maximum and during idling its minimum. During the engine braking (from
35s-70s) (no braking, no throttle but vehicle in gear) the fuel injector shuts off, therefore the
fuel consumption is least.

Few reasons about variation in the calculation of the fuel consumption in every phase are
discussed as follows: (more reasons are explained in conclusion chapter)

Effect of lambda: The proportion of oxygen in the exhaust gases as measured by the Lambda
Sensor. Lambda (L) sensor retrieves the stoichiometric Air—fuel ratio (14.7:1 for gasoline
engines with the ideal value for the combustion being 1) and this signal is sent to the ECU
(Electronic Control Unit). A perfect reading is zero amps for Ideal Value. Each milliamp above
zero is a part point lean and each milliamp below zero is a part point rich. According to the
figure 49 (d), the lambda sensor is working perfectly for real vehicle but for the HIL it’s not
sending the lean values (A=2). Lambda value two is set by default, even it’s above two, and
usually this happens during engine braking when fuel is cut-off.

Effect of Short term Fuel trim: The adjustment of the fuel quantity as measured by the Short-
Term Fuel Trim (STFT) sensor. Depending on the signal value, in case of lean signal the ECU
will increase the pulse width of the injectors to either add fuel to the air/fuel mixture (Positive
fuel trim), or decrease the injector pulse width to subtract fuel from the air/fuel mixture
(Negative fuel trim) in case of rich mixture and this process of adapting the injector pulse width
is known as fuel trims.

As observed in figure 49(e), during acceleration and driving at constant speed the real vehicle
fuel trim is adjusting the lambda (A=1) and A=2 during engine braking phase. But in case of
Short term Fuel trim of HIL, it is unable to control fuel according to HIL Lambda values, it can
be observed during engine braking phase STFT is still maintaining the lambda A=1. This proves
improper functionality of HIL as the fuel injection should stop and lambda value should go to
A=2. So HIL short term fuel trim is not performing as the real vehicle.

Effect of Engine Coolant Temperature: The temperature of the engine coolant as measured by
the Engine Coolant Temperature Sensor (ECT). The PCM recognizes this signal and starts
other components (such as the engine’s cooling fan to maintain appropriate operating
temperature). It uses different approaches which are programmed into its lookup tables for hot
and cold operating conditions. This signal affects EGR (Exhaust Gas Recirculation) valve flow,
PCM will not allow the (EGR) valve to open until the engine has warmed up to improve
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drivability [39]. If the (EGR) is allowed while the engine is still cold; it may cause a rough idle;
or stalling. As shown in the figure 51, in the dSpace HIL the value is set to be constant while,
as observed on the real vehicle data, the coolant temperature varies. This assumption strongly
effects the EGR which in turn effects the fuel consumption.

Engine Coolant Temperature
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Fig. 51: Coolant temperature of HIL and real vehicle

ESTIMATED CO2 EMISSIONS

As explained in the previous section 7.2 of WLTP CO emission, the estimation is based on
the assumption of complete combustion of fuel. The results obtained at different phases are as
shown in table 6. The difference in CO2 emission numbers between dSpace HIL and Real
vehicle can be observed. As we have established that CO., emission depends on fuel

consumption, the differences recorded are the result of values obtained fuel consumption at
different driving phases.

Driving Phase dSpace HIL Re_al Full
Driving cycle
Full driving cycle 406.6 428.16
Acceleration Phase 2631.2 2702.9
Constant driving Phase 179.4 119.6
De-acceleration Phase 76.5 35.8

Table 6: HIL and real vehicle CO2 emission average values.

