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Abstract

This thesis focuses on building a navigation system for an autonomous
vehicle in an unknown environment. We use a single monocular camera
as a primary sensor input. We build a system for detection of road lane
markings from individual camera images. We then use these detected
markings as landmarks for building a map fragment of the currently
perceived surroundings. To create a global map and localise within it,
we use an existing 2D LIDAR-based SLAM solution (Cartographer [26])
which employs modern scan matching and loop closure algorithms. We
build the whole system for Robotic Operating System (ROS) and verify
the solution on various experimental tracks using a scaled-down model of a
car called F1/10. In the scenario with low speed and low track complexity,
the localisation shows accurate results (mean position error of 0.14 m) and
loop closure manages to build an accurate and consistent map. However,
the results show that the performance quickly deteriorates with a higher
speed and a higher track complexity. We suggest possible causes and
solutions.

Keywords: Road Detection, Simultaneous localisation and mapping, Vi-
sual navigation, Autonomous vehicles

Abstrakt

V práci se zabýváme vybudováńım systému, který umožńı orientaci
autonomńıho auta v neznámém prostřed́ı. Jako primárńı senzor pro
tuto úlohu využ́ıváme kameru. Náš systém detekuje vodorovné značeńı
vozovky z jednotlivých obrázk̊u, které pośılá kamera při j́ızdě auta.
Detekované značeńı použ́ıváme jako orientačńı body pro vybudováńı
fragmentu mapy, který odpov́ıdá aktuálně pozorovanému prostřed́ı.
Pomoćı existuj́ıćıho řešeńı 2D SLAMu (Cartographer [26] ; určené pro
řešeńı SLAMu s použit́ım LIDARu) náš systém vytvář́ı globálńı mapu z
nahromaděných lokálńıch fragment̊u a následně v ńı lokalizuje aktuálńı
pozici auta. 2D SLAM použ́ıvá moderńı algoritmy párováńı sken̊u a
uzav́ıráńı smyček k tvorbě konzistentńı globálńı mapy. Celý systém
je implementován pro využit́ı v ROSu (Robotický Operačńı Systém).
Řešeńı problému ověřujeme pomoćı experiment̊u, které realizujeme
na rozličných trasách se zmenšeným modelem auta F1/10. Při ńızké
rychlosti vozidla na jednoduché trase vykazuje lokalizace velmi přesné
výsledky, konkrétně chyba pozice je v pr̊uměru 0.14 m, avšak se stoupaj́ıćı
rychlost́ı auta a složitost́ı trasy přesnost systému rychle upadá. V této
práci zkoumáme možné př́ıčiny těchto problémů a navrhujeme jejich řešeńı.

Kĺıčová slova: Detekce vozovky, Současné mapováńı a lokalizace, Vizuálńı
navigace, Autonomńı vozidla
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The technology of autonomous cars has become a larger and larger target of interest
for both the professional and general public in recent years. Even though people have tried
to invent self-driving cars since the 1920s [4], in recent years, we can see this idea come
to life. Nowadays, we can finally see the first few almost fully autonomous cars. Although,
back-up drivers are still required to switch to manual driving mode in certain situations[14].
There is still a lot of improvement and testing to be done and also a lot of questions of non-
technological character to be resolved [31] before autonomous cars can become common on
the roads. Despite that, autonomous cars are predicted to become a majority on the roads
by 2035 [4].

The goal of this thesis is the development and testing of a system that provides nav-
igation to a vehicle in an unknown environment. Our system mainly depends on data from
a camera mounted on the vehicle. We also explore possible enhancements by using auxil-
liary sensor data, e.g., an acceleration estimate provided by the IMU (Inertial Measurement
Unit) and the depth landmarks provided by LIDAR. Our environment is a model of an urban
road defined by lane markings. For the development and testing of the algorithms, we use a
scaled-down model of a car called F1/10.

Navigation is achieved in three steps. First of all, our system detects lane markings in
the individual camera images. Secondly, we use these detected lane markings as landmarks
and build a local map fragment corresponding to the currently perceived area around the
vehicle. In the last step, we provide the local map fragments in the form of LIDAR scans to
an existing 2D LIDAR-based SLAM (Simultaneous Localization and Mapping) solution to
build a global map and localise within it. For this purpose, we use a modern SLAM solution
called Cartographer [26]. We chose Cartographer, because it is an effective real-time solution,
which achieves better results than other popular solutions (e.g., Gmapping [23] and Hector
SLAM [30]) as shown in this paper [52], which compares the accuracy of widely used 2D
LIDAR-based solutions.

This thesis was inspired by an already working LIDAR-based SLAM system on the
F1/10 car mentioned above. That system enabled the car to navigate itself on a track enclosed
by walls, which are directly detected by LIDAR. Achieving functional SLAM for a specific
robot and a specific type of an environment is extremely valuable as it allows the robot to
navigate the surrounding environment autonomously [17]. SLAM is usually achieved using
wide-angle range sensors like LIDAR [35]. As already mentioned, this work instead focuses
on using a single monocular camera.

Our goal is to achieve precise localization and mapping of the autonomous car in an

1



CHAPTER 1. INTRODUCTION

environment defined by lane markings. This enables similar functionality as LIDAR-based
SLAM but instead of mapping obstacles we map the lane markings detected from the camera
images. This provides the car with navigation, which can be used for autonomous applications
like autonomous driving, racing, etc., on a track similar to urban roads.

The structure of this thesis is as follows:

First, the established state-of-the-art perception methods related to our task are de-
scribed and discussed in Chapter 2. Further, the assigned problem is formulated and spec-
ification of available resources for its solution is described in Chapter 3. In Chapter 4, we
present and discuss the methods chosen for the solution in this thesis. Chapter 5 focuses on a
brief overview of the implementation of those methods. This is followed by Chapter 6, which
describes the metrics used for the evaluation and verification of the implemented solution.
Finally, the experiments and their results are presented in Chapter 7 and the whole thesis is
concluded in Chapter 8.

The contents of the attached CD are listed in Table 1 in the appendix. The abbreviations
used throughout this thesis are listed in Table 2 in the appendix.

2



CHAPTER 2. RELATED WORKS

Chapter 2

Related Works

In this chapter, we first put the assigned task into the context of previous research work
and review the state-of-the-art methods that are used for solving similar problems to those
encountered. This thesis’s assignment can be broken down into three subtasks: road detection,
local map fragment construction and SLAM. The discussed methods and principles related to
each subtask are presented below in separate sections.

2.1 Road Detection

The first part of our task is the detection of the road from an independent frame taken
by the camera. The detection of the road defined by clearly visible lane markings is mostly
referred to as structured road detection or detection of a road in urban areas in literature.
Methods used for detecting this type of road differ from methods for detecting an unmarked
road or a badly marked road. In the former case, the perception applications heavily rely on
detecting lane markings and using them as landmarks for navigating through the environment.
Road detection is then reduced to the detection of lane markings. In the latter case, the task
is much more complex. The road can be detected by dynamically estimating the color, texture
and features of the road surface and trying to expand that region until it reaches discontinuities
in the image that would signify naturally created road boundaries [50].

A lot of research was conducted on the topic of lane detection from a camera image
in different circumstances. Most of the established methods use a combination of color-based
segmentation [10, 25, 47], edge detection [46, 28, 51] and geometrical constraints [46, 54, 51]
using a model of the lanes. These methods can independently vote on the classification of
individual pixels or they can restrict image areas that are then used for the final segmentation
by other methods. The specific methods and principles of the lane detection are introduced
below.

2.1.1 Color-based Segmentation

When the lane color is distinct from the road, detection algorithms can use it to prepro-
cess the image using color-based segmentation [10, 47, 25, 46]. This can be done in a standard
RGB color space but it is not that efficient for the characterization of the lane color [46].
Other color spaces that separate components like luminance and chrominance into separate
channels help reduce the effect of current light conditions [46]. Most of the reviewed relevant
papers [47, 46, 32] use the HSI space (Hue, Saturation and Intensity) or the Y CbCr space

3
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(Luminance, blue and red chroma components). These alternative color spaces are illustrated
in Figure 2.1.

(a) HSI color space (from [5]) (b) Y CbCr for luminance of 0.5 (from
[44])

Figure 2.1: Alternative color spaces illustrations

For the segmentation of a color in regular RGB space, we need to threshold all three
channels as the color information is evenly distributed among the components. In the alter-
native color spaces, it is possible to rely on thresholding only one or two components [47].
This saves us computation time.

The output of the color-based segmentation is a binary image that can be used to
restrict areas for further analysis. An example of color segmentation of the lane markings is
shown in Figure 2.2.

(a) The original image
(b) The resulting binary image

Figure 2.2: Color-based segmentation by thresholding the hue component in the HSI space
example

2.1.2 Edge Detection

Edge detection is another popular approach used for the detection of lane markings in
an image (as shown in, e.g., [46] and [54]). Edge detection is the process of finding continuous
parts of an image where pixel intensity suddenly changes between consecutive pixels. This
approach is based on the assumption that we expect high gradient values between the lane

4
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markings and the road in the image [46]. Points that are classified as edges are good candidates
to be a part of the lane markings boundary.

There are several ways to extract edges from an image. According to the survey [3]
the most established ones are Canny edge detector [9] and Marr-Hildreth detector [36]. The
methods of road detection [46, 54] use Canny edge detector applied to a preprocessed image.
Preprocessing usually includes smoothing by convolving the image with a Gaussian kernel
(Equation 2.1) to suppress edges stemming from the input noise:

Gnorm(x, y) =
G(x, y)∑n

i=0

∑
m
j=0G(i, j)

, (2.1)

G(x, y) = e−
(x−n−1

2 )2+(y−m−1
2 )2

2σ2 , (2.2)

where n, m are desired sizes of the kernel and σ is the standard deviation of the gaussian
distribution.

The Canny edge detector uses thresholding with hysteresis to keep even the weak edge
points (edge points with a lower intensity gradient) in the result as long as they are connected
to strong edges (points with a high intensity gradient). This results in more continuous and
robust edge detection, which can be adjusted for any application by changing the ratio between
the low and the high threshold. The edge detection of Figure 2.2a can be seen in Figure 2.3.
Apart from the lane markings, there are detected edges from the black granules in the ground
as well as from the reflections of objects above the ground plane.

Figure 2.3: Canny edge detection example

2.1.3 Geometrical Model Fitting

When it comes to the detection of parallel lane markings on a road of a simple shape
(without intersections or more complex turns, etc.), it is possible to use a parametrised ge-
ometrical model. The model can be searched for in the preprocessed image that already
contains the majority of points that are likely to be lane markings (e.g., the result of edge
detection or segmentation).

