
Master Thesis

Detection Sensor Placement Algorithm for
Protection Against Attacks Using Drones

Bc. Dominik Hoftych
Supervisor: Ing. Milan Rollo, PhD.

August 2020

Department of Computer Science

Faculty of Electrical Engineering

Czech Technical University in Prague

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

456994Osobní číslo:DominikJméno:HoftychPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Algoritmus pro rozmísťování detekčních senzorů pro ochranu před útoky s využitím bezpilotních
prostředků

Název diplomové práce anglicky:

Detection Sensor Placement Algorithm for Protection Against Attacks Using Drones

Pokyny pro vypracování:
1. Seznamte se s problematikou detekce bezpilotních prostředků různými typy
senzorů
2. Prostudujte existující metody rozmísťování senzorů pro pokrytí 3D
prostředí
3. Formalizujte úlohu detekce bezpilotních prostředků a definujte
optimalizační kritéria v závislosti na prostředí a typu útoku
4. Navrhněte a implementujte algoritmus pro volbu typu a rozmístění senzorů
pro zadané prostředí
5. Experimentálně ověřte vlastnosti algoritmu prostřednictvím softwarové
simulace

Seznam doporučené literatury:
[1] Á. D. De Quevedo, F. I. Urzaiz, J. G. Menoyo and A. A. López: Drone
Detection and RCS Measurements with Ubiquitous Radar. 2018 International
Conference on Radar (RADAR), Brisbane, QLD, 2018, pp. 1-6.
[2] Gabriel C. Birch, John C. Griffin, and Matthew K. Erdman: UAS
Detection, Classification, and
Neutralization: Market Survey 2015, Sandia National Laboratories, 2015.
[3] Kúdelka J.: Critical Infrastructure Protection Against Attacks Using
Drones. Bakalářská práce, ČVUT v Praze, 2018.
[4] I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu and D. Matolak:
Detection, Tracking, and Interdiction for Amateur Drones. In IEEE
Communications Magazine, vol. 56, no. 4, pp. 75-81, April 2018.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Milan Rollo, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 14.08.2020Datum zadání diplomové práce: 11.02.2020

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Milan Rollo, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Abstract

Nowadays, the use of drones is common for both recreational and commercial pur-
poses. Drones can assist people in many activities including remote sensing, aerial
photography and filming as well as medical supply delivery. However, their avail-
ability and potential for use also pose various threats that need to be protected
against. The goal of this thesis is to propose an algorithm to solve the problem of
optimal sensor placement around the monitored sector, for the purpose of detec-
tion of possibly dangerous drones. The algorithm assumes a realistic 3D environ-
ment and deals with camera occlusion as well. It also offers a high level of user
parameterization that involves the priority areas, maximal cost of the sensor net-
work, sensor prices, or multiple coverage. A part of the application is also a graph-
ical user interface (GUI) displaying the monitored sector, priority areas, and the
computed sensor network. The first part of the thesis describes today’s commercial
use of drones, the threats posed by the drones, existing systems for drone detection
and neutralization, and the recorded drone incidents. It further discusses possible
approaches and solutions to the problem of optimal sensor placement. The second
part of the thesis devotes to the description of the application, the introduction of
individual components and configuration parameters, and a detailed description
of the proposed algorithm. The end of the thesis focuses on evaluating the pro-
posed algorithm using experiments that simulate scenarios in which the protection
against drones would be necessary.

Keywords: drone detection, drone neutralization, optimal sensor placement prob-
lem, sensor network

i

Abstrakt

V dnešní době je použití dronů oblíbené nejen pro rekreační, ale i komerční účely.
Drony mohou asistovat lidem při mnoha činnostech, zahrnující například dálkový
sběr informací, letecké snímání a filmování, ale i dodávku zdravotního materiálu.
Nicméně, jejich dostupnost a potenciál využití představuje i různá nebezpečí, proti
kterým je potřeba se umět ochránit. Tato práce se zabývá návrhem algoritmu pro
optimální rozmísťování kamer a akustických senzorů v oblasti monitorovaného
sektoru, za účelem detekce potenciálně nebezpečných dronů, pracujícího v reál-
ném 3D prostředí včetně okluze kamery. Algoritmus umožňuje vysokou míru uži-
vatelské parametrizace, zahrnující prioritní oblasti, maximální cenu senzorové sítě,
ceny senzorů nebo vícenásobné pokrytí. Součástí aplikace je také grafické rozhraní,
které zobrazuje monitorovaný sektor, prioritní oblasti a senzorovou síť. První část
práce popisuje komerční využití dronů v dnešní době a nebezpečí, které předsta-
vují, existující systémy pro detekci a neutralizaci dronů a incidenty zaznamenané
v minulých letech. Dále popisuje možné řešení a přístupy k problému optimál-
ního rozmísťování senzorů. Druhá část práce se zabývá popisem aplikace, předsta-
vením jednotlivých komponent a konfiguračních parametrů a detailním popisem
navrhovaného algoritmu. Závěr práce se soustředí na vyhodnocení navrhovaného
algoritmu pomocí experimentů simulujících scénáře, ve kterých by ochrana proti
dronům byla nutná.

Klíčová slova: detekce dronů, neutralizace dronů, problém optimálního rozmísťo-
vání senzorů, senzorová síť

iii

Author statement for graduate
thesis:

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

Prague, date

signature

v

Acknowledgements

At first, I would like to express my gratitude to my supervisor Milan Rollo for
being helpful and keeping me on the right course during this thesis. I would also
like to thank Vojtěch Kaiser for providing useful advice and explanations on the
area of computer graphics and the simulation framework itself. In the last place,
my sincere thanks go to my family and my girlfriend Kristýna for their patience
and never-ending support during the whole study.

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Thesis structure . 1

2 Background 3
2.1 Drone usage . 3
2.2 Drone threats . 3

2.2.1 Recorded drone incidents . 4
2.3 Drone detection . 5

2.3.1 Radio frequency analyzers . 6
2.3.2 Radars . 7
2.3.3 Acoustic sensors . 8
2.3.4 Optical sensors . 8

2.4 Drone neutralization . 9
2.4.1 Passive countermeasures . 9
2.4.2 Active countermeasures . 10

2.5 Integrated C-UAV solutions . 12

3 Towards the optimal sensor placement problem 15
3.1 Greedy algorithms . 16
3.2 Sampling algorithms . 17
3.3 Integer linear programming . 18

3.3.1 ILP Solvers . 19

4 Simulation design 21
4.1 AgentFly simulation framework . 21

4.1.1 Sensor modelling . 22
4.1.1.1 Ray tracing . 22
4.1.1.2 K-d tree . 22
4.1.1.3 Sensor scanning . 23

4.2 Simulation workflow . 25
4.3 Configuration overview . 28

4.3.1 Geographical environment model 28
4.3.2 Sector . 30
4.3.3 Priority areas . 31
4.3.4 Sensor spots . 31
4.3.5 Serialized data . 31
4.3.6 World configuration . 32
4.3.7 World cell configuration . 33
4.3.8 Sensor placement configuration 33

4.4 Setting up the environment . 34

ix

CONTENTS

4.4.1 Input files processing . 34
4.4.1.1 Coordinate systems 35

4.4.2 Space discretization . 35
4.4.3 Graphical User Interface . 36

5 Implementation 39
5.1 World graph . 39

5.1.1 Expansion . 40
5.1.2 Surface scanning . 40

5.2 Sensor coverage . 42
5.2.1 Camera . 42

5.2.1.1 Reducing the space 42
5.2.1.2 Projecting cells to screen space 43
5.2.1.3 Rasterizing cells . 44
5.2.1.4 Evaluating the coverage 45

5.2.2 Acoustic sensor . 46
5.2.3 Detection thresholds . 46

5.3 Sensor placement . 51
5.3.1 Input . 51
5.3.2 Precomputation phase . 52
5.3.3 MILP model . 53

6 Experimental evaluation 57
6.1 Experiment design . 57
6.2 Flight path generator . 59
6.3 Evaluation . 62

6.3.1 The Pankrác Prison scenario 62
6.3.2 The Václav Havel Airport Prague scenario 67

7 Conclusion and future work 71
7.1 Future work . 72

A Measured data 75

B Drone detections 77

C Sensor placements 83

D Attached files 87

x

List of Figures

2.1 RF-160 radio frequency sensor, Dedrone 6
2.2 360° drone detection radar, Skylock 7
2.3 Discovair G2 acoustic sensor, Squarehead Technology 8
2.4 PTZ camera, Flir . 9
2.5 DroneDefender Counter-UAS Device, Battelle 10
2.6 SkyWall Patrol, OpenWorks Engineering 11
2.7 The Skylock anti drone jammer gun 12
2.8 DroneGun Tactical, DroneShield . 13
2.9 Ctrl+Sky Stationary counter-drone system 14

4.1 Drone detection using the camera sensor 24
4.2 The image of the camera sensor . 24
4.3 Drone detection using the acoustic sensor 25
4.4 The simulation flowchart . 27
4.5 The wire-frame model of the Šibenik Cathedral 29
4.6 DJI Matrice 600 Pro in wire-frame representation 29
4.7 DJI Matrice 600 Pro with materials 29
4.8 The model of Prague . 30
4.9 The sector of the Václav Havel Airport Prague 30
4.10 Priority areas near the sector of the Pankrác Prison 31
4.11 Discretized world around the Pankrác Prison 33

5.1 The sector of the Václav Havel Airport Prague with uneven areas . . 41
5.2 Sensor spots suitable for acoustic sensors 42
5.3 The OpenGL transformation chain 44
5.4 The idea of the Bresenham’s algorithm 44
5.5 Division of the triangle to flat-bottom and flat-top triangle 45
5.6 A drone in the view of a camera . 47
5.7 Detection of a small-sized drone . 48
5.8 Detection of a medium-sized drone 48
5.9 Detection of a large drone . 49
5.10 Coverage of acoustic sensor with a sensitivity of 40 dB 50
5.11 Coverage of acoustic sensor with a sensitivity of 30 dB 51
5.12 Coverage of acoustic sensor with a sensitivity of 20 dB 51

6.1 Flight profiles of attacking and smuggling 59
6.2 Flight profile of spying and the ordinary flight profile 59
6.3 Flight path with steep height changes 60
6.4 Flight path after the smoothing process 61
6.5 The Pankrác Prison scenario . 63
6.6 The Pankrác Prison scenario flights 63

xi

LIST OF FIGURES

6.7 Sensor placement in the sector of the Pankrác Prison 64
6.8 Sensor placement in the sector of the Pankrác Prison 64
6.9 Average detection percentage of each flight profile per maximum

cost of the sensor placement in the Pankrác Prison scenario 65
6.10 Average detection distances of cameras and acoustic sensors per max-

imum cost of the sensor placement in the Pankrác Prison scenario . 66
6.11 Average time to react to the flight profiles of attacking and smug-

gling per maximum cost of the sensor placement in the Pankrác
Prison scenario . 66

6.12 The Václav Havel Airport Prague scenario 67
6.13 The Václav Havel Airport Prague scenario flights 68
6.14 Sensor placement in the sector of the Václav Havel Airport Prague . 68
6.15 Average detection percentage of each flight profile per maximum

cost of the sensor placement in the Václav Havel Airport Prague sce-
nario . 69

6.16 Average detection distances of cameras and acoustic sensors per max-
imum cost of the sensor placement in the Václav Havel Airport Prague
scenario . 70

6.17 Average time to react to the flight profiles of attacking and smug-
gling per maximum cost of the sensor placement in the Václav Havel
Airport Prague scenario . 70

B.1 Detection of a small-sized drone . 77
B.2 Detection of a small-sized drone . 78
B.3 Detection of a small-sized drone . 78
B.4 Detection of a medium-sized drone 79
B.5 Detection of a medium-sized drone 79
B.6 Detection of a medium-sized drone 80
B.7 Detection of a large drone . 80
B.8 Detection of a large drone . 81
B.9 Detection of a large drone . 81
B.10 Detection of a large drone . 82

C.1 Sensor placement in the sector of the Pankrác Prison 83
C.2 Sensor placement in the sector of the Pankrác Prison 84
C.3 Sensor placement in the sector of the Pankrác Prison 84
C.4 Sensor placement in the sector of the Pankrác Prison 85
C.5 Sensor placement in the sector of the Václav Havel Airport Prague . 85
C.6 Sensor placement in the sector of the Václav Havel Airport Prague . 86
C.7 Sensor placement in the sector of the Václav Havel Airport Prague . 86

xii

Chapter 1

Introduction

In today’s world, unmanned aerial vehicles (UAV) or unmanned aerial systems
(UAS), also referred to as drones, are becoming more and more common. People
are able to buy drones on the internet and have them delivered by two days, just
like any other product. That arouses a strong interest not only in recreational use
but also in commercial use where drones may assist people with various tasks, in-
cluding aerial photography and filming, monitoring objects, or even humanitarian
aid.

Although drones offer a range of beneficial features, with such availability they
can easily be misused for illegal actions, causing various types of threats such
as unauthorized intrusion, spying (privacy violations), or a terrorist attack in the
worst case. With the technology evolving, it is expected that the use of drones will
only increase worldwide, forcing people and organizations to develop detection
systems that will help with protecting against drones, maintaining security, and
being prepared to introduce appropriate defensive countermeasures in time.

In this thesis, we propose an approach to the problem of optimal sensor place-
ment, used for protection against drone attacks and threats generally. We focus
on implementing a sensor placement algorithm, whose result is a sensor network
of cameras and acoustic sensors around the monitored sector that is supposed to
detect intruder drones in the monitored area. The algorithm works in real-world
space, in three dimensions, and can be parameterized by several criteria such as
the priority areas, the maximum price of the sensor network or multiple cover-
age. Besides of the algorithm, a simulation offering graphical user interface (GUI)
showing the monitored sector and deployed sensor network is implemented using
the AgentFly simulation framework. Finally, the sensor network computed by the
sensor placement algorithm is thoroughly evaluated using an experimental evalu-
ation, in which different types of flights are simulated for various purposes, such
as smuggling, spying, or a terrorist attack.

1.1 Thesis structure

In Chapter 2, we familiarize the reader with today’s usage of drones, the benefits
they offer, and the threats they pose. We include a brief list of recorded drone inci-
dents to emphasize why protection against drones is needed. Finally, we present a
few state-of-the-art counter-drone systems, their features, and vendors.

Chapter 3 provides a survey of approaches to solving the problem of optimal
sensor placement.

In Chapter 4, we present the design of the whole simulation. We describe the
workflow and individual components of the simulation. We also focus on a detailed

1

CHAPTER 1. INTRODUCTION

description of configuration properties that can be used to control the behavior of
the sensor placement algorithm and the subsequent experimental evaluation.

In Chapter 5, we introduce our approach to the problem of optimal sensor
placement and formalize the proposed algorithm. Prior to that, we describe im-
portant supportive features and how we dealt with the precise computation of the
sensor’s coverage.

In Chapter 6, we introduce the experimental evaluation that we used to evaluate
the proposed sensor placement algorithm. We present the scenarios and discuss the
results and consequences of the experimental evaluation.

Finally, Chapter 7 concludes the thesis and discusses possible extensions and
improvements.

2

Chapter 2

Background

In this chapter, we present today’s use of drones and the threats they pose with a
brief overview of drone incidents recorded to date. Then, we present technologies
that are used to protect against drones and a shortlist of state-of-the-art counter-
drone systems.

2.1 Drone usage

As drone technology advances, drones offer many beneficial features that help com-
mercial organizations efficiently deal with various problems and challenges that
wouldn’t be easy to accomplish otherwise. Besides recreational use of drones that
was already mentioned in the introduction, typical examples of nowadays commer-
cial use of drones are the following [1]:

• Remote sensing. "Remote sensing is the acquisition of information about an
object or phenomenon without making physical contact with the object" [2].
A drone can be equipped with sensors of almost any type, which basically
makes it a sensor that can be remotely operated. Such possibility finds use in
the following areas:

– Biological sensors - air-quality readings, detection of organic or micro-
organics presence;

– Heat sensors - livestock temperature, presence, and temperature of the
water;

– Visual sensors - inspection of agricultural fields, power lines, towers,
roofs as well as monitoring infrastructures or buildings.

• Humanitarian aid and disaster relief. Drones can be used to assess the dam-
age, locate victims, deliver aid after earthquakes or hurricanes. Drones are
also able to monitor forest fires and detect abnormal forest temperatures.

• Shipping and delivery

• Aerial photography and filming. Drones equipped with high-quality cam-
eras are used to take air pictures or videos from high places where people
can’t get.

2.2 Drone threats

The area where drones are making our everyday lives easier is really large. How-
ever, when their availability is combined with the number of possibilities they offer,

3

CHAPTER 2. BACKGROUND

it is rather hard to prevent them from being used for unwanted or illegal activities.
Such unwanted or illegal activities range from less serious such as flying too high
to serious threats such as terrorism, and might involve the following:

• Violation of safety or airspace restrictions. In order to fly the drone safely,
the pilot must follow safety and airspace restrictions specified by the country
in which the pilot operates. These restrictions might differ from country to
country, however typically include the following [3, 4]:

– Flying too high. In the case of recreational use, the maximum allowed
height is usually 400 feet.

– Flying near other aircraft. If the drone was sucked into an aircraft’s
engine or collision occurred, it could very easily end in tragedy.

– Flying beyond visual line of sight. The pilot must maintain eye contact
with the drone throughout the flight.

– Flying over specific areas. Such areas include airports, stadiums, or
sporting events.

• Illegal surveillance. Spying on people or objects without permission.

• Illegal smuggling. Drones can be used to smuggle illegal items such as
weapons or drugs, for example across the country borders or into prisons.
Speaking about prisons, other items such as cell phones or pornography ma-
terials are being smuggled as well.

• Terrorist attack. Dropping a bomb into a crowded place would be a common
example of a terrorist attack using drones. Drones are still relatively small,
the weight of load they can carry is limited and so is the damage potential.
However, the damage potential of spraying a city from above with toxic or ra-
dioactive material is much bigger and could cause bigger problems. Another
use of drones that is worth mentioning is the localization of enemies - using
a drone to discover their positions.

2.2.1 Recorded drone incidents

There have been many drone incidents recorded worldwide to date, spreading out
over the whole range of severity. Worth mentioning databases include regular UAS
Sightings Report by Federal Aviation Administration [5] or database with 11340
drone incidents by Aviation Safety Network [6]. For drone incidents related to
military areas, one must not forget the Drone Crash Database [7].

As the databases above provide only a brief report of the incident, we drew the
examples of incidents from another publicly accessible database by Dedrone [8],
from which we will now present a subset of noteworthy incidents that happened
in Europe, organized by the industry in which they happened.

Airports and mid-air collisions

• On September 2, 2019, potentially lethal mid-air collision occurred at an al-
titude of 1700 feet when an illegal drone came too close to an Aer Lingus
flight carrying 186 passengers. It is believed that this incident is the first case
where the pilot was forced into action to avoid the drone [9].

4

CHAPTER 2. BACKGROUND

• On May 17, 2019, a British Airways jet carrying up to 300 passengers was
within 20 feet away from smashing into an illegally flown drone at an altitude
of 6000 feet. This incident falls within the Category A - the most serious type
of drone incident [10].

• On October 16, 2017, a rather big drone with a diameter of about 1 m nearly
hit a jet that was just landing at the Gatwick airport, putting 130 lives at
risk. The drone nearly made the plane’s first officer disconnect the cockpit’s
autopilot system and take avoiding action [11].

Prisons

• On October 26, 2018, seven members of a drug-smuggling gang were jailed.
In total, the gang performed 55 drone deliveries into prisons during a pe-
riod of approximately 14 months. Deliveries mostly consisted of cannabis or
synthetic cannabis, but included amphetamines, crack cocaine, and heroin as
well and their combined price was estimated to 550 thousand pounds [12].

• On October 3, 2018, an incident that may almost be considered ridiculous
happened, where two smugglers accidentally filmed themselves on the drone’s
camera when packing cannabis and pills into a drone. They were planning
to fly the packaged drone into Perth Prison, but the drone crashed and was
seized by the police. When police studied the footage from the drone’s cam-
era, they have found images of both the smugglers which led to successful
identification and arrest of both [13].

Private/Non-Corporate

• On August 7, 2018, drone was flown over summer residence of the French
President Emmanuel Macron’s, where he and his wife were spending their
holidays. The fact that this incident happened just one day after a drone ex-
plosion attack on the Venezuelan President Nicolás Maduro (who fortunately
escaped safely) only aroused suspicion and fear of connection [14].