8.2 WLTP cycle results

With Porsche Panamera ECU attached to the dSpace HIL, the collection of the desired data
from Engine Control Module is retrieved via DiagRA software. The sensor and ECU values

which are used for estimating instantaneous fuel consumption (1/2100km) and CO2 emissions
are as follows:

Vehicle Speed

Engine RPM

Mass Air Flow (MAF)

Intake Manifold Absolute Pressure (MAP)
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e Intake Absolute Temperature (IAT)
e Lambda
e Short term fuel trim

8.2.1 Fuel Consumption

As showed in figure 52, the vehicle speed has effect on the fuel consumption in different phases
of WLTP cycle. The fuel consumption increases when the vehicle speed increases (during
acceleration), meaning that it is mainly affected by ineffective driving and traffic.
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At 20s and 110s sudden acceleration and braking occurs respectively. During this time, spike
in fuel consumption is recorded whereas during normal driving (without aggressive
acceleration—deceleration) the fuel consumption is reduced. While, low fuel consumption has
been seen when vehicle is cruising at higher speeds because vehicle tend to go into overdrive
mode to save fuel. The reason of this behavior is that while cruising vehicle load is minimum,
same is applicable while idling.

Figure 53 shows the cause of acceleration on the fuel consumption during WLTP cycle medium
phase. According to the observation, peaks of fuel consumption are more prominent during
aggressive driving.
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The obtained fuel consumption over the WLTP cycle on a different phases according to values

from dSpace HIL are shown in Table 7.

WLTP Cycle Phase Fuel(::/(igzllj(r:]n[))tlon
Low Phase 29.50
Medium Phase 19.04
High Phase 15.2
Extra High Phase 10.8
Overall Average 19.15

Table 7: Fuel consumption over the WLTP cycle different

8.2.2 Estimated CO, Emissions

The estimation of CO: is based on the fuel consumption complete combustion calculation
assumption. And the results at different phases are as shown in table 8.

WLTP Cycle Phase CO2 emissions (g/km)
Low Phase 705.5
Medium Phase 455.5
High Phase 363.7
Extra High Phase 259.3
Overall Average 458.1

Table 8: Estimated CO> over the WLTP cycle different

As observed, the emissions also are completely dependent on the fuel consumption. Emissions
are more in the phase where aggressive driving (more engine load phase) has occurred.

8.3 dSpace HIL Fault Code Diagnostics

As explained in the literature review chapters, a vehicle stores the trouble code in its memory
when it detects a component or system that’s not operating within acceptable limits. The code
will helps to identify and fix the issue within the vehicle.

To perform the TestCase smoothly without check engine light on, some of these error codes
are masked out or put to the default value by the Porsche Engineers as it does not affect their
tasks. The masking of the error are done using INCA Software, these code validate the results
which is observed in the study of prediction of fuel consumption. Few of the relevant error
codes which are masked/default valued are discussed along with its description in table 9:
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FAULT CODE NAME

OBD DTC CODE

DESCRIPTION

IVGdiCtICvoErrMax_x P02CD,.. All Cylinder Fuel Injector
IVGdiCtICvoErrMinMax P0149 Fuel Timing Error
HEGOS2B1ElecNpl P0136 ©2 Sensor Circut

Malfunction

GEVIvPhaSlowlIntkB1 and B2

POOOA and PO00C

Camshaft Position Slow
Response Bank 1 and Bank
2

GEVIvPhaPsOpenLoadOutlB2

P0023

Camshaft Position Actuator
Circuit (Bank?2)

OilPPlaus

P0521

Engine Qil Pressure (EOP)
Sensor

DFRMmax and DFRM2max

P0171 and P0174

Fuel Trim, System too Lean
Bank 1 and Bank 2

DFRMmin and DFRM2min

P0172 and P0175

Fuel Trim, System too Rich
Bank 1 and 2

Coolant Pump, Control

SCtPmp2DiagGrdKeyErr P261B Circuit Range/Performance
FanErrNEngLim P1OEE Funqtlon I|m|tat|_0n due to
failure of cooling fan
Fanl_KLERespErr U0632 Lost Communication With
Fan 1land 2
ExhTSnsr4SentData U14A1 Exhaust temperature bank 2
implausible message
PSRPMax P0236 Turbocharger/Supercharger
Boost Sensor
PSRPMax PO106 Manifold Absolute Pressure
Sensor
Fuel Rail Pressure Sensor
DSKVRmax P0191 Circuit
Range/Performance
. Catalyst System Efficiency
TWCDPriCatB1 and
TWCDPriCatB?2 P0420 and P430 Below Threshold Bank 1

and 2

Table 9: HIL Fault codes and description
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Chapter S
Conclusion

