
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 11, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Metadata extraction, parsing, and dataflow detection in Snowflake sql dialect

 Student: Bc. Marek Tornóci

 Supervisor: Ing. Jan Trávníček, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Study the syntax and semantics of the Snowflake SQL dialect and the metadata of the Snowflake database
engine.
Learn about the Manta project, how it represents database engine metadata, how it analyzes and
represents similar SQL dialects, and how it represents data flows.
Suggest a way to represent Snowflake database engine metadata and a way to analyze and represent
Snowflake source code for later analysis of data flows.
Suggest a way to detect data flows between Snowflake data structures by analyzing source codes of this
SQL dialect.
Implement a prototype tool that extracts metadata from the Snowflake database engine and which
extracts data flows from a set of files in the Snowflake SQL dialect to the Manta system.

References

Will be provided by the supervisor.

Master’s thesis

Metadata extraction, parsing, and dataflow
detection in Snowflake SQL dialect

Bc. Marek Tornóci

Department of Software Engineering
Supervisor: Ing. Jan Trávníček, Ph.D

July 30, 2020

Acknowledgements

First of all, I would like to thank the supervisor of this work, Ing. Jan
Trávníček, Ph.D. for his help, time, and valuable advice during the work.
I would also like to thank all the members of Manta, namely Mgr. Jiří Toušek
for his help with understanding their software. My appreciation also goes
towards my family and friends for their support during my studies.

Declaration

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
přípravě vysokoškolských závěrečných prací”.

I acknowledge that my thesis (work) is subject to the rights and obliga-
tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related
to Copyright and on Amendments to Certain Laws (the Copyright Act), as
amended, (hereinafter as the “Copyright Act”), in particular § 35, and § 60
of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)
and with respect to all documentation related to the computer programs
(“software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,
the Civil Code, I hereby grant a nonexclusive and irrevocable authorisation
(license) to use this software, to any and all persons that wish to use the soft-
ware. Such persons are entitled to use the software in any way without any
limitations (including use for-profit purposes). This license is not limited in
terms of time, location and quantity, is granted free of charge, and also cov-
ers the right to alter or modify the software, combine it with another work,
and/or include the software in a collective work.

In Prague on July 30, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Marek Tornóci. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Tornóci, Marek. Metadata extraction, parsing, and dataflow detection in
Snowflake SQL dialect. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Práca sa zaoberá analýzou dátových tokov SQL dialektu Snowflake a možnos-
ťami ich reprezentácie. Práca najprv skúma spôsob akým je potrebné analy-
zovať zdrojové SQL skripty, ich reprezentáciu a vizualizáciu dátových tokov
pomocou systému Manta. Práca sa ďalej zaoberá skúmaním databázových
objektov, ich metadát potrebných k extrakcií, spôsobom akým je možné tieto
objekty extrahovať a analyzuje samotný SQL dialekt Snowflake. Na základe
tejto analýzy vznikne návrh prototypu riešenia a jeho implementácia pokrytá
testami, ktoré overujú jeho funkčnosť.

Klíčová slova Databáza Snowflake, dialekt SQL jazyka Snowflake, analýza
dátových tokov, Manta, parsovanie, extrakcia

vii

Abstract

The thesis deals with the analysis of data flows in the Snowflake SQL dialect
and their possible representations. The work first examines how to analyze
source codes, their representations, and the visualization of its data flows
via the Manta system. The work continues to describe Snowflake database
objects, their metadata needed to extract, how the metadata can be extracted,
and analyzes the Snowflake SQL dialect. Based on this analysis, the design
of a prototype solution and its implementation is created. The implemented
prototype is covered by tests verifying its functionality.

Keywords Snowflake database, Snowflake SQL dialect, data flow analysis,
Manta, parsing, extraction

viii

Contents

Introduction 1

1 Theoretical background 3
1.1 Static code analysis . 3

1.1.1 Lexical analysis . 4
1.1.2 Syntactic analysis . 5
1.1.3 Semantic analysis . 6

1.2 Metadata Extraction . 8
1.3 Dataflow graph . 9
1.4 Manta Flow . 9

2 Analysis 11
2.1 Snowflake . 11

2.1.1 Architecture . 12
2.1.2 Snowflake objects and its structure 13
2.1.3 Metadata access . 14

2.2 Metadata extraction of Snowflake’s objects 14
2.2.1 Possible ways of metadata extraction 14
2.2.2 Description of Snowflake database objects 15

2.2.2.1 Databases . 15
2.2.2.2 Schemas . 15
2.2.2.3 Tables . 15
2.2.2.4 Stages . 16
2.2.2.5 Functions . 16
2.2.2.6 Stored procedures 17
2.2.2.7 Views . 17

2.3 Snowflake’s SQL dialect . 18
2.3.1 Snowflake object identifier 18
2.3.2 Snowflake data types . 19

ix

2.3.3 Non reserved and reserved words 20
2.3.4 Resolution of unqualified identifiers 20

2.3.4.1 Current database, current schema 20
2.3.4.2 DDL and DML 20
2.3.4.3 Queries . 21
2.3.4.4 Function and view definitions 21

2.3.5 SELECT statement . 21
2.3.5.1 AT|BEFORE clause 21
2.3.5.2 WITH clause (CTE) 22
2.3.5.3 FROM clause 23

2.3.6 INSERT statement . 23
2.3.7 MERGE statement . 24
2.3.8 UPDATE statement . 25
2.3.9 DELETE statement . 26
2.3.10 Querying stages . 27

2.3.10.1 Limitations . 27
2.3.11 Querying semi-structured data 28

2.4 Functional Requirements . 29
2.4.1 Extracting metadata from Snowflake database 29
2.4.2 Parsing Snowflake SQL scripts 29
2.4.3 Build AST . 30
2.4.4 Semantic analysis . 30
2.4.5 Dataflow graph . 30

2.5 Non Functional requirements 30
2.5.1 Use Manta classes . 30
2.5.2 Imaginary nodes . 30
2.5.3 Execution time of the prototype 30
2.5.4 Maintability and Extendability 30

3 Design 31
3.1 Technologies . 31

3.1.1 Java . 31
3.1.2 Spring . 31
3.1.3 ANTLR . 32
3.1.4 Maven . 32
3.1.5 MyBatis . 32
3.1.6 JUnit . 32

3.2 Modules . 33
3.2.1 Dependencies . 33
3.2.2 Extractor . 34
3.2.3 Parser . 35
3.2.4 Dataflow generator . 36
3.2.5 Execution flow . 37

x

4 Implementation 39
4.1 Extractor . 39

4.1.1 SnowflakeExtractor and SnowflakeExtractorImpl 39
4.1.2 SnowflakeDao and SnowflakeDaoImpl 40
4.1.3 SnowflakeDdlGenerator 40
4.1.4 SnowflakeDdlWriter . 41
4.1.5 AliasManager . 41
4.1.6 SnowflakeDictionaryWriter 41
4.1.7 ParsingUtils . 41
4.1.8 Model classes . 41

4.2 Parser . 42
4.2.1 Lexing grammar files . 42

4.2.1.1 Generating custom Java functions 43
4.2.2 Parsing grammar files 43

4.2.2.1 Grammar structure 44
4.2.2.2 Identifiers . 45
4.2.2.3 Rewrite rules 45

4.2.3 ParserService and ParserServiceImpl 45
4.2.4 SnowflakeAstNode . 46

4.2.4.1 Resolving . 47
4.2.5 Ast* . 47
4.2.6 SnowflakeContextState 48
4.2.7 ResScope . 48

4.3 Dataflow generator . 48
4.3.1 FlowVisitor . 48
4.3.2 SnowflakeGraphHelper 48

5 Testing 49
5.1 manta-connector-snowflake-resolver 49
5.2 manta-connector-snowflake-dataflow 50
5.3 manta-connector-snowflake-extractor 50

6 Output Samples 51
6.1 Description of graph picture . 51
6.2 SELECT statement . 51
6.3 INSERT statement . 53

Conclusion 55

Bibliography 57

A Acronyms 59

B Contents of enclosed CD 61

xi

List of Figures

1.1 Static code analysis . 4
1.2 Lexical analysis . 4
1.3 Abstract syntax tree . 5
1.4 AST with imaginary nodes . 6
1.5 Example of recognized identifiers after semantic analysis 7
1.6 Metadata extraction diagram . 8
1.7 Visualization of a data flow graph with Manta 10

2.1 Snowflake user web interface . 12
2.2 Figure showing overview of Snowflake architecture 12

3.1 Diagram showing dependencies among implemented modules . . . 34
3.2 Diagram of essential classes and their relationships inside the ex-

tractor module. 35
3.3 Diagram of essential classes and their relationships inside the re-

solver module. 36
3.4 Diagram of essential classes and their relationships inside the dataflow

module. 37
3.5 Diagram showing an execution flow of modules 38

4.1 Sequential diagram of the ParserServiceImpl class 46

6.1 Dataflow graph of the SELECT statement from 6.1 52
6.2 Dataflow graph of the SELECT statement from 6.1 visualized in the

Manta tools . 53
6.3 Dataflow graph of the INSERT statement from 6.2 54
6.4 Dataflow graph of the INSERT statement from 6.2 visualized in the

Manta tool . 54

xiii

List of Tables

2.1 Table showing supported data types in Snowflake 19

xv

Introduction

Nowadays, data are essential, and there is still more and more data which
big organizations generate, store, and use in their favor, which in many times
ensure their existence itself. These data need to be appropriately managed by
the organizations.

To manage their data, companies often use various software tools for data
storage and data analysis, such as databases, BI, and ETL tools. The tools
that the organizations use are interconnected, create a significant infrastruc-
ture with many complex use cases. Because of this complex interconnection
among the tools, there is a problem of understanding and keeping a good
overview of their data. Companies need to know what is happening with data
and how is data moved across systems over time, which we also call a data
lineage. Based on knowing this information, it is possible to do complex data
migrations or optimizations when needed.

Understanding of data can be achieved with the appropriate software solu-
tion that is able to analyze many technologies and provide a clear visualization
of the data lineage. The main advantage over written documentation is that
it is much more accurate, effective, and easier than reading documentation
written by many people, containing many mistakes that arose over time.

One such software tool is Manta. Manta can analyze various technologies
from which it can produce and visualize the data lineage and help companies
understand their data. This thesis aims to extend Manta by adding a new
module that can analyze another trending technology called Snowflake, a cloud
relational database.

1

Introduction

Goal of the thesis
This thesis aims to implement a prototype module for Manta, which can
extract metadata from a Snowflake database, then use the extracted metadata
during static analysis of SQL scripts in the Snowflake dialect and produce a
data flow graph representing the data lineage. The prototype must be able to
analyze the following Snowflake statements:

• SELECT

• INSERT

• UPDATE

• DELETE

• MERGE

In the first chapter, theoretical concepts are explained needed to compre-
hend to be able to produce a data flow graph from Snowflake SQL scripts.

The second chapter analyzes the Snowflake database, its metadata, and
its SQL dialect.

The third chapter is about communication and design of implemented
modules that extract, analyze, and produce data flow graphs.

In the fourth chapter, the modules from the design chapter are explained
from an implementation point of view.

The fifth chapter describes specific testing methods of each implemented
module.

The last chapter shows and explains the output samples.

2

Chapter 1
Theoretical background

This chapter explains the theoretical concepts necessary to understand how
to produce a data flow graph from a script containing an arbitrary SQL code
written in the Snowflake dialect. At the end of the chapter, the Manta tool is
introduced as well.

