
Czech Technical University in Prague
Lulea University of Technology

Simulation of Attitude and Orbit Control for APEX
CubeSat

Master thesis

BSc Niels de Graaf

Msc programme: Joint European Master in Space Science and Technology
Master in Cybernetics and Robotics

Supervisor: Doc. Ing. Daniel Stefl, Ph.D.
Examiner: Martin Hlinovsky, Ph.D.

Kristian Hengster Movric, Ph.D.
Anita Enmark, Ph.D.

Prague, July 2020

ii

Thesis Supervisor:
Doc. Ing. Daniel Stefl, Ph.D.
Managing Director
Huld s.r.o
náměst́ı Winstona Churchilla
1800/2, Praha - Žižkov
Czech Republic

Copyright c© July 2020 BSc Niels de Graaf

Declaration

I hereby declare I have written this Master thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles
for writing an academic thesis. Moreover, I state that this thesis has neither been sub-
mitted nor accepted for any other degree.

In Prague, July 2020

..
BSc Niels de Graaf

iii

Abstract

CubeSats are becoming a game changer in the space industry. Appearing first for univer-
sity mission, its popularity is increasing for commercial use and for deep space missions
such as the on HERA mission that will orbit in 2026 around an asteroid as part of a
planetary defence mission. Standardisation and industrial collaboration is key to a fast
development, assuring the product quality and lower development expenditures.

In this study the focus is set elaborating a low cost demonstrator platform to be used
for developing and testing onboard software on physical hardware: a Hardware-Software
testing facility. The purpose of such a platform is to create an interactive and accessible
environment for developing on board software. The application chosen to be elaborated
on this platform is a module the subsystem of attitude and orbit control of the satellite
orbiting around asteroid.

In order to create this platform the simulation of the asteroid environment of the
CubeSat has been made using open source software libraries. During this task the per-
formance of open source libraries has been compared to commercial alternatives. In the
development of simulation different orbit perturbations have been studied by modelling
the asteroid as a cube or spheroid and additionally the effect of a third perturbing body
and radiation pressure.

As part of this project two microcontroller have been set up communicating using a
communication bus and communication protocols used for space applications to simulate
how the attitude and orbit control is commanded inside the CubeSat.

Keywords: Orbital Control Simulation, Asteroid, Open Source, CAN bus, Micro-
controllers, Software Verification Facility.

iv

Acknowledgements

I would like to thank Daniel Stefl for giving me the freedom and opportunity to set up my
work in a very knowledgeable environment such as the company Huld in Prague. A kind
thought to Marek Sedlacek who supported me during this project with great interaction,
interest and advice. A warm thought to Juan Luis Cano for providing help during the
development of the simulations.

v

List of Tables

2.1 Properties of the Didymos system[5] . 12

3.1 APEX CubeSat structure [31] . 18
3.2 Microcontroller choice for demonstrator . 22

5.1 APEX CubeSat ADCS and GNC [31] . 29
5.2 APEX CubeSat mission stages [31] . 32

vi

List of Figures

1.1 Simulation in the project life cycle [4] . 2
1.2 HERA and APEX mission overview [5] . 3
1.3 Project overview . 5

2.1 Ephemeris plotting arrival of HERA mission to Didymos 9
2.2 Ephemeris plotting propagation at end of the HERA mission 10
2.3 Circular orbit of APEX around Didymos without perturbation 11
2.4 Cube perturbation plot . 13
2.5 Oblateness perturbation plot . 15
2.6 3rd body perturbation plot . 16
2.7 Radiation pressure perturbation plot . 17

3.1 System model of the testing facility . 20
3.2 Embedded software of the testing facility 23

4.1 CAN BUS diagram APEX [31] . 25
4.2 CAN BUS diagram testing facility [36] . 26
4.3 CAN BUS timing diagram [7] . 27
4.4 CAN BUS parallel access redundancy . 27

5.1 AOCS diagram APEX [31] . 29
5.2 Orbital data transfer diagram . 30
5.3 Altitude acquisition and visualisation . 31
5.4 Hohmann transfer testing facility application 33
5.5 PD controller resulting orbit with 3rd body perturbation 34
5.6 PI controller resulting orbit with 3rd body perturbation 35

6.1 Project work modules . 38

A.1 CAN bus setup between 2 microcontrollers 40

B.1 CAN BUS debbugging with Arduino . 41

C.1 Flashing board wiring . 44

D.1 Altitude cube perturbation . 45
D.2 RAAN cube perturbation . 46
D.3 Altitude spheroid perturbation . 46
D.4 RAAN spheroid perturbation . 47
D.5 Altitude 3rd body perturbation . 47
D.6 RAAN 3rd body perturbation . 48

vii

LIST OF FIGURES viii

D.7 Altitude radiation pressure . 48
D.8 RAAN radiation pressure . 49

Contents

Abstract iv

Acknowledgements v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Project Background information . 2
1.2 Current situation . 4
1.3 Thesis Goals . 4
1.4 Methodology . 5
1.5 Thesis synopsis . 6

2 Asteroid environment simulation 7
2.1 Orbit Propagator . 7
2.2 Initialising the Orbit . 11
2.3 Irregular body . 12
2.4 3rd Body perturbation . 14
2.5 Radiation pressure . 16

3 CubeSat model for simulation 18
3.1 APEX CubeSat Specifications . 18
3.2 Hardware-Software Test Facility Design . 20
3.3 Hardware of the Testing Facility . 22
3.4 Embedded Software of the testing Facility 23

4 Implementation of the CAN BUS 24
4.1 CAN Bus in CubeSat . 24
4.2 Physical CAN Bus . 26
4.3 CAN Bus structure . 27

5 Attitude and Orbit Control of the CubeSat 28
5.1 AOCS in the APEX mission . 28
5.2 Orbit determination application . 30
5.3 Maneuvering of the satellite application . 31
5.4 Countering perturbation application . 34

ix

CONTENTS x

6 Conclusion 36
6.1 Summary of thesis . 36
6.2 Fulfilment of targets . 37
6.3 Further extensibility and recommendations 39

A CAN bus Setup 40

B Debugging CAN Bus 41

C Flashing micropython on microcontroller 43

D Orbit Perturbation Graphs 45

Bibliography 52

Chapter 1

Introduction

The focus of this master thesis is to create a module of a Hardware-Software testing

Facility and Spacecraft Simulator. The subsystem of the spacecraft that is targeted for

the simulation is the Attitude and Orbit Control(AOCS). This is functionality of the

spacecraft to control the course of its navigation as well as determining its position and

orientation [1]. The module that will covered by the Hardware-Software testing facility for

this study is the communication bus, this includes communication protocols and physical

links between the components of the spacecraft.

In this project the Software Testing Facility will be made for a CubeSat mission around

an asteroid. The term CubeSat designates satellites strictly given a form of a cube of the

edge 10 cm, which is known as one CubeSat unit, 10 cm being denoted as 1U and these

satellites are usually made with the dimensions of 1U, 1.5U, 3U up to 12U [2]. The study

covers the simulation of an asteroid environment, controlling the motion of the CubeSat

and communication.

Making software ready to fly in space requires a lot of testing. This is the most critical

part of the entire life cycle of the software development. There are many standards and

processes that have to be applied in order to limit the risk of failure.

One of the applications of software testing is the Hardware-Software Environment testing

in which the software is connected to hardware and has to respond to a simulated scenario

and test cases. This is described in the guidelines from the ECSS-Q-80, published by the

European Cooperation for Space Standardization. This cooperation releases the standards

that the companies contracted by ESA (European Space Agency) need to comply with.

Nevertheless there is room for tailor made solutions with respect to the project. Verifying

and validating the project requirements include Hardware-Software Interaction tests in

which companies have to ensure that the software behaves accordingly [3].

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Simulation in the project life cycle [4]

Other important modules of testing are Simulations. The ECSS-E-TM-10-21A describes

guidelines on system modelling and simulation for Space engineering. Simulation can be

done for great amount of aspects of the project such as Spacecraft Dynamics, in which

the motion of the spacecraft according to its environment is made. Simulating is an

omnipresent process integrated in the project life cycle described as in the V-shape model

as shown in Figure 1.1. The process of interest of this study is the Software Verification

Facility and Space craft Simulator, encircled in red.

1.1 Project Background information

The master thesis is conducted at the Czech-Finnish company Huld, previously Space

Systems Czech(2019). The company develops software for space applications, onboard

computer (OBC) as well as ground segment services. Huld has the ambition to continue

with missions around asteroids in the future and wants to develop a Software Verification

Facilities using open source software. Therefore the focus of this study is on the elabora-

tion of the Hardware-Software testing Facility and Simulation module. This will be used

for easing software prototyping as well as verification and validation in order for the sys-

tem to reach its maturity and meet its design criteria. The purpose of this master thesis

is then primarily to create a demonstrator of such a facility that is interactive for the user

to enhance creativity and ideas of development for space with off the shelf components.

