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Abstrakt / Abstract

Tato práce se zaměřuje na návrh a
implementaci pracovního prostředí pro
testování provozních parametrů přeno-
sového kanálu IoT routeru. Teoretická
část práce se zaměřuje na popis hard-
waru a softwaru použitého při různých
testech. Praktická část popisuje navr-
žený testovací software (GUI), který
se používá také k provádění měření s
ohledem na přenosový kanál a výkon
desky při použití různých technologií
IoT.

Klíčová slova: Testbed IoT routeru,
propustnost, Internet věcí, GUI, Tech-
nologie internetu věcí.

This work focuses on the design
and implementation of a workbench
environment to test the operational
parameters of the transmission channel
of the IoT Router. The theoretical part
of this thesis focuses on the description
on the hardware and software used
during the various tests. The practical
part describes the designed testbed
software (GUI) also used to carry out
measurements regarding the transmis-
sion channel and the performance of the
board when different IoT technologies
are used.

Keywords: IoT Router Testbed,
throughput, Internet of Things, GUI,
IoT technologies.
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Chapter 1
Introduction

The concept of the Internet, as we know it, is mutating incredibly fast. Nowadays
an enormous amount of data is generated daily from people, animals and objects all
around with the goal to improve the quality of life. Billions of devices have access to
the internet and are already able to communicate with each other autonomously. In
the next few years, even a higher number of objects is expected to join the Internet of
Things. With new technologies developed every day and their exponential growth, we
are facing new challenges involving security, resource consumption, compatibility and
many other. The possibility to combine different technologies to address a problem often
represents a big advantage. Such a feature is provided by the IoT Router developed by
a team of engineers at the Faculty of Electrical Engineering in Prague and tested during
the practical part of this work. To ensure a proper functionality of the network it is
connected to, the capabilities and limits of the IoT router need to be explored. Since it
is a custom hardware design, a series of tests is carried out with the intent to monitor
its networking capabilities, the correct functionality of the different IoT technologies
embedded in it (IQRF, BLE, LoRa, NB-IoT and others) and the performance of CPU
and RAM when these technologies are used. Different software solutions are selected as
testing tools, among which Node-red and vnstat involved in the monitoring of TCP/IP
traffic. Moreover a Graphical User Interface is presented, designed as well during this
work to complement the rest of the software during the tests. Its purpose is to provide
an easy way to build and manage services using the aforementioned IoT technologies.
During the theoretical part of this work, the description of the IoT router is provided,
along with a brief summary of the supported technologies and their main characteristics.
As regards the practical part, different measurements are carried out in a specific order:
first the Ethernet and Wi-Fi traffic is explored with respect to the physical limit imposed
by the hardware, then the individual technologies are tested along with the analysis of
their impact on the CPU, RAM and generated traffic. In the last part of this work,
a combination of technologies and two database solutions are implemented. Finally, a
summary of the results is provided to have a clearer overview of the capabilities of the
IoT Router.
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Chapter 2
Software used

This chapter is a general overview of the software and tools used during the practical
part of this work. The Graphical User Interface (GUI) specifically designed for this
project is described instead in chapter 4.

2.1 Node-RED
Node-RED is an open-source visual programming tool built on top of Node.js platform,
mainly used for wiring together hardware devices, APIs and online services [1]. It
is based on the logical connections between nodes, where each node has a specific
functionality. It represents a great option to manipulate hardware on low-cost devices
such as the Raspberry Pi. For this work, the latest versions are used:

. Node-RED version - 1.0.6. Node.js LTS version - 12.16.2

This software is used to test and control the hardware modules described in the next
chapter.

2.2 Iperf
Iperf is a tool for active measurements of the maximum achievable bandwidth on IP
networks. Iperf supports tuning of various parameters related to timing, buffers and
protocols (TCP, UDP, SCTP with IPv4 and IPv6). For each test it reports the band-
width, loss, and other parameters. For the practical part of this work, the version v2.0.9
of the software is used [2].

2.3 Microsoft Azure SQL database
Microsoft Azure SQL database (formerly SQL Azure, SQL Server Data Services, SQL
Services, and Windows Azure SQL Database)[3] is a managed cloud database (PaaS)
provided as part of Microsoft Azure. Microsoft Azure SQL Database includes built-in
intelligence that learns app patterns and adapts to maximize performance, reliability,
and data protection. Key capabilities include[3]:

. Continuous learning of your unique app patterns, adaptive performance tuning, and
automatic improvements to reliability and data protection. Scaling as needed, with virtually no app downtime. Management and monitoring of multitenant apps with isolation benefits of one-
customer-per-database. Leverage open source tools like cheetah, sql-cli, VS Code and Microsoft tools like
Visual Studio and SQL Server Management Studio, Azure Management Portal, Pow-
erShell, and REST APIs
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2. Software used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Data protection with encryption, authentication, limiting user access to the appro-

priate subset of the data, continuous monitoring and auditing to help detect potential
threats and provide a record of critical events in case of a breach

For the purposes of this work, the MS Azure SQL database is used to test the
connection of the IoT Router to cloud services in order to store data collected from
sensors.

2.4 Influx DB
InfluxDB is an open-source time series database (TSDB) developed by InfluxData[4].
It is written in Go[5] and optimized for fast, high-availability storage and retrieval of
time series data in fields such as operations monitoring, application metrics, Internet
of Things sensor data, and real-time analytics. It also has support for processing data
from Graphite[6]. In this work it is used as a local database solution for the IoT Router.

2.5 vnstat
vnStat (view network statistics) is a network utility for the Linux operating system.
It uses a command line interface. vnStat command is a console-based network traffic
monitor. It keeps a log of hourly, daily and monthly network traffic for the selected
interface(s) but is not a packet sniffer. The traffic information is analyzed from the
proc file system, that way vnStat can be used even without root permissions[7]. In
this context it is used to monitor the Ethernet traffic generated by the IoT Router. It
measures in real-time both the outgoing and incoming traffic in Kbps and number of
packets per seconds.

2.6 Wireshark
Wireshark is a free and open-source packet analyzer[8]. It is used for network trou-
bleshooting, analysis, software and communications protocol development, and educa-
tion. It is cross-platform, using the Qt widget toolkit in current releases to implement
its user interface, and using pcap to capture packets. It runs on Linux, macOS, BSD,
Solaris, some other Unix-like operating systems, and Microsoft Windows.

Wireshark has a rich feature set which includes the following[9]:

. Deep inspection of hundreds of protocols, with more being added all the time. Live capture and offline analysis. Multi-platform: Runs on MS Windows, Linux, macOS, Solaris, FreeBSD, NetBSD,
and many others. Captured network data can be browsed via a GUI, or via the TTY-mode TShark
utility. Rich VoIP analysis. Read/write many different capture file formats: tcpdump (libpcap), Pcap NG, Cat-
apult DCT2000, Cisco Secure IDS iplog, Microsoft Network. Capture files compressed with gzip can be decompressed on the fly. Live data can be read from Ethernet, IEEE 802.11, PPP/HDLC, ATM, Bluetooth,
USB, Token Ring, Frame Relay, FDDI, and others (depending on the platform). Decryption support for many protocols, including IPsec, ISAKMP, Kerberos, SN-
MPv3, SSL/TLS, WEP, and WPA/WPA2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Picocom

. Output can be exported to XML, PostScript®, CSV, or plain text

Within this work, the Wirehark software is used to capture UDP packets sent to a
local server.

2.7 Picocom
Picocom is a minimal dumb-terminal[10] emulation program. It was designed to serve
as a simple, manual, modem configuration, testing, and debugging tool[11]. It has also
served as a low-tech terminal-window to allow operator intervention in Point to Point
Protocol (PPP) connection scripts[12]. In this context, it is used to communicate with
hardware modules connected to the IoT Router via serial port. The version 1.7 of the
software is used in this work.
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Chapter 3
IoT Router

In this chapter, the IoT Router is described together with the IoT technologies that it
can support, which are widely used in modern LPWAN/LPN (Low Power Wide Area
Network / Low Power Network). It has been designed by a team of engineers at the
Czech Technical University in Prague and its networking capabilities and performance
will be tested during the practical part of this work.

3.1 Hardware overview
The IoT Router, Fig. 3.1, as per description [13], is a compact mobile device with
Ethernet and wireless connectivity. Designed for smart cities, Industrial 4.0 applications
and many other situations which rely on wireless sensors technology. This IoT Router
combines wireless sensor networks (WSN) and LPWAN technology using well known
IoT solutions, such as IQRF, BLE, LTE-NB IoT, LoRa and so on. The heart of the IoT
Router is the Raspberry PI Compute Module 3 with the Quad-Core ARM Cortex-A53
BCM2837 chip. The main features are listed below in Table 3.1. Thanks to its modular
slot design, it can quickly host various wireless technologies on regional RF bands and
wireless communication protocol.

Figure 3.1. Top view of the IoT Router.

Table 3.1. Features of the IoT Router.
Feature Details

Processor Quard-Core ARM Cortex-A53 BCM2837, 1,2 GHz CPU
RAM 1 GB
Internet 1 x LAN 10/100Mbps Ethernet port
Serial peripherals 1 x RS232, 1 x RS485, 1 x I2C, 2 x USB-A, 1 x USBmini-A
Add-on modules 3 x miniPCI-e half a 1 x miniPCI-e full
Power input 7 - 30 V, nominal 12 V 1 A, battery backup
Dimensions 160 x 120 mm

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Hardware overview

On the back side, Fig. 3.2, the IoT Router is equipped with three miniPCIe-half
[14] and one miniPCIe-full slot. Any standard/custom module can therefore be tested
and/or implemented in a service, provided that it supports this type of physical con-
nection. In order to test the correct functionality of the hardware and to estimate its
networking capabilities, the following modules will be used during the tests:

. NB-IoT BG96. Bluetooth LE based on BM70BLE01FC2. IQRF module based on TR-76D. LoRa module based on SX1272 chip. Dallas DS18B20 temperature sensor. Relay module

As shown in Fig. 3.2, some modules have their own MiniPCIe slot on the back side
of the IoT Router, while the sensor DS18B20 and the relay are connected to the front
side directly to the GPIO header. Besides the modules, there are two more elements:
slot number 5 is reserved for a microSD card, useful to expand the internal memory of
the IoT Router, but not required for the purposes of this work, while the slot number
6 is designed to host the SIM card, which is necessary to operate with the NB-IoT or
LTE module.

Figure 3.2. Back side of the IoT Router with MiniPCIe slots.

. (1) Slot for the NB-IoT / LoRa module. (2) Slot for the BLE module. (3) Empty slot for custom miniPCIe module. (4) Slot for the IQRF module. (5) Slot for the SD card. (6) Slot for the SIM card

7



3. IoT Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Block scheme

Figure 3.3 provides an overview of the logical connections between the IoT Router
and the other components. Detailed hardware schematics are provided by the manual
IoT Router Schematics [15]

Figure 3.3. Logic connection between the IoT router and the IoT modules.