1.1 Static code analysis
According to [1], a static code analysis is an analysis of a program without
executing the program itself. Nowadays, many people use it without even
realizing it from an integrated development environment, also known as IDE,
where it is used to detect errors that would prevent the program from be-
ing executed. In many cases, it is even smart enough to suggest some code
improvements or optimizations which may be done to improve the overall
performance or readability of the code.

Another known usage is in the compilers’ world, whereby a static code anal-
ysis, an intermediate representation of the input program, is created, which is
easy to work with, and many code optimizations and algorithms can be easily
implemented there.

Both cases are very similar to the static code analysis described in this
thesis. It is needed to create an intermediate representation of any Snowflake
SQL script from which it is relatively easy to detect data flows and produce
a data flow graph. The following three known analysis need to be performed
in order to build a meaningful intermediate representation.

1. Lexical analysis

2. Syntactic analysis

3. Semantic analysis

3

1. Theoretical background

The analyses are performed in a pipeline fashion. The first performed
analysis is lexical analysis, which receives a sequence of characters and pro-
duces an input for syntactic analysis, which then produces input for semantic
analysis. The output of the semantic analysis is a meaningful intermediate
representation for building a data flow graph.

This process is illustrated in the following figure.

CREATE TABLE t1(a INT);
SELECT * FROM t1;

Lexical
analyzer

Syntactic
analyzer

Semantic
analyzer

Tokens AST

Figure 1.1: Flow diagram of static code analysis

1.1.1 Lexical analysis
The first phase of input processing is lexical analysis, which scans the input
character stream and recognizes all possible tokens, which are substrings of
consecutive characters that belong together logically.[2]

Tokens are recognized by rules that contain the regular expressions which
we define to recognize patterns in the input.

S E L E C T ,a b F R O M

LEXICAL
ANALYZER

SELECT

KEYWORD

a

IDENTIFIER

,

COMMA

b

IDENTIFIER

FROM

KEYWORD

T1

IDENTIFIER

;

SEMICOLON

T 1 ;
character
stream

token
stream

Figure 1.2: Lexical analysis

The figure 1.2 illustrates the recognition of tokens from the input character
stream, which consists of a simple SELECT statement. Whitespaces can be part
of token sequences, but they do not contain any syntactic information. For
this reason, we usually drop them.

4

1.1. Static code analysis

1.1.2 Syntactic analysis

“The second phase of the compiler is a syntax analysis or parsing. The parser
uses the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream.”[3]

A typical intermediate representation is called an abstract syntax tree,
also known as AST. The abstract syntax tree does not represent every piece
of information in the input program, but rather its logical and structural units.
It has the essential structure of the parse tree that represents the whole input
program, but many times eliminates a lot of internal nodes.[4]

The following figure shows an example of the AST that represents a simple
SELECT statement.

a , b FROM

T1

SELECT

Figure 1.3: AST of the basic SELECT statement

In the figure 1.3, we can observe that some parts, such as whitespaces or a
semicolon, are omitted because, in this concrete case, they are not important
for the logical structure of the statement. Even though we might omit the less
important parts in the input code, the AST often does not have the logical
structure that is easy enough to work with for further processing.

In such a case, we want to make the AST more abstract and expressive.
We can also model our AST to a certain degree by adding so-called imaginary

5

1. Theoretical background

nodes. The imaginary nodes represent pseudo-operations, making the tree
both, more abstract for our better understanding, and much more suitable for
further post-processing.

SELECT

SELECT
LIST

a , b

FROM
CLAUSE

TABLE
NAME

T1

Figure 1.4: AST example of a basic SELECT statement with added imaginary
nodes.

This technique of creating virtual nodes is also used in this thesis because
using nodes that consist only from real tokens would make the tree hard to
process during semantic analysis.

1.1.3 Semantic analysis
The last phase is a semantic analysis that discovers the meaning of a program.
The semantic analysis recognizes when multiple occurrences of the same iden-
tifier are meant to refer to the same program entity and ensures that the uses
are consistent. The analyzer typically builds and maintains a data structure
called a symbol table, which maps each identifier with the known information
about it.[5]

In this thesis, a semantic analysis is also called resolving, and the symbol
table for keeping program entities is called a data dictionary. The data dic-

6

1.1. Static code analysis

tionary is a special internal structure that keeps all unique program entities
to which the program identifiers are recognized during AST processing with
the addition of hierarchical relations among them the same way the database
does. In other words, the dictionary structure represents the hierarchy of ob-
jects inside the database (for example, tables are inside schemas, schemas are
inside databases, etc.).

The result of this phase is the resolved AST with all its identifiers referring
to unique entities representing the declarations.

SELECT

SELECT
LIST

a

FROM
CLAUSE

T1

WHERE
CLAUSE

aFROM WHERE

T1

a

DATABASE DICTIONARY
(SYMBOL TABLE)

refers
to

refers
torefers

to

contains
program
entities

= 2

Figure 1.5: Example of recognized identifiers after semantic analysis

In the figure 1.5, we can see that each identifier in the AST of a SELECT
statement refers to its actual unique declaration. Table identifier t1 refers to
a table entity t1, and both identifiers a refer to the same column entity a. We
can also see a parent-child relation inside the dictionary between entities.

7

1. Theoretical background

1.2 Metadata Extraction
Extraction is the process of obtaining metadata from software systems such
as databases. The metadata is extracted to a database dictionary before pro-
cessing the script. They contain information describing all database objects
created inside a database. The reason for the metadata extraction is to pro-
duce the most accurate data flow graph. Even though we may accurately
deduce many things during the semantic analysis, sometimes it is not possi-
ble. Suppose we have a simple SELECT statement that reads data from a table
without knowing a DDL definition of the table.

1 SELECT * from t1;

In this case, we would not know how to resolve an ASTERISK(*) during
the semantic analysis, if we did not have the metadata about the table t1
containing information about its columns.

Another example would be functions and views where we need to extract
definitions of them.

Database

Extractor The data
dictionary

writes
metadata

to

Semantic
analysis /
resolving

retrieves
/ writes

extracts
metadata

from

Figure 1.6: Metadata extraction diagram

8

1.3. Dataflow graph

1.3 Dataflow graph
Data lineage describes the data origin, what transformations they went through,
and its movements over time. It helps many big organizations to better un-
derstand the movement of their data. They need to know where their data
come from as well as when and where the data separate or merge with other
data.[6]

Although there are several ways of representing data lineage, a graph rep-
resentation is considered the best for its clarity. The graph representation
is called a data flow graph. It is an oriented graph that consists of nodes
and oriented edges. The nodes represent the actual data. Two nodes can be
connected by the oriented edges representing data flows between them. There
exist two types of data flow edges:

• Direct flows

• Filter flows

Direct data flows indicate that the source nodes directly participate in
the data origin of target nodes. The example of this is a SELECT statement
because the data from the source table from where the statement reads data
directly appear in the result of the SELECT operation.

Filter data flows affect the content of the target node without directly
contributing to it. The example of filter flows is a WHERE clause of the SELECT
statement which only restricts the value set of the SELECT operation.

1.4 Manta Flow
Manta is a software solution for complex visualization of data lineage in the
Business Intelligence environment. For Manta, it is essential to support an-
alyzing a more extensive range of trending technologies among the organiza-
tions so they can cover and see the whole data lineage of their infrastructure.
Currently, the following technologies are supported: [7]

• StreamSets

• IBM DataStage

• Informatica Power Center

• Microsoft SQL Server Integra-
tion Services

• Oracle Data Integrator

• IBM DataStage

• Sqoop

• Pig

• Talend

• Cobol

• Java

• Teradata database

• Sysbase

9

1. Theoretical background

• Hive

• Neteeza

• Microsoft SQL Server database

• Microsoft Azure SQL database

• IBM DB2

• Microsoft Azure SQL Data
Warehouse

• PostgreSQL

• RedShift

• Greenplun

• Oracle

• Microsoft SSAS, SSRS, SSIS

• Microsoft APS

• Microsoft Excel

• Sas

• Cognos

• Sap Business Objects

• Tableu

• PowerBI

• Oracle Business Intelligence En-
terprise Edition

The following figure 1.7 shows a dataflow graph visualized in Manta.

Figure 1.7: Visualization of a data flow graph with Manta
[8]

10

Chapter 2
Analysis

This chapter describes a Snowflake technology, describes what kind of meta-
data about Snowflake’s objects we need to extract, how exactly are the meta-
data extracted, and in the end describes the Snowflake SQL dialect.

2.1 Snowflake
Snowflake is an analytic data-warehouse platform. It provides a data ware-
house technology that is faster, more flexible, and easier to use than most of
the current data warehouse solutions. Snowflake data warehouse uses a new
SQL database engine with a unique architecture designed for the cloud. It
is provided as a Software-as-a-Service (SaaS) and runs completely on cloud
offering users the following big advantages: [9]

• No hardware (virtual or physical) and software for users to install, man-
age or configure.

• All ongoing maintenance management is handled by Snowflake.

All components run in public cloud infrastructure that uses virtual com-
puting instances, which users can scale according to their needs in computa-
tional power. Snowflake is a multi-cloud solution that supports multiple cloud
services such as Amazon Web Services, Microsoft Azure, and Google Cloud
Platform. It is available globally and supports multiple regions across all
mentioned cloud platforms. The regions determine where our data are stored
geographically. For connecting to a Snowflake instance, we need to obtain
Snowflake’s root account representing the database instance. This account is
used for connecting to the instance through multiple interfaces provided by
Snowflake.

11

2. Analysis

Figure 2.1: Snowflake user web interface

In the figure 2.1 we can see the web user interface that users normally use
to manage their Snowflake instance.

2.1.1 Architecture
“Snowflake’s architecture is a hybrid of traditional shared-disk database ar-
chitectures and shared-nothing database architectures. Similar to shared-disk
architectures, Snowflake uses a central data repository for persisted data that
is accessible from all compute nodes in the data warehouse. But similar to
shared-nothing architectures, Snowflake processes queries using MPP.”[9]

Figure 2.2: Figure showing overview of Snowflake architecture
[9]

12

2.1. Snowflake

In the figure 2.2, we can see architecture layers where each layer is respon-
sible for different tasks. The purpose of a cloud service layer is to manage
all of Snowflake’s activities, such as authentication, query parsing, and opti-
mizations. Snowflake performs query processing in a processing layer by using
virtual warehouses. Each warehouse is a virtual MPP cluster composed of
compute nodes allocated by Snowflake from the cloud provider. A database
storage layer stores loaded data in a unique, optimized, and compressed colum-
nar format.[9]

2.1.2 Snowflake objects and its structure
Snowflake is similar to all known SQL databases containing many objects such
as schemas, tables, views, and many more. In the following diagram, we can
see a structural hierarchy of Snowflake’s objects.

Snowflake server

Database

Schema

Table

Column

View

Column

Function

Procedure

Pipe

Sequence

Stage

Stream

Task

At the top of the hierarchy exists a Snowflake server corresponding to
a unique Snowflake account. Inside the Snowflake server, we can create an
unlimited amount of databases. The database is a logical grouping of schemas
where Snowflake maintains all of its data. Each schema belongs to a single
database. Schemas are logical groupings containing all of Snowflake’s database
objects.