Huld is currently working inside a European consortium contracted by ESA on the deep

space project HERA. The mission is a follow up of the NASA(National Aeronautics and

Space Administration) DART (Double Asteroid Redirection Test) mission. The purpose

CHAPTER 1. INTRODUCTION 3

Figure 1.2: HERA and APEX mission overview [5]

of both missions is to evaluate the effectiveness of the kinetic impactor, which is the

concept of deflecting bodies trajectories with momentum transferred by colliding a space

craft with the asteroid. The application of such a concept is for planetary defence.[6]

The DART mission launch date is scheduled for summer 2021 and the collision for Septem-

ber 2022. In here the target is the binary system of the Didymos asteroid and its moon

Didymoon. The NASA DART mission launches the spacecraft responsible of impacting

the asteroid Didymoon and the SpaceCrafts of the HERA mission are responsible for

characterizing the event as well as the bodies. The launch is set to 2024 for the binary

system to be reached in 2026.[5]

The APEX CubeSat is one of the payloads of HERA. Huld is also responsible for the

onboard software of this spacecraft part of the Hera mission but only takes action at the

encounter with Dydimos system where the CubeSat will be deployed and released from

the main spacecraft. The APEX mission starts at the CubeSat release phase which comes

after the arrival at the asteroid and the early characterisation phase of the body. This

spacecraft will be basis for the development of the Software testing Facility.

CHAPTER 1. INTRODUCTION 4

1.2 Current situation

In the current and previous missions that the company worked on, the software is devel-

oped by different companies from the same consortium. Therefore the company is then

provided with simulators to test and implement higher level functionalities while the low

level software is developed by the other company simultaneously. Huld want to broaden

their capabilities by gaining the possibility to test software at lower levels. A demonstra-

tor for Hardware-Software testing would be beneficial for creating a culture of knowledge

inside the company and familiarise colleagues with hardware.

In addition to simulators used by companies as a ”black box” approach, Simulators and

Software used for space application development are often commercial platforms. More

and more open source software for these application are being developed and could be a

great potential for companies like Huld to cut down the price of their development cost

as well as getting a bigger autonomy.

1.3 Thesis Goals

The goal of this thesis is to create a demonstrator of such a Software Testing Facility which

will include spacecraft dynamics simulator and a Hardware Software validation interface.

The main objectives are listed below:

1. To create a model of the dynamics of the CubeSat subjected to the disturbance for

the asteroid environment to plot its trajectories using python libraries developed for

orbital dynamics.

2. Attitude and Orbital control applications will be programmed on a microcontroller

to calculate the new trajectories for the simulation.

3. An Interface will be made to send simulated data using the standard protocols

developed for spacecrafts and using the communication bus used on the APEX

spacecraft.

An overview of the project is in the given in the Figure 1.3 where it can be seen the how

the simulation of the APEX spacecraft is connected with the Hardware-Software testing

facility and interfacing with with possible front end application.

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Project overview

1.4 Methodology

The way that this assignment is approached is by working from Low level to top level.

The communication bus used on the APEX CubeSat is the CAN bus (Controller Area

Network) which is a message based protocol used for microcontrollers and devices to

transfer information and commands[7]. This will be built starting from the physical bus

to the higher level protocols. CAN bus communication is widely used in the space and

automotive industry and was developed in order to reduce signal interference and a reliable

communication protocol for multiple end nodes.

The first step is to create the physical connection with hardware to allow this CAN bus

communication between nodes. The APEX CubeSat makes use of a protocol developed

for space that is built upon the CAN bus communication. The next step is to implement

a higher level protocol on top of the CAN bus. Using this communication is convenient

for reusability because it is a design choice of many satellite which is experiencing a

considerable growth on the market.

CHAPTER 1. INTRODUCTION 6

When it comes to the simulation of the APEX dynamics here is the method that is put in

use: the thesis will investigate the use of Python libraries developed for orbital dynamics.

Python programming language usage has increased and become more and more popular

in the last decade due to its convenience and interactivity. One of the first steps to frame

the potential of these open source Python libraries is to create an equivalent application

on this platform as well as on Matlab and STK to compare performances. Afterwards

the next target is to build the environment of the asteroid and investigate the effect of

disturbances on the orbit: 3rd body disturbances, the shape of the object and other

possible disturbances.

This thesis will also be the opportunity to investigate different control routines for the

embedded software and their performance since this is this study is performed at the

department of Cybernetics and it is a major part of the scope of this discipline. The

choice is then to develop this orbit control software using the tailored version of Python

for microcontrollers: MicroPython which then brings a certain consistency in this project

in using the same programming language.

1.5 Thesis synopsis

The 2nd chapter deals with the methods used for modelling the asteroid environment.

This will include the different perturbations of the binary asteroid system that the APEX

CubeSat will have to navigate in. The choices of Python libraries used for developing

this simulation will be elaborated as well in this chapter. The 3rd chapter defines the

characteristics of the APEX CubeSat regarding the simulation and the Hardware-Software

development. The 4th chapter brings about the development of CAN bus from bottom to

top level. The 5th chapter deals with AOCS of the simulated space craft in its environment

and the routines on the embedded software from the test facility.

Chapter 2

Asteroid environment simulation

This chapter will deal with the modelling for the simulation of the environment of the

satellite. For this particular purpose, the environment that is being modelled is the

Didymos asteroid. The Didymos system with the main body having a 780 meter diameter

and a 160 meter diameter moon, Didymoon. In a first part the tools used for orbital

simulations will be shown and comparing its performances to a commercial solution.

Afterwards the different aspects of the environment used for simulating the perturbations

that the satellite can be subjected to during the course of its mission will be explained.

The software developed for the simulation is available here:

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/Asteroid

2.1 Orbit Propagator

An orbit propagator is a term given to algorithms, software and computer applications

used for calculating the coordinates of the position of a body within a certain reference

frame that is orbiting around another one. This method enables to know the position

and velocity variations over time of a satellite mission. The orbit propagator outputs

are numerical results from solving the equations of motions that are representing the

movement of bodies subjected to different forces acting on them. The major force to

which the bodies are subjected and computed by the orbit propagators is gravity. [8]

These computations allow to make approximations of these motions since exact solutions

can only performed when dealing with point-mass bodies. The latter are idealisations of

solid bodies and rare are applications in the space industry where the bodies involved

7

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/Asteroid

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 8

are ideal, therefore estimations and reliable computations become important. These ap-

plications done by simplification called the General Perturbations methods or numerical

integration or sometimes a combination of both of those methods.[9]

There is a wide range of orbit propagators coded in different programming languages de-

veloped by commercial and open source communities. For example different orbit prop-

agation algorithms are provided by the company MathWorks in their product Matlab

which is a software environment that has a long history of development since 1970 and

is used in the aerospace industry[10]. Another company providing more graphical inte-

grated environment is Systems Tool Kit usually refered as STK. The development of this

commercial software tool started in 1989 and now used by a great number of aerospace

organisations such as ESA, NASA, Airbus and Boeing [11].One of the biggest competitors

nowadays of STK developed by AGI is FreeFlyer which is commercial platform that is

been in use since 1997[12].

With the commercialising and democratising of space where there is an emergence of

commercial and student missions thanks to the development CubeSats there is an need

for educational purposes and development of open source orbit propagators. There are for

instance libraries for the Java programming language called Orekit and JAT. The Java

AstroDynamics Toolkit that are nowadays also used by Swedish Space Corporation and

Thales [13]. Furthermore the General Mission Analysis Tool developed in NASA has also

been open sourced and is considered as an alternative to STK [12].

For the demonstrator of this thesis project the coding language that is used is Python

and Micropython and uses the libraries called Poliastro and Astropy which have been

developed for orbit propagation and plotting. Poliastro started its development in 2013

by Juan Luis Cano and is an open source assortment of Python functions licensed by

MIT. This collection of software is used to solve problems in Orbital Mechanics and

Astrodynamics. Some of the applications that are already implemented in this set of

algorithms for converting vectors to classical orbital elements, Trajectory plotting and

most importantly for the need of the development of this demonstrator: Analytical and

numerical Orbit propagators [14].

Poliastro makes use of another library already widely used in universities called Astropy

which is also a group of software libraries written in the Python programming language.

These software packages were primarily more focused on astronomy. The advantage of

Astropy is that it can be easily combined with other Python packages [15].

The reason why Astropy and Poliastro will be used for the demonstrator is mainly for

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 9

the the Programming language they have been written in. The usage Python has been

growing drastically in the industry for the last decade and the open source libraries and

collaborative platform allow a fast development. This synergy is often described as being

inscribed in what is called Industry 4.0 which an name given fourth industrial revolu-

tion in which interoperability and smart technologies are combined[16]. Moreover the

development of Numba which is a high performance Python compiler. Numba allows to

make the processing time shorter making the Python language more attractive to the

industry and boost its popularity and has been used for this project [17]. Furthermore

Poliastro has been chosen for its constant updates and active communities and intuitive

structure. Poliastro is therefore the candidate for implementing the simulation in this low

cost Verification Facilities demonstrator.

Figure 2.1: Ephemeris plotting arrival of HERA mission to Didymos

In the Figure 2.1 the capabilities of Poliastro are shown. This is the plot of the ephemeris

of the Sun, Mercury, Venus, Earth and the body of interest when it comes to the HERA

mission that the company Huld is working on: the binary system of Didymos that has the

official name of ”65803 Didymos”. The ephemeris is a term that covers the database of

celestial objects containing their calculated position at a certain interval over a period of

time[18]. In purple there is the plotted position of Didymos from the ephemeris database

from NASA at the time of when the thesis is conducted. Next the orbit and the position

that Didymos will have in September 2026 when the HERA mission will reach this system

has been calculated by using a numerical orbit propagator provided by Poliastro.