9.1 Summary

The theoretical part of this thesis provides in-depth understanding of various concepts from
Communication between In-Vehicle Networks, Vehicle Diagnostics, and lastly Hardware-in-
the-Loop (HIL). To obtain optimal results and successfully implement the practical part, it is
imperative to acquire the theoretical knowledge of these concepts.

For example, the topic of Vehicle Diagnostics is presented in detail to understand the meaning
of the error and fault codes occurring in the vehicle memory during simulation results.

As one of the main objective of this work involves Hardware-In-Loop and driving cycles, this
work provides a very clear understanding of requirements and functionality of the Porsche
Engineering HIL setup.

The implementation methods of WLTP cycle are described using manual and EXAM TestCase
(automation method).

Main conclusion

1. The TestCase was generated in EXAM with implementation of WLTP cycle.

2. This work also defined the various calculations and factors which are needed in
estimating the fuel consumption and CO emissions.

3. It has been verified that driving behavior affects the consumption, as random starts and
stops present massive fuel consumption whereas normal driving without aggressive
acceleration—deceleration provides good fuel economy.

4. Validation studies were carried out on HIL, using data collection from the real vehicle.

Reasons for HIL results over or underestimate by validation:

1. Modelled values of Short term fuel trim — From the results, the overestimate of fuel
consumption is observed in case of HIL as short term fuel trim is unable to run HIL
engine into lean region (A=2) during engine braking phase. This effect the functioning
of the Lambda sensor which influence the consumption.

2. Actuation of throttle valve — With the results, in all phases the throttle is not performing
according to the real vehicle. This can be due to difference in the driving behavior of
the driver model (real and HIL) or can be due to the modelled values in HIL. In the
acceleration phase the HIL actuation from 80 to 40% is occurring in 0.5 sec while in
real vehicle it’s in 2.5 sec. This actuation can affect the engine load/MAF which plays
a very significant role in the fuel consumption.

3. Intake Manifold Temperature of HIL — The inability of HIL to maintain the constant
intake temperature in intake manifold after the turbocharger can also prove the reason
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of the underestimation. The HIL values are in the range of 50°C - 60°C, while in real
vehicle it is around 30°C, this variation can affect the density of the air which will
further will effect fuel consumption. This effect can also be due to the improper
modeling of the intercooler or the ambient temperature in the HIL.

Modeling of the gear shifting — According to the results 0 -120 Km/h real vehicle is on
2nd gear while HIL driver model is on 3rd gear, proves that the modeling of the gear
shifting can be a problem.

Reasons for Real results over or underestimate by validation:

1.

Grade (slope) on road — Measured results are performed on the Stuttgart, Germany
roads and they have a little bit of slope on the road, this can affect the engine load.
Effect of Volumetric Efficiency (VE) — This effect played a very important role in
determining the consumption of the real vehicle data. Due to absence of the MAF sensor
values VE values are estimated according to the HIL values at different phases.

Effect of EGR — As MAF values of real vehicle are calculated using the speed density
method, which assumes ignoring EGR. As the dilution effect of due to EGR is very
important for the petrol air/fuel mixture combustion, this also influence fuel
consumption.

Effect of Coolant temperature: This effect is also related to the Exhaust gas recirculation
(EGR) which in turn improve the fuel consumption. But it observed that the dSpace
HIL is not varying the temperature values, the HIL engine coolant temperature is set on
default at 88°C while the real vehicle is running between 94°C - 97°C. This can also be
due to the improper modeling of the coolant pump and cooling fan.