Stadiums

• On January 4, 2018, a drone caused an 11-minute delay during the football
match between Crawley Town and Yeovil Town, teams of the lowest division
of English Football League. When the drone was firstly spotted, the match
was tied 1-1 and the referee had to take both teams off the field for safety
reasons. The unexpected pause might have played its role in the outcome of
the match, as soon after the match was continued, Crawley Town scored a
goal and ended up winning the match 2-1 [15].

2.3 Drone detection

The danger that the inappropriate use of drones presents is large, and setting a
proper defense is a hard task. With the speed drones can fly nowadays, there might
be only several seconds since the drone is firstly seen until the attack. This short
period of time must be efficiently used to select and perform appropriate actions
to avoid the attack.

5

CHAPTER 2. BACKGROUND

The first such action is to detect and categorize the drone. Is it even a drone? Is
it a terrorist drone carrying a bomb? Is it a spying drone collecting some sensitive
data? Or is it just an intruder drone that was flown the wrong direction?

In order to answer these questions, various types of sensors can be used, each
having different pros and cons. In practice, more types of sensors at usually com-
bined, forming a counter-UAV (C-UAV) system with better and more precise cover-
age as well as a lower false alarm rate than if the sensors were standalone.

The main types of sensors include radio frequency (RF) analyzers, radars, acous-
tic sensors, and optical sensors (cameras).

2.3.1 Radio frequency analyzers

The majority of commercial drones are not autonomous and thus require commu-
nication with their remote controller. During the communication, a lot of data is
transmitted over specific frequencies of the radio frequency spectrum, which is
done in a two-way fashion, i.e. drone sends telemetry data such as the battery life,
position or altitude to the remote controller, and remote controller answers back
with for example navigation commands.

By setting up a passive radio frequency sensor on selected frequencies, drone
detection systems based on RF analyzers are able to capture the communication
and relay it to a computer where specialized algorithms take over and compare it
to a database of drone protocols. As different drones have different protocols, good
RF-based detection systems are even able to identify the drone’s model sometimes.

The advantages of RF-based drone detection systems are that they can detect
multiple drones at once and the range of detection extends beyond 2 km, depend-
ing on the antennas. They can also be very cost-effective, although it obviously
heavily depends on the specific manufacturer or model.

Disadvantages include mainly the fact that fully autonomous drones are unde-
tectable as they don’t need to communicate with their remote controller. Also, RF
pollution might cause reduced effectiveness of RF-based detection systems [16].

An example of an RF sensor is shown in Figure 2.1.

Figure 2.1: RF-160 radio frequency sensor, Dedrone1

6

CHAPTER 2. BACKGROUND

2.3.2 Radars

A radar system has a transmitter that emits radio waves which are called radio
signals. When the radio signals encounter objects along their path, they are scat-
tered, reflected, and bounce back to the radar receiver. Using specific algorithms,
received waves are converted to visual and provide estimations of the shape, size,
and density of the encountered objects.

Worth mentioning are also Pulse-Doppler radars, which are based on the Doppler
effect2 - distortion or bend in the wave. By emitting periodic bursts of radio waves
and measuring the bends in the returned signal, estimations of distance and veloc-
ity of the encountered object can be calculated.

One of the main advantages of radars is that they can provide a long detection
range. They can also provide constant coverage, drone tracking, and can detect
multiple drones at once.

On the other hand, radars struggle with detecting drones of very small sizes.
Moreover, drones usually tend to fly close to the ground which doesn’t help either.
In addition to that, radars often fail to distinguish between drones and flying birds,
which is the main reason why radars are often supported by other types of sensors
[16].

In Figure 2.2 we show a drone detection radar developed by Skylock anti-drone
systems.

Figure 2.2: 360° drone detection radar, Skylock3

1image taken from https://www.dedrone.com/press/dedrone-introduces-next-generation-
radio-frequency-sensor-rf-160-for-suas-detection-and-threat-mitigation

2https://en.wikipedia.org/wiki/Doppler_effect
3image taken from https://www.skylock1.com/drone-detection/

7

https://www.dedrone.com/press/dedrone-introduces-next-generation-radio-frequency-sensor-rf-160-for-suas-detection-and-threat-mitigation
https://www.dedrone.com/press/dedrone-introduces-next-generation-radio-frequency-sensor-rf-160-for-suas-detection-and-threat-mitigation
https://en.wikipedia.org/wiki/Doppler_effect
https://www.skylock1.com/drone-detection/

CHAPTER 2. BACKGROUND

2.3.3 Acoustic sensors

Acoustic sensors usually consist of an array of microphones that detect the sound
emitted by propellers and motors of the drone and use it to calculate the incoming
direction [17].

Advantages include the ability to detect fully autonomous drones, easy instal-
lation, and low energy consumption.

Disadvantages include the need to constantly update the sound database and
short detection range, usually about 300 to 500 m. Also, acoustic sensors don’t
work well in noisy environments.

Acoustic sensor Discovair G2 developed by Squarehead Technology is shown in
Figure 2.3.

Figure 2.3: Discovair G2, Squarehead Technology4

2.3.4 Optical sensors

Optical sensors are essentially video cameras. Besides standard daylight cameras,
optical sensors can be infrared or thermal imaging.

The main advantage is that unlike other sensor types, optical cameras can pro-
vide visual images of the drone and its payload (if there is any) that can later come
useful as forensic evidence in eventual prosecution [17].

In terms of disadvantages, optical sensors perform poorly in bad weather con-
ditions. Furthermore, they have high false alarm rates and struggle with detecting
small drones.

Example of optical sensor is shown in Figure 2.4.

4image taken from https://www.sqhead.com/squarehead-unveils-discovair-g2/

8

https://www.sqhead.com/squarehead-unveils-discovair-g2/

CHAPTER 2. BACKGROUND

Figure 2.4: PTZ camera, Flir5

2.4 Drone neutralization

Once the intruder drone is detected and identified as a threat, there are several
options which countermeasures to perform, divided into two categories: passive
countermeasures and active countermeasures.

2.4.1 Passive countermeasures

Passive countermeasures aim to protect against an intruder drone without phys-
ically interacting with it. Passive countermeasures are obviously limited, but to
some extent extremely effective, reliable, and practical. Unlike active countermea-
sures, passive countermeasures are also completely legal.

A great example of an area where passive countermeasures have high efficiency
is illegal surveillance. If there is a spying drone flying around a building, the sim-
plest solution would be to for example closing window shades so that there is noth-
ing to be seen for the drone. If the drone is spying over open space area, appro-
priate action would consist of taking people away from the open space, best to a
building where the drone can’t see them. Except for simply hiding from the drone,
passive countermeasures also include deploying smoke clouds or shining a strong
light towards the drone so that its camera is overpowered [18].

Another example of an attack that passive countermeasures are effective against
is cybersecurity. Cybersecurity attacks might for example involve installing a de-
vice on the drone, such as an on-board computer (e.g. Raspberry Pi6) capable of
hacking, or radio transceivers. Protection against such attack includes active mon-
itoring of the network for intrusion or spoofing, seeking for anomalies in access
logs, or for example turning off the guest wireless network [18].

5image taken from https://www.dedrone.com/products/hardware/extensions/ptz-cameras
6https://en.wikipedia.org/wiki/Raspberry_Pi

9

https://www.dedrone.com/products/hardware/extensions/ptz-cameras
https://en.wikipedia.org/wiki/Raspberry_Pi

CHAPTER 2. BACKGROUND

2.4.2 Active countermeasures

Active countermeasures simply mean to physically stop the drone. Unlike passive
countermeasures, active countermeasures might not be perfectly legal in all cases,
are often more expensive but also much more effective.

According to [19], active countermeasures are divided into two groups: soft
measures and hard measures, which we will describe in detail in the following sec-
tions.

Soft measures. Soft measures mean to stop the drone without physical contact
with the drone. A great example of soft measure is so-called "jamming", where
radio frequency jammers are used. RF jammer is a device that transmits a large
amount of RF energy towards the drone, masking the drone’s signal which results
in lost communication with the remote controller [17]. Based on a specific drone
model, the lost communication causes the drone to either make a controlled land-
ing in its current position or to return to its user-set home location, which often is
its take-off location.

An example of an RF jammer called DroneDefender Counter-UAS Device is
shown in Figure 2.5.

Figure 2.5: DroneDefender Counter-UAS Device, Battelle7

Another example of a soft measure is GPS spoofing (or Global Navigation Satel-
lite System (GNSS) spoofing). GPS spoofing aims to deceive a GPS receiver, such
as the drone’s one, by broadcasting fake GPS signals from the ground. The signals
might be fake but are technically sound and correct, so the receiver is not able to
recognize that they are fake. Moreover, receivers are usually not able to detect the
incoming direction of the signals, so they can’t tell whether the signals come from
the ground and not from the satellites, either. As a result, the GPS receivers start to
unconsciously compute wrong coordinates, leading the drone to different courses
and locations. Also, worth mentioning is the fact that GPS spoofing equipment is
not expensive at all and as opposed to RF jammers, for example, it’s not such a
complicated technology, accessible only by military or special services [20].

7image taken from https://inside.battelle.org/blog-details/revolutionary-not-
evolutionary

10

https://inside.battelle.org/blog-details/revolutionary-not-evolutionary
https://inside.battelle.org/blog-details/revolutionary-not-evolutionary

CHAPTER 2. BACKGROUND

Hard measures. Hard measures include physically taking down the drone. One
way of accomplishing that is using firearms, electromagnetic pulses (EMP), or lasers
[21]. In such a case, the drone is destroyed and crashes. It will serve its purpose,
but it also has its costs - those are military technologies that are not cheap and
often require approval by local authorities as well. Notwithstanding that firearms
are only effective at low range so their use is not common.

Another way of taking down an intruder drone is by using one or more counter
drones. Such counter drones are usually autonomous, meaning they have built-
in sensors using which they locate and track the moving target automatically [22].
Once the counter-drone gets close to the intruder drone, it is supposed to take down
the intruder drone by either shooting a net over it, making the drone unable to fly
as its propellers entangle in the net or by collision.

As a cheaper alternative to counter drones, it is also possible to use drone cap-
ture systems, i.e. net cannons, handheld guns that fire capture nets. In this case,
however, the firing range is obviously limited. The SkyWall Patrol, handheld drone
capture system is shown in Figure 2.6.

Figure 2.6: SkyWall Patrol, OpenWorks Engineering8

8image taken from https://openworksengineering.com/skywall-patrol/

11

https://openworksengineering.com/skywall-patrol/

CHAPTER 2. BACKGROUND

2.5 Integrated C-UAV solutions

C-UAV systems are capable of performing all tasks required to protect against an
intruder drone, including detection, tracking, and finally neutralization of the in-
truder drone.

In this section, we will briefly present a few state-of-the-art C-UAV solutions
and their features.

Skylock anti drone systems. Skylock offers various services to prevent from drone
attacks, ranging from drone detection to drone neutralization. Services include
jamming technologies, where stationary and hand-held RF jammer guns are used
[23] as well as non-jamming technologies where for example unique DRONELOCK
system to intercept hostile drones was presented. The DRONELOCK system is in-
tegrated into a small fast-flying drone that has built-in sensors to lock onto the
moving target and disable it by collision [22].

Another technology developed by Skylock anti drone systems is the Counter
drone net catcher. In this case, the drone also locks into the target but instead of
colliding with the intruder drone, it fires a capture net over it, swiftly demobilizing
it [22].

In Figure 2.7 we show Skylocks’s hand-held anti drone jammer gun with jam-
ming range up to 1 km.

Figure 2.7: Anti drone jammer gun, Skylock9

9image taken from https://www.skylock1.com/anti-drone-jammers/?gclid=
CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-

oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp

12

https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp

CHAPTER 2. BACKGROUND

DroneShield. DroneShield offers a complete system of products and services to
counter threats possibly caused by drone technology. First of all, the system in-
cludes detection, where either stand-alone radars or body-worn RF detection de-
vices are provided. Analysis and identification are based on multi-sensor approach,
where radars are used to track the moving target and to separate it from back-
ground clutter, RF sensors are used to provide direction of bearing to the target
and high definition zoom cameras and thermal sensors are used to provide visual
confirmation to the user. With such a combination of sensors, the system provides
high accuracy and good resistance to false alarms [24].

For a visual representation of the detection activities, a browser-based visual
interface is provided.

Finally, the counter-drone response itself is done with the assistance of one
of the products10 offered by DroneShield, such as DroneGun Tactical, which is a
portable, hand-held gun able to disrupt multiple RF frequency bands in the range
up to 2 km.

DroneGun Tactical is presented in Figure 2.8.

Figure 2.8: DroneGun Tactical, DroneShield11

Ctrl+Sky counter-drone system. Ctrl+Sky is a multi-sensor counter-drone sys-
tem with the ability to detect, track, and neutralize intruder drones [25], developed
by Advanced Protection Systems company. Because of the multi-sensor approach,
Ctrl+Sky enables detection, identification, and neutralization of drones in both day
and night as well as in all weather conditions.

The counter-drone systems exist in stationary, portable, and mobile versions
and for detection usually include a 3D radar sensor with a detection range up to
3 km, RF sensor, an acoustic sensor with an array of eight microphones, and a
visual sensor (camera) with optical zoom up to 30x. For neutralization, it provides
a fully integrated RF jammer with the option to be activated either manually or
automatically upon detection. It also comes with compatible software that can be
installed on a computer or mobile device.

Figure 2.9 shows the Ctrl+Sky counter-drone system in its stationary version.

10https://www.droneshield.com/view-all-products
11image taken from https://www.droneshield.com/dronegun-tactical

13

https://www.droneshield.com/view-all-products
https://www.droneshield.com/dronegun-tactical

CHAPTER 2. BACKGROUND

Figure 2.9: Ctrl+Sky Stationary counter-drone system12

12image taken from https://apsystems.tech/en/products/ctrlsky-stationary/

14

https://apsystems.tech/en/products/ctrlsky-stationary/

Chapter 3

Towards the optimal sensor
placement problem

In previous years, technology has advanced enormously, which opens up a lot of
new opportunities in various technology industries, including, for example, health-
care, where technology helps save lives, wireless communication allowing us to
communicate with people who are on the other side of the Earth in real-time, or
robotics, where machines are developed that assist people during various activities.
On the other hand, with great power comes great responsibility as the technologies
are becoming more and more accessible, even for ordinary people, which can pose
a danger against which we must be ready to protect ourselves.

With such a level of digitization as in the world we live in now, the use of dif-
ferent types of sensors to monitor various properties in an area is perfectly normal.
While having a smart home or cameras monitoring the private property is more of
a nice thing to have rather than an indispensable thing, having proper surveillance
and monitoring of, for example, traffic, or some important object, where security
breaches can have more serious consequences, can often be more than appropriate,
if not necessary.

When there is a need for monitoring and sensor coverage of an object, it is es-
sential that the sensor network is efficient, as it impacts both the performance and
the total cost of the sensor network. The problem of finding an effective place-
ment of the sensors is commonly referred to as the optimal sensor placement problem
or the optimal camera placement problem if only cameras are used in the network.
The problem of optimal camera placement can also be understood as a restricted
version of the famous art gallery problem (AGP) which has been studied in the
field of computational geometry for decades. AGP concerns itself with placing one
or more security guards such that the whole area of the gallery is covered by the
guards, where the gallery is represented by a polygon, in a simple, two-dimensional
version of the problem. For a point to be covered by a guard, the line segment con-
necting the guard and the point must lie inside the polygon as well, which means
that the guards have full vision around themselves, i.e. the field of view (FOV) is
360◦. If we consider cameras with limited FOV instead of the guards, the problem
would become very similar to the optimal camera placement problem [26].

The problem of finding the optimal sensor placement is not trivial to solve at
all, as many constraints have to be taken into account, such as the modeling of the
camera visibility. Following that, it is also nearly impossible to solve the optimal
sensor placement in continuous space. For that reason, most of the state-of-the-art
solutions aim to solve the problem in an entirely discrete domain by transitioning
from the continuous space to a finite discrete space.

15

CHAPTER 3. TOWARDS THE OPTIMAL SENSOR PLACEMENT PROBLEM

To solve the problem in the discrete domain, we first need to discretize the
continuous space into a set of grid points, whether the continuous space is two-
dimensional or three-dimensional, of which each represents a discrete position in
space. Given the discrete space, we can formulate various properties about the grid
points as integer or binary variables. For example, to be able to tell whether there
is a sensor placed on some grid point, we would define a binary variable for each
grid point, which would equal either to 0 or 1, based on whether the property holds
for a particular grid point.

If the problem is modeled in such a way, it opens up several possibilities of
how to solve it, one of which being the popular integer linear programming (ILP),
where the decision variables are restricted to be integers and the constraints and
the objective function must be linear.

Although approaching the problem of optimal sensor placement as an ILP model
can lead to global optimum, it is rather impractical in a real-life scenario because
ILP is NP-hard [27]. Even for small-sized problems, it is often very difficult and
time-consuming to find the optimal solution. For that reason, a myriad of approx-
imation algorithms and heuristics are being developed, to find the approximation
of the optimal solution in a fraction of time compared to the ILP solutions.

As far as the problem of optimal sensor placement is concerned, most of the
state-of-the-art solutions recognize two variants of the sensor placement problem,
the MIN problem and the FIX problem. In the MIN problem, the task is to min-
imize the number of sensors such that given minimal space coverage is achieved,
considering the other constraints in the problem as well. On the other hand, in the
FIX problem, the task is to maximize the space coverage given a fixed number of
sensors [28].

In the following sections, we will discuss various approaches to both the MIN
variant and the FIX variant of the sensor placement problem, their advantages,
drawbacks, and limitations.

3.1 Greedy algorithms

When an algorithm is greedy, it generally means that it tends to select the best op-
tion, i.e. the local optimum in each of its iterations, instead of seeking the global
optimum by checking all possible combinations. Although greedy algorithms do
not produce global optimums very often, the main advantage is the speed at which
the greedy algorithms perform, compared to other algorithms or heuristics. Con-
sidering the fact that it is actually possible to achieve a local optimum that is a
reasonable approximation of the global optimum with linear asymptotic complex-
ityO(N) [28], the results produced by the greedy algorithms can be often sufficient.
Furthermore, the greedy algorithm is usually very trivial to implement, so it might
be a good candidate for the baseline solution.

One of the well-known problems where greedy algorithm performs well is the
set cover problem. In the set cover problem, we consider a set of elements F and
a collection S of m sets whose union equals F. Then, the set cover problem is to
find the smallest sub-collection of S whose union equals F [29]. It was proven that
the approximation ratio of greedy algorithm for the set cover problem is exactly
ln(n)− ln(ln(n)) +Θ(1) [30].

The idea of greedy approach in the sensor placement algorithm is to select the
sensor configuration that performs the best in each iteration, i.e. covers the most
grid points, until some ending criteria are encountered, such as all sensors are
placed, there are no available grid points left or the maximum cost of the sensor

16

CHAPTER 3. TOWARDS THE OPTIMAL SENSOR PLACEMENT PROBLEM

network is reached.
Hörster’s and Lienhart’s version of the greedy algorithm for the optimal camera

placement that they propose in [31] is based on the fact that each possible camera
configuration is assigned a rank that simply states how good the particular config-
uration is. The rank of a camera is computed as the number of covered points that
the camera would add to the set of points that are already covered by other cameras
if selected, denoted as NbCovR. It follows that the camera with the least overlap
with other cameras will be selected in each iteration. If there are more types of
cameras involved in the problem, the rank is defined as

r =
Kk

NbCovR
,

where Kk represents the price of respective camera types considered in the prob-
lem. Thus, the ratio r states the price per one point that the camera would add to
the set of points covered by other cameras if it was selected in the iteration.

The main drawback of the greedy approach is obvious, as once the local opti-
mum is reached, the solution can not be improved anymore due to the determinis-
tic nature of the approach. To deal with it, randomness has to be introduced in the
solution, bringing us a set of random sampling methods, where randomness plays
a crucial role.

3.2 Sampling algorithms

Although the greedy algorithm can produce reasonable results for some problems,
it fails to do so in many cases because it is not possible to improve the solution
once it achieves the local optimum. Unlike that, sampling algorithms do not suffer
from getting stuck in local optimum, because the solution can always be improved,
simply by sampling more points of the initial dataset.

In a sampling algorithm, the idea is to sample, i.e. select either randomly or
based on some probabilities, a subset S of n points from the initial set of points U
referred to as the population [32]. The simplest type is random sampling, where all
points in the population have the same probability of being selected. By repeatedly
sampling a subset S from the population, different results can be achieved, thus a
chance to improve the current solution always exists, if the current solution is no
longer a global optimum. Such an approach is obviously very naive, as the chances
of finding the global optimum are very small, if not almost zero.