The positions of Didymos are then in the Heliocentric Coordinates in 2026-09-01 at the

beginning of the mission and on the 2016-12-01 at the end of the mission are respectively

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 10

in kilometers:

[xi, yi, zi] = [67969641.02827488,−2.236529715e+ 08,−7722639.23892914] (2.1)

and:

[xf , yf , zf] = [1.60778844e+ 08,−27515205.2200428,−9639133.51806481] (2.2)

When Calculating the coordinates with Matlab and STK for the beginning of the mission

the following result is [19]:

[xi, yi, zi] = [67969641.02827486,−2.236529714e+ 08,−7722639.23892911] (2.3)

Both application provide similar results with a difference of 102m. Developers of Poliastro

also tested simulations and compared with numbers given by ESA and had close results

[14]. Poliastro can legitimately be used for the simulation.

The solution is in both cases easily implementable with a comparable accuracy. Neverthe-

less Python has the ability to call other libraries that are developed for plotting the results

which bring more freedom in the format than fully integrated software environment. The

plots here are implemented using the Matplotlib libraries as well as the Plotly libraries

which allow to display on the web browser.

Figure 2.2: Ephemeris plotting propagation at end of the HERA mission

As discussed before Orbit propagators are a collection of numerical, analytical and hybrid

algorithms. The one that will chosen for calculating the position of the APEX CubeSat

in the Dydimos environment will be the Cowell method that Poliastro has implemented

along with several others. The Cowell method has great advantages when comes for

getting faster results and is an easier application in programming since it is a numerical

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 11

integrator [20]. The disadvantage of this method is when the perturbation forces become

large in magnitude the error also drastically increases. Moreover it is necessary to carry

many significant digits in the arithmetic because in the case of a large difference in the

forces of the central body and the perturbing bodies. In the Didymos system there is

not a great difference between bodies and forces such as Sun compared to Earth scales

reducing the errors on that side. The chosen method has limitations that will have to be

taken into account but will not impact to show the performance of the application of the

demonstrator.

2.2 Initialising the Orbit

The orbit propagator has to calculate the coordinates of the satellite over time when

subjected to perturbations since orbiting the Didymos system is more complex than only

orbiting a perfect spherical body. The initial Orbit will be defined in this simplified

system where Didymos will be spherical body with a diameter of 780 m as shown on the

properties Table 2.1 available on the website of NASA.

Figure 2.3: Circular orbit of APEX around Didymos without perturbation

The orbit will be inspired by the one that will done by APEX at the beginning of its

mission. It is the defined as a circular orbit with at an altitude of 4km with an inclination

of 30 degrees. The initial vectors of the Satellites are: r0 = [4, 0, 0] km and the velocity

vectors are then v0 = [0, 7.270 · 10−5, 4.198 · 10−5] km/s. The following orbit is shown in

Figure 2.3.

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 12

Discovery April 11 1996
Known Satellites 1
Rotation period 2.26 h

Distance of Didymoon 1.18km
Orbital period of the Didymoon 11.92 h

Diameter of Didymos 780 m
Diameter of Didymoon 160 m

Systems mass 5.279e11 kg
Density 1.7(+/- 0.4) g/cm3

Table 2.1: Properties of the Didymos system[5]

2.3 Irregular body

The first perturbation that comes to mind when thinking of orbiting around a system of

asteroids is the fact that they are not regular spherical bodies. Asteroids unlike larger

bodies such as terrestrial planets and even gas giants are not forced to take spherical shapes

due to the crushing gravity of mass accumulating in addition to the strong centrifugal

force. Asteroids come in all sorts of shapes and sizes with uneven mass distributions and

often with nonuniform revolutions around their axis [21].

One way to model and represent such an irregular body that gives a reasonably generic

perturbation force that resembles the one that satellites can be subjected to is to give

different regular geometric shapes to the bodies. The field of the gravity of such a body,

that has a inconsistent mass distribution, has the property of not being centered compared

to spheroid shaped geometries. This result in satellites orbiting with a different behaviour

than keplerian orbits [22]. The latter is named to describe orbits subjected to the laws

developed by Johannes Kepler and neglecting the perturbations, which will not be the

case around this environment due to the fact that perturbation of the gravitational field

will be taken into account[21].

As a previous study done at National Institute for Space Research of Brazil in 2012

the cube has been chosen for representing the irregular gravitational field. The effect and

magnitude of the perturbation force has been defined by previous works in the last century

of Mac Millan who defined the gravitational potential by the the following equation[23]:

U =
Gm

r
− 7a4Gm

30r9
[x4 + y4 + z4 − 3(x2y2 + x2z2 + y2z2)] (2.4)

The variables x, y and z are the coordinates of the position of the satellite that is orbiting

around the body which is considered the origin of the frame. G is the gravitational

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 13

constant and m is the mass of the body. In this case the calculated mass of the body

is 4.5 · 1011 kg. In the equation a is the length of the edge of the cube which has been

calculated to be 0.68 km in order for the simulated cube Didymos to have the same volume.

To find the magnitude of the force of this perturbation in each axis this gravitational

potential equation has to be derived to find the Fx, Fy and Fz components described in

the following equations[24]:

Fx =
7a4Gmx(x4 − 5x2(y2 + z2) + (y4 − y2z2 + z4))

6(x2 + y2 + z2)
11
2

(2.5)

Fy =
7a4Gmy(3x4 + y4 − 5y2z2 + 3z4 − x2(5y2 + 3z2))

6(x2 + y2 + z2)
11
2

(2.6)

Fz =
7a4Gmz(3x4 + 3y4 − 5y2z2 + z4 − x2(3y2 + 5z2))

6(x2 + y2 + z2)
11
2

(2.7)

This perturbation has not been implemented in Poliastro before, therefore a function with

these perturbations had to be created in order to be able to plot and propagate for the

time of the mission. From the properties of the cube and the initial orbit of the satellite

the order of magnitude of the perturbation force is 10−12km/s2 which has a considerable

impact on the orbit.

Figure 2.4: Cube perturbation plot

In Figure 2.4 the Orbit around the simulated cube with the perturbation over time is

shown. The first noticeable effect that is important for the mission safety is that simulating

this orbit around a cube creates a considerable change in altitude of the orbit going from

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 14

6 km of altitude down to 1.2 km which is very close to the distance to which Didymoon

is orbiting. The right ascension of the ascending node also know as RAAN, which is the

angle with respect to a reference axis at which the satellite passes over the defined equator

of the body[25]. The RAAN over the mission time of 3 months oscillates from 6.3 degrees

to 5.2 degrees following a cosine function. Moreover a lower magnitude oscillation over

a couple of rad follow a sinus function is also noticeable which represents a shift every

time that a new orbit period is made. The plots of the evolution of the Altitude and the

RAAN of the perturbation are in Appendix D.

Other simulations of asteroids have been made by simulating a sphere like object with an

exaggerated oblateness [26]. This term is signifies that the body is simulated with having

a certain flattening effect making its shape become oval rather than round. This effect is

already widely studied and taken into account when planning Low Earth orbit satellites.

This effect also called J2 perturbation is defined by [27]:

J2 =
2ε

3
− R3ω2

3Gm
(2.8)

In which ε is the ratio of the flatness of the body. R is the radius of the body and ω the

rotation rate of the body. In the case of Dydimos the choice is made simulate with different

oblateness ratios: 680m and 580m of diameter for the flattened part. As mentioned in

Table 2.1 the main body does have a certain spin that also is taken into account in the

equation.

J2 perturbation simulating an oblateness of the body is shown in Figure 2.5. It is impor-

tant mentioning that there is no variation in the altitude with this simulation compared to

the cube geometry. The RAAN changes faster when the flatness of the body is increased.

Compared to the cube simulation the visual coverage of the body from the satellite point

of view is higher, meaning that the satellite passes over a higher amount of portions of

the surface of the body. The body spin will reduce the effect of the oblateness. If the

body spins fast enough a not perfectly round body will have a lower impact on the orbit

of the satellite.

2.4 3rd Body perturbation

Another important factor of the environment of Didymos is that it is a binary system.

Didymos has a natural satellite Didymoon. As shown in table 2.1 Didymoon is orbiting

around Didymos at a distance of 1.18km and has a mass of 1.1 · 1011 kg. This is not an

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 15

Figure 2.5: Oblateness perturbation plot

negligible perturbation when it comes to modelling such an environment. Therefore the

following perturbation is defined as follows [28]:

a2/1 =

(
Gm1

R1 −R2

‖ R1 −R2 ‖3
+Gm3

R3 −R2

‖ R3 −R2 ‖3

)
−
(
Gm2

R2 −R1

‖ R2 −R1 ‖3
+Gm3

R3 −R1

‖ R3 −R1 ‖3

)
(2.9)

There are two distinguishable parts to the equation which are two accelerations subtracted

from each other. This is because it is the calculation of the relative acceleration of the

bodies. R1 is the position main body, R2 the position of the satellite and R3 the position of

the perturbation body, in this case Didymoon. The masses m1, m2 and m3 are respectively

the ones of the mention bodies above.

From the simulations as shown in Figure 2.6 it can be noticed that compared to the two

other perturbations modeled above the satellite does not keep orbiting around the body

and is pushed out by the perturbation body after a time interval of four days. The initial

velocitiwa of the satellite are to important for remaining in orbit with the perturbation

of the 3rd body. The escape of the orbit can also demonstrate the limits of the Cowell

method where the magnitude of the force errors add up drastically. Nevertheless for the

demonstrator it is ideal for creating a controller to counter this effect in order for the

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 16

Figure 2.6: 3rd body perturbation plot

satellite to stay in orbit.