Some methods use a simple linear model (Equation 2.3) [28]. The linear model is very
restrictive and cannot deal with higher curvature of the lane markings. It can be useful for
certain applications if used in the near field of view where the road is expected to be almost
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straight as shown in [28].

y = ax+ b (2.3)

A parabolic arc model (Equation 2.4) of the lane markings is often used [28, 54]. A
circular arc model (Equation 2.5) is also useful as it can deal with the curved road [25], yet
it remains simple with only 3 parameters.

y = ax2 + bx+ c (2.4)

(x− a)2 + (y − b)2 = c2 (2.5)

Other more advanced models, e.g., cubic B-splines, have shown good results. Splines
can deal with more than one curve in a single frame (e.g., an S-shaped road), which the
previously presented models could not handle [51]. Using the splines, the lane markings are
represented by curve segments l where each segment can be defined as a linear combination
(Equation 2.6) of control points Ci [51]:

l(t) =
∑
i

Si(t)Ci, (2.6)

where Si is the spline basis function. We can then increase the complexity and flexibility of
the model by adding more control points.

To fit the model to the image, the Hough transform is usually used [28, 46, 51, 54]. At
first, the Hough transform enumerates all possible instances of the model. Then, it lets indi-
vidual pixels vote for those instances of the model that the pixel could be a part of. Compared
to the other methods for extracting the model from noisy data like RANSAC[6], the Hough
transform does not return just the best-found candidate, but also a score of all instances. We
can then process the results to find all instances of the model that are relevant to our task. It
is computationally expensive and memory expensive, especially for the more complex models
where the number of parameters is high. On the other hand, certain improvements can be
done to save enough computational time to make it work even for real-time applications,
e.g., the multiresolution Hough transform used in [54] or the Probabilistic Hough transform
described in [22].

This approach is powerful when lane markings hold the assumed shape. Its great ad-
vantage in comparison to segmentation methods is that it can interpolate lane markings in
cases where they are only partially visible or when they are missing completely. Geometrically
constraining the road detection works well for the purpose of lane following, a lane departure
warning system, etc.[28, 46, 51].

The need for parametrisation is a certain disadvantage of the method. It is not suit-
able for the detection of arbitrary road shapes (e.g., non-parallel lines or intersections) as
the computational and memory cost significantly rises with the complexity of the model.
For applications like mapping, it would require the addition of a mechanism for finding the
boundaries of the modelled curves as the models naturally extend to infinity.
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2.1.4 Region of Interest

If there is a large area of the image, which does not contain any objects of interest, the
lane detection methods first cut the input image into 2 parts based on the horizon line to
extract the ROI (Region of Interest) [10, 46]. There are two ways of ROI estimation. We may
assume the ROI significantly changes between frames (e.g., due to vertical camera rotation
caused by the car tilting) or we assume that the ROI stays the same because the relative
camera pose is stable. In the former case, the extraction has to be done independently in each
frame by searching for the vanishing point, e.g., using Hough line transform as proposed in
[46]. This dynamic ROI search is illustrated in Figure 2.4. It is computationally expensive to
do this independently in every frame during real-time application. In the latter case, we only
estimate the ROI once manually and cut it out of each input frame [10] the same way.

(a) Original image of structured
road scene

(b) Hough line transform applied
on the detected edges from the
original image

(c) Detected vanishing point
and generated boundary line
between the road area and the
rest of the image

Figure 2.4: Dynamic ROI search using vanishing point detection (from [46])

Figure 2.5: Static ROI illustration

The typical approach to get the ROI is to cut out the part of the image above the
ground plane, as it contains no objects of interest. Other than that, we can also cut out the
part of the ground plane that is too close to the horizon line. We can choose to do this because
that part of the image is blurred and the lane markings are barely visible as illustrated in
Figure 2.5. The further we look from the camera center on the ground plane, the thinner the
lane markings are as there are fewer pixels per unit of length. Therefore, only the part of
the image below the red line is the ROI. Above it, the lane markings cannot be accurately
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detected. Even further above, the ground plane vanishes. These effects occur due to the
nature of perspective projection, which causes the size of further objects to be scaled down
and condensed into a gradually smaller amount of pixels in the image. Perspective projection
is illustrated in Figure 2.6.

Figure 2.6: Perspective view of a plane illustration (from [12])

Jung and Kelber use the ROI approach even further in their application of lane fol-
lowing [28]. They propose a method of generating the ROI from the previously detected lane
boundaries and processing only that part of the image to save the computational time. This
can be done by extending the previously detected regions with lane markings by few pixels
in each direction.

The benefit of using the ROI is that only the important part of the image is processed.
This approach can save a lot of computation time.We can also take advantage of needing
only that part of the image from the camera and increase the FPS by omitting reading
and transferring the rest of the image (if the provided camera supports such an option).
These benefits are only available if our assumptions regarding the image areas are accurate.
Otherwise, we could lose valuable features.

2.2 Map Fragment Acquisition

After image processing, we have to use the detected lane markings from the independent
frames to build a local map fragment of the visible surrounding environment. These map
fragments can be later used for the construction of a global map, which is used for localisation.

To acquire a fragment of the map, we need to transform the coordinates of the detected
points in the image plane to a coordinate system of the ground plane. The origin of this
coordinate system of the ground plane moves with the car. The relation between the coordinate
systems of the image and the ground plane is usually formulated by introducing a virtual
camera with a birds eye view [41]. This virtual camera includes the desired ground plane
coordinate system, as illustrated in Figure 2.7.
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Figure 2.7: Perspective transformation illustration (from [34])

Then, we have to find the transformation between the two cameras. To derive the
transformation between these coordinate systems a mathematical model (Section 2.2.1) of
the cameras needs to be formulated. We then estimate the model’s parameters by calibration.
Doing that provides us with projection formulas defining the relation between the 3D scene
and both image planes. A widely used camera model is described in the next section. We
also mention the standard calibration methods. Further, in Section 2.2.2, the methods for
deriving the geometrical transformation (linking the image to the ground plane) in the form
of homography are presented.

Figure 2.8: Perspective camera model illustration (from [53])
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2.2.1 Camera model

A simple standard perspective camera model (also known as pinhole camera model
illustrated in Figure 2.8) defines the projection of points from the 3D scene into the camera
plane. The projection is formalized using homogenous vectors of the point’s position in the
world coordinate system ~xw, its projection to the image ~xc, and the projection matrix P as
shown in Equation 2.7. The homogenous form of vectors is widely used in projective geometry
as it allows for the common operations as translation, rotation, etc., to be formulated using
matrix multiplication.

λ~xc = P ~xw (2.7)

The projection matrix P can be decomposed into a product of matrices:

P = KR[I− ~c], (2.8)

where K contains the individual intrinsic parameters and both R, ~c contain the extrinsic
parameters of the camera. K is usually denoted as the camera calibration matrix and has a
general form [55]:

K =

af −afcotφ u0
0 f

sinφ v0
0 0 1

 , (2.9)

where a and φ are the aspect ratio and the skew angle of the digitization raster, consequently,
f is the focal length and [u0, v0] are the coordinates of the principal point in the image.

R is the rotation matrix defining the camera’s orientation with respect to the world
coordinate system. It is a 3 by 3 matrix, but it is defined only by three parameters (Euler
angles of rotation).

~c is the homogenous vector of camera center position in the world coordinate system.
This is a widely used model in applications that require measurements of the positions of
objects visible in an image [49] (e.g., in applications like visual SLAM[13], which is described
further in Section 2.3.5).

(a) No radial distortion
(b) Negative radial dis-
tortion

(c) Positive radial distor-
tion

Figure 2.9: Radial distortion illustration (from [37])

Before we can apply such a model to the raw camera images, we have to nullify the
effects of possibly present distortions which usually accompany real lenses used in cameras
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[49]. The radial distortion is usually the most pronounced. We can also encounter significant
tangential distortion with certain lenses. We can recognize both distortions in an image easily
by looking for the deformation of straight lines. Examples of radial distortion are illustrated
in Figure 2.9. An illustration of tangential distortion is shown in Figure 2.10. The negative
effect of these distortions can mostly be removed by applying rectification using the following
popular models.

Figure 2.10: Tangential distortion illustration (from [42]; the original points are highlighted
in red, the distorted points in blue)

The most common model for radial distortion is the polynomial model in following
form:

rc = rd(1 +
N∑
i=1

pir
i
d), (2.10)

where rd is the distorted distance of a point in an image from the distortion center whereas
rc is the correct rectified distance of the point from the center. N is the degree of the model
and pi are the radial distortion coefficients.

Another useful model is the division model:

rc =
rd

1 +
∑N

i=1 pir
i
d

, (2.11)

which is proposed in [20]. Its advantage is that it requires a lesser polynomial degree for
removing high level of distortion compared to the polynomial model [49].

The popular Brown-Conrady model proposed in [8] can be used for rectification in the
cases where both the radial and the tangential distortion are present in the raw image. This
model can be formalized as:(

xc
yc

)
=(1 + k1r

2
d + k2r

4
d + k3r

6
d + · · ·)

(
xd
yd

)
(2.12)

+

(
[p1(r

2
d + 2x2d) + 2p2xdyd][1 + p3r

2
d + p4r

4
d + · · ·]

[2p1xdyd + p2(r
2
d + 2y2d)][1 + p3r

2
d + p4r

4
d + · · ·]

)
,

where ki are the radial distortion parameters and pi are the tangential distortion parameters.
It should be noted that this is a simplified formulation of the model as we assume that the
center of distortion coincides with the origin of the coordinate system.
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We can estimate the degree and the values of the coefficients of the models through
calibration using image-to-scene correspondences or some known straight lines in the scene.
Straight lines have the property of mapping into other straight lines under perspective trans-
formation but are usually visibly deformed by the distortions.

2.2.2 Homography estimation

Points in a plane visible from two different perspective cameras are related by a trans-
formation matrix H called homography [40]. The original camera view and the virtual camera
view (which we want to transform our images into) are illustrated in Figure 2.7. Searching
for the transformation from a rectified image to the ground plane can be reduced to the task
of estimating the corresponding homography which is a well-examined problem with many
established methods of solution.

If the camera does not move or rotate with respect to the reference point on the car, then
this homography will remain constant as the car moves. However, if the camera shakes or tilts
considerably during the motion of the car, we need to estimate the transformation between
consecutive captured frames. This transformation can be used to correct the effect of the
camera position and orientation change that is not included in the homography. This task can
be solved (at least in the scenes containing mostly planar structures like urban environments)
by searching for the dominant vanishing point that is determined by orthogonal lines in the
scene [45].