A little improvement of the random sampling can be gained by setting the sam-
pling probability of a point i, which represents a sensor position in the sensor
placement problem, directly proportional to the coverage of the sensor at the po-
sition i [28]. With such an approach, sensors covering more space than the others
would have a higher probability of being selected, which can lead to better results
as in the case of the uniform probability distribution.

To further improve the result of sampling the subset S from the population and
to avoid getting stuck in local optimum, Zhao et al. [28] adopted the Metropolis
algorithm proposed by Jun S. Liu [33] and used it to solve the FIX problem. The
idea is to choose a random candidate to proceed rather than exchanging with the
camera maximizing the objective function, where the probability of selecting the
particular candidate is proportional to the amount by which the random candi-
date’s objective value exceeds the current choice.

One of the remaining approximation methods worth mentioning is simulated
annealing (SA). SA is a probabilistic technique that can be used to approximate the

17

CHAPTER 3. TOWARDS THE OPTIMAL SENSOR PLACEMENT PROBLEM

global optimum of a function and its usage prevails in discrete search spaces such
as in the traveling salesman problem (TSP) [34]. In [35], Junbin Liu et al. proposed
a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve
the problem of optimal camera placement, generalized for large scale networks
as well. They compare the proposed TSDA algorithm with a state-of-the-art BIP
solution and gain significant results in the solution of the MIN problem in large
search spaces.

3.3 Integer linear programming

In linear programming (LP), we are concerned with optimization of a linear objec-
tive function, assuming a set of constraints. The objective function consists of one
or more optimization variables and the allowed values for the respective optimiza-
tion variables are determined by a set of constraints that have to be linear as well.
A simple example of a linear program might look as follows [36]:

min c1x1 + c2x2 + · · · + cnxn
s.t. a11x1 + a12x2 + · · · + a1nxn ≥ b1

...
...

...
...

am1x1 + am2x2+ · · · + amnxn ≥ bm

where c and b are coefficient vectors, A is a coefficient matrix, and X is the vec-
tor of the optimization variables, whose values are to be determined. From the
point of view of geometry, the set of feasible solutions to the problem is a convex n-
dimensional polytope, where n is the number of variables [27]. The optimal value
of the objective function is a point in the polytope, in which the value of the objec-
tive function is the smallest or the largest, depending on whether we minimize of
maximize the objective function.

So far, it is a problem of linear programming, which has shown to be solvable
in polynomial time by Leonid Khachiyan in 1979 [37]. If the variables were further
restricted to be integers, we would rather talk about ILP, which was shown to be
NP-hard [27]. If there was another restriction that the variables are binary, i.e.
can only take values 0 and 1, it would refer to 0-1 ILP, or more commonly, binary
integer linear programming (BIP or BILP) [38]. If one or more variables in the
problem would not be integer variables, then it would refer to mixed-integer linear
programming (MIP or MILP).

A BIP formulation for both the MIN and FIX problem was proposed by Zhao et
al. in [28], where two sets of binary variables were introduced, {xj : j = 1, . . . ,Np}
and {bj : j = 1, . . . ,Nc}. Whether a camera is placed at position i is indicated by
the fact that bi = 1. A particular selection of these bi variables defines a camera
placement plan. If a position j in the space can be observed by the camera place-
ment plan, the x variable equals to 1 for the given position, i.e. xj = 1. Using these
variables, the formulation of the MIN problem proposed by them is as follows:

minimize
Nc∑
i=1

bi

s.t. f (x1, . . . ,xNp) ≥ p,

18

CHAPTER 3. TOWARDS THE OPTIMAL SENSOR PLACEMENT PROBLEM

where f (x1, . . . ,xn) is a function measuring the coverage of the camera placement
plan. and p is the minimal space coverage.

Similarly, they formulate the FIX problem using the same variables as follows:

maximize f (x1, . . . ,xNp)

s.t.
Nc∑
i=1

bi ≤m,

where m is the fixed number of cameras, and the rest is the same as in the formu-
lation of MIN problem.

In [26], Jun-Woo et al. introduce a two-phase algorithm as a combination of
both the MIN and FIX problems. In the first phase, the MIN problem is solved
using BIP, obtaining the minimum of cameras that are required to satisfy the spec-
ified conditions. Then, the FIX problem is solved in the second phase, determining
the best placement of the cameras for maximum coverage using the hill climbing
method [39], where the number of cameras to be placed is the result of the first
phase.

Horster and Lienhart also attempted to formulate a BIP solution to the optimal
camera placement in [31], but they introduced their own four problems rather than
solving the MIN or FIX problem.

3.3.1 ILP Solvers

There are many popular ILP solvers in the world from which to choose for the
project. In terms of the free ILP solvers, the most popular is most likely the GNU
Linear Programming Kit (GLPK)1 and the lp_solve2. As efficiency is crucial when
solving ILP programs, most of the solvers are written in C or C++. Therefore, if
programming in C or C++ is not a problem or the solver offers application inter-
faces for other languages as well, then a free solver might be a good choice.

However, someone might want to grab a paid solver that is actively supported
and maintained and more efficient. From the paid solvers, one of the solvers on the
top is certainly the Gurobi optimizer3. Besides of that, authors claim it to be "the
fastest and most powerful mathematical programming solver available for your LP,
QP and MIP (MILP, MIQP, and MIQCP) problems" [40], it also offers both object-
oriented interfaces for Java, .NET, Python, C++ and matrix-oriented interfaces for
C, Matlab and R as well.

1https://www.gnu.org/software/glpk/
2http://lpsolve.sourceforge.net/5.5/
3https://www.gurobi.com/products/gurobi-optimizer/

19

https://www.gnu.org/software/glpk/
http://lpsolve.sourceforge.net/5.5/
https://www.gurobi.com/products/gurobi-optimizer/

Chapter 4

Simulation design

In this chapter, we present the architecture and design of the simulation. We
mainly focus on describing the simulation as a whole rather than describing its
implementation details or the sensor placement algorithm itself, for which Chap-
ter 5 is devoted.

Firstly, we briefly present the AgentFly simulation framework which is used
through the whole simulation and which makes our work easier on the visualiza-
tion side of the application. Next, we show the simulation flowchart that represents
the workflow of the simulation, with a brief description of the process as a whole.
Then we move on to present the configuration in detail, describing mandatory in-
put files required to run the program as well as optional input files and parame-
ters. Finally, we describe how input files are processed, the discretization process,
i.e. how a discrete environment is created for the sensor placement and properties
of the graphical user interface (GUI).

4.1 AgentFly simulation framework

This thesis is built on the AgentFly1 simulation framework which is being devel-
oped at the Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague. The framework is used for various mod-
eling and simulation, such as air traffic management (ATM), integration of UAS
into shared airspace, detect and avoid (DAA), 3D trajectory planning, or tactical
operations in military and security areas.

A part of the AgentFly simulation framework is a visualization engine referred
as visio, which is build on JavaFX2 and uses Java OpenGL (JOGL3) wrapper library
to allow the usage of OpenGL4 in Java, since it is originally written in C.

Visio allows us to easily develop the GUI by providing us with an application
programming interface (API) that already contains the implementation of the ren-
dering process, renderable structures, and their transformations, and provides sup-
port for widely used file formats such as OBJ5 and MTL and user input mapping.
Owing to that, we do not have to bother implementing the renderer which would
cost great effort and we only have to use the structures and methods exposed by
the API appropriately.

1https://www.agentfly.com/
2https://openjfx.io/
3https://jogamp.org/jogl/www/
4https://www.opengl.org/
5https://en.wikipedia.org/wiki/Wavefront_.obj_file

21

https://www.agentfly.com/
https://openjfx.io/
https://jogamp.org/jogl/www/
https://www.opengl.org/
https://en.wikipedia.org/wiki/Wavefront_.obj_file

CHAPTER 4. SIMULATION DESIGN

In the following sections, we will cover recent extensions of visio that are widely
used throughout the program. However, for further and more detailed description
of visio, see [41].

4.1.1 Sensor modelling

One of the features provided by visio that came in very handy through this thesis
is the modeling of optical and acoustic sensors. The development of the sensors
modeling originated in a bachelor’s thesis by Jan Kúdelka (see [42]) and was further
developed and finally integrated into visio.

In the following sections, we will cover the basics of techniques that needed to
be implemented to allow the efficient modeling of sensors.

4.1.1.1 Ray tracing

Firstly, it was needed to implement object detection by which the sensor’s visibility
is modeled. For such, rendering technique called ray tracing6 was selected. The
basic idea of ray tracing is to follow rays of light from light sources as they reflect,
transmit, and hit objects in the scene. Ray tracing algorithm then works by taking
an image (i.e. matrix of pixels) as input, casting a ray through each pixel of the
image, and recording intersections with objects in the scene. Many ray tracing
algorithms also implement advanced optical effects such as reflection or refraction.
In our case, however, we do not need these to be implemented, as the detection of
the first intersection with an object in the scene is sufficient for our purposes.

In visio, an object in the scene can be represented by an array of triangles that
together form a triangle mesh. Many objects, such as the environment model, can
count thousands of triangles in total, needless to say, that more detailed 3D mod-
els, such as those obtained using photogrammetry7, can count hundreds or even
millions of triangles. If we were to check every triangle of every object in the scene
for intersection with ray, we would end up with linear complexity, which would be
very inefficient for large or high-quality scenes. To address this in-efficiency, ray
tracing algorithms usually use various data structures that allow different struc-
turing of the objects, one of them being k-d tree, which seems to be the most used
nowadays [43].

4.1.1.2 K-d tree

K-d tree is a special case of binary-space partitioning (BSP) trees that recursively
partitions the space with planes, with the constraint, that planes must be perpen-
dicular to the axes of the coordinate system. Every inner node of the tree defines
its splitting plane that divides the plane into two half-spaces that are included
in the left and right child of the inner node. Leaf nodes then contain references
to geometric primitives, such as the individual triangles. The building process is
relatively expensive but since the k-d tree is usually built only once (i.e. at the
beginning), it is not a big issue in our case, although various heuristics were in-
vented to address the complexity of the building process, reducing it to theoretical
lower bound of O(N · log(N)) [44]. Once the k-d tree is built, it can be traversed
using various algorithms, usually gaining average time complexity of O(log(N))
and worst-case time complexity of O(N), since it is a binary tree [45]. From O(N)
complexity to O(log(N)) complexity is quite an improvement that allowed us to

6https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
7https://en.wikipedia.org/wiki/Photogrammetry

22

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Photogrammetry

CHAPTER 4. SIMULATION DESIGN

perform ray tracing operations efficiently, which was more than necessary not only
during modeling of sensors but also throughout the whole program.

4.1.1.3 Sensor scanning

With the efficient implementation of ray tracing, we were finally able to model
sensor detection. Currently, there is support for two types of sensors in visio, the
camera sensor, and the acoustic sensor. Detection is obviously modeled differently
for each of them but both use ray tracing in their implementation.

Camera sensor In visio, the camera sensor is defined by several parameters, in-
cluding basic parameters such as resolution, direction (i.e. orientation), field of
view (FOV), and far and near clipping planes. The camera sensor can also be set
with environment trees, which are k-d trees built from triangles of static structures
in the scene such as the environment model.

When computing visibility of camera sensor, visio provides us with a method
called fullscan, parameterized by a lambda expression, in which we can define what
should happen with the result, and optionally by target tree that represents k-d tree
built from triangles of an object in the scene whose visibility we want to determine.
During fullscan, a ray is cast through each pixel of the sensor’s screen and its in-
tersection with either environment trees or the target tree is computed, whichever
it hits first. It is important to note that the intersection is firstly computed for en-
vironment trees if there are any, where the result is cached, as environment trees
are supposed not to change, and then for the target tree. Internally, the fullscan
invokes a similar method called boxscan which does the same in principle but only
casts ray through pixels within the axis-aligned bounding box (AABB) of the tar-
get tree, which improves the efficiency as it omits pixels that are guaranteed not to
result in an intersection.

In practice, we usually perform a fullscan with no target tree first, which com-
putes intersections with the environment trees for all pixels of the camera sensor’s
resolution and caches the result. Then we follow with another fullscan where the
target tree is already specified, which internally performs a box scan and computes
intersections only for relevant pixels. Finally, we store the intersection distances for
each pixel in a matrix and provided with the lambda expression, we can retrieve
additional information about the result, i.e. which particular k-d tree (some of the
environment trees or target tree) or even which particular triangle it intersects for
a particular pixel.

In Figure 4.1 we show the graphical representation of the camera sensor with
Full HD resolution (1920x1080), 30◦ FOV, 120 m range and a drone in its view. In
Figure 4.2 we show the scene from the view of the same camera sensor, where blue
pixels represent the intersection with the environment model (bluer means closer),
red pixels represent the intersection with the drone and green pixels represent no
intersection. The drone is scaled up six times to be better seen.

23

CHAPTER 4. SIMULATION DESIGN

Figure 4.1: Drone detection using the camera sensor

Figure 4.2: The image of the camera sensor

Acoustic sensor In contrast with the camera sensor where direct visibility of a
given object is examined, the acoustic sensor rather tries to determine whether the
sound of certain power level and frequency emitted from a given sound source
will reach the acoustic sensor, considering reflections from the surface and sound
absorption in the atmosphere.

Parameters of the acoustic sensor include air properties such as pressure, tem-
perature, and humidity, and sensitivity, which determines the minimum required
power level of sound for the sound source to be considered as detected by the sen-
sor. Furthermore, environment trees can be set to the acoustic sensor as well. Fi-
nally, the acoustic sensor can be parameterized by trace properties that define the
initial number of generated rays, the number of rays generated upon reflection, and
maximum reflection depth, where rays represent the emitted sound.

Similarly, as in the case of the camera sensor, visio provides us with scan method,
parameterized by lambda expression to define actions upon completion of the com-
putation and by power level, frequency and position of the sound source. Scan
firstly calculates atmospheric absorption of sound (in decibels per 1 m) and checks
whether the sound is even able to reach the acoustic sensor with the desired power
level. Then it randomly casts a given number of initial rays, checking intersec-
tions with environment trees and decreasing the power level as the sound travels

24

CHAPTER 4. SIMULATION DESIGN

through the air. Note that the rays are cast from the position of the sound source
and not from the sensor, as it is in the case of the camera sensor. If the ray hits any
environment tree, a given number of reflection rays is generated and the process
repeats until maximum reflection depth is reached. If the current power level of a
ray is less than the minimum required power level at any given moment during its
path, the process is terminated for the particular ray. If the ray reaches the position
of the sensor (with some tolerance radius in the order of units of meters) with the
desired power level, the sound source is evaluated as detected.

In Figure 4.3 we illustrate the detection of a drone using the acoustic sensor,
where the purple cube represents the acoustic sensor on the corner of a build-
ing and the red-black lines represent the respective rays emitted from the sound
source, which is the drone. The transition of ray color from red to black speak for
the gradual decrease of the power level of the sound. The drone is scaled up six
times to be better seen as well.

Figure 4.3: Drone detection using the acoustic sensor

4.2 Simulation workflow

The proposed design of the program consists of several steps that form the whole
simulation process from the very beginning to its very end.

Firstly, the simulation reads the configuration file provided by the user, where
paths to all necessary input files are specified. It can also contain paths to optional
input files and values for optional parameters with the help of which a suitable
setting of the environment for sensor placement can be achieved.

After that, the simulation loads the input files on given paths from the file sys-
tem. Those input files represent the scene, i.e. the geographical environment model
and the monitored sector, in the surroundings of which the sensor placement and
following experiment will take place. Based on the loaded scene and specifically
the monitored sector, it builds the so-called world data structure (hereinafter re-
ferred to as the world), by selecting an area of interest around the sector and dis-
cretizing it into a three-dimensional grid, to not operate in continuous space.

At this point, the simulation has processed all the input files and prepared a

25

CHAPTER 4. SIMULATION DESIGN

suitable and discrete environment in which the sensor placement can be solved.
The simulation begins to solve the sensor placement in the background and during
that, the GUI is launched. When the calculation of the sensor placement finishes,
the simulation collects the results and deploys the sensors on their specific posi-
tions and orientations that were computed by the sensor placement algorithm and
finally, visualizes them in the GUI.

Although we evaluate the sensor placement using three criteria that we de-
scribed in Subsection 4.3.8, we want to know its performance and overall quality
in practice, so an experimental evaluation follows. The experiment consists of a few
detection scenarios, where a number of drones are used to simulate various types of
both attack or non-attack flights, including spying flights, smuggling flights, flights
with the purpose of an attack, and ordinary flights by ordinary (or inexperienced
or both) persons.

Finally, the results of the experiment are collected, evaluated, and summarized.
Brief feedback is given, providing information to what extent the sensor placement
was sufficient and what were its shortcomings.

Individual steps of the simulation workflow are presented in Figure 4.4.

26

CHAPTER 4. SIMULATION DESIGN

Run experimental
evaluation

Build the world

Evaluate results

Solve sensor
placement

End

Start

Input data

Load
serialized sensor

placement?

No

Yes

Launch GUI

Load serialized
world?

Yes

Load configuration

NoLoad precomputed
coverage?

Yes
Precompute coverage

No

Figure 4.4: The simulation flowchart

27

CHAPTER 4. SIMULATION DESIGN

4.3 Configuration overview

In order to run the simulation, we must provide it with the configuration file in
which paths to input files and values for parameters are stored.

The configuration properties might be of three types:

1. Mandatory input files. Input files, i.e. paths to them, without which the sim-
ulation can’t be started. These input files include the scene that will be ren-
dered and the monitored sector where the sensor placement will take place.

2. Optional input files. Input files, i.e. paths to them, for which, if not pro-
vided, the simulation can automatically generate values or can run without
any. These input files include priority areas, sensor spots, and serialized data,
containing preprocessed data such as precomputed coverage for a particular
set of sensor spots or already solved sensor placements.

3. Input parameters. Parameters can be used to configure the process of the
world construction to the desired level and to influence the output of the
sensor placement. None of the parameters is mandatory, meaning that there
are default values hard-coded for each parameter. Parameterized can be for
instance the size and weight of cells into which the monitored space is dis-
cretized or the maximum cost of the sensor placement.

We will now introduce a few of the main configuration properties in separate
sections, describing them in more detail.

4.3.1 Geographical environment model

The main input file the simulation requires is a 3D object file in OBJ format that
contains the three-dimensional object representing the geographical environment
model that is to be used in the simulation, i.e. the surface terrain, buildings, and
other real-world objects.

Once the simulation loads and parses the environment model, it is represented
as triangle mesh8 with individual triangles stored in an array so that it can be easily
worked with.

In Figure 4.5 we show the wire-frame9 model of the Šibenik Cathedral10 .

8https://en.wikipedia.org/wiki/Triangle_mesh
9https://en.wikipedia.org/wiki/Wire-frame_model

10https://en.wikipedia.org/wiki/%C5%A0ibenik_Cathedral

28

https://en.wikipedia.org/wiki/Triangle_mesh
https://en.wikipedia.org/wiki/Wire-frame_model
https://en.wikipedia.org/wiki/%C5%A0ibenik_Cathedral

CHAPTER 4. SIMULATION DESIGN

Figure 4.5: The wire-frame model of the Šibenik Cathedral

In order to make the environment model look more realistic, it can be sup-
ported by a complementary material file in .MTL format that can contain surface
shading material for the environment model.

The effect of the material file is presented in Figure 4.6, showing the DJI Matrice
600 Pro11 in wire-frame representation and Figure 4.7, showing the same drone
with materials applied.

Figure 4.6: DJI Matrice 600 Pro in wire-
frame representation

Figure 4.7: DJI Matrice 600 Pro with ma-
terials

In case that we don’t have the material file and we don’t want to bother gener-
ating it, we can assign materials to the environment model directly in the program.
In such a case, the only difficulty occurs when we want to assign different materi-
als to different parts of the environment model, i.e. terrain and buildings. In such
a case, we have to separate the parts from each other and load them as separate
environment models.

In Figure 4.8 we show a part of the environment model of Prague with different
materials assigned to terrain and buildings.

11https://www.dji.com/cz/matrice600-pro

29

https://www.dji.com/cz/matrice600-pro

CHAPTER 4. SIMULATION DESIGN

Figure 4.8: The model of Prague with different materials assigned to terrain and
buildings

4.3.2 Sector

Another input file that must be provided to the simulation is the sector that is
the actual subject of the sensor placement, i.e. the sector that we want to have
monitored by the sensors. We can also understand it as a private or restricted area
that must not be occupied by any intruder drones and thus must be monitored.