Contribution of thesis

A test case in EXAM was generated that use WLTP cycle to validate HIL system
focusing on fuel consumption.

This TestCase can potentially help the future engineers working on this system to test
the vehicle using WLTP cycle and advance their work more timely and reliably.
Moreover, in future, using this study, calculations and development for estimation of
fuel consumption, the emissions model for the HIL can be generated which can further
be validated using real values from exhaust analyzers fitted on the vehicle.

Also, WLTP cycle real results can be used to validate the HIL system in future.

Using the fault code diagnostic analysis of HIL, in future it can be resolved and the
performance of the Hardware-in-loop can be improved.
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Appendix

CONTROLLER AREA NETWORK (CAN)

LENGTH
FIELD NAME (BITS) PURPOSE
Start of frame 1 Denotes the start of frame transmission
Identifier (green) 11 A (unique) identifier Whlc_h a_Iso
represents the message priority
. Must be dominant (0) for data frames
Remote Transmission .
1 and recessive (1) for remote request
Request (RTR) (blue) f
rames
Identifier Extension Bit 1 Must be dominant (0) for base frame
(IDE) format with 11- bit identifiers
Reserved bit. Must be dominant (0) but
Reserved bit (r0) 1 accepted as either dominant or
recessive.
Data length code (DLC)
(yellow) 4 Number of bytes of data (08 bytes)
. i i Data to be transmitted (length in bytes
Data Field (red) 0-64 (or 0-8) dictated by DLC field)
CRC 15 Cyclic redundancy check
CRC delimiter 1 Must be recessive (1)
ACK slot 1 Transmltter sends recessive _(1) and any
receiver can assert a dominant (0)
ACK delimiter 1 Must be recessive (1)
End of Frame (EOF) 7 Bit indicates the end of the messages

and disables the bitstuffing.
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Fig. 54: CAN-Frame in base format (11

The 1SO-11898:2003 standard was originally created for messages with an 11-bit identifier
(ID). The standard was later amended with the extended 29-bit identifier. The 11-bit IDs
provide 2048 valid different messages identifiers, where the 29-bit 1Ds provide room for 537
million possible message identifiers.



CAN Bus Signal

Bus Voltage
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Fig. 55: CAN bus levels [40]

On the physical level, a CAN bus exists out of a twisted pair where in rest 2,5V is applied on
in case for high-speed variant. When a node wants to send a recessive bit (associated with a
logic 1), the voltage of 2,5V is not changed. When a dominant bit has to be sent (associated
with a logic 0), one wire of the twisted pair is pulled to 1.5V (the CAN Low wire) and the other
one is lifted to 3.5V (the CAN High wire) in case of high speed variant. Both wires are closed
with a 120Q resistor to suppress reflections on the bus (Figure 55). The nodes have to ensure
their own synchronization to the messages on the bus. As CAN is event-triggered
communication and not time-triggered therefore, no clock will be transmitted with the CAN
messages.

FLEXRAY

Multi-drop Bus

The Multi-drop Bus topology is the same as in CAN and LIN systems, and it uses a single bus
to connect multiple processors together. This system is helpful in implementing with other
systems due to the similar layout of CAN and LIN networks.

Star Network

The Star Network topology consists of multiple ECUs connected to a central active node. This
layout is useful in that if one processor is cut or disconnected, the other processors continue
functioning.
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Fig. 56: FlexRay Hybrid



Hybrid N

etwork

The Hybrid Network topology is a mix between Multi-bus and Star Networks. This layout
combines the reliability and cost efficient advantages of the other two layouts, and it will most
likely be the future of FlexRay technology as shown in the Figure 56 above.
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FlexRay Frame 5 + (0 ... 254) bytes + 3 bytes
Fig. 57: FlexRay Frame Format
FIELD NAME | LENGTH (BITS) PURPOSE
: This bit is not currently used by the protocol and has been reserved for
Reserved bit 1 4 yrep
further use.

