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Abstract 
 
To establish early niche in the market, vehicles being produced these days are growing 

exponentially in terms of complexity (hardware and especially in software). Keeping pace with 

this advancement, verifying and validating design becomes crucial steps. Hardware-in-the-loop 

(HIL) tests is one of the well adopted simulation test in the industry to overcome this 

challenge.  HIL allows to test functionality and behavior of any vehicle component (any 

actuators or sensors) as though it is on the real vehicle, simulating all driving conditions, and 

identify all faults within any unit. In simple words, HIL replaces the need of assembled final 

product and hence comprehensive testing can be performed at early stage, giving the engineers 

and designer a head start.  

Hardware-in-the-loop (HIL) simulation is used for all aspects of product development, 

including safety-relevant functions, simulating behavior of vehicle performance, etc. 

Nowadays, it is a standard component in the vehicle development process which provides 

various methods for testing of electronic control unit (ECU) software. All the vehicles physical 

parameters like temperature, air flow, vehicle speed, engine rpm, etc., are continuously 

monitored by electronic sensors and communicated, over the internal vehicle communications 

protocol, to the Main Control Unit for further processing.  

This study present the selection of parameters used for calculation of the fuel consumption and 

prediction of CO2 emissions on a simple driving cycle. These measurements are retrieved from 

Engine Control Module and OBD-II diagnostic protocol in case of HIL and real vehicle 

respectively. Comparing the driving cycle HIL data with data the real vehicle measurements, 

HIL is validated which help to understand the effects of various factors in the estimation of 

fuel consumption and CO2 emissions. Further, using the results from this validation we can get 

clear depiction on how HIL will behave on WLTP cycle. 

 

Keywords: Hardware-In-Loop, DSpace, Vehicle Diagnostics, Communication Protocols, 

EXAM, DiagRA, INCA, PIDs, On-Board Diagnostics (OBD-II), Diagnostic Trouble Code 

(DTC), CAN, FlexRay, LIN, Unified Diagnostic Service (UDS), WLTP, Volumetric 

efficiency, Short term fuel trim, Fuel Consumption, CO2 emissions. 
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Chapter 1 
Introduction 

 

 

This report introduces the master’s thesis ‘HIL simulation of driving cycles and its validation’. 

The work has been conducted at the Porsche Engineering Services, Prague, Czech Republic. 

This chapter presents the background, objectives, tasks and structure of the thesis. 

 

 

1.1  Background 
 

As per a report published by Harvard Kennedy School, it is estimated that worldwide the 

number of passenger cars will reach up to 1.5billion by 2025 compared to 750million in 2010 

[1]. Following these growing numbers, in the past decade automotive industry has seen 

tremendous growth in the technological advancement in electrical vehicles and systems. One 

of the most important factor to continue this growth momentum is the parallel advancement in 

development and testing techniques.  

There are few challenges when it comes to perform reliable and comprehensive testing. First 

and the foremost is the very high testing cost which then for most companies impacts their 

timelines/delivery schedules and subsequently the time to market. Another important challenge 

is the ability to achieve testing results at acceptable level of confidence in safety, quality and 

reliability.  

 

Lately, hardware-in-the-loop (HIL) testing method has gained recognition and has become a 

principal part of control validation in the automotive product development cycle. According to 

ISO 26262 standard which is mandatory for passenger car development worldwide. It explicitly 

names HIL as a suitable test environment for software unit tests and integration tests, for the 

verification of safety requirements at component level and names it as a appropriate method 

for testing single ECUs/components and for testing ECU networks up to an entire virtual 

vehicle.  

 

HIL simulation is rapidly progressing in an automotive industry from a control prototyping 

tool to a system modeling, simulation and synthesis methods which are combining many 

benefits of both physical and virtual prototyping. Vehicle is a very complex ecosystem 

consisting of multiple sub-processes/modules which are responsible for its smooth operations. 

Each module is monitored and controlled with the usage of sophisticated sensors which inform 

and collaborate with the Main Control Unit (MCU). The micro-controllers (supporting the 

sensors) communicate with the MCU and with each other using typical bus-based 

communications standards such as CANBus (Controller Area Network), Flexray, Local 

Interconnect network (LIN), etc. 

 

To study the ECU efficient functionality, the HIL validation plays a very important role, so this 

thesis primarily focuses is on validating HIL using collecting simulated results from Engine 

Control Unit and validating them with the measurements derived from the vehicle (Model-

Porsche Panamera). HIL being a very complex system architecture platform, it’s validation in 

this study is mainly focused on the behavior of it in terms of fuel consumption calculation, as 
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this gives us clear comparison about the engine efficiency. Another dimension of this study is 

comprehensive dive into in-vehicle architecture and vehicle diagnostics further used in HIL 

system validation on WLTP cycle focusing on fuel consumption.  

 

1.2.  Objectives 
 

The objective of this work can be described in following points 

 

1. First, to develop strong theoretical background and sound understanding of the foundation 

concepts in vehicle electronics and Hardware-In-Loop systems. The successful completion of 

this objective is very crucial to achieve rest of the objectives in this thesis.  

 

2.  The second objective is to gain expertise and proficiency in test automation software 

(Extended Automation Method (EXAM)) and diagnostics tool (DiagRA) used for HIL setup, 

specifically around functionalities and capabilities of both the software and system 

respectively. 

 

3. The third objective is to validate HIL by focusing on fuel consumption with three phase 

driving cycle. The validation includes extracting the relevant data from the sensors and 

actuators attached to the Electronic control unit (ECU) and comparing this data with the real 

vehicle measurements via On-Board Diagnostics (OBD II) Scantool. 

 

4. Lastly, using the understanding of the HIL behavior and sensitivity over varying, vehicle 

speed, rapid acceleration/ deceleration, and reasons behind it’s over-under estimation of the 

results. The fuel consumption values via HIL are obtained on WLTP driving cycle. 

 

1.3.  Tasks of the thesis 
 

With the aim to effectively fulfil the objective listed in 1.2, the thesis is organized under two 

major goals and further sub-divided into small tasks for continuous monitoring of progress. 

 

I. Understanding of In-Vehicle network, communication protocols and vehicle diagnostics. 

 

 Learn about On-Board and Off-Board Diagnostics and HIL simulation method with 

focus on dSpace KoVoMo HIL system which is used for all V6 and V8 Engines 

Porsche Vehicle. 

 Acquire knowledge about vehicle diagnostics software and diagnostic trouble codes 

(DTC) and Parameter Identifiers (PIDs).  

 

II. Hardware-In-Loop (HIL) testing and its validation using real vehicle measurements. 

 

 WLTP Implementation of standard driving cycle using manual and automation 

approach on HIL system focused on fuel consumption and estimation of CO2 emissions. 

 Understanding and using of Extended Automation Method (EXAM) automation tool 

for test management/automation. 

 Validate HIL and perform its data analysis using results from real vehicle. 

 



3 
 

1.4  Structure of the Master Thesis 
 

The thesis work is organized in two parts: Theoretical and Practical Part. 

 

The theoretical part covers the basics of Communication Network (Chapter 2), Vehicle 

Diagnostics (Chapter 3), and Porsche Hardware-In-Loop (HIL) setup (Chapter 4).  

 

The Practical part starts with giving insights of DiagRA D–Diagnostic Software tool and 

EXAM (EXtended Automation Method) is a test management system software (Chapter 5).  

Chapter 6 describes Worldwide Harmonized Light Vehicles Test Procedure (WLTP), its 

implementation (manual and automated) and HIL Virtual Driver Behavior.  

 

Chapter 7 generated the mathematical model with assumption in order to calculate fuel 

consumptions and CO2 emissions. Chapter 8 discusses about HIL Validation using real vehicle 

measurements. Based on the data analysis of the consumption and CO2 estimations, various 

cause of the effects is discussed later in this chapter. Further, the results obtained via WLTP 

cycle on HIL is compared using official published data. 

 

Finally, the last chapter 9 summarizes the final conclusion of the thesis. 
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Chapter 2 
Communication Networks 

 

 

In the chapter in-vehicle network which is a special internal communication network that 

interconnects components inside the vehicle are discussed. Further, the hardware aspects of in-

vehicle networking and its main standards for e.g. CAN, LIN, FlexRay and Ethernet are 

explained as these communication protocol is widely used by Porsche Engineering Services 

Hardware-in-Loop system.   

 

2.1  In-Vehicle Networks 
 

Electronic safety-critical control function in vehicles was first used in 1981. General Motors 

implemented micro-computer based engine control for their petrol powered vehicles which 

greatly improved the efficiency and performance [2]. With the introduction of laws regulating 

emission control, the use of electronic engine control (ECU) was required to meet the legal 

requirements as well as to maintain acceptable efficiency and performance. The ease of 

implementation along with the cost/efficiency benefits motivated manufacturers to adopt 

electronic control for engine management and this later spread to other domains.  

Currently, in modern vehicles around 30–50 ECUs across all segments are to be found. These 

ECUs consist of automotive grade micro-controllers and/or general purpose processors which 

execute software implementations for control and comfort applications. The number of ECUs 

in vehicles has been rising at the rate of approximately 1.45 times a year, while the application 

software has been growing at a rate of 4.5 MB per year. 

 

Depending on the domain the ECU is intended for, suppliers also provide customized 

architectures that are best suited for functionality in that specific domain. For example, a body 

domain controller might be 

working on different network 

protocols and offer little or no 

hardware acceleration support, 

while a telematics controller 

would integrate high speed 

interconnect and dedicated 

accelerator blocks for video 

processing or radar interfaces. 

This “right-sizing” enables 

manufactures to control the cost 

(development and parts) as well as 

standardize the software 

framework for each domain. The 

Society for Automotive Engineers 

(SAE) classifies in-vehicle 

networks based on throughput and 

domain of operation [3] as shown 

in Table 1. 

Table 1: SAE in-vehicle network classification. 
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2.2  Communication Protocols 
 
Every modern vehicle use different network protocols in different domains, the choice of which 

is determined by factors such as the functional requirements of the domain, criticality, cost, 

etc. Among the many protocols, Local Interconnect Networks (LIN), Controller Area Networks 

(CAN), FlexRay, and Media Oriented Systems Transport (MOST) are the most widely used 

protocols by the different manufacturers today. Special networks like safe-by-wire are used for 

passenger safety systems like airbags and other active protection systems. A simplified scheme 

of typical in-vehicle network architecture in a modern vehicle is as shown in Figure 1. 

 

 

 

A large variety of in-vehicle networks evolved primarily due to cost and performance 

requirements. CAN is very expensive and complicated for simple functions like power 

windows or boot release. Simpler protocols like the Local Interconnect Network (LIN) is 

adoption due to its non-critical functionality at lower cost per module and power consumption. 

While, CAN is too  slow for high bandwidth applications like multimedia in higher end vehicles 

resulting in the development of high bandwidth protocols like Media Oriented Systems 

Transport (MOST) for such applications. Time-triggered CAN (TTCAN) is an evolution of 

standard CAN, which addresses the lack of its functionality by introducing a time-triggered 

mechanism above the CAN framework. The FlexRay protocol, developed by the FlexRay 

consortium, offers a combination of time-triggered and event-triggered communication for in-

vehicle applications to enhance reliability with higher bandwidth and is mostly used in 

Porsches. 

 

 

 

Fig 1: In-vehicle network architecture [2]. 
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2.2.1  Controller Area Network (CAN) 
 
CAN (Controller Area Network) bus is one of the most popular protocols in the automotive 

industry, which enables different components of vehicles to communicate with each other. It 

was established by Robert Bosch in 1983 and officially released in 1986. It handles a maximum 

signaling rate of 1 megabit per second (bps). CAN is an International Standardization 

Organization (ISO-11898: 2003) defined serial communications bus, originally developed for 

the automotive industry. It is a two-wire (twisted pair) communications bus and has a high 

immunity to electrical interference and can self-diagnose and repair data errors.  

The ISO-11898 [4] standard defines CAN by using the Open Systems Interconnection (OSI) 

model which is defined in terms of layers. Figure 2 shows, the two lowest layers of the seven 

layer OSI model: the data-link and physical layer and ISO 15765-2 [5] specifies Transport and 

Network layer services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The protocol used for CAN is the carrier-sense, multiple-access with collision detection 

(CSMA/CD). The arbitration is based on the message priority and is implemented on bit level 

(bit-wise arbitration). The node with the highest priority identifier which is accomplished by 

longest dominant bit levels in the identifier, prioritized as the bus access. 

 

CAN BUS FRAME 

 

Four different CAN messages exist in the CAN protocol [6], explained as followed: 

 

Data frame: The CAN data frame also works with two different protocols. The first one is 

called “base format” and has an identifier of 11 bits. The second one is the “extended format” 

and the identifier has 29 bits. The standard says that a CAN controller must accept at least basic 

frames but can or cannot accept extended frames. 

Remote frame: It works the same as the previous one but there is a difference. It is possible 

that a node requires some data from another one. Then, a remote frame is requested to the 

second one in order to get the information. Basically, the difference between data frames and 

remote frames is that the last ones do not have data field. 

Fig 2: CAN Bus OSI Model. 
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Error frame: This is a special frame that is transmitted when a node detects a wrong message. 

Then, the rest of nodes also transmit an error frame. There is an error counter that avoids the 

blockade of the bus with continuous errors. 

Overload frame: It is similar to error frame and is transmitted by a node when it is very busy. 

Then the bus starts providing extra delays between the CAN messages. For further explanation 

about CAN frame, please refer to the appendix. 

 

 

2.2.2  FlexRay 
 

The FlexRay communications bus is a deterministic, fault-tolerant and high-speed bus system 

developed in correspondence with automobile manufacturers and leading suppliers. FlexRay 

delivers the error tolerance and time-determinism performance requirements for x-by-wire 

applications where x can be drive-by-wire, steer-by-wire, brake-by-wire, etc. 

 

One of the things that differentiates FlexRay, CAN and LIN from more traditional networks 

such as Ethernet, is its topology, or network layout. FlexRay supports multi-drop passive for 

simple connections as well as active star connections for more complex networks. In contrast, 

when FlexRay is configured to talk on a bus, it uses something called a time division multiple 

access (TDMA) scheme to guarantee determinism. Its node is synchronized with the same 

clock and each node waits until it is the turn to write to the bus. As the timing in a TDMA 

scheme is consistent, it can guarantee determinism or the consistency of data delivery to nodes 

in the network. FlexRay devices cannot automatically detect the network or addresses on the 

network, so it is essential to have that information programed in at manufacturing time.  

 

The ISO-17458 [7] standard defines FlexRay by using the Open Systems Interconnection (OSI) 

model which is defined in terms of layers. Figure 3 shows, the two lowest layers of the seven 

layer OSI model: the data-link and physical layer and ISO 10681-2 [8] specifies Transport and 

Network layer services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: FlexRay OSI Model 
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FLEXRAY FRAME 

 

The FlexRay frame consists of the three segments, the header segment, the payload segment 

and the trailer segment. 

 

Header Segment: The FlexRay header segment consists of five bytes (40 bits). These bytes 

contain a reserved bit, the payload preamble indicator, null frame indicator, sync frame 

indicator, frame ID, startup frame indicator, payload length, header CRC and the count for 

cycles.  
 

Payload Segment: The FlexRay payload segment comprises of 0 to 254 bytes data. The bytes 

are identical numerically, starting at Data 0 for the first byte after the header segment increasing 

by one with each subsequent byte.  