The sector is represented by a polygon defined by a set of positions that are
loaded from a text file, where each position represents a single vertex of the poly-
gon.

The simulation also offers a possibility to easily generate custom sectors within
the simulation. By clicking the mouse left button, we can generate positions that
can be later saved into a text file using a specific key bind.

We show the boundary of the sector of the Václav Havel Airport Prague in Fig-
ure 4.9, visualized as purple lines that connect consecutive positions of the sector.

Figure 4.9: The sector of the Václav Havel Airport Prague

30

CHAPTER 4. SIMULATION DESIGN

4.3.3 Priority areas

In terms of optional input files, the first one to mention is the priority areas file.
Priority areas represent polygon shape areas with higher importance requiring a
higher degree of monitoring, which is taken into account in the sensor placement
later. Priority areas are loaded from a text file similarly as in the case of the sector,
with the only difference that a single priority areas file can contain multiple priority
areas, in such case they are separated by priority_area string separator.

Similarly, as in the case of the sector, simulation offers generation of priority
areas by clicking the mouse left button and saving them into files using specific
key binds.

We show the visualization of priority areas in Figure 4.10.

Figure 4.10: Two priority areas near the sector of the Pankrác Prison

4.3.4 Sensor spots

Another optional input file, that can be provided to the simulation, is the sensor
spots file. Its format is the same as the format of sector file, thus a text file with a
set of positions separated by a newline.

Sensor spots are discrete positions where it is possible to place a sensor, no
matter what type of sensor it is. By default, when no sensor spots file is provided,
sensor spot positions are sampled from the set of positions defining the sector (i.e.
its perimeter). To be able to control the number and density of sensor spots that
will be generated, sampling considers a constraint parameter maximal spacing that
states the maximum allowed distance between each pair of consecutive positions.

When the sensor spots file is provided, which is the preferred option, the sam-
pling is not done at all and the positions provided in the file are used instead,
enabling us to set fixed positions as sensor spots that must not be located on the
sector’s perimeter.

Similarly, as in the case of sector and priority areas, simulation offers generation
of sensor spots by mouse clicking and saving them using a specific key bind, too.

4.3.5 Serialized data

As we mentioned earlier in this section, simulation also offers the possibility to
save the current state of its parts and load it in the future. This option was im-

31

CHAPTER 4. SIMULATION DESIGN

plemented for the sake of simplicity and time saving during the development and
sensor placement tuning, where expensive or long-lasting processes would be re-
peated over and over again, although they would be identical every time, such
as the world building process or precomputation phase of the sensor placement,
which we describe in more detail in Subsection 5.3.2.

Unlike in the case of sector, priority areas, or sensor handlers mentioned in the
previous sections, it can’t be invoked by the user and is done automatically by the
program instead. The serialization is invoked at the following points of execution:

1. When the world is created. After the world is built, the simulation automati-
cally serializes it into a file. When the world is large or the world cells are very
small (e.g. 10 m x 10 m x 10 m), it might count a large number of world cells
(speaking about hundreds of thousands), in which case its building process
might take some time. Hence, it might come to use not to construct the world
from scratch in each run of the simulation but to load it from the serialized
file instead.

2. When the precomputation phase finishes. The first phase of the sensor
placement is the precomputation phase, where coverage is computed for each
possible combination of sensor type, sensor spot, and sensor configuration
(such as the camera pose (i.e. orientation) in case of the camera sensor). As
the number of such combinations can count thousands, computing the cover-
ages several thousand times with respect to a possibly large number of world
cells often also takes a long time. With the precomputed coverage serialized,
we can avoid repeating the computation and rather move on to the sensor
placement instead.

3. When sensor placement finishes. The next point of execution when seri-
alization is invoked is as soon as the sensor placement finishes. The sensor
placement output with all necessary data, mainly the deployed sensors, is
serialized, allowing us to repeatedly use the same sensor placement for the
experiment that follows, without the need to compute it from scratch each
time.

4. When the experiment flights are generated. The last point of execution
when serialization is invoked is when the experiment flights are generated.
In this case, it is not about the process of generating the experiment flights
being expensive but rather about having the ability to use the same set of
flights repeatedly in different executions of the experiment.

4.3.6 World configuration

Since the simulation happens to operate is continuous space consisting of an in-
finite number of arbitrary points, we need to discretize the space firstly. The dis-
cretization is done by splitting the space into a number of three-dimensional axis-
aligned cells, referred to as world cells, which together form a three-dimensional
grid.

In order not to discretize the whole space out of which only a fraction is used
in the sensor placement, we define an area of interest around the monitored sector
that we call the world, as we already mentioned earlier. The world is shaped like a
three-dimensional waist around the sector’s perimeter and its dimension is given
by two parameters - horizontal monitor distance states the width of the waist and
vertical monitor distance states its height, both in meters.

32

CHAPTER 4. SIMULATION DESIGN

We show the visual representation of the world in Figure 4.11, with horizon-
tal monitor distance being 100 m, vertical monitor distance being 50 m and the
dimension of world cells being 25 m x 25 m.

Figure 4.11: Discretized world around the Pankrác Prison

4.3.7 World cell configuration

Other important parameters that can heavily influence the final shape of the world,
as well as the sensor placement, relate to world cells, i.e. the discrete cells the world
was discretized into. The dimension of a single world cell is given by two param-
eters - cell height representing the height of the cell and cell width representing its
width, both in meters. If its height and width are equal, then the cell is represented
as a cube. Otherwise, it is a square prism (cuboid with a square base but a different
height).

With the ability to change the dimensions of the world or world cells, we can
control the final number of world cells that are generated by discretization. That
allows us to find a suitable environment for the sensor placement, offering a good
compromise between complexity (the more world cells we have, the longer the
computation takes) and accuracy (with world cells of smaller size, computations
might be more accurate in terms of coverage).

Furthermore, we recognize two categories of world cells - priority cells or nor-
mal cells. By default, all world cells are considered normal cells, unless they lie
within any of the priority areas. In such a case, they are determined to be priority
cells.

In relation to world cell categories, each world cell has its weight based on
which category it falls in, which can be later used to influence the sensor place-
ment output and possibly achieve better results.

4.3.8 Sensor placement configuration

Apart from the world configuration, the sensor placement itself can be parameter-
ized as well.

First of all, the sensor placement algorithm is actually indirectly parameter-
ized by the dimension of the world and world cells, as they strongly influence the
computational time and the overall precision of the resultant sensor placement.

33

CHAPTER 4. SIMULATION DESIGN

Another world parameter that plays an important role in the sensor placement
is the weights of individual world cells which the sensor placement algorithm uses
to recognize the priority cells from normal ones and also to distinguish between
covered and non-covered cells.

Last but not least, sensor spots can be considered to be sensor placement param-
eters as well, as they specify the maximum number of sensors that can be deployed.

Speaking about direct parameters, worth mentioning is definitely the param-
eter budget which states the maximum allowed combined price of the sensors de-
ployed within the sensor placement. The budget is most often the first encountered
ending criteria during the optimization of the sensor placement.

The next important parameter is the time limit which specifies the maximum
time until the computation terminates. Time limit is not mandatory and can be
completely left out, in such a case the sensor placement doesn’t terminate until
fully computed. That can, however, take a really long time and can be rather un-
worthy, as improvements between iterations in the final phases of computation are
often small.

Finally, the last parameter is the coverage redundancy which states the optimal
coverage level, i.e. optimal number of sensors that cover each world cell. To ac-
count for the current coverage level of individual cells, their weights decrease with
each additional sensor coverage by a factor of two. With this approach, the sensor
placement is able to determine whether a cell is already covered by one or more
sensors and eventually prefer other cells, i.e. those which are not yet covered at all.

4.4 Setting up the environment

In this section, we describe the necessary steps that must precede the sensor place-
ment in order to set up a suitable environment for it.

4.4.1 Input files processing

After the program reads the configuration, input files must be loaded, processed,
and stored in appropriate structures so that they can be easily operated with.

Firstly, the program loads the environment model file and processes it using
OBJLoader that is provided by the AgentFly simulation framework and is specifi-
cally designed for purposes of loading and parsing files in .OBJ format. The pro-
duced result is an array of triangles that is essential for the functionality of the
program as it is used to build a k-d tree structure that allows us to perform ray
tracing operations later.

After the environment model is processed, the program proceeds to load the
sector from the provided text file. The file is simply read line by line and values
are added to the resulting set, using which the sector is initialized. Right after
that, the program moves on to load the priority areas and sensor spots from their
respective text file the same way as the sector, if paths to them are provided in the
configuration.

When processing text files, such as those with sector, priority areas, or sensor
spots, the expected format of positions is one of the following:

1. Spheric coordinates. Coordinates in spherical coordinate system12, contain-
ing values for latitude and longitude in degrees and optionally altitude in
meters.

12https://en.wikipedia.org/wiki/Spherical_coordinate_system

34

https://en.wikipedia.org/wiki/Spherical_coordinate_system

CHAPTER 4. SIMULATION DESIGN

2. Model coordinates. Coordinates directly in the model space used in the pro-
gram, i.e. triples of values along the x, y, and z axes.

The former option is implemented to enable the possibility to generate posi-
tions by an external service (such as Google maps for example) that would most
likely provide them as spheric coordinates, and load them within the program
without the need to manually convert them to the model space. In this case, the
program automatically converts the positions to model space. Moreover, if the
value of altitude is equal to zero or missing, the program automatically computes
exact altitude with respect to the loaded environment model.

The latter option is implemented for a similar reason, namely to allow loading
of positions that were generated within the program without the need to transform
them to spheric coordinates beforehand.

4.4.1.1 Coordinate systems

As mentioned in the previous section, implementation uses two different formats of
coordinates: spheric coordinates and model coordinates. In order to allow transitions
between these two formats, the implementation provides methods that contain ap-
propriate conversions.

In order to convert a position from spheric coordinates to model space, we must
first convert it to Cartesian coordinate system13, which can be achieved by applying
the formula

(x,y,z) = (r · cos(θ) · cos(ϕ), r · cos(θ) · sin(ϕ), r · sin(θ)), (4.1)

where r is the mean Earth radius (6371009 m) + altitude in meters, θ is latitude in
radians, ϕ is longitude in radians and (x,y,z) is the resulting position in Cartesian
coordinate system. Then, we obtain the resulting position in the model space by
converting the position in Cartesian coordinate system to model space using spe-
cific transformation matrix that is dependent on current environment model. In
order to compute exact altitude with respect to current environment model, we
can use ray tracing, where a ray perpendicular to the surface is cast and its inter-
section with environment surface is recorded.

When converting in the opposite direction, that is from model space to spheric
coordinates, the order of conversions is reversed. Again, the position is firstly con-
verted to Cartesian coordinate system the same way as before, just with the trans-
formation matrix inversed. To convert it further to spheric coordinates, we apply
the formula

(lat, long) = (
Π

2
− arccos(

z
r

), atan2(y,x)), (4.2)

where x, y, z are values along respective axes of the position in the Cartesian coor-
dinate system, r is the length of (x,y,z) vector - mean Earth radius and (lat, long)
are resulting values of latitude and longitude in radians.

4.4.2 Space discretization

After we processed the input files, we are finally able to construct the world, based
on its parameter values specified in the configuration file.

The world construction process can be divided into three gradual steps:

13https://en.wikipedia.org/wiki/Cartesian_coordinate_system

35

https://en.wikipedia.org/wiki/Cartesian_coordinate_system

CHAPTER 4. SIMULATION DESIGN

1. Select relevant area. The available part of the whole space is only the part
where the loaded environment is defined. However, we are only interested
in its part, namely the part where the sector is located, plus some additional
space around the sector to cover the waist around the sector. The computa-
tion of bounds of the relevant area is simple: we construct an AABB, whose
bounds are given by the top-most, right-most, bottom-most and left-most po-
sitions of the sector and the value of horizontal monitor distance that is speci-
fied in the configuration file. Resulting AABB defines the maximum area that
is relevant for the sensor placement.

2. Discretize the area. Since operating in continuous space would be complex
and unnecessarily expensive, we discretize the continuous space of the rele-
vant area into a number of axis-aligned world cells. Discretization starts in
the top-left corner of the relevant area and continues firstly by columns and
then by rows, similarly as when iterating a matrix. For each cell, its closest
distance to the sector is computed, based on which it is determined whether
it falls within the waist around the sector or not, in such case it is discarded.
When the process finishes, we have not only discretized the whole relevant
area (and thus got rid of continuous space) but we have also reduced it to
even smaller area, having much fewer world cells in total, which improves
efficiency during the sensor placement later.

3. Build graph. Since the world cells themselves do not contain any relational
information about each other (such as neighboring cells), we build a graph
on top of the world in which the relational information about world cells can
be stored. The graph is built in a way such that each world cell is also a node
of the graph and the neighboring world cells are its neighbors. Having the
world cells connected like this allows us for easier execution of search oper-
ations that we often need to perform, including for example the selection of
subareas within a radius from origin or solutions of shortest paths problems
if it ever was necessary.

After the above-mentioned steps are completed, the world is fully initialized
and its state is automatically serialized in a file, allowing us to load the same world
in the future, without the need to repeat the process from scratch.

4.4.3 Graphical User Interface

As we have fully processed all input files, we are ready to run the GUI and fill it
with a graphical representation of the environment model, priority areas, and the
world (represented by individual world cells).

GUI is based on visio, a part of the AgentFly simulation framework, which han-
dles all necessary initialization and rendering of graphics. The only task is to trans-
form the objects that we want to display in the GUI to renderable structures pro-
vided by the framework and give it a signal to invoke the rendering tasks. GUI is
also separated from the program’s logic and the communication between these two
sides is implemented using the observer pattern14. As it is not the main subject of
this thesis, we will not further describe the implementation details related to GUI.

GUI offers user-interaction using the keyboard or mouse buttons, such as con-
trolling the position of camera using arrow keys, controlling its direction by drag-
ging the mouse, and zooming in and out using the mouse wheel. Furthermore,

14https://www.tutorialspoint.com/design_pattern/observer_pattern.htm

36

https://www.tutorialspoint.com/design_pattern/observer_pattern.htm

CHAPTER 4. SIMULATION DESIGN

it allows the user to display or hide particular graphical objects, such as priority
areas, sector’s perimeter, sensors deployed in the sensor placement, or drones that
are used in the experiments.

Figure showing GUI is omitted in this section because it is already shown in
Figure 4.8, Figure 4.10 and Figure 4.11.

37

Chapter 5

Implementation

In the previous chapter, we presented the application as a whole, focusing on de-
scribing the configuration properties and possible inputs, individual components,
important data structures, and graphic design.

This chapter is devoted to the description of implementation details of various
parts of the application, where we consider it appropriate to elaborate in more de-
tail. Firstly, we briefly describe the supportive features that helped us to optimize
the performance during the computation of the sensor placement. Then, we intro-
duce our approach to the precise calculation of coverage of the individual sensors
in detail. Finally, we present our approach to the proposed sensor placement algo-
rithm. We start with a description of the input parameters and the precomputation
phase, in which we utilize some of the supportive features. Lastly, we present our
solution to the sensor placement problem using mixed-integer linear programming
(MILP). We formalize the MILP model and describe each variable, constraint, and
parameter with a detailed explanation of their purpose.

5.1 World graph

As we already mentioned in Subsection 4.4.2, we build a graph on top of the world
data structure (hereinafter referred to as the world) in order to store relational infor-
mation between world cells (further only as ’cells’). If the relational information
was not present, we would have to traverse all world cells every time we would like
to find neighboring world cells for a given cell. When we structure the world as
a graph, we allow for efficient traversal using standard graph traversal algorithms
such as depth-first search1 or breadth-first search2.

Using the graph, we implemented two important methods which we refer to
as surface scanning and expansion, that we further utilized during the development
of the sensor placement algorithm. The purpose of the surface scanning method is
to determine particular sensor spots where it could potentially be appropriate to
place an acoustic sensor because placing acoustic sensors in an open space would
not be effective due to their higher price. In terms of the expansion method, it
is used solely for optimization purposes during the precomputation phase of the
sensor placement algorithm.

1https://en.wikipedia.org/wiki/Depth-first_search
2https://en.wikipedia.org/wiki/Breadth-first_search

39

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

CHAPTER 5. IMPLEMENTATION

5.1.1 Expansion

Taking advantage of having the world structured as a graph, using the expansion
method we can efficiently collect world cells around a given origin position, that
satisfy given constraint. The procedure is simple: starting in the origin position,
we perform a breadth-first search and expand the graph nodes as long as the given
constraint is satisfied.

Throughout the program, we mainly use a specific type of expansion which we
call the circlic expansion. During a circlic expansion, we consider a simple constraint
which is the radius from the origin position. Thus, circlic expansion collects all
world cells whose centers are within a given radius from the origin position. Using
this method, we gained significant performance improvements during the precom-
putation phase of the sensor placement, which we will discuss later in Section 5.2.

5.1.2 Surface scanning

Surface scanning is a primitive method that allows us to roughly determine the
evenness of an area on the environment model. Luckily, in our case, we are only
interested in knowing whether there are tall objects, such as buildings, for example,
located in the area that we are scanning. For that reason, this method is sufficient,
although it is certainly not the most accurate and precise method.

When we scan the surface of a world cell, we scan the part of the surface that
would be occupied by the vertical projection of the lower base of the cell onto the
surface, i.e. ignoring the altitude in which the world cell is located. The surface
scan is always performed in the area of a particular world cell. First, we generate a
matrix of evenly distributed points within the area that we want to scan. The size
of the matrix depends on the size of the area, as the points are generated with a
constraint that states the minimum distance in meters between each pair of neigh-
boring points.

Then, using ray tracing, we scan the surface in each of the generated points
by casting a ray perpendicular to the surface, which gives us a matrix of elevation
values for each of the generated points. Using this matrix, we can roughly analyze
the surface of the scanned area in two different ways.

The first way requires, in addition to the environment model, an additional
terrain model, i.e. a mere terrain model without any buildings or other objects.
In such a case, we can perform the same surface scan (i.e. at the same points) on
both the environment model and terrain model, gaining two matrices of elevation
values. By pair-comparison of elevation values on the same indexes of each matrix,
we can identify particular points in which the elevations differ by at least X m,
where X is a predefined threshold (currently hard-coded to 5 m). Then, if the
number of differing points is at least Y percent of the total number of generated
points, where Y is a predefined threshold, the particular world cell is determined
to have an uneven surface.

When the terrain model is not available for some reason, the other way can be
used. In that case, we compare neighboring points of the matrix of elevation values,
recording the number of points in which the elevation differs by at leastX m, where
X is a predefined threshold. Then, as in the first method, if the number makes at
least Y percent of all generated points, the particular world cell is determined to
have an uneven surface.

In Figure 5.1 we show the sector of the Václav Havel Airport Prague with the
horizontal monitor distance of 600 m where the world cells with the uneven surface
are displayed as green points.

40

CHAPTER 5. IMPLEMENTATION

Figure 5.1: The sector of the Václav Havel Airport Prague showing the world cells
with uneven surface as green points

The information we obtained by this method, i.e. which of the cells have an un-
even surface, we further utilize in the determination which sensor spots are appro-
priate candidates for acoustic sensors. The idea is as follows: from each cell with
an uneven surface, perform the expansion, collect all cells within the radius of 200
m and identify all sensor spots that are located in the collected cells as appropriate
candidates for acoustic sensors. We chose a radius of 200 m because it was shown to
be roughly the maximum distance at which is an acoustic sensor with reasonable
configuration able to detect a drone, as discussed in Subsection 5.2.3. The cells
that are collected during the expansion from one of the sensor spots are excluded
from following expansions from the remaining sensor spots, i.e. are skipped as it
is unnecessary and ineffective to expand them more than once.

In Figure 5.2 we show the sector of the Václav Havel Airport Prague and the
world cells that contain the specific sensor spots that were identified as appropri-
ate candidates for acoustic sensors, displayed as green points. As can be seen, only
sensor spots near the areas with uneven surface were selected as suitable candi-
dates for acoustic sensors.

41

CHAPTER 5. IMPLEMENTATION

Figure 5.2: The sector of the Václav Havel Airport Prague showing the world cells
in which sensor spots suitable for acoustic sensors are located as green points.

5.2 Sensor coverage

Back in subsubsection 4.1.1.3, we described how sensors are modeled in visio and
explained how the scanning methods work, namely the fullscan method for camera
sensor and scan method for acoustic sensor. Now, we will introduce the imple-
mentation of the sensor’s coverage, how it is computed, and how it deals with a
real-world environment. We will start off with the camera sensor (further only
as ’camera’) where the calculation of coverage is more complex, followed by the
acoustic sensor where it is relatively simple.