Despite any of the modules could be used as source of data, for the purposes of this
work the main input sources are IQRF, BLE and digital sensors. On the other side, the
Ethernet, Wi-Fi NB-IoT, LoRa technologies and the actuator are used as outputs. The
IoT Router can also exchange data via RS232, RS485, I2C and USBmini-A. Next part
aims to describe more in details what these technologies are and their main features.

3.3 Available IoT technologies

This section provides an overview of the technologies commonly used in wireless and
sensor networks, with summary information about the add-on modules with which the
IoT Router is equipped. Each of them is described by a picture (if available) and a
table containing the main properties. The last part of this section is dedicated to a key
feature of many IoT systems: the cloud storage.

3.3.1 NB - IoT

Th IoT Router is equipped with a miniPCIe full-height slot offering two possibilities
for LTE communication:

. LTE EC20EA-MiniPCIe. NB-IoT BG96 MiniPCIe

The Quectel EC20EA [16] is multi-mode LTE module which can provide commu-
nication over 4G/LTE networks. It offers a large variety of protocols and backward
compatibility with UMTS and GSM/GPRS networks.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Available IoT technologies

Figure 3.4. EC20EA module[17].

Table 3.2. Features of the EC20EA module.
Element Features

Name Quectel EC20EA
Standards FDD-LTE, DC-HSPA

HSPA +, HSDPA
HSUPA, WCDMA

TD-SCDMA, CDMA
EDGE and GPRS

Optional GPS / GLONASSG
Dimensions 51 x 30 x 4.9 mm

The Quectel NB-IoT BG96 is an LTE Cat M1/Cat NB1/EGPRS module [18] of-
fering maximum data rates of 375 kbps downlink and uplink. It features global fre-
quency bands, ultra-low power consumption, and is compatible with Quectel LTE
Standard module EG91/EG95, LPWA module BC95-G/BG95, UMTS/HSPA module
UG95/UG96 and GSM/GPRS module M95.

Figure 3.5. BG96 module.
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Table 3.3. Features of the BG96 module.
Element Features

Name Quectel NB-IoT BG96
Standards Cat.M1 / Cat.NB1

EGPRS
Cat NB1 Max. 32 kbps (DL)

Max. 70 kbps (UL)
Consumption Power Saving: 10 µA

Idle State: 15 mA
Sleep State: 1.96/1.1 mA

Dimensions 51 x 30 x 4.9 mm

3.3.2 Bluetooth Low Energy
The module is based on the BM70BLE01FC2 chip providing Bluetooth SIG v5.0 [13].
The chip is certified for FCC, ISED, MIC, KCC, NCC, and SRRC radio standards.
The module supports UART interface, 3 channel PWM output, precision temperature
sensor (PTS), 12-bit ADC and 18 GPIO.

Figure 3.6. BLE module.

Table 3.4. Features of the BLE module.
Element Features

Model BM70BLE01FC2
ISM band 2.402 GHz to 2.480 GHz
Channels 40 (0 to 39)
Consumption 15 mA
Key features Battery status monitoring

AES128 encryption
Temperature sensor

Dimensions 26.8 x 30 mm

3.3.3 IQRF
The module is based on the transceiver TR-76D operating in the 868 MHz and 916
MHz bands, i.e., in the unlicensed ISM (industrial, scientific and medical) frequency
bands. Its highly integrated design is quick to use. It includes MCUs, RF circuits,
serial EEPROM and optional antenna, no additional external components required.
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It features extremely low power consumption which makes it suitable for applications
running on battery. It gives the best when deployed in a network using MESH topology.

Figure 3.7. IQRF module.

Table 3.5. Features of the IQRF module.
Element Features

Model TR - 76D
ISM band 868 MHz
Data transfer rate (radio) 19.8 kbps
TX power 10 dBm (typical)

Idle State: 15 mA
Key features GFSK modulation

AES128 encryption
Dimensions 26.8 mm x 30 mm

3.3.4 LoRa

The selected LRWCCx-MPCIE [19] is from the LoRaWAN family of concentrator cards
with a mini PCIe connector using a USB interface for communication. This certified
concentrator is based on Semtech SX1301 or SX1308 IC see Fig.2. It can work on linux
devices that support USB controller and networking stack (TCP / IP and UDP). The
software that takes care of controlling the card is the HAL driver [20], which runs in the
user environment (user space). Furthermore, a packet forwarder [21] is needed to send
the received data from the sensors to the LoRa network server. Both are available on the
LoRa network project, which is Open Source Software. There is also the possibility of
uploading Firmware (FW) for the MCU, which allows connection via UART interface.
The variant selected for this project is sx1301, 868MHz (European band + outdoor IC).

Figure 3.8. LoRaWAN USB module[22].

11



3. IoT Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.6. Features of the LoRa module.

Element Features
Model LRWCCx-MPCIE
ISM band 868 MHz
OUT power up to 21 dBm
Key features LoRa® modulation

standard mini PCIe
Dimensions 51 x 30 x 4.8 mm

3.3.5 Temperature sensor DS18B20

The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature mea-
surements and has an alarm function with nonvolatile user-programmable upper and
lower trigger points. The DS18B20 communicates over a 1-Wire bus that by defini-
tion requires only one data line (and ground) for communication with a central mi-
croprocessor. In addition, the DS18B20 can derive power directly from the data line
(parasite power), eliminating the need for an external power supply [23].

Figure 3.9. Waterproof temperature sensor[24].

Table 3.7. Features of the temperature sensor.
Element Features

Model DS18B20
Range -10◦C to +85◦C
Accuracy 0.5◦C
Key features Parasitic Power Mode

1-Wire® Interface
Digital output

Power supply 3V to 5.5V

3.3.6 Relay module

This relay module is used in the practical part of this work as an example of actuator.
It can turn on and off high current loads (fans, lights, etc.) based on the environmental
quantities collected by the IoT Router. It can be controlled via GPIO directly from the
IoT Router since it provides on-board optical isolation [25].
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Figure 3.10. Relay module[25].

Table 3.8. Features of the relay module.
Element Features

Output AC250V 10A; DC30V 10A
Excitation 15 to 20 mA
Key features Optical isolation

3.3.7 Cloud storage
Two different databases are used in this project: the MS Azure SQL database which
represents the cloud solution and the Influx database which is used as local storage.
The Azure SQL database is a fully managed Platform as a Service (PaaS) Database En-
gine [26] that handles most of the database management functions such as upgrading,
patching, backups, and monitoring without user involvement. This database contains
the data collected from the DS18B20 temperature sensor. The InfluxDB (as a cloud
solution), is a fast, elastic, serverless real-time monitoring platform, dashboarding en-
gine, analytics service and event and metrics processor [27]. Data is organized based on
timestamps. For repeatability of the measurements, a local instance on the InfluxDB
is used on the IoT router instead of the whole cloud solution.

Table 3.9. Example of temperature entries with the Influx database.
Timestamp Location Value

13941981987198924 Office 1 24
13941981900424852 Office 2 25
13941981988928334 Office 1 25
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Chapter 4
Design of testbed

This chapter introduces the practical part of this work, the tasks to address and their
implementation. The goal is to verify the correct functionality of the IoT Router pe-
ripherals, whether it is able to control the modules described in the previous chapter
and study their impact on its performance. For the sake of clarity, the tasks to complete
are divided into two groups:

. Scenarios involving TCP/IP protocol.. Bridge between technologies (without TCP/IP).

The first group represents a common situation in IoT systems, where data is collected
by a central unit and sent to the public network via TCP/IP protocol. To test how the
IoT Router serves this purpose, the following tasks are considered:

. 1) Verify maximum throughput of Ethernet and Wi-Fi interfaces (uplink and down-
link) when TCP and UDP traffic is used.. 2) Test Jitter and total number of datagrams lost in case of UDP traffic.. 3) Verify correct functionality (no HW errors), maximum throughput of the custom
IQRF and BLE modules and their impact on the CPU and RAM.. 4) Verify the correct functionality of the IoT router as a LoRaWAN gateway.. 5) Test connection to local and remote databases.. 6) Verify the correct functionality (no HW errors) and data transmission in uplink
and downlink with the NB-IoT module. Verify its impact on the CPU and RAM of
the IoT Router. Measure the latency.. 7) Verify the impact of IQRF and BLE technologies combined in the IoT Router in
terms of CPU and RAM usage, CPU temperature and Ethernet traffic.

The second group represents those situations in which the collected data is used to
take actions on the field. A classic example is a cooling system driven by the temper-
ature value of a sensor. The data is therefore collected and used locally. Although in
real situations these scenarios are often merged together, in this paper they are treated
separately to keep things clear. The following tests are planned for this scenario:

. 8) Verify the possibility to collect data from sensors directly connected to the GPIO
of the router using a Dallas DS18B20 temperature sensor.. 9) Verify the possibility to control actuators directly connected to the router using a
relay module.. 10) Test the functionality of the IoT router to bridge data between different IoT
technologies (IQRF to BLE and vice versa).

The tasks mentioned above are carried out one by one using the software described
in chapter 2.1 and the GUI specifically designed as part of this work. In particular with
the Iperf software the tasks 1 and 2 are addressed while task 4 is carried out installing
the official software to implement LoRa gateways [20]. The remaining assignments
are addressed with the GUI and Node-RED. Next sections describe the GUI and how
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it is bound to Node-red, then each task is presented in more details along with its
implementation and finally the results are summed up.

4.1 Software solution
The software developed for this project is designed as a management tool for IoT
services. In this context, a service is defined as a process in which the IoT Router
collects or receives data from specific input hardware peripherals, processes it based
on user-defined rules and forwards it to selected output peripherals. With the intent
to minimize the complexity of the interface, and to release the user from any form of
coding, the testbed workplace is designed in the form of a GUI with an intuitive drag
& drop interface directly inspired by the Node-RED software [1]. In the next part of
this work, the architecture of the proposed software is presented, Fig.4.1, followed by
the description of the GUI itself.

4.2 Architecture

Figure 4.1. Software components.

The software solution consists of three main components:

. Node-RED. GUI. Local storage

In this context, the IoT Router is the server and the laptop is the client, which
access the GUI locally via the access point. Node-RED communicates with the laptop
(GUI) via web sockets. Its main purpose is to execute actions on the hardware based
on the messages received from the GUI. Typically these actions consist on exchanging
data with the modules, control GPIO pins etc. The GUI on the other hand, has been
designed to provide the user with a simple interface to manage the services running on
Node-red, i.e. without having to deal with all the nodes and flows deployed in Node-
RED, which can start loosing intuitiveness when the flows scale up. The GUI is served
from the IoT Router and accessible on the local network from a web browser at the
address iot-router:8080.