13

2. Analysis

2.1.3 Metadata access
We can access metadata of Snowflake’s database objects through a Snowflake
schema called INFORMATION_SCHEMA. The schema resides inside each database
and contains set of system-defined views providing metadata about Snowflake’s
database objects. It is based on the SQL-92 ANSI Information Schema but
with the addition of views that are specific for Snowflake. [10]

INFORMATION_SCHEMA contains the following list of useful views needed
during the extraction of database objects:

• TABLES view

• COLUMNS view

• EXTERNAL_TABLES view

• FUNCTIONS view

• PROCEDURES view

• SCHEMATA view

• SEQUENCES view

• STAGES view

• SCHEMATA view

2.2 Metadata extraction of Snowflake’s objects
Section 1.2 explains the meaning behind the need of metadata extraction in
general. This chapter, on the other hand, aims to explain what kind of objects
we need to extract from Snowflake and the possible ways of extracting them.

2.2.1 Possible ways of metadata extraction
There exist two ways of extracting metadata from databases in general. The
first way is to extract metadata information from defined views or catalogs
provided by a database engine. However, some databases do not have any
views or functions providing these metadata. In such a case, there is a second
way of obtaining objects metadata by extracting all DDL scripts of needed
database objects. After the extraction, the DDL scripts are parsed and an-
alyzed where during semantic analysis, all declarations are created in the
database dictionary. This way of extracting metadata is much more com-
plicated and time-consuming. As described in 2.1.3, Snowflake supports the
concept of INFORMATION_SCHEMA, so there is no reason for us to extract all
DDL scripts.

14

2.2. Metadata extraction of Snowflake’s objects

2.2.2 Description of Snowflake database objects
This section describes all Snowflake objects needed for extraction to obtain
their metadata.

2.2.2.1 Databases

Snowflake creates INFORMATION_SCHEMA implicitly inside each database, so it
would not make sense for this schema to contain a view describing all databases
inside a Snowflake server instance globally. For this reason, Snowflake provides
a SQL statement called SHOW that can list all databases inside the Snowflake
server instance.

Each database in Snowflake also contains an implicit schema called PUBLIC.
This schema is created along with the database. PUBLIC is a default name for
the schema set by a session internal property that can be changed.

2.2.2.2 Schemas

To obtain all schemas from a database, we can use a view called SCHEMATA
residing in INFORMATION_SCHEMA. The view contains a column called SCHE-
MA_NAME containing names of all schemas. The only thing of which we have
to be careful about is not to extract INFORMATION_SCHEMA because we do not
need to extract this schema.

2.2.2.3 Tables

Tables in Snowflake are of 2 types:

• Tables

• External tables

Tables are regular tables as we know them from other SQL dialects. Exter-
nal tables are a bit different because each of them contains a URI specifying
an external stage. In Snowflake, whenever we query external tables, they read
data from a set of one or more files from the specified external stage and out-
put it in a single VARIANT column. The metadata extraction of both external
and regular tables is slightly different.

Regular tables are extracted from the TABLES view containing three rel-
evant columns - TABLE_NAME, SCHEMA_NAME, and TABLE_TYPE. The column
TABLE_NAME is used for a join with the COLUMNS view to obtain its columns.
TABLES also contains all user-created materialized views, so the value of the
column TABLE_TYPE is used to distinguish between tables and materialized
views. The last column SCHEMA_NAME, is used to obtain tables only from a
specified schema.

15

2. Analysis

External tables are extracted from the EXTERNAL_TABLES view contain-
ing only external tables. This view also contains three essential columns -
TABLE_NAME, SCHEMA_NAME, and LOCATION. The first two columns have the
same purpose as with regular tables. The third column contains information
about the mentioned external stage URI that we need to obtain.

2.2.2.4 Stages

Stage is a Snowflake specific object for storing files. There exists four types of
stages in Snowflake:

• External stage

• Internal named Stage

• Table stage

• User stage

The stored files inside Snowflake stages are possible to query and process.
The difference between external stages and the others is that in external stages,
files are stored outside Snowflake in the cloud. External stages contains a URI
identifying a location of the stored files. We only need to obtain metadata
about the external and the internal named stages. To obtain its metadata we
use STAGES containing all the needed information inside the following columns:

• STAGE_NAME - contains stage name

• STAGE_URL - contains a URI of an external stage

• STAGE_TYPE - describes a stage type

2.2.2.5 Functions

Snowflake supports classic functions similar to functions we know from other
databases. Functions in Snowflake can have zero or multiple input parameters
and return either single scalar value or a table. Based on the return type
Snowflake distinguish between 2 types of functions.

• User defined function (UDF)

• User defined table function (UDTF)

The function body can contain either SQL or JavaScript code. Snowflake
supports function overloading by data types. Multiple functions in the same
schema can have the same name as long as they differ in number or data type
of their parameters. To extract a function, we use the Functions view. The
view contains the following four important columns:

16

2.2. Metadata extraction of Snowflake’s objects

• FUNCTION_NAME - contains a function name

• ARGUMENT_SIGNATURE - contains an argument signature of a function

• DATA_TYPE - contains a return type of a function. If the function is
UDTF then the column contains table return type signature in the form
of TABLE (ARG_NAME_1 ARG_TYPE_1, ..., ARG_NAME_N ARG_TYPE_N)

• VOLATILITY - contains an information about function’s volatility

The problem with signatures stored inside ARGUMENT_SIGNATURE and DATA-
_TYPE is that their argument names are not enclosed by double-quotes. This
can make argument signatures nondeterministic in special cases if their names
contain special characters. Suppose we create a function with a single column
called "ARG1 NUMBER, ARG2 " NUMBER (perfectly valid according to 2.3.1).
The following source code 2.1 shows an example of such a function.

1 create or replace function f1("ARG1 NUMBER, ARG2 " NUMBER)
2 returns NUMBER
3 as
4 $$
5 1
6 $$;

Source Code 2.1: Example of a function with argument name containing spe-
cial characters

An argument signature of a function f1 stored inside the ARGUMENT_SIGNA-
TURE has the value (ARG1 NUMBER, ARG2 NUMBER). Because the argument
names are not double-quoted, we cannot decide how many arguments the
function actually contains.

2.2.2.6 Stored procedures

Stored procedures in Snowflake contain Java Script code executing SQL state-
ments. Stored procedures can be executed many times by calling them with a
statement named CALL. The PROCEDURE view is used for extracting its meta-
data.

2.2.2.7 Views

Extraction of views depends on their type. In Snowflake, there are two type
of views:

17

2. Analysis

• Views

• Materialized views

Regular views are extracted from VIEW containing important columns such
as VIEW_NAME, VIEW_DEFINITION. The first column is used for a join with the
COLUMNS to obtain its columns. The second column contains view definitions
needed to extract as well.

Materialized views, on the other hand, are extracted from the TABLES view,
where we need a way to distinguish between them and tables. As mentioned
earlier, the column TABLE_TYPE exists for this purpose.

2.3 Snowflake’s SQL dialect
Snowflake dialect supports standard SQL similar to PostgreSQL dialect sup-
porting a subset of ANSI SQL: 1999 and SQL: 2003 with the addition of
Snowflake specific clauses and constructs. This section aims to explain only
the subset of Snowflake SQL dialect, mainly constructs implemented in the
prototype or Snowflake’s unique constructs and concepts. The section does
not explain all known SQL constructs in detail because it is reckoned that the
reader is familiar with the basics of the standard SQL.

2.3.1 Snowflake object identifier
This section aims to explain rules for naming Snowflake objects. In Snowflake,
identifiers can be either quoted or unquoted. Unquoted object identifiers must
fulfill the following rules:[11]

• Starts with a letter [A-Z, a-z] or underscore (_).

• Must contain only letters, underscores, decimal digits [0-9], and dollar
signs ($).

• Identifiers are case-insensitive.

If we put double quotes around identifier (for example, ”My identifier”),
the following 2 rules apply:[11]

• The identifier is case-sensitive.

• The identifier can contain and start with any ASCII character from the
blank character (32) to the tilde (126), excluding the double quote (”)
character.

18

2.3. Snowflake’s SQL dialect

2.3.2 Snowflake data types
Snowflake supports only built-in data types. The following table shows all
built-in data types with added notes.

Category Type Notes

Numeric
Data Types

NUMBER Default precision and scale
are (38,0).

DECIMAL Synonymous with NUMBER.
NUMERIC Synonymous with NUMBER.

INT, INTEGER, BIGINT,
SMALLINT

Synonymous with NUMBER
except precision and scale
cannot be specified.

FLOAT, FLOAT4, FLOAT8
DOUBLE, DOUBLE
PRECISION Synonymous with FLOAT.

REAL Synonymous with FLOAT.

String & Binary
Data Types

VARCHAR Default (and maximum) is
16,777,216 bytes.

CHAR, CHARACTER
Synonymous with VARCHAR
except default length is
VARCHAR(1).

STRING Synonymous with VARCHAR.
TEXT Synonymous with VARCHAR.
BINARY
VARBINARY Synonymous with BINARY.

Logical
Data Types BOOLEAN

Date & Time
Data Types

DATE
DATETIME Alias for TIMESTAMP_NTZ
TIME

TIMESTAMP
Alias for one of the TIMESTAMP
variations (TIMESTAMP_NTZ
by default).

TIMESTAMP_LTZ TIMESTAMP with local time zone.
TIMESTAMP_NTZ TIMESTAMP with no time zone.
TIMESTAMP_TZ TIMESTAMP with time zone.

Semi-structured
Data Types

VARIANT
OBJECT
ARRAY

Table 2.1: Table showing supported data types in Snowflake
[12]

19

2. Analysis

In the table 2.1, we can see all of Snowflake’s supported data types. The
most interesting ones are semi-structured data types - VARIANT, OBJECT,
and ARRAY.

VARIANT is a generic data type that can store any value of any other data
type in Snowflake. A value of any Snowflake data type can be explicitly or
implicitly converted to the VARIANT data type.

OBJECT is a data type representing a collection of key-value pairs. Non-
empty strings are used as keys, and the values are of the VARIANT data type.

ARRAY is a data type representing sparse arrays of arbitrary size. Indexes
are a non-negative integers, and values are of the VARIANT data type.

2.3.3 Non reserved and reserved words
Snowflake, like other programming languages, uses a set of keywords. Some
of them are reserved by Snowflake, which means that they cannot be used as
identifiers. Snowflake reserves almost all ANSI keywords (with few exceptions)
as well as some additional keywords.

Non-reserved keywords, on the other hand, can be used as identifiers.
Snowflake contains some interesting non-reserved words that, in some situa-
tions, behave as reserved words. One of the interesting non-reserved words
is FULL, which cannot be used as a table identifier or alias inside the FROM
clause. Another interesting non-reserved word is WHEN, which cannot be used
as a column reference in a scalar expression.

In [13], Snowflake describes and categorizes all reserved keywords with the
addition of keywords that behave as reserved in special situations.

2.3.4 Resolution of unqualified identifiers
This section aims to explain how Snowflake resolves unqualified object names.
Unqualified identifiers in Snowflake are resolved in two different ways depend-
ing whether they appear in DML, DDL statements or in SELECT queries.[14]

2.3.4.1 Current database, current schema

By connecting to a Snowflake server, we establish a session. The session con-
tains many session settings. Among the many settings it contains, there are
two important for object name resolution - a current database and current
schema. The current schema always belongs to the current database. These
properties must be set in order to use unqualified or partially-qualified iden-
tifiers in queries.