For frames communicated in the static segment the first 0 to 12 bytes of the payload segment 

may optionally be used as a network management vector. The payload preamble indicator in 

the frame header shows whether the payload segment contains the network management vector. 

The length of the network management vector can be configured from 0 to 12 bytes. 

For the frames transmitted in the dynamic segment the first two bytes of the payload segment 

can be used as a message ID field, allowing the receiving nodes to filter data based on the 

contents of this field. The payload preamble indicator in the frame header indicates whether 

the payload segment contains message ID. 
 

Trailer Segment: The FlexRay trailer segment comprises of a single 24 bit field. This has CRC 

calculations values which have been calculated by the host for the fields in the header and the 

payload segments for the field. 

For further explanation about FlexRay frame, please refer to the appendix. 
 

 

2.2.3  Local Interconnect Network (LIN)  
 

The LIN consortium comprises many vehicle manufacturers like Audi, Volvo, and BMW. LIN 

is a cheap slow serial bus used for distributed body control electronic systems in vehicle. It 

enables effective communication for sensors and actuators where bandwidth, speed and 

versatility are not required (i.e inside mechatronic based subsystems generally made of an ECU 

and its set of sensors and actuators). LIN is usually used as a sub bus for CAN and Flexray. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: LIN OSI Model 
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The ISO-17987 [9] standard defines LIN by using the Open Systems Interconnection (OSI) 

model which is defined in terms of layers. Figure 4 shows, the two lowest layers of the seven 

layer OSI model: the data-link and physical layer ISO-17987-3 and ISO-17987-4 and ISO 

15765-2 specifies Transport and Network layer services. 

 

LIN FRAME 

 

The LIN bus is a polled bus with a single master device and one or more slave devices [10]. 

The master device has both, a master task and a slave task. Each slave device contains only a 

slave task. Communication over the LIN bus is controlled totally by the master task which is 

in the master device. Frame is divided into a header and a response which is the basic unit of 

transfer on the LIN bus. The header is always transmitted by the master node and it consists of 

three separate fields: the break, synchronization (sync), and identifier (ID). The response is 

transmitted by a slave task which resides in either the master node or a slave node. It contains 

a data payload and a checksum.  

 

Normally, the master task analyze each slave task in a loop by transmitting a header, which 

consists of a break-sync-ID sequence. Before starting the LIN, each slave task is designed to 

either publish data to the bus or subscribe to data in response to each received header ID. When 

the header is received, each slave task verifies ID similarity and then checks the ID to decide 

whether it needs to publish or subscribe. If the slave task wants to publish a response, it 

transmits 1-8 data bytes to the bus after that by a checksum byte. If the slave task wants to 

subscribe, it reads the data payload and checksum byte from the bus and takes appropriate 

internal action.  

 

For standard slave-to-master communication, the master transmits the identifier to the network, 

and just one slave responds with a data payload. 

 

Master-to-slave communication is done by a separate slave task in the master node. This task 

receives all published data to the bus and responds as if it were an autonomous slave node. To 

transmit data bytes, the master should first update its internal slave task’s response with the 

data values it wants to communicate. The master then issues the suitable frame header, and the 

internal slave task then sends its data payload to the bus. Further explanation is in the appendix. 
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2.3  Future Communication Protocol 
 

The automotive network architecture is currently facing the boundaries of established 

technology. The gradually increasing need for bandwidth and the diversification of 

performance, costs and dependability requirements lead to a modification of the networks used 

throughout the vehicle. Traditional protocols such as CAN, Flexray and LIN do not meet the 

bandwidth and scalability requirements, for example the Advanced Driver Assistance Systems 

(ADAS). 

Around 2500 signals in today’s luxury vehicles (i.e. elementary information such as the speed 

of the vehicle) are exchanged by up to 70 ECUs [11]. Until the start of the 90s, the data was 

exchanged through point-to-point links between ECUs. However this strategy, which required 

an amount of communication channels of the order of n2 where n is the number of ECUs (i.e., 

if each node is interconnected with all the others, the number of links grows in the square of 

n), was unable to handle with the increasing use of ECUs due to the problems of weight, cost, 

complexity and reliability induced by the wires and the connectors. CAN FD and Ethernet are 

in nearly all vehicles currently in mass production in VW. For this study, CAN FD 

communication protocol is used to retrieve measurement data from DiagRA Software while 

FlexRay is used to flash software on the ECU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ethernet and CAN-FD is the emerging technology in the automotive domain. It is capable to 

address bandwidth demands of tomorrow’s advanced driver assistance systems (for example, 

HD video, LIDAR) and it will also provide greater interoperability with consumer multimedia 

products such as smartphones and tablets. In the following article, two of the new automotive 

networking protocols, CAN-FD and Ethernet are discussed. 

 

 

 

 

 

 

Fig. 5: Future automotive backbone network 
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2.3.1  Controller Area Network Flexible Data-Rate (CAN-FD) 
 

CAN FD was developed in 2011 by Robert Bosch GmbH, in Germany as an addition to the 

original CAN protocol. Working closely with the prominent carmakers and other CAN experts 

and answering to the need of the more powerful CAN protocol, Bosch came up with CAN-FD. 

The “FD” in CAN FD means “flexible data-rate,” which is the big development, allowing 

increased performance and higher bandwidth communication. This new and improved 

extension to the Standard CAN protocol allows for data transfers of 8 MB/s, even with cable 

lengths more than 40 meters. It can transfer up to 64 bytes of data in a single message.  

 

CAN-FD FRAME 

 

The CAN-FD frame format is shown in Figure 6. Similar to CAN as discussed in the previous 

section, CAN-FD dominant bit is a logical 0 and a recessive bit is a logical 1. As shown in 

the figure, a CAN-FD frame is consist of two phases: arbitration phase and data phase [12]. 

 

Arbitration Phase: The arbitration phase in the CAN-FD frame consist of: SOF (Start of 

Frame), arbitration, part of the control field, ACK (Acknowledgment), EOF (End OF Frame), 

and IFS (Inter-Frame Space). The 11-bit (or 29-bit in case of extended format) identifier 

represents the priority of the frame: the lower the value of the identifier, the higher the priority. 

The arbitration for transmission happens as follows: 

During the idle state of the bus, all the nodes with some ready frames send the 11-bit identifier 

after the SOF bit. During the transmission of the identifier bits, if a node transmits a recessive 

bit but finds a dominant bit on the bus, it stops transmission due to the presence of a higher 

priority node contesting for transmission. In the end, the node with the highest priority message 

wins the arbitration and continues the transmission. 

 

Data Phase: The BRS (Bit-Rate Switch) bit is one of the add-ons to the CAN-FD frame format. 

It is used to decide whether the bit-rate in the data phase is the same as that of the arbitration 

phase (BRS = 0) or it switches to the increased bit rate (BRS = 1). Since the focus is on CAN-

FD, the BRS bit in the frames to be recessive (i.e., BRS = 1) is considered. At the increased 

rate of data transmission, each bit transmission occurs with a duration denoted by td.  

For example, if the data rate is chosen as 2 Mbps, td = 0.5µs. The 4-bit DLC (data-length code) 

field stipulates the payload size (in bytes) of the data field. CAN-FD offers 16 separate payload 

sizes: 0 through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.  

The data field is followed by the Cyclic Redundancy Check (CRC) field, which has 17 bits for 

payloads up to 16 bytes, and 21 bits otherwise. The CRC delimiter bit (recessive) is transmitted 

next. After this, the bit rate is reversed to that of the arbitration phase. 

 

Fig. 6: CAN-FD Frame format 
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2.3.2  Automotive Ethernet 
 

Ethernet is the evolving technology in the automotive industry. Due to its greater bandwidth 

and flexibility and the promise of sharing cost of ownership with other industrial segments. 

Ethernet is perfect to address the high demands of new functions in infotainment and advanced 

driver assistance systems or to decrease ECU flashing speed and updating cost. With the first 

generation of vehicles using Ethernet as an added communication medium, it is also considered 

as a very powerful backbone advancement in the future technology which is also capable of 

carrying traffic originating in CAN (-FD) or other bus subsystems as shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ETHERNET FRAME 

 

An Ethernet frame is a piece of data along with the information that is required to transport and 

deliver specific piece of data. In networking reference models, such as; OSI Seven Layers 

model and TCP/IP, the Ethernet frame is defined in the Data link layer same as CAN, LIN and 

FlexRay. 

 

Fig. 7: The fast-growing demand for bandwidth 

Fig. 8: Ethernet Frame format [13] 
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The basic frame consists of seven elements divided in three main areas as shown in figure 8: 

 

Header 

 

Preamble / SFD - This element in header is added by the layer 1 part of the protocol stack. It 

enables the receiver to synchronize and know that a data frame is about to be sent. 

 Preamble (PRE) - This is seven bytes long and it consists of a pattern of alternating 

ones and zeros, and this informs the receiving stations that a frame is starting as well as 

enabling synchronization. 

 Start of Frame Delimiter (SFD) - This consists of one byte and contains an alternating 

pattern of ones and zeros but ending in two ones. 

Destination Address (DA) - This field consist of the address of station for which the data is 

intended for. The left most bit shows whether the destination is an individual address or a group 

address. An individual address is denoted by a zero, while a one is for a group address. The 

next bit in the DA is to understand whether the address is globally administered or local. If the 

address is globally administered then the bit is zero valued, and a one is when it’s locally 

administered. There are then 46 remaining bits. These are used for the destination address itself. 

 

Source Address (SA) - The source address comprises of six bytes and it’s used to recognize the 

sending station. Being an individual address, the left most bit is always valued as a zero. 

 

Length / Type - This field length consist of two bytes. It offers MAC information and specifies 

the number of client data types that are contained in the data field of the frame. If the frame is 

assembled using an optional format (IEEE 802.3 only) in that case it may also indicate the 

frame ID type.  

 

VLAN tag - It contains a protocol identifier (TPID) and control information (TCI). While the 

TPID consist of original type field value, the TCI comprises of a Priority (PCP), a Drop Eligible 

or Canonical Form Indicator (DEI or CFI) and an Identifier (VID). VID and PCP are mainly 

used in the automotive industry. The Identifier separates the respective virtual network for the 

different application areas. The Priority allows optimization of run-times through switches so 

that important information is sent preferentially. 

 

Payload 

 

Data - This block consist of the payload data and it can be up to 1500 bytes long. Padding data 

is added to increase its length up to the required minimum of 46 bytes, in case if the length of 

the field is less than 46 bytes. 

 

Trailer  

 

Frame Check Sequence (FCS) - FCS is four bytes long. It consist of a 32 bit Cyclic Redundancy 

Check which is generated over the Destination Address, Source Address, Length / Type and 

Data fields. 
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Chapter 3 
Vehicle Diagnostics 

 

 

In this chapter, on-board and off-board diagnostics signal protocols, Parameter IDs and 

understanding trouble codes (DTCs) are explained. Further, basics of software Integrated 

Calibration and Application Tool (INCA) along with very commonly used terms in the 

diagnostics are described. 

 

3.1  Introduction 
 

Diagnostic determines, verifies and classifies which is focused to get an overall picture in 

finding the root cause of a problem in a vehicle. The detection, improvement and 

communication strategies applied to irregular operation of systems is examined by Electrical 

and electronic devices. Therefore, the purpose of Diagnostic is to identify this root cause of 

irregularities in its operation so a restoration can be performed. Diagnostic requirements for 

OEM and supplier are defined by a common database which contains the functional diagnostic 

requirements, its implementation, development, specific data concerning to it and also its 

features. Every industry have a straight connection with product engineering, manufacturing, 

aftersales and suppliers. Applications of diagnostic can be classified for the following fields as 

OEM [14]: 

 

Development – In this process, correct functionality of the vehicle’s components must be 

authenticated. Then subsystem of the diagnostic takes part at reading out ECU's internal 

information and data of sensor and actuator's values. 

Production – The assembly plant uses this system for transferring calibrated/authenticated data 

and software updates to the non-volatile memory of the ECUs, including EOL programming 

and tests. 

Aftersales – In the operating vehicle, error detection is mainly done via diagnostics. Detected 

errors are stored to a persistent fault memory, and trouble codes are read out at the service 

station in order to make troubleshooting possible. The diagnostic systems include both on-

board diagnostics and off-board diagnostics discussed as follow. 

 
 

3.2  On-Board diagnostics (OBD) 
 

OBD is the computer system built into vehicles that monitors the performance of the engine 

components. It consists of several ECUs that uses various sensors to collect data and evaluate 

the performance of the vehicle as shown in figure 9. The OBD system will detect problems 

with the vehicles performance or functions before the problems become noticeable to the 

driver. These services can perform tests that can control actuators and read sensor values in the 

vehicle. This diagnostics can also continuously monitor sensor values and the state of the 

vehicle, whenever the fault occurs in the vehicle trouble codes are generated, called DTCs. 
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OBD-I mentions about the first generation of diagnostics which was developed during the 

1980s, at that time, due to a lack of standardization, every vehicle manufacturer used different 

connectors and communication protocols. OBD-II also written as OBD2, is the successor to 

OBD-I and was developed in the early 1990s by the American organization Society of 

Automotive Engineers (SAE) which ordered all compliant vehicles to use a standardized 

connector and one of several standardized communication protocols [15]. European On-Board 

Diagnostics (EOBD) is the European version of vehicle diagnostics and is technically 

comparable to OBD II but was not implemented until 2001 for petrol vehicles and 2004 for 

diesel vehicles [16].  

The standard requires that vehicles should have a 16-pin OBD II port. Sensor data and 

diagnostic information from the electronic control unit (ECU) of a vehicle is measured or 

extracted from this port. SAE J1962 [17] defines the pinout of the connector as shown in Figure 

10. There are two types of connector: Type A and Type B connector, the nominal supply 

voltage at the contact 16 and the supported current supply in case of type A should be 12 V DC 

and 4,0 A while in type B it should be 24 V DC and 2,0 A respectively.  

 

 

 

 

 

 

 

 

 

 

 

CONTACT GENERAL ALLOCATION 

1 Discretionary 

2 Bus positive line SAE J1850 

3 Discretionary 

4 Chassis Ground 

5 Signal Ground 

6 CAN_H Line of ISO 15765-4 

7 
K Line of ISO 9141-2 and ISO 

14230-4 

8 Discretionary 

9 Discretionary 

10 Bus negative line of SAE J1850 

11 Discretionary 

12 Discretionary 

13 Discretionary 

14 CAN_L line of ISO 15765-4 

15 
L line of ISO 9141-2 and ISO 

14230-4 

16 Permanent positive voltage 

Fig. 9: On- board vehicle diagnostics. Diagnostic tester/client connected to a vehicle to run 

diagnostic services in an ECU 

Type A 

Type B 

Fig. 10: Vehicle connector 

and contacts allocation 
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3.2.1  OBD-II Signal Protocols 
 

The development of OBD II also lead to in the development of OBD II scanning tools, like 

OBD II readers, which can communicate to any vehicle via the 16-pin port. A scanning tool 

normally requests information from the ECU by sending a message comprising of a 

hexadecimal code connected with a specific parameter. These codes are defined by the SAE 

J1979 standard (explained further in the document). The message would then get interpreted 

according to one of five mainly used OBD II signaling protocols discussed as follows: 

 

 

STANDARD DESCRIPTION 

SAE J1850 PWM (pulse-width 

modulation 41.6 kB/sec) 

 Pin 2: Bus+ 

 Pin 10: Bus– 

 High voltage is +5 V 

 Message length is restricted to 12 bytes, including 

CRC (cyclic redundancy check) 

SAE J1850 VPW (variable 

pulse-width-10.4/41.6 kB/sec) 

 Pin 2: Bus+ 

 Bus idles low 

 High voltage is +7 V 

 Decision point is +3.5 V 

 Message length is restricted to 12 bytes, including 

CRC 

ISO 9141-2 (Similar to 

Recommended std. RS-232) 

 

 Pin 7: K-line 

 Pin 15: L-line (optional) 

 UART (universal asynchronous receiver-

transmitter) signaling 

 K-line idles high, with a 510 ohm resistor to Vbatt 

 The active/dominant state is driven low with an 

open-collector driver. 