Last but not least, this software solution is provided with two types of local storage.
The first one is to keep track of all the settings and parameters set by the user when
creating or editing a service. Since Node-RED stores the flows information locally using
JSON files, the same approach has been taken regarding the services created with the
GUI. The second storage is an Influx database which offers the possibility to store
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data collected from the IoT Router with modules/sensors. This data can later on be
extracted to be analyzed with other platforms (e.g. Grafana) or simply for repeatability
of the measurements.

The main advantages of this software are:. Easy way to control/test the custom hardware modules presented in chapter 3.. Compatible with many ARM based boards.. Measurement and evaluation of the CPU and RAM usage with a default interval of
five seconds (adjustable within the Node-RED flow called Performance).. Real-time measurement of throughput both for Ethernet and Wi-Fi connections.

4.3 GUI
In this section, the Graphical User Interface is described together with its impact on
the board. Generally speaking, it is a web application running on the IoT Router and
accessible from the local network to which the IoT Router is connected. As mentioned
before, its main purpose is to provide an easy way for the user to collect data from input
sources and forward it to selected output peripherals. Along with this, it measures the
performance of the board in real time. It is built on top of Node-RED, meaning that the
GUI controls the Node-RED flows which in turn control the hardware. Figure 4.2 shows
a schematic view of the principle behind the software. The Socket server has the
purpose to communicate with the GUI and transparently forward the messages already
traveling through the flow. Each branch of the flow has a specific functionality (e.g.
get data from sensors, send data to a database, edit services etc.). The Router node
simply decides, based on the rules specified by the user with the GUI, to which branch
every message has to go. In this way it is possible to create custom scenarios using
different combinations of technologies.

Figure 4.2. Routing of messages between IoT technologies.

The GUI is organized into three main pages:. Dashboard. Editor page. Charts page
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4.3.1 Dashboard

The dashboard, Fig. 4.3, is the main page of the web application. On the left side it
shows a menu to navigate among the pages, change settings or shut down the board. In
the center of the page there are listed the services created by the user (hereinafter the
service tags). Each of them contains basic information about its status (red → stopped,
green → running) and the amount of messages/sec involved. On the right side, the
dashboard provides basic information about the IoT Router and its performance. From
top to bottom it shows: actual time, up-time of the board, the number of deployed
services (green: active, white: total, yellow: not active), the amount of used RAM (%),
the CPU usage (%) and the temperature of the CPU.

Figure 4.3. Dashboard of the web application.

4.3.2 Editor

The editor page, Fig. 4.4, provides an easy way to create and edit services. It is acces-
sible from the dashboard menu with the Plus button or directly from the service tag
(edit button). The layout of the editor is directly inspired by the Node-RED editor, in
fact, it offers a drag & drop interface that gives the user enough flexibility to control the
IoT technologies discussed in chapter 3. On the left side of the editor there is a palette
containing the nodes to be dragged to the canvas. Nodes have different functionali-
ties which include sending or receiving data to / from the modules, communicate with
databases, log messages etc. They can be connected with each other forming a flow,
once the flow is deployed (pressing the red button ”Deploy” in the top-right corner)
it becomes a service available in the dashboard. On the right side, the editor offers a
debug console where messages sent from any node can be inspected. This feature is
accessible using the console node available in the palette of the editor. It was par-
ticularly helpful during the development of the web application but it comes in pretty
handy even during the design of new services.
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Figure 4.4. Editor page: node palette (left), canvas (middle), debug console (right).

When a service is deployed, a routing table is generated. For each node in the service,
it contains the ID and type of the next node, as shown in Fig. 4.5. This information
is used by the Router node to forward each message to the proper Branch, Fig. 4.2.
Each message contains four important properties:

. serviceId: the ID of the service it belongs to.. nodeId: a unique ID for each node.. nextHop: the branch to which the message has to go next.. payload: the payload of the message.

The property nodeId and serviceId are used by the Router node to query the
routing table and attach the proper value (the type of the next node) to the nextHop
property. For instance, in Fig. 4.4, two messages are generated from the IQRF SPI
node, one with the nextHop property set to ’extract’ and one with the nextHop property
set to ’console’.

Figure 4.5. Routing table of the service shown in Fig. 4.4.

When a message is intended for the GUI, such as the CPU temperature, Node-RED
emits it the via web socket on the topic ’from-node-red’. The client on the laptop, which
is listening on that topic, can process the message, Fig. 4.6.
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Figure 4.6. Client listener for the Node-RED messages.

4.3.3 Charts

The chart page as well as the editor is accessible from the dashboard menu. It provides
statistics about the performance of the board and the throughput associated with the
network interfaces both in uplink and downlink. This is achieved in Node-RED with
the flows shown in Fig. 4.7. For clarity, it is divided into three sections enclosed
by colored frames. The red one is responsible for calculating the CPU usage, CPU
temperature, RAM usage and represents each of them by a chart. The green one offers
an estimate of the bandwidth available in both directions (upstream and downstream),
this idea was taken from another thesis work [28]. The accuracy of this measurement
has been verified with the tool speedtest-cli available for Raspbian OS. The last part
of the flow (yellow frame) is designed to measure the throughput of the Ethernet and
Wlan0 (Wi-Fi) network interfaces in both directions (upstream and downstream).

Figure 4.7. Node-RED flows responsible for the charts.

The first group of charts (Fig. 4.8 - top row) shows the CPU usage (%), the tem-
perature of the CPU (◦C) and the RAM usage (%). These charts are updated every
five seconds and by default display the last 60 seconds of data, although the interval
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and the time frame can be easily adjusted from the corresponding flow inside Node-
RED. The next two rows are dedicated to the throughput of the Ethernet and Wi-Fi
link respectively. These values are calculated every second but the data is not dis-
played immediately, instead it is buffered and the charts are updated every ten seconds
(adjustable within Node-RED).

Figure 4.8. Charts page.

The reason behind the time interval of the updates is to lower the impact of the
chart widgets on the CPU since the frequent re-rendering of a large number of points is
computationally expensive. It also helps to keep the GUI look more fluent. By default
the throughput is calculated in bytes/second but it can be adjusted as for the other
charts.

4.3.4 Impact on the board
The following paragraphs aim to describe the impact of the GUI and the Node-RED
software on the performance of the IoT Router, in particular how much the Ethernet
throughput is affected by the socket communication between the GUI and Node-RED.
There are three main factors that influence the available bandwidth:. The charts displayed by the GUI.. The Node-RED editor.. The SSH communication with the IoT Router.

To establish the impact of each factor, the Ethernet traffic is measured using the tool
vnstat described in Sec. 2.6 under the following conditions:. Basic case - Node-red running on background, no GUI processes, SSH terminal open

on the laptop to receive the real time measurements from vnstat.. Idle case - Node-red running on background, web page open with the real time charts,
SSH terminal open on the laptop to receive the real time measurements from vnstat.. Editor case - Node-red running on background and Node-red editor page open on the
browser, web page open with the real time charts, SSH terminal open on the laptop
to receive the real time measurements from vnstat.
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For all measurements the command used from the SSH terminal is always the same:

sudo vnstat -u -i eth0 --live

The figure below shows the Ethernet traffic for a period of 70 seconds under the
first condition (Basic case). The average throughput for both directions is lower than
1 Kbit/s.

Figure 4.9. Measurement of the Ethernet traffic for the basic case.

The second test is similar to the previous one with the addition of the GUI chart page
open on the web browser. This case is referred from now on as the idle case since
the GUI is active but no services are running. The traffic is slightly higher as expected,
Fig. 4.10. This is due to the periodic exchange of messages required to update the
charts. Under this condition, the outgoing traffic is 6.34 Kbit/s (4 packets/sec) while
the incoming traffic stands at 2.24 Kbit/s on average (6 packets/sec).

Figure 4.10. Measurement of the Ethernet traffic for the idle case.

The last measurement is again an update of the previous one, this time including
the Node-RED editor (not the GUI editor) open in another web page. The Node-RED
editor has the higher impact since it continuously updates the status of the nodes in
each flow. Since the flows can run on background, there is no reason to keep the Node-
RED editor page open during the actual execution of services with the GUI but it is
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useful to see its impact. On average, the outgoing and incoming traffic respectively is
11.29 Kbit/s and 5.27 Kbit/s.

Figure 4.11. Measurement of the Ethernet traffic for the editor case.

With these considerations, all the upcoming Ethernet traffic measurements are pre-
sented as additional traffic to the idle case mentioned above. As regards the CPU usage,
the Node-RED editor doesn’t affects it considerably as it oscillates around 5%. Its tem-
perature (without heat sink and with the IoT Router inside its metal case) is around
55◦C for the idle condition, with a 65% of RAM used. The following sections provide
a more detailed description of the tasks described at the beginning of this chapter as
well as the necessary information to implement them using the GUI and Node-RED
and the auxiliary software.

4.4 Bandwidth measurement

This section is intended to present the hardware and software configuration used to
measure the maximum speed achievable by the IoT Router via Ethernet and Wi-Fi
interfaces for TCP and UPD data streams. In particular, these tests aim to measures
the maximum bandwidth, the jitter and the number of datagrams lost. In order to
have accurate measurements during the test, all devices are isolated from the public
network.

4.4.1 Software used

This section describes the software setup used during the test. On the laptop is installed
Windows 10 while the IoT Router runs on Raspbian with kernel 4.19.66-v7+. On both
machines, Iperf v2.0.9, a tool for active measurements of the maximum achievable
bandwidth in IP networks, is installed. Iperf supports tuning of various parameters
related to timing, buffers and protocols (TCP, UDP, SCTP with IPv4 and IPv6). For
each test it reports the bandwidth, loss, and other parameters. However, the focus of
these experiments is on TCP and UDP data streams only.
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4.4.2 Ethernet configuration

Figure 4.12. Hardware connections for bandwidth measurement via Ethernet cable.

The scheme presented in Fig.4.12 describes how the hardware components are con-
nected. For this scenario, the IoT Router and a laptop are connected to a TP-link
router using 2 Ethernet CAT 5E cables supporting 1-Gigabit Ethernet (1Gbps). The
table below provides a description of the ports and their IP addresses.

Table 4.1. Ports and IP addresses of the devices used during the test.
Device Ethernet Port IP

Laptop HP ZBook 15G3 1 Gbit/s 172.16.1.153
Tp-Link AC1750 2 x 1 Gbit/s -/-
IoT router 100 Mbit/s 172.16.1.160

Considering this setup, the bottleneck seems to be the 100 Mbit/s Ethernet port
of the IoT Router. Therefore, the bandwidth for both upstream and downstream is
expected to be lower or equal to 100 Mbit/s.