5.2.1 Camera

To get as close to reality as possible, we had to account for occlusions, i.e. real-world
obstacles standing in the camera’s view and limiting its visibility, which made it a
little bit more challenging task.

We came up with a relatively computationally demanding but very precise so-
lution. A brief outline of the idea is, since the fullscan method can be used to
compute intersection distance with the environment model for each pixel of cam-
era’s resolution (i.e. to compute so-called depth profile), to decompose the surface of
each world cell into a set of 2D triangles, project the respective triangles to camera’s
screen space (often referred to as ’window space’ too) obtaining pixel coordinates
of their vertices, rasterize them and then compare the intersection distances of the
depth profile and rasterized triangles at the pixel level.

We will now describe individual steps in more detail in the subsequent sections.

5.2.1.1 Reducing the space

As the projection and rasterization are relatively costly operations in the context
of a large number of iterations, we try to reduce the number of cells on which the
operations are performed to a minimum beforehand. First of all, we collect relevant
cells that could possibly be covered by the camera by performing a circlic expansion
from the camera’s position and with the radius of the camera’s range. The range
of the camera is determined based on the detection thresholds that we describe

42

CHAPTER 5. IMPLEMENTATION

in Subsection 5.2.3. This operation reduces the number of cells to a fraction very
efficiently, which resulted in huge performance gains as otherwise there was no
way to identify which cells are relevant and we had to work with the whole world.

By computing the camera’s viewing frustum3, we further filtered out cells whose
centers do not lie within the area defined by the camera’s viewing frustum. Given
the camera’s viewing frustum f defined by a set of planes {pi | i ∈ 1 . . .6} and their
normals, and a center point of a cell c, we determine whether the point c lies within
frustum f using the following formula:

liesW ithin = I

 6∑
i=1

I {pi .normal× c+ pi .d ≤ 0} = 6

 (5.1)

where pi .normal is the normal of i-th plane and pi .d is the offset of i-th plane.

In the end, we check whether any cells remained at all, and in that case, we
compute the depth profile of the environment using the fullscan method.

5.2.1.2 Projecting cells to screen space

Now when we have reduced the number of cells to as little as possible, we can
move on to projecting those cells to the camera’s screen space. Since we will need
to rasterize those cells in the next step, we apply the projection rather on their
individual triangles to be able to use triangle rasterization algorithms.

In computer graphics, when projecting a 3D object on a flat 2D surface such as
the monitor, the object’s coordinates need to go through a series of transformations
which is known as model view projection. In model view projection, the object’s
coordinates are firstly transformed using the model matrix that defines the trans-
formation from its local coordinates, i.e. a coordinate system with origin in object’s
position, to world space, which is a coordinate system relative to a global origin, i.e.
is the same for all objects in the scene. Then, transformation using view matrix is
applied, transforming the coordinates from world space to view space (also known
as eye space or camera space), which can be understood as the space as seen from the
camera’s point of view. Next, the coordinates are transformed using the projection
matrix, after which they are in clip space. Since we want to gain perspective, i.e.
we want the more distant objects to appear smaller than close objects, we have to
apply perspective division, i.e. divide the x, y and z components of the coordinates
by their homogeneous w component, after which the coordinates result in normal-
ized device coordinates (NDC). In NDC, all coordinates visible by the camera must
fall between range −1 and 1 for every axis. The last transformation in the chain is
the viewport transformation, which finally transforms the NDC coordinates to screen
space (also known as window space) [46, 47]. By applying this chain of transforma-
tions to cell’s triangles, we obtain exact pixel coordinates of their vertices that we
use during rasterization in the next step.

Figure 5.3 shows how the chain of transformations is executed in the OpenGL
library.

3https://en.wikipedia.org/wiki/Viewing_frustum

43

https://en.wikipedia.org/wiki/Viewing_frustum

CHAPTER 5. IMPLEMENTATION

Figure 5.3: Chain of transformations in OpenGL4

5.2.1.3 Rasterizing cells

In the previous step, we obtained pixel coordinates and depth for each triangle
vertex of each cell. Now we want to compute coordinates and depth of all pixels
that are within the triangles, which is referred to as triangle rasterization. For such,
we have used the Bresenham’s algorithm [48].

The general idea of the algorithm is to firstly rasterize the line segments be-
tween pairs of triangle vertices using the Bresenham’s line algorithm5and then
rasterize the rows between pixels on different line segments but with the same
y coordinate. For better understanding, we illustrate the idea in Figure 5.4.

Figure 5.4: The idea of the Bresenham’s algorithm6

To make this approach work, we firstly have to split the triangle in two, a flat-
bottom triangle t1 and a flat-top triangle t2, which we achieve by sorting the ver-
tices v1, v2, v3 so that v1 is the top-most vertex and and v3 is the bottom-most vertex
(i.e. descending according to their y coordinate) and computing additional vertex

4image taken from https://learnopengl.com/Getting-started/Coordinate-Systems
5https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
6image taken from http://www.sunshine2k.de/coding/java/TriangleRasterization/

TriangleRasterization.html

44

https://learnopengl.com/Getting-started/Coordinate-Systems
https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html

CHAPTER 5. IMPLEMENTATION

v4 as

v4 = (v1.x+
v2.y − v1.y

v3.y − v1.y
· (v3.x − v1.x), v2.y)

After that, the flat-bottom triangle is defined as 4v1v2v4 and the flat-top triangle t2
is defined as 4v2v4v3, as is shown in Figure 5.5.

Figure 5.5: Division of the triangle to flat-bottom and flat-top triangle7

Thereafter, in the flat-bottom triangle t1 for example, we rasterize the line seg-
ments v1v2 and v1v4 using the Bresenham’s line algorithm, and for each pixel on
v1v2, we find the corresponding pixel on v1v4 with the same y coordinate and ras-
terize the row between them. In case there are multiple pixels with the same y
coordinate on either of the line segments, which can happen if the slope is too
shallow, we only rasterize the row between the ’inner-most’ pixels (i.e. the right-
most pixel of the line segment to the left and the left-most pixel of the line segment
to the right), otherwise, we would rasterize some pixels twice.

We must also not forget the depth, which we interpolate both during the raster-
ization of the line segments v1v2 and v1v4, and the following rasterization of rows
between pixels with same y coordinate.

We repeat the same process for the flat-top triangle t2 and only exclude the line
segment v2v4 from the resulting set of pixels since it is common for both triangles
and was rasterized twice.

In the end, we have rasterized the whole triangle and computed depth for each
pixel, which we do for every triangle of each particular cell.

5.2.1.4 Evaluating the coverage

Through the rasterization of the cells, we obtained a set of pixel coordinates and
their depths for each triangle of each cell, which we will use to evaluate their cov-
erage, i.e. compute the percentage of pixels that are visible by a particular camera.

For each cell, we will record hits and misses for each rasterized pixel, where a
hit means the pixel is visible by the camera and a miss means the pixel is not visible.
Firstly, we ’clip’ the set of pixels to the camera’s resolution, i.e. we exclude those
pixels whose coordinates are either negative, go beyond the camera’s resolution or
their depth is negative. Those pixels are either behind the camera or simply out of
its field of view and thus are obviously counted as misses.

7image taken from http://www.sunshine2k.de/coding/java/TriangleRasterization/
TriangleRasterization.html

45

http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html

CHAPTER 5. IMPLEMENTATION

Now, when we ensured that each of the remaining pixels is within the camera’s
resolution as well as in front of the camera, we compare each pixel’s depth to the
value of the corresponding pixel in the depth profile that we computed earlier. If
the pixel’s depth in the depth profile is less than the depth of the rasterized pixel,
it means that there must be some obstacle standing in the way. We could prove it
by casting a ray through that pixel and observing that it would hit the environment
model first. In such a case, we count the pixel as a miss. In the other case, the ray
ends up hitting the cell first and thus is counted as a hit.

At the end of the process, we have two numbers recorded, the number of misses
and the number of hits. From those numbers, we simply calculate the percentage of
hits, which, if it is greater than some predefined threshold, we evaluate the specific
cell as covered. The threshold value is set to 50% within the program so the cell
must be at least half-visible in order to be considered covered.

5.2.2 Acoustic sensor

In the case of the acoustic sensor, the process of coverage calculation is much more
simple. In contrast with the camera sensor, we do not have to account for obstacles
because it is already done by the acoustic sensor itself, using the reflections from
the surface that we described in Section 4.1.1.3. Notwithstanding that the approach
with cell projection and rasterization would not work very well either. Since the
rays are cast from the sound source and not from the position of the sensor as it
is in case of the camera, we would need to run the scan for each rasterized pixel,
which would be very inefficient and time-consuming. For that reason, we perform
the scan only from the center of each cell and each of its corners. As we aim to keep
the cells as small as possible so that the discretized environment copies the reality
as accurately as possible, it is also sufficient for us.

As the computations during the detection by the acoustic sensor are more ex-
pensive than those during the detection by the camera, we first reduce the number
of cells to a minimum too, using the circlic expansion from the sensor’s position
and with the radius of sensor’s range. As no orientation or FOV is defined for the
acoustic sensor, we are unfortunately not able to reduce the space anymore.

Then, for each cell that was collected by the expansion, we perform a scan from
the cell’s center and each of its corners, with the initial power level of 73 dB and
frequency of 8 kHz, which we use as default values for the detection as we can not
determine in advance the exact power level and frequency of the drone we are sup-
posed to detect. We selected these values based on the article by Haye Kesteloo [49],
in which he compares the noise levels of various propellers commonly installed on
popular DJI drones. Then, if at least half of the scans (that is 5 out of 9 scans) were
successful, i.e. the rays emitted from the sound source reached the sensor with
enough power level, we evaluate the particular cell as covered.

5.2.3 Detection thresholds

Before we start computing the coverage of a sensor, we need to reduce the num-
ber of cells to a minimum, as the determination of whether a cell is covered by
the sensor is a computationally demanding process, for both cameras and acoustic
sensors. For such, we use the circlic expansion that collects all cells within the range
of the sensor, i.e. all cells that can possibly be covered by the sensor, regardless of
the sensor configuration.

If the range of the sensor was overestimated, we would need to compute the
coverage even for the cells farthest cells for which it is not needed actually, as a

46

CHAPTER 5. IMPLEMENTATION

drone could not be detected at that distance anyway. For that reason, the real range
of the sensor needs to be thoroughly estimated, i.e. the range at which is the sensor
still able to detect the drone, and in the case of the camera, to recognize it as well.

Camera sensor. To determine the range of the camera, we consider a scenario in
which a drone is put in the camera’s view. By casting a ray through each pixel of
the camera’s resolution using the fullscan method, we obtain the depth profile of the
camera’s view, in which we are able to tell at which pixels the drone was detected
and what was the number of such pixels. Then we process the depth profile into an
image, in which we color separate the pixels that hit the environment and the pixels
that hit the drone. Based on the image, we can determine whether it is recognizable
by a human eye that the detected object on the image is a drone. By positioning the
drone at different distances and examining the images, we estimate the real range
of the camera for various resolutions.

We illustrate the scenario in the following figures. In Figure 5.6, we show a
camera with full HD resolution (1920 x 1080 pixels) and 30◦ FOV. The blue trans-
parent cone visualizes the view of the camera, in the middle of which is a drone
that is 90 m away from the camera.

In Figure 5.7, we show the detection of a very small drone, whose size is ap-
proximately 44 cm x 40 cm x 11 cm, in the distance of 90 m from the camera. The
drone was detected with 35 rays and as can be seen on the image, it is still relatively
recognizable that it is a drone.

Obviously, the larger the drone, the easier it is to detect it. To account for var-
ious drone sizes, we further show the detection of a medium-sized drone, whose
size is approximately 69 cm x 69 cm x 40 cm, in Figure 5.8. The drone is 140 m
away from the same camera as in the previous case.

As for the large drones, we show the detection of a very large drone, the DJI
Matrice 600 Pro, whose size is approximately 166 cm x 151 cm x 76 cm, in Fig-
ure 5.9. In this case, despite the drone being 400 m away from the camera, it is still
recognizable as it is detected by 34 rays. The resolution and FOV of the camera is
the same as in the previous cases.

Figure 5.6: A drone in the view of a camera

47

CHAPTER 5. IMPLEMENTATION

Figure 5.7: Detection of a small-sized drone 85 m away from the camera with full
HD resolution and 30◦ FOV. The number of detected pixels is 35.

Figure 5.8: Detection of a medium-sized drone 140 m away from the camera with
full HD resolution and 30◦ FOV. The number of detected pixels is 34.

48

CHAPTER 5. IMPLEMENTATION

Figure 5.9: Detection of a large drone 400 m away from the camera with full HD
resolution and 30◦ FOV. The number of detected pixels is 34.

Based on the detections presented in the previous figures, and the other detec-
tions presented in Appendix B, we determined that for the drone to be recognizable
by the camera, it must be detected with approximately 30 to 40 rays, which results
in the maximum detection range of around 85 m for small-sized drones, approxi-
mately 140 to 150 m for medium-size drones and around 250-400 m for drones of
large size.

In reality, it is obvious that we can not know in advance which types or rather
which sizes of drones will try to violate the safety zone around the monitored sec-
tor. In order not to overestimate the coverage of the sensors and also because we
expect the majority of drones would not be exactly professional drones of large
sizes such as the DJI Matrice 600 pro, but rather drones of small or medium size,
we will use the range of 130 m for the calculation of coverage of the camera sensor,
assuming that the resolution is full HD.

Acoustic sensor. In the case of the acoustic sensor, the detection range is rather
based on the power level and frequency of the drone than on its size. Again, as we
can not predict the power level and frequency of the intruder drones in advance,
we need to consider default values, which are 73 dB for the power level and 8 kHz
for the frequency, as already mentioned in Subsection 5.2.2.

To estimate the detection range of an acoustic sensor, we simply put a sensor
on a position, calculate its coverage based on its configuration and determine its
detection distance as the distance to the farthest detected cell. In Section 4.1.1.3
we described the parameters of the acoustic sensor, such as the air properties, sen-
sitivity, and trace properties. As for the air properties, we use the value of 101325
Pa (often considered the standard pressure8) for the air pressure, 22 ◦C for the air
temperature, and 20 % for the air humidity. The trace properties include the num-
ber of initial rays, number of reflection rays, and reflection depth, for which the
default values we use are 100, 20, and 3 respectively. Increasing these values was
not worth it, as it did not increase the detection range by much and made the com-
putation of coverage rather slow, especially when the maximum reflection depth
was increased.

8https://en.wikipedia.org/wiki/Standard_atmosphere_(unit)

49

https://en.wikipedia.org/wiki/Standard_atmosphere_(unit)

CHAPTER 5. IMPLEMENTATION

The parameter that has the most significant impact on the acoustic sensor per-
formance is the sensitivity, i.e. the minimum power level of the sound that must
reach the sensor in order to be detected. We have chosen the possible values of
power levels to be 40 dB, 30 dB, and 20 dB, as they represent ordinary daily noises
rather in the lower volume spectrum9 that could roughly correspond to a flying
drone in the distance.

In Figure 5.10, Figure 5.11 and Figure 5.12, we show the detection ranges mea-
sured for the acoustic sensor with the power level of 40 dB, 30 dB, and 20 dB
respectively. The purple point represents the acoustic sensor and the green points
represent the world cells covered by the sensor. Based on these values, we decided
to use the power level of 35 dB for the calculation of coverage of the acoustic sensor,
resulting in the detection range of 145 m.

Figure 5.10: Coverage of acoustic sensor with a minimum power level of 40 dB.
The farthest detected cell is 139 m away from the sensor.

9https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html

50

https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html

CHAPTER 5. IMPLEMENTATION

Figure 5.11: Coverage of acoustic sensor with a minimum power level of 30 dB.
The farthest detected cell is 190 m away from the sensor.

Figure 5.12: Coverage of acoustic sensor with a minimum power level of 20 dB.
The farthest detected cell is 236 m away from the sensor.

5.3 Sensor placement

Having covered all the important features and components of the simulation in
the previous sections, we can advance to the implementation of the proposed sen-
sor placement algorithm, which is based on MILP with dynamic updating of cell
weights based on the current coverage level of the given cells.

5.3.1 Input

In order to be able to formalize the algorithm as a MILP model, we needed to pro-
vide it with a discrete environment, which included the transition from continuous

51

CHAPTER 5. IMPLEMENTATION

space to discrete space, as we already described in Subsection 4.4.2. As the result,
we have the so-called world represented by a set of cells {Ci | i ∈ 0 . . .N − 1}.

Furthermore, we defined a set of sensor spots {Sj | j ∈ 0 . . .M − 1}, that is either
loaded from a text file provided in the configuration, which is the preferred option
or computed automatically from the perimeter of the sector. Every sensor spot can
be equipped with a camera but only specific sensor spots can be equipped with
acoustic sensors.

Sensors have their configuration as well which we have to recognize in the sen-
sor placement. In the case of the camera sensor, its main property we are in-
terested in is the camera pose, combining two properties, panning, and tilting.
Currently, the possible values for panning and tilting are hard-coded and include
{0,15, . . . ,330,345} for panning and {−10,0,10} for tilting in degrees, which gives us
a set of 72 camera poses {Pk | k ∈ 0 . . .K − 1}, where K = 72.

Last but not least, we define a weight function {f ri | i ∈ 0 . . .N − 1, r ∈ 0 . . .R}
where r represents the current coverage level of the particular cell and R is the
value of the redundancy parameter as described in Subsection 4.3.8. The weight
function f stores the values of the weights of the cells based on their coverage
level in decreasing order, i.e. the lower the coverage level, the greater the weight.
However, as the weight is zero when the coverage level of R is reached, it only
stores values for coverage levels less or equal to R. Also, as the stored values are
not supposed to change during the execution of the program, they are computed
in advance and stored in an array.

Finally, the remaining parameters to the sensor placement such as the budget,
time limit, or minimal required coverage, are omitted in this section, as they were
already presented in Subsection 4.3.8.

5.3.2 Precomputation phase

Before we start computing the sensor placement, we have to go through the so-
called precomputation phase. In this phase, we precompute coverages for all pos-
sible sensor configurations in advance, so that the algorithm only focuses on the
optimization of their placement. In the case of a camera, we have to consider every
sensor spot s ∈ S and every camera pose p ∈ P , giving us |S | · |K | configurations in
total. In the case of an acoustic sensor, we only consider the sensor spots that were
identified as appropriate candidates during the uneven surface expansion that we
described in Subsection 5.1.2.

Although the precomputation of coverages for such a large number of sensors is
a time-consuming operation, we can not limit or skip any variables in this phase, as
even a single omitted sensor configuration could affect the resulting sensor place-
ment in a negative manner. Hence, we decided to parallelize the process in order
to use the maximum of available computing power and more importantly, to make
the process less time-consuming.

At first, we determine the number of worker threads nc that will run simul-
taneously based on the number of available CPU threads which we get from the
Runtime API10. Based on that, we split the set of sensor spots S into equal batches,
except for the last batch which can have different sizes. After that, the main thread
distributes the batches of sensor spots to respective worker threads, of which each
asynchronously computes the coverages for sensors on each sensor spot in its batch
and with each camera pose, returning an instance of the Future11 (further referred

10https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
11https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

52

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

CHAPTER 5. IMPLEMENTATION

to as future) which will eventually contain the computed coverages in some point
of time in the future, once the computation is finished. After all worker threads
finish their computations, the main thread retrieves the computed coverages from
the futures and the precomputation phase is finished.

We present the pseudocode of the precomputation phase for cameras in Al-
gorithm 1 and Algorithm 2. The pseudocode for the precomputation phase for
acoustic sensors is omitted as it is basically the same.

Algorithm 1 precomputeParallel

Input: world W, sensor spots S0 . . .SM−1, camera orientations (poses) P0 . . . PK−1
Output: set of precomputed coverages for all possible cameras C0 . . .CM·K−1

1: nc← Runtime.availableCores() . Get number of available CPU threads
2: batch←

⌈
M
nc

⌉
. Batch size, i.e. number of sensor spots per thread

3: tasks←∅ . Set of tasks to be invoked asynchronously
4: for i← 0 to nc do
5: sf ← i · batch
6: st← sf + batch
7: tasks← tasks∪ asyncTask(W, S, P , sf , st) . Initialize tasks
8: end for
9:

10: f utures← invoke(tasks) . Invoke tasks and wait until all finished
11: C←∅
12: for each f ∈ f utures do . Retrieve results from the futures
13: C← C ∪ f .get()
14: end for
15: return C

Algorithm 2 asyncTask

Input: world W, sensor spots S0 . . .SM−1, camera poses P0 . . . PK−1, range of sensor
spots [sf , st)

Output: set of precomputed coverages for cameras on sensor spots in range [sf , st)
C0 . . .C(st−sf)·K . Set of covered cells

1: C←∅
2: for j← sf to st − 1 do
3: for k← 0 to M − 1 do
4: cam← getCamera(Sj , Pk) . Initialize camera sensor
5: cells←W.circlicExpansion(Sj , cam.range) . Collect relevant cells
6: C← C ∪ cam.getCoverage(cells) . Compute and get coverage
7: end for
8: end for
9: return C

5.3.3 MILP model

A simple approach to the sensor placement using ILP would be to maximize the
space coverage (i.e. number of covered cells) under some constraints such as the
maximum price for example. If we knew in advance that we can achieve full cov-
erage, i.e. cover each of the cells, we could also set the objective to minimize the
price required to ensure full coverage.