2.5 Radiation pressure

In the model another perturbation can be added which could affect the satellite. This per-

turbation is known as the solar radiation pressure which is a mechanical pressure applied

on the body exposed to the force of the electromagnetic radiation of each wavelength that

is a absorbed by the surface of the satellite. The radiation pressure is then dependant on

the distance of the body to the star, the time of exposure and the surface of the satellite

subject to the pressure. The radiation pressure is defined by the following [29]:

−→p = −vS
c

CrA

m

−→r
r

(2.10)

Cr represents a dimensionless pressure coefficient between 1 and 2 depending on the

geometry of the satellite, A the surface of the satellite and m its mass. S is the radiation

power coming from the star and c the velocity of the light. The variable v is defined by

algorithm implemented in Poliastro which is the shadow function.

The shadow function was used to determine depending on the radius of the body and

the satellites position when the satellite is not subjected to radiation pressure because

the satellite is not always subjected to this force. Finally r is the position vector of the

satellite.

CHAPTER 2. ASTEROID ENVIRONMENT SIMULATION 17

Figure 2.7: Radiation pressure perturbation plot

As shown in Figure 2.7 the radiation pressure does not have a clear effect on the orbit

of the satellite within the boundaries of the simulation. The hypothesis is that the effect

of solar pressure would have more effect on a longer mission and also if the satellite was

orbiting around the bodies at higher altitude. Usually solar pressure has very little effect

on low earth orbit satellites and has more consequences on the Medium Earth orbits and

High Earth orbits in which the satellite will have a increase in the velocity resulting a

change in position during the time of exposure [30].

In this chapter the different perturbations have been shown to model the effects having

impact on different variables of the orbit such as the altitude, the RAAN and also the fact

that some perturbations need to be controlled for the mission to run the way it has been

planned. Nevertheless this part of the study to create the demonstrator of this Hardware-

Software facility has been focused on the Didymos environment only. Therefore for the

re-usability the collection of tests code made for plotting orbits will put online.

More specific to the company, the environment created with Python will be set on a

virtual box installed on the server of the company in order to facilitate the use of this

application and create more accessibility when developing projects. A code is written in

order for people to easily put as input a combination of perturbations they want to see the

effect from, the asteroid of interest and change its properties. Now having the software

simulations of the Orbit the means to connect to the hardware have to be designed, which

is the topic of next chapter.

Chapter 3

CubeSat model for simulation

In the previous chapter the creation of the simulation of the environment was discussed,

which is one module of the Hardware-Software Facility. In this chapter, setting up the

software and the hardware representing the onboard system of the satellite for the demon-

strator will be elaborated. In a first part specifications of the APEX CubeSat will be

reviewed since the demonstrator is motivated by the payload of the HERA mission. Fur-

thermore the design of the Hardware Software facility will be elucidated to show how to

connect the different components together, followed by a section explaining the choice

of the hardware in use for the demonstrator and finally a section about the embedded

software that will be used for this project.

3.1 APEX CubeSat Specifications

The APEX CubeSat will be released from the parent spacecraft after reaching the arrival

at the Didymos asteroid system. It is part of the Planetary Defence objective of the

mission in the sense that it will study the the effect of the DART impact by gathering

data from the both asteroids. Its secondary objective is the study of the asteroids in the

purpose to get a better understating of the formation of our Solar System.

Size (deployed) 100x365.9x226.3mm
Size (stored) 1155.16x365.9x2526.3mm

Mass 11.86kg
Propellant 120g (with margin)

Table 3.1: APEX CubeSat structure [31]

18

CHAPTER 3. CUBESAT MODEL FOR SIMULATION 19

The data from table 3.2 containing the dimensions and the mass of the satellite have

been used for determining the effect of radiation pressure on the mission of the satellite

in the simulation in Poliastro. The specifications of the CubeSat are then used as input

to the simulations equations when it comes to the mass and surface of the body. Another

variable that is taken into account for the simulations is the mission time of the Satellite.

The mission is scheduled for 3 nominal months which is the reason why 120 days is the

time used from propagating the simulations.

In the paragraph above the information of APEX used in the software simulation has

been mentioned. The focus should be brought to the elements that are modeled by the

hardware part of the demonstrator. Therefore it is important to mention that the APEX

satellite even by being a payload of another space craft is a stand alone system made up

of several subsystems as any other satellite.

The APEX satellite that has payloads of its own which are a Hyperspectral Imager, a

Fluxgate magnetometer and a Mass spectrometer. The first payload called ASPECT

will be perform measurements from 500 nm to 2500 nm wavelenght. This bandwidth is

covered by 3 channels respectively capturing the visible spectrum, the near infrared and

the short wave infrared in order characterise the surface Didymoon and Didymos. The

second instrument is used to study the magnetic field of the bodies and the last one is

used to study the composition of the charged particles around the asteroid. In addition

to these payloads to fulfill its scientific objectives the satellite also the other subsystems

needed for functioning: the telemetry and telecommand, the Attitude and Orbit control

and the power subsystem.

In order to control all these different subsystems the onboard data handling system

(OBDH) is the one operating the commands and routines. The central part of this pro-

cess is the onboard computer which is the Texas Instruments RM48L952. It will have the

function to ensure the processing power for each subsystem, manage the telemetry and

provide autonomy. A lot of data comes from the payload which are not directly processed

by the onboard computer but by auxiliary processors. Therefore only the required data

for decision making is communicated to the onboard computer [31].

The way that the communications is made between these different processors and subsys-

tems is via a CAN Bus, which will be further explained in Chapter 4.

These two elements: the CAN bus and the on board computer are then chosen to be the

target of what the hardware should represent. The way that they will interact with the

simulation will be explained in the following section.

CHAPTER 3. CUBESAT MODEL FOR SIMULATION 20

3.2 Hardware-Software Test Facility Design

The different parts that make up the Hardware-Software testing facility are shown in

Figure 3.2. Unified Modelling Language to represent each dependency and functionality

that makes up the system. The diagram is showing at a higher level of abstraction the

required components of the system before having to choose or decide on specific hardware

components, of software language and the type of communication bus. The main choices

for the design of the hardware part of the testing facility is to provide a modular design

that can be easily reused for other development projects. Another important factor is to

make it user friendly since this project aims at demonstrating the possibilities of Hardware-

Software testing using open source applications in order to raise the creativity of future

developers.

Figure 3.1: System model of the testing facility

It can be noticed in the first place the clear separation of the elements needed for the

orbital simulator that are software applications running on a computer and the Hardware

CHAPTER 3. CUBESAT MODEL FOR SIMULATION 21

part simulating the OBDH subsystem as well as the communication bus used in the

satellite between the different subsystems. The Hardware-Software testing facility is a

composition of those two elements the Hardware and the Simulator.

The Orbital simulator is an aggregation of several elements that are independent from

each other. In the following order: the user interacts with the interface where he inputs the

properties of the satellite orbit, the properties of the environment and the perturbations

involved. The orbit propagator algorithms calculate the position over time of the satellite,

the Hardware data link checks if any commands are sent from the hardware and sends

the orbital data. For the testing facility to be interactive and visual the Orbital plotter

is also a important part of the system.

The OBDH and communication bus from spacecraft simulator is first of all an aggregation

between the data processing unit, the communication bus and the control unit. The data

processing unit is the entity that is required to make the bridge between the simulation

on the computer and the hardware simulating the OBDH on the satellite. Its functions

are: acquire the data from the simulation needed to be processed, for instance in the

frame of this project the data of the position and velocity vectors of the satellite from

Poliastro and send it via the physical communication bus to be processed as well as receive

data from the communication but to send it as input to the propagation of the orbit in

the simulation. The communication bus has the function to make the link between the

Control unit and data processing Unit and in that way to mimic exactly the way the data

will be transferred within the satellite. Moreover the Control unit has the function to

send the commands to the simulation through the other entities when the data processed

leads to a decision on the orbit control.

The user has also a visual interface to increase the interactivity of the demonstrator on

the hardware side in addition to the visual and interactive interfaces present on the side

of the orbit simulation.

The advantage of such a design is that most of the elements are not compulsory in order

of this Hardware-Software testing facility to be operational. The orbital simulations can

work as a stand alone not needing the hardware part to be connected. Within the orbital

simulator the orbit plotting and the interface with the user are parts to improve the

exchanges with the user but can be disregarded. Same goes with the hardware part, one

can disregard the communication bus to only focus using one processing unit for other

applications.

CHAPTER 3. CUBESAT MODEL FOR SIMULATION 22

3.3 Hardware of the Testing Facility

After creating the design of the Testing facility, the next step is to choose the adequate

hardware that will fit the needs of this project. The importance of the choice of the

hardware is not only for the relevance for the project but also should be thought for

developing other applications.

Properties APEX Microntroller Demonstrator 1 Demonstrator 2
Micro computer RM48L952 ATSAMC21J18A STM32F446RET6

Frequency (MHz) 220 48 180
Flash (KB) 3072 256 512

Data flash (KB) 64 32 32
USB 2 1 2
CAN 3 2 2
I2C 1 6 1

Table 3.2: Microcontroller choice for demonstrator

Two microcontrollers were candidates for being used as hardware of the demonstrator.

Two of them will be needed to create the the Hardware test facility. Both the AT-

SAMC21J18A and STM32F446RET6 became candidates because of the experience of

working with these microcontrollers. It is important for them to have CAN and I2C

for testing and developing projects since these are commonly used communication buses

within Satellites and other industries.