The established methods for homography estimation usually use some apriori knowledge
of the scene captured in the image, e.g., parallel straight lines (calibration via vanishing points)
or easily detectable points in a scene with a measurable position in the world coordinate system
(calibration via correspondences) [16, 1, 45].

The homography can be extracted from the point or line correspondences using a di-
rect linear transformation method where the minimization of the reprojection error is solved
as a nonlinear least squares problem by SVD (Singular Value Decomposition)[1]. Another
approach would be to use RANSAC (RAndom SAmple Consensus) to generate homography
from randomly drawn samples of correspondences and then choose the one with the most
inliers (correspondences with a reprojection error lower than a certain threshold)[24, 27].

Vanishing points are intersections of the lines in the image that are parallel in the 3D
scene. They are commonly found in urban scenes thanks to a high number of parallel lines
formed by man-made objects[18]. They are valuable for both the estimation of the camera
pose (the position and orientation of camera with respect to the world coordinate system) [18]
and the reconstruction of the 3D scene [11]. As shown in [56], we can estimate homography
between the plane of interest (e.g., ground plane) and the image plane using two detected
orthogonal vanishing points even without previous camera calibration under the condition
that our camera has a square digitization raster.

The advantage of estimating the rotation to the plane of interest using the vanishing
points is that our estimation should have a consistent accuracy for the whole plane. With
the correspondences approach, we need to cover most of the visual field to ensure good

12



CHAPTER 2. RELATED WORKS

calibration because the distribution of the correspondences might influence the quality of
calibration with respect to certain areas of the image [24]. Possible outliers caused by mistakes
in detection or some other unpredicted inaccuracies might also cause the fitting process to
refuse the best model. It is a good practice to visualise the reprojection error to check for
these destructive points and recalibrate after removing them. As suggested in [27] a fuzzified
version of RANSAC can also be used to reduce inaccuracy caused by outliers.

2.3 Map construction and localisation

As the last step, we have to fuse the incoming map fragments together with auxiliary
sensor data (e.g., IMU, LIDAR) to build a map of the surrounding environment while si-
multanously localising the car within it. This is an instance of a SLAM problem. We cannot
separate the mapping and localisation process because the estimation error of the previously
detected landmarks’ position and the vehicle’s pose are correlated as described in [17]. They
have to be adjusted simultaneously as the new data arrives in order to reach a consistent
solution and a mapping error that converges to zero upon revisiting previously mapped loca-
tions.

There are many different approaches to the SLAM problem. In the following sections,
we describe the concepts and methods used in the most popular SLAM solutions.

2.3.1 Scan matching

Scan matching is a method used to find a spatial transformation of the point cloud
generated from the current sensory input that alignes it with the already existing map. This
is used to estimate the current vehicle position.

Many modern SLAM solutions [30, 26] need a fast and accurate scan matcher for this
purpose. A simple method known as Iterative Closest Point (ICP) can be used for this pur-
pose. It iteratively searches for correspondences between the closest input and map points,
and performs least squares optimization to find the best rigid transformation fitting the corre-
spondences. Unfortunately, the correspondence search in each iteration is too computationally
expensive.

That poses a problem for the SLAM application [30]. The polar scan matching is faster
in estimation of alignment, but needs the sensor data to be preprocessed first. The real-time
correlative scan matching (as proposed in paper [39]) is generally more accurate and robust
to noise than ICP [39], though it requires optimizations to work in real-time [30].

2.3.2 Extended Kalman Filters

Another approach is to use the Extended Kalman Filters (EKFs) as in, e.g., Hector
SLAM[30]. EKFs use the measurements to create a covariance matrix of the vehicle pose and
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the position of the detected points. This matrix is used to estimate the new position and
orientation of the vehicle based on a state model of the vehicle’s motion [21]. The results can
be combined with the scan matching to optimize for the most consistent pose estimate. The
disadvantage of EKFs is that they are highly dependent on the correctness of the assumed
motion model and sensor noise. This can cause them to diverge when the assumptions are
inaccurate [23].

2.3.3 Particle filters

Other SLAM methods (e.g., Gmapping[23]) are based on particle filters that learn grid
maps. The particles are connected to specific versions of the environment map. The Rao-
Blackwellized particle filters [15], which are more accurate than standard particle filters are
especially successful. There is an issue with the number of particles required for the algorithm
to be able to correctly build a map being too high. This makes the process unfeasible for a
real-time application due to the high computational cost. Reducing the sampling is possible
but it can cause the correct solution to be thrown away (this problem is also known as
the particle depletion)[23]. In [23] two enhancements are proposed to deal with the particle
depletion problem while keeping the complexity low: an adaptive resampling method and a
way of selecting dissimilar particles. These enhancements make the approach computationally
feasible for SLAM.

2.3.4 Graph-based approach and loop closure

Many modern SLAM solutions (e.g., Cartographer[26]) use a graph-based approach in-
stead of a particle filter. It builds a graph where nodes represent vehicle poses or detected
obstacles. In this graph, edges are built to represent constraints stemming from the sensor
data. It matches consecutive laser scans (a structure containing data about distance of the
detected obstacles from the sensor and an angle at which the detected obstacles are located)
to each other to create a small submap that is accurate enough to be stored without further
modifications. The currently perceived scan is matched against nearby submaps. The posi-
tion of the vehicle and features is deduced by solving the local optimization problem over a
probability occupancy grid map [26].

The inevitably accumulated error on localisation and features’ positions is corrected via
a process called loop closing. Loop closing is done by solving a global optimization problem
for revisited locations. It also updates past estimates. Therefore, after the loop closure our
path (collection of vehicle’s past positions) can be more accurate [26].

2.3.5 Visual SLAM

Many visual SLAM solutions [13, 43, 29] use the Scale Invariant Feature Transform
(SIFT) descriptors to keep a compact representation of an image patch for landmarks stor-
age and comparison. The SIFT descriptors are widely used because they are invariant to
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translation, scaling, rotation and partially even to affine projection, occlusions and current
illumination [33]. This invariancy is valuable for applications where the landmarks are visible
from different points of view due to, e.g., camera movement. The landmarks can be uniquely
identified thanks to the descriptors as opposed to the usual approach with sensors like LIDAR
where the map consists of indistinguishable points.

These detected landmarks can be stored in a database and connected to a probabilistic
model of the map that is updated using the methods mentioned above (e.g., EKF in [13], or
Rao-Blackwellized particle filters in [43]).
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Chapter 3

Problem statement

Our goal is to implement a system that enables the car to perform SLAM mainly
depending on camera images as a source of data. This can be broken down into the following
subtasks.

1. Lane markings visible in each frame must be detected.

2. The positions of the landmarks must be transformed to the ground plane to create a
map fragment of the current surrounding environment.

3. Localization within the global map must be performed using the current map fragment
and pose1 estimate.

4. The global map is augmented by the landmarks (the detected lane markings) detected
in the current frame.

5. The global map also has to be optimized to keep it consistent after returning to the
already perceived areas.

The solution should enable the car to first map the environment using a low speed.
Then, in the already mapped space, localisation should be robust enough to be able to deal
with the highest speed possible so that it can be used further for autonomous applications
(e.g., autonomous driving, racing, and other more complex tasks requiring navigation through
the environment).

3.1 Equipment

The system developed in this thesis is designed for the F1/10 autonomous car which can
be seen in Figure 3.1a. F1/10 has standardized equipment and is designed for competition of
autonomous vehicle systems. The list of relevant hardware and software equipment of F1/10
can be found in Table 3.1. The following sections focus on the components relevant to the
topic of this thesis.

1We define pose as a collection of the extrinsic camera parameters which define the camera’s (therefore also
the vehicle’s) position and orientation with respect to the world coordinate system.
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Camera Intel RealSense D435

IMU Sparkfun 9DoF Razor IMU M0

LIDAR Hokuyo UST-10LX

Computing module NVIDIA Jetson TX2

Operating System ROS kinetic (under Ubuntu Linux 16.04)

Table 3.1: F1/10 equipment

(a) F1/10 autonomous
car

(b) Lane markings example

Figure 3.1: F1/10 and the environment

3.1.1 Camera

We use the camera to acquire a single image stream of the space in front of the car,
which is then used to detect lane markings and their relative position to the car in each
frame. It has an RGB resolution of 1920x1080 pixels and a framerate of 30 FPS. The camera
is mounted 13 cm above the ground plane with a 0° pitch. The angle of view of the ground
plane is approximately 60°. The effective visibility range of the ground plane is from 0.4 m
to 2.5 m. This visual field of the ground plane is quite small when compared to area of range
of LIDAR, which is a sensor usually used in SLAM applications. If we compare it to the
scanning field of LIDAR, the visual field of the camera is approximately 100 times smaller.
On the other hand, unlike LIDAR, it can see beyond the first detected point. The objects
beyond the effective range on the ground plane are blurred as they are too close to the horizon
line. Due to an incompability with the computing module mounted on F1/10, there are some
limitations to the capabilities of the camera (these are discussed further in Section 5.2).

3.1.2 Inertial Measurement Unit

IMU provides acceleration data, which is considered to estimate the car’s relative posi-
tion between two discrete moments during the localisation process. Our IMU has an update
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rate of 50 Hz.

3.1.3 LIDAR

Lidar provides range data of surrounding physical obstacles in a plane parallel to the
ground. The angle in which LIDAR scans the plane is 270°. The update rate is 40 Hz. The
angular resolution is 0.25° and the working range is from 0.06 m to 10 m.

3.1.4 ROS

The whole application is targeted at Robot Operating System (ROS), which operates
on F1/10. The individual processes used in the system are represented as ROS nodes which
communicate with each other via publishing and subscribing various data messages in so
called topics.

3.2 Road model

The testing environment should represent a scaled-down model of a structured road,
possibly including intersections. Unicolored lane markings are used as boundaries. A track
example can be seen in Figure 3.1b. The used ground surface has a high light reflectance and
its appearance is irregular with noise-like shapes. The ground is flat. We assume there are
no other vehicles or large objects on the track that could break the line of sight between the
camera and the lane markings.

For most of our experiments, we use the following two tracks. The first track is an
asymmetric circuit, which is around 15.0 m long and contains long straight parts of the road.
The second track is an oval circuit that is 8.8 m long and mostly consists of 90° turns.
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Chapter 4

Methods

In this chapter, the methods, which we use to solve the assigned problem described in
the previous chapter, are proposed. Their advantages, disadvantages and suitability in the
context of our application are discussed. The structure of the solution is drawn.