53

CHAPTER 5. IMPLEMENTATION

In our case, however, none of the above-mentioned approaches is applicable.
In the latter case, we can not guarantee that the whole space can be covered unless
firstly computing the sensor placement with no constraints (i.e. with infinity price
limit), which would require another model to be optimized. Furthermore, our ap-
proach extends the maximization of coverage by considering possibly different and
non-integer weights for each cell, so if we only optimized the number of covered
cells, we would completely discard the idea of priority areas. As some of the cell
weights might be non-integer, the variable representing the cell weights must be
non-integer as well, from which it follows that our model is not ILP, but MILP.

Similarly, as the precomputation phase, our MILP model works with a set of
discrete cells C, a set of sensor spots S, and a set of camera poses P . Additionally,
we must provide the model with the weight function f , to be able to determine
the weights of the cells during the optimization. Last, we need to transform the
precomputed sensor coverages to a binary indicator, using which we can easily
find out which cells are covered by which sensors.

Given N cells, M sensor spots and K camera poses, we define two binary indi-
cators, for acoustic sensor and camera sensor respectively:

gj,i =


1, if the acoustic sensor placed on sensor spot j

covers cell i

0, otherwise

(5.2)

hj,k,i =


1, if the camera sensor placed on sensor spot j

with camera pose k covers cell i

0, otherwise

(5.3)

Regarding the optimization variables, at first, we define binary variables X and Y
for the camera sensor and acoustic sensor respectively as follows:

Xj,k =


1, if a camera sensor with camera pose k is

placed on sensor spot j

0, otherwise

(5.4)

Yj =

1, if a acoustic sensor is placed on sensor spot j

0, otherwise
(5.5)

Further, let C be an integer variable that states the coverage level of each cell:

Ci ∈ Z∗ , i ∈ {0, . . . ,N − 1} (5.6)

In relation to the previous variable C, we define an additional continuous variable
W that holds the current weights of cells (based on their current coverage level):

Wi ∈ R+
0 , i ∈ {0, . . . ,N − 1} (5.7)

As we already mentioned, the weight of cells depends on their current coverage
levels. However, since the coverage level is represented by an optimization vari-
able, we can not use it as an index to the weight function f directly. Instead, we
need to express the index as another binary variable T , which we constraint so that
the sum of its values equals one for each cell. Since it will contain exactly one value

54

CHAPTER 5. IMPLEMENTATION

equal to 1 and the rest will be zeros, the index at which the only value equal to 1
appears, is the index to the weight function f .

Ti,r =

1, if the current weight of cell i should equal to f ri
0, otherwise

(5.8)

Moving on to model constraints, we start off with expressing the coverage variable
C in terms of the sensor variables X and Y and the indicator functions g and h,
which is done as follows:

Ci =
M−1∑
j=0

Yj · g(j, i) +
M−1∑
j=0

K−1∑
k=0

Xj,k · h(j,k, i), ∀i ∈ {0, . . . ,N − 1} (5.9)

We also need to ensure that no more than one sensor is placed on each sensor spot:

K−1∑
k=0

Xj,k +Yj ≤ 1, ∀j ∈ {0, . . . ,M − 1} (5.10)

As we already said, the variable T must sum to one for each cell, which we ensure
with the following constraint:

R∑
r=0

Ti,r = 1, ∀i ∈ {0, . . . ,N − 1} (5.11)

Now, as the variable T sums to one, we can select the correct weight from the
weight function f by multiplying the binary variable T with the weight function f
for each cell:

Wi =
R∑
r=0

f ri · Ti,r , ∀i ∈ {0, . . . ,N − 1} (5.12)

The last thing we have to deal with in order for the model to work is to specify
a constraint that determines at which index of the variable T the value 1 should
be put for each cell. It is obvious that the model will put 1 on R-th, the highest
index, because f stores the values in descending order and we are minimizing. In
such a case, we would end up with all cells having zero weight instantly and there
would be nothing to optimize. Because of that, we need to limit it so that C, i.e. the
current coverage level, is the highest index where 1 may be put. As we minimize,
it will ensure that the model will put 1 on the C-th index and that is exactly what
we want:

r · Ti,r ≤ Ci , ∀i ∈ {0, . . . ,N − 1}, r ∈ {0, . . . ,R} (5.13)

In the end, we only need to ensure that the sum of prices of the sensors included
in the sensor placement does not exceed the budget using the following constraint,
where pc(j,k) and pa(j) are functions that return the price of the camera placed
on sensor spot j with camera pose k and the price of the acoustic sensor placed on
sensor spot j, respectively.

M−1∑
j=0

K−1∑
k=0

Xj,k · pc(j,k) +
M−1∑
j=0

Yj · pa(j) ≤ budget (5.14)

The objective is then to minimize the sum of cell weights:

min
N−1∑
i=0

Wi (5.15)

55

CHAPTER 5. IMPLEMENTATION

If we put those variables and constraints together, the resulting ILP model looks as
follows:

min
N−1∑
i=0

Wi

s.t. Ci =
M−1∑
j=0

Yj · g(j, i) +
M−1∑
j=0

K−1∑
k=0

Xj,k · h(j,k, i) ∀i ∈ {0, . . . ,N − 1}

K−1∑
k=0

Xj,k +Yj ≤ 1 ∀j ∈ {0, . . . ,M − 1}

R∑
r=0

Ti,r = 1 ∀i ∈ {0, . . . ,N − 1}

Wi =
R∑
r=0

f ri · Ti,r ∀i ∈ {0, . . . ,N − 1}

r · Ti,r ≤ Ci ∀i ∈ {0, . . . ,N − 1}, r ∈ {0, . . . ,R}
M−1∑
j=0

K−1∑
k=0

Xj,k · pc(j,k) +
M−1∑
j=0

Yj · pa(j) ≤ budget

Xj,k ∈ {0,1} j ∈ {0, . . . ,M − 1}, k ∈ {0, . . . ,K − 1}
Yj ∈ {0,1} j ∈ {0, . . . ,M − 1}
Ti,r ∈ {0,1} i ∈ {0, . . . ,N − 1}, r ∈ {0, . . . ,R}
Wi ∈ R+

0 i ∈ {0, . . . ,N − 1}
Ci ∈ Z∗ i ∈ {0, . . . ,N − 1}
M, N, K, R ∈ Z∗

56

Chapter 6

Experimental evaluation

Although we can evaluate the sensor placement based on the dimension of space
covered by the sensors, we further want to evaluate it in a dynamic and more re-
alistic environment from which we can obtain additional and more detailed data
about the quality of the sensor placement.

In this chapter, we present an experimental evaluation, with the help of which
we obtain detailed data that we utilize in the analysis of the quality of the sensor
placement and from which we can draw statistical conclusions. Firstly, we present
the overall design of the experiment and the specific drone flight profiles included
in the experiment. Then, we briefly introduce the flight path generator using which
we were able to generate realistic trajectories for the respective flight profiles. Last,
we present the scenarios of which the experiment consists, measured data, and the
conclusions that follow from it.

6.1 Experiment design

To get a rough overview of how good the sensor placement is, we have to spec-
ify the metrics by which we can compare the sensor placements with each other.
The simplest metric is to express the quality of the sensor placement based on the
coverage level, i.e. the number of world cells covered by the sensor placement.

We introduce three different criteria using which the level of coverage can be
expressed:

• Absolute coverage. The absolute value of coverage defined as Nc
N , where Nc

is the number of covered cells and N is the total number of cells.

• Absolute weighted coverage. The value of coverage with respect to the pri-
ority areas defined as

∑
i∈CWi
W , where C is a set of covered cells, Wi denotes the

initial weight of the i-th cell and W is the sum of weights of all cells.

• Relative coverage. The value of coverage with respect to the actual coverage

level of each world cell, defined as 1
∑N−1
i=0 (Wi−wi)

W , where Wi denotes the initial
weight of the i-th cell, wi denotes the actual weight of the i-th cell (i.e the
weight after the deployment of the sensor placement) and W is the sum of
weights of all cells. As opposed to the previous two cases, only this approach
takes into account the actual coverage level of each cell.

Using the values produced by those three criteria, we can tell to some extent
whether one sensor placement covers more space than the other and thus whether
it performs better. However, we can not draw any further conclusions from it, such

57

CHAPTER 6. EXPERIMENTAL EVALUATION

as how good it will perform in a real drone detection task. For that reason, we need
to investigate deeper into the evaluation process of the sensor placement.

To make the evaluation thorough and proper, we tried to design the experiment
so that it reflects the reality as much as possible, by simulating a real-world event
in which the protection against drones is required. We assume a scenario, in which
one or more drones with various purposes violate the safe zone around the mon-
itored sector, which would typically be an airport or a prison. The drone might
just be an ordinary drone flown by an ordinary person that accidentally happens
to get too close to the sector, or also a dangerous drone with the purpose of spying,
smuggling, or causing damage.

Since the information about what kind of drone it is and what is its purpose is
something that can not be known in advance, we have to ensure protection in all
cases. In order to cover all types of flights in the experiment, we introduce four
flight profiles in total, namely the flight profiles of attacking, smuggling, spying
and finally the ordinary flight profile, which is a flight profile without any harmful
purpose. To not overlook the priority areas in the experiment, in the flight profile
of attacking and smuggling, there is a 60% chance that the drone will fly from the
direction of one of the priority areas.

Flight profile of attacking. This flight profile represents an attack such as drop-
ping a bomb into a critical area, e.g. a crowded place for example. The attacking
drone is supposed to fly straight to the destination while keeping low above the
ground level (AGL) so that it is hidden behind buildings or other obstacles such as
terrain or vegetation when possible.

Flight profile of smuggling. This flight profile represents a smuggling flight, in
which the drone is supposed to smuggle drugs or weapons into a critical area, such
as the prison. The characteristics of this flight are the same as in the flight profile
of attacking, with the only difference that after reaching the destination, the drone
flies out of the critical area using the shortest path.

Flight profile of spying. This flight profile simulates the flight in which the drone
spies on some object, such as private property or a restricted military object. As
opposed to the previous two flight profiles, the drone is characterized by flying
back and forth around the sector while keeping generally greater AGL.

Ordinary flight profile. Eventually, we wanted to include ordinary flights in the
experiment as well, because such flights might actually be the most common. By
an ordinary flight, we simply mean a drone flown by an ordinary or inexperienced
person, without any harmful purpose. The path of the flight is completely random,
i.e. consists of sudden movement changes, both horizontal and vertical.

We show the generated flight paths of the flight profile of attacking and smug-
gling in Figure 6.1, on which the sector of Pankrác Prison can be seen. The purple
lines represent the flight profile of attacking, whereas the red lines represent the
flight profile of smuggling. Given that there are two priority areas near the sector,
there was a 60 percent chance that each of the flights would start from the direction
of one of the priority areas. The AGL was chosen randomly from the interval from
10 to 20 m.

58

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: Flight profiles of attacking and smuggling

In Figure 6.2, we show the remaining two flight profiles, the flight profile of
spying represented by the yellow lines, and the ordinary flight profile represented
by the lines of light blue. In the case of the flight profile of spying, the AGL was
chosen randomly from the interval from 35 to 80 m. The flight path of the ordinary
flight profile is generated completely randomly.

Figure 6.2: Flight profile of spying and the ordinary flight profile

6.2 Flight path generator

To avoid the need to generate the flight paths manually, even though such an op-
tion is also implemented in the program, we are using automatically generated
flight paths in the experiment. Because some of the flight profiles require to keep
certain AGL throughout the flight, it could easily happen that the trajectory of the
generated flight path would lead through obstacles such as buildings, which will
make it unrealistic and also invalid.

To carry off this unwanted possibility, we implemented a flight path generator,
which, provided an initial set of waypoints and the value of desired AGL, generates

59

CHAPTER 6. EXPERIMENTAL EVALUATION

a valid flight path such that it does not interfere with any obstacles while still con-
necting the original waypoints and keeping the desired AGL wherever possible.
The flight path generator also considers another variable which is the so-called
above surface threshold that states the minimum height above the surface in which
a drone may fly.

Provided the initial set of waypoints, the flight path generator firstly validates
that the initial waypoints are valid i.e. are not under the surface or inside an ob-
stacle. If one of the waypoints is invalid, it sets its altitude to the surface elevation
plus the above surface threshold, where the surface elevation is obtained using the
ray tracing operations. Then, it continues with linearly interpolating the straight
lines between each pair of consecutive waypoints by 1 m segments, where each
segment has its altitude validated and eventually corrected similarly as with the
initial waypoints.

When all waypoints are processed in this way, we end up with N −1 sets of 1 m
segments that together form the whole trajectory of the flight path, where N is the
number of initial waypoints. Such flight path is valid in most cases, but in case that
the desired AGL is low, it might contain very steep height changes, such as those
near the edges of buildings where the difference in height might be more than 10
m on 1 m horizontal segment. In addition to that, those steep height changes often
cause the flight path to interfere with the edges of the buildings.

An example of such a flight path with low AGL and lots of steep height changes
is shown in Figure 6.3.

Figure 6.3: Flight path with steep height changes

Such a flight path would obviously be very unrealistic, not to mention it is
possible that the drone would not even be able to fly safely along such trajectory.
For that reason, we need to process the flight path once more, this time to smooth
the trajectory, i.e. to get rid of the steep height changes and to create smooth and
continuous transitions between the two positions with different heights.

The trajectory smoothing process is done by traversing the flight path by its
segments until we come across a steep height change, in which case a smoothing
maneuver is performed. Whether a height change is steep or not is determined by
a threshold T that states the minimum difference in altitude for the height change
to be considered steep. The maneuver can either be an ascending maneuver or a
descending maneuver, however, in both cases, we try to keep its steepness angle
at about 30◦ and its length at least 10 m when possible, to keep the maneuver

60

CHAPTER 6. EXPERIMENTAL EVALUATION

smoothness. If it is not possible to ensure such conditions, for example when two
buildings are too close to each other and the maneuver would not even fit between
them, we rather increase the AGL on the given part of the trajectory so that the
need for the maneuver is eliminated.

When an ascending maneuver needs to be performed at some point of the flight
path traversal, we calculate the length of the maneuver as max(10, ∆z

tan30◦), where
∆z is the height difference of the maneuver, and traverse the trajectory backward
by this length, to find the position where the maneuver should start. If we come
across a position where the height difference is not greater than T anymore, we
stop the backward traversal and set the maneuver start to the last position where
the height difference was still greater than T . Unfortunately, this approach might
not always meet the criteria of the desired steepness angle or maneuver length but
is sufficient for our purposes.

The approach for the descending maneuver is very similar. The only difference is
that as opposed to ascending maneuver, we know where the maneuver starts but not
where it should end, so instead of performing a backward traversal, we perform a
forward traversal.

The same flight path as in Figure 6.3 but with the smoothing process applied to
it is shown in Figure 6.4.

Figure 6.4: Flight path after the smoothing process

61

CHAPTER 6. EXPERIMENTAL EVALUATION

6.3 Evaluation

The quality of the sensor placement algorithm is evaluated on two scenarios in
total. The first scenario takes place around a small sector of the Pankrác Prison
in Prague, and the second scenario takes place around a large sector of the Václav
Havel Airport Prague.

There were 200 flights generated for both scenarios in the experiment, however,
the percentage distribution of the flight profiles was different for each scenario.
For different sensor placement configurations, we measured the average detection
distance, average detection percentage for each flight profile, and in the case of the
flight profile of attacking and smuggling, in which the drones reach the critical
area eventually, we also measured the average time to react, i.e. the time from the
first detection of the drone before the drone enters the critical area.

The prices of the sensors that were used through the experimental evaluation
were 2500 for the camera sensor and 55 000 for the acoustic sensors. Unfortunately,
these prices are fictitious and do not correspond to reality.

In the following sections, we will provide a more detailed description of each
scenario and the data measured from the experimental flights.

6.3.1 The Pankrác Prison scenario

In this scenario, the monitored sector is relatively small, owing to that the world
cells could be small as well, i.e. 20 m x 20 m x 20 m. The horizontal monitor
distance was set to 250 m and the vertical monitor distance was set to 170 m, which
we considered as sufficient as only large drones can be detected at that distances,
and thus the flights would be unnecessarily long for most of the drones. The total
number of generated world cells was 9272.

Two priority areas were used in this scenario and the weight of the priority cells
was 2, whereas the weight of non-priority cells outside the priority areas was 1.
The coverage redundancy was set to 2, meaning that in the optimal case, each cell is
covered by two sensors. Therefore, the values of the weight function f were (2, 1, 0)
for the priority cells and (1, 0.5, 0) for the non-priority cells, for the coverage levels
of 0, 1, and > 1 respectively. The possible values for camera panning and tilting
were (0◦, 15◦, 30◦, . . . , 345◦) and (0◦, 10◦, 20◦, 30◦, 40◦), respectively, resulting in
total of 120 camera poses.

As the monitored sector is a prison, we assumed that the most common illegal
activity with the use of drones is smuggling, so we chose a 40 % chance that the
flight would have the flight profile of attacking. The ordinary flight profile had
also 40 % chance, as a big part of drone incidents happens accidentally by ordinary
people. As the flight profile of attacking and spying is not so common in the case of
prison, we only gave them a chance of 10 %, thus the final distribution of the flight
profile was 10%, 40%, 10%, 40% for the flight profile of attacking, smuggling,
spying, and the ordinary flight profile, respectively.

The Pankrác Prison scenario is shown in Figure 6.5. There were 153 sensor
spots in total, which are visualized as green points. We created those sensor spots
manually because, in this scenario, we want to have sensors spots also on buildings
that are inside the sector, which the method described in Subsection 4.3.4 would
not be able to generate. Out of 200 generated flights, there was a total of 28 flight
profiles of attacking, 82 flight profiles of smuggling, 12 flight profiles of spying,
and 78 ordinary flight profiles. We show the generated flights in Figure 6.6.

62

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.5: The Pankrác Prison scenario

Figure 6.6: The Pankrác Prison scenario flights

In Figure 6.7 we illustrate a sensor placement in the sector of the Pankrác
Prison, with the maximum price of 75 000. The covered cells are represented as
green points. There is 1 acoustic sensor placed on the very corner of the building,
covering a significant amount of both priority and non-priority cells. As the cover-
age redundancy is 2, there are further 2 cameras covering the same priority cells as
does the acoustic sensor. Another three cameras focus on the second priority area.
The remaining three cameras are placed so that they do not overlap and thus cover
most of the cells not yet covered. In Figure 6.8 we show a much more dense sensor
network with a maximum price of 300 000, consisting of 3 acoustic sensors and 54
cameras.

We show further examples of different sensor placements in this scenario in
Appendix C.

63

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.7: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 75 000

Figure 6.8: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 300 000

In Figure 6.9 we show the graph of average detection percentage of individual
flight profiles in the Pankrác Prison scenario, depending on the maximum cost of
the sensor placement. It can be clearly seen that the percentage of detection of the
flight profiles of attacking and smuggling is high compared to the flight profile of
spying and the ordinary flight profile. This is due to the fact that we were able
to prioritize certain areas of the space around the sector, from which direction the

64

CHAPTER 6. EXPERIMENTAL EVALUATION

drones were more likely to fly. From the maximum price of 200 000, the coverage
of the sector was so big that the detection percentages of flight profiles of attack-
ing and smuggling reached 100 %. The detection percentage of the ordinary flight
profile is the lowest because the flights for this flight profile are generated com-
pletely randomly, so it is possible that some of them were not even detectable at
some point. When the maximum cost of the sensor placement was higher than 300
000, the overall detection percentage did not increase anymore.