4.4.3 TCP measurement via Ethernet

The TCP test consists on sending TCP packets between the Iperf terminal on the IoT
Router and the Iperf terminal on the laptop in both directions. The first measurement
regards the upstream direction, i.e. the IoT Router sends data to the laptop. To start
the Iperf server on the laptop, it is sufficient to run the following command in the
command line from the directory where Iperf is located:

iperf -s

Once the server is listening, the test can start with the following command from a
client terminal of the IoT Router:

iperf -c 172.16.1.153 -t 60

. Duration: 60 seconds.. TCP window size: 43.8 KB (default).. Data transferred: 680 MB.. Direction: upstream.. Source IP: 172.16.1.160. Destination IP: 172.16.1.153. Achieved bandwidth: 95 Mbit/s

The result, as expected, shows a bandwidth of 95 Mbit/s.
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Figure 4.13. Result of TCP upstream test for Ethernet configuration.

The measurement is repeated for the downstream communication (from the laptop
to the IoT Router). This time the command to run on the IoT Router is:

iperf -s

and from the command line of the laptop:

iperf -c 172.16.1.160 -t 60

Note that now the terminal on the laptop (now the client) is pointing to the IP
address of the IoT Router (server).

. Duration: 60 seconds.. TCP window size: 83.3 KB (default).. Data transferred: 680 MB.. Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.160. Achieved bandwidth: 94.9 Mbit/s

Similarly as before, the measured bandwidth is 94.9 Mbit/s.

Figure 4.14. Result of TCP downstream test for Ethernet configuration.

4.4.4 UPD measurement via Ethernet
The procedure to measure UDP data streams is very similar to the one used for TCP.
From the laptop the command to run is:

iperf -s -u

From the IoT Router terminal:

iperf -c 172.16.1.153 -u -b 1000000000 -t 60

Note the flag -u which refers to the UDP protocol while the flag -b represents the
bandwidth the terminal tries to use (1 Gbit/s). This value, higher than the physical
limit of 100 Mbit/s, has been chosen on purpose to observe the behavior of the IoT
Router.

. Duration: 60 seconds.
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. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 685 MB.. Jitter: 0.161 ms. Datagrams lost: 0/488278 (0%). Direction: upstream.. Source IP: 172.16.1.160. Destination IP: 172.16.1.153. Required bandwidth: 1 Gbit/s. Achieved bandwidth: 95.7 Mbit/s

As expected, the bandwidth is slightly higher using UDP protocol (95.7 Mbit/s) due
to the lack of ACK messages, but still lower than the physical limit of 100 Mbit/s
imposed by the IoT Router port.

Figure 4.15. UDP upstream test with required bandwidth of 1 Gbit/s.

Similarly to the TCP measurement, for the downstream test the commands are
swapped. From the IoT Router terminal:

iperf -s -u

From the laptop:

iperf -c 172.16.1.160 -u -b 1000000000 -t 60

. Duration: 60 seconds.. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 691 MB.. Jitter: 10.644 ms. Datagrams lost: 4400860/4893851 (90%). Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.160. Required bandwidth: 1 Gbit/s. Achieved bandwidth: 95.4 Mbit/s

The achieved bandwidth for downstream seems to be slightly lower, while the jitter
is much higher as well as the datagrams lost.
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Figure 4.16. UDP downstream test with required bandwidth of 1 Gbit/s.

Repeating the downstream UDP test with different bandwidth flag (100 Mbit/s) the
jitter and the number of datagrams lost decrease drastically as expected.

. Duration: 60 seconds.. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 685 MB.. Jitter: 0.201 ms. Datagrams lost: 21921/510200 (4.3%). Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.160. Required bandwidth: 100 Mbit/s. Achieved bandwidth: 95.7 Mbit/s

Figure 4.17. UDP downstream test with required bandwidth of 100 Mbit/s.

4.4.5 Wi-Fi configuration

Figure 4.18. Hardware connections for bandwidth measurement via Wi-Fi.

The scheme in Fig. 4.18 is identical to the one adopted for the Ethernet measurements
except that this time the IoT router connects to the TP-Link router via 2.4GHz Wi-
Fi dongle (TP-LINK model TL-WN725N plugged into the USB port) which has a
maximum data-rate of 150 Mbit/s. Therefore, the following tests are expected not to
cross this limit.

It is important to note that 150 Mbit/s is a limit imposed by the Wi-Fi dongle,
it cannot be excluded that with a different one supporting higher data-rate the IoT
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Table 4.2. Ports and IP addresses of the devices used during the test.
Device Ethernet Port IP

Laptop HP ZBook 15G3 1 Gbit/s 172.16.1.153
Tp-Link AC1750 1 x 1 Gbit/s -

Device Wi-Fi IP
IoT router 2.4 GHz / 150 Mbit/s 172.16.1.222

Router could have better performance. These tests assume a distance between the IoT
Router and the TP-Link router of around 50 cm. The following sections describe the
result of the tests using again the Iperf software but omitting the commands as they
are exactly the same ones described earlier.

4.4.6 TCP measurement via Wi-Fi

Upstream measurement:

. Duration: 60 seconds.. TCP window size: 43.8 KB (default).. Data transferred: 333 MB.. Direction: upstream.. Source IP: 172.16.1.222. Destination IP: 172.16.1.153. Achieved bandwidth: 46.5 Mbit/s

The result shows a bandwidth of 46.5 Mbit/s i.e. around one third of the expected
value. To establish where the bottleneck is, the Wi-Fi dongle should be tested with
laboratory equipment to make sure it can reach the declared value of 150 Mbit/s (not
purpose of this thesis, it can be considered in future work). If it can, then the reduction
of the data-rate is caused by the IoT Router.

Figure 4.19. Result of TCP upstream test for Wi-Fi configuration.

Similarly for downstream:

. Duration: 60 seconds.. TCP window size: 85.3 KB (default).. Data transferred: 298 MB.. Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.222. Achieved bandwidth: 41.6 Mbit/s

The bandwidth appears to be slightly lower than for upstream.
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Figure 4.20. Result of TCP downstream test for Wi-Fi configuration.

4.4.7 UDP measurement via Wi-Fi
Upstream measurement:

. Duration: 60 seconds.. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 373 MB.. Jitter: 1.060 ms. Datagrams lost: 0/266102 (0%). Direction: upstream.. Source IP: 172.16.1.222. Destination IP: 172.16.1.153. Required bandwidth: 1 Gbit/s. Achieved bandwidth: 52.1 Mbit/s

In agreement with the UDP measurement for the Ethernet configuration, the achieved
bandwidth is higher than TCP.

Figure 4.21. Result of UDP upstream test for Wi-Fi configuration.

Similarly for downstream:

. Duration: 60 seconds.. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 369 MB.. Jitter: 5.105 ms. Datagrams lost: 4837824/5101150 (95%). Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.222. Required bandwidth: 1 Gbit/s. Achieved bandwidth: 51.4 Mbit/s
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The downstream bandwidth appears to be similar as for upstream. Note the higher
value of jitter and datagrams lost, this is due to the data-rate imposed to the Iperf
terminal (1 Gbit/s) which is much higher than the limit.

Figure 4.22. Result of UDP downstream test for Wi-Fi configuration with required band-
width of 1 Gbit/s.

Repeating the downstream test with an imposed bandwidth of 100 Mbit/s both the
jitter and the number of datagrams lost decrease as expected.

. Duration: 60 seconds.. UDP buffer size: 160 KB (default).. Datagram: 1470 Bytes.. Data transferred: 394 MB.. Jitter: 0.309 ms. Datagrams lost: 229128/510200 (45%). Direction: downstream.. Source IP: 172.16.1.153. Destination IP: 172.16.1.222. Required bandwidth: 100 Mbit/s. Achieved bandwidth: 55.0 Mbit/s

Figure 4.23. Result of UDP downstream test for Wi-Fi configuration with required band-
width of 100 Mbit/s.

4.4.8 Results

Following the analysis presented in this section, the available bandwidth for Ethernet
interface is fairly close to the physical limit imposed by the 100 Mbit/s port. This
limit is suitable for typical IoT applications as the throughput is usually much lower
(Kbit/s). As regards the Wi-Fi interface, the results show that just one third of the
expected bandwidth was actually available. This might be due to the WI-Fi dongle or
due to the IoT Router itself. However, even in this conditions the IoT Router would
be able to handle a large IoT traffic. The results are summed up in Table 4.5.

It is important to remember that these results are derived from laboratory measure-
ments, i.e. carried out in isolated environment. In real cases, where the IoT Router
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Table 4.3. Measured bandwidth for Ethernet and Wi-Fi interfaces.

Ethernet TCP UDP
Uplink 95 Mbit/s 95.7 Mbit/s
Downlink 94.9 Mbit/s 95.4 Mbit/s

Wi-Fi TCP UDP
Uplink 46.5 Mbit/s 52.1 Mbit/s
Downlink 41.6 Mbit/s 51.4 Mbit/s

operates connected to the outside network, the available bandwidth can be significantly
lower due to limits and bottlenecks of the network itself.

4.5 IQRF simulation

Figure 4.24. Hardware configuration for the IQRF simulation.

The scheme adopted for this simulation is the same as the one described in Fig.
4.12 with IQRF being the only source of traffic. The goal is to understand how the
IoT Router would handle the traffic coming from an IQRF network directed to a hy-
pothetical cloud service over the Ethernet interface. This is done with a simulation
which generates traffic from the IQRF module connected to the IoT Router (simulating
packets coming from a hypothetical network) and sending each packet to the laptop
which hosts an Iperf server listening to UDP traffic. The highest data-rate which the
transceiver can achieve is limited by two main factors:

. SPI communication. DPA protocol

IQRF SPI allows packets up to 64 Bytes, with maximum 55 Bytes of data when
SPI protocol is used. Due to the acknowledgement system (confirmation message)
implemented by the DPA protocol and because of various overheads [29], a single DPA
request with 55 bytes of data and a single hop between coordinator and nodes takes
around 140 milliseconds to be completed. This means a limit of 7 DPA requests each
seconds in the best case scenario (no extra delay/processing required), i.e. 385 Byte/s.
To simulate this traffic, it is sufficient to send 7 SPI packets with random data (52B)
each second to the IQRF module and send the entire response (52B of data + 3 control
bytes, 55B total) over Ethernet. The following paragraphs explain how to implement
this simulation within the GUI.

4.5.1 Implementation

To set up this scenario it is necessary to go to the editor page of the GUI and follow
these steps:
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. 1) Drag the IQRF-SPI and UDP nodes to the canvas. Connect them as shown in
Fig. 4.25.

Figure 4.25. Design of IQRF scenario with the GUI editor.

. 2) Double click on the IQRF SPI node and fill the form as described below.