The ATSAMC21J18A is programmable and supported in the C language which has soft-

ware examples for CAN bus communication and other applications by the Microchip

programming environment. It has space heritage since it is used in the Space industry for

controlling a wide range of instruments [32]. It is for instance used by the French thruster

developing company Thrustme to control their ion thrusters. It comes along the Xplained

XPRO evaluation board for easing project development and testing.

The STM32F446RET6 has supported language C as well but also has the possibility to be

programmed with MicroPython which makes a greater cohesion with the orbital simulator

that is written in Python [33]. It does not have space heritage but it has nevertheless been

used in other thesis projects in the aerospace industry such as in the university of Delft,

The Netherlands. The choice has been made for this microcontroller development board

NUCLEO-144 due to the programming language it can support, higher performance and

availability in the company Huld.

CHAPTER 3. CUBESAT MODEL FOR SIMULATION 23

3.4 Embedded Software of the testing Facility

The choice of the programming language for the testing facility is MicroPython. It is an

effective implementation of the Python 3 programming language that includes a simplified

portion of the Python basic library and is optimised to be used on microcontrollers and

in restraint environments [34].

One of the major aims of this programming language is to ensure the compatibility with

the regular Python scripts in order to facilitate the development of routines. As a con-

sequence MicroPython allows the possibility to transfer the Python scripts made on the

Desktop directly to the microcontroller or other embedded system used for projects.

Figure 3.2: Embedded software of the testing facility

As shown in Figure 3.2 the embedded software that is made and used for the Hardware-

Software Facility consists of different layers. The top layer which consists of the libraries

defining the communication protocols used for the buses between micro controllers and

then for both controllers the lower level communication routine.

Chapter 4

Implementation of the CAN BUS

This chapter explains the implementation of the CAN Bus within the project of the

Hardware-Software testing facility. The purpose of this setup is to simulate the commu-

nication between subsystems on the APEX mission and other potential satellite missions

the company Huld will be working on. This implementation demonstrates that software

simulations can be tested directly with physical hardware at a reduced cost and in a

simultaneous way, debugging the software failures and Hardware-Software related issues.

Therefore the use of the CAN bus on the APEX mission will be elucidated in a first part.

Later the design of the physical CAN Bus will be explained followed by the structure and

protocol used for the implementation. The software of the CAN bus of this project is

available on:

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/CAN_

bus

4.1 CAN Bus in CubeSat

The CAN bus is a communication system originally developed for the automobile indus-

try but rapidly adopted in the space industry for its design being reliable and robust and

reducing on the amount of physical wiring needed to connect a greater amount of devices

[7]. Reliability is the key to the usage of this vehicle bus, it is not designed for transferring

data taking a lot of volume such as images and data science [35]. This communication

system allows microcontrollers and other devices to send messages on the same bus with-

out having a main computer acting like an hub to transfer the messages from device to

24

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/CAN_bus
https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/CAN_bus

CHAPTER 4. IMPLEMENTATION OF THE CAN BUS 25

device.

The CAN bus is a protocol based on messages in which each node or device connected is

able to send a receive messages. Nevertheless the nodes cannot communicate simultane-

ously, therefore the first part of the message or frame contains the identifier in front of

the data to be transmitted that defines the priority of the message. The frames are then

transmitted sequentially by order of higher priority to lowest priority leaving one device

send on the CAN bus while the others receive. Each message is received by all the devices

connected to the system as well as the device that is transmitting.

OBC

GATEWAY

AOCS PROPULSION

EPS

APU

CAN BUS

Star
tracker

Star
tracker AspectAspect

NAV
CAM
NAV
CAM LidarLidar

Sun
Sensors

From CSP
To PUS

Figure 4.1: CAN BUS diagram APEX [31]

In the APEX mission the CAN bus is used for connecting the different subsystems as

shown in Figure 4.1. The nodes that communicate are the onboard Computer, the AOCS

that gets the orientation of the CubeSat, the Electrical Power System (EPS), the propul-

sion unit, the gateway and the Auxiliary Processing Unit (APU). The decisions of making

of a maneuver and making use of the propulsion system in this design comes down to a

message sent to the propulsion via the CAN bus which will be one of the applications of

the demonstrator of this project.

In addition to the lower level CAN bus an higher layer protocol is used by the APEX

satellite: the CubeSat Space Protocol (CSP) which is a protocol written for embedded

system written in C. The role of the gateway is for the Satellite to communicate with the

main spacecraft HERA: it receives commands in the form of space packets transmitted

with the Packet Utilization Standard (PUS) and converts these headers with CSP so that

CHAPTER 4. IMPLEMENTATION OF THE CAN BUS 26

the commands can be transmitted via the CAN bus to the OBC.

4.2 Physical CAN Bus

As mentioned in the section above, the communication system has several protocol layers.

In this section the hardware and lower level will be discussed. The first step when it comes

to create a CAN bus is to create a signal which has a different logic the the regular pin

output of a microcontroller.

The microcontrollers STM32F767 have a CAN controller but lack a CAN transceiver to

convert the data to the physical layer therefore the MCP2551 transceiver was used for

this purpose and connect as on Figure 4.2.

Figure 4.2: CAN BUS diagram testing facility [36]

The next step is to tune the timing of the CAN bus of each bit which was done by software

in Micropython. Since it is an asynchronous communication protocol the moment of

the sampling point has to be adjusted for each microcontroller to receive the messages

correctly and was done following guidelines presented in Appendix B. The reason why

the lower level was made first is for reusability of the knowledge and hardware to connect

other microcontrollers than the STM32F767. In this project Arduino boards have also

been connected to the CAN bus for testing.

CHAPTER 4. IMPLEMENTATION OF THE CAN BUS 27

Figure 4.3: CAN BUS timing diagram [7]

4.3 CAN Bus structure

For the higher level structure of the CAN bus to comply with specifications from the

ECSS-E-ST-50-15C standard the SpaceCAN protocol is implemented. In addition to be a

space qualified protocol the choice of this usage has been made since the libraries have also

been developed for Micropython matching the requirements of this demonstrator project.

Figure 4.4: CAN BUS parallel access redundancy

From the ECSS guidelines the peculiarity of SpaceCAN is that it is developed for a

system with a main and redundant CAN bus to ensure a reliable communication. For

this project the parallel bus access design has been implemented as shown in Figure 4.4.

This protocol follows guidelines also set on a lower level with the maximum bit rate of

this implementation being 1 Mbps and an identification system for priority is 11-bits in

which 4-bits encode the type of service and 7-bits for the identifier address [35].

Chapter 5

Attitude and Orbit Control of the

CubeSat

This chapter deals with the Attitude and Orbit Control of the project. This is the

subsystem that enables in every satellite the information to be processed for its navigation

and position. First the AOCS that inspires the demonstrator will be elucidated followed

by the first application of the demonstrator to acknowledge the position of the satellite.

Furthermore the application of orbit transfer will be developed and finally the application

to counter the perturbations of the asteroid environment. Software related to this chapter

can be found on:

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/AOCS

5.1 AOCS in the APEX mission

The AOCS in order to acquire the position of the APEX CubeSat uses a sensors that are

shown in Table 5.1. The Star Tracker, sun sensors and Inertia measurement unit provide

the data of the orientation of the CubeSat, the Lidar and the Navigation Cameras estimate

the distance of the Satellite to the body it is orbiting.

Along with the sensors, when the position is estimated, aligning or changing the orbit of

the CubeSat has to be performed with the use of actuators. Reaction wheels permit to

change the orientation of the satellite, by rotating create a change in the moment of inertia

in order to either stabilise, which is also referred as detumbling or change its orientation

for instruments to have the asteroid in its field of view.

28

https://github.com/NielshuldC/Simulation-AOCS-APEX-CubeSat/tree/master/AOCS

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 29

Sensors 1 x Star Tracker
4 x Sun Sensors
2 x Navigation Cameras
1 x Lidar
1 x IMU

Actuator 3 x Reaction Wheels (6mNms each)
8 x Thruster Heads (1mN each)

Propellant Butane

Table 5.1: APEX CubeSat ADCS and GNC [31]

The actuators that will be simulated in Poliastro and controlled by the microcontroller in

the demonstrator of this project are the thrusters. The propulsion system is used for the

CubeSat to stay in orbit by exerting force using the propellant for countering the forces

that might endanger the orbit of the satellite as well as transferring it to a new orbit.

Figure 5.1: AOCS diagram APEX [31]

The way that the control of the orbit is made for the APEX is as follows in the diagram

in Figure 5.1. The position of the Satellite is estimated using 3 different methods. The

first instrument used for estimating the position is the LIDAR, Laser imaging detection

and ranging, one of the payloads of the APEX mission which is used for scanning the

surface of the asteroids but also used for measuring the distance between the body and

the satellite.

Furthermore the data gaps are completed using a second payload of the mission the

Navigation Camera. It is used for characterising the surface of asteroids but also used for

determining the position since it has to work along with the LIDAR that can only gather

data at close range of the body.

Finally the last method for estimating the position is by using the Inter satellite link

which is the communication network in this case between the APEX CubeSat, the main

space craft HERA and the other payload CubeSats. This data transmission method is

also reused for determining the distance between the satellites by using the time division

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 30

signal of the ISL [37].