At first, we focus on the methods used for identifying the lane markings from the
individual images. Further, the algorithm for extracting the local map fragment from the
detected landmarks is proposed. In the last section, the approach to global map creation and
localisation is described.

4.1 Lane markings detection

At first, we crop the image to select our ROI, which is below the horizon line. Experi-
ments showed that apart from the moments of high acceleration of the car the camera does
not significantly change its angle of view. Because of that, we use the same pre-estimated ROI
for each frame thus saving computational cost without generating a significant error (this is
verified further in Chapter 6).

To detect the lane markings from the individual image frames that we want to map
and use as features for localisation we use a combination of two popular image processing
methods: edge detection and color segmentation.

4.1.1 Edge detection

Edge detection gives us good candidates for the edges of lane markings thanks to the
big color intensity gradient between them and the road. On the other hand, edge detection
also detects all kinds of other distinct objects in the image like reflections on the ground
surface, or any distinct patterns that are drawn on the surface, as can be seen in Figure 4.1.

We decided to use Canny Edge Detector for edge detection with hysteresis. We use
a fast and effective implementation of Canny Edge Detector from OpenCV (Open Source
Computer Vision Library [7]).

We could use a geometrical constraints approach to recognize which candidates are the
true edges of the lane markings. Using the Hough transform, we could restrict the shape of
the lane markings, e.g., to parabolas of a certain minimal length. This could filter out a lot of
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(a) The original image (b) The edge detection result

Figure 4.1: An example of distinct reflections and surface artefacts present on the track

unwanted edges from smaller objects on the surface. Unfortunately, the collected test images
showed that the most common unwanted noise in the input data were reflections of straight
parallel lines that are common in urban man-made environments (e.g., columns, poles, window
edges). The shape of these objects is more or less similar to the desired detected object – the
lane markings. This causes the edges detected on these objects or their reflections to score
very high in the geometrical model fitting.

Another disadvantage of this approach is that our assignment states an arbitrary shape
of lane markings. This would require a very broad model of lane markings. Unfortunately, this
would result in a potentially unfeasible computational cost of the Hough transform for the
real-time application. Due to these disadvantages, we decided to omit geometric constraints
from the detection algorithm and instead use color segmentation.

4.1.2 Color segmentation

Color segmentation has a straightforward implementation and is computationally cheap.
On the other hand, it works well only when the detected object is of dissimilar color compared
to the rest of the perceived environment. In our case, lane markings have a distinct color so
this method is applicable.

To make color segmentation more robust to the illumination changes (as explained in
Section 2.1.1), we use the HSI color space. We transform the image from the RGB to HSI
space and then apply thresholding of the individual channels. The thresholding hue is usually
enough to recognize the lane markings’ color from the background. There are edge cases for
which thresholding other components can help to reduce or fully negate false positives (e.g.,
reflections of similar color or an overexposed image, for details, see Chapter 6 which focuses
on testing and verifying of these methods). On the other hand, omitting other components
saves us approximately 2

3 of computation time.

The combination of edge detection and color segmentation is almost a pixel-wise inde-
pendent process (apart from hysteresis thresholding in Canny edge detector). Therefore it is
unable to deal with occlusions (lane markings hidden behind some objects or missing). This
disadvantage is caused by not using a more generative approach, e.g., a geometrical model,
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which could help to interpolate lane markings in the holes caused by an object breaking the
line of sight or by partial erasure of lane markings.

4.2 Map fragment construction

The radial and tangential distortion in our camera is cancelled out using the Brown-
Conrady model (Equation 2.12) with 3 radial distortion coefficients and 2 tangetial distortion
coefficients.

We apply the perspective camera model on undistorted images. To transform the de-
tected objects from the camera plane to the ground plane, a homography is used. Once again,
we assume that the camera does not rotate enough to significantly change the transforma-
tion between planes during the motion of the car. Assuming that, we can pre-estimate the
homography using calibration via image-to-scene point correspondences.

We have to generate homography from a sample of correspondences (xci , y
c
i )↔ (xgi , y

g
i )

between the camera plane and the ground plane. By following standard steps, we build a
matrix of linear equations L that constraints the individual parameters of H. At first, we
write down the relation between correspondences and derive linear constraints from it:
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Then, using N correspondences, we can translate these constraints (4.3-4.4) into a system of
linear equations in the form:



xc1 yc1 1 0 0 0 −xc1x
g
1 −yc1x

g
1 −xg1

0 0 0 xc1 yc1 1 −xc1y
g
1 −yc1y

g
1 −yg1

xc2 yc2 1 0 0 0 −xc2x
g
2 −yc2x

g
2 −xg2

0 0 0 xc2 yc2 1 −xc2y
g
2 −yc2y

g
2 −yg2

...
...

...
...

...
...

xcN ycN 1 0 0 0 −xcNx
g
N −ycNx

g
N −xgN

0 0 0 xcN ycN 1 −xcNy
g
N −ycNy

g
N −ygN


︸ ︷︷ ︸

L



h11
h12
h13
h21
h22
h23
h31
h32
h33


= ~0 (4.5)

This homogenous system of linear equations Equation 4.5 contains 9 parameters and
each correspondence pair generates 2 constraints. We need 4 pairs of corresponding points to
restrict the space of solutions to one unique non-trivial solution. In a degenerate case when
any 3 drawn correspondence points lie on a line, the linear system of equations will not yield
one unique solution. We need to detect this and select another correspondence sample.
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To find the best homography (supported by the most correspondences) we use a brute-
force approach. We generate homography from each sample combination of acquired corre-
spondences. Since we only use about 100 correspondences that uniformly cover the image, this
approach is computationally feasible. There is no urge to use a fast stochastic solution (e.g.,
RANSAC) because the calibration is done only once (per camera relocation) and it is not
required to run in real-time as opposed to the mapping process. To ensure consistent accuracy
of transformation throughout the image, we collect uniformly spread reliable correspondences
from printed chessboard patterns covering most of the visual field. For a visualisation of the
reprojection error of the transformation see Section 6.2, which focuses on verification.

4.3 Mapping and localisation

For the purpose of global map construction and localisation, we use a 2D LIDAR SLAM
solution called Cartographer [26]. Cartographer is a graph-based SLAM solution developed
mainly for LIDAR-based SLAM. In Figure 4.2 a system overview of Cartographer is displayed.
As the diagram shows, Cartographer consists of two main parts called Local SLAM and Global
SLAM.

Figure 4.2: Cartographer system overview (from [48])
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Local SLAM is responsible for estimating the current vehicle’s pose and constructing
locally accurate submaps. It proceeds by taking downsampled scans and using a scan matching
optimization method with an initial estimate created from the available auxiliary sensor data
(in our case IMU). These submaps and their relative alignments and positions in the fixed
world coordinate system are stored to create a combined global map. The global map is
represented as probability occupancy grids, i.e., grids where each cell has a value corresponding
to the probability of containing a landmark (being occupied by a landmark).

The Local SLAM mapping process accumulates an error as it relies solely on scan
matching against recently collected scans assembled in a submap. To remove the error, Global
SLAM generates loop closure constraints between the scans and the submaps that are based on
repeatably perceived areas. Both Local SLAM scan matching and Global SLAM loop closure
are formulated as a nonlinear least squares optimization problem and solved using the Ceres
[2] solver. Ceres is a tool for modelling and solving complicated optimization problems [2].
Scan matching simply maximalizes the sum of probabilities in the occupancy grid where the
newly scanned points are placed. Loop closure minimizes Huber loss (a loss term formulated
to avoid the influence of outliers) on relative alignment constraints that are built by the Global
SLAM [26].

(a) The original image

(b) Visualisation of scanning rays (in a color segmented image)

Figure 4.3: An example of the limitation of range finder-like detection
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4.4 Converting data from an image to LIDAR-like data

Cartographer was developed to map obstacles using mainly LIDAR scans. We use it
to map lane markings by providing it with a LIDAR-like data structure containing map
fragments of the lane markings that were extracted from the camera images.

Using the estimated homography, we can draw scanning rays in the image plane. Then,
we can trace the first intersections of the rays with the detected landmarks to simulate LIDAR-
like scanning of the environment and provide Cartographer with range data. An example of
such ”image scanning” is shown in Figure 4.3.

This approach limits the number of valuable feature points that can be provided to
Cartographer. While the camera can see landmarks on the ground behind the first one, 2D-
LIDAR cannot see behind the first obstacle in the plane of scanning. To avoid losing these
valuable landmarks, we can extract a 2D point cloud containing all intersections of scanning
rays with detected points from the current image and provide it to the matching algorithms
(For an illustration see Figure 4.4).

(a) The original image
(b) The resulting 2D-
point cloud

Figure 4.4: An example of 2D-point cloud extraction

4.5 System configurations

We experimented with various approaches with different configuration and sensor combi-
nations to observe their influence on mapping and localisation accuracy. The explored variants
are described below.

We provide Cartographer with acceleration data from IMU for the purpose of initial
pose estimation of new frames.

We experimented with adding a second camera to the back of the car, which could be
a valuable source of feature points for the scan matching. Unfortunately, two parallel streams
of images proved to be computationally unfeasible for our equipment.
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We also attempted to provide visual odometry to Cartographer as another source of
initial pose estimation of new frames. Testing showed that for our camera configuration the
visual odometry has problems with finding s sufficient ratio of inliers when estimating the
relative position of consecutive frames. This might be caused by a low position of the camera
and a forced high exposure time (as explained later in Section 5.2), which causes the features
on the ground surface (which are valuable for movement estimation) to be blurred. Because it
did not enhance the performance of Cartographer, we decided to exclude it from our solution.

Another possibility is to combine the camera and LIDAR approach to simultaneously
build two separate maps (a camera based map of lane markings and a LIDAR based map of
surrounding obstacles). These maps are linked by the same vehicle trajectory which makes the
localisation process more robust as it has to take both maps into account. This is achieved
by providing Cartographer with LIDAR and camera data in separate ROS topics and by
establishing a dynamic tf (transformation) link, which separates these two maps in the plane
but ties their relative localisation. This is illustrated in Figure 4.5. This combined SLAM can
be used to create accurate maps of both the lane markings and the obstacles. Unfortunately,
using the LIDAR and camera together forces us to keep certain Cartographer parameters set
on values ideal for LIDAR. This includes the resolution of the occupancy map grid, which
is required to be set above 5 cm for LIDAR. This means that acquired maps have a lower
resolution than we would normally use for camera settings.