Table 4.4. Parameters of IQRF SPI node.
Field Value

Serial port /dev/spidev1.0
pcmd F0
D-length 0x34
data 52 times 0x00 separated by coma or space
CRCM 0x9B

Note that this command generates a response from the module of 55 bytes in total.. 3) Click on the + button, Fig. 4.26.. 4) Select time interval of 140 ms.. 5) Click the toggle button to activate the command (it is not sent yet).
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Figure 4.26. Form for the IQRF SPI node with relative parameters.

. 6) Click on Done.. 7) Double-click on the UDP node and fill the form as described below.

Table 4.5. Parameters of UDP node.
Field Value
Host 10.0.0.33
Port 5001

. 8) Click on Done and then Deploy.. 9) Go back to the dashboard and click on the Play button on the corresponding
service.

Now the service starts sending the messages activated in step 5 at the specified
interval of time to the IQRF transceiver. The packets received from the transceiver are
then forwarded to the Iperf UDP server (running on the laptop) on port 5001 as UDP
traffic. With respect to the idle condition described in Sec. 4.3.4 the outgoing Ethernet
traffic increased by 0.735 Kbyte/sec as shown by the vnstat tool, Fig. 4.27.

Figure 4.27. Ethernet traffic of the IQRF simulation.

Note that during the 60 seconds of measurement, 11 packets/sec on average, 7 of
which from the IQRF module and the other 4 supposedly from Node-RED for the GUI
charts were transmitted. However, this increment includes the 385 Bytes/s collected
from the IQRF module and the overhead introduced by the UDP protocol, whose
packets are composed by 97 bytes in total as shown by the frame captured with the
Wireshark software, Fig. 4.28.

Figure 4.28. UDP frame captured with Wireshark.

The impact of this process on the IoT Router is visible also graphically on the Charts
page of the GUI. Figure 4.29 also shows an increment on the CPU usage of 3% with
+1◦C on the temperature value. The RAM usage went up by 0.5%.
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Figure 4.29. Impact of the IQRF simulation on the IoT Router.

The results of this simulation are summed up in the Table 4.61.

Table 4.6. Results of IQRF SPI simulation.
Field Impact

CPU load(%) + 3%
CPU temperature (◦C) + 1 ◦C
RAM usage(%) + 0.5%
Ethernet TX + 0.735 Kbyte/sec
Ethernet RX + 11,25 Byte/sec

4.6 BLE simulation

This scenario presents the scheme adopted to test the custom BLE (Bluetooth Low
Energy) module and study its impact on the performance of the IoT Router, with
the focus on the outgoing traffic from the Ethernet interface. Figure 4.30 shows the
architecture adopted for this test. The simulation involves transmitting packets from
the mobile phone to the BLE module and forwarding them to the UDP server running
on the laptop with the Iperf software. The goal is to measure the performance of the
board when high traffic generated from the BLE module is sent over Ethernet. It can
be helpful to understand how the IoT Router would handle a hypothetical network of
BLE sensors whose data has to be sent to the cloud.

Figure 4.30. Architecture of the BLE scenario.
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As a GATT Server, the BM70/RN4870 module (on which the custom BLE module is

based) hosts the Microchip Transparent UART Service. The Transparent UART Ser-
vice provides a simple bidirectional data transfer service. It defines two characteristics
for data communication, one for receiving data with the Write property and the other
for sending data with the Notify property. The Microchip Transparent UART Service is
instantiated as a Primary Service on the BM70/RN4870 BLE module by default [30]. To
test the default characteristics the Android application Serial Bluetooth Terminal
is used [31] as it automatically implements the Microchip RN4870/71, BM70/71 ’trans-
parent UART service’. The UUIDs and access properties of the Microchip Transparent
UART service and its characteristics are shown in the tables below.

Table 4.7. Service name and UUID of the GATT server.
Service Name UUID

Microchip Transparent UART 49535343-FE7D-4AE5-8FA9-9FAFD205E455

Table 4.8. Characteristic name and UUID of the GATT server.
Characteristic Name UUID Properties

Microchip Transparent 49535343-1E4D-4BD Notify
UART TX 9-BA61-23C647249616 Write

Write without response
Client Characteristic Read
Descriptor Write
Microchip Transparent 49535343-8841-43F Write
UART RX 4-A8D4-ECBE34729BB3 Write without response

The custom BLE module communicates via UART with the IoT Router using a
Baud Rate of 115200, 8 data bits, 1 start bit, 1 stop bit and no parity. With this
setup the actual UART throughput is 92160 bit/s or 11520 byte/s. It is important to
note that this is a limit imposed by the physical connection between module and MCU
and it is not dependent on the BLE protocols. The connection between the module
and the phone appears to drop frequently when the time interval between transmitted
packets is below 25 milliseconds. This might be caused also by overheads of the mobile
application. A stable compromise is obtained transmitting packets of 22 bytes each
every 30 ms resulting in roughly 660 Bytes/sec which can be reasonable considering a
typical IoT application. The simulation implemented for this scenario lasts 60 seconds
during which the Ethernet throughput is monitored together with the CPU and RAM
performance.

4.6.1 Implementation

Similarly, as for the previous simulation, this scenario is built with the GUI editor.
Drag the BLE RX and UDP nodes to the canvas. Connect them as shown in Fig. 4.31.
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Figure 4.31. Design of BLE scenario with the GUI editor.

Double click on the BLE RX node and click on the App button to put the Bluetooth
module into Application mode. The UDP node can be configured as shown in Table
4.9.

Table 4.9. Parameters of the UDP node.
Field Value
Host 10.0.0.35
Port 5100

Now all parameters are set. To save the changes click on Done and then Deploy. The
IoT Router is ready to receive data through the Transparent UART Service and send
it to the UDP server. To test this process, the easiest way is to connect to the BLE
module via a mobile phone. The application chosen for this purpose is called Serial
Bluetooth Terminal (Android app). Figure 4.32 shows the terminal of the application
transmitting 22 bytes of data (HEX: 0x41, ASCII: A) with an interval of roughly 30 ms
for 60 seconds. Messages are represented as strings separated by the Carriage Return
(\r, last two bytes of data) since Node-RED expects it when reading the serial port.

Figure 4.32. Terminal of the BLE android application.

The numerical results of the simulation are presented in Fig. 4.34. Each UDP packet
had a length of 64 bytes as shown by the frames captured by the Wireshark software
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during the simulation, Fig. 4.33. With an average of 31 transmitted packets each
second the Ethernet throughput increased by roughly 2.12 Kbyte/s (16.96 Kbit/s more
with respect to the idle value of 6.19 Kbit/s described in Sec. 4.3.4). This result is
fairly close to the theoretical value of 64 bytes x 31 packets/sec = 1984 Byte/s (15.872
Kbps). The graphical results can be observed in Fig. 4.35. Note an average increment
of 5% on the CPU usage with the CPU temperature varying between 52.5◦C and 56◦C.
The RAM usage increased by less than 1%. From this figure it also appears how the
outgoing Ethernet traffic assumes a decreasing trend between the beginning and the
end of the simulation.

Figure 4.33. UDP frame captured with Wireshark.

Figure 4.34. Numerical results of the BLE simulation.

Figure 4.35. Graphical results of the BLE simulation.

The results of this simulation are summed up in the table below.
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Table 4.10. Impact of the BLE simulation on the IoT Router.
Field Impact

CPU load(%) + 5%
CPU temperature (◦C) + 4 ◦C
RAM usage(%) + 0.15%
Ethernet TX + 2.12 Kbyte/sec
Ethernet RX + 0.68 Kbyte/sec

4.7 LoRa concentrator

This section describes the implementation of a LoRa concentrator using the module
shown in Fig. 3.8. The goal is to verify whether the IoT Router is able to work as a
LoRa gateway. The implementation includes downloading and installing the appropri-
ate software and verify that the router can receive messages from LoRa nodes deployed
in the field and forward them to the cloud The Things Network [32]. This procedure
is described in more details in the tutorial ’Build a LoRa Gateway with n-fuse mPCIe
card’ [33] which has been followed step by step, therefore only a summary is reported
here. To set up a LoRa gateway, three programs are required. The first is the packet
forwarder, running on RPI-CM3, which forwards received RF packets from end nodes
to the server via an IP / UDP link. The software can also forward to downlink the
packets sent by the server. The second SW is picoGW hal, it is a driver necessary to
communicate with the concentrator via USB or UART interface. The library imple-
ments a USB CDC (virtual com port) for communication with the MCU. The third
and last is picoGW mcu, it is a FW for MCU (STM32-F401CD) which is integrated
in the concentrator. It also implements a USB CDC protocol for bridging commands
from the HOST (RPI-CM3) directly to the SX1301 SPI interface. The HAL driver [20]
and the packet forwarder [21] are downloaded with the following commands:

mkdir loragateway
cd loragateway
git clone https://github.com/Lora-net/picoGW_packet_forwarder.git
git clone https://github.com/Lora-net/picoGW_hal.git

And to install the sources:

cd picoGW_hal
make clean all
cd ..
cd picoGW_packet_forwarder
make clean all

Note that the antenna needs to be attached to the module before the module
is plugged into the IoT router, otherwise it could be damaged. The configuration
(global conf.json ) file has to be properly edited with the unique ID of the concentrator
(333833303b005200 in this case) and the parameters described in Table 4.11.

The gateway can now be registered to the cloud (TheThingsNetwork [33]). After
starting the packet forwarder, the gateway is up and running and it can receive messages
from LoRa nodes in its range. Figure 4.36 shows the messages received by the IoT
Router through the LoRa concentrator and forwarded to the cloud. This proves the
correct implementation of the IoT Router as a LoRa gateway.
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Table 4.11. Parameters of the global conf.json file.

Field Value
gateway ID 333833303b005200
server address router.eu.thethings.network
serv port up 1700
serv port down 1700

Figure 4.36. LoRa messages received by the gateway.

4.8 Remote & local database
This section describes the implementation of two databases using Node-RED and the
GUI. The purpose is to test the capability of the IoT Router to store data locally
and remotely. First the Microsoft Azure SQL database is presented as an example of
remote solution, then the Influx database follows as representative of a local solution.
It is important to note that the MS Azure services are bound to a subscription, in
order for this to work an account needs to be created. The following test uses a student
account made available by the Czech Technical University in Prague at the time of
writing, however this type of subscription has a validity of 30 days. After that period,
it won’t be possible to use or query the database without upgrading the subscription.
Figure 4.37 shows the configuration adopted for the remote database test.

Figure 4.37. Configuration for the remote database test.

The idea is to simulate the reading of a sensor from a BLE network and store it
into the MS Azure SQL database using the GUI. The database contains just one table
(bluetoothle) with one column called ’temperature’ which is enough for the purposes of
this test. For simplicity the temperature value is sent from a mobile phone connected
to the BLE module, using the android app Serial Bluetooth Terminal [31]. This
operation is done similarly as described in section 4.6.1. As regards the local solution,
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the Influx database is used as a data concentrator. The Influx DB is a high-speed read
and write time series database which appears to be a good candidate for IoT solutions.