 Message length is Max 260Bytes. Data field MAX 

255. 

ISO 14230 KWP2000 

(Keyword Protocol 2000) 

 Pin 7: K-line 

 Pin 15: L-line (optional) 

 Physical layer identical to ISO 9141-2 

 Data rate 1.2 to 10.4 kBaud 

 Message may contain up to 255 bytes in the data 

field 

ISO 15765 CAN (250 kBit/s or 

500 kBit/s) 

 Pin 6: CAN High 

 Pin 14: CAN Low 
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3.2.2  Parameter Identification Numbers (PIDs)  
 

OBD II uses two types of codes to request ECU data, these are Diagnostic Trouble Codes 

(DTCs) and Parameter Identifiers (PIDs). DTCs (for more details refer to section 3.2.3) are 

used to diagnose malfunctions in various subsystems of the vehicle and PIDs (hexadecimal 

code) are used to measure real time parameters. Vehicle manufactures have power to define 

their own PIDs by this means making the on-board system more sophisticated. 

 

These codes are defined by the SAE J1979 standard [Table 2 below].  

 

   

 

 

 

The message is interpreted according to one of five OBD II signaling protocols. The ECU sends 

a hexadecimal code in response. Depending on the specific parameter being measured, the real 

measurement can be extracted by simply converting the returned hexadecimal value to decimal 

or by carrying out a calculation using a standard formula as defined in [18] [19] for that specific 

parameter. 

 

For most modes (explained above) there are several PIDs defined that specifies the request in 

more detail. For example mode 01, PID 0D requests the current vehicle speed and mode 09 

PID 02 requests the Vehicle Identification Number (VIN). Some modes do not require a PID, 

for example, mode 03 requests the stored trouble codes (DTCs) and mode 04 clears it from 

memory. Every PID has a defined response that is expected from the request. The responses 

are defined in SAE J1979 [18] [19] and describes in detail what the response should be, how 

many bytes the response contains and how the data is encoded in those bytes. 

 

DIAGNOSTIC SERVICE 

MODE OF OPERATION 
DESCRIPTION 

$01 Request Current Powertrain Diagnostic Data 

$02 Request Powertrain Freeze Frame Data 

$03 Request Emission-Related Diagnostic Trouble Codes 

$04 Clear/Reset Emission-Related Diagnostic Information 

$05 Request Oxygen Sensor Monitoring Test Results 

$06 
Request On-Board Monitoring Test Results for Specific 

Monitored Systems 

$07 

Request Emission-Related Diagnostic Trouble Codes 

Detected During 

Current or Last Completed Driving Cycle 

$08 Request Control of On-Board System, Test or Component 

$09 Request Vehicle Information 

$0A 
Request Emission-Related Diagnostic Trouble Codes 

with Permanent Status 

Table 2: Purpose of each mode of operation. The dollar sign “$” in front of the numerical value 

highlights that this is an identifier. It’s important to know that the numerical values of the 

identifiers are in hexadecimal format. 

http://x-engineer.org/undergraduate-engineering/mathematics/arithmetics/numbers-representation-systems-decimal-binary-octal-and-hexadecimal/
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3.2.3  Diagnostic Trouble Codes (DTCs) 
 

DTC stands for Diagnostic Trouble Code. It is used to identify faults in nodes. This is the 

foundation of Diagnostics. When fault is occurred in the vehicle, connected ECU captures it 

and stores it in memory as fault code. This is specific number for type of fault is called 

Diagnostic Trouble Code. This information can be retrieved either by tools at service station 

(e.g. OBD2 Scantool) or by in vehicle methodologies. 

 

 DTCs STRUCTURE 

 

DTCs have 4 bytes, 3 bytes to identify them and 1 byte to denote the current status of the DTC 

as shown in figure 11 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Byte - 1 and Byte - 2: To Identify the failed component - called as "ROOT DTC" 

First two bits help identify the major system: 

00 = P - Code for Powertrain 

01 = C - Code for Chassis 

10 = B - Code for Body 

11 = U - Code for Network 

 

Byte - 3: Failure Type Byte ("FTB") – To identify failure mode of the ECU. 

There are lot of FTBs. ISO-15031-6 has a list. Common Codes are 11 for short circuit to 

ground, 13 for open circuit. 

Fig. 11: DTCs 

Structure 



20 
 

Byte - 4: Status Information - Each DTC will 

have Status byte that provides the status 

information of DTC. Each bit in this bytes has 

a meaning and provides different information. 

This byte is widely used extract error 

information while performing the various 

testing scenarios at Porsche Engineering using 

DiagRA software figure 12. 

 

There are 8 different states explained as follow: 

 

Bit0: This Bit is “testFailed”. This bit gives the 

information about the fault (Error) is still active 

(injected) or not. If Fault is still Active/injected, 

then the value is 1 otherwise the value is 0.  

 

Bit1: This Bit is “testFailedThisOperation 

Cycle”. This bit specifies whether the fault has 

occurred anytime during the current operation 

cycle. If Fault has occurred in the present 

operation cycle, then the value is 1 otherwise 

the value is 0.  

 

Bit2: This Bit is “pendingDTC”. This bit informs whether the fault has occurred anytime during 

the current operation cycle. The only difference between “Bit1” and “Bit2” is that Bit1 is 

cleared at the end of current operation cycle (it does not bother whether the fault is still active 

or not) and “pendingDTC” is cleared only when in the succeeding operation cycle, monitor 

routine is run and the end result shows fault is absent (pass). So if Fault is still present in the 

current operation cycle, then the value is 1 otherwise if the Fault was active in previous 

operation cycle and is inactive in the present operation cycle, then the value is 0. 

 

Bit3: This Bit is “confirmedDTC”. This bit informs that fault is constantly active for specific 

monitor routines and is matured enough in the existing operation cycle so that it can be said 

confirmed. If fault is active and matured, then the value is 1 otherwise it is 0. 

 

Bit4: This Bit is “testNotCompletedSinceLastClear”. This bit notifies that monitor routine is 

not to be run in the existing operation cycle (once after Clearing the DTC is done). The reason 

being because particular pin is inactive in the operation cycle (e.g. parked or hibernate vehicle 

mode). If the monitor routine is not finished this operation cycle, then the value is 1 otherwise 

the value is 0. 

 

Bit5: This Bit is “testFailedSinceLastClear”. This bit notifies, monitor routine has reported that 

test has failed (at least once Bit0 is set) in any operation cycle at least once after clearing the 

DTC action is achieved. If the fault has happened after clear DTC is performed, then the value 

is 1 otherwise the value is 0. 

 

Bit6: This Bit is “testNotCompletedThisOperationCycle”. This bit notifies that the monitor 

routine is still not running during this current operation cycle. This can be due to, the pin is not 

active for this operation cycle or when the request is sent from the tester, the monitor routine 

Fig. 12: Byte 4 (red box) 

DiagRA Software 
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is not run. If the monitor routine is not run this operation cycle, then the value is 1 otherwise it 

is 0.  

 

Bit7: This Bit is “warningIndicatorRequested”. This bit is used to draw the attention of the user 

or driver when the fault occurs. If fault occurs and any monitor is required for that exact fault, 

then the value is 1 otherwise the value is 0. 

 

 DTC CLASSES 

 

Class A DTCs: A class A code is a DTC that will result in the immediate illumination of the 

Malfunction Indicator Light. This type of code sets as a response for gross emission failure. 

For e.g., the misfire monitor can store a DTC and start flashing the MIL in response to its first 

recognition of a type A misfire. (A type A misfire is categorized as a severe misfire that could 

result in the overheating of the three-way catalytic converter, resulting in its damage) 

 

Class B DTCs: Most DTCs in the engine control system are class B codes. A class B code 

states to a fault that does affect the vehicle’s emissions. When a fault related to an emissions 

are detected for the first time, a DTC for that fault is stored as a pending code. The Powertrain 

Control Module (PCM) does not light up the MIL at this time. During the next trip or drive 

cycle, the pending fault code will be erased only when the monitoring sequence that first 

identified the fault is repeated and the same fault does not repeat. If the fault does recur on the 

second trip or drive cycle, the pending code is then stored in memory as a confirmed code, also 

commonly denoted to as a mature code. It is at this point that the freeze frame data is stored 

and the MIL is illuminated by Powertrain Control Module (PCM).  

 

Class C DTCs: A class C code is a DTC that defines a fault that does not adversely affect the 

vehicle’s emissions. Depending upon the vehicle, it may result in illumination of the MIL or 

“Service Engine Soon” light instead. 

 

Class D DTCs: A class D code is a DTC that denotes to a fault that does not adversely affect 

the vehicle’s emissions and nor does it illuminate the MIL. These codes are the least important 

of the code types.  
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3.3  Off-Board diagnostics  
 

Off-board diagnostics defines a systems outside the vehicle that can use the diagnostic services 

to read out data or start the execution of an on-board diagnostic test implemented as a part of 

an ECU. The Off-board diagnostics (UDS, KWP 2000, etc.) is typically some tool used on a 

computer in a repair shop or an end-of-line tester (tool that checks new-built vehicles at the 

end of the production line). 

Off-board diagnostics can also be done on a server that is remotely connected to the vehicle, 

this is often called remote diagnostics and gives other possibilities to gather data and find faults.  

Remote diagnostics uses a diagnostic client that is employed in an ECU inside the vehicle and 

then this ECU is connected to an off-board server system which perform the diagnostic tasks, 

shown in Figure 13. 

 

 

 

3.3.1  Unified Diagnostics Service (UDS) 
 

Off-board vehicle diagnostics is used for the diagnostics of every other vehicle ECU function 

other than emission. There are several protocol standards defined for off-board diagnostics, 

however, Unified Diagnostics Services (UDS) [20] is the most popular diagnostic protocol. 

UDS (ISO 14229-1) is an International Standard that expands the individual properties which 

are different from data link layer requirements of an automotive diagnostic service in a road 

vehicle. It is based on the idea of Keyword Protocol (KWP2000) to fulfill common 

requirements for diagnostic systems on CAN buses. The UDS Protocol was created by merging 

the ISO Standards 14230-3 (KWP 2000) and 15765-3 (Diagnostics on CAN). This carried out 

to greatly decrease the costs which to date have arisen for the development of diagnostic 

communication. This standard provides a unified set of diagnostic services for ECUs.  

 

There are five types of Diagnostics functions described in the specification as explained in table 

3 below. 

 

Fig. 13: Remote Vehicle diagnostics. Off-board server connected 

to a diagnostic tester/client in an ECU in the vehicle. 
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Basically it covers the implementation details of ISO 14229 services over CAN figure 14. The 

standard is based on Open Systems Interconnection (OSI). The services used by a diagnostic 

tester (client) and an ECU (server) are distinguished as: Unified diagnostic services (layer 7) 

and Communication services (layers 1 to 6). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIAGNOSTICS 

FUNCTIONS 
EXAMPLES 

Communication Management 
Session Control, Device Reset, Security Access, 

Communication Control 

Data 
Read Identifiers or Memory Write Identifiers or 

Memory 

Stored Data 
Read Diagnostics Information Clear Diagnostics 

Information 

I/O Control Control Input or Output 

Reprogramming Download and Upload of Data 

Table 3: UDS Diagnostics Functions 

Fig. 14: Implementation of UDS protocol over CAN 
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3.3.2  UDS Request/Response 
 

The main intension of UDS protocol is to communicate with all electronic data units that are 

positioned and interconnected in the vehicle, it also provide maintenance to check errors, 

actualizing the firmware, etc. In a diagnostic session, the network consist of tester (Client) and 

the ECU being tested (Server). A diagnostic service request is sent from the client to the server. 

The client starts with a service request and always ends with positive, negative or no response 

from the ECU (Figure 15). The transport protocol of UDS consists of ISO-TP [21]. ISOTP is 

an International Standard for transmitting data over the CAN bus which allows maximum data 

length up to 4095 bytes in a single data frame. 

 

The three types of frames in UDS protocol. 

 

1. Request Frame 

2. Positive Response Frame 

3. Negative Response Frame 

 

Service ID – It is basically 1 byte ID belongs to the service well-defined in 14229-1. Server 

see this Identifier and perform that particular task related to this service. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: UDS message format 

Request Data 
Service ID 

SID 

SID + 0x40 

Error ID 

0x7F 

Response Data 

Service ID 

SID 

Response 

Code 

Request 

10 01 FF 

FF 

Positive response 

50 05 00 FF 00 03 

Negative response 

7F 10 12 

Byte 1 Byte 2 Byte 3 … Byte n 

Payload 
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3.4  Diagnostic Management Software 
 

An OBD II Powertrain control module (PCM) includes diagnostic management software to 

organize the complex testing procedures. The terms used for this diagnostic management 

software differ by manufacturer. In Porsche Engineering the most commonly used diagnostic 

software is INCA and DiagRA (which is used in this thesis work and explained in Section 5.1). 

 

3.4.1  Integrated Calibration and Application Tool (INCA) 
 

INCA is a measuring, calibration, and diagnostic system that provides wide-range of measuring 

support. INCA supports in all essential tasks during control unit calibration, evaluates the 

measured data, and documents the calibration results [22]. 

 

INCA can be used to read measured data from the control unit and the engine in parallel. This 

program helps to determine measured engine data such as lambda, different temperatures and 

voltage values, etc. INCA, is not just a tool that will adapt to a variety of different control units, 

but also a system that will optimize a wide range of different vehicle components. 

It is an "open system". With consistent implementation of the ASAM-MCD standard and 

support for data exchange formats that are established in the environment allow this program 

to be used for any manufacturer's ECU interfaces and to be integrated in existing data 

processing infrastructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: INCA System Overview 
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INCA consists of a measurement and calibration core system which can be enhanced by several 

add-ons and custom-made extensions (e.g. INCA-MIP, INCA-QM-BASIC, INCA-

FLEXRAY) that can be integrated in INCA as shown in figure 16. In addition to that, INCA 

proposes open interfaces which allow for the adaptation of its core capabilities as well as the 

remote control of INCA by other applications. 

 

INCA Measurement and ECU Calibration 

 

 

It enables the adjustment of function parameters, maps, and tables either offline or during ECU 

runtime. This tool manages the ECU’s volatile and non-volatile data memory and resolves 

parameter dependencies. Using powerful editors present scalars, curves, or maps as tables or 

graphs in physical or hexadecimal format. Calibration scenarios consists of multiple parameter 

values of specific functions and ease the comparison of different settings. 

 

For offline management of calibration data, it generates sophisticated functions for listing, 

comparing and merging datasets. In addition, INCA supports handling of meta-data describing 

the history and maturity of a parameter or function calibration with its Basic Quality and 

Maturity Tracking add-on. 