Figure 4.5: An illustration of Combined SLAM

We also use Cartographer in pure localisation mode for localisation error testing in a
previously created map. In pure localisation mode, the Cartographer SLAM node remembers
a limited amount of previously built submaps and compares these to a stored global map
from a previous run of the system.

All alternative system configurations are realised as separate ROS launch files with their
respective parameter configurations files.
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Chapter 5

Implementation

In this chapter, we review the structure and specifications of the implementation of our
solution. We will also note which tools we used for the realization of an effective and fast
implementation of the required methods that were described in the previous chapter.

5.1 Structure

As mentioned in Chapter 3, we use ROS on the platform. The diagram in Figure 5.1
shows our ROS communication graph (including optional components related to the combined
SLAM configuration).

Figure 5.1: Diagram of our system

As we can see in Figure 5.1, the images from the camera are first preprocessed in
RealSense node, which carries out the rectification of the images. Then, they are sent to our
image to scan node, which performs the detection of lane markings and the extraction of a
map fragment of the landmarks. Depending on the configuration, these landmarks are sent

26



CHAPTER 5. IMPLEMENTATION

to SLAM node either in the form of a PC2 or in the form of a LIDAR scan. Cartographer
can also receive auxiliary sensor data from IMU and/or LIDAR. The submaps are merged to
a global map by Occupancy grid node.

The transformations linking different coordinate systems are published under a /tf topic
in ROS. Cartographer SLAM node keeps publishing the estimated current position, path and
the submaps with respect to the fixed frame as they are being constructed. The transformation
links (between robot sensors and other important coordinate systems) are published by static
tf publishers. In the LIDAR option, where we let Cartographer simultaneously build a LIDAR-
based map and a camera-based map, a dynamic link simulating the localisation connection
between these two maps is required. This link is generated by combined SLAM tf publisher
node based on a current pose estimate from Cartographer.

5.2 Framerate limitation

As specified in Chapter 3, the camera used in this thesis should provide 30 FPS of
images with required resolution. Unfortunately, due to the compability issues with the Jetson
TX2 module that we use for computation, the camera provides lower FPS regardless of the
selected resolution. In addition to this, the provided framerate is also unstable.

The framerate is an important factor for the mapping and localisation application as
with a lower framerate the overlap between consecutive images can be too small for the scan
matching to work accurately. This is especially prominent for a higher speed of the vehicle.
There is a known parameter configuration discussed on NVIDIA support forums [38] for
which the camera quite stabily provides 18-22 FPS for the mentioned computing module.
This configuration requires the auto exposure function to be turned off and the exposure of
the camera to be set to 40 ms, which is about 2.5 times higher than the default value. Due
to this setting, the images tend to be overexposed when a strong light source is present in
the scene. To reduce the negative effect of overexposure, we adjust other camera parameters;
mainly we set gain to a minimum value to dim the image. As a result, we a have stable 18-22
FPS which provides enough data for the scan matching to work at least at lower speeds. As
a result of the forced exposure setting, the application is sensitive to strong light reflections
and certain lane markings may not be visible in the image due to the overexposure (for an
example see Figure 5.2).

5.3 Computational feasibility

The detection and point cloud extraction implementation must be fast enough for a
real-time application. In our case, we want the application to run 20 times per second. This
corresponds with the camera’s framerate of around 20 Hz on the target platform. To test the
computational load, we measured the execution times of the image color segmentation, edge
detection and the map fragment extraction of the incoming camera images.
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(a) Local overexposure

(b) Whole frame overexposure

Figure 5.2: Examples of encountered overexposure cases due to a strong reflection from the
ground surface

Figure 5.3: Histogram of total execution times

The histogram of results for an 80 s long experiment where the vehicle was riding through
our oval circuit is plotted in Figure 5.3. The resulting average, minimum and maximum
execution times for the color segmentation, edge detection and the map fragment extraction
are shown in Table 5.1. The average total execution time is 33.9 ms which should allow for up
to 30 Hz. The execution of our implementation is fast enough and leaves a margin because
the images are published at 20 Hz.

Table 5.1 also shows a dangerously high maximum total execution time of 60 ms that
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Table 5.1: Execution times analysis

Average [ms] ) Minimum [ms] Maximum [ms]

Color segmentation 6.488 4.172 14.397

Edge detection 13.568 9.449 22.986

Map fragment extraction 13.836 8.916 30.755

Total Execution Time 33.892 24.569 60.271

could cause some images to not be processed in time for Cartographer to be able to work with
them. A closer look at the measurements showed that this maximum value only occurs upon
the start of the system, probably due to the initialization of required data structures. For
the consecutive iterations, the execution times are always below 50 ms which is the boundary
of the frequency of the incoming images. To achieve a higher framerate, the sampling of the
pointcloud that is generated from the image can be reduced without accuracy decrease. This is
due to the sampling currently being about 10 times higher than the occupancy grid sampling
that is used by Cartographer which processes the pointcloud.

5.4 Implementation notes

For an effective and fast implementation of certain algorithms, we made use of available
open source libraries. OpenCV [7] was used for calculations with matrices required for the color
segmentation and map fragment extraction. For edge detection, we used an implementation
of Canny edge detector from OpenCV. Cartographer [26] was used as a solution to the 2D
SLAM problem.

Cartographer was not designed to work with data from a camera as discussed in Sec-
tion 4.4. Fortunately, it was designed with over 50 modifiable parameters. Extensive parameter
tuning was required to achieve a functional solution because data the from camera has dif-
ferent properties than LIDAR scans. For example, we had to: inhibit modification of scan
subdivisions, adjust the sampling of the global constraint construction to give a larger weight
to the local constraints and resize the resolution of various filters and of the map grid. The
parameter files for individual configurations are included in the attached CD (for CD content
see Table 1).
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Chapter 6

Testing and verification

Through testing we acquired information about the various accuracy limitations of the
individual parts of our solution. These limitations are discussed in this chapter to describe
how effective our solution is when used in regular cases. We also show the problematic edge
cases that cause inaccuracies or mistakes. Further, we describe the metrics that we decided
to use for the evaluation of our system’s performance. These metrics are used in the next
chapter to evaluate the conducted experiments.

6.1 Lane markings detection testing

We conducted experiments on our testing tracks under stable light conditions. This
showed us that thresholding just the hue component is enough to robustly segment the mark-
ings’ color (for an example of segmentation see Figure 2.2). However, we decided to still use
the other channels as they help us reduce false positives that appear in special cases. When
there are strong reflections, the camera may perceive parts of the ground plane as having hue
within the thresholded interval as can be seen in Figure 6.1.

(a) The original image

(b) The result of thresholding the hue component
(c) The result of thresholding hue and saturation
components

Figure 6.1: An example of strong reflection for which thresholding more components of HSI
is required
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Similar cases occur when part of the image is overexposed which can be caused by part
of the track being affected by a strong local light source as can be seen in Figure 5.2. The
overexposure problem could normally be solved by auto-exposure or setting a shorter exposure
window of the camera. Unfortunately, in our case we are forced to use a fixed exposure time
of 40 ms (as explained in Section 5.2).

The negative effect of both the overexposure and reflections can be reduced or even
removed by thresholding the iluminance and saturation. The reduction of the false positives
that can be achieved by this approach is shown in Figure 6.1.

The further we go on the ground plane from the position of the camera, the less pixels are
available for a unit of length (in the direction of the camera’s orientation). This was mentioned
in Chapter 2 and illustrated in Figure 2.6. The accuracy of the point cloud extraction decreases
with this distance aswell due to the pixel rounding.

At a certain point, the lane markings orthogonal to the vehicle’s bearing are no longer
detectable as they are too blurred. An illustration of an effect that causes this can be seen in
Figure 2.6. The distant horizontal lines are barely visible because they are only 1-3 blurred
pixels wide and the color segmentation often misses them. An example of this can be seen in
Figure 6.2, where the color segmentation misses the distant line marked in the red circle. The
lanes that are vertical in the image are easier to detect even in the far field because they do
not merge with the background so much, especially when the vehicle is moving parallelly to
them.

(a) The original image (b) The result of color segmentation

Figure 6.2: A sample image with numerous visible lane markings to illustrate the decaying
accuracy with distance from the camera

We found out that the approximate maximum distance at which the color segmenta-
tion is still capable of robust lane marking detection is 2 m (for our camera configuration
described in Section 3.1). Due to this, we have limited the range of the image scanning to
save computational time and to reduce false negatives stemming from the detection part of
the system. On the other hand, distant features are valuable for accurate pose estimation
during SLAM. Due to this, we experimented with the value of the maximum range of image
scanning. As a result, we found out that the lowest mapping and localisation error is for a
maximum scanning range of 2.5 m. By using a higher range, the mapping relies on inaccurate
detection of distant blurred lane markings, which causes map fragments to be blurred and
damages the further scan matching process. When we use a smaller range, we abandon too
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many valuable features, which also results in less accurate localisation and mapping.

6.2 Map fragment acqusition testing

The map fragment accuracy is a crucial factor for the quality of the submaps, and there-
fore, to the successful mapping of the environment. To calibrate and test the accuracy of the
map fragment, we make use of printed calibration patterns (e.g., a chessboard pattern). Using
such patterns to calibrate the transformation from the camera image to the plane of interest
is a common practice in applications requiring similar calibrations of extrinsic or intrinsic
camera parameters (for an example, see paper [19] focused on camera self-calibration). We
let the camera take images of these patterns in different scenarios. We can then extract the
projections of the corner points in the images to the ground plane and compare their posi-
tions with the known measured values to quantify the projection error. The projection error
is mostly caused by a limited accuracy of the calibrated homography and by a slight rotation
of the camera due to the acceleration of the vehicle. To test this in the case of the moving car,
we can use the relative projection error (the difference between known distance of the points
in the scene and the distance extracted from projections of those points to the ground plane)
of the chessboard corners as we do not have the knowledge of the camera position needed to
extract the exact reprojection error.

Figure 6.3 shows the error vectors of the projection while the car is stationary. The
mean reprojection error is 6.7 mm and the max reprojection error is 28.7 mm in this sample
image. We used an image of the chessboard pattern captured while the vehicle was moving and
extracted the relative reprojection error between 100 recognized point correspondences. The
average relative reprojection error of neighboring points is 6.9 mm, the maximum reprojection
error is 36.1 mm. The reprojection errors are shown in Table 6.1 as well. In both cases, the
projection errors satisfy our accuracy needs since the average error stays below 1 cm, which
is the resolution of the map used further. We expect the projection error to be worse in
moments of strong acceleration, when the camera’s orientation changes with respect to the
ground plane.