The payload This bit specifies the existence of the vector information in the payload
preamble 1 segment of the frame. In the static frame it indicates a Network
indicator Management Vector and in a dynamic frame it indicates message ID.

Null frame 1 This bit designates whether or not the frame is a null frame i.e. a frame
indicator that contains no usable data in the payload segment of the frame.

Sync frame 1 This bit designates whether or not the frame is a sync frame i.e. a frame
indicator that is utilized for system wide synchronization of communication.

Startup frame 3 :

; p 1 Shows whether or not the node sending frame is the start-up node.
indicator

The frame ID defines the slot in which the frame should transmitted and
F D 1 is used for prioritizing event-triggered frame. Within the same time slot

rame ) . ;
the node can transmit frames with different IDs. Valid frame IDs range
from 1 to 2047.
Payload length 7 This stated the data length of the payload segment.

This is the CRC calculation value of sync frame indicator, startup frame

Header CRC 11 e e 2

indicator, frame ID and payload length which is calculated by the host.
This indicates the value of the cycle counter on the transmitting node at
The cycle count 6 : s
the time of the frame transmission.




FlexRay Signal

At the physical layer, FlexRay communicates using the differential signals BP and BM,

corresponding to the voltages uBP and uBM (Figure 58).
The differential voltage between the signals (Vuit) is due to represent four different sates which
can occur on the bus: Idle_LP: low-power state, Idle: no-communication state, Data_1: logical

HIGH and Data_0: logical LOW

ok
| ldie_LP Idle Data_1 Data_0
2 : /
\
=4 .\
OV .
time™

Fig. 58: FlexRay Signal [41]

LOCAL INTERCONNECT NETWORK (LIN)

l« Frame Slot .

Master Header Response Slaye Response

Space
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| | | | |

Sync Break Sync Field Identifier Data Field (2/4/8 bytes) Checksum
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to SLAVES MASTER and all other SLAVES

o -

Fig. 59: LIN Frame Format

Master Header

Sync Break: Every LIN frame begins with the break, which comprises 13 dominant bits
(nominal) followed by a break delimiter of one bit (hominal) recessive. This works as a start-
of-frame notice to all nodes on the bus.

Sync Field: The master task in the header transmit the sync field as a second field. Sync is
well-defined as the character x55. The sync field permits slave devices that perform automatic
baud rate detection to measure the period of the baud rate and adjust their internal baud rates

to synchronize with the bus.




Identifier: This field is the final field transmitted by the master task in the header. It provides
identification for each message on the network and ultimately decides which nodes in the
network receive or respond to each transmission. All slave tasks repeatedly listen for ID fields,
verify their parities and determine if they are publishers or subscribers for this specific
identifier. The LIN bus consist of a total of 64 IDs. IDs 0 to 59 are intended for signal-carrying
(data) frames, 60 and 61 are used to transfer diagnostic data, 62 is kept for user-defined
extensions and 63 is reserved for future protocol developments. The Identifier is communicated
over the bus as one protected ID byte, with the lower six bits consisting of the raw ID and the
upper two bits comprising the parity.

Slave Response

Data Bytes: These bytes field are transmitted by the slave task in the response. This field
comprises from one to eight bytes of payload data bytes.

Checksum: This field is transmitted by the slave task in the response. The LIN bus states the
use of one of two checksum algorithms to calculate the value in the 8 bit checksum field.
Classic checksum is computed by adding the data bytes alone and enhanced checksum is
computed by adding the data bytes and the protected ID.

LIN Signal

It was the goal of the LIN design to accomplish a simplistic wiring topology. The simple single-
wire bus connects to each node in the collection and switches from ground to battery-level
voltage as shown: Signal Levels (Figure 60)
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Fig. 60: LIN Signal