Figure 4.38. Configuration for the local database test.

The figure above shows the scheme adopted for the local database test. Similarly as
before, this database has one Measurement (analogous to a SQL table) with one Tag
(analogous to a SQL column). Since the local database is running on the board, it is
expected to have a higher impact on the CPU and RAM usage compared to the remote
solution. On the other side, the execution of queries is expected to be much faster with
the local database, partially because it is used without authentication. Note that in
real application, for local databases the authentication is usually necessary but for this
test, it is not required.

4.8.1 Implementation

The GUI is used to build this simulation. After entering the editor page from the
dashboard, the required nodes are dragged on the canvas and connected as shown in
Fig. 4.39.

Figure 4.39. Design of the remote database scenario with the GUI.

The Azure node stores the payload of the incoming messages in the database and
table specified by the user. To set it up, the form needs to look like below (double click
on the node to open the form):

Figure 4.40. Configuration of the MS Azure database.
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For the BLE RX node the only required configuration is to click on the App button

inside its form, this will bring the BLE module into the application mode running the
default Transparent UART service. In this way, it is possible to connect to it with
the phone through the aforementioned android app (see section 4.6.1 for more details).
Once these operations are done, the service is deployed with the red button in the
top-right corner of the editor. Now it is possible to send values from the phone and
have them stored in the selected SQL table. Data can be verified directly from the MS
Azure dashboard or through a database management software.

For the local solution the principle is the same, instead of the Azure node the Influxdb
node is connected to the BLE RX node. Note that the GUI is not able to handle two
BLE RX nodes at the same time. This is because there is just one physical Bluetooth
module on the IoT Router, therefore the previous service can be deleted or edited
(deleting the Azure node and inserting the Influxdb node, see Fig. 4.41).

Figure 4.41. Design of the local database scenario with the GUI.

The parameters for the Influxdb node are described in the Table 4.12.

Table 4.12. Parameters of the Influxdb node.
Field Value

Measurement temperature
Tag location
Tag value Room 2

Once the service is deployed, it is possible to send the temperature values from the
mobile phone as done before. The figure below shows a screen-shot of the android app
(left) and the temperature value store in the database (right). The local database can
be queried from a SSH terminal of the IoT Router as follow:

start the database console:

influx

Select the database to use:

use iotrouterdb

Query database:

SELECT * FROM temperature
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Figure 4.42. Phone view (left), database entries (right).

4.8.2 Performance

The performance of the two solutions appears to be quite different. In the first case,
with the Azure node, the execution time of an INSERT query with a single temperature
value takes on average one second. The reason is mainly because the node[34] which
actually implements this operation in Node-RED connects to the database every time
before executing a query, then it closes the connection. This solution makes sense when
the data is not collected too often (e.g. once per hour), but if the sampling interval
decreases or a lot of data is collected at once, then a better approach might be to
keep the connection open which would result in a much faster execution time. On the
contrary, the influx DB seems to execute queries much faster. The flow shown in Fig.
4.43 (left) inserts numbers from 21 to 24 in loop into the database every 4 ms for 60
seconds. The right side of the picture shows the DB entries, note the timestamp in
milliseconds which reflects the execution time of 4/5 ms. The impact of this operation
is visible in Fig. 4.44. The CPU usage increased by 30%, the RAM by 1% and the
CPU temperature increased by 11◦C. Note that this is a test under stress conditions,
i.e. to find out if the IoT Router can handle a high number of queries/sec. In real IoT
applications this query execution rate is not common and, to improve the performance,
one query could be used to store multiple values.

Figure 4.43. Node-RED flow (left), database entries (right).
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Figure 4.44. IoT Router performance with a large number of queries/sec (Influx DB).

4.9 NB-IoT
This section describes the implementation of the NB-IoT technology with the IoT
Router. The goal is to verify the correct functionality of the NB-IoT module and
measure the performance of the IoT Router when the module is sending or receiving
data. Finally, a measurement of the latency is provided. For this test, the BG96 module
is equipped with a T-mobile[35] SIM card with exclusive support for NB-IoT. Figure
4.45 shows the scheme adopted.

Figure 4.45. Architecture of the NB-IoT simulation.

The LTE Cat NB1 technology, available with the BG96 module[18], has a peak
rate[36] of 26 kbit/s in downlink and 16.9 kbit/s in uplink (single-tone). The idea is
to simulate traffic in both directions, with the help of a remote server, and see how
it affects the CPU and RAM usage of the IoT Router. However, in order to recreate
a typical IoT situation, the traffic is not generated continuously. To test the uplink
communication, 1460 bytes (11.68 Kbit) of data are sent as UDP traffic to the remote
Iperf server ping.online.net, few times in a minute. This number of bytes represents
the maximum data length which can be transferred to the module at once[37]. Since the
UDP packets are sent manually from the SSH terminal of the laptop, a good compromise
seems to be sending 4 UDP packets per minute. This is also due to the delay connected
with the response of the BG96 module after each message is sent. In real applications
these operations would be carried out by a script, providing a better control of the
module and, possibly, a higher packet rate. However, this is not required for the
purposes of this theses. For the downlink, the traffic is simulated requesting a web page,
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via HTTP protocol, from a remote server (example.com). The server response is used
as an example of downlink traffic. Table 4.14 provides more details about the request.
In this way, 11 kbit of data are sent in uplink roughly every 15 seconds and around 4.39
kbit (549 bytes) in downlink with the same interval. The BG96 module is controlled via
AT commands[38], which are sent to it using the picocom serial terminal[11], available
for linux devices[39]. Table 4.13 describes the setup used for the serial communication.

Table 4.13. Settings of the BG96 serial communication.
Parameter Value

GPIO26 (Enable) logic 1 (active high)
GPIO27 (Reset) logic 0 (active low)
Port /dev/ttyUSB6
Baud rate 115200
Stop bit 1
Parity none

The following commands are used as a one-time configuration to connect the module
to the T-mobile network.

AT+CGDCONT = 1,"IP","iot.t-mobile.cz"
AT+CEREG=1
AT+COPS=1,0,"T-Mobile CZ",9

These commands set the Access Point Name (APN) to iot.t-mobile.cz and man-
ually connect the module to the T-Mobile CZ operator. The status of the connection
can be queried with the following command.

AT+CGATT?

If it replies with +CGATT: 1 OK, it means it is successfully connected to the network.
Now the module is ready. First, the UDP uplink measurement is performed. To open
a UDP socket service, another AT command is used.

AT+QIOPEN=1,0,"UDP","62.210.18.40",5208,0,0

Note that the IP address 62.210.18.40 corresponds to the domain of the Iperf server
(ping.online.net), while 5208 is the port it listens to[40]. Once the socket service in
open, the UDP messages can be pasted in the terminal after the following command.

AT+QISEND=0,1460

Note the second parameter, 1460, which sets the size of the data to be transmitted.
For this test, a random text of 1460 bytes is used as payload. The text can be pasted
in the terminal and sent by pressing the Enter key. The terminal replies with SEND OK,
but it does not mean the data has been sent to the server successfully. After sending
the same UDP packet 4 times, the total amount of transmitted data can be queried
with the command below.

AT+QISEND=0,0

As shown in Fig. 4.46, it amounts to 5840 bytes successfully sent, i.e. 4 x 1460 bytes.
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Figure 4.46. Total transmitted data with the NB-IoT module.

As shown by Fig. 4.47, sending 4 UDP messages per minute doesn’t seem to have
a noticeable impact on the IoT Router, with less than 1% increment on the CPU and
RAM usage.

Figure 4.47. Impact of the uplink test on the CPU and RAM usage of the IoT Router.

Note the Ethernet traffic, Fig. 4.47. The peaks are due to the exchange of messages
between the laptop and the IoT Router via SSH and TCP protocols. To test the
downlink traffic, the procedure is quite similar. A TCP client connection is open with
the following command.

AT+QIOPEN=1,0,"TCP","93.184.216.34",80,0,0

Note the IP address 93.184.216.34, which corresponds to the domain example.com
listening on port 80. To specify the message payload size, the previous QISEND command
is used, but with the size of 43 bytes, i.e. the payload string described in Table 4.14.

Table 4.14. Details of the HTTP request.
Parameter Value

Server IP address 93.184.216.34
Server port 80
Payload (ASCII) GET / HTTP/1.0\r\nHost: example.com\r\n\r\n
Method TCP

At this point, the server responds with 549 bytes of data which are read from the
module and displayed on the terminal of the laptop with the command below.

AT+QIRD=0,1500
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As for the uplink, this operation is repeated 4 times. Figure 4.48 shows a contained
impact on the CPU and RAM usage of the IoT Router. The received traffic however
is not clearly visible on the RX chart, because it is mixed with the traffic generated to
update the charts.

Figure 4.48. Impact of the downlink test on the CPU and RAM usage of the IoT Router.

Finally, the latency measurement with the NB-IoT module is carried out. To estimate
the Rount-Trip Time (RTT) of a packet, the following command can be used.

AT+QPING =1,"8.8.8.8",4,10

This command sends 10 packets with 32 bytes of data to the IP address 8.8.8.8.
measuring the RTT of each packet and calculating the average value (ms). To have
a reliable estimation, the command is executed 10 times, i.e. 100 packets sent with a
final average RTT value of 209.9 ms.

Figure 4.49. Result of a ping test with the NB-IoT module.
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Figure 4.49 shows the result of one ping test. Note the last line which shows an

average RTT of 211 ms for the previous 10 ping requests. Both in uplink and downlink
the packets are sent and received successfully, proving the correct implementation of
the NB-IoT technology with the IoT Router.

4.10 IQRF + BLE simulation
Th section describes the implementation of scenario in which different technologies are
used at the same time. The goal is to see how the IoT Router performs when data is
collected at the same time from the IQRF and the BLE network and sent via Ethernet
to a hypothetical cloud represented by the Iperf UDP server running on the laptop.
The measurement is carried out based on the considerations made while testing the
single technologies, i.e. the following data throughput is used:

. 385 Byte/s for IQRF. 660 Byte/s for BLE

The figure below represents the architecture adopted for this test. Considering the
UDP frames analyzed for the single cases, the actual outgoing traffic for this combined
solution is expected to be around 2.83 Kbyte/s higher with respect to the idle condition.
The incoming traffic is expected to be almost the same.

Figure 4.50. Architecture of the IQRF & BLE simulation.

The implementation of this test is done with the GUI using the editor page. The
nodes are connected as shown in Fig. 4.50. The configuration of the nodes is omitted
as it is the same adopted for the IQRF and BLE individual tests.

Figure 4.51. Design of the IQRF & BLE simulation.