Mean [mm] Max [mm]

Stationary 6.7 28.7

Moving 6.9 36.1

Table 6.1: The reprojection errors measured using the chessboard pattern images

6.3 Localisation and mapping evaluation metrics

The accuracy of the localisation and mapping process cannot be quantified straghtfor-
wardly. We decided to separately measure the pose estimation error and the inacurracies of
the constructed map. For pose reference, we use LIDAR SLAM which has a negligible error in
the indoor small area that is used for testing. We can then compare these values to evaluate
the system’s overall accuracy.
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(a) The original image

(b) Ground plane projection

Figure 6.3: Visualisation of the projection errors on correspondences generated by the chess-
board pattern

6.3.1 Pose estimation error

The pose estimation error can be divided into a position error and an orientation error.
We measure both errors with respect to the reference solution.

For the position error, we use euclidian distance between the estimated position and
the reference. For the orientation error, we use the difference in the angle of the estimated
bearing between the solution and the reference. We can use this approach to compare the
apriori localisation error created by local SLAM to quantify the drift of the localisation
caused by inaccurate submap alignment.
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We can also compare the final trajectories adjusted by global SLAM to show how effec-
tive the global constraints were in correcting the localisation drift. Because of the optimization
that changes original submap poses, there is no fixed link between the individual estimated
poses and the original position. This means that both the reference path and our solution
path may drift apart slightly and still create an accurate converging map.

Apart from global and local SLAM, we also test the pure localisation mode, which
localises the vehicle in a previously built map. The pure localisation mode uses global opti-
mization heavily to correct the alignment of its submaps with the stored global map. This
helps it to not drift away from the given global map. Often, this also leads to a correction of
the past path error. On the other hand, we assume, the localisation mode’s purpose is to pro-
vide a real-time current pose estimate so it should be evaluated correspondingly. To quantify
the quality of this process, we use the error of the pose estimation prior to the optimization.

6.3.2 Mapping error

To measure the mapping error, we placed special ”X” shaped landmarks and compared
their mapped relative distances to their actual measured relative distances. This can be done
by comparing these two alternative measures:

• the error on consequently mapped relative distances of landmarks to create a measure
of the submap error that was accumulated in the last several seconds,

• the difference in position of the same landmark during multiple lap experiments to
quantify the global map consistency throughout the mapping process.

This approach is good for measuring the error accumulated by Local SLAM. For Global
SLAM, it does not make sense to use any metrics collected during the experiment as it post-
processes the poses later. Instead, we need to look at the final map and evaluate whether it
converged to the right solution and how blurred the landmarks are.

The distances between landmarks differ from 1.5 m to 3 m. For a better comparison of
mapping errors, we use a percentage error with respect to the correct relative distance. For
us to be able to also compare the map consistency error for tracks of a different length, we
need to take into the account that the oval circuit is almost twice as short as the asymmetric
track. This is caused by the fact that local SLAM accumulates a localisation error over time,
which means it will accumulate a higher error on a longer track.

6.3.3 Track limitation

As stated in Section 3.1.1, the camera has a much smaller field of view when compared
to LIDAR mounted on the platform. These differences cause LIDAR to provide more feature
points (in addition, they are spread throughout a wider area and in different directions) than
those provided by the camera. These factors help us keep the localisation error low during
the submap building in LIDAR SLAM. Whereas with the camera, there is a risk of significant
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localisation drift caused by not having enough unique features. Therefore the estimation of
the correct alignment in cases where there are not many lane markings visible in the field of
view, e.g., during a turn (as illustrated in Figure 6.4), can be prone to error.

Figure 6.4: An example of unique feature absence problem

We identified problems caused by not having enough feature points for scan matching,
e.g., when the car is located in a curve. This lack of landmarks causes a destructive localisation
drift as the IMU error accumulates. In some cases, lane markings are visible but they hold a
monotonic shape, e.g., a completely straight road where the car moves but the lane markings
in the scene remain the same. In cases like this, the scan matching process has no chance to
derive the movement offset from the lane markings and the surrounding submap.

We solved this problem by adding more lane markings as support lanes to the track.
This makes our model of the environment further away from the real scenario. On the other
hand, real urban roads often contain more lane markings as well (arrows, crossings, etc.). The
support lanes provide enough feature points for the scan matching algorithms to work. This
allowed us to continue using lane markings as the only features while not having to rely just
on the data from IMU.

An alternative solution might be to use more cameras or other sensors, which have a
longer range or larger angle of view. This would help with estimating the movement even
when there is a lack of visual features in front of the car. Unfortunately, multiple cameras are
not feasible in our case as discussed in Section 4.5.
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Chapter 7

Experiments

In this chapter, we present the results of the localisation and mapping of a car on
our testing tracks. First, we show the performance of local SLAM. Further, we focus on the
influence of global SLAM, which adjusts the alignment of the submaps estimated by local
SLAM.

For the experiments, we use two different tracks, which are described in detail in Sec-
tion 3.2. The main difference is in the track length and the portion of turns on the track. The
asymmetric track is twice as long as the oval circuit. The oval circuit has much higher portion
of curves. At curves, the camera changes its field of view much quicker than on straight parts.
Comparing the performance results on these two tracks shows us how the error accumulation
is influenced by the curve frequency.

The main experiments are conducted using configuration of Cartographer with the point
cloud camera input. We acquired reference values of localisation using LIDAR-based SLAM
on the recorded sensor data. We also present example results from combined SLAM and
camera SLAM using 2D LIDAR-like scanning of the camera images. All configurations also
make use of the data from IMU for pose estimation.

We repeated each experiment at a different speed level to show how speed influences
the localisation and mapping error. The average velocities for individual experiments on both
tracks are presented in Table 7.1. The highest speed level for both tracks is highlighted in
red. At this speed level, the localisation drift proved to be too severe for local SLAM to be
able to build consistent submaps. We only show the partial results of these experiments to
show how the performance deteriorates when the velocity is too high. There is no point in
trying to estimate, e.g., the global mapping error, when the localisation diverges so severely.
For other experiments, all results (using the metrics described in Section 6.3) are presented
and discussed in the sections below.

Asymmetric circuit

Speed level Average velocity [m/s]

Low 0.45

Medium 0.75

High 1.25

Maximum 1.88

Oval circuit

Speed level Average velocity [m/s]

Low 0.44

Medium 0.71

High 1.32

Table 7.1: The average speed used in the individual experiments

The accuracy of measurements in the map is limited to centimetres due to the resolution
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of the occupancy map grid. A higher resolution is not available because it causes a significant
rise in the computational cost.

7.1 Local SLAM

Without corrections, local SLAM inevitably accumulates a localisation error over time
but it should keep the submaps locally accurate. Below, we show the results of local SLAM
performance in different conditions. The goal is to test under which conditions the local SLAM
is capable of reaching its goal of building accurate submaps, which can then be post-processed
and have their alignment corrected by global SLAM.

We estimate the local mapping error using the landmarks. We quantify the localisation
error by comparing the results with the reference solution. We also estimate the global map-
ping error caused by the local SLAM localisation drift, which accumulates over time due to
the incorrect prior submap alignment. We also discuss the impact of varying track complexity
and the speed level of the vehicle on the accuracy.

7.1.1 Asymmetric circuit

In Figure 7.1, we can see a map of the asymmetric track including highlighted land-
marks, support lanes and the car path. The landmarks are extra lane markings in an ’X’
shape for the purpose of estimating the mapping error. The support lanes are the added lane
markings for the purpose of generating more features for scan matching as discussed in Sec-
tion 6.3.3. This is a referential map created by combined SLAM (using both the camera and
LIDAR).

Figure 7.1: Asymmetric track - a combined SLAM map

37



CHAPTER 7. EXPERIMENTS

In Figure 7.2, we present the position estimation error on the asymmetric circuit mea-
sured in experiments with different speed levels. Corresponding orientation estimation errors
are shown in Figure 7.3. The presented results are of the experiments, where the car drove 3
laps.

(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.2: Position estimation error on the asymmetric circuit

(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.3: Orientation estimation error on the asymmetric circuit

We can see that over time a significant pose estimation error is accumulated (as shown
in Figure 7.2 and Figure 7.3). The position estimation error is worse in cases with a higher
speed level even though the travelled distance is the same. For a total travelled distance of
around 45 metres, the worst position error accumulated is from 1.2 m to 2.9 m based on the
speed level. The errors have a sharp development, especially for higher speed levels.

Figure 7.4: The consecutive laps drift example of Local SLAM
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In Figure 7.3, the orientation estimation error shows that over time the maps begin to
shift by a certain degree because of the localisation drift. This localisation drift is visualised in
the form of a path comparison between the results and the reference in Figure 7.4. Since local
SLAM does not correct the drift, the path of the consecutive laps shifts from the original
position. This shift causes the position error to be higher in certain areas of the lap and
lower in others where the estimation crosses the actual position due to its connection to the
orientation error.

In Figure 7.5, we show the local mapping error development over multiple laps for
different speeds.

(a) Slow speed (b) Medium speed (c) High speed

Figure 7.5: Asymmetric circuit - local mapping error

We can see that the error significantly rises with the rising speed level. There is a big
difference between the mapping accuracy of the individual pairs of landmarks. This is even
more visible at higher speed levels. In Table 7.2, we can see the averages and the maxima of
the local mapping error. We use an occupancy grid with a resolution in centimetres. Given
that, the error of few centimetres spread over a distance of meters could not cause a significant
inaccuracy to the submap building process. But for the higher speed levels the maximum of
40 cm is dangerously high and may cause the submaps to be too inaccurate to achieve a
consistent global map.

Speed level Average error [cm] Maximum error [cm]

Low 3.3 7.0

Medium 5.5 18.0

High 12.0 40.0

Table 7.2: Asymmetric track - local mapping error

In Figure 7.6, the global map consistency error is shown for different speeds. This error
corresponds to the mapping error accumulated over a single lap of the circuit. We can see
that local SLAM accumulates an error of 0.8 m to 1.5 m based on the speed level.

To show how the localisation drift affects the path for different speeds in a more readable
format we show the paths of the first lap compared to the reference in Figure 7.7. We can see
that higher speeds cause the path to shift from the reference with the increasing number of
turns.

A higher speed level causes the errors to rise significantly. This is due to the quick change
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(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.6: Asymmetric circuit - global mapping error

(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.7: Asymmetric circuit - visualisation of estimated path

of the field of view that comes with higher speed. A low overlap in consequent images means
that the scan matching is more likely to estimate an incorrect pose and accumulate an error.
At the maximum speed level, this effect is so pronounced that the localisation accumulates
a big offset after the first turn as shown in Figure 7.8a. At the second turn, the localisation
drift gets completely lost and is unable to form a consistent global map. At this speed, local
SLAM is not even capable of producing consistent submaps, which translates into a large
local mapping error in turns as shown in Figure 7.8b.