2.3.4.2 DDL and DML

All unqualified identifiers present in DDL or DML statements are always re-
solved within the current schema.[14]

20

2.3. Snowflake’s SQL dialect

2.3.4.3 Queries

Unqualified names in queries are resolved through a search path. The search
path contains a list of fully- or partially-qualified valid schema names. The
search path is a session parameter that can be changed by the ALTER SESSION
statement. The search path contains two pseudo-variables called $current
and $public. The first variable represents the current schema. The second
variable specifies the public schema (see 2.2.2.1) of the current database. The
value of the search path is reinterpreted every time it is used. Therefore
changing the current schema changes the meaning of $current and changing
the default database changes the meaning of both $current and $public.[14]

2.3.4.4 Function and view definitions

The search path is not used for resolving unqualified identifiers inside view
definitions and function body definitions. All unqualified identifiers in a view
or function definition are resolved in the view’s or function’s schema only (in
the schema where they reside).[14]

2.3.5 SELECT statement

A SELECT statement is used to query tables and retrieve a set of rows. Sup-
ported clauses and behavior of the statement is very similar to SELECT state-
ments of other SQL dialects, but there are some differences. The following
list contains all supported SELECT clauses:

• WITH

• TOP

• FROM

• AT|BEFORE

• CONNECT BY

• JOIN

• PIVOT|UNPIVOT

• VALUES

• SAMPLE

• WHERE

• GROUP BY

• HAVING

• ORDER BY

• LIMIT

• QUALIFY

2.3.5.1 AT|BEFORE clause

Snowflake supports the concept called Time Travel, meaning we can access
historical data (changed or deleted) at any point within a defined period.
This clause is used for Time Travel to query historical data for the specified
object. It is specified in the FROM clause immediately after the table name.
[15]

In the code example 2.2, we are querying historical data from a customers
table using the exact date by a specified timestamp.

21

2. Analysis

1 SELECT * FROM customers
2 AT(TIMESTAMP => 'Mon, 22 July 2020 13:37:00 -0700'::TIMESTAMP);

Source Code 2.2: Example of querying a historical data in Snowflake

2.3.5.2 WITH clause (CTE)

WITH is an optional clause that precedes body of a SELECT statement and
defines one or more CTEs that can be referenced later in the FROM clause of
the statement. Snowflake supports both recursive, and non-recursive CTEs.
The clause is very similar to the WITH clause of other SQL dialects. However,
there is difference at what all possible places we can define the clause.

In Snowflake, each SELECT unit can have its own WITH clause. This, for
example, allows using multiple WITH clauses with the use of set operators.

1 (WITH
2 alias_t1 AS (SELECT * FROM t1)
3 SELECT * FROM alias_t1)
4

5 UNION
6

7 (WITH
8 alias_t2 AS (SELECT * FROM t2)
9 SELECT * FROM alias_t2)

Source Code 2.3: Example of WITH clause with the set operation

In the source code example 2.3, we can see that each SELECT unit has its
own defined WITH clause. The only condition is that each SELECT unit must
be enclosed by parenthesis. The scope of such WITH clause is restricted only
for its enclosed SELECT unit. This can be done recursively. Allowing each
SELECT unit to have its own WITH clause means that we are not restricted
from using it in a subquery as well.

1 WITH alias_t1 AS (SELECT * from t1)
2 SELECT * FROM (
3 WITH alias_t2 as (SELECT * FROM t2)
4 SELECT * FROM alias_t2
5)

22

2.3. Snowflake’s SQL dialect

Source Code 2.4: Example of WITH clause in a subquery

The example 2.4 shows the usage of using the WITH clause in a subquery.
The strange behaviour occurs when we give CTEs the same name. In such
a case the subquery CTE reference always refers to the outer most defined
CTE.

2.3.5.3 FROM clause

This section describes some specific behaviors inside the FROM clause that can
differ from other SQL dialects like PostgreSQL or Oracle.

The first specific behavior is about table joins. In Snowflake, it is possible
to join two tables without specifying conditional clauses ON or USING. The
following source code 2.5 is perfectly valid.

1 SELECT * FROM t1 INNER JOIN t2;

Source Code 2.5: Example of inner join without the conditional ON clause

The result of such a query where we omit the conditional clauses is CROSS
JOIN. If we omit the conditional clauses we can still specify the WHERE clause
with some condition to get the same result.

Snowflake does not allow aliasing a group that consists of joined tables.
The following source code 2.6 shows a query that does not compile because it
tries to alias a group that contains a join between tables t1 and t2.

1 SELECT * FROM
2 (t1 INNER JOIN t2 ON t1.a = t2.b) AS r INNER JOIN t3;

Source Code 2.6: Example of a join group alias

2.3.6 INSERT statement
Snowflake supports two types of insert statements.

1. Insert statement

2. Multi-table insert statement

23

2. Analysis

The first mentioned statement is a basic insert statement that is very
similar to all other SQL dialects. It updates a specified table by inserting one
or multiple rows into the table. We can insert values to the table by specifying
value rows inside the VALUES clause or using the SELECT statement.

The second multi-table insert statement is rather special and not all SQL
dialects support such a statement. It updates multiple tables by inserting one
or more rows with column values from a query into the tables. Snowflake
supports two types of multi-table insert statements:

• Unconditional multi-table insert statement - Each row from a
specified query executes each INTO clause inside the INSERT statement.

• Conditional multi-table insert statement - Specifies the condition
that must evaluate to true in order to execute specified INTO clauses.

1 INSERT ALL
2 WHERE a > 100 THEN
3 INTO t1
4 WHEN n1 > 10 THEN
5 INTO t1
6 INTO t2
7 ELSE
8 INTO t2
9 SELECT a FROM src;

Source Code 2.7: Example of conditional multi-table insert statement

In the source code 2.7, we can see the example of the multi-table condi-
tional INSERT statement. In order to execute INSERT INTO statements, the
condition must evaluate to true otherwise an optional ELSE branch is executed.
Instead of ALL keyword we can also use FIRST keyword that executes only the
first conditional branch that evaluates to true and ignores all the following
ones. If we want to truncate the target tables before inserting values, we can
specify a keyword called OVERWRITE right after keyword INSERT.

2.3.7 MERGE statement
The statement is used to INSERT, UPDATE or DELETE in one table based on
subquery or values matched from another table. It consists of the following
clauses:

• MERGE INTO <target> - used to specify the target table

24

2.3. Snowflake’s SQL dialect

• USING <source> - used to specify the table or subquery to join with
the target table

• ON <expression> - used to specify the expression on which the source
and target table are joined

• WHEN MATCHED [AND <conditional_expression>] - con-
tains either single UPDATE or DELETE statement that is executed when
both the merge condition and optional conditional predicate evaluate to
true

• WHEN NOT MATCHED [AND <conditional_expression>]
- contains a single INSERT statement that is executed when both, the
merge condition and the optional conditional predicate evaluate to true

1 merge into target
2 using src on target.id = src.id
3 when matched and src.v = 10 then delete
4 when matched then update set target.v = src.v;
5 when not matched then insert (id, v) values (src.id, src.v);

Source Code 2.8: Example of MERGE statement in Snowflake

The code example 2.8 shows basic usage of the MERGE statement covering
all possible constructs.

2.3.8 UPDATE statement
This statement is used to update specified rows in the target table with new
values. The UPDATE statement is very similar to the UPDATE statement of other
known SQL dialects. The statement consists of the following clauses:

• UPDATE <target> - used to specify the target table

• SET <column_list> - used to specify new values and columns to
update

• FROM <sources> - used to specify the source tables

• WHERE <expression> - conditional expression specifying which
rows to update

FROM and WHERE clauses are optional.

25

2. Analysis

1 UPDATE t1
2 SET t1.a = t1.a + t2.a, t1.b = t2.b, t1.c = 'NEW TEXT'
3 FROM t2
4 WHERE t1.a = t2.a AND t1.b < 10;

Source Code 2.9: Example of UPDATE statement in Snowflake

In the example, 2.9 we can see the statement updating the target table t1
with values from table t2 when the specified condition in the WHERE clause is
evaluated to true.

2.3.9 DELETE statement
The statement is used to remove data from a table. The statement consists
of the following logical constructs:

• DELETE FROM <table_name> - used to specify the table from
which we want to remove rows

• USING <additional_tables> - used to specify new values and columns
to update

• WHERE <conditional_expression> - used to specify the source
tables

USING and WHERE clauses are optional and can be omitted. The following
source code 2.10 shows an example of deleting rows from a table t1 when the
condition is evaluated to true.

1 DELETE FROM t1 USING t2 WHERE t1.a = t2.a

Source Code 2.10: Example of DELETE statement in Snowflake

26

2.3. Snowflake’s SQL dialect

2.3.10 Querying stages
One of the Snowflake’s unique constructs is querying staged files. To query
staged files, we have to specify a stage location inside the FROM clause of the
SELECT statement. Stage location reference always starts with @ and can have
one of the following forms depending on the referenced stage type:

• @[namespace.]external_stage_object_name[/path]

• @[namespace.]internal_named_stage_object_name[/path]

• @[namespace.]%table_stage[/path]

• @[namespace.]~[/path]

Namespace and path are optional. If the path is not specified in the
location URI or ends with a directory, all the files inside the specified stage
or directory are queried.

1 SELECT $1, $4 FROM @my_int_stage1/a/b/c;

Source Code 2.11: Stage Query example

In the code example 2.11, we are selecting the first and fourth columns from
the internal named stage called my_int_stage1. To use special characters, we
can quote the location by single quotes.

2.3.10.1 Limitations

Querying staged files has its own limitations. One of such limitations is that in
the SELECT LIST we can only reference file columns by positions. By default
file columns are separated by commas, but this behaviour can be changed by
specifying own file format.

Another quite big limitation is that in the FROM clause of any stage query,
we can only specify one single stage location and nothing else, meaning we
cannot use table joins or specify more tables in the stage query.

27

2. Analysis

2.3.11 Querying semi-structured data
Snowflake supports SQL queries for accessing elements of semi-structured data
using special operators or functions. The following list shows supported semi-
structured data in Snowflake: [16]

• JSON

• Avro

• ORC

• Parquet

The semi-structured data must be stored in a single VARIANT column. To
access its elements, we have to specify colon (:) behind the VARIANT column
name.

1 +------------------------------------+
2 | PERSON (VARIANT) |
3 |------------------------------------|
4 | { |
5 | "name" : Marek Tornóci |
6 | "address" : { |
7 | "Street" : Chaloupeckého 13 |
8 | } |
9 | }, |

10 | { |
11 | "name" : Tomáš Drietomský |
12 | "address" : { |
13 | "Street" : Chorvátska 5 |
14 | } |
15 | } |
16 +------------------------------------+
17

18 SELECT person:"address"."Street" FROM persons;
19

20 +----------------------+
21 | PERSON:ADDRESS.CITY |
22 |----------------------|
23 | "Chaloupeckého 13" |
24 | "Chorvátska 5" |
25 +----------------------+

28

2.4. Functional Requirements

Source Code 2.12: Example of accessing JSON elements

The example 2.12 shows accessing the element Street from the JSON
structure stored inside the VARIANT column named PERSON. There exist two
ways of accessing elements of inside the data:

• Dot notation

• Bracket notation

The dot notation is used in the example 2.12, where element names in the
reference are separated by dots.