 

In parallel to calibration, INCA provides for the acquisition of data from the ECU and vehicle 

buses such as CAN, LIN, Ethernet, and FlexRay as shown in figure 17. In addition, INCA 

Fig. 17: INCA Interface for Measurement and ECU Calibration 
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measures various parameters from sensors and the vehicle environment. Quantities extracted 

from measurements and calibration variables can be calculated and displayed online. Using 

sophisticated trigger conditions data recording with several independent recorders may be 

started and stopped. Parallel recording of data associated with different trigger conditions is 

also possible. Data records comprises of the measured and calculated signals, calibration 

parameters, trigger options as well as user comments. 

 

INCA Diagnostics 

 

ODX-LINK tool adds ECU diagnostics capabilities to the measurement and calibration 

functionality of the INCA basic product. As the calibration and diagnostics related signals are 

acquired in parallel, therefore it can be used for triggering and calculation of derived signals in 

the same manner. All data is recorded in single measurement file and displayed in the same 

views. A single ECU and bus interface module can provide connections for both ECU 

diagnostics and calibration as shown in figure 18 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ODX-LINK integrates Scantool functions based on diagnostic services required by OBD 

emission regulations. Based on the services explained in ISO 15031-5 and SAE J1979, the easy 

to use OBD Scantool visualizes fault memory entries, status information of monitoring 

functions, vehicle information, in-use monitor performance ratios, and environmental data 

known as freeze frames. 

 

Beyond OBD, ODX-LINK facilitates full diagnostics of ECUs compliant to the ODX standard 

(Open diagnostics data exchange). In addition, INCA can match a service tester and execute 

troubleshooting functions. Using this technique, service diagnostics can be validated long 

before service tester hardware is available. Using ODX-FLASH tool in INCA, a complete 

solution for validating ODX-based vehicle diagnostics and ECU reprogramming can be 

performed. 

 

Fig. 18: INCA Interface with ODX-LINK 



28 
 

3.4.2  Important terms in Diagnostics 
 

OBD II standards require that the engine management system should be able to detect faults, 

turn the MIL on or off, set DTCs in memory, and run drive cycles and trips for each monitored 

circuit according to the particular sets of operating conditions. Few of the important diagnostics 

concepts are explained further [23]. 

 

FREEZE FRAME DATA 

 

Apart from storing detected DTCs, the diagnostic management software keeps a full record of 

all the relevant engine parameters for a given circuit. 

If a fault is detected and logged, that information is stored as a snapshot. This data, known as 

freeze frame data, is used by the diagnostic management software for comparison and 

identification of comparable operating conditions when they recur. This data is used to provide 

further assistance in determining what might be a problem in the system. Also, this data can be 

used to help in duplicating the symptom during a road test. Freeze frame data can be retrieved 

with a Scantool through the data stream and typically includes the following: 

 

 The DTC involved 

 Engine RPM 

 Engine load 

 Fuel trim (short- and long-term) 

 Engine coolant temperature 

 MAP and/or MAF values 

 Throttle position 

 Operating mode (open or closed loop) 

 Vehicle speed 

 

On the basic system, freeze frame data store information only of the DTC that occurred first, 

unless a later DTC is of higher priority, such as a severe misfire or fuel system DTC. In this 

case, the diagnostic management software interchanges the stored data from the lower priority 

DTC with the freeze frame data related to the misfire or fuel system DTC.  

According to the previous tests performed the freeze frame data which is recorded by the PCM 

starts recording after five seconds after it records the DTC in memory. As the driving conditions 

are measured during freeze frame, recording are most often the same as they were when the 

DTC was recorded. There is a small possibility for change during this five-second period, if 

the driver suddenly hit the brakes or hit the throttle to the floor. 
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WARNING LIGHTS (MIL AND EPC) 
 

 Malfunction Indicator Light (MIL):  

 

The MIL is also known as the Check Engine Light. The main purpose of 

this warning light is to indicate a detected problem and alert the driver 

about the issue with the vehicle.  

The OBD II system turn on MIL when there is a problem with the vehicle 

engine, transmission or emission control system. There is always a 

reason if light turns so it’s always recommended not to ignore it and to 

investigate the cause. But it is totally normal for the light to illuminate for a few seconds after 

starting the engine and it should go out when the engine is running. 

 

The Malfunction Indicator Light indicates three different types of problems: 

 

1. Occasional flashes indicate temporary engine malfunctions. In this case, it is good to be 

aware of the probable forthcoming issues which can later on turn to more serious ones. 

2. The most common case is when the indicator light stays on constantly. It indicates more 

serious problem that requires action to be taken as soon as possible. Yet, sometimes the 

issues aren’t that serious for example it can affect the emissions of the vehicle in a long 

run. 

3. The most serious type of signaling is when the MIL flashes all the time. It is a sign that the 

engine is misfiring. This issue is very important and should stop the engine immediately 

to prevent serious damage. For instance, it can lead to overheating of the catalytic converter 

and even can cause fire. 

 

OBD II scan tool is used to detect issue with the vehicle with the help of accompanied software 

through which it reads the Diagnostic Trouble Code(s) from the system. Every time the OBD 

system illuminate the MIL, it will also store a Diagnostic Trouble Code (DTC) in the electronic 

control unit. The OBD II system can turn the MIL off automatically if the conditions for the 

problem stop to exist. After checking a system or component for three consecutive times 

without spotting any problem, the light can be turned off, otherwise, usually it remains on. 

With diagnostic software, the MIL reset is also possible. It is important to clear the MIL after 

fixing the problem. Because, for example, the vehicle will fail emissions testing if the MIL 

light is ON when tested. 

 

 Electronic Power Control Light (EPC) 

 

The EPC warning light is found in the instrument cluster and found on all 

Volkswagen, Audi, Seat and Skoda vehicles fitted with a drive-by-wire 

system. EPC stands for Electronic Power Control. This EPC light when 

illuminated displays the letters EPC to primarily warns the driver that 

there is problems in the engine's torque system (acceleration system). 

If this light turn on, the vehicle’s throttle valve (butterfly) may be limited in order to protect 

the engine from damage. It avoids the engine rpm from revving above 2000rpm. This is known 

as limp mode and the ECU allows sufficient power to drive the vehicle to a service center for 

repairs. In order to remove this problem, the vehicle’s ECU should be scanned with an 

automotive diagnostic tool, in order to extract the DTC's related to the torque problem. 
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Mostly common problems cause this light to turn on is: the vehicle's knock sensors, its throttle 

system, its cruise control, its mass air flow system, its engine speed verification system or any 

of the other associated systems that cooperate in the drive-by-wire scheme. Few of them are 

explained as follow: 

 

1. The Engine Speed Sensor is known to cause the EPC light to turn on. The engine speed 

sensor is a proximity magnetic transducer counting the rpm of the flywheel/crankshaft and 

sends a steady stream of pulses to the ECU. So when this stream of data is disturbed for 

whatsoever reason for only a fraction of a second, the ECU detects this and turns on the 

EPC light and cuts power to the engine. It does this to save the engine from damage. The 

following DTC error code, 17745 /P1337, 17746 / P1338, 17747 / P1339 and 17748 / 

P1340 are the troubles codes [24] which tells that the engine speed sensor is either loose 

or faulty. 

 

2. The Accelerator Pedal is often also the main cause of EPC problems. The sign is that the 

engine idles a lot faster than it ought to. To verify this, physical pull the accelerator pedal 

away from the floor board while the vehicle is idling. If it reduces the engine's revs back 

to normal, then it is time to replace it, because the potentiometers that's built into the 

accelerator pedal, have gone faulty. Accelerator pedal problems are many and the 

following DTC, 16504/P0120, 16505/P0121, 16506/P0122, 16507/P0123, 18038/P1630, 

18039/P1631, 18040/P1632, 18041/P1633, 18042/P1634, are linked to accelerator pedal 

errors.  

 

3. Mass air flow sensor is another engine component that can cause the EPC light to turn on. 

Cleaning the mass air flow sensor with compressed air does often solve the problem but if 

the issue continues, then it’s time to replace mass air flow sensor. But before changing it, 

check to see if any of the rubber hoses in its surrounding area isn't perished. A leak in Air 

Intake System will permits unmonitored air to enter the intake which will throw a P2279 / 

15093 error or a P0068/ 15101 error. 

 

4. The Throttle body is by far the most common cause of an EPC problem though in many 

cases it is not the throttle body that's at fault but rather that the needs to be recalibrated 

(adaptation). The scan codes like P2135 / P2136 / P2137 / P2138 / P2139 and P2140, will 

give a good idea if the throttle body needs replacement.  But in many cases it turns out to 

be the problem with wiring harness. The plugs that connects the throttle drive motor and 

the throttle position sensors is fairly troublesome and should be checked before throttle is 

replace. 

 

5. The Brake light switch can also cause the EPC light to come on because the torque control 

circuit uses the brake light signal as an ECU input signal when the vehicle decelerates.   

 

6. The Injectors and the Ignition Coils can also cause the EPC light to turn on. In case of 

spark plugs an incorrect gap can cause it while in injectors, driving with very less petrol in 

the tank can also cause the EPC light to turn on because the high pressure fuel pump may 

lose pressure which then informs the ECU to constrain the torque circuit and switch on the 

EPC light and make the vehicle go into limp mode. 
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OBD DRIVING CYCLE AND TRIP 

 
 OBD Driving cycles  

 

Warm-Up Cycle: OBD II standards define a warm-up cycle as a period of vehicle operation, 

after the engine is started in which coolant temperature rises by at least 4.4°C and reaches at 

least 71.1°C. Most OBD II DTCs are removed automatically after 40 warm-up cycles following 

the PCM turning off the MIL if the failure is not detected again. 

 

Drive Cycle: A drive cycle is a series of operating conditions that allows the PCM to test all of 

the OBD II emissions-related monitors. When all of the driving conditions (known as enable 

criteria) have been met and all of the monitors have been run, the system is said to be 

inspection/ maintenance (I/M) equipped.  

A drive cycle’s enable criteria may be run in any order, but when the Powertrain control module 

sees all of the enable criteria performed that apply to a specific monitor, it will check off that 

monitor as being “complete.” A scan tool can be used to regulate the status of each monitors, 

by observing which monitors have run successfully and which have not yet run and are still 

needed to complete the full drive cycle. 

If the scan tool shows “N/A” for a monitor, that monitor is not applicable to that particular 

vehicle. If the Scantool indicates that the monitor has completed, this does not shows whether 

the monitor has passed or failed, only that the monitor’s tests have been run. If the monitor has 

run and passed, there should be no stored DTCs in memory for that monitor; on the other hand, 

if the monitor has run and failed, there have to be a DTC stored in memory for that monitor. 

 

 Trip 

 

A trip is a diagnostic test that is designed to allow the PCM to determine a particular fault or 

DTC. It is generally run when a drive cycle has caused in the PCM setting a pending code in 

memory. A trip contains of a key cycle that includes ignition on, engine run, specific enable 

criteria met that let the PCM to run a diagnostic test, and ignition off long enough for the PCM 

to power down as shown in figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19: OBD II Trip 
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A trip is used by the PCM to approve a pending code. If the fault is absent, then PCM will erase 

the pending code from its memory. If the fault is still present, the former pending code is turned 

into a confirmed code and the MIL is turned on. A trip can also be used by the PCM to confirm 

a repair after a DTC has been cleared from the PCM’s memory with a scan tool or diagnostic 

software. 

As every DTC and its related symptoms are unique, the enable criteria for the various DTCs 

are also unique to each DTC that the PCM may need to evaluate. Information is readily 

available that allows us to look up the specific enable criteria for any DTC. 
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Chapter 4 
Hardware-in-the-Loop (HIL) 

 

 

4.1  Introduction  
 

Hardware-in-the-Loop simulation is one of the process used in the product development cycle 

in which one or more real components interact with components that are simulated in real time 

(dynamic models). The part of the system that is not simulated comprises of real devices, 

machines, or mechanical test benches. Nowadays, this term is mainly mentions to a real system 

which consists of one or more ECUs, controllers, or intelligent mechatronic modules for which 

a virtual environment is simulated electrically and dynamically. The simulated subsystem has 

to perform the following actions within one simulation step [25]: 

 

 Read in the measurement signals (actuator control by the ECU) 

 Calculate and perform numeric integration (simulate the entire dynamic model of a real 

system) 

 Output the results (sensor simulation for the ECU). 

The outcome is a closed loop between the real controller and the simulated plant. Failure to 

meet real-time conditions can result in unstable simulation and even damage of the real 

technical device. Figure 20 shows a signal flow that illustrates this structure.  

 

 

 

Fig. 20: Signal flows in a real system and in HIL [25] 

simulation. 
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4.2  V-cycle development process 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 illustrates the V-Cycle that defines a common control system development process.  

 

 The process begins by defining a set of functional requirements for a system from which 

a simulation model of the control system has to be developed. 

 The step following system specification is function specification, which can be 

supported by Model-In-the Loop simulation (MIL). Model-in-the loop simulation takes 

place on a PC with simulation models of both the specified functions as well as the 

vehicle. This step reports development of the functions as software models in 

graphically oriented programmer systems such as MATLAB/ Simulink. 

 Following the development and testing of a simulation model, a Rapid Prototype phase 

comprises direct testing and optimization of the software models of the functions, with 

the appropriate software and hardware tools: on computer in the vehicle or on a test 

bench. MIL simulation and rapid prototyping assists in finding and eliminating any 

specification errors in an early phase.  

 Next phase Software-In-Loop simulation (SIL). The software model used previously in 

model-in-the-loop simulation is replaced here by the later series code, and is 

incorporated into the simulation. This phase is typically performed by a supplier with 

specialist knowledge of a particular system.  

 Following delivery of the ECU and software, HIL systems are used to carry out various 

forms of functional testing generally involves integration into the simulation loop of a 

number of real parts (actuators and sensors) e.g. a throttle-valve actuator.  

 Physical test applications use transducer-based measurements (e.g. of temperature, 

pressure, stress / strain, sound, acceleration, etc.) to test the physical properties of the 

respective system components. Applications include the NVH test (noise, vibration, 

Fig. 21: V-Model of development process 
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harshness), which includes sound and vibration measurements from microphones and 

accelerometers. 

 The final phase of the V-cycle is the use of vehicle testing for final verification of the 

software, hardware and its calibration. In this phase the vehicle is imitated on engine 

test benches – with transmission, driver, and driving resistance – in order to be able to 

“drive” e.g. WLTP cycle (world harmonized light-duty vehicles test cycle). 

 

4.3  Porsche Engineering HIL Setup 

  

 

The description of the HIL setup as shown in figure 22 is as follows [26]: 

 

User Operating Software: Software which is used for the interactive interaction with the user. 

It is used to perform control and monitor tests, e.g. dSpace ControlDesk. 

 

ECU Diagnostics Software: This software is used to read the error conditions detected by the 

ECUs connected to the HIL System. This software can also be used for the calibration id the 

ECU instead of diagnostics.  

 

Diagnostic Device: A device which is used to provide access to the ECUs, it’s connected to 

the host PC for diagnostics or flash programming purposes. 

 

HIL Simulator: Simulator substitutes the real environment of one or more ECUs by simulating 

the environment and its interaction with the ECUs in real-time in a closed loop. 

 

 

 

Host PC  
dSpace ControlDesk – 

User operating software. 

DiagRA/INCA/EXAM – 

ECU diagnostic software. 