(a) Path drift visualisation (b) Local mapping error (1 lap)

Figure 7.8: Asymmetric circuit - maximum speed level
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For a direct visualisation of the localisation drift effect on the map see Figure 7.9a. It
shows the mapping offset of a landmark created during 1 lap. This offset is the result of the
localisation error accumulated over time by local SLAM.

Without using a loop closing algorithm this offset cannot be corrected and the localisa-
tion drift continues to accumulate as can be seen in the multiple laps localisation visualisation
in Figure 7.4 or in the multiple laps map drift visualisation in Figure 7.9b. We can see here
that during multiple laps the submaps and the localisation drift remain almost identical.
This points to the fact that the submap alignment should be able to correct this and create
a consistent global map.

(a) Single lap

(b) Multiple laps

Figure 7.9: Local SLAM - a map drift example on the asymmetric circuit

Figure 7.10: Oval track - a combined SLAM map

7.1.2 Oval circuit

In Figure 7.10, we can see a map of the oval track with highlighted landmarks. This is
a referential map created by combined SLAM. We can see that a big part of the inner lane
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markings of the circuit never get into the field of view due to the limited field of view and the
high curvature of the track.

In Figure 7.11, we present the position estimation error on the oval circuit measured
during experiments with different speed levels. Corresponding orientation estimation errors
are shown in Figure 7.12. The presented results are from experiments that are 3 laps long.

(a) Low speed level (b) Medium speed level

Figure 7.11: Oval circuit - position estimation error

(a) Low speed level (b) Medium speed level

Figure 7.12: Oval circuit - orientation estimation error

To show how the localisation drift affects the path at different speed levels in a more
easily understandable format we show the paths of the first lap compared to the reference
in Figure 7.13. Similarly to the results on asymmetric circuit, we can see that higher speed
causes the path to shift from the reference with the increasing number of turns.

In Figure 7.14, we show the local mapping error development over multiple laps for
different speeds.

Similarly to the experiments on the asymmetric track, we can see that the local mapping
error significantly rises with the speed level. There is an even bigger difference between the
mapping accuracy of the individual pairs of landmarks than is in case of the asymmetric
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(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.13: Oval circuit - a visualisation of the estimated path

(a) Low speed level (b) Medium speed level

Figure 7.14: Oval circuit - local mapping error

circuit. In Table 7.3, we can see the averages and maxima of the local mapping error. We can
see that the local mapping error of the medium speed level in experiments on the oval circuit
is similar to the local mapping error of the high speed level in the asymmetric circuit.

Speed level Average error [cm] Maximum error [cm]

Slow 4.6 12.0

Medium 8.1 35.0

Table 7.3: Oval circuit - local mapping error

We can see three big spikes of the local mapping error in Figure 7.14 that occured
during the experiment at the medium speed level. A closer look shows us that all of these
spikes correspond to a single pair of landmarks mapped in individual laps. There is a sharp
turn between these two landmarks and the given speed level is too high for the scan matching
to handle the visual field change. As a consequence, the submap of that area suffers from high
inaccuracy, which translates into a high local mapping error.

In Figure 7.15, the global map consistency error is shown for different speeds. This error
corresponds to a mapping error accumulated during a single lap of the circuit. We can see that
local SLAM accumulates a global mapping error from 0.6 m to 1.2 m based on the speed level.
Since the oval circuit is almost two times shorter, it means that local SLAM accumulated a
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significantly larger mapping offset per unit of distance than on the asymmetric circuit.

(a) Low speed level (b) Medium speed level

Figure 7.15: Oval circuit - global mapping error

In Figure 7.16, we can see how the global mapping error translates into a map offset be-
tween one area being mapped in consecutive laps. The newly mapped landmark is highlighted
in orange close to the original landmark mapped in green.

Figure 7.16: Oval circuit - Local SLAM map offset

We can see that the errors accumulated during experiments on the oval circuit are bigger
than those measured on the asymmetric track when we normalize them by the total length.
This is due to a higher portion of curves, which causes a quick change of the visual field
that supports accumulation of the localisation error. If the change of the visual field between
frames is too large, it causes local SLAM to get lost and create a significant local mapping
error, which is destructive for the whole SLAM. Because of this, local SLAM’s performance
on the oval track is more sensitive to a higher speed than on the asymmetric track, where it
has long passages that it can map ahead of the curve. On the oval circuit, consecutive images
contain less overlap. This causes the performance of local SLAM on the oval circuit to be
worse than the performance on the asymmetric track for the same speed level.
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7.1.3 Results

When we look at the pose estimation error in all speed level and track cases, we can see
that both the orientation and position error rises as the local SLAM accumulates drift. Locally,
the error oscilates during individual laps. If we look at the path comparisons (Figure 7.7 and
Figure 7.13), we can see that in some areas the localisation gets close to the reference. Due
to, e.g., an incorrect orientation, it crosses the reference’s path and then builds the position
error again.

Local SLAM clearly fails to maintain a low localisation and mapping error at high speed
levels in turns.

The local mapping accuracy oscilates because it is influenced by the local track difficulty
(we can see landmark pairs around curves have a significantly higher local mapping error)
and by current speed. The local mapping error does not accumulate over time with repetition
of the laps.

The local mapping accuracy decreases with the higher speed level and higher track
difficulty as shown in Figure 7.5 and in Figure 7.14. These results show us that the local
mapping error stays under 5% if F1/10 is driving at the low speed level in sharper turns and
up to the medium speed level in straight parts of the circuit. A low local mapping error is
necessary for the loop closing algorithms to be able to create a consistent global map. The
results of Local SLAM point to the fact that for the lower speed levels, the submaps are
accurate enough for loop closing to be possible. This is tested further in Section 7.2.

The global mapping error (which signifies the mapping error accumulated over a whole
lap) is significant and therefore we can see that Local SLAM alone is not enough to build a
globally consistent map that would converge over time.

Figure 7.17: 2D LIDAR-like scanning of images - the estimated path on the oval circuit
compared to the reference

We also experimented with 2D LIDAR-like scanning of images from the camera to
see how a lower amount of feature points impacts the localisation and mapping process. We
conducted experiments on the oval track without support lanes and landmarks (as they would
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block the line of sight to further feature points, for an illustration see Figure 4.3). The results
showed that the localisation suffers from an insufficient number of feature points for scan
matching. Even for a low speed level, local SLAM accumulates a large localisation error in
each turn as shown in Figure 7.17. This shows us that the amount of provided points is a
critical factor for succesful localisation.

7.2 Global SLAM

In this section, we focus on testing the capability of global SLAM to correct the submap
alignment estimated by local SLAM. We use the same speed levels and tracks as the ones
used in local SLAM. For global SLAM experiments we add more laps to properly test the
effect of loop closing on repeatedly visited areas.

To quantify the performance of global SLAM, we use the post-processed localisation
error. Because of optimization, there is no point in using metrics that are measured during
experiments as discussed in Section 6.3. We also present the resulting maps, as the most
important sign of successful loop closure is a converging map and a converging path (by this
we mean that the mapped locations and the estimated path in consecutive laps are consistent
as opposed to being affected by the localisation drift). All metrics using the reference are
unfortunately not exact measures because of the global optimization, which tends to shift the
whole plane slightly as explained in Section 6.3.

7.2.1 Asymmetric track

Figure 7.18 shows the resulting position errors for different speed levels. Corresponding
orientation errors are presented in Figure 7.19.

(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.18: Global SLAM - position error on the asymmetric circuit

We can see that both the position and orientation error do not accumulate for low and
medium speed levels compared to the results of local SLAM. This shows that the loop closure
is successful in negating the effect of the localisation drift. The position error remains quite
high but we cannot interpret these values without comparing the paths first.

We visualised the paths of both the reference and the solution in Figure 7.20.
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(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.19: Global SLAM - orientation error on the asymmetric circuit

(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.20: Final path the visualisation asymmetric circuit

We can see in the results that the paths converge as opposed to the results of local
SLAM (for comparison see the multilap example Figure 7.4). The position and orientation
error is mostly caused by the offset that was generated between our solution and the reference
due to the optimalizations.

We can see that the paths of the solution and the reference look identical for the low
speed level (apart from the offset). For the medium speed level, the resulting path is slightly
wider spread than the reference and a closer look shows a few discontinuities in the sharp
curve on the left. Otherwise, the path keeps a consistent shape. For the high speed level, we
can see that loop closing no longer manages to correct paths and they diverge due to the
localisation drift.

For a better illustration of the influence of a speed level on the performance of global
SLAM , we compare the created maps in Figure 7.21.

We can see that the map for the low speed level is very neat compared to the maps for
higher speed levels. As the speed level rises, the accuracy of the submaps decays. This makes
it impossible to find a perfect alignment, which would create a consistent global map with
sharply displayed landmarks. At the highest speed level, the map completely diverges as the
inaccuracies of submaps are too high for loop closing to create a consistent global map.
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(a) Low speed level (b) Medium speed level (c) High speed level

Figure 7.21: Map samples of the asymmetric circuit constructed by Global SLAM

7.2.2 Oval circuit

We use the same approach to evaluate the experiments on the oval circuit. The position
and orientation error are presented in Figure 7.22 and Figure 7.23.

(a) Low speed level (b) Medium speed level

Figure 7.22: Global SLAM - position error on the oval circuit

(a) Low speed level (b) Medium speed level

Figure 7.23: Global SLAM - orientation error on the oval circuit

Just like in the case of the asymmetric circuit, we can see that Global SLAM corrects
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the localisation drift here. An offset between the solution and the reference remains but it no
longer accumulates.

Thanks to that, the path at the low speed level remains almost consistent as shown in
Figure 7.24 though path during one lap had diverged. The path at the medium speed level
shows sever discontinuities even though it almost converges.

(a) Low speed level (b) Medium speed level

Figure 7.24: Final path estimation visualisation on the oval circuit

In Figure 7.25, we can see a comparison of maps created at different speed levels.

(a) Low speed level
(b) Medium speed level

Figure 7.25: Map samples of the oval circuit constructed by Global SLAM

The map for the medium speed level is severely distorted. Clearly, the loop closing
process is damaged by the local mapping inaccuracy, which is quite high for this combination
of speed level and portion of curves as shown in Figure 7.14. The map for the low speed level
is consistent. On the other hand, some of the features are slightly blurred.