All this data is then used for estimating the position of the satellite relative to the asteroid

and the other satellites. As shown in the diagram the control of the orbit, decision to

apply thrust is evaluated after every update of the position therefore the control system

is shown as a discrete time feedback system.

5.2 Orbit determination application

For the first application of the Hardware-Software testing facility an orbit determination

communication has been developed. This application is made to simulate how satellite

position data will be transferred from one processing unit to another one in the satellite.

This application demonstrates how code developed in Python can be uploaded on the

microcontroller to directly test the software and hardware through the CAN bus along

with the orbit simulation.

Figure 5.2: Orbital data transfer diagram

In this project, abstraction is made from the sensors used for determining the position of

the satellite. The input of the data is be taken directly from the orbit propagator and

assumed to be the one that the simulated hardware of the satellite is getting for knowing

its position. Therefore, the position will be given in 3 dimensions with the origin being

at the center of the main asteroid, Didymos.

In this application the data from the orbital simulation from Poliastro as seen in Figure

5.2 goes via serial communication to the microcontroller to be acquired on the hardware

and to the other hardware unit via the CAN bus. To make this demonstrator more

interactive and more user friendly, to enhance creating more developed applications, 4

LEDS are connected to the microcontroller as a visual interface.

Similar to an instrument tuner showing when right frequency is reached, gives an indica-

tion whether or not the nominal orbit is followed, the one that the satellite would follow if

no perturbations were involved. With the set of LEDs the user can see if external factors

make the orbit decrease or increase in altitude of the satellite with respect to the center

of the body.

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 31

Figure 5.3: Altitude acquisition and visualisation

As shown in Figure 5.3 during a simulation of orbit with cube shaped object perturbation

the LEDs in the center are lit up when the satellite is within the nominal altitude it is

orbiting at. When the orbit altitude goes lower or higher than the nominal the LEDs for

the sides are accordingly lit up.

5.3 Maneuvering of the satellite application

APEX will have to perform several maneuvers during its life cycle. From its release from

the main space craft HERA, the CubeSat will have to perform several orbit transfers.

These changes of orbit and mission length are shown in Table 5.2 to show typical mission

phases that can be planned for such CubeSats. During the mission the different orbits that

the APEX CubeSat will go through are circular orbits around Didymoon and Didymos

and hyperbolic orbits to transfer from one to the other. Each orbit transfer can be

performed autonomously by the Satellite and makes uses of the data acquisition of the

orbit and internal clock of the satellite. Nevertheless the orbit transfer can also be done

by command that the CubeSat can receive from the ISL from the main space craft.

Therefore, the demonstrator has one application developed for the orbit control for making

such an orbit transfer. The data from the orbit position and the time of the simulation

are transferred via the CAN bus to be processed on the microcontroller. A decision is

then taken whether to change orbit or not by sending a command again over the CAN

bus and then via the serial communication back to the simulation in Poliastro.

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 32

Phase Tasks Trajectory
and attitude

Duration

Preparation space craft
Checkout

Same as the
main space craft

REOP P/F commis-
sioning

Hyperbolic/
Didymain point-
ing

12 days

OSSO D1/D2 mapping
ACA/MAG
commissioning

4 km circu-
lar/ Didymoon
pointing

31 days

ISSO Crater side map-
ping D1/D2 sci-
ence

L5/Didymain
and Didymoon
pointing

23 days

ISSO No-crater side
mapping D1/D2
science

L4/Didymain
and Didymoon
pointing

24 days

ISSO Science D2 sur-
face mapping

Flyby between
L1 and L2/
Didymoon
pointing

70 days

Landing D2 proximity
and contact

To moon surface 20 days

Table 5.2: APEX CubeSat mission stages [31]

To make the demonstrator more interactive, as in the previous application made for the

hardware-software testing facility, user buttons present on the STM32F767 are used as

well to send commands to make a change of orbit on the simulator. In addition to data

processing of the simulation the orbit transfer can also be triggered by pressing a physical

button.

The type of orbit transfer used for the demonstrator is the Hohmann transfer. It is

typically used for transferring a satellite to higher or lower orbit for earth missions or

interplanetary ones. The principle of this orbit transfer is that it is done in 2 steps. In

the first step the satellite is in its original orbit and is subjected to an impulse from the

thrusters in opposite direction of its trajectory if the satellite has to be transferred to a

higher orbit and in the direction of the trajectory if the transfer is to a lower orbit. After

this impulse the satellite goes from a circular orbit to a orbit with a high eccentricity.

To return to a circular orbit a second step has to be made in order to finish the entire

process of the Hohmann transfer. After half a period of the new orbit of the satellite a

second impulse is given. The second impulse is given in the same direction as the first

impulse in order to remove the eccentricity to the orbit. After this second step the satellite

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 33

Figure 5.4: Hohmann transfer testing facility application

is in a higher or lower circular orbit than its original one [38].

The microcontroller sends then the command to start a Hohmann with the value needed

for the impulse via the CAN bus and then via serial communication. Once the command

is received in Poliastro, the simulating adds a perturbation to the simulation. This pertur-

bation is already programmed in Poliastro and is programmed to simulate thrust from the

propellant of the satellite. The function of this perturbation takes 2 inputs: the velocity

change δv and the duration of the impulse. Therefore when the command is received on

the simulation the new perturbation of the impulse of the thrusters is then propagated in

the simulation making the change in the orbit.

In this application demonstrating the commanding an orbital transfer via the CAN bus

as it would be done on the satellite at the end of the period of propagation from the

simulator using Poliastro is shown in Figure 5.4. This transfer is commanded by the

microcontroller autonomously or manually by the user.

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 34

5.4 Countering perturbation application

Along with acquiring the data of the position of the satellite and performing orbital

maneuvers the satellite usually makes use of its thrusters to counter the disturbances

that have an effect on the orbit. Disturbances as shown in Chapter 2 can have an effect

on the altitude of the satellite, the RAAN and the length of the mission. This application

of orbit control allows to extend the lifetime of the satellite by keeping it longer in an

operational orbit.

For the demonstrator the application has been developed to counter the perturbation

simulated with Poliastro and to get the satellite to return to its nominal orbit by inducing

thrust perturbation from the propulsion system of the satellite. The orbital data is still

sent via the CAN bus and then an algorithm on the microcontroller sends back to the

simulation the values of the thrust perturbation to be applied.

A classical control system is implemented calculating the thrust needed in which the

signal is the satellites position and it is compared to the its reference position which are

the coordinates that the satellite would be in if it was not subjected to perturbations.

The difference between the two signals is then characterised as the positional error of the

Figure 5.5: PD controller resulting orbit with 3rd body perturbation

satellite which leads to a decision taken to induce an impulse from the thrusters. The

CHAPTER 5. ATTITUDE AND ORBIT CONTROL OF THE CUBESAT 35

force needed to be applied in during the impulse is calculated by taking the positional

error and apply a PID controller implementation. The error signal is then multiplied by a

factor, integrated and differentiated and summed up to generate the force to be applied.

Since the only perturbation that following the simulation threatened the orbit of the

satellite was the 3rd body perturbation, it has been the one used for developing the

controller. For the first algorithm a PD controller has been implemented since the values

given by the simulations where the position of the satellite as well as its velocity giving

directly the signal to be proportional part of the controller and the differential part.

Nevertheless the controller with such inputs does not stabilise the system as shown in

Figure 5.5.

For this application of the demonstrator a PI controller is finally implemented for con-

trolling the system with the resulting orbit of 120 days shown in Figure 5.6. The system

remains unstable with high overshoots but it keeps the satellite orbiting around the Didy-

mos system without leaving or crashing into the body as in Figure 2.6.

Figure 5.6: PI controller resulting orbit with 3rd body perturbation

Chapter 6

Conclusion

6.1 Summary of thesis

With as purpose to accelerate the development of satellite software applications and test-

ing, during this work a Hardware-Software testing facility demonstrator has been devel-

oped. The application of the testing facility was a module of the simulation of the Attitude

and Orbit control of a satellite. The design choices of the simulation and the testing fa-

cility were motivated by the the APEX CubeSat, a current project of the company Huld

where the study was effectuated. The CubeSat will be sent to an asteroid system in 2024

as part as a planetary defense mission.

The thesis aims to explore the use of available open source applications to reduce cost of

hardware and software simulators nowadays used by the company. Therefore the first step

of the work was to developed a simulator for the environment that the APEX CubeSat

will subjected to orbit around during its mission. After comparing the performance of

the open source Python programming language libraries of Poliastro with commercial

software it has been chosen to create the environment.

The creation of the asteroid environment for the simulation was an opportunity to study

the effect of different ways to model the perturbations that an asteroid can have on the

orbit of a satellite. Comparisons have been made between a cube shaped asteroid or a

spheroid that was suggested by different studies. The asteroid being a none regular shape

the best approximation is a combination of both those perturbations. In addition the

effect of the asteroid having a natural satellite making the satellite influenced by different

bodies has also been studied as well as the perturbation due to solar radiation.

36

CHAPTER 6. CONCLUSION 37

The importance of the Hardware-Software testing facility is to demonstrate that software

can be developed and directly subjected to the Hardware limitations for testing. The

embedded software was chosen to be Micropython in order to have the same programming

language as on the simulator. The idea was to connect the orbit simulation, which will

be used as data coming from a possible instrument on board a satellite, to hardware and

make them communicate and send commands the same way that it would be done on

board. Two microcontrollers, the STM32F767, have then been chosen for this purpose

and are connected as on the APEX CubeSat via physical CAN bus that has been build

using MCP2551 transceivers.