After deploying the service, the simulation is launched. Fig. 4.53 shows the result
after 60 seconds. As expected the Ethernet throughput increased by 2.78 KByte/sec in
upstream, including both IQRF and BLE traffic. Note that 38 packets/sec were sent,
31 of which from the BLE module and 7 from the IQRF module.
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Figure 4.52. Outgoing Ethernet traffic for the IQRF & BLE simulation.

As regards the CPU, its usage increased by 10% while the temperature touched 60◦C
before the simulation was stopped. The RAM usage increased by less than 0.5% instead.

Figure 4.53. Graphical results of the IQRF & BLE simulation.

The results of this simulation are summed up in the table below.

Table 4.15. Impact of the BLE simulation on the IoT Router.
Field Impact

CPU load(%) + 10%
CPU temperature (◦C) + 5 ◦C
RAM usage(%) + 0.15%
Ethernet TX + 2.78 Kbyte/s
Ethernet RX + 0.01 Kbyte/s

4.11 Analog & digital sensors
One of the simplest and more common IoT scenarios involves reading data from a
wired sensor and send its value over the internet (to the cloud, database, servers etc).
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The goal of this simulation is to test the capabilities of the IoT Router to serve this
purpose. In particular, the focus is on the performance when several sensors are wired
to it. Since the IoT Router doesn’t have a built in ADC (Analog to Digital Converter)
it can be directly wired only with digital sensors. An example can be a network of
Dallas DS18B20 temperature sensors connected together via 1-Wire bus, i.e. using just
one GPIO pin of the IoT Router. Despite theoretically a huge number of 1-Wire sensors
can be connected to the same pin, the real number is largely limited by the length of the
cables and by the power requirements. The GPIO header has 12 pins that can be used to
host 1-Wire sensors. Per datasheet the DS18B20 has a maximum current consumption
of 1.5mA [23] and the IoT Router can handle up to 50mA per GPIO bank. This means
that it could be safe to connect at least 30 sensors to it (assuming a relatively short
length of each wire). Note that for this simulation the traffic measurement and the CPU
and RAM measurements are not carried out simultaneously. The reason is because
the traffic generated is relatively contained and on the chart it wouldn’t be clearly
distinguishable from the traffic related to the performance of the board. Therefore, the
Ethernet throughput is measured first and then the CPU and RAM usage.

Figure 4.54. Scenario with data collected from digital sensors.

This scenario simulates the reading from 30 DS18B20 sensors every 10 seconds for a
minute. This is done to see how the board performs when it has to periodically query
many sensors roughly at the same time. Note that sampling every 10 seconds might
appear too fast for many IoT applications but it is suitable for this experiment as it
shows noticeable results in the period of 60 seconds. Figure 4.54 shows the architecture
adopted for this test. As for the other simulations, the data collected from the IoT
Router is sent as UDP traffic via Ethernet to a UDP server running on the laptop. The
outgoing Ethernet traffic is monitored both with the GUI and with the vnstat tool.

4.11.1 Implementation

To test this scenario with the GUI the following steps are required:

. 1) From the GUI dashboard, click the plus button to create a new service.. 2) Drag 30 DS18B20 nodes and 2 UDP nodes to the editor canvas and connect them
as in Fig. 4.55.
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Figure 4.55. Design of DS18B20 scenario with the GUI editor.. 3) Double click on each DS18B20 node and Click on the + button, Fig. 4.56, leaving
the field Sensor-ID empty.. 4) Select time interval of 10 seconds.. 5) Click the toggle button to activate the command (it is not sent yet).. 6) Tick the simulation check-box.

Figure 4.56. Form for the DS18B20 node with relative parameters.. 7) Click on Done.. 8) Double-click on the UDP node and fill the form as described in Table 4.16.

Table 4.16. Parameters of the UDP node.
Field Value
Host 10.0.0.33
Port 5001

. 9) Click on Done and then Deploy. If prompted for a name, select a name (e.g.
DS18B20) and click Continue.. 10) Go back to the dashboard and click on the Play button on the corresponding
service, Fig. 4.57.
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Figure 4.57. Run the DS18B20 simulation.

The IoT Router is now simulating the readings of temperature value every 10 seconds
from all the sensors. Each reading generates a payload of 5 bytes (number with 2 decimal
points converted to string, e.g. 25.12 → 32 35 2E 31 32) therefore a contained impact
is expected on the Ethernet throughput and the CPU performance. After an interval
of 60 seconds the simulation is stopped (same button) and the result can be observed
in the charts page. With a UDP frame of 47 bytes, Fig. 4.58, the expected increase of
outgoing traffic is 47 Bytes x 30 packets, i.e. 1410 Bytes.

Figure 4.58. UDP frame captured with Wireshark.

The Fig. 4.59 shows the Ethernet traffic with an average of 7.94 Kbit/s transmitted
and 3.19 Kbit/s received. In this case the traffic was not homogeneously spread across
time, therefore the average value is lower. However, it is still visible the highest peak
of 19 Kbit/s which represents an increment of 1582.5 Bytes/sec with respect to the idle
condition, which is not too far from the value mentioned above.

Figure 4.59. Ethernet traffic of the DS18B20 simulation.

Fig. 4.60 shows the graphical representation of the result (without CPU and RAM
measurement).
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Figure 4.60. Ethernet traffic generated by the DS18B20 simulation (without CPU & RAM
measurement).

Each peak in the TX chart represents the transmission of the simulated temperature
values. Note that six peaks are visible as expected, plus one smaller peak at the end
of the measurement. This smaller peak as well as the two peaks visible in the RX
chart are caused by the exchange of messages between the GUI and Node-RED when
the simulation starts/stops. The simulation is repeated as before with the addition of
the measurements of CPU and RAM. Figure 4.61 shows how this addition changes the
Ethernet traffic but it also shows a contained impact on the CPU and RAM usage.

Figure 4.61. Ethernet traffic generated by the DS18B20 simulation (with CPU & RAM
measurement).

The results of this simulation are summed up in the table below.

Table 4.17. Results of DS18B20 simulation.
Field Impact

CPU load(%) Negligible
CPU temperature (◦C) +1◦C
RAM usage(%) +0.8%
Ethernet TX + 1582.5 Byte/sec
Ethernet RX + 118.75 Byte/sec

4.12 Bridge functionality
The following implementation is designed to show how the IoT Router can exchange
data between technologies not involving TCP/IP protocol. Figure 4.62 shows the com-
binations currently supported by the GUI, where data can be collected from a module
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(e.g. IQRF) and passed to a different one (e.g. BLE). Two tests are carried out in
this section: first the bridge between IQRF and BLE is presented, then follows the
implementation of actuators driven by sensors data.

Figure 4.62. Scenario with data bridged between technologies.

The first test consists of reading data (temperature value) from an IQRF node de-
ployed in the field and send it to a BLE node nearby. To keep it simple and easier to
visualize, a mobile phone is used instead of the remote BLE sensor. Using the mobile
app Serial Bluetooth Terminal, it is possible to see all the incoming messages in
real time. Fig. 4.63 shows the architecture of this scenario.

Figure 4.63. Data bridged between IQRF and BLE technologies.

Since the idea is to show how the traffic is bridged between different technologies, just
few messages will be exchanged in both directions instead of the highest traffic possible.
The second test can be seen as a variant of the first one. A typical scheme of IoT
applications includes collecting data from remote sensors and use it to pilot actuators
(sometimes remote as well). This test aims to represent this type of situations but
without the wireless technologies, since the IoT Router offers this possibility as well.
The Fig. 4.64 shows the architecture adopted.

Figure 4.64. Data from local sensor pilots actuator.
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The source of data is a temperature sensor (DS18B20) connected to the GPIO of the
board. The GUI however is also able to simulate the behavior of this sensor generating
random values in a certain interval, which can be useful for reproducibility of the results.
On the other side a relay module is used as actuator to switch on a DC fan when the
temperature value crosses a threshold. To trigger the relay, the temperature sensor is
put close to a source of heat.

4.12.1 Bridge IQRF - BLE

The procedure to build a bridge scenario with the GUI remains the same as for the
previous cases, using the GUI editor. It is important to note that the IQRF network
MUST be implemented a priori (IQRF node bonded to coordinator) with its own IDE
[41] in order for this to work. This is because the GUI is currently not able to compile
code and upload it directly to the module. The nodes involved are:

. IQRF-DPA. Extract. BLE TX. BLE RX

Figure 4.65. Design of a bridge scenario with the GUI.

Figure 4.65 shows how these nodes are connected. The idea is to query a IQRF TR-
72D transceiver located nearby to get its temperature value and send it to the mobile
phone over BLE. Since the IQRF-DPA node returns an array of bytes, it is necessary to
extract the temperature value from there, for this purpose the extract node has been
created. As regards the other direction, the data sent from the mobile phone is used as
a DPA command for the IQRF network. The IQRF-DPA node is configured with the
parameters of the table shown below.

Table 4.18. Parameters of IQRF DPA node in bridge simulation.
Field Value Meaning

Serial port /dev/spidev1.0 SPI bus/device
nadr 0100 Node address [00 01], bytes swapped
pnum 0A Thermometer peripheral
pcmd 00 Get temperature
hwpid FFFF FFFF = Any HW profile ID
data leave empty Not used
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Once the form is filled, click on the plus button, Fig. 4.66 (pt 1), select an arbitrary

interval of time (e.g. 3 seconds) and activate the command, Fig. 4.66 (pt 3).

Figure 4.66. Set up DPA command for IQRF-DPA node.

When the temperature peripheral is used, the payload of the response message looks
like this:

Figure 4.67. Response to the getTemperature DPA request[42].

The byte extracted in this case is the IntegerValue of the payload. Since the
fields NADR and HWPID contain two bytes each, the position of the temperature value
(considering the raw SPI packet) is 10, therefore this is the parameter to use for the
extract node, Table 4.19.

Table 4.19. Parameter of the extract node in the bridge simulation.
Field Value

Byte position 10

As regards the BLE TX node, it doesn’t need special configuration but the BLE
module needs to be set into Application mode in order to use the default characteristic
(Transparent UART). This can be done from the BLE RX node form, with a single
click on the App button. At this point the module becomes visible and the mobile phone
can connect to it through the app Serial Bluetooth Terminal. To send data from
the phone to the IQRF network instead, it is sufficient to connect the BLE RX node to
another IQRF-DPA node as shown in Fig. 4.65. For these two nodes no configuration is
required as the DPA request for the IQRF module is prepared and sent from the mobile
phone as shown below. This simplified scenario has the only purpose to test the BLE
module and the bridge functionality of the IoT Router, real implementations might
require higher logic. Now the scenario can be deployed and run as for the previous
services (e.g. Fig. 4.57). In this case every 3 seconds the temperature read from the
IQRF transceiver is displayed on the terminal of the mobile phone app, Fig. 4.68 (left).
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Vice versa it is possible to send DPA commands from the terminal as DPA requests.
An example is the packet shown below under the field value, Fig. 4.68 (right), which
represents a DPA request for the bonded IQRF node to blink the green LED once. The
picture has been taken directly from the mobile phone app.