Diagnostic 

Device 
ECUs 

Real Loads 

Throttle Body, 

Fuel Injectors, etc. 

ECU/ 

Load 

Connecto

I/O 

Boards 

Signal 

Conditioning 

FIU Loads 

Processor Board  
Plant model and I/O 

Model 

Internal 

Wiring 

HIL SIMULATOR 

PC 

Interface 
Cable 

Harness 

Fig. 22: Schematic setup of HIL System 
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Host PC: It is used to set up plant models, to build and to download real-time applications for 

the HIL Simulator. It consists of the operating and diagnostic software which is used to 

configure, control and analyze tests on the HIL Simulator, dSpace ControlDesk is shown in 

figure 23. 
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Processor Board: It is a hardware component of the HIL Simulator for the real-time 

calculation of plant models and I/O models. Processor boards has the interfaces to the I/O 

boards in the HIL Simulator and to the host PC. 

 

Plant Model: It is a model for real-time simulation of the system components (e.g. soft ECU, 

communication buses) and the systems environment (e.g. road model for test of an ESP ECU) 

that is not part the test as a real component. It enables closed loop operation of the ECU under 

test. A soft ECU is a real time model of an ECU that is required for the tests but not part of the 

tests as a real part. A restbus model is a reduced soft ECU variant, simulating bus 

communication. 

 

I/O Model: Part of the real-time model with which the plant model input/output accesses the 

input/output physical channels of HIL system. The model for the restbus simulation is part of 

the I/O model. 

 

I/O Boards: It is the hardware component which provides the HIL simulator Input/output 

channels. These channels are the interface to the input/output channels of the ECU to be tested. 

 

Loads: ECU outputs are connected to the loads as a substitute for real loads that are part of the 

environment controlled by the ECU. These substitute loads enforce realistic currents on ECU 

outputs, which is a prerequisite for the proper operation of the connected ECUs, especially for 

diagnostics functions.  

 

Internal Wiring: All wiring that are required to interconnect the hardware components within 

the HIL Simulator. 

Signal Conditioning: It is also the hardware component which is used to match the signal level 

of the I/O boards to the signal levels of the connected ECUs. 

 

Fault Insertion Unit (FIU): Component which generate electric faults on the inputs/outputs 

of the ECUs (actuators, sensors and bus channels). Typical error condition are, broken wire, 

short circuit to the ground, short circuit tot the supply voltage, short circuit between two 

terminals and loose contact. 

 

ECU/Load Connector: One or more connection to the HIL system. The cable harness is 

connected to them in order to connect the HIL system to the ECUs under test. 

 

ECU (Electronic Control Unit): One or more ECUs to be tested with the HIL system. 

 

Real Loads: These are the real components which are used if they are tested in conjunction 

with the ECU. 

 

Cable harness or external wiring: All wiring that is required to interconnect the HIL 

simulator with the ECUs and real loads. 

 

Power Supply: Electrical circuits and connections for power supply of the HIL system, 

including connections to main supply it is not shown in the figure. 
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Chapter 5 

Software Study 
 

 

In this Chapter the software which are widely used in this work are discussed. DiagRA software 

is used to extract the relevant sensor or actuator data from the ECU using CAN-FD data-

communication protocol. While to implement any driving cycle and generate it’s TestCase 

Extended Automation Method (EXAM) is used. 

 

5.1  DiagRA D – Diagnostic Software tool 
 

5.1.1  Basics of the Software  
 

DiagRA D is used worldwide by all major international automotive OEMs and 1st tier suppliers 

as a powerful diagnostics tool throughout all development stages. The functionality can be 

expanded by adding optional plugins. 

 

The tool functions can be divided into three basic sections: 

 

1. OEM specific workshop tester diagnostics – This function is a customer-specific part of the 

program, which is adapted by the different vehicle manufacturers. DiagRA can be used for all 

ECUs which are inside the vehicle.  

 

2. Scan-Tool for OBDII/EOBD/HD-OBD/WWH-OBD diagnostics – The Scantool function is 

employed in compliance with SAE J1979 (OBDII/EOBD), SAE J1939 (HD-OBD) and ISO 

27145 (WWHOBD). After the automatic configuration the supported data of all OBD 

significant ECUs is displayed. The SAE J1979 scan tool function supports all 10 services 

(Service $01 – Service $0A) as well as all the sub-functions (PIDs) defined by the market’s 

relevant legislatures. The SAE J1939 scan tool function supports all essential diagnostic 

messages and parameter groups. WWH-OBD (World Wide Harmonized Onboard Diagnostics) 

is also involved according to ISO 27145 as part of this functional group and is complete for the 

vital diagnostic services including all DIDs (Data Identifier). 

 

3. Advanced developer functions – The advanced developer functions are designed for 

automotive development engineers. By loading an A2L file the tool is able to read out and 

exhibit (depending on type of the fault memory manager): Display of Status-bits, detailed 

display of fault-code memory, reading memory locations and adaptation memory maps.  

 

Further in this document, the workshop tester diagnostics function and the scan tool function 

will be discussed to make this study focused to the thesis work. And all the information in this 

chapter is from DiagRA user Manual [27]. 
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LAYOUT OF THE MAIN WINDOW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MENU BAR - At the top, menu bar is to be found and right to it two drop-down lists. Here, 

the address word of the ECU is chosen, on which diagnostics has to be carried out, and the 

corresponding diagnostic protocol. 

 

TOOL BAR - Right below the menu bar there is tool bar which allows access to the most 

important functions quickly via a single mouse-click. 

 

STATUS BAR - At the bottom the status bar is situated. Here DiagRA D status information 

and basic settings is shown. In the far left there is a counter that runs from 0-255 during live 

communications to indicate each message exchanged between the PC and the ECU (This 

includes messages that form part of the communication structure). The counter provide 

feedback that the communication is running and serves as an indicator of the communication 

speed. 

Next to it there is a textual description of what DiagRA D is doing at that particular moment: 

e.g. “Initializing Communication” or “Communication aborted”. To the right, the diagnostic 

data set and the diagnostic interface which are currently in used is to be found. Any loaded 

additional files, their names are shown in the status bars hint text. 

 

WORKING AREA - The largest and most important area of the main window is the working 

area. It is divided into a series of tabsheets. Depending on the mode of application of DiagRA 

D at the current time that could be 10 or more. On the tab-sheets almost all functions that 

DiagRA D provides can be found. 

 

 

 

 

 

Fig. 24: Layout of the main window  

MENU BAR 

TOOL BAR 

STATUS BAR 

WORKING 

AREA 
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DiagRA D currently distinguishes about 30 different variations of communication protocols. 

The protocols differ in the physical communication layer (CAN, FlexRay, K-Line, Single-

Wire-CAN or J1850), the transport layer (e.g. CAN TP 1.6, CAN TP 2.0, ISO-CAN) and often 

OEM specific variant of the topmost protocol layer (e.g. KWP 2000 5 Baud, KWP 2000 Fast 

Init, UDS). At Porsche Engineering the mostly used protocols are UDS VAG (ISO CAN). 

DaigRA D combines the possible options into a diagnostic protocol and makes them available 

for selection in a list. 

 

5.1.2  DaigRA D as a Diagnostic tool 
 

This section will discuss about which workshop tester functions have been implemented in 

DiagRA D. In the main window all of the tester-functions on the Standard, Extended and 

Memory tab-sheets are to be found. These functions do not need a description file. 

The classical workshop diagnostics is a manufacturer specific often even ECU specific 

procedure and can have significant differences ranging from the implementation to the 

operation. The specific peculiarities are handled in DiagRA D by selecting the proper 

diagnostic data set and the corresponding diagnostic protocol. The parameterization, e.g. of 

fault codes, measurement values and identification data are handled by external files which are 

in turn organized into so called diagnostic data sets. 

 

READ DTCs AND FREEZE FRAME DATA 

 

Trouble codes are displayed on the Standard tab-sheet in the working area. This function is 

located on the left under Fault Code Memory. DTCs can be read cyclically and once “Cyclical” 

means that the DTCs will be read continuously, so once they have been read, they will be read 

again immediately thereafter. This selection is based on the requirements. 

Fig .25: (a) Fault code memory (b) 

DTCStatusMask 

(b) 

(a) 
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If the ECU supports the reading of freeze-frame data, these will be shown at the same time. 

This function can be toggled on and off by the Freeze Frames button. The Clear DTC button is 

located next to the Read. For safety reasons, clearing the fault memory is only allowed after 

the fault memory was read once. If ECU allows to clear single trouble codes, the option will 

be provided with a dialog to make the selection. 

 

DTC status mask is set to select the DTC types which is to be read. To set this mask, right-

click on the Read button and choose the option DTCStatusMask (Figure 25b). The following 

window will appear from which the DTC types which are relevant is selected. The selection 

will be carried out by clicking OK. 

 

5.1.3  DaigRA D as a Scan tool  
 

With DiagRA D reading of emission related information is done by using one of the OBD 

protocols or by using SAE J1939/ISO 27145. The address-word, which is used to initiate 

communication is 33 7DF 7E8 Scan-Tool. Using the SAE J1979 OBD II is used to measure 

real time data of vehicle which is further used in validating HIL. 

When running Scan-Tool diagnostics, communication takes place simultaneously between all 

ECUs that support emission-related diagnostics. DiagRA D shows the measurement results of 

multiple ECUs at the same time. The upper area of the Scan-Tool tab-sheet is laid out for this 

purpose. The functionality of SAE J1979 is distributed on 10 functions, referred to as Mode 01 

to Mode 0A (see also Section 3.2.2: Parameter identification numbers). Some of these functions 

have sub-functions, which may not be supported by all ECUs. 

 

The functionality of SAE J1939 and SAE1979 is logically divided to different areas, e.g. 

Readiness, Freeze frames or Fault Codes. Switching between the different functionalities is 

done by clicking on the proper button at the bottom of the window. 

 

SAE J1979 

Fig. 26: The tab-sheet Scan-Tool 

Mode 1 
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DiagRA D check which ECUs respond and which modes and sub-functions they support. 

Correspondingly, in the lower area of the J1979 tab, the buttons Mode 1 ... Mode A are laid out 

consecutively. Please note that Mode 4 (= Clear DTCs) is only made available after reading 

out the DTCs by calling either Mode 3, Mode 7 or Mode A. Also, each mode can be read (apart 

from Mode 4) cyclical as well as shown is figure 26. 

 

SELECTION OF IDS (SAE 1979) 

 

In order to keep the number of reported PIDs manageable, DiagRA D allows to select the IDs 

that should be displayed in Mode 1, 6 and 9.  

 

1. Open the Select IDs for Mode X dialog (shown in figure 27) with Select button, where X 

is the current mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Using the button Show all IDs, toggle between the desired selection and all IDs. If no IDs 

are selected here, all IDs will be displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27: Selection of IDs (SAE 1979) 
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5.2  Extended Automation Method (EXAM) 
 

EXAM (EXtented Automation Method) is a test management system software (in other words-

automation tool) used by Porsche AG (parent company) in their large HIL system to test 

complete electronic vehicle functionality. This thesis conducted at The Porsche Engineering 

Services also utilizes EXAM distributed by MicroNova AG, commissioned by the VW-

concern as test management system. WLTP cycle is implemented using TestCase generated by 

EXAM automation tool. Detailed discussion is in next chapter. 
 

EXAM is built on Java and couples a ’drag-and-drop’ graphical user interface (GUI) onto HiL 

or SiL test systems. This test management system uses Python as programming language. The 

test case descriptions are written in Rational DOORS (a requirement program built by IBM). 

These requirements have to be synchronized with EXAM and specific test cases can then be 

created in EXAM regarding these requirements [28]. Any EXAM test process management is 

performed in a specific steps as shown in figure 28 

 

The three most important views in EXAM are the Modeler explorer, the Testrunner perspective 

and the Reportmanager perspective. 

 

 

 

 

 

5.2.1  Modeler Perspective  
 

In the modeler perspective, the tree structure shows how the system is built out of all the 

available functions. This tree structure consists of packages with unique names. In these 

Fig. 28: EXAM Test Process  
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packages classes are created with functions and parameters. These are the functions that can be 

used during the creation of test cases as shown in figure 29. To be able to reuse functions of 

the Testhaus and vice-versa, the whole tree structure of the Testhaus testing department is 

included in the workspace of EXAM. 
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Modeler perspective in general: 

 

- Test case modeling and implementation 

- User defined filters can be applied to the model browser 

- Object compositions are automatically generated as far as possible 

- Object properties, descriptions and relations as well as project properties are available 

from views (tab) and generated python code for object is also accessible. 

 

5.2.2  Testrunner Perspective  
 

The second window is the testrunner perspective as shown in figure 30. To understand this 

perspective, the definition of test suite is very important. TestSuite defines a self-contained test 

topic and its content. It is organized by TestGroups (the order in which TestCases and 

AdministrativeCases are executed). When test cases are coupled together with test suites, they 

can be selected to run automatically in EXAM. Together with the test suites, the right 

configuration of the test suite, where all the right classes are coupled onto the interfaces, are 

loaded when executing a test suite. 
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Testrunner perspective in general: 

 

- Run TestSuites 

- Open and save individual test runs in an execution file with python code path (XML) 

- Monitor and control runs in the testrun monitor view and console 

- Property to set alterative python code path for test run 

- View test run duration and estimated time 

- Record all test case relevant data and offline reply of test cases with relevant data for 

additional analysis to save eg. HIL usage time 

 

5.2.3  Reportmanager Perspective  
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After the execution of the test suite, a report will be generated by EXAM where the failed and 

successful test cases are listed as shown in figure 31. If the test cases are written correctly, the 

reason in case of failure of the test case will be shown in the reports. The reports are sent to a 

specific folder on the server where it is managed, analyzed and processed in the reportmanager 

perspective of EXAM. 

 

Reportmanager perspective in general: 

 

- Report data can be saved in multiple report databases as well as simultaneously 

managed 

- Test results are structured into sub-tests to allow an efficient test analysis 

- Some report elements can be edited in order to correct and comment on test results  

- Report can be exported to XML and PDF files 

- OpenSource BIRT framework handles PDF exports, featuring custom report templates. 
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Chapter 6 

Worldwide Harmonized Light 

Vehicles Test Procedure (WLTP) 
 

 

 

WLTP cycle (world harmonized light-duty vehicles test procedure) is a worldwide, harmonized 

standard used for estimation of the levels of pollutants, CO2 emissions and fuel consumption 

of conventional, hybrid and electric vehicles. This new protocol was developed by the United 

Nations Economic Commission for Europe (UNECE) aiming to replace the new European 

driving cycle (NEDC) as the European vehicle homologation procedure. Its final class 3 

version 5.3 was released in 2015 which is further used for the study as shown in figure 32 [29]. 

 

This test procedure is responsible for a very strict regulation regarding dynamometer tests and 

road load (motion resistance), gear shifting, total vehicle weight (by including optional 

equipment, load and passengers), fuel quality, ambient temperature, and tire selection and 

pressure. 

 

Three different WLTP cycles are applied, depending on vehicle class differentiated by 

power/weight ratio PW in W/kg (rated engine power/curb weight): Class 1 – low power 

vehicles with PW ≤ 22, Class 2 – vehicles with 22 < PW ≤ 34 and Class 3 – high-power vehicles 

with PW > 34. In this study class 3 test cycle is used as the Porsche KOVOMO V6 and V8 

engines PW is more than 150 W/kg.  