Once the simulation and the microcontrollers were connected via the CAN bus several

applications have been build to demonstrate the possibilities of such a testing facility. The

SpaceCAN protocol was implemented for the communication on the bus in order to work

with a robust system that is used for internal communication on existing missions in space

and was also developed for Micropython. The goal was to make interactive applications

related to Attitude and Orbit control of the satellite that the user can experiment with

visual feedback from the hardware and from the simulation with orbit plotting.

The 3 applications for the Attitude and Orbit control on the hardware connected to the

orbit simulation were developed.

1. The first one is the visual tracking of the error in altitude of the orbit of the satellites

communicated via the CAN bus on a set of LEDs connected to the microcontroller.

2. The second application the sending of the command of orbit transfer to the simu-

lation via the CAN bus by the microcontroller decision taking from the simulated

data or by the action of the user.

3. The last application developed is the control of the orbit subjected to the 3rd body

perturbation using a PI controller on the microcontroller.

6.2 Fulfilment of targets

At the beginning of the project three major objectives were set that are repeated here

below:

1. Create a model of the dynamics of the CubeSat, its disturbance environment and

to plot its trajectories using python libraries developed for orbital dynamics.

CHAPTER 6. CONCLUSION 38

2. Program Attitude and Orbital control on a microcontroller to calculate the new

trajectories for the simulation.

3. Create an Interface to send simulated data using the standard protocols developed

for space crafts and using the communication bus used on the APEX spacecraft.

Figure 6.1: Project work modules

As shown in Figure 6.1 these are the different outcomes of the project. Three distinct out-

puts can be named, the work related to the exploring of the usage of open source software

for the creation of Orbit simulations around an asteroid, followed by the elaboration of a

hardware module to accommodate the software to be tested for different applications and

finally 3 applications of AOCS developed using the Hardware-Software testing facility.

The first objective is reached by generating Python scrips using the Poliastro libraries for

simulating the different perturbations that the satellite could be subjected to during its

mission around the Didymos asteroid. It should be recognised that the simulations have

only be been done using the Cowell method which is only one of the methods used for

simulating orbits and their perturbations, it is a method easily implementable in software

but presents limit with respect to the accuracy.

The second objective is reached by a module of the AOCS applications of the project

programmed on the microcontroller connected to the orbit simulations. The embedded

software has a script to generate orbit transfers on the simulation as well as a straight-

forward orbit PI controller. The orbit control has only been performed on the 3rd body

perturbation being the one with most consequences on the simulation and the orbit trans-

fer application does not involve other perturbations.

CHAPTER 6. CONCLUSION 39

The third objective is reached by the work module related the creation of the CAN bus

that has been made physically and at lower level in order to simulate the commands of

the AOCS. Moreover SpaceCAN protocol has been used as well but not implemented for

every application.

6.3 Further extensibility and recommendations

For the extensibility of the project two main activities could be undertaken. The first

one that can be undertaken would be activities related to make the Hardware-Software

testing facility more accessible by turning it into a plug and play type of product. The

other activities that could be performed would be to extend the applications in order to

explore the possibilities that could be developed.

To make the Hardware-Software testing facility more accessible the action could be taken

to make an graphical user interface where the user could enter the asteroid he wants for

the simulation, enter which properties and which perturbations involved. For the CAN

bus a small printed circuit board (PCB) to make a ready for use platform to develop

software.

When it comes to extending the applications in the simulations, more tests with combi-

nations of perturbations could be made and most importantly with different integration

methods than the Cowell method for propagating orbits to see the effects. To simulate

exactly how the communication would be made on board the APEX mission the CubeSat

Space Protocol (CPS) would have to be implemented as well as an application where

a microcontroller translates Space Packets (PUS) into CSP. Other more robust control

methods such as state space or even machine learning algorithms.

Recommendations relative to developing such a project are first of all related to the sim-

ulation. It is important to compare different integration methods for orbit propagators

since the results can vary a lot. For open source libraries it is crucial to choose on that has

an active community since this is the difference with commercial software where there is

customer support. Furthermore in appendix B there are a lot of recommendations regard-

ing how to set up a CAN bus as well as to make it operate on boards with Micropython

on it.

Appendix A

CAN bus Setup

Here below is the wiring diagram showing the connection need to create the CAN bus

between two STM32 Nucleo-144. When having Micropython the CAN controllers are not

located on the pins indicated on the board but on the ones shown here in the diagram.

Figure A.1: CAN bus setup between 2 microcontrollers

40

Appendix B

Debugging CAN Bus

Figure B.1: CAN BUS debbugging with Arduino

To connect a board such as an Arduino board that does not have a CAN controller a

MCP2515 CAN controller and transceiver can be used as shown in the diagram above.

An Arduino can be useful while setting up the can bus since it can plot outputs from the

analog pins to monitor the signals of the CAN bus.

In Micropython writing the function for setting up filters of CAN IDs is compulsory

otherwise the node will not listen to the messages being sent.

41

APPENDIX B. DEBUGGING CAN BUS 42

Another important function in the Micropython for the CAN bus is the the CAN.init in

which the bit timing is set up. All nodes should be having the same Nominal Bit Rate

(NBR).

For programing in C here are some guidelines for the bit timing: https://community.

st.com/s/question/0D50X00009XkgOI/stm32f103vct6-can-bit-timing-settings

When using the MCP2515 bit timing information:

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.

pdf

The bit timing is divided in time quantas In Micropython four variables can be controlled:

• The prescaler to divide the internal clock.

• SJW: 1-4 time quantas, adjusts the bit clock to maintain synchronization

• Bs1 the amount of time quanta defining the sampling point.

• Bs2 the amount of time quanta defining the transmitting point.

If the internal clock of the board is not known the function pyb.freq() can help to find it.

More information over the CAN bus in micropython can be found in:

https://docs.micropython.org/en/latest/library/pyb.CAN.html

https://community.st.com/s/question/0D50X00009XkgOI/stm32f103vct6-can-bit-timing-settings
https://community.st.com/s/question/0D50X00009XkgOI/stm32f103vct6-can-bit-timing-settings
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://docs.micropython.org/en/latest/library/pyb.CAN.html

Appendix C

Flashing micropython on

microcontroller

Here are the steps to Flash Micropython on the Microcontroller of this project.

Step 1: https://my.st.com/ get the: STSW-STM32080 software to be able to flash the

board

Step 2: Connect from the board VCC and BOOT0 Like on Figure C.1

Step 3: Run DfuseDemo software

Step 4: Files to upload for flashing are available on: https://micropython.org/

download#other upload the latest version of the file .dfu

Step 5: Click upgrade, verify. Micropython should be installed

43

https://my.st.com/
https://micropython.org/download#other
https://micropython.org/download#other

APPENDIX C. FLASHING MICROPYTHON ON MICROCONTROLLER 44

Figure C.1: Flashing board wiring

Appendix D

Orbit Perturbation Graphs

Here are the graphs used for the interpretations done in Chapter 2 on the effect of the

different perturbations influencing the orbit of the satellite. In each case the altitude over

time in kilometers is plotted as well as the RAAN in degrees for each perturbation: cube

shaped, spheroid J2, 3rd body and radiation pressure.

Figure D.1: Altitude cube perturbation

45

APPENDIX D. ORBIT PERTURBATION GRAPHS 46

Figure D.2: RAAN cube perturbation

Figure D.3: Altitude spheroid perturbation

APPENDIX D. ORBIT PERTURBATION GRAPHS 47

Figure D.4: RAAN spheroid perturbation

Figure D.5: Altitude 3rd body perturbation

APPENDIX D. ORBIT PERTURBATION GRAPHS 48

Figure D.6: RAAN 3rd body perturbation

Figure D.7: Altitude radiation pressure

APPENDIX D. ORBIT PERTURBATION GRAPHS 49

Figure D.8: RAAN radiation pressure

Bibliography

[1] J. R. Wertz, Spacecraft Attitude Determination and Control, Springer, The Nether-
lands, 1978.

[2] S. Lee A. Hutputanasin A. Toorian W. Lan R. Munakata J. Carnahan D. Pignatelli
A. Mehrparvar, CubeSat Design Specification, Rev.13, California Polytechnic State
University, 2015. [Online]. Available: https://www.cubesat.org/resources/.

[3] European Cooperation for Space Standardization, Space Product Assurance Soft-
ware Product Assurance, Chap.6.2.2, ESTEC Noordwijk, The Netherlands, 2017.

[4] European Cooperation for space Standardization, Space engineering System mod-
elling and simulation, Chap.4.2, ESTEC Noordwijk, The Netherlands, 2010.

[5] HERA, Safety and Security, European Space Agency. [Online]. Available: https:
//www.esa.int/Safety_Security/Hera/Hera.

[6] B. Dunbar T. Talbert, Double Asteroid Redirection Test (DART) Mission, National
Aeronautics and Space Administration, 2020. [Online]. Available: https://www.
nasa.gov/planetarydefense/dart.

[7] W. Voss, A Comprehensible Guide to Controller Area Network, Copperhill Tech-
nologies Corporation, Greenfield MA, 2008.

[8] A. E. Roy A. Hilger, Orbital motion, Adam Hilger Bristol and Philadelphia, 1988.

[9] P. R. Escobal, Methods of Orbit Determination, John Wiley and Sons Inc., 1965.