Figure 4.68. Temperature value received (left) & DPA request to blink LED (right).

Table 4.20. Byte composition of DPA request.
Byte Role
FA SPI write/read with DPA
86 SPI Data length (6 bytes + 0x80)
01 Node address (LSB)
00 Node address (MSB)
07 HW peripheral LED GREEN
03 Blink command
FF HW profile ID (LSB)
FF HW profile ID (MSB)
26 CRCM

4.12.2 Sensor & actuator

This section of the bridge simulation shows how the IoT Router can control actuators
based on input data from sensors. In this case a temperature value is collected every
3 seconds from a DS18B20 sensor and it is compared with a threshold value of 27 ◦C.
When the temperature is higher, a relay module connected to the GPIO 41 of the IoT
Router is activated causing a small DC fan to turn on. Figure 4.69 shows which nodes
are used for this test.
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Figure 4.69. Implementation of actuators with the GUI editor.

The DS18B20 is the same node used for section 4.11.1, it can be configured similarly
as shown in Fig. 4.56, but with a shorter sampling interval (e.g. 3 seconds). The
compare node returns true or false whether the input payload satisfies a conditions
specified by the user (e.g. payload > 27) while the GPIO node can control the state of
a GPIO pin (user defined) based on the boolean input. The console node has the only
purpose to display the messages generated by the DS18B20 node. An example is shown
on the debug console, Fig.4.69, where the payload of the message shows a recorded
temperature of 22 ◦C. In this way it is easier to follow the temperature changes when
the threshold is crossed. As regards the compare and GPIO nodes, the parameters
described in tables 4.21 and 4.22 are used (double click on a node to configure it).

Table 4.21. Parameters of the compare node.
Field Value
Rule >
Value 27

Table 4.22. Parameters of the GPIO node.
Field Value

GPIO pin GPIO 41

Once the service is deployed it can be run with the play button, Fig. 4.70, from the
dashboard page.
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Figure 4.70. Service tag of the sensor/actuator scenario.

The temperature is periodically measured once the service is running. In this case,
when it crosses 27 ◦C the relay module connected to the GPIO is activated and the DC
fan will start moving. For reproducibility purposes this behavior can be observed even
without the relay and the fan, it is sufficient to periodically run the following command
from a SSH terminal of the IoT Router:

sudo raspi-gpio get 41

This command will log the state of the GPIO 41. Figure 4.71 shows how the output
looks like, the field level represents the state of the pin:

. level=0 → LOW (relay open). level=1 → HIGH (relay closed)

Figure 4.71. SSH terminal of the IoT Router.
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Chapter 5
Conclusion

During this thesis work, a lot of new knowledge has enlarged my view of the wireless
technologies. In particular regarding some of the most widely used technologies within
the Internet of Things, how they work, their protocols and limits. Developing software
has also strengthened my interest towards the low level communication among hardware
components as well as higher logic such as web development. The second chapter of this
work presented an introduction to the main software used during the tests. The third
chapter described the actual hardware involved and its main features. An overview of
the available IoT technologies was also provided together with the possible database
solutions. The fourth chapter started with the practical part of the thesis. Two main
scenarios and the measurements to be carried out were listed, followed by the description
of the designed Graphical User Interface and its dependency from Node-RED. A brief
analysis of the impact of the GUI on the IoT Router was also provided as a reference
for the next measurements. Always in the fourth chapter were described the bandwidth
measurement of the Ethernet and Wi-Fi interfaces with the focus on TCP and UDP
traffic in both directions. The results of these tests showed how the IoT Router is able
to reach around 95% of its declared maximum speed via Ethernet (100 Mbit/s) and 30%
via Wi-Fi dongle (150 Mbit/s) under the specified conditions. Although both solutions
could guarantee sufficient bandwidth for many IoT use cases, it is recommended to
use the Ethernet connection as main interface towards the public network. These
measurements were followed by a series of simulations involving the hardware modules
described in chapter 3. First of all the IQRF module was tested simulating the highest
traffic possible via SPI using the DPA protocol. The impact was noticeable but it didn’t
represent a bottleneck for the IoT Router. This specific implementation in real cases is
probably not very common though, since for mesh networks the data throughput will
be lower with an increasing number of routing hops. Similarly, the BLE simulation was
carried out. Its impact on the board was slightly higher than IQRF, proportionally to
its higher traffic. Considering that applications involving BLE usually have different
services other than just the transparent UART, it is possible that under other conditions
a higher data rate can be achieved. The implementation of LoRa technology as a
gateway was the next test performed. LoRa provides a ready to use software for ARM
based processors, it was sufficient to install it and modify its configuration to have it
up and running. As mentioned before, the software runs as a service in the background
and its impact on the CPU and RAM was quite contained. The next step was to
test the connection with local and remote databases. The IoT Router proved to be
fairly stable while executing between 200 and 250 queries per second with the local
solution, in fact all expected values were stored in the proper order. However, this
process used roughly 40% of the CPU and caused its temperature to increase rapidly
to 65◦C, from the charts it was visible how the temperature would have increased more
for a longer simulation. Nevertheless, for real cases with lower query execution time,
the IoT Router works greatly as a local data-logger. Still as part of the first scenario
(TCP/IP), the NB-IoT module was tested. Its implementation was carried out with
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the AT commands over serial port and its correct functionality was proven sending and
receiving data through the T-mobile network. The transmission of roughly 6 Kbyte/min
of data didn’t affect the performance of the IoT Router. The latency was measured with
an average value of 209.9 ms which appears to be suitable for IoT applications. The
NB-IoT test was followed by the combination of two technologies: IQRF and BLE. This
test was essentially the overlap of the two individual ones and, as expected, the Ethernet
throughput increased as well as the CPU temperature. From the computational point
of view, this simulation kept the CPU usage below 15% leaving plenty of room for
other operations. The last task involving the TCP/IP protocol was carried out testing
how the IoT Router would handle a network of sensors directly connected to it, in this
case via 1-Wire interface. With the GUI was simulated the acquisition of data from 30
sensors whose values were sent to a UDP server. The traffic generated was fairly low (1.5
Kbyte/s) as for the impact on the CPU, showing how the IoT Router could handle tens
of sensors being processed in the background without particular problems. At this point
the tasks for the second scenario, i.e. not involving TCP/IP, were carried out. First it
was presented a bridge between IQRF and BLE technologies where data was generated
and sent in both directions, then the control of actuators driven by sensors values was
tested. Both solutions were successfully implemented with the GUI and Node-RED.
The bridge functionality was tested with two technologies but it could be extended to all
others giving much more higher level control to the user. Given the number of available
GPIO pins and other hardware peripherals, it also seems feasible for the IoT Router
to control tens of actuators (eventually using expansion boards) without a noticeable
impact on the performance. With all the considerations above, it seems reasonable to
think that the IoT Router is able to handle most of the aforementioned technologies
running simultaneously, with the exception of the NB-IoT and LoRa modules. These
modules in fact share the same physical slot on the back of the board, therefore, just one
at a time can be used. However, the fact that even other technologies can be brought
on board (different custom modules via miniPCI connectors) makes the IoT Router a
potential solution for a huge pool of situations within the Internet of Things.
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Appendix A
List of abbreviations

4G Fourth Generation

ACK Acknowledgment

ADC Analog to Digital Converter

AES Advanced Encryption Standard

API Application Programming Interface

APN Access Point Name

ARM Advanced RISC Machine

ASCII American Standard Code for Information Interchange

AT commands Hayes command set

ATM Asynchronous Transfer Mode

BLE Bluetooth Low Energy

BSD Berkeley Software Distribution

CDMA Code Division Multiple Access

cm Centimeters

CPU Central Processing Unit

CRCM Cyclic Redundancy Check Master

CSV Comma-Separated Values

DB Database

DC Direct Current

DC-HSPA Dual Carrier High Speed Packet Access

DPA Direct Peripheral Access
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EDGE Enhanced Data rates for GSM Evolution

EEPROM Electrically Erasable Programmable Read-Only Memory

EGPRS Enhanced General Packet Radio Service

FCC Federal Communications Commission

FDDI Fiber Distributed Data Interface

FM Firmware

GATT Generic Attribute Profile

GB Gigabytes

Gbit/s Gigabit per second

GFSK Gaussian Frequency-Shift Keying

GHz Gigahertz

GLONASS GLObal NAvigation Satellite System

GPIO General Purpose Input Output

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GUI Graphical User Interface

HDLC High-Level Data Link Control

HEX Hexadecimal

HSDPA High-Speed Downlink Packet Access

HSPA High Speed Packet Access

HSPA+ Evolved High Speed Packet Access

HSUPA High-Speed Uplink Packet Access

HTTP Hypertext Transfer Protocol

HW Hardware

HWPID Hardware Profile ID

I2C Inter-Integrated Circuit
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IDE Integrated Development Environment

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISAKMP Internet Security Association and Key Management Protocol

ISED Innovation, Science and Economic Development

ISM Industrial, Scientific, Medical

JSON JavaScript Object Notation

KB Kilobytes

Kbit/s Kilobit per second

KCC Korea Certification

LAN Local Access Network

LED Light Emitting Diode

LoRa Long Range

LPN Low Power Network

LPWAN Low Power Wide Area Network

LSB Least Significant Byte

LTE Long TErm Evolution

LTS Long Term Support

MB Megabytes

Mbit/s Megabit per second

MCU Micro Controller Unit

MHz Megahertz

MIC Manufacturer Installed Certificate

miniPCIe Mini Peripheral Component Interconnect Express
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MS Microsoft

MS Microsoft

MSB Most Significant Byte

NADR Node Address

NB-IoT Narrow Band Internet of Things

NCC National Certified Counselor

OS Operative System

PPP Point to Point Protocol

PTS Precise Temperature Sensor

PWM Pulse Width Modulation

RAM Random Access Memory

REST Representational State Transfer

RF Radio Frequency

RPI CM3 Raspberry Pi Compute Module 3

RS232 Recommended Standard 232

RS485 Recommended Standard 485

RTT Round-Trip Time

RX Receive

SCTP Stream Control Transmission Protocol

SD card Secure Digital card

SIM card Subscriber Identity Module Card

SPI Serial Peripheral Interface

SQL Structured Query Language

SSH Secure SHell

SSL Secure Sockets Layer

SW Software
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TCP Transmission Control Protocol

TD-SCDMA Time Division Synchronous Code Division Multiple Access

TSDB Time Series Database

TX Transmit

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

UUID Universally unique identifier

VS code Visual Studio code

WCDMA Wideband Code Division Multiple Access

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

WPA2 Wi-Fi Protected Access 2

WSN Wireless Sensor Network

XML Extensible Markup Language
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