7.2.3 Summary

For the combination of lower speed level and portion of curves, Global SLAM manages
to correct the localisation drift and create a clear converging global map. For the medium
speed level on the asymmetric track or the low speed level on the oval track, the loop clos-
ing optimization manages to keep a consistent path estimation and consistent mapping in
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consecutive laps. But the local inaccuracies are high enough to cause the global map to be
blurred. For the more difficult combinations of speed level and track difficulty, loop closing
does not manage to stop the maps of consecutive laps from diverging and for the localisation
to drift. We cannot clearly quantify the error of localisation because the optimization causes
the global map to ”float”, and, therefore, it cannot be easily compared with the referential
results.

The effect of loop closing is also illustrated in a demonstrative video showing the whole
mapping process and the image processing, which is on the CD attached to this thesis (for
CD content see Table 1).

7.3 Pure localisation mode

Finally, we test our system in a pure localisation mode in a previously obtained map. To
quantify the quality of this process, we use the pose estimation error prior to the optimization
as discussed in Section 6.3. The maps that we use for our pure localisation mode are the ones
generated by global SLAM in experiments at the lowest speed level (the maps are depicted
in Figure 7.21a and Figure 7.25a). Therefore, in this section, we also verify the usability of
the maps created by camera-based SLAM. There is no trivial way of linking LIDAR-based
localisation in an obstacle map to a globally optimized camera-based map. Instead of the
LIDAR reference we use the path created by the camera-based global SLAM as the reference
for the experiments at the low speed level, where we have it available.

Figure 7.26 and Figure 7.27 show the resulting pose estimation error throughout the
localisation process.

(a) Asymmetric track (b) Oval circuit

Figure 7.26: Pure localisation mode - position error at the low speed level

We can see that the results are very different for the asymmetric track and the oval
circuit. On the asymmetric track, the localisation process managed to find the car’s current
position (the position error dropped under 0.2 m) on the circuit in under 2 s. The final average
position error is 0.144 m with an average orientation error of 2.446° . On the other hand, on
the oval circuit, the pose estimation error remained high throughout the experiment with an
average position error of 1.265 m and an average orientation error of 85.21°.

We show a comparison between the solution and reference paths in Figure 7.28.
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(a) Asymmetric track (b) Oval circuit

Figure 7.27: Pure localisation mode - orientation error at the low speed level

(a) Asymmetric track (b) Oval circuit

Figure 7.28: A path visualisation on the asymmetric circuit

We analyzed this striking difference in performance between the tracks and came to the
following conclusion. The pure localisation mode is extremely sensitive to the local mapping
accuracy. We caused this sensitivity by setting the size of the submaps to a 5 times higher value
than in the rest of our camera-based Cartographer configurations. We had to do this because
the pure localisation mode is set to remember only 3 submaps and that did not include enough
features to keep the localisation stabilized. With smaller submaps, the localisation found the
correct pose most of the time. But once the vehicle gets to a difficult turn or to a monotonous
part of the circuit that does not have so many features, the localisation frequently ”jumps”
and creates a big pose error as shown in Figure 7.29.

(a) Path comparison (b) Position error

Figure 7.29: Pure localisation mode - unstable behavior of the localisation in the smaller
submap size configuration

As shown in Section 7.1, the local mapping accuracy is significantly worse on the oval
track than on the asymmetric track. And, as shown in Section 7.2, the map created by global
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SLAM on the oval circuit is not as sharp as the one built on the asymmetric track. Observation
proved that these bigger submaps created during the localisation process on the oval track
are inaccurate, which blocks the pure localisation mode from creating a converging path.

Figure 7.30 shows us the paths comparison with the LIDAR reference for higher speed
levels. We can see that rising speed causes the localisation to shake and for the highest speed,
the path diverges completely.

(a) Medium speed level (b) High speed level

Figure 7.30: Pure localisation mode - path comparison on the asymmetric circuit

7.3.1 Summary

The pure localisation mode clearly fails to estimate an accurate path for a higher speed
difficulty and a higher track complexity. For the medium speed level on asymmetric track or
the low speed level on the oval track, it holds a similar path in consecutive laps but it is far
from accurate. Its accuracy is highely dependent on the accuracy of the submaps. For the low
speed level on the asymmetric track, the localisation is accurate, converges quickly after the
start, and keeps a consistent path.
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Chapter 8

Conclusion

We have investigated the capability of camera-based navigation using lane markings
as features for map creation. The detection of lane markings proved to be robust under
normal light conditions. However, in cases of strong local illumination our camera becomes
overexposed and the car loses most of its capability to orient itself in such an area. Our
lane markings detection does not use a generalising approach, and, therefore, it does not
interpolate the data in cases where the lane markings are partially damaged, missing, or the
line of sight is blocked by other objects.

The map fragment acquisition from the detected landmarks showed the highest repro-
jection error on the reference correspondences of 3.61 cm and an average error of 0.69 cm
while stationary or moving at constant speed. This is a low enough reprojection error for our
application because our map grid has a 1 cm resolution.

We assumed that the mapping process is conducted mostly at a near-constant velocity.
However, a strong acceleration of the car causes the camera’s pitch change with respect to
the ground plane. This causes further inaccuracies in the map fragment acquisition process
as the distances in the direction of bearing would no longer be correctly reprojected using our
static homography approach.

The visual field of the camera that we used is quite small (for details see Section 3.1.1)
compared to usual sensory equipment used by applications striving for a functional SLAM.
Due to this, we used support landmarks (additional lane markings) to gain enough features
for scan matching (as discussed in Section 6.3.3).

We used Cartographer for the localisation and mapping of the detected features. The
experiments showed us that the mapping accuracy is very sensitive to the sudden changes of
the visual field, which is mostly connected to the velocity and track complexity. Local SLAM is
capable of creating accurate submaps for lower speed levels at curves and medium speed levels
in the straight parts of the track. In the cases which combine higher speed levels and curves,
we observed an increase in the local mapping error, which destroys the global consistency of
the submaps. As we expected, local SLAM accumulates a pose estimation error over time,
which has to be corrected by loop closing after revisiting the areas of the track.

Loop closure performed by global SLAM proved to be effective in correcting the local
SLAM’s incorrect submap and past path alignment. For the low speed level and low track
complexity, the global map perfectly converged and the estimated path shape was identical to
the reference. At the medium speed level or in the case of higher track complexity combined
with a low speed level, global SLAM still managed to create a converging global map, al-
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though, especially the distant landmarks are visibly blurred due to submap inacurracies. The
localisation did not accumulate an error. For a more difficult combination of conditions, the
localisation drift was too severe and global SLAM failed to create a consistent global map.

We also tested localisation in a map (constructed by camera-based global SLAM) using
Cartographer’s pure localisation mode. The pure localisation mode was not able to avoid
accumulating an error. On the oval track (or for higher speed levels on the asymmetric track)
it did not converge into the correct path. On the other hand, we achieved accurate results
for the low speed level on the asymmetric track. For the low speed level on the asymmetric
track, the position estimation error converged under 0.2 m in under 2 s. The average position
error was 0.14 m.

8.1 Future work

Finally, we summarize improvements and ideas for further enhancement of the current
state of the system presented in this thesis.

8.1.1 Lane markings detection

The lane markings detection could be made more robust towards strong illuminance
conditions, if we fixed the camera’s incompability with the computing module (described in
Section 5.2). This would enable us to use an automatic exposure time setting instead of a fixed
one, which would decrease the occurance of overexposure. A lower exposure time could also
enable us to have sharper images even at higher speed levels and possibly a higher framerate.

To make the lane markings detection generalize beyond the currently visible parts of
the lane markings, it would be valuable to add a geometrical model of it using a Generalised
Hough Transform, e.g., a model using B-splines similarly to [51], which are flexible enough to
describe the almost arbitrary shapes of the lane markings. However, this would cause a high
computational cost and would require a lot of computational power.

8.1.2 Map fragment acquisition

In this section, we discuss two main enhancements, which could enable us to gain
more data from the individual frames to be capable of localisation without supporting lane
markings.

Adding more cameras or a camera with a larger field of view would enable us to collect
more features of the surroundings, which is valuable for localisation.

Another way of getting more data for localisation could be to use visual feature descrip-
tors (e.g., SIFT), which can be uniquely recognized and can provide the vehicle with data
about the relative orientation and its distance to them. This would mean that we would have
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to store them in a database of visual landmarks (similarly to application of visual SLAM [29])
instead of just a simple occupancy map grid.

8.1.3 Localisation and mapping

To make local SLAM more robust to higher speed and track complexity, we could
attempt to raise the update rate that is currently limited to 20 Hz by the camera. A higher
update rate could help lower the negative effect of the sudden change of the visual field in
the turns.

Extracting reliable visual odometry from consecutive camera images could also help
Cartographer stabilize localisation as it would be another source of data for the vehicle’s pose
estimation.
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[56] Radim Šára. 3d computer vision: III. computing with a single camera. http://

cmp.felk.cvut.cz/cmp/courses/TDV/2019W/lectures/tdv-2019-04.pdf last visited
on 3.5. 2020, 2019.

60

https://en.wikipedia.org/wiki/YCbCr
 https://google-cartographer.readthedocs.io/en/latest/
 http://epixea.com/research/multi-view-coding-thesisch2.html
 http://epixea.com/research/multi-view-coding-thesisch2.html
http://cmp.felk.cvut.cz/cmp/courses/TDV/2019W/lectures/tdv-2019-02.pdf
http://cmp.felk.cvut.cz/cmp/courses/TDV/2019W/lectures/tdv-2019-02.pdf
http://cmp.felk.cvut.cz/cmp/courses/TDV/2019W/lectures/tdv-2019-04.pdf
http://cmp.felk.cvut.cz/cmp/courses/TDV/2019W/lectures/tdv-2019-04.pdf


APPENDIX

CD Contents

The names of all the root directories on the CD are listed in Table 1.

Directory name Description

thesis the thesis in PDF format

thesis sources LaTex source codes

source C++ and MATLAB source codes, parameter configurations
and launch files

video demonstrative video of road detection, localisation and map-
ping

Table 1: CD Contents
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APPENDIX

List and Meaning of Abbreviations

The abbreviations used in this thesis are listed in Table 2.

Abbreviation Meaning

EKF Extended Kalman Filters

FPS Frames per second

IMU Inertial Measuremenent Unit

LIDAR Light Detection and Ranging

PC2 2-dimensional Point Cloud

RANSAC Random Sample Consensus

ROS Robot Operating System

SIFT Scale Invariant Feature Transform

SVD Singular Value Decomposition

SLAM Simultanious Localization and Mapping

Table 2: Lists of abbreviations
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