Another way of referencing elements is to use bracket notation, where
we put enclosed element names by single quotes to brackets. The following
example 2.13 shows how to access JSON element called Street by using the
bracket notation.

1 SELECT person['address']['Street'] FROM persons;

Source Code 2.13: Example of accessing JSON elements by the bracket nota-
tion

2.4 Functional Requirements
Functional requirements are descriptions of functionalities the software must
offer. This section describes the functional requirements for the implemented
prototype.

2.4.1 Extracting metadata from Snowflake database
The prototype must know how to extract metadata representing Snowflake’s
objects from a given database instance and fill up the database dictionary with
them. Another required functionality of extractor should include extracting
all required DDL statements of objects to the file system.

2.4.2 Parsing Snowflake SQL scripts
The prototype must be able to read a given file or a string containing SQL
scripts written in the Snowflake SQL dialect and recognize its structure and
parse the script.

29

2. Analysis

2.4.3 Build AST
The prototype must build an AST during the parsing stage.

2.4.4 Semantic analysis
After the parser builds the abstract syntax tree, it is needed to process the
tree and resolve all its name references to the unique declaration entities that
reside inside the data dictionary. During the semantic analysis, the prototype
must also fill up the dictionary with newly recognized declarations.

2.4.5 Dataflow graph
The prototype is required to process a resolved AST and build a data flow
graph containing nodes representing declarations and operations connected by
direct or filter edges.

2.5 Non Functional requirements
This section covers the non-functional requirements the implemented proto-
type must meet. Non-functional requirements do not describe the system
functionalities but rather its general characteristics.

2.5.1 Use Manta classes
The prototype should use or extend implemented Manta classes resulting in
significantly simpler code. Java classes representing AST nodes should ex-
tend the abstract class called MantaAstNode, containing many implemented
methods for more straightforward navigation inside the tree.

2.5.2 Imaginary nodes
An AST is supposed to contain imaginary nodes (described in 1.1.2) to make
the tree much more suitable for post-processing.

2.5.3 Execution time of the prototype
The prototype must process the scripts and build the data flow graph in a
reasonable time. The term reasonable time means a time that is not significant
for the user waiting while working with the prototype, usually in seconds.

2.5.4 Maintability and Extendability
The implemented prototype must meet the quality of a good software code
covered by a reasonable amount of tests resulting in an easily maintainable
and extendable software solution.

30

Chapter 3
Design

This chapter aims to explain what technologies are used for implementing the
functional prototype as well as what kind of modules the prototype consists
of.

3.1 Technologies
The prototype is implemented in Java with the help of the Spring framework
to simplify the development. For parsing the Snowflake SQL dialect and
creating an AST, we use ANTLR. MyBatis, along with the Snowflake JDBC
driver, is used for metadata extraction from a Snowflake database server. The
prototype uses Maven for managing dependencies among modules. The last
significant framework concerns testing where JUnit is used.

3.1.1 Java

Java is one of the most popular programming languages in the world. It is
an object-oriented language intended to let developers write once and run
anywhere code. According to [17], Java is used everywhere, from laptops to
data centers, game consoles to scientific supercomputers, and cell phones to
the Internet. All modules in Manta are implemented in Java as well.

3.1.2 Spring

Spring is an open-source framework that provides support for developing Java
applications. Spring helps developers create high performing applications us-
ing POJOs. The framework is considered to be a secure, low-cost, and flexible.
Spring helps to improve coding efficiency and reduces overall application de-
velopment time and complexity. The Spring ecosystem consists of about 20
modules. [18]

31

3. Design

The prototype uses mainly the Spring Core module for creating many
configurations and using dependency injections for system decoupling.

3.1.3 ANTLR
ANTLR is LL(*) parser generator we can use to implement language inter-
preters, compilers, and other translators. ANTLR is written in Java and is
used to translate grammars specifying a language to executable Java code that
recognizes the language. [19]

The latest ANTLR version is 4. The prototype uses ANTLR version 3
for generating both Lexer and Parser to build AST for further processing and
generating a dataflow graph. The main reason for using an older version is
that it supports creating a custom AST by defining rewrite rules in the parsing
grammar. This functionality is not supported in ANTLR 4 as the tool can
only produce a parse tree.

3.1.4 Maven
Maven is a tool used for building and managing Java-based projects. [20].
Maven provides a solution for managing dependencies to other modules, li-
braries, and frameworks. The prototype uses Maven, especially for managing
dependencies to other external libraries or other Manta modules. Each module
using Maven contains a configuration file named pom.xml in the root directory
with defined dependencies and configurations unique for the module.

3.1.5 MyBatis
MyBatis is a persistence framework with support for SQL code, stored proce-
dures, and advanced mappings that eliminates almost all of the manual JDBC
code and manual settings of parameters. [21]

The implemented prototype uses MyBatis for extracting metadata from
a given Snowflake server instance. It consists of configuration files in XML
containing SQL queries for metadata extraction of Snowflake objects. My-
Batis maps retrieved result sets from SQL queries to custom model classes
implemented in Java, making the code very clean and easy to maintain and
extend.

3.1.6 JUnit
JUnit is an open-source framework used for creating automated unit tests
for Java applications. It allows us to make Java test classes and methods by
marking them with custom annotations. These Java test classes and methods
contain logic for testing our application. Each unit test should test only the
smallest piece of code that is logically independent. They are also considered

32

3.2. Modules

as regression tests because we run them each time the application is extended
to check if the previous functionality is not broken.

3.2 Modules
The prototype is divided into the following six modules based on the analysis
of other implemented applications for a static code analysis of similar SQL
dialects in Manta:

• manta-connector-snowflake-dictionary - this module is the imple-
mentation of the database dictionary, where we create all object decla-
rations. It also contains a so-called policy. The policy is a set of rules
for creating a hierarchy of objects in the dictionary.

• manta-connector-snowflake-dictionary-extractor - the extractor
module is used to extract metadata and DDL definitions of Snowflake
objects from a given Snowflake server instance.

• manta-connector-snowflake-model - contains model interfaces used
by other modules. The module ensures compatibility between modules.

• manta-connector-snowflake-resolver - is responsible for lexical, syn-
tactic, and semantic analysis. It parses, builds an AST, and resolves
input scripts. The module contains all classes that are used to build the
AST.

• manta-connector-snowflake-testutils - contains common test classes
that are used or extended by classes from other modules.

• manta-dataflow-generator-snowflake - the module builds a dataflow
graph from a resolved AST.

Each module represents a separate unit that accomplishes its responsibil-
ity. The following subsections describe the main individual modules.

3.2.1 Dependencies
The diagram 3.1 shows dependencies among the implemented modules. Mod-
ules manta-connector-snowflake-dictionary, manta-connector-snowfla-
ke-resolver, and manta-dataflow-generator-snowflake depend on manta-
connector-snowflake-model providing a common AST interface for them.
The module manta-connector-snowflake-extractor depends on the mod-
ule manta-connector-snowflake-dictionary representing a data dictionary.
manta-connector-snowflake-testutils is not shown in the diagram be-
cause its only purpose is to provide general testing classes for other modules.
The implemented modules also depend on Manta’s external modules that are

33

3. Design

not shown in the diagram. The most important of them are described in the
following subsections 3.2.2, 3.2.3, and 3.2.4.

manta-connector-snowflake-aggregation

manta-connector-snowflake-dictionary manta-connector-snowflake-model manta-connector-snowflake-resolver

manta-connector-snowflake-extractor

manta-dataflow-generator-snowflake-aggregation

manta-generator-dataflow-snowflake

Figure 3.1: Diagram showing dependencies among implemented modules

3.2.2 Extractor

The following diagram 3.2 describes essential classes and their relationships
inside the manta-connector-snowflake-dictionary-extractor module.
SnowflakeExtractor contains a method called extract() that begins the
whole extraction process. During the process, the class uses other classes
shown in the diagram. SnowflakeDao is used to obtain metadata from a
Snowflake server and map them to custom model classes such as Table, View,
Function etc. All model classes extend an abstract class named Abstract-
SnowflakeObject containing common properties such as name. A class
SnowflakeDdlScriptGenerator is used for generating DDL scripts from ex-
tracted metadata. To store these generated DDL scripts in the filesystem,
SnowflakeExtractor uses a class called SnowflakeDdlWriter. Snowflake-
DdlWriter uses AliasManager for normalizing directory or file names to
avoid collisions when two strings have the same normalized string or when
they contain invalid characters. The last essential thing is to store extracted
metadata to a database dictionary. For this purpose, there is a class called
SnowflakeDictionaryWriter. SnowflakeDictionaryWriter uses an exter-
nal Manta module containing model classes for objects that we create from
the extracted metadata and store in the dictionary. There exists one more
dependency that is not shown in the diagram to the module representing the
dictionary manta-connector-snowflake-dictionary.

34

3.2. Modules

<<interface>>
SnowflakeExtractor

+ extract(params):void
... SnowflakeExtractorImpl

<<interface>>
SnowflakeDao

+ getAllDatabase():List<Database>
+ getAllSchemaTables():List<Table>
...

SnowflakeDdlWriterImpl

<<interface>>
DatabaseMapper

+ getAllDatabases(params):List<Databases>

...
<<interface>>
TableMapper

+ getAllTables(String database, String schema):List<Table>

<<interface>>
SnowflakeDdlWriter

writeDdl(DdlType type, String databaseName, String schemaName, String fileName, String content) : void
...

<<interface>>
SnowflakeDdlGenerator

+ createDdl(Table table):void
+ createDdl(View view):void
...

SnowflakeDdlGeneratorimpl

<<interface>>
AliasManager

+ normalizeDirectoryName(String folderName):String
+ normalizeFileName(File fileFolder, String fileName):String

AliasManagerImpl

<<interface>>
SnowflakeDictionaryWriter

+ addDatabase(Database database):IResDataType
+ addDatabase(IResDataType database, Schema schema):IResDataType
+ addTable(IResDataType schemaNode, Table table):void
...

SnowflakeDictionaryWriterImpl

SnowflakeDaoImpl

<<abstract>>
AbstractSnowflakeObject

name:String

manta-connector-common-modelDatabase Schema Table...

Model

<<interface>>
IResDataType ... <<interface>>

IResEntity

Figure 3.2: Diagram of essential classes and their relationships inside the
extractor module.

3.2.3 Parser

In the following diagram 3.3, we can see essential classes and relationships
inside manta-connector-snowflake-resolver. The module contains an im-
portant class called ParserServiceImpl. The class parses a string or file con-
taining SQL scripts, builds an AST, and resolves the AST. Classes Snowflake-
Main, SnowflakeMain_NonReservedKW, and SnowflakeLexer are generated
from lexer and parser grammars. The generated classes extend external Manta
classes MantaAbstractParser and MantaAbstractLexer, providing additional
functionality. Lexer and parser are generated from grammar files called Snow-
flakeLexer.g and SnowflakeMain.g. They are located inside a package
called antlr3/parser. Classes with a prefix of Ast represent AST nodes and
contain logic executed during the resolving. They all extend a common class
SnowflakeAstNode and implement model interfaces from the model module

35

3. Design

manta-connector-snowflake-model for compatibility between modules.

<<interface>>
ParserService

+parseStringScript(String, ResScope, SnowflakeResolverEntitiesFactory, ParserServiceParams, String, Parse):ISnowflakeAstNode
+parseFileScript(File, ResScope, SnowflakeResolverEntitiesFactory, ParserServiceParams, String, Parse):ISnowflakeAstNode
...