[10] C. Moler, The Origins of MATLAB, MathWorks., 2004. [Online]. Available: https:
//www.mathworks.com/company/newsletters/articles/the- origins- of-

matlab.

[11] Analytical Graphics (AGI) Inc. Systems tool kit (STK). [Online]. Available: https:
//www.agi.com/products/stk/Accessed:2020-05-12.

[12] J. Hernanz Gonzalez, T. Gateau, L. Senaneuch, T. Koudlansky, P. Labedan, JSatOrb:
ISAE-Supaero’s open-source software tool for teaching classical orbital calculations,
ISAE-SUPAERO, Université de Toulouse, FRANCE, 2017. [Online]. Available: https:
//indico.esa.int/event/224/papers/4080/files/211-paper.pdf.

[13] Orekit, Space flight dynamics applications, Aug. 2019. [Online]. Available: https:
//www.orekit.org/.

[14] J. L. Cano, Poliastro Astrodynamics in Python, May 2020. [Online]. Available:
https://docs.poliastro.space/en/stable/.

[15] Astropy a Community Python Library for Astronomy, Apr. 2020. [Online]. Avail-
able: https://www.astropy.org/about.

50

https://www.cubesat.org/resources/
https://www.esa.int/Safety_Security/Hera/Hera
https://www.esa.int/Safety_Security/Hera/Hera
https://www.nasa.gov/planetarydefense/dart
https://www.nasa.gov/planetarydefense/dart
https://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab
https://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab
https://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab
https://www.agi.com/products/stk/ Accessed:2020-05-12
https://www.agi.com/products/stk/ Accessed:2020-05-12
https://indico.esa.int/event/224/papers/4080/files/211-paper.pdf
https://indico.esa.int/event/224/papers/4080/files/211-paper.pdf
https://www.orekit.org/
https://www.orekit.org/
https://docs.poliastro.space/en/stable/
https://www.astropy.org/about

BIBLIOGRAPHY 51

[16] J. Dasgupta, Imparting Hands-on Industry 4.0 Education at Low Cost Using Open
Source Tools and Python Eco-System, Springer, Switzerland, Aug. 2019.

[17] Numba Accelerate Python Functions, Anaconda. [Online]. Available: http://numba.
pydata.org/.

[18] E.V. Pitjeva, N.P. Pitjev, Development of planetary ephemerides EPM and their ap-
plications, Celestial Mechanics and Dynamical Astronomy volume 119, pages237–256,
Springer, 2014.

[19] Matlab STKOrbit.m, Princeton Satellite Systems, Inc. [Online]. Available: https://
www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/

65613/versions/1/previews/Aircraft%20Control%20Toolbox/Common/Graphics/

STKOrbit.m/index.html/Accessed:2020-05-12.

[20] J.M.A. Danby, Fundamentals of Celestial Mechanics, 2nd edition, Chap.11, Willmann-
Bell, Inc., 2014.

[21] J.Lissauer, I. De Pater, Fundamental Planetary Science: Physics, Chemistry and
Habitability, Chap.11, Cambridge: Cambridge University Press., 2013.

[22] F. C. F. Venditti, E. M. Rocco1, A. F. B. A. Prado, Trajectory control around non-
spherical bodies modelled by parallelepipeds, Journal of Physics: Conference Series,
Volume 465, XVI Brazilian Colloquium on Orbital Dynamics, São Paulo, Brazil,
Nov. 2013.

[23] W. D. MacMillan, The theory of the Potential, Dover Publications New York, 1930.

[24] V. M. Gomes, F. C. F. Venditti, A. F. B. A. Prado, Mapping Orbits regarding Pertur-
bations due to the Gravitational Field of a Cube, Hindawi Publishing Corporation,
2015.

[25] L. Rogers, It’s ONLY rocket science: An Introduction in Plain English, Astronomers’
Universe, Appendix A: Orbital Elements, Springer, New York, Jan. 2008.

[26] M. J. Nadoushana, M.Ghobadib, M.Shafaee, Designing reliable detumbling mission
for asteroid mining, Faculty of Aerospace Engineering, K. N. Toosi University of
Technology, Tehran, Iran, 2019.

[27] C. D. Brown, Elements of spacecraft design, American Institute of Aeronautics and
Astronautics, Reston, VA, 2002.

[28] H. D. Curtis, Orbital Mechanics for Engineering Students, 3rd Edition, Chap.12.10,
Butterworth-Heinemann, 2013.

[29] ——, Orbital Mechanics for Engineering Students, 3rd Edition, Chap.12.9, Butterworth-
Heinemann, 2013.

[30] A. S. Baron, Study the Effect of Solar Radiation Pressure at Several Satellite Orbits,
Baghdad Science Journal, Nov. 2013.

[31] T. Shimizu, System Design Report (SDR) for the Asteroid Prospection Explorer
(APEX), Apr. 2017.

[32] 32-bit ARM Cortex-M0+ with 5V Support, CAN-FD, PTC and Advanced Analog,
Microchip Technology Inc., 2017. [Online]. Available: https://www.infinity-

electronic.hk/product/Micrel-Microchip-Technology_ATSAMC21J18A-MUT.

aspx.

http://numba.pydata.org/
http://numba.pydata.org/
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/65613/versions/1/previews/Aircraft%20Control%20Toolbox/Common/Graphics/STKOrbit.m/index.html/ Accessed:2020-05-12
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/65613/versions/1/previews/Aircraft%20Control%20Toolbox/Common/Graphics/STKOrbit.m/index.html/ Accessed:2020-05-12
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/65613/versions/1/previews/Aircraft%20Control%20Toolbox/Common/Graphics/STKOrbit.m/index.html/ Accessed:2020-05-12
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/65613/versions/1/previews/Aircraft%20Control%20Toolbox/Common/Graphics/STKOrbit.m/index.html/ Accessed:2020-05-12
https://www.infinity-electronic.hk/product/Micrel-Microchip-Technology_ATSAMC21J18A-MUT.aspx
https://www.infinity-electronic.hk/product/Micrel-Microchip-Technology_ATSAMC21J18A-MUT.aspx
https://www.infinity-electronic.hk/product/Micrel-Microchip-Technology_ATSAMC21J18A-MUT.aspx

BIBLIOGRAPHY 52

[33] STM32 Nucleo-144 boards, STMicroelectronics, Apr. 2020. [Online]. Available: https:
//www.st.com/en/evaluation-tools/nucleo-f767zi.html.

[34] MicroPython. [Online]. Available: https://micropython.org/Accessed:2020-
05-12.

[35] SpaceCAN, librecube.org, Sep. 2019. [Online]. Available: https://wiki.librecube.
org/index.php?title=SpaceCAN/.

[36] Y. Khedkar, STM32F032 CAN bus, ST Community, May 2018. [Online]. Available:
https://community.st.com/s/question/0D50X00009XkWRUSA3/stm32f032-

can-bus.

[37] L. Chen, H. Lin, Z. Lu, J. Li and G. Ou, High Orbital Spacecraft Fast Position-
ing Algorithm Assisted by Inter-Satellite Links, 2nd International Conference on
Information Systems and Computer Aided Education (ICISCAE), Dalian, China,
2019.

[38] H. D. Curtis, Orbital Mechanics for Engineering Students, Elsevier. p. 264, 2005.

https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://micropython.org/Accessed:2020-05-12
https://micropython.org/Accessed:2020-05-12
https://wiki.librecube.org/index.php?title=SpaceCAN/
https://wiki.librecube.org/index.php?title=SpaceCAN/
https://community.st.com/s/question/0D50X00009XkWRUSA3/stm32f032-can-bus
https://community.st.com/s/question/0D50X00009XkWRUSA3/stm32f032-can-bus

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

489933Personal ID number:de Graaf NielsStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Simulation of AOCS for APEX CubeSat

Master’s thesis title in Czech:

Simulace AOCS pro APEX CubeSat

Guidelines:
The purpose of this assignment is to create an module of Software Verfication Facility and demonstrate the relevance of
using opensource software and standardized communication using the APEX CubeSat that will orbit the asteroid Didymos
as mission basis.
1. The task will be to create a model of the dynamics of the CubeSat, its disturbance environment to plot its trajectories
using python libraries developed for orbital dynamics.
2. Attitude and Orbital control will be programmed on a microcontroller to calculate the new trajectories for the simulation.
3. An Interface will be made to send simulated data using the standard CubeSat Space Protocol.

Bibliography / sources:
[1] Blanke, M., & Larsen, M. B. - Satellite Dynamics and Control in a Quaternion Formulation (2nd edition) - Technical
University of Denmark, Department of Electrical Engineering, 2010.
[2] Vendittil F. C. F. , Rocco E. M. , Prado A. F. B. A. - Trajectory control around non-spherical bodiesmodelled by
parallelepipeds - National Institute for Space Research, INPE, Sao Jose dos Campos, SP-Brazil, 2013

Name and workplace of master’s thesis supervisor:

Ing. Daniel Štefl, Ph.D:, Space Systems Czech s.r.o., nám. Winstona Churcila 1800/2, Praha 130 00

Name and workplace of second master’s thesis supervisor or consultant:

Ing. Martin Hlinovský, Ph.D., Department of Control Engineering, FEE

Deadline for master's thesis submission: 14.08.2020Date of master’s thesis assignment: 13.02.2020

Assignment valid until:
by the end of winter semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Daniel Štefl, Ph.D:

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