0 50 100 150 200 250 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Maximum cost [thousands]

A
ve

ra
ge

d
et

ec
ti

on
p

er
ce

nt
ag

e
[%

]

ATTACKING
SMUGGLING

SPYING
ORDINARY

TOTAL

Figure 6.9: Average detection percentage of each flight profile per maximum cost
of the sensor placement in the Pankrác Prison scenario

In Figure 6.10 we the graph of average detection distances for camera sensors
and acoustic sensors in the Pankrác Prison scenario, depending on the maximum
cost of the sensor placement. The average detection range of cameras is approxi-
mately two times larger than the average detection distance of acoustic sensors be-
cause, in the case of a large drone, the cameras can detect a drone at a much greater
distance than the acoustic sensor. The average detection range of the acoustic sen-
sors was nearly constant because the acoustic sensors were usually placed on the
same spots that were the most suitable.

65

CHAPTER 6. EXPERIMENTAL EVALUATION

0 50 100 150 200 250 300 400 500
0

50

100

150

200

250

300

Maximum cost [thousand]

A
ve

ra
ge

d
et

ec
ti

on
d

is
ta

nc
e

[m
]

CAMERA
ACOUSTIC SENSOR

TOTAL

Figure 6.10: Average detection distances of cameras and acoustic sensors per max-
imum cost of the sensor placement in the Pankrác Prison scenario

In Figure 6.11 we show the average time to react (TTR) to the flight profiles of
attacking and smuggling in the Pankrác Prison scenario, as only those two flight
profiles reach the critical area eventually. In the cases of lower values of the maxi-
mum cost of the sensor placements, where there were fewer cameras and the drones
were often detected only by the acoustic sensors, the average TTR is around 8 to
9 s. When the maximum cost of the sensor placement was higher and the sensor
network consisted of tens of cameras, the average TTR reached nearly 12 s, which
corresponds to the average detection distance shown in Figure 6.10.

0 50 100 150 200 250 300 400 500
6

8

10

12

14

Maximum cost [thousand]

A
ve

ra
ge

ti
m

e
to

re
ac

t
[s

]

ATTACKING
SMUGGLING

Figure 6.11: Average time to react to the flight profiles of attacking and smuggling
per maximum cost of the sensor placement in the Pankrác Prison scenario

66

CHAPTER 6. EXPERIMENTAL EVALUATION

6.3.2 The Václav Havel Airport Prague scenario

Unlike the previous scenario, the monitored sector in the Václav Havel Airport
Prague scenario is very large. Due to that, we, unfortunately, had to limit the ac-
curacy of the discretized environment and set the size of the world cells to 40 m
x 40 m x 40 m, for performance purposes. The horizontal and vertical monitor
distance was the same as in the case of the Pankrác Prison, i.e. 250 m and 170 m,
respectively. Despite the size of world cells being that big, the discretized space
still counted 31803 world cells.

There were also two priority areas in this scenario, both near Terminal 3 of
the Václav Havel Airport Prague. The weights of the priority and non-priority
cells, coverage redundancy, and thus the weight function as well were the same
as in the previous scenario. Due to the number of world cells being so large in
the case of the Václav Havel Airport Prague scenario, we had to limit the number
of possible values for camera panning and tilting to (0◦, 20◦, 40◦, . . . , 340◦) and
(0◦, 10◦, 20◦, 30◦) respectively, which results in 72 camera poses. Considering
the fact there are 31803 cells, 331 sensor spots, and 72 camera poses, there had to
be 757 millions of binary variables in the MILP model just to express the sensor
coverage, which is a lot.

In terms of the distribution of flight profiles, we decided that there will be no
flight profiles of spying as it does not give much sense to spy on an airport. Instead,
we assumed a higher percentage of the flight profiles of attacking, namely 30 %.
We further considered a 10 % chance of the flight profile of smuggling, to account
for rare cases of smuggling items that would not pass the security checks. As the
area around the airport is open space, it is an ideal place to fly with a drone, so we
set the chance of the flight having the ordinary flight profile to 60 %.

The Václav Havel Airport Prague scenario is shown in Figure 6.12. There were
331 sensor spots in total, visualized as green points. In this scenario, the sensor
spots were generated automatically with the method described in Subsection 4.3.4.
Out of 200 generated flights, there was a total of 62 flight profiles of attacking, 24
flight profiles of smuggling, and 114 ordinary flight profiles. We show the gener-
ated flights in Figure 6.13.

Figure 6.12: The Václav Havel Airport Prague scenario

67

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.13: The Václav Havel Airport Prague scenario flights

In Figure 6.14 we illustrate a sensor placement in the sector of the Václav Havel
Airport Prague with a maximum price of 700 000. The covered cells are repre-
sented as green points. Unlike the sector of the Pankrác Prison, acoustic sensor
spots can be placed only on selected sensor spots near the areas with buildings.
As the size of cell is 40 m x 40 m x 40 m and the assumed detection range of the
cameras is 130 m, only 1 cell managed to fit within the frustum of the camera.

We show further examples of different sensor placements in this scenario in
Appendix C.

Figure 6.14: Sensor placement in the sector of the Václav Havel Airport Prague
with the maximum price of 700 000

68

CHAPTER 6. EXPERIMENTAL EVALUATION

In Figure 6.15 we show the graph of average detection percentage of individual
flight profiles in the Václav Havel Airport Prague, depending on the maximum cost
of the sensor placement. Similarly, as in the other scenario, the highest percentage
of detection was in the flight profiles as attacking and smuggling, as there was a
60 % change that the flight will lead through one of the priority areas, which we
prioritized with the higher weight of cells. As in the other scenario, the detection
percentage of the ordinary flight profile is the lowest because the flights for this
flight profile are generated completely randomly, so it is possible that some of them
were not even detectable at some point.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Maximum cost [thousand]

A
ve

ra
ge

d
et

ec
ti

on
p

er
ce

nt
ag

e
[%

] ATTACKING
SMUGGLING
ORDINARY

TOTAL

Figure 6.15: Average detection percentage of each flight profile per maximum cost
of the sensor placement in the Václav Havel Airport Prague scenario

In Figure 6.16 we show the graph of average detection distances for camera sen-
sors and acoustic sensors in the Václav Havel Airport Prague scenario, depending
on the maximum cost of the sensor placement. Similarly, as in the case of the other
scenario, the detection distance of cameras is more than two times greater than the
detection distance of acoustic sensors, because a big part of the flights had the flight
profile of attacking, which is easily detectable by the cameras as it keeps low AGL.
The detection range of acoustic sensors was nearly constant for most of the sensor
placements because they were often placed on the same sensor spots, as there were
only a few sensor spots where it was appropriate to place an acoustic sensor.

69

CHAPTER 6. EXPERIMENTAL EVALUATION

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

Maximum cost [thousand]

A
ve

ra
ge

d
et

ec
ti

on
d

is
ta

nc
e

[m
]

CAMERA
ACOUSTIC SENSOR

TOTAL

Figure 6.16: Average detection distances of cameras and acoustic sensors per max-
imum cost of the sensor placement in the Václav Havel Airport Prague scenario

In Figure 6.17 we show the TTR to the flight profiles of attacking and smug-
gling in the Václav Havel Airport Prague scenario. For the sensor placements with
higher maximum prices, the TTR was stably around 10 s for the flight profiles of
attacking and around 8 s for the flight profiles of smuggling. The fact that the TTRs
of the flight profiles are not as similar as in the other scenario might be due to the
flight profile of attacking having three times greater chance to be generated, so the
sample size from which the average was computed was larger.

0 100 200 300 400 500 600 700 800
4

6

8

10

12

Maximum cost [thousand]

A
ve

ra
ge

ti
m

e
to

re
ac

t
[s

]

ATTACKING
SMUGGLING

Figure 6.17: Average time to react to the flight profiles of attacking and smuggling
per maximum cost of the sensor placement in the Václav Havel Airport Prague
scenario

70

Chapter 7

Conclusion and future work

In this thesis, we proposed an approach to the problem of optimal sensor place-
ment used for protection against drones. In the problem of optimal sensor place-
ment, the goal is to find the optimal placement of the sensors, i.e. a sensor network,
such that either the space coverage of the sensor network is maximized, or the cost
of the sensor network is minimized, while a given level of coverage is achieved. We
focused on making the sensor placement algorithm possible to be highly parame-
terized by the user, such as by the priority areas or coverage redundancy. During
the implementation of the coverage computation of the camera, we also effectively
dealt with the camera occlusion.

In the theoretical part of this thesis, we took a look at the state of drones in
today’s world, i.e. what are they used for, what options and possibilities they of-
fer and where is their assistance useful. As drones are a powerful technology with
the ability to fly fast, carry objects, and at the same time being very small, we pre-
sented various threats that they pose and illegal activities they can be misused for.
To emphasize why protection against drones is needed, we included a brief list of
drone incidents showing the threats are not just theory but are actually happening
in the world. We also presented a short-list of state-of-the-art systems for drone
detection and neutralization. Then we explored the area of possible approaches
to the problem of optimal sensor placement. We started with the approximation
algorithms such as the greedy algorithm or various sampling algorithms that excel
at speed but usually produce only an approximation of the optimal solution in the
best case. Then we presented the exact algorithms such as integer linear program-
ming that finds the optimal solution but at great costs in terms of time, making it
rather unpractical when the search space is large.

Moving on to the practical part of the thesis, we first introduced the program as
a whole, describing the configuration properties and individual components that
the program consists of. We presented the AgentFly simulation framework and the
implementation of the camera sensor and acoustic sensor, and ray tracing provided
by the framework. We explained the process of space discretization with the help of
which we have turned the continuous space to a discrete environment that greatly
reduces the complexity of modeling the sensor coverage and in which it is generally
easier to operate from the point of view of algorithms.

After we familiarized the reader with our program, we advanced to the descrip-
tion of the implementation details. First, we focused on explaining how we effec-
tively dealt with the camera occlusion and the sensor coverage in general. Then
we introduced our approach to the problem of optimal sensor placement using the
mixed-integer linear programming with the ability to dynamically update weights
of the world cells based on their current coverage level.

71

CHAPTER 7. CONCLUSION AND FUTURE WORK

At the end of this thesis, we presented the experimental evaluation, with the
help of which we evaluate the proposed sensor placement algorithm. We intro-
duced a similar scenario for two different sectors, a small sector of the Pankrác
Prison, and a large sector of the Václav Havel Airport Prague. In both scenarios,
we launched two hundred drones from the area around the sector with the flight
profiles of attacking, smuggling, spying, and the ordinary flight profile that does
not pose any danger. We measured the detection percentages and distances for the
individual flight profiles and the average time to react to the approaching drone.

We have shown that a detection system consisting only of acoustic sensors and
cameras would probably not be enough effective in the reality, as less than 20 s of
reaction time is not enough to take appropriate defensive countermeasures, assum-
ing a large drone where the detection distance is approximately 350 m.

7.1 Future work

In reality, a drone detection system consisting of only acoustic sensors and cameras
would probably not be effective enough. As the data have shown, when the detec-
tion distance is about 140 m and the speed of the drone is approximately 60 km/h,
the average time to react is less than 9 s, which is not much at all, considering the
fact that appropriate countermeasures have to be introduced during that time as
well. However, the way how we model the acoustic sensor probably does not fully
reflect the reality, as we are left out with parameters for which we either do not
know the correct values, or we have to limit them to some extent for optimization
purposes, such as the number of initial and reflection rays or the sensitivity of the
sensor. Because of that, the measured detection distances would most likely in-
crease, because a quality acoustic sensor usually has, or should have, an effective
detection range of more than 140 m.

Furthermore, the implementation of the camera sensor in Visio does not sup-
port zooming, which is a standard in today’s cameras and can provide much greater
detection distance once the direction of the drone is estimated. When the loaded
drone model, such as the model of DJI Matrice Pro 600 shown in Figure 4.7, was
very good quality and consisted of lots of individual triangles, the ray tracing oper-
ations were very computationally demanding, due to which could not run a smooth
simulation of the drone movements while detecting multiple drones at once.

Moreover, to be applicable in real life effectively, the system would have to be
extended with different types of sensors, such as the radio frequency (RF) analyzers
or radars. RF analyzers and radars are included in most of the state-of-the-art drone
detection systems and can provide a detection range in the order of kilometers.
Also, they can provide additional data such as estimations of the drone model, or
rough localization of the controller using which is the drone being controlled in
some cases. However, the implementation of radars and RF analyzer is not an easy
task at all, as various physics would need to be considered. In the current state
of the detection systems, we assume fictitious data about the cameras and acoustic
sensors as well, such as the price in the case of cameras, or sensitivity in the case of
acoustic sensors.

Last, the drone database is not sufficient at the moment, as we only use three
different drone models in the experimental evaluation, with fixed properties such
as the speed that remains unchanged during the whole flight. The environment
used throughout the program also does not reflect real-life adequately, as it only
assumes fixed, unchanging air properties such as air temperature, air pressure, and
air humidity. It also does not recognize day or night time, nor any kind of weather

72

CHAPTER 7. CONCLUSION AND FUTURE WORK

conditions, which is often crucial in the real-life.

73

Appendix A

Measured data

In Table A.1 and Table A.2 we provide a more detailed view of the data measured
in the Pankrác Prison scenario and the Václav Havel Airport Prague scenario, re-
spectively.

25k 50k 75k 100k 125k 150k 200k 250k 300k 400k 500k
Num. of cameras 10 20 8 18 28 38 57 56 54 90 92
Num. of acoustic sensors 0 0 1 1 1 1 1 2 3 3 3
Avg. DP - all [%] 35.5 52 57 65 67.5 70.5 80.5 83.5 90.5 91 91
Avg. DP - attacking [%] 46.428 67.85 71.42 78.57 85.71 92.85 100 100 100 100 100
Avg. DP - smuggling [%] 56.097 76.82 78.04 86.58 89.02 91.46 100 100 100 100 100
Avg. DP - spying [%] 16.666 41.66 33.33 50 50 58.33 75 75 83.33 91.66 91.78
Avg. DP - ordinary [%] 12.82 21.79 33.33 39.74 41.02 42.3 53.84 61.53 78.2 78.2 78.4
Avg. DD - all [m] 156.61 168.95 116.19 131.38 155.01 164.21 163.77 148.14 140.23 139.22 139.44
Min. DD - camera [m] 13.22 7.75 30.41 30.41 58.86 58.83 58.86 14.96 14.96 14.96 14.96
Avg. DD - camera [m] 156.61 168.95 144.48 154.17 173.99 181.82 180.19 174.77 176.16 176.27 176.31
Max. DD - camera [m] 298.96 311.46 289.74 309.35 428.14 436.98 436.98 436.98 436.98 428.14 430.55
Min. DD - acoustic [m] 1.46 1.46 1.46 1.46 1.46 2.13 1.86 1.86 1.86
Avg. DD - acoustic [m] 71.84 71.84 71.84 71.84 71.84 69.39 68.24 68.24 68.24
Max. DD - acoustic [m] 129.47 129.47 129.47 129.47 129.47 139.35 139.35 139.35 139.35
TTR - attacking [s] 8.34 8.79 8.36 8.58 9.06 9.97 9.7 10.47 10.77 11.62 11.64
TTR - smuggling [s] 8.17 8.84 8.2 8.73 9.71 10.12 9.86 10.66 10.98 11.73 11.77

Table A.1: Detection data measured in the Pankrác Prison scenario

100k 200k 300k 400k 500k 700k 800k
Num. of cameras 18 38 54 94 112 170 188
Num. of acoustic sensors 1 2 3 3 4 5 6
Avg. DP - all [%] 18 33.48 43.99 49.25 53.44 55 56.5
Avg. DP - attacking [%] 33.87 64.48 83.87 86.32 86.93 87.09 88.14
Avg. DP - smuggling [%] 37.5 66.66 70.83 79.16 83.33 83.5 84.3
Avg. DP - ordinary [%] 5.26 9.64 16.66 22.8 28.94 32.42 33.5
Avg. DD - all [m] 80.61 145.28 138.54 153.47 142.7 169.71 166.78
Min. DD - camera [m] 64.52 40.48 80.7 40.48 40.48 40.48 40.91
Avg. DD - camera [m] 95.44 178.24 185.21 182.74 173.72 182.07 181.17
Max. DD - camera [m] 129.66 371 381.14 461.75 432.16 423.62 426.15
Min. DD - acoustic [m] 19.55 0.7 0.7 0.7 0.7 3.64 1,81
Avg. DD - acoustic [m] 50.94 65.58 62.4 62.4 60.36 85.22 81,03
Max. DD - acoustic [m] 110.41 132.38 132.38 132.38 132.38 132.38 133,75
TTR - attacking [s] 4.19 7.3 5.31 8 7.66 8.19 8.3
TTR - smuggling [s] 7 8.1 7.45 9.59 9.28 10.45 10.57

Table A.2: Detection data measured in the Václav Havel Airport Prague scenario

75

Appendix B

Drone detections

In the following figures, we present more examples of detections of drones of vari-
ous sizes and at different distances.

Figure B.1: Detection of a small-sized drone 50 m away from the camera with full
HD resolution and 30◦ FOV. The number of detected pixels is 98.

77

APPENDIX B. DRONE DETECTIONS

Figure B.2: Detection of a small-sized drone 100 m away from the camera with 4K
resolution and 30◦ FOV. The number of detected pixels is 105.

Figure B.3: Detection of a small-sized drone 150 m away from the camera with 4K
HD resolution and 30◦ FOV. The number of detected pixels is 42.

78

APPENDIX B. DRONE DETECTIONS

Figure B.4: Detection of a medium-sized drone 50 m away from the camera with
full HD resolution and 30◦ FOV. The number of detected pixels is 246.

Figure B.5: Detection of a medium-sized drone 80 m away from the camera with
full HD resolution and 30◦ FOV. The number of detected pixels is 98.

79

APPENDIX B. DRONE DETECTIONS

Figure B.6: Detection of a medium-sized drone 100 m away from the camera with
4K resolution and 30◦ FOV. The number of detected pixels is 248.

Figure B.7: Detection of a large drone 120 m away from the camera with full HD
resolution and 30◦ FOV. The number of detected pixels is 323.

80

APPENDIX B. DRONE DETECTIONS

Figure B.8: Detection of a large drone 180 m away from the camera with full HD
resolution and 30◦ FOV. The number of detected pixels is 141.

Figure B.9: Detection of a large drone 250 m away from the camera with full HD
resolution and 30◦ FOV. The number of detected pixels is 71.

81

APPENDIX B. DRONE DETECTIONS

Figure B.10: Detection of a large drone 700 m away from the camera with 4K reso-
lution and 30◦ FOV. The number of detected pixels is 41.

82

Appendix C

Sensor placements

In the following figures, we show more examples of sensor placements and how
they are influenced by different weights of priority cells or different values of the
coverage redundancy.

Figure C.1: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 25 000. The weight of the priority cells is 2. The value of redundancy is 2.

83

APPENDIX C. SENSOR PLACEMENTS

Figure C.2: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 100 000. The weight of the priority cells is 4. The value of redundancy is
3.

Figure C.3: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 100 000. The weight of the priority cells is 2. The value of redundancy is
3.

84

APPENDIX C. SENSOR PLACEMENTS

Figure C.4: Sensor placement in the sector of the Pankrác Prison with the maximum
price of 100 000. The weight of the priority cells is 2. The value of redundancy is
1.

Figure C.5: Sensor placement in the sector of the Václav Havel Airport Prague with
the maximum price of 200 000. The weight of the priority cells is 2. The value of
redundancy is 2. As the most part of the sector remains uncovered, the maximum
price of 200 000 is definitely not sufficient.

85

APPENDIX C. SENSOR PLACEMENTS

Figure C.6: Sensor placement in the sector of the Václav Havel Airport Prague with
the maximum price of 500 000. The weight of the priority cells is 4. The value of
redundancy is 2.

Figure C.7: Sensor placement in the sector of the Václav Havel Airport Prague with
the maximum price of 500 000. The weight of the priority cells is 2. The value of
redundancy is 2. In this case, the difference between the two sensor placements
with the same maximum price but the different weight of priority cells is not as
significant as in the case of the much smaller sector of Pankrác Prison.

86

Appendix D

Attached files

In Table D.1 we show the list of attached files and their structure. The resource
files for drones and environments were left out due to the size limitations of the
attached files.

File Description
/src source files
Master_Thesis_Dominik_Hoftych.pdf PDF of this thesis

Table D.1: The list of attached files.

87

Bibliography

[1] Mark LaFay. Popular Uses for Drones. url: https://www.dummies.com/cons
umer-electronics/drones/popular-uses-for-drones/?fbclid=IwAR1Xf

7WDCC74YDSQnEDPBviEYizTuahNDzIqoMgKJAdK4M2K68ilzn4pVGs (page 3).

[2] Wikipedia contributors. Remote sensing — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Remote_sensing&

oldid=972005266. [Online; accessed 10-August-2020]. 2020 (page 3).