ParserServiceImpl

<<abstract>>
SnowflakeAstNode

AstMasterInsert

manta-connector-snowflake-model

<<interface>>
ISnowflakeAstNode

<<interface>>
IAstMasterInsert

<<interface>>
IAstArgument

<<interface>>
IAstCreateFunction

SnowflakeMain

<<abstract>>
AbstractSnowflakeParser

SnowflakeMain_SnowflakeNonReserveredKW

...

AstArgument AstCreateFunction

...

SnowflakeLexer

Figure 3.3: Diagram of essential classes and their relationships inside the
resolver module.

3.2.4 Dataflow generator

The following diagram 3.4 shows essential classes and relationships inside the
manta-generator-dataflow-snowflake module. The module depends on
two other important modules. The first is manta-connector-snowflake-model
containing an interface for the Visitor design pattern named ISnowflakeAst-
Visitor. A class SnowflakeAstVisitorAdaptor provides a default imple-
mentation of the visitor interface. FlowVisitor extends SnowflakeAstVisi-
torAdaptor and implements the visitor logic for creating a dataflow graph.
ISnowflakeAstNode contains a method called accept accepting the visitor in-
terface and ensures that each AST node must implement the method. FlowVis-
itor uses a helper class for building the dataflow graph called SnowflakeGraph-
Helper. The class extends an external AbstractGraphHelper containing im-

36

3.2. Modules

plemented methods. SnowflakeGraphHelper uses classes from the manta-
dataflow-model module for creating the dataflow graph.

FlowVisistor

manta-dataflow-model

manta-connector-snowflake-model

<<interface>>
ISnowflakeAstNode

<<interface>>
IAstMasterInsert

<<interface>>
IAstArgument

<<interface>>
IAstCreateFunction...

<<interface>>
Graph

<<interface>>
Node

<<interface>>
Edge

visitor

<<interface>>
ISnowflakeAstVisitor

+ process(ISelect node):Object
+ process(IAstAggrRef node):Object
...

...
SnowflakeGraphHelper

SnowflakeAstVisitorAdaptor

Figure 3.4: Diagram of essential classes and their relationships inside the
dataflow module.

3.2.5 Execution flow
Each module represents a separate logical unit accomplishing a task. These
tasks must be executed in the right order in order to produce a dataflow
graph. The following diagram shows a simplified execution order of all imple-
mented modules. The first executed module is manta-connector-snowflake-
extractor that extracts metadata into a data dictionary together with DDL
scripts. The next module is manta-connector-snowflake-resolver, which
takes the data dictionary, extracted DDL scripts and input SQL scripts, and
creates a resolved AST tree for manta-dataflow-generator-snowflake. The
dataflow module then processes the resolved AST and builds the dataflow
graph.

37

3. Design

Snowflake
server

manta-connector-snowflake-extractor

Data
dictionary

manta-dataflow-generator-snowflake

DDL
scripts

manta-connector-snowflake-resolver

SQL
scripts

Resolved
AST

Dataflow graph

Figure 3.5: Diagram showing an execution flow of modules

38

Chapter 4
Implementation

This chapter describes the implementation aspects of the implemented pro-
totype in more detail. It describes interesting classes and constructs. The
chapter also aims to provide a big picture of resolving for a reader to better
grasp the concept.

4.1 Extractor
This subsection describes implementation constructs of the manta-connector-
snowflake-extractor module.

4.1.1 SnowflakeExtractor and SnowflakeExtractorImpl
SnowflakeExtractorImpl is the implementation of the SnowflakeExtractor
interface. The class contains implemented a following set of important me-
thods:

• setDictionary / getDictionary - setter and getter method for a data
dictionary where all extracted metadata are stored.

• setDdlOutputDirectory / getDdlOutputDirectory - setter and
getter method to set up a directory where extracted DDL scripts are
stored.

• setOutputDdlTypes - sets types of objects for which their DDL are
extracted.

• setExtractedDdlTypes - sets types of objects to extracted.

• setIncludedDbsSchemas / setExcludedDbsSchemas - sets a fil-
ter for extracted databases and schemas. The method uses Manta’s
class named DatabaseSchemaFilter for this purpose. Databases and

39

4. Implementation

schemas present in the exclude filter are not extracted unless they also
appear in the include filter.

• extract() - starts the whole extraction process. In the beginning, the
method first checks whether an output directory is correctly set. After
the check, the method extracts all databases. For each database that
is not excluded, the method extracts all schemas. For each extracted
schema that is not excluded, the method extracts all objects inside the
schema. Each object is only extracted if its type is present inside the
ExtractedDdlTypes set. For each object type exists a method named
extract* (for example, extractTables()) that extracts all objects of a
given type from the schema. The extract* method uses SnowflakeDao
to extract objects. Each extracted object is saved in the dictionary by
SnowflakeDictionaryWriter. The extract* method also generates
and stores (in the filesystem defined by the output directory) DDL defini-
tion for each extracted object that is present inside the outputDdlTypes
set. In the end, a method persist() is called to save all the changes in
the dictionary to the disk.

4.1.2 SnowflakeDao and SnowflakeDaoImpl

SnowflakeDaoImpl implements an interface SnowflakeDao that extracts meta-
data from a provided Snowflake server instance using the MyBatis framework.
To extract the metadata, it uses a set of custom mappers called *Mapper where
ASTERISK (*) stands for an object type name (for example, TableMapper).
Each mapper is an interface containing a set of methods to extract its spe-
cific object type (for example, TableMapper contains methods for extracting
tables). MyBatis implements the interfaces based on corresponding configura-
tion files called *Mapper.xml (for example, TableMapper.xml) located in the
extractor.mappers directory.

4.1.3 SnowflakeDdlGenerator

This interface is implemented by a class called SnowflakeDdlGeneratorImpl
that is used to generate needed DDL scripts for some Snowflake objects. Gen-
erated DDL scripts do not need to be complete definitions. They usually
contain only useful information; for example, table definitions need to con-
tain columns and their data types but do not need to contain many addi-
tional properties such as data retention or collation. The class contains meth-
ods called createDdl that differ in type of the input argument (for example
createDdl(Table t), createDdl(Function f)).

40

4.1. Extractor

4.1.4 SnowflakeDdlWriter

SnowflakeDdlWriterImpl implements an interface SnowflakeDdlWriter for
creating a directory structure and writing generated DDL scripts to the disk.

4.1.5 AliasManager

AliasManagerImpl is a utility class that solves problems with invalid file
names. There might exist two DDL files with the same name or files that
might contain special characters that are not supported on many file systems.
The class creates unique file names by replacing unsupported characters with
the character _ and adding a numerical index to the name. The unique file
names are stored in internal caches.

4.1.6 SnowflakeDictionaryWriter

A class SnowflakeDictionaryWriterImpl implements this interface. The
purpose of the class is to add extracted metadata to the database dictionary
using Manta’s external structures. The class contains methods named add*
(for example, addTable()) used to add a specific object type to the dictionary.
There are no dependencies among database objects in Snowflake, so the objects
are added in no arbitrary order to the dictionary.

4.1.7 ParsingUtils

This is a util class containing many methods used for parsing. The class
contains the following two main methods:

• parseSignature - method is used to parse an argument or a return
signature of a function. The parseSignature function returns a list of
columns representing the parsed arguments from the signature.

• parseJdbcUrl - parses a Snowflake JDBC connection string and creates
ServerInfo that contains information such as an account, region, and
cloud type from the JDBC connection string.

4.1.8 Model classes

The extractor module contains a set of custom model classes representing
Snowflake database objects that are used to hold extracted metadata. My-
Batis creates instances of them with mapped metadata during the execution
of methods defined in *Mapper files.

41

4. Implementation

4.2 Parser
This section describes the main classes and files of the manta-connector-
snowflake-resolver module.

4.2.1 Lexing grammar files
SnowflakeLexer.g is a grammar file, which Antlr uses to generate a lexer class
named SnowflakeLexer that is used for lexical analysis. The file contains
lexer rules that mostly contain regular expressions for recognizing character
sequences. SnowflakeLexer creates a token stream that consists of tokens
produced from recognized character sequences by the defined rules. The lexer
rules describe constructs such as reserved and non-reserved keywords, regu-
lar identifiers, delimited identifiers, comments, many operators, etc. All rules
that define non-reserved words are prefixed with KW_. The following code 4.1
reflects some of the stated rules defined in SnowflakeLexer.g.

1
2 // Reserved words
3 USING : 'USING';
4 AND : 'SELECT';
5 FROM : 'FROM';
6
7 // Non reserved words
8 KW_DATABASE : 'DATABASE';
9 KW_SCHEMA : 'SCHEMA';

10 KW_MERGE : 'MERGE';
11
12 fragment DIGIT : '0'..'9';
13 fragment UNDERSCORE : '_';
14 fragment DOUBLE_QUOTES : '"';
15
16 REGULAR_ID
17 : (UNDERSCORE | LETTER)
18 (UNDERSCORE | LETTER | DIGIT | DOLLAR_SIGN)*
19 ;
20
21 DELIMITED_ID
22 :
23 DOUBLE_QUOTES
24 (~(DOUBLE_QUOTES) | DOUBLE_QUOTES DOUBLE_QUOTES)*
25 DOUBLE_QUOTES
26 ;

Listing 4.1: Lexer rules from SnowflakeLexer.g

Fragment rules are special lexer rules that are only used by other rules.
The lexer does not create tokens from them.

42

4.2. Parser

4.2.1.1 Generating custom Java functions

Sometimes it is not possible to write lexing rules that consist only from other
fragment rules to recognize more complex character sequences. In such a case,
we can create our own custom Java functions that we can use in lexing rules.
The following code 4.2.1.1 shows a defined Java function that is used inside a
lexing rule.

1 @members {
2

3 public void consumeDollarQuotedString()
4 throws MismatchedTokenException {
5 char next1 = (char) input.LA(1);
6 while(next1 != '\$' || input.LA(2) != '\$') {
7 if (next1 == -1) {
8 throw new MismatchedTokenException ('\$', input);
9 }

10 match(next1);
11 next1 = (char) input.LA(1);
12 }
13 }
14 }
15

16 DOLLAR_QUOTED_STRING_LIT
17 : '$' '$' {
18 consumeDollarQuotedString();
19 }
20 '$' '$'
21 ;

Source Code 4.1: Lexer java code

The function recognizes body definitions of Snowflake user-defined func-
tions (UDF). Each function definition is enclosed by double dollars ($$) and
might contain a single dollar inside. The function recognizes characters from
an input stream and stops only when it sees two consecutive dollar characters
in look ahead.

4.2.2 Parsing grammar files
The parsing grammar is split into two files named SnowflakeMain.g and
SnowflakeNonReservedKW.g. Antlr uses them to generate parser classes called

43

4. Implementation

SnowflakeMain.java and SnowflakeMain_SnowflakeNonReserveredKW.
SnowflakeMain.g contains parsing rules that describe the Snowflake SQL
dialect. SnowflakeNonReserved.g grammar file contains grammar rules de-
scribing Snowflake identifiers, reserved, and non-reserved keywords. Parser
rules consist of other defined alternative parsing rules and lexing rules defined
in a lexer grammar. Lexing rules are used to match tokens from a token
stream. Because only a valid SQL script can be used as an input into the
parser, many parsing rules describe a superset of the Snowflake dialect for
their simplification.