 

Also, the WLTP is divided into 4 different sub-parts shown in figure 32, each one with a 

different maximum speed: 

Fig. 32: WLTP class 3 v5.3 driving 

cycle 
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 Low, up to 56.5 km/h 

 Medium, up to 76.6 km/h 

 High, up to 97.4 km/h 

 Extra-high, up to 131.3 km/h 
 

These driving phases mimic urban, sub-urban, rural and highway situations respectively, with 

an equal separation between urban and non-urban paths (52% and 48%).  Table 4 quantifies 

the main descriptive parameters of the driving cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1  Implementation of WLTP cycle   
 

Implementation of the WLTP driving cycle on the dSpace HIL to study about fuel consumption 

and CO2 emissions, is done via two methods (manual and automation method) which are 

discussed in following section. 

 

6.1.2  Manual Implementation  
 

Manual implementation of WLTP driving cycle is done by controlling the driver model through 

HIL ControlDesk manually marked as red area in figure 33, by activating acceleration pedal, 

brake pedal and gear shifter. This method is only useful to understand the behavior of the 

vehicle performance as by using this method other tests cannot be performed in parallel 

consisting WLTP cycle. 

 

Table 4: Descriptive parameters of the WLTP driving cycle 
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The steps involved controlling driver model manually and implementation of WLP cycle are 

as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.2  Automation Method Implementation  
 

Implementation using automation method is done by preparing the TestCase in EXAM 

automation software which will automate all the commands which earlier has to be done 

manually. The test cases and the functions necessary for it are programmed manually using 

specific functions in EXAM starting from the requirements of DOORS. 

Few important terms and definitions are discussed below to understand the EXAM automation 

method and executing the TestCase and preparing SequenceDiagram: 

1. Package: Packages are the collection of model elements of any type. They can be used 

to divide the overall model into smaller, more manageable units. A package defines a 

namespace i.e. names of the elements contained in the package must be unique. Each 

model element can be referenced from the multiple package, however it belongs to only 

one home package. 

Activate Clamp 15 Ignition on

Click on Start/StopStarting of the vehicle 

Putting vehicle of Drive 

Enabling of Virtueller Fahrer (virtual 

driver) 

Enabling of Acceleration pedal, brake 

pedal and gear shifter 

Starting of WLTP driving cycle 

Press D

Activate Enable

Activate Pedal Quelle Virt.

Select WLTC from drop 

down

Start DiagRAStart the measurements of the sensors

Wait 30 minutesWait for finishing of the driving cycle

Stop DiagRAStop the measurements of the sensors

Disable of Virtueller Fahrer and Pedal 

Quelle Virt.
Disable everything

Deactivate Clamp 15 Ignition off
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2. TestCase: TestCase represents exactly one test flow in an abstract, formal and 

structured form. Each TestCase has a unique ID with a distinct test flow. Each variant 

of a common test flow is a separate TestCase. It can only be called by TestGroups 

(TestSuite). 

3. SystemConfiguration: It is required for execution tests on a test system (HIL). It defines 

which implementation class will be used for each interface. 

4. TestSuite: TestSuite defines a self-contained test topic and its content. It is organized 

by TestGroups referencing TestCase. 

5. Variable Mapping: It is a container for mapping class instances and represents the 

interface to external platform variables (dspace hil). Variable mapping defines the 

signal path of EXAM mapping attributes in order to access the corresponding platform 

variable. As a result platform variables are accessible within EXAM using the get- and 

set- functions.  

6. Test Case Generator (TCG) Syntax: TCG Syntax enables a formal description of test 

cases in DOORS, that can be synched to EXAM with the Synchronizer Plugin and then 

automatically generate the Implementation of the test case with the TCG plugin. This 

enables a fast and convenient workflow from specification to test execution. 

7. Porsche Master Implementation (PMI): To simplify the programming work when 

programming test cases in EXAM, Porsche created the Porsche Master Implementation 

(PMI), representing ’functions’ that will run before every test suite starts. It is an 

obligation to use this PMI whenever new testing systems are developed, especially 

when those systems have to use ECU diagnostics. EXAM has to be configured in a way 

that this PMI will run before every test suite will start. 

8. SequenceDiagram: It is a Unified Modeling Language (ULM) diagram and it is the 

most important diagrams in EXAM. They model a series of messages (operation calls) 

between objects over a specific period.  

To prepare SequenceDiagram various TCG commands and shortname functions are 

used, which are prepared by the Porsche Engineering Services engineers in past. These 

commands simplify and help engineers to prepare a TestCases quickly 

 

EXAM gives the possibility to create functions in Python and drag-and-drop them into the right 

order to create a specific test cases. After the execution of the TestCase, coupled into a 

TestSuite, EXAM generates reports. These reports are then studied over and relevant decision 

is made whether or not to run the failed test case again, manually or even automated and starts 

to search for the causes of the failure of the test case. To implement the WLTP cycle, the driver 

model of HIL is controlled via acceleration pedal, brake pedal and gear shifting. To automate 

this process, steps are prepared in the SequenceDiagram using TCG functions (in blue box) 

and TCG FlexRay writevalue paths as shown in figure 34. 
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Fig. 34: WLTP cycle sequence diagram 
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6.2  HIL Virtual Driver Behavior 
 

The vehicle driver system is shown in Figure 35. The driver controls the vehicle using steering, 

acceleration, and braking as an inputs. The vehicle responds, according to the information 

driver provided in terms of path to be followed, orientation (i.e. yaw angle), lead time and 

vehicle in front distance. 

 

Vibrations and vehicle acoustic variations are feedback values used by the driver to assess the 

current and future vehicle status, with respect to the intended response. In addition, the driver 

receives information through the control devices. For e.g. in a low road friction condition, 

driver will reduce the torque feedback on the steering wheel and activation of ABS is noticed 

through vibrations in the brake pedal. Further, the vehicle will face external disturbances such 

as aerodynamic forces, road irregularities, and road friction differences.  

Consequently, the vehicle will not respond in the same way to the driver want it to be according 

the inputs. This is due to the impact of external disturbances and the limited ability of the driver 

to control the vehicle accurately means that the driver is constantly correcting his input to the 

vehicle. The driver responds to the vehicle behavior to fulfill a certain task, which is closed-

loop behavior, in contrast to the situation where one is considering vehicle response to driver 

input without driver feedback is open-loop behavior. In dSpace HIL system, close loop 

behavior model is used. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above is the overview of how the driver model behavior is simulated in the HIL System. As 

shown in the figure 36, where the vehicle behavior is studied on the basis of the WLTP cycle. 

The behavior of the driver is quite prominent, HIL virtual driver almost completely followed 

the inputs of the cycle.    

 

Fig. 35: Vehicle driver system [30] 
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Chapter 7 

Calculations and Assumptions 
 

 

 

In this chapter, the calculations and assumptions are discussed which are required to calculate 

the fuel consumptions and CO2 emissions on WLTP cycle. The cycle is run on the dSpace 

KoVoMo HIL system control desk via the EXAM TestCase. The sensors data are extracted 

from DiagRA Software which are used for the calculations. 

 

7.1  Fuel Consumption 
 

The accurate calculation of following two parameters are very important to estimate fuel 

efficiency and vehicle emissions.  

 

1. The amount of air entering in the engine combustion chamber i.e. Mass Air Flow (MAF) 

discussed in section 7.1.1 

2. The amount of fuel entering in the engine combustion chamber i.e. Mass Fuel Flow (MFF) 

discussed in section 7.1.2 

 

In urban vehicular pollution monitoring tool, the speed density method is most adopted 

technique to determine Mass Air Flow (MAF). In this work as well, this method has been 

implemented to calculate Mass Air Flow (MAF) which will be used to further calculate Mass 

Fuel Flow (MFF). 

It is important to note that, to carry out perfect combustion, ECU control several components 

which perform the task of defining the amount of air required. In addition, ECU calculate the 

ideal air temperature and pressure, the current value of the vehicle and the actual air flow that 

the engine needs at any given time. 

 

7.1.1  Mass Air Flow (MAF) 
 

Speed density method is used to measure mass air flow, it performs an estimation based on the 

ideal gas law. To do this, it uses readings of intake manifold temperature and air pressure 

sensors in the vehicle, in addition to using the volumetric efficiency of the engine.  

This method can be used with the manifold absolute pressure sensor, as it measures the absolute 

pressure. This way of predicting Mass air flow is done when MAF sensor is not available in 

the vehicle (which is the case in this thesis) 

 

Starting with the law of physics, we observe a series of relations between the temperature, 

pressure, and volume of the gas, Equation (1) is the mathematical representation of this law 

 

𝑃. 𝑉 = 𝑛. 𝑅. 𝑇                                                                               (1) 

 

The terms of above Equation are explained as follows: 
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 P is the pressure in the combustion chamber and can be determined by means of the 

MAP (Manifold Absolute Pressure) sensor in kPa 

 V is the volume of the combustion chambers in the engine cylinders and can be 

measured in units of volume as Liters (L) or cubic centimeters (cm3) 

 R is the ideal gas constant. Its value is approximately 8.3145 J/mol.K 

 T is the gas temperature. It can be acquired by the IAT (Intake Absolute Temperature) 

sensor in K. 

 n is the number of moles. 

 

By rearranging the terms of equation (1) the amount of moles (n) of the given amount of air 

flowing through the air intake before the combustion can be calculated. 

Using number of moles, the mass of air (mair) can be calculated by multiplying it by the 

molecular weight (molar mass, represented by Mair) of the air, as described in Equation (2).  

 

𝑚𝑎𝑖𝑟 = 𝑛. 𝑀𝑎𝑖𝑟                                                                              (2) 

 

Using the equation (1) and (2) air mass can be obtained in the form of equation (3) 

 

𝑚𝑎𝑖𝑟 =
𝑃. 𝑉

𝑅. 𝑇
 . 𝑀𝑎𝑖𝑟                                                                        (3) 

 

Equation (3) is only valid if the engine has a Volumetric Efficiency (VE) of 100%. VE is the 

ratio between the air-fuel mixture volume that each cylinder admits and the nominal cylinder 

capacity, The VE can be found using the following relation (4): 

 

𝑉𝐸 =
𝑉𝑖𝑛𝑡𝑎𝑘𝑒

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙
× 100%                                                                  (4) 

 

Where, Vintake represents the real volume of intake air supported by the cylinders and Vnominal 

is the theoretical volume of the engine. According to the [31] the turbocharged V8 engine range 

of VE varies from 80% to 92% so for the calculation of MAF on a real vehicle it’s estimated 

using HIL MAF volumetric efficiency. 

 

Thus, using Equation (3 and 4) coupled with the engine Revolutions per Minute (RPM), we 

can finally obtain the mass flow through the intake at given amount of time. The RPM the 

engine is working can be obtained via OBD-II or via CAN-FD using DiagRA. 

 

During the vehicle operation, in a four-stroke engine, there are two steps of air intake, i.e. in a 

complete cycle, air flows inside the engine two times. With that information, we can calculate 

the number of times air enters the engine per second by dividing the RPM by 2×60. 

Incorporating this into above equations gives the mass air flow (�̇�air), shown by (5). 

 

�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄ ) =
𝑃. 𝑉

𝑅. 𝑇
 . 𝑀𝑎𝑖𝑟 . 𝑉𝐸.  

𝑅𝑃𝑀

120
                                                        (5) 

 

The value obtained of turbocharged engine by this equation corresponds to an equivalent to 

that obtained directly by the MAF sensor without EGR (Exhaust gas recirculation) as shown 

in figure 37. As explained in [36] the overall results suggest that the unpredictability of the 

generic speed-density method is in the order of 10% throughout most of the engine operating 
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range, but increasing to tens of percent where high-volume exhaust gas recirculation (EGR) is 

used. 

 

For validation of results (discussed in chapter 7), the MAF calculation is based on speed density 

method due to the unavailability of the MAF sensor values from OBD II in Porsche Panamera 

4. On the other hand, while calculating fuel consumption on the WLTP cycle, the MAF values 

are used from CAN communication using DiagRA. Few of the assumptions are discussed as 

followed: 

 

 The assumption of ignoring EGR can affect the final results as all the Porsche vehicles 

are equipped with EGR system. EGR is mainly active during partial engine loads and 

at low and medium engine speed areas, where oxygen is in excess. In the high engine 

load (torque), the EGR system is disabled, the cylinders being filled only with air, ready 

for combustion [37]. According to [38] the research results indicate improvement of 

fuel consumption improvement with cooled EGR under conditions where 

stoichiometric operation cannot be maintained. 

 

 Effect of Volumetric Efficiency: Volumetric efficiency in a combustion engine depends 

on many factors like Fuel type, Air/Fuel ratio, fuel heat of vaporization, Intake manifold 

temperature and pressure, Engine speed, Compression ratio, port design intake and 

exhaust, etc. [34]. So, the assumption in calculating the MAF using a generic value can 

affect the final results as the volumetric efficiency is not fixed and it varies according 

to the above mentioned factors. 

 

 

 

 

 

 

 

Fig. 37: Comparison of calculated mass air flow with mass air flow reported by the ECU [36] 
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7.1.2  Mass Fuel Flow (MFF) 
 

Mass fuel flow �̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄ ) depends on actual air fuel ratio (A/F) and Mass air flow 

�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄ ). Before going into detailed calculation, it is important to define the equivalence 

Air-Fuel Ratio (λ) and understand how this relates to �̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄ ) and �̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄ ). 

 

For a certain amount of fuel, there is a perfect amount of oxygen required for the combustion 

to be ideal. This factor is called the Stoichiometric Air-Fuel Ratio (A/FStioc). For the perfect 

combustion of petrol without any reactants, the proportion considered to be an ideal mix of fuel 

and oxygen has A/FStioc of 14.7:1. That is, it takes 14.7 kilogram of air for every 1 kilogram of 

fuel entering the combustion chamber. In alcohol vehicles, this ratio is 9:1, while in diesel 

vehicles, it is 14.6:1. 

 

The equivalence Air-Fuel Ratio (λ) can be mathematically described by Equation (6), being 

only a division between the actual air/fuel ratio (A/F) and stoichiometric air/fuel ratio (A/Fstoic). 

This value is controlled and monitored by the oxygen sensors attached before and after (for 

few vehicle models) catalytic convertor. 

 

𝜆 =  
𝐴/𝐹

𝐴/𝐹𝑆𝑡𝑜𝑖𝑐
                                                                            (6) 

 

To calculate A/F from a given λ, the measured λ is multiplied by the stoichiometric AFR 

(A/Fstoic) for that fuel. The actual air/fuel ratio (A/F) is calculated as equation (7). 

 

𝐴/𝐹 =  𝜆 × 𝐴/𝐹𝑆𝑡𝑜𝑖𝑐  =  
�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄ )

�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄ )
                                            (7) 

 

The OBD-II standard establishes codes to acquire the mass air flow directly, or, in case the 

vehicle does not have an MAF sensor, it also provide with the access to other sensors that can 

be used to obtain such a value (speed density method). However, it does not provide a method 

to directly obtain the amount of fuel injected in the combustion chamber, which is ideal for this 

study. Considering that the λ is a known value and mass air flow as calculated in section 7.1.1, 

the mass of fuel can be found by reordering Equation (7) as presented in Equation (8).  

 

�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄ ) =  
�̇�𝑎𝑖𝑟(𝑘𝑔 ℎ⁄ )

𝐴/𝐹
                                                       (8) 

 

The fuel volume flow rate (represented in units of volume over time) to find the relation 

between the volume of fuel consumed. To get this ratio of the fuel mass flow rate and the 

respective fuel density is calculated as Equation (9). 