[3] Summary of Safety rules in EU. url: https://dronerules.eu/en/recreatio
nal/obligations/summary-of-safety-rules-in-eu-1 (page 4).

[4] Drone Laws in the U.S.A.: UAV Coach (2020). url: https://uavcoach.com/
drone-laws-in-united-states-of-america/ (page 4).

[5] UAS Sightings Report. Apr. 2020. url: https://www.faa.gov/uas/resource
s/public_records/uas_sightings_report/ (page 4).

[6] Harro Ranter. Aviation Safety Network; ASN Aviation Safety Database; ASN
Drone Database. url: https://aviation-safety.net/database/issue/
dronedb.php (page 4).

[7] Armygirl. Drone Crash Database. Apr. 2020. url: https://dronewars.net/
drone-crash-database/ (page 4).

[8] Map of World Wide Drone Incidents. url: https://www.dedrone.com/resour
ces/incidents/all (page 4).

[9] Jack Beresford. Aer Lingus flight from Dublin to London came scarily close to
colliding with illegal drone. Sept. 2019. url: https://www.irishpost.com/
news/aer-lingus-drone-near-miss-170793?utm_source=twitter&utm_

campaign=article&utm_medium=web (page 4).

[10] Darren Boyle. BA jet in near miss with a drone 6,000 feet above Potters Bar. May
2019. url: https://www.dailymail.co.uk/news/article-7042177/BA-
jet-near-miss-drone-6-000-feet-Potters-Bar.html (page 5).

[11] Jen Mills. Drone ’put 130 lives at risk’ as plane was trying to land at Gatwick.
Dec. 2019. url: https://metro.co.uk/2017/10/16/drone-put-130-
lives-at-risk-as-plane-was-trying-to-land-at-gatwick-7003871/

(page 5).

[12] Gang who flew drones carrying drugs into prisons jailed. Oct. 2018. url: https:
//www.bbc.com/news/uk-england-45980560 (page 5).

[13] Perth Prison drug smugglers filmed themselves on drone camera. Oct. 2018. url:
https://www.bbc.com/news/uk-scotland-tayside-central-45731642

(page 5).

[14] Drone flies over Macron’s holiday home in wake of Maduro ’attack’. url: https:
//www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-

home-in-wake-of-maduro-attack (page 5).

89

https://www.dummies.com/consumer-electronics/drones/popular-uses-for-drones/?fbclid=IwAR1Xf7WDCC74YDSQnEDPBviEYizTuahNDzIqoMgKJAdK4M2K68ilzn4pVGs
https://www.dummies.com/consumer-electronics/drones/popular-uses-for-drones/?fbclid=IwAR1Xf7WDCC74YDSQnEDPBviEYizTuahNDzIqoMgKJAdK4M2K68ilzn4pVGs
https://www.dummies.com/consumer-electronics/drones/popular-uses-for-drones/?fbclid=IwAR1Xf7WDCC74YDSQnEDPBviEYizTuahNDzIqoMgKJAdK4M2K68ilzn4pVGs
https://en.wikipedia.org/w/index.php?title=Remote_sensing&oldid=972005266
https://en.wikipedia.org/w/index.php?title=Remote_sensing&oldid=972005266
https://dronerules.eu/en/recreational/obligations/summary-of-safety-rules-in-eu-1
https://dronerules.eu/en/recreational/obligations/summary-of-safety-rules-in-eu-1
https://uavcoach.com/drone-laws-in-united-states-of-america/
https://uavcoach.com/drone-laws-in-united-states-of-america/
https://www.faa.gov/uas/resources/public_records/uas_sightings_report/
https://www.faa.gov/uas/resources/public_records/uas_sightings_report/
https://aviation-safety.net/database/issue/dronedb.php
https://aviation-safety.net/database/issue/dronedb.php
https://dronewars.net/drone-crash-database/
https://dronewars.net/drone-crash-database/
https://www.dedrone.com/resources/incidents/all
https://www.dedrone.com/resources/incidents/all
https://www.irishpost.com/news/aer-lingus-drone-near-miss-170793?utm_source=twitter&utm_campaign=article&utm_medium=web
https://www.irishpost.com/news/aer-lingus-drone-near-miss-170793?utm_source=twitter&utm_campaign=article&utm_medium=web
https://www.irishpost.com/news/aer-lingus-drone-near-miss-170793?utm_source=twitter&utm_campaign=article&utm_medium=web
https://www.dailymail.co.uk/news/article-7042177/BA-jet-near-miss-drone-6-000-feet-Potters-Bar.html
https://www.dailymail.co.uk/news/article-7042177/BA-jet-near-miss-drone-6-000-feet-Potters-Bar.html
https://metro.co.uk/2017/10/16/drone-put-130-lives-at-risk-as-plane-was-trying-to-land-at-gatwick-7003871/
https://metro.co.uk/2017/10/16/drone-put-130-lives-at-risk-as-plane-was-trying-to-land-at-gatwick-7003871/
https://www.bbc.com/news/uk-england-45980560
https://www.bbc.com/news/uk-england-45980560
https://www.bbc.com/news/uk-scotland-tayside-central-45731642
https://www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-home-in-wake-of-maduro-attack
https://www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-home-in-wake-of-maduro-attack
https://www.thelocal.fr/20180807/drone-flies-over-macrons-holiday-home-in-wake-of-maduro-attack

BIBLIOGRAPHY

[15] Diamond.leung@sporttechie.com. Drone Delays Soccer Match, Prompting Safety
Concerns Before Key Goal. Jan. 2018. url: https://www.sporttechie.com/
drone-delays-soccer-match-safety-concerns-goal/ (page 5).

[16] Part I – Drone Detection Technologies. url: https://www.cerbair.com/dron
e-detection-and-neutralization-technologies-parti-blog/ (pages 6,
7).

[17] 9 Counter-Drone Technologies To Detect And Stop Drones Today. url: https:
//www.robinradar.com/press/blog/9-counter-drone-technologies-

to-detect-and-stop-drones-today (pages 8, 10).

[18] Pablo Estrada. Protecting Against Drones: A Brief Review of Passive Counter-
measures. 2018. url: https://www.dedrone.com/blog/protecting-agains
t-drones-a-brief-review-of-passive-countermeasures (page 9).

[19] Defense against drones – the danger on the radar screen. Dec. 2019. url: http:
//fraunhofer.de/en/research/current-research/defense-against-

drones.html?fbclid=IwAR0jh4KQpu59dGHdkP_kxKAwpkbSVI7zdJbJJbISm

6uyAHIev--Z-ZbguvM (page 10).

[20] Serge Malenkovich et al. Is it possible to guard against GPS attacks? url: ht
tps://www.kaspersky.com/blog/gps- spoofing- protection/26837/

(page 10).

[21] Jörg Lamprecht and Aman Johal. The Pros and Cons of Active and Passive
Drone Countermeasures. Mar. 2016. url: https://www.informationsecur
itybuzz.com/articles/pros-cons-active-passive-drone-countermeas

ures/ (page 11).

[22] Counter Drone Systems - SKYLOCK - Anti Drone Solutions. Dec. 2019. url:
https://www.skylock1.com/counter-drone-systems/?utm_term=+coun

ter%20+drone&utm_campaign=eu&gclid=CjwKCAjw4871BRAjEiwAbxXi22Jz

rkXLf3NmIvjqi3b6O3QllwowfrrzGWBnfjZgHYGwrgPaShifDxoCb5AQAvD_BwE

(pages 11, 12).

[23] Anti Drone Jammers - SKYLOCK Anti Drone Solutions. Dec. 2019. url: https:
//www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAj

EiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxo

C6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp (page 12).

[24] How DroneShield Works. url: https://www.droneshield.com/how-dronesh
ield-works1 (page 13).

[25] how Ctrl Sky works? - aps - advanced protection systems. url: https://apsyst
ems.tech/en/how-ctrlsky-works-2/ (page 13).

[26] Jun-Woo Ahn et al. “Two-Phase Algorithm for Optimal Camera Placement”.
In: Scientific Programming 2016 (Jan. 2016), pp. 1–16. doi: 10.1155/2016/
4801784 (pages 15, 19).

[27] Wikipedia contributors. Linear programming — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Linear_program
ming&oldid=969478172. [Online; accessed 6-August-2020]. 2020 (pages 16,
18).

[28] Jian Zhao et al. “Approximate Techniques in Solving Optimal Camera Place-
ment Problems”. In: International Journal of Distributed Sensor Networks 9.11
(2013), p. 241913. doi: 10.1155/2013/241913. eprint: https://doi.org/
10.1155/2013/241913. url: https://doi.org/10.1155/2013/241913
(pages 16–18).

90

https://www.sporttechie.com/drone-delays-soccer-match-safety-concerns-goal/
https://www.sporttechie.com/drone-delays-soccer-match-safety-concerns-goal/
https://www.cerbair.com/drone-detection-and-neutralization-technologies-parti-blog/
https://www.cerbair.com/drone-detection-and-neutralization-technologies-parti-blog/
https://www.robinradar.com/press/blog/9-counter-drone-technologies-to-detect-and-stop-drones-today
https://www.robinradar.com/press/blog/9-counter-drone-technologies-to-detect-and-stop-drones-today
https://www.robinradar.com/press/blog/9-counter-drone-technologies-to-detect-and-stop-drones-today
https://www.dedrone.com/blog/protecting-against-drones-a-brief-review-of-passive-countermeasures
https://www.dedrone.com/blog/protecting-against-drones-a-brief-review-of-passive-countermeasures
http://fraunhofer.de/en/research/current-research/defense-against-drones.html?fbclid=IwAR0jh4KQpu59dGHdkP_kxKAwpkbSVI7zdJbJJbISm6uyAHIev--Z-ZbguvM
http://fraunhofer.de/en/research/current-research/defense-against-drones.html?fbclid=IwAR0jh4KQpu59dGHdkP_kxKAwpkbSVI7zdJbJJbISm6uyAHIev--Z-ZbguvM
http://fraunhofer.de/en/research/current-research/defense-against-drones.html?fbclid=IwAR0jh4KQpu59dGHdkP_kxKAwpkbSVI7zdJbJJbISm6uyAHIev--Z-ZbguvM
http://fraunhofer.de/en/research/current-research/defense-against-drones.html?fbclid=IwAR0jh4KQpu59dGHdkP_kxKAwpkbSVI7zdJbJJbISm6uyAHIev--Z-ZbguvM
https://www.kaspersky.com/blog/gps-spoofing-protection/26837/
https://www.kaspersky.com/blog/gps-spoofing-protection/26837/
https://www.informationsecuritybuzz.com/articles/pros-cons-active-passive-drone-countermeasures/
https://www.informationsecuritybuzz.com/articles/pros-cons-active-passive-drone-countermeasures/
https://www.informationsecuritybuzz.com/articles/pros-cons-active-passive-drone-countermeasures/
https://www.skylock1.com/counter-drone-systems/?utm_term=+counter%20+drone&utm_campaign=eu&gclid=CjwKCAjw4871BRAjEiwAbxXi22JzrkXLf3NmIvjqi3b6O3QllwowfrrzGWBnfjZgHYGwrgPaShifDxoCb5AQAvD_BwE
https://www.skylock1.com/counter-drone-systems/?utm_term=+counter%20+drone&utm_campaign=eu&gclid=CjwKCAjw4871BRAjEiwAbxXi22JzrkXLf3NmIvjqi3b6O3QllwowfrrzGWBnfjZgHYGwrgPaShifDxoCb5AQAvD_BwE
https://www.skylock1.com/counter-drone-systems/?utm_term=+counter%20+drone&utm_campaign=eu&gclid=CjwKCAjw4871BRAjEiwAbxXi22JzrkXLf3NmIvjqi3b6O3QllwowfrrzGWBnfjZgHYGwrgPaShifDxoCb5AQAvD_BwE
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.skylock1.com/anti-drone-jammers/?gclid=CjwKCAjw4871BRAjEiwAbxXi2wxkKOY9iR3HoDotdOfQSBfVEaCMPO7sVUS43-oB05qOXexTKRhpsxoC6G8QAvD_BwE&utm_term=drone%20guard&utm_campaign=comp
https://www.droneshield.com/how-droneshield-works1
https://www.droneshield.com/how-droneshield-works1
https://apsystems.tech/en/how-ctrlsky-works-2/
https://apsystems.tech/en/how-ctrlsky-works-2/
https://doi.org/10.1155/2016/4801784
https://doi.org/10.1155/2016/4801784
https://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=969478172
https://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=969478172
https://doi.org/10.1155/2013/241913
https://doi.org/10.1155/2013/241913
https://doi.org/10.1155/2013/241913
https://doi.org/10.1155/2013/241913

BIBLIOGRAPHY

[29] Wikipedia contributors. Set cover problem — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Set_cover_problem&

oldid=944382146. [Online; accessed 6-August-2020]. 2020 (page 16).

[30] Petr Slavík. “A Tight Analysis of the Greedy Algorithm for Set Cover”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting. STOC ’96. Philadelphia, Pennsylvania, USA: Association for Comput-
ing Machinery, 1996, pp. 435–441. isbn: 0897917855. doi: 10.1145/237814.
237991. url: https://doi.org/10.1145/237814.237991 (page 16).

[31] E. Hörster and R. Lienhart. “On the Optimal Placement of Multiple Visual
Sensors”. In: Proceedings of the 4th ACM International Workshop on Video Surveil-
lance and Sensor Networks. VSSN ’06. Santa Barbara, California, USA: Associ-
ation for Computing Machinery, 2006, pp. 111–120. isbn: 1595934960. doi:
10.1145/1178782.1178800. url: https://doi.org/10.1145/1178782.
1178800 (pages 17, 19).

[32] Yves Tillé. “Sampling Algorithms”. In: International Encyclopedia of Statistical
Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 1273–1274. isbn: 978-3-642-04898-2. doi: 10.1007/978-3-
642-04898-2_501. url: https://doi.org/10.1007/978-3-642-04898-
2_501 (page 17).

[33] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science &
Business Media, 2008 (page 17).

[34] Wikipedia contributors. Simulated annealing — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Simulated_annea
ling&oldid=966943761. [Online; accessed 8-August-2020]. 2020 (page 18).

[35] Junbin Liu et al. “On the Statistical Determination of Optimal Camera Con-
figurations in Large Scale Surveillance Networks”. In: Oct. 2012. doi: 10.
1007/978-3-642-33718-5_4 (page 18).

[36] Daryn Ramsden. “OPTIMIZATION APPROACHES TO SENSOR PLACEMENT
PROBLEMS”. In: 2009 (page 18).

[37] Leonid Genrikhovich Khachiyan. “A polynomial algorithm in linear pro-
gramming”. In: Doklady Akademii Nauk. Vol. 244. 5. Russian Academy of
Sciences. 1979, pp. 1093–1096 (page 18).

[38] Wikipedia contributors. Integer programming — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Integer_
programming & oldid = 950261457. [Online; accessed 6-August-2020]. 2020
(page 18).

[39] Hans-Paul Schwefel. Evolution and Optimum Seeking. Jan. 1995. isbn: 978-0-
471-57148-3 (page 19).

[40] Aug. 2020. url: https://www.gurobi.com/products/gurobi-optimizer/
(page 19).

[41] Vojtěch Kaiser. “Efficient Rendering of Earth Surface for Air Traffic Visual-
ization”. MA thesis. Czech Technical University in Prague, 2018 (page 22).

[42] Jan Kúdelka. “Critical Infrastructure Protection Against Attacks Using Drones”.
Bachelor’s Thesis. Czech Technical University in Prague, 2018 (page 22).

91

https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=944382146
https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=944382146
https://doi.org/10.1145/237814.237991
https://doi.org/10.1145/237814.237991
https://doi.org/10.1145/237814.237991
https://doi.org/10.1145/1178782.1178800
https://doi.org/10.1145/1178782.1178800
https://doi.org/10.1145/1178782.1178800
https://doi.org/10.1007/978-3-642-04898-2_501
https://doi.org/10.1007/978-3-642-04898-2_501
https://doi.org/10.1007/978-3-642-04898-2_501
https://doi.org/10.1007/978-3-642-04898-2_501
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=966943761
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=966943761
https://doi.org/10.1007/978-3-642-33718-5_4
https://doi.org/10.1007/978-3-642-33718-5_4
https://en.wikipedia.org/w/index.php?title=Integer_programming&oldid=950261457
https://en.wikipedia.org/w/index.php?title=Integer_programming&oldid=950261457
https://www.gurobi.com/products/gurobi-optimizer/

BIBLIOGRAPHY

[43] M. Hapala and V. Havran. “Review: Kd-tree Traversal Algorithms for Ray
Tracing”. In: Computer Graphics Forum 30.1 (2011), pp. 199–213. doi: 10.
1111/j.1467- 8659.2010.01844.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01844.x. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.

01844.x (page 22).

[44] Ingo Wald and Vlastimil Havran. “On Building Fast kd-trees for Ray Tracing,
and on Doing that in O(N log N)”. In: Symposium on Interactive Ray Tracing 0
(Sept. 2006), pp. 61–69. doi: 10.1109/RT.2006.280216 (page 22).

[45] Wikipedia contributors. K-d tree — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=K-d_tree&oldid=961252065.
[Online; accessed 13-June-2020]. 2020 (page 22).

[46] Model View Projection. [Online; accessed 21-June-2020]. url: https://jsan
tell.com/model-view-projection/ (page 43).

[47] Coordinate Systems. [Online; accessed 21-June-2020]. url: https://learnop
engl.com/Getting-started/Coordinate-Systems (page 43).

[48] Bastian Molkenthin. Software Rasterization Algorithms for Filling Triangles.
May 2012. url: http://www.sunshine2k.de/coding/java/TriangleRa
sterization/TriangleRasterization.html (page 44).

[49] Haye Kesteloo. Video: More detail on the noise levels of the DJI Mavic Pro Plat-
inum vs DJI Mavic Pro. Sept. 2017. url: https://dronedj.com/2017/09/
28/video- detail- on- the- noise- levels- of- the- dji- mavic- pro-

platinum-vs-dji-mavic-pro/ (page 46).

92

https://doi.org/10.1111/j.1467-8659.2010.01844.x
https://doi.org/10.1111/j.1467-8659.2010.01844.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01844.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01844.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01844.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01844.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01844.x
https://doi.org/10.1109/RT.2006.280216
https://en.wikipedia.org/w/index.php?title=K-d_tree&oldid=961252065
https://en.wikipedia.org/w/index.php?title=K-d_tree&oldid=961252065
https://jsantell.com/model-view-projection/
https://jsantell.com/model-view-projection/
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
http://www.sunshine2k.de/coding/java/TriangleRasterization/TriangleRasterization.html
https://dronedj.com/2017/09/28/video-detail-on-the-noise-levels-of-the-dji-mavic-pro-platinum-vs-dji-mavic-pro/
https://dronedj.com/2017/09/28/video-detail-on-the-noise-levels-of-the-dji-mavic-pro-platinum-vs-dji-mavic-pro/
https://dronedj.com/2017/09/28/video-detail-on-the-noise-levels-of-the-dji-mavic-pro-platinum-vs-dji-mavic-pro/

	List of Figures
	Introduction
	Thesis structure

	Background
	Drone usage
	Drone threats
	Recorded drone incidents

	Drone detection
	Radio frequency analyzers
	Radars
	Acoustic sensors
	Optical sensors

	Drone neutralization
	Passive countermeasures
	Active countermeasures

	Integrated C-UAV solutions

	Towards the optimal sensor placement problem
	Greedy algorithms
	Sampling algorithms
	Integer linear programming
	ILP Solvers

	Simulation design
	AgentFly simulation framework
	Sensor modelling
	Ray tracing
	K-d tree
	Sensor scanning

	Simulation workflow
	Configuration overview
	Geographical environment model
	Sector
	Priority areas
	Sensor spots
	Serialized data
	World configuration
	World cell configuration
	Sensor placement configuration

	Setting up the environment
	Input files processing
	Coordinate systems

	Space discretization
	Graphical User Interface

	Implementation
	World graph
	Expansion
	Surface scanning

	Sensor coverage
	Camera
	Reducing the space
	Projecting cells to screen space
	Rasterizing cells
	Evaluating the coverage

	Acoustic sensor
	Detection thresholds

	Sensor placement
	Input
	Precomputation phase
	MILP model

	Experimental evaluation
	Experiment design
	Flight path generator
	Evaluation
	The Pankrác Prison scenario
	The Václav Havel Airport Prague scenario

	Conclusion and future work
	Future work

	Measured data
	Drone detections
	Sensor placements
	Attached files