4.2.2.1 Grammar structure

A snowflake_script rule is the first entrance rule used by ParserServiceImpl
to start parsing a Snowflake SQL script. The rule consists of rules describing
the structure of all implemented Snowflake statements. The listed rules at
this level are Snowflake statements that can appear independently, such as
select_statement or insert_statement. The following code 4.2 is only a
very simplified illustration of parsing rules for a reader to get a better idea
about the basic grammar structure.

1
2 snowflake_script
3 : bl = statement_list eof = EOF
4 -> ^(AST_SCRIPT $bl?)
5 ;
6
7 statement_list
8 : common_table_expression_statement
9 | insert_statement

10 | delete_statement
11 | update_statement
12 | merge_statement
13 | use_statement
14
15 | create_table_statement
16 | create_view_statement
17 | create_database_statement
18 | create_schema_statement
19 | create_stage_statement
20 | create_file_format
21 | create_function_or_procedure_statement
22 ;

Listing 4.2: Parsing rules from SnowflakeMain.g

44

4.2. Parser

4.2.2.2 Identifiers

A parsing rule describing Snowflake identifiers consists of alternative paths
matching regular unquoted identifiers, quoted identifiers, and non-reserved
words because they are not reserved by the Snowflake dialect and therefore,
can be used as identifiers. The following example 4.3 shows a rule for match-
ing any valid Snowflake identifier.

1
2 identifier
3 :
4 REGULAR_ID
5 | DELIMITED_ID
6 | non_reserved_words
7 ;
8
9 non_reserved_words

10 :
11 KW_DATABASE
12 | KW_SCHEMA
13 | KW_ACCOUNT
14 ...
15 ;

Listing 4.3: Parsing rules from SnowflakeMain.g

4.2.2.3 Rewrite rules

SnowflakeMain.g contains so-called rewrite rules that are often defined inside
the paring rules. Each alternative path inside a parsing rule can have defined
a rewrite rule. They are used to create imaginary nodes, allowing us to model
AST the way we want. This concept was briefly explained in 1.1.2. The
rewrite rules start with -> character. In the example 4.2, we can see a rewrite
rule specified in the rule snowflake_script.

4.2.3 ParserService and ParserServiceImpl
ParserService is a standard parser interface in the Manta project. The
interface is implemented by a class called ParserServiceImpl. The class
implements parseStringScript and parseFileScript methods that parse a
passed string or file containing a Snowflake SQL script. One of the essential
parameters for parsing a file or string is ParserServiceParams. The class is
used to pass additional parameters such as default database name, current
database name, current schema name, and search path.

The following diagram 4.1 shows a simplified sequential execution of method
calls inside ParserServiceImpl. First, one of the mentioned methods that

45

4. Implementation

accepts the SQL script is called. Then an instance of the lexer class is cre-
ated that accepts the input SQL script and creates a token stream. After
this step, the method creates an instance of the parser class SnowflakeMain
that accepts the created token stream and calls the entrance parsing method
parse_script() (in the diagram, it is simplified by just calling a parse()
method with the passed token stream for easier understanding). The method
creates AST and returns the root of the tree. The root of the tree is an object of
type SnowflakeAstNode. The last step is to call a method resolve() from the
root that starts semantic analysis (also called resolving). The parseStringScript
or parseFileScript method returns resolved AST, where nodes contain ref-
erences to object declarations stored in a data dictionary.

ParserService SnowflakeLexer SnowflakeMain SnowflakeAstNode

parseScript(script)

tokenStream

parse(tokenStream)

createTokenStream(script)

AST

resolve()

Service for parsing an
input SQL script.

A class for a lexical
analysis.

A class for a syntactic
analysis.

A class representing
an AST nodes. The root
is used to start semantic
analysis (resolving).

resolver()

resolved AST

Figure 4.1: Sequential diagram of the ParserServiceImpl class

4.2.4 SnowflakeAstNode
The result of parsing a Snowflake SQL script is an AST. SnowflakeAstNode
is the ancestor of each node in the AST. It implements an interface named
ISnowflakeAstNode that prescribes the following set of methods:

• getParent() - returns a parent node

• getChildren() - returns a list of children nodes of the current node

46

4.2. Parser

• accept() - accepts a visitor class that implements ISnowflakeVisitor
interface

4.2.4.1 Resolving

SnowflakeAstNode contains a method called resolve(). Some nodes ex-
tending this class have overloaded the resolve() method containing imple-
mented logic to find declarations of them and their child nodes in a data
dictionary. The overloaded resolve() method usually only delegates to a
function resolveInternal() where the logic is usually implemented. The
classes with overloaded resolve() are mainly nodes representing identifiers
or Snowflake statements. The resolving starts when the ParserServiceImpl
class calls the resolve() method on the root of AST. The default imple-
mentation of the method calls resolve() method on children nodes. This
process is repeated recursively. At the end of the resolving, we have got the
resolved AST where all identifier nodes contain references to their declara-
tions. The following code example 4.2.4.1 shows the default implementation
of resolve().

1 public IResEntity resolve() {
2 //default implementation, do nothing, just delegate to childs
3 for (SnowflakeAstNode item : getChildren()) {
4 item.resolve();
5 }
6

7 return null;
8 }

Source Code 4.2: Default implementation of the resolve() method

4.2.5 Ast*

If an AST node has a special meaning, then it is created using any of the
SnowflakeAstNode’s descendants. The descendants are special classes pre-
fixed with Ast used as AST nodes. They usually contain resolving logic or
various auxiliary methods used during the resolving. An example of such a
class is AstMasterInsert representing the INSERT statement. It has the over-
loaded resolve() method that assigns declarations from a data dictionary to
all descendant nodes representing identifiers. The classes are located in the
resolve/ast/impl package.

47

4. Implementation

4.2.6 SnowflakeContextState
The class extends ParserContextState. It represents a context that contains
references on useful objects which are needed during parsing or resolving.
For example, during the resolving, it is used to resolve unqualified identifiers
because it contains a search path (2.3.4 explains what the search path is) with
schema declarations where the unqualified identifiers are sequentially searched.

4.2.7 ResScope
The class is used to represent a scope as we know from programming languages,
where it refers to the visibility of variables. Scopes are created during parsing.
The purpose of scopes is to store and search for important objects during
resolving. Global scope is always created first. The global scope contains
other scopes like SELECT and FUNCTION scopes. Each function and SELECT
statement contains its own scope. The FUNCTION scope is used to store and
search input parameters. The SELECT scope is, for example, used to store and
search named subqueries defined inside the WITH clause.

4.3 Dataflow generator
This section aims to describe the essential classes of the manta-dataflow-gene-
rator-snowflake module used to build a data flow graph.

4.3.1 FlowVisitor
FlowVisitor is the implementation of the Visitor design pattern. It processes a
resolved AST and creates a dataflow graph. The class implements a process()
method for each node type. The method is used to process every AST node
and optionally builds nodes and data flows among them in the output graph.
For creating nodes and flows in the output graph, FlowVisitor uses a helper
class called SnowflakeGraphHelper.

4.3.2 SnowflakeGraphHelper
SnowflakeGraphHelper is a helper class for building a dataflow graph. It ex-
tends a class called AbstractGraphHelper from Manta’s external libraries.
SnowflakeGraphHelper uses a buildNode method for creating nodes. The
method maps AST nodes to their corresponding nodes of the output dataflow
graph. SnowflakeGraphHelper uses common methods addNode from Abstract-
GraphHelper.

48

Chapter 5
Testing

Implemented modules are covered by tests. JUnit is used for creating unit
tests. The following sections describe the tests of the individual modules.

5.1 manta-connector-snowflake-resolver
The module uses a particular class named AnnotatedFilesResolverTest.
The class tests SQL scripts based on special annotations. These annotations
in the test files describe an expected result after resolving a code. SQL tests are
located in a directory called SimpleTests. Each test file is named according
to a specific functionality it tests.

1 CREATE TABLE t1 (
2 a /*=t1a*/ INT,
3 b /*=t1b*/ INT,
4 c /*=t1c*/ INT
5);
6

7 CREATE TABLE t2 (
8 a /*=t2a*/ INT,
9 b /*=t2b*/ INT

10);
11

12 SELECT * FROM t1 INNER JOIN t2 ON t1.a/*=t1a*/ = t2.a/*=t2a*/;
13 /* A|B|C|A|B */
14 SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.a/*=t1a*/ = t2.a/*=t2a*/;

Source Code 5.1: Example of annotated test file

49

5. Testing

The source code example 5.1 shows part of the annotated test file called
join.sql. It tests if the script is correctly parsed and if all identifiers contain
references to the correct declarations.

5.2 manta-connector-snowflake-dataflow
The module is tested by using AstFilesFlowTest. The tests verify the cor-
rectness of generated dataflow graphs based on comparing them with the corre-
sponding files representing correctly generated graphs. Each test file is named
according to the functionality it tests. Their corresponding expected result
files have the same name with a suffix _expected. All the mentioned files are
located in the flow directory.

5.3 manta-connector-snowflake-extractor
The module contains a set of classes used for testing independent functional-
ities of the extractor module. The extractor contains the following set of test
classes:

• SnowflakeTestResource - this is a resource class that contains the same
structure as Snowflake server used for testing. Other test classes use
the resource class, for example, to compare extracted results from the
Snowflake server.

• SnowflakeDictionaryWriterTest - the class is used to test the Snow-
flakeDictionaryWriter class. It contains a set of methods testing if
extracted metadata are correctly stored inside the data dictionary.

• JdbcUrlParseTest - the class tests if a Snowflake JDBC URL is cor-
rectly parsed and all the information is correctly retrieved.

• SnowflakeDDLWriterTest - tests if generated DDL scripts are correctly
saved to the disk.

• SnowflakeDDLScriptGeneratorTest - tests if SnowflakeDdlScript-
Generator generates valid DDL scripts.

• SnowflakeDaoTest - tests if metadata are correctly extracted from the
Snowflake test server.

50

Chapter 6
Output Samples

The chapter shows simple SQL scripts written in the Snowflake SQL dialect
with the resulting dataflow graphs. The examples focus on a few statements
implemented in the prototype. Only the most important nodes and edges
are captured in individual graphs. The chapter also shows how the dataflow
graphs look in the Manta tool.

6.1 Description of graph picture
The following figures 6.1, 6.3 show generated dataflow graphs that consist of
nodes and edges. Each node contains a name, type, and a name of its parent
node. Name of the parent node is present inside parenthesis (). The type of
the node is present inside brackets []. For example, A[Column](T1) refers to
a node called A of type Column with the parent node T1.

6.2 SELECT statement
In the following code example 6.1, we can see a code of a simple SELECT
statement. First, we create a table t1, and then the table is used as the
source for the SELECT statement. The statement also contains a conditional
WHERE clause to filter output rows according to the value of column a.

1 CREATE TABLE t1(a INT, b INT);
2

3 SELECT * FROM t1 WHERE a > 10;

Source Code 6.1: Example of a SELECT statement

51

6. Output Samples

The following figure 6.1 shows the resulting dataflow graph for the source
code 6.1. The graph consists of the following important nodes:

• T1 - represents the source table t1. In the graph we can also see its
columns A, B

• <3,1>ResultSet - represents a single SELECT unit. If a SELECT state-
ment contains set operations there exist more SELECT units, thus more
ResultSets. The resultset contains resultset columns A and B.