 

�̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄ ) =  
�̇�𝑓𝑢𝑒𝑙(𝑘𝑔 ℎ⁄ )

𝜌𝑓𝑢𝑒𝑙(𝑘𝑔 𝑙⁄ )
                                                    (9) 

 

Petrol fuel is used for the study, and in Czech Republic its density is in the range 0.73 Kg/l -

0.78 Kg/l, so ρfuel = 0.75 Kg/l is assumed [32] 
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Now, using the equation (8) and multiplying it vehicle velocity obtained from sensor, fuel 

consumption is calculated as in Equation (10) 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙 100 𝑘𝑚⁄ ) =  
�̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄ ) . 100

𝑉𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑘𝑚 ℎ⁄ )
                                  (10) 

 

 

7.2  Emissions (CO2) 
 

As CO2 is a greenhouse gas and plays important role in global warming, the scope of this study 

will be limited to study of CO2 in the emissions. To estimate the amount of CO2 in this work, 

complete combustion [33] is assumed without any pollutants e.g. UHC, CO, PM, NOx, etc. It 

is important to note that, complete oxidation of simple hydrocarbon fuels (CnHm) forms carbon 

dioxide (CO2) from all of the carbon and water (H2O) from the hydrogen. 

The mass of emitted CO2 is closely linked to the volume of fuel burned stated in equation (8). 

This relationship is expressed in the Equation (10), where the fuel volume flow rate is 

multiplied by the mass of CO2 generated by the combustion of one liter of fuel. The outcome 

of this equation is the estimate of the CO2 mass flow rate released per second. 

 

�̇�𝐶𝑂2
 (𝑔/ℎ) =  �̇�𝑓𝑢𝑒𝑙(𝑙 ℎ⁄ ) . 𝐶𝑂2 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒                                             (10) 

 

Where, CO2 per litre is 2392 g/l, and is calculated as followed: 

1 liter of petrol weighs 750 grams (ρfuel = 0.75 Kg/l). Petrol contains for 87% of carbon or 652 

grams of carbon per liter of petrol. In order to convert this carbon to CO2 1740 grams of oxygen 

is needed. The sum is then 652 + 1740 = 2392 grams of CO2/liter of petrol.   

 

Therefore,  

�̇�𝐶𝑂2
 (𝑔/𝑘𝑚) =

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙 100𝑘𝑚⁄ ) . 𝐶𝑂2 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒

100
                (11) 

 

 

Fig. 38: (a) Results of heat-release analysis showing the combustion inefficiency and the 

corrections due to heat transfer and Crevice effect [34]. (b) Mass fraction dependency on 

one of the many factors on the amount of dilution [35]. 

(a) (b) 
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This value gives an estimate in the calculation of the CO2 emissions and few of the assumptions 

are discussed as followed: 

 

 The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) shows the amount of 

fuel burned and the rate of burning throughout the combustion process in an internal 

combustion engine. These value are predicted using two zone complex models, to make 

calculation simple, combustion efficiency and mass fraction burned is assumed to be 

hundred percent. But in reality it is not the case as shown in figure 38. 
 Effect of dissociation: At very high combustion temperatures usually around 1700K 

[34], the CO2 formed during combustion, starts to break (dissociate) into CO and O2. 

This dissociation is an endothermic reaction and it absorbs heat from its environment, 

resulting in a loss in the net energy created and therefore, reducing the efficiency of the 

IC engine. This effect is also neglected for this study. 

 

𝐶𝑂2 ⥂ 𝐶𝑂 + 𝑂2                                   (𝑎𝑡 ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 
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Chapter 8 

Results and Discussion 
 

 

 

This chapter is mainly divided into two sections, first section (section 8.1.) involves the 

validation of the dSpace Hardware in loop (HIL) at different driving cycle phases measured on 

the real vehicle (Porsche Panamera 4) with primary focus on fuel consumption calculations. 

The second section (section 8.2.) utilizes the validation results from first section and applies 

them to calculate the WLTP cycle on HIL discussing in detail the fuel consumption and CO2 

emissions. At the end, in section 8.3 the dSpace HIL Fault Code Diagnostics is discussed in 

detail. 

 

8.1 HIL Validation  
 

To validate the dSpace HIL a simple driving cycle is performed on a real vehicle (Porsche 

Panamera 4).  

For Real data collection from Porsche Panamera 4, the OBD-II communication interface is 

used. Few of the codes values of Mode 1 PIDs are used to require data from the ECU as shown 

in table 5.  

For Hardware-In-Loop (HIL) ECU data collection, CAN-FD communication protocol and 

DiagRA software are used.  

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note that the only difference between both Real and HIL data extraction values 

is absence of Mass Air Flow sensor (MAF) real vehicle (Porsche Panamera 4). As discussed in 

section 7.1.1 the real vehicle MAF values were calculated using speed density method using 

HIL volumetric efficiency values at different phases of the driving cycle.  

 

PID PARAMETER 

0 X 05 Engine Coolant Temperature 

0 X 06 Short Term Fuel trim 

0 X 34 Lambda 

0 X 87 Intake Manifold Absolute Pressure 

0 X 77 Intake Absolute Temperature 

0 X 0C Engine RPM 

0 X 0D Vehicle Speed 

Table 5: PID and Parameters selected for measurement in real vehicle 
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8.1.1  Approach for HIL Validation 
 

The approach which is used to validate HIL is by Dependency Method. As shown in the 

dependency diagram (figure 39), the fuel consumption is dependent on various factors which 

subsequently dictate other parameters. This approach will help to move close to pointing the 

problem in the performance of the HIL. 

 

To focus on the HIL performance the real driving cycle which is performed on the road and 

HIL is divided into three phases as shown in figure 40. 

 
1. Acceleration Phase: In this phase the vehicle is accelerated using full throttle to reach 

the desired speed. As the real vehicle is already driving until 10 seconds with varying 

throttle so first ten seconds are ignored. This phase is only studied when the throttle of 

both HIL and real vehicle are at maximum value i.e. after 10 sec. 

 

2. Constant driving Phase: In this the vehicle is driven in the constant velocity for few 

seconds. 

 

3. De-acceleration Phase: This phase is same as engine braking, with no acceleration and 

no braking the vehicle is deaccelerated using the engine brake.  

 

Further, using these results and observation from HIL validation in different phases, a good 

conclusion can be achieved about the behavior of HIL driving on WLTP cycle. 

 

 

 

 

Fig. 39: Fuel consumption dependency diagram 
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Before moving forward with the results and observation of every phases, as mentioned above 

the calculation of the Mass Air Flow is done using the average values of HIL Volumetric 

Efficiency i.e. 87%, 67% and 67 % for phase 1, 2 and 3 resp. as shown in figure 41. As it’s 

observed in the acceleration phase the efficiency is going above hundred percent this is typical 

values of Turbocharged V6 engine. 

 

Fig. 40: Vehicle Velocity phases 1. Acceleration 2. Constant driving 3. De-acceleration 

Fig. 41: Volumetric efficiency at different phases at HIL driving cycle 
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8.1.2  Implementation of driving cycle on HIL 
 

To understand the behavior of HIL, the HIL driving cycle should be very similar to the real 

driving cycle and it is implemented using TCG functions using EXAM automation software. 

The TestCase (figure 42) and the TestSequence Diagram (figure 43) of the cycle is as follows: 

 

 

 
 

 
 

Precondition:

1: Ignition on

2: Pre readiness to drive

Action:

3: Drive 146kmph

4. Wait 10s

5: Throttle pedal 0%

6. Wait 50s

7. Brake pedal 100%

8. Wait 10s

Postcondition:

9: Drive program P

10: Ignition off

Fig. 42: Real driving Cycle TestCase 

Fig. 43: Real driving Cycle TestSequence 

Diagram  
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8.1.3  Results of Acceleration Phase  
 

 

 

 

 

 

 

 

 

 

                    Fig. 44: HIL and Real fuel consumption at acceleration phase 

 

 

 

 

 

(a) 

  

(b) 

  

Fig. 45: HIL (blue) and Real (orange) results 

comparison at acceleration phase 

(a) (d) 

(b) 

(c) 

(e) 
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As shown in figure 44, the fuel consumption of real vehicle and HIL results are almost 

following each other. The fuel consumption during acceleration phase of real vehicle is 113.0 

l/100km, while consumption calculated from HIL is 110.0 l/100km.  

 

According to the comparison results as shown in figure 45, few of the observations are as 

follows: 

1. The behavior of all graphs is based on the transmission shifting curve [figure 45 (b)]. 

To reach 0-120 Km/h real vehicle is on 2nd gear while HIL driver model is on 3rd gear. 

2. Throttle actuation [figure 45 (a)] by the real driver is gradual while at HIL it’s sudden. 

3. As fuel consumption is inversely proportional to the Intake Manifold temperature, the 

HIL is unable to maintain the constant temperature while real vehicle can. This is one 

of the vital reason for the overestimation of the HIL consumption.  

 

8.1.4  Results of Constant driving Phase  
 

 

 

 

 

 

 

 

Fig. 46: HIL and Real fuel consumption at constant driving phase 

 

As shown in figure 46, the fuel consumption of real vehicle and HIL results are almost 

following each other. The fuel consumption during constant speed phase of real vehicle is 5 

l/100km, while consumption calculated from HIL is 7.5 l/100km.  

In this phase, the overdrive plays a very important role to improve the fuel consumption. It is 

the operation in which vehicle is cruising at sustained speed with reduced engine revolutions 

per minute (rpm), leading to better fuel consumption.  

 

  

(b) 

  

(a) 

  

(b) 

  

(a) 
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According to the comparison results as shown in figure 47, few of the observations are as 

follows: 

 

1. The fuel consumption depends upon the overdrive, which further depends upon engine 

speed, as observed from the [figure 47 (b)] the real vehicle rpm is less than HIL rpm. 

2. Throttle actuation [figure 47 (a)] by the real driver is gradual while at HIL it’s sudden. 

Also, throttle of HIL even at constant engine speed is increasing.  

 

8.1.5  Results of Deceleration Phase  
 

 

 

 

 

 

 

 

 

 

As shown in figure 48, the fuel consumption of real vehicle and HIL results are almost 

following each other. The fuel consumption during deceleration phase of real vehicle is 1.5 

l/100km, while consumption calculated from HIL is 3.2 l/100km. In this phase the engine-

braking is focused as it plays very important part for the observation of the HIL performance. 

"Engine braking" refers to the braking effect occurs when the throttle valve is completely 

closed – which causes a strong manifold vacuum for which the cylinders have to work against. 

During engine braking, instead of applying footbrake the vehicle is forced to slowed down by 

releasing the accelerator and shifting down through gears. This causes fuel injection to cease 

and greatly restricting forced airflow.  

 

 

 

             Fig. 48: HIL and Real fuel consumption at de-acceleration driving phase 

Fig. 47: HIL (blue) and Real (orange) 

results comparison at constant driving 

phase 

(c) 

(b) 

  

(a) 

  



70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the comparison results as shown in figure 49, few of the observations are as 

follows: 

1. With the no accelerator pedal according to the figure 49 (a) there is still some throttle 

of the HIL while in real vehicle throttle is constant at 15%. 

2. The short term fuel trim is varying of the HIL while real values are at zero. 

3. The lambda sensor is also at stoichiometric (λ=1) for HIL and for real vehicle it’s at 

lean region (λ>1). All these factors affect the fuel consumption. 

 

8.1.6  Results of Full Driving Cycle 
 

FUEL CONSUMPTION 

As shown in figure 50, the fuel consumption of real vehicle and HIL results are almost 

following each other. The total fuel consumption during full driving cycle of real vehicle is 

17.9 l/100km, while consumption calculated from HIL is 17.0 l/100km.  

Fig. 49: HIL (blue) and Real (orange) 

results comparison at de-acceleration 

phase 

(a) 

(e) (b) 

(d) 

(c) 
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As observed from the figure 50 (a), during accerlation phase (from 10s-19s) the fuel 

consumption is maximum and during idling its minimum. During the engine braking (from 

35s-70s) (no braking, no throttle but vehicle in gear) the fuel injector shuts off, therefore the 

fuel consumption is least.  

Few reasons about variation in the calculation of the fuel consumption in every phase are 

discussed as follows: (more reasons are explained in conclusion chapter) 

 

Effect of lambda: The proportion of oxygen in the exhaust gases as measured by the Lambda 

Sensor. Lambda (λ) sensor retrieves the stoichiometric Air–fuel ratio (14.7:1 for gasoline 

engines with the ideal value for the combustion being 1) and this signal is sent to the ECU 

(Electronic Control Unit). A perfect reading is zero amps for Ideal Value. Each milliamp above 

zero is a part point lean and each milliamp below zero is a part point rich. According to the 

figure 49 (d), the lambda sensor is working perfectly for real vehicle but for the HIL it’s not 

sending the lean values (λ=2). Lambda value two is set by default, even it’s above two, and 

usually this happens during engine braking when fuel is cut-off. 

 

Effect of Short term Fuel trim: The adjustment of the fuel quantity as measured by the Short-

Term Fuel Trim (STFT) sensor. Depending on the signal value, in case of lean signal the ECU 

will increase the pulse width of the injectors to either add fuel to the air/fuel mixture (Positive 

fuel trim), or decrease the injector pulse width to subtract fuel from the air/fuel mixture 

(Negative fuel trim) in case of rich mixture and this process of adapting the injector pulse width 

is known as fuel trims.  

As observed in figure 49(e), during acceleration and driving at constant speed the real vehicle 

fuel trim is adjusting the lambda (λ=1) and λ=2 during engine braking phase. But in case of 

Short term Fuel trim of HIL, it is unable to control fuel according to HIL Lambda values, it can 

be observed during engine braking phase STFT is still maintaining the lambda λ=1. This proves 

improper functionality of HIL as the fuel injection should stop and lambda value should go to 

λ=2. So HIL short term fuel trim is not performing as the real vehicle.  

 

Effect of Engine Coolant Temperature:  The temperature of the engine coolant as measured by 

the Engine Coolant Temperature Sensor (ECT). The PCM recognizes this signal and starts 

other components (such as the engine’s cooling fan to maintain appropriate operating 

temperature). It uses different approaches which are programmed into its lookup tables for hot 

and cold operating conditions. This signal affects EGR (Exhaust Gas Recirculation) valve flow, 

PCM will not allow the (EGR) valve to open until the engine has warmed up to improve 

Fig. 50: HIL (blue) and Real (orange) results of fuel consumption on full driving cycle 

(a) 

  

(b) 
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drivability [39]. If the (EGR) is allowed while the engine is still cold; it may cause a rough idle; 

or stalling. As shown in the figure 51, in the dSpace HIL the value is set to be constant while, 

as observed on the real vehicle data, the coolant temperature varies. This assumption strongly 

effects the EGR which in turn effects the fuel consumption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESTIMATED CO2 EMISSIONS  

 

As explained in the previous section 7.2 of WLTP CO2 emission, the estimation is based on 

the assumption of complete combustion of fuel. The results obtained at different phases are as 

shown in table 6. The difference in CO2 emission numbers between dSpace HIL and Real 

vehicle can be observed. As we have established that CO2 emission depends on fuel 

consumption, the differences recorded are the result of values obtained fuel consumption at 

different driving phases.  

 

 

 

 

 

 

 

 

 

 

8.2  WLTP cycle results 
  

With Porsche Panamera ECU attached to the dSpace HIL, the collection of the desired data 

from Engine Control Module is retrieved via DiagRA software. The sensor and ECU values 

which are used for estimating instantaneous fuel consumption (l/100km) and CO2 emissions 

are as follows: 

 

 Vehicle Speed 

 Engine RPM 

 Mass Air Flow (MAF) 

 Intake Manifold Absolute Pressure (MAP) 

Driving Phase dSpace HIL 
Real Full 

Driving cycle 

Full driving cycle 406.6 428.16 

Acceleration Phase 2631.2 2702.9 

Constant driving Phase 179.4 119.6 

De-acceleration Phase 76.5 35.8 

Table 6: HIL and real vehicle CO2 emission average values. 

Fig. 51: Coolant temperature of HIL and real vehicle 

comparison   
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 Intake Absolute Temperature (IAT) 

 Lambda 

 Short term fuel trim 

 

8.2.1  Fuel Consumption 
 

As showed in figure 52, the vehicle speed has effect on the fuel consumption in different phases 

of WLTP cycle. The fuel consumption increases when the vehicle speed increases (during 

acceleration), meaning that it is mainly affected by ineffective driving and traffic.  
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At 20s and 110s sudden acceleration and braking occurs respectively. During this time, spike 

in fuel consumption is recorded whereas during normal driving (without aggressive 

acceleration–deceleration) the fuel consumption is reduced. While, low fuel consumption has 

been seen when vehicle is cruising at higher speeds because vehicle tend to go into overdrive 

mode to save fuel. The reason of this behavior is that while cruising vehicle load is minimum, 

same is applicable while idling. 

Figure 53 shows the cause of acceleration on the fuel consumption during WLTP cycle medium 

phase. According to the observation, peaks of fuel consumption are more prominent during 

aggressive driving. 
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The obtained fuel consumption over the WLTP cycle on a different phases according to values 

from dSpace HIL are shown in Table 7. 

 

 

WLTP Cycle Phase 
Fuel consumption 

(l/100km) 

Low Phase 29.50 

Medium Phase 19.04 

High Phase 15.2 

Extra High Phase 10.8 

Overall Average 19.15 

 

 

 

8.2.2  Estimated CO2 Emissions  
 

The estimation of CO2 is based on the fuel consumption complete combustion calculation 

assumption. And the results at different phases are as shown in table 8. 

 

 

WLTP Cycle Phase CO2 emissions (g/km) 

Low Phase 705.5 

Medium Phase 455.5 

High Phase 363.7 

Extra High Phase 259.3 

Overall Average 458.1 

 

 

 

As observed, the emissions also are completely dependent on the fuel consumption. Emissions 

are more in the phase where aggressive driving (more engine load phase) has occurred. 

 
 

8.3  dSpace HIL Fault Code Diagnostics  
 

As explained in the literature review chapters, a vehicle stores the trouble code in its memory 

when it detects a component or system that’s not operating within acceptable limits. The code 

will helps to identify and fix the issue within the vehicle.  

 

To perform the TestCase smoothly without check engine light on, some of these error codes 

are masked out or put to the default value by the Porsche Engineers as it does not affect their 

tasks. The masking of the error are done using INCA Software, these code validate the results 

which is observed in the study of prediction of fuel consumption. Few of the relevant error 

codes which are masked/default valued are discussed along with its description in table 9: 

 

Table 7: Fuel consumption over the WLTP cycle different 

phases 

Table 8: Estimated CO2 over the WLTP cycle different 

phases 
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FAULT CODE NAME OBD DTC CODE DESCRIPTION 

IVGdiCtlCvoErrMax_x P02CD,..  All Cylinder Fuel Injector 

IVGdiCtlCvoErrMinMax P0149 Fuel Timing Error 

HEGOS2B1ElecNpl P0136 
O2 Sensor Circuit 

Malfunction 

GEVlvPhaSlowIntkB1 and B2 P000A and P000C 

Camshaft Position Slow 

Response Bank 1 and Bank 

2 

GEVlvPhaPsOpenLoadOutlB2 P0023 
Camshaft Position Actuator 

Circuit (Bank2) 

OilPPlaus P0521 
Engine Oil Pressure (EOP) 

Sensor 

DFRMmax and DFRM2max P0171 and P0174 
Fuel Trim, System too Lean 

Bank 1 and Bank 2 

DFRMmin and DFRM2min P0172 and P0175 
Fuel Trim, System too Rich 

Bank 1 and 2 

SCtPmp2DiagGrdKeyErr P261B 
Coolant Pump, Control 

Circuit Range/Performance 

FanErrNEngLim P10EF 
Function limitation due to 

failure of cooling fan 

Fan1_KLERespErr U0632 
Lost Communication With 

Fan 1 and 2 

ExhTSnsr4SentData U14A1 
Exhaust temperature bank 2 

implausible message 

PSRPmax P0236 
Turbocharger/Supercharger 

Boost Sensor 

PSRPmax P0106 
Manifold Absolute Pressure 

Sensor 

DSKVRmax P0191 

Fuel Rail Pressure Sensor 

Circuit 

Range/Performance 

TWCDPriCatB1 and 

TWCDPriCatB2 
P0420 and P430 

Catalyst System Efficiency 

Below Threshold Bank 1 

and 2  

 
 
 
 

 

Table 9: HIL Fault codes and description 
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Chapter 9 

Conclusion  
 

 
9.1  Summary 
 
The theoretical part of this thesis provides in-depth understanding of various concepts from 

Communication between In-Vehicle Networks, Vehicle Diagnostics, and lastly Hardware-in-

the-Loop (HIL). To obtain optimal results and successfully implement the practical part, it is 

imperative to acquire the theoretical knowledge of these concepts. 

For example, the topic of Vehicle Diagnostics is presented in detail to understand the meaning 

of the error and fault codes occurring in the vehicle memory during simulation results.  

 

As one of the main objective of this work involves Hardware-In-Loop and driving cycles, this 

work provides a very clear understanding of requirements and functionality of the Porsche 

Engineering HIL setup.  

 

The implementation methods of WLTP cycle are described using manual and EXAM TestCase 

(automation method).  

 

Main conclusion 

 

1. The TestCase was generated in EXAM with implementation of WLTP cycle.   

2. This work also defined the various calculations and factors which are needed in 

estimating the fuel consumption and CO2 emissions.  

3. It has been verified that driving behavior affects the consumption, as random starts and 

stops present massive fuel consumption whereas normal driving without aggressive 

acceleration–deceleration provides good fuel economy.  

4. Validation studies were carried out on HIL, using data collection from the real vehicle. 

Reasons for HIL results over or underestimate by validation:  

 

1. Modelled values of Short term fuel trim – From the results, the overestimate of fuel 

consumption is observed in case of HIL as short term fuel trim is unable to run HIL 

engine into lean region (λ=2) during engine braking phase. This effect the functioning 

of the Lambda sensor which influence the consumption. 

2. Actuation of throttle valve – With the results, in all phases the throttle is not performing 

according to the real vehicle. This can be due to difference in the driving behavior of 

the driver model (real and HIL) or can be due to the modelled values in HIL. In the 

acceleration phase the HIL actuation from 80 to 40% is occurring in 0.5 sec while in 

real vehicle it’s in 2.5 sec. This actuation can affect the engine load/MAF which plays 

a very significant role in the fuel consumption. 

3. Intake Manifold Temperature of HIL – The inability of HIL to maintain the constant 

intake temperature in intake manifold after the turbocharger can also prove the reason 
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of the underestimation. The HIL values are in the range of 50ᴼC - 60ᴼC, while in real 

vehicle it is around 30ᴼC, this variation can affect the density of the air which will 

further will effect fuel consumption. This effect can also be due to the improper 

modeling of the intercooler or the ambient temperature in the HIL. 

4. Modeling of the gear shifting – According to the results 0 -120 Km/h real vehicle is on 

2nd gear while HIL driver model is on 3rd gear, proves that the modeling of the gear 

shifting can be a problem. 

Reasons for Real results over or underestimate by validation:  

 

1. Grade (slope) on road – Measured results are performed on the Stuttgart, Germany 

roads and they have a little bit of slope on the road, this can affect the engine load. 

2. Effect of Volumetric Efficiency (VE) – This effect played a very important role in 

determining the consumption of the real vehicle data. Due to absence of the MAF sensor 

values VE values are estimated according to the HIL values at different phases.  

3. Effect of EGR – As MAF values of real vehicle are calculated using the speed density 

method, which assumes ignoring EGR. As the dilution effect of due to EGR is very 

important for the petrol air/fuel mixture combustion, this also influence fuel 

consumption. 

4. Effect of Coolant temperature: This effect is also related to the Exhaust gas recirculation 

(EGR) which in turn improve the fuel consumption. But it observed that the dSpace 

HIL is not varying the temperature values, the HIL engine coolant temperature is set on 

default at 88ᴼC while the real vehicle is running between 94ᴼC - 97ᴼC. This can also be 

due to the improper modeling of the coolant pump and cooling fan.  

 

 

9.2  Contribution of thesis 
 

 A test case in EXAM was generated that use WLTP cycle to validate HIL system 

focusing on fuel consumption.  

 This TestCase can potentially help the future engineers working on this system to test 

the vehicle using WLTP cycle and advance their work more timely and reliably.  

 Moreover, in future, using this study, calculations and development for estimation of 

fuel consumption, the emissions model for the HIL can be generated which can further 

be validated using real values from exhaust analyzers fitted on the vehicle.  

 Also, WLTP cycle real results can be used to validate the HIL system in future. 

 Using the fault code diagnostic analysis of HIL, in future it can be resolved and the 

performance of the Hardware-in-loop can be improved. 
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CONTROLLER AREA NETWORK (CAN) 

 

FIELD NAME 
LENGTH 

(BITS) 
PURPOSE 

Start of frame 1 Denotes the start of frame transmission 

Identifier (green) 11 
A (unique) identifier which also 

represents the message priority 

Remote Transmission 

Request (RTR) (blue) 
1 

Must be dominant (0) for data frames 

and recessive (1) for remote request 

frames 

Identifier Extension Bit 

(IDE) 
1 

Must be dominant (0) for base frame 

format with 11- bit identifiers 

Reserved bit (r0) 1 

Reserved bit. Must be dominant (0) but 

accepted as either dominant or 

recessive. 

Data length code (DLC) 

(yellow) 
4 Number of bytes of data (0–8 bytes) 

Data Field (red) 0-64 (or 0-8) 
Data to be transmitted (length in bytes 

dictated by DLC field) 

CRC 15 Cyclic redundancy check 

CRC delimiter 1 Must be recessive (1) 

ACK slot 1 
Transmitter sends recessive (1) and any 

receiver can assert a dominant (0) 

ACK delimiter 1 Must be recessive (1) 

End of Frame (EOF) 7 
Bit indicates the end of the messages 

and disables the bitstuffing. 

 

 

The ISO-11898:2003 standard was originally created for messages with an 11-bit identifier 

(ID). The standard was later amended with the extended 29-bit identifier. The 11-bit IDs 

provide 2048 valid different messages identifiers, where the 29-bit IDs provide room for 537 

million possible message identifiers.  

Fig. 54: CAN-Frame in base format (11 

bits) 



 

CAN Bus Signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the physical level, a CAN bus exists out of a twisted pair where in rest 2,5V is applied on 

in case for high-speed variant. When a node wants to send a recessive bit (associated with a 

logic 1), the voltage of 2,5V is not changed. When a dominant bit has to be sent (associated 

with a logic 0), one wire of the twisted pair is pulled to 1.5V (the CAN Low wire) and the other 

one is lifted to 3.5V (the CAN High wire) in case of high speed variant. Both wires are closed 

with a 120Ω resistor to suppress reflections on the bus (Figure 55). The nodes have to ensure 

their own synchronization to the messages on the bus. As CAN is event-triggered 

communication and not time-triggered therefore, no clock will be transmitted with the CAN 

messages. 

 

FLEXRAY 

 

Multi-drop Bus 

The Multi-drop Bus topology is the same as in CAN and LIN systems, and it uses a single bus 

to connect multiple processors together. This system is helpful in implementing with other 

systems due to the similar layout of CAN and LIN networks.  

 

Star Network 

The Star Network topology consists of multiple ECUs connected to a central active node. This 

layout is useful in that if one processor is cut or disconnected, the other processors continue 

functioning.  

Fig. 55: CAN bus levels [40] 

Time 

Bus Voltage 

Fig. 56: FlexRay Hybrid 

Network topology 



 

Hybrid Network 

The Hybrid Network topology is a mix between Multi-bus and Star Networks. This layout 

combines the reliability and cost efficient advantages of the other two layouts, and it will most 

likely be the future of FlexRay technology as shown in the Figure 56 above. 

 

Fig. 57: FlexRay Frame Format  



 

FlexRay Signal 
 

At the physical layer, FlexRay communicates using the differential signals BP and BM, 

corresponding to the voltages uBP and uBM (Figure 58). 

The differential voltage between the signals (Vdiff) is due to represent four different sates which 

can occur on the bus: Idle_LP: low-power state, Idle: no-communication state, Data_1: logical 

HIGH and Data_0: logical LOW  

 

 

 

 

 

 

 

 

 

LOCAL INTERCONNECT NETWORK (LIN) 

Master Header 

 

Sync Break: Every LIN frame begins with the break, which comprises 13 dominant bits 

(nominal) followed by a break delimiter of one bit (nominal) recessive. This works as a start-

of-frame notice to all nodes on the bus. 

 

Sync Field: The master task in the header transmit the sync field as a second field. Sync is 

well-defined as the character x55. The sync field permits slave devices that perform automatic 

baud rate detection to measure the period of the baud rate and adjust their internal baud rates 

to synchronize with the bus. 

Fig. 58: FlexRay Signal [41] 

Fig. 59: LIN Frame Format 



 

Identifier: This field is the final field transmitted by the master task in the header. It provides 

identification for each message on the network and ultimately decides which nodes in the 

network receive or respond to each transmission. All slave tasks repeatedly listen for ID fields, 

verify their parities and determine if they are publishers or subscribers for this specific 

identifier. The LIN bus consist of a total of 64 IDs. IDs 0 to 59 are intended for signal-carrying 

(data) frames, 60 and 61 are used to transfer diagnostic data, 62 is kept for user-defined 

extensions and 63 is reserved for future protocol developments. The Identifier is communicated 

over the bus as one protected ID byte, with the lower six bits consisting of the raw ID and the 

upper two bits comprising the parity. 

 

Slave Response 

 

Data Bytes: These bytes field are transmitted by the slave task in the response. This field 

comprises from one to eight bytes of payload data bytes.  

 

Checksum: This field is transmitted by the slave task in the response. The LIN bus states the 

use of one of two checksum algorithms to calculate the value in the 8 bit checksum field. 

Classic checksum is computed by adding the data bytes alone and enhanced checksum is 

computed by adding the data bytes and the protected ID. 

 

LIN Signal  

 

It was the goal of the LIN design to accomplish a simplistic wiring topology. The simple single-

wire bus connects to each node in the collection and switches from ground to battery-level 

voltage as shown:  Signal Levels (Figure 60) 

 

 Dominant - Bus LOW - Logic 0 

 Recessive - Bus HIGH - Logic 1 

 

 

 

 

 

 

 

 

 

Fig. 60: LIN Signal 