• <3,1>MasterResultSet - represents the whole SELECT query and con-
tains result set columns A and B

• <3,18>WHERE - represents a conditional node.

Direct edges lead from columns A, B of the source table T1 to the resultset
columns A, B. From the resultset columns, edges proceed to the columns A
and B of <3,1>MasterResultSet. Filter flows connects the conditional node
<3,18>Where with the resultset columns of <3,1> ResultSet.

Figure 6.1: Dataflow graph of the SELECT statement from 6.1

In figure 6.2, we see the same dataflow graph visualized in the Manta
tool. The graph is simplified and does not contain many nodes that are not
important for clients, such as for example, expression nodes. Manta tool shows
only the most important nodes, and edges for clear visualization of data flows.

52

6.3. INSERT statement

Figure 6.2: Dataflow graph of the SELECT statement from 6.1 visualized in the
Manta tools

6.3 INSERT statement
The following source code shows an example of a simple INSERT statement.
First, we create two tables t1 and t2. Table t1 is used as the target table,
and t2 is used as the source table. The INSERT statement writes data to t1
from a SELECT query, which reads data from t2.

1 CREATE TABLE t1(a INT, b INT);
2

3 CREATE TABLE t2(a INT, b INT);
4

5 INSERT INTO t1(a, b) SELECT a, b FROM t2;

Source Code 6.2: Example of an INSERT statement

Figure 6.3 shows the resulting dataflow graph for the source code 6.2 of the
INSERT statement. In the figure, we can see the following important nodes:

• T1 - represents the target table t1. In the graph we can also see its
columns A, B

• T2 - represents the source table t2. In the graph we can also see its
columns A, B

• <5,22>ResultSet - represents a SELECT unit

• <5,22>MasterResultSet - represents the whole SELECT query

• <5,1>INSERT - node representing an operation, in this case the insert
operation and its column flows A and B

53

6. Output Samples

Direct edges lead from columns A, B of the source table T2 to the columns
A, B of the target table T2 through resultset columns and columns of the
<5,1>INSERT operation node.

Figure 6.3: Dataflow graph of the INSERT statement from 6.2

The following figure 6.4 shows the same source code visualized in Manta.
We can see direct flows going from columns of T1 to columns of T2 only through
the INSERT operation node. The resultset nodes are filtered by Manta because
they are not important to see in the resulting graph.

Figure 6.4: Dataflow graph of the INSERT statement from 6.2 visualized in the
Manta tool

54

Conclusion

The goal of the thesis was to analyze syntax and semantics of the Snowflake
SQL dialect, analyze the metadata of the Snowflake database engine, and learn
about the Manta project, about how it analyzes and represents similar SQL
dialects, and how it represents data flows. Among other goals was to analyze
and design how to represent Snowflake source code for later analysis of data
flows. The last goal was to implement the prototype that extracts metadata
from the Snowflake database engine, analyzing Snowflake SQL scripts and
producing a valid data flow graph.

All goals in the thesis were accomplished. A method of analysis and rep-
resentation of source codes in the Snowflake dialect was found, as well as a
method of data flows detection. The prototype is implemented, and the main
functionalities are tested. The prototype can analyze more statements than
it was originally required in the thesis. The prototype was also successfully
integrated with Manta, and the alfa version is about to be released in a month
to the production environment.

The prototype still cannot analyze the whole Snowflake SQL dialect. Thus,
the prototype will be gradually extended in the future to allow the analysis
of new statements.

55

Bibliography

[1] Wikipedia contributors. Static program analysis [online]. 28 June
2020, at 15:58 (UTC). [cit. 2020-07-04]. Available from: https://
en.wikipedia.org/wiki/Static_program_analysis.

[2] Hopcroft, J., Motwani, R., Ullman, J. Introduction to Automata The-
ory, Languages, and Computation. 3rd Edition. Addison Wesley, Pearson,
2006. 535. ISBN: 0-321-45536-3.

[3] Aho, A.V., Lam, M.S., Sethi, R. and Ullman, J.D. Compilers: Principles,
techniques, and tools. Second edition. Boston:Pearson education, 2007.
993. ISBN 0-321-48681-1.

[4] Cooper, K. and Torczon, L. Engineering a compiler. Second edition. 2011.
787. ISBN: 978-0-12-088478-0.

[5] Michael L. Scott. Programming Language Pragmatics. Third edition.
2011. 787. ISBN 13: 978-0-12-374514-9.

[6] Olivia Wassén. What is Data Lineage? [online]. June 7th, 2019.
[cit. 2020-07-05]. Available from: https://www.nodegraph.se/what-is-
data-lineage.

[7] Tech Summary – MANTA [online]. MANTA. Apr 2019. [cit. 2020-07-06].
Available from: https://getmanta.com/scanners-and-integrations/
tech-summary/.

[8] Jan Andrš. How To Inspect Raw Data Lineage With Manta
Flow [online]. MANTA. June 1st, 2016. [cit. 2020-07-06]. Avail-
able from: https://getmanta.com/blog/how-to-inspect-raw-data-
lineage-with-manta-flow/.

57

https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Static_program_analysis
https://www.nodegraph.se/what-is-data-lineage
https://www.nodegraph.se/what-is-data-lineage
https://getmanta.com/scanners-and-integrations/ tech-summary/
https://getmanta.com/scanners-and-integrations/ tech-summary/
https://getmanta.com/blog/how-to-inspect-raw-data-lineage-with-manta-flow/
https://getmanta.com/blog/how-to-inspect-raw-data-lineage-with-manta-flow/

Bibliography

[9] Snowflake. Key Concepts & Architecture [online]. [cit. 2020-07-10]. Avail-
able from: https://docs.snowflake.com/en/user-guide/intro-key-
concepts.html.

[10] Snowflake. Information Schema [online]. [cit. 2020-07-12]. Available from:
https://docs.snowflake.com/en/sql-reference/info-schema.html.

[11] Snowflake. Identifier Requirements [online]. [cit. 2020-07-12]. Avail-
able from: https://docs.snowflake.com/en/sql-reference/
identifiers-syntax.html.

[12] Snowflake. Summary of Data Types [online]. [cit. 2020-07-14]. Avail-
able from: https://docs.snowflake.com/en/sql-reference/intro-
summary-data-types.html.

[13] Snowflake. Reserved & Limited Keywords [online]. [cit. 2020-07-
15]. Available from: https://docs.snowflake.com/en/sql-reference/
reserved-keywords.html.

[14] Snowflake. Object Name Resolution [online]. [cit. 2020-07-15]. Avail-
able from: https://docs.snowflake.com/en/sql-reference/name-
resolution.html.

[15] Snowflake. Understanding & Using Time Travel [online]. [cit. 2020-
07-17]. Available from: https://docs.snowflake.com/en/user-guide/
data-time-travel.html.

[16] Snowflake. Querying Semi-structured Data [online]. [cit. 2020-07-
19]. Available from: https://docs.snowflake.com/en/user-guide/
querying-semistructured.html.

[17] What is Java technology and why do I need it? [online]. [cit. 2020-
07-27]. Available from: https://java.com/en/download/faq/whatis_
java.xml.

[18] Margaret Rouse. Spring Framework [online]. August,
2019. [cit. 2020-07-27]. Available from: https://
searchapparchitecture.techtarget.com/definition/Spring-
Framework.

[19] Terence Parr. The Definitive ANTLR Reference. 2007, ISBN: 0-9787392-
5-6.

[20] The Apache Software Foundation. What is Maven? [online]. April
4th, 2018. [cit. 2020-07-27]. Available from: https://maven.apache.org/
what-is-maven.html.

[21] MyBatis.org. Introduction [online]. 05 June 2020. [cit. 2020-07-27]. Avail-
able from: https://mybatis.org/mybatis-3/.

58

https://docs.snowflake.com/en/user-guide/intro-key-concepts.html
https://docs.snowflake.com/en/user-guide/intro-key-concepts.html
https://docs.snowflake.com/en/sql-reference/info-schema.html
https://docs.snowflake.com/en/sql-reference/identifiers-syntax.html
https://docs.snowflake.com/en/sql-reference/identifiers-syntax.html
https://docs.snowflake.com/en/sql-reference/intro-summary-data-types.html
https://docs.snowflake.com/en/sql-reference/intro-summary-data-types.html
https://docs.snowflake.com/en/sql-reference/reserved-keywords.html
https://docs.snowflake.com/en/sql-reference/reserved-keywords.html
https://docs.snowflake.com/en/sql-reference/name-resolution.html
https://docs.snowflake.com/en/sql-reference/name-resolution.html
https://docs.snowflake.com/en/user-guide/data-time-travel.html
https://docs.snowflake.com/en/user-guide/data-time-travel.html
https://docs.snowflake.com/en/user-guide/querying-semistructured.html
https://docs.snowflake.com/en/user-guide/querying-semistructured.html
https://java.com/en/download/faq/whatis_java.xml
https://java.com/en/download/faq/whatis_java.xml
https://searchapparchitecture.techtarget.com/definition/Spring-Framework
https://searchapparchitecture.techtarget.com/definition/Spring-Framework
https://searchapparchitecture.techtarget.com/definition/Spring-Framework
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://mybatis.org/mybatis-3/

Appendix A
Acronyms

BI Business Intelligence

ETL Extract, Load, Transform

AST Abstract Syntax Tree

SQL Structured Query Language

IDE Integrated Development Environment

SaaS Software as a Service

MPP Massively Parallel Processing

ANSI American National Standards Institute

DDL Data Definition Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

ANTLR ANother Tool for Language Recognition

JDBC Java Database Connectivity

UDF User Defined Function

UDTF User Defined Table Function

ASCII American Standard Code for Information Interchange

CTE Common Table Expression

59

Appendix B
Contents of enclosed CD

readme.txt the file with USB contents description
src ... the directory containing source codes of the implemented modules

manta-connector-snowflake-aggregation
manta-connector-snowflake-dictionary
manta-connector-snowflake-extractor
manta-connector-snowflake-model
manta-connector-snowflake-resolver
manta-connector-snowflake-testutils

manta-dataflow-generator-snowflake-aggregation
manta-dataflow-generator-snowflake

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.ps...............................the thesis text in PS format

61

	Introduction
	Theoretical background
	Static code analysis
	Lexical analysis
	Syntactic analysis
	Semantic analysis

	Metadata Extraction
	Dataflow graph
	Manta Flow

	Analysis
	Snowflake
	Architecture
	Snowflake objects and its structure
	Metadata access

	Metadata extraction of Snowflake's objects
	Possible ways of metadata extraction
	Description of Snowflake database objects
	Databases
	Schemas
	Tables
	Stages
	Functions
	Stored procedures
	Views

	Snowflake's SQL dialect
	Snowflake object identifier
	Snowflake data types
	Non reserved and reserved words
	Resolution of unqualified identifiers
	Current database, current schema
	DDL and DML
	Queries
	Function and view definitions

	SELECT statement
	AT|BEFORE clause
	WITH clause (CTE)
	FROM clause

	INSERT statement
	MERGE statement
	UPDATE statement
	DELETE statement
	Querying stages
	Limitations

	Querying semi-structured data

	Functional Requirements
	Extracting metadata from Snowflake database
	Parsing Snowflake SQL scripts
	Build AST
	Semantic analysis
	Dataflow graph

	Non Functional requirements
	Use Manta classes
	Imaginary nodes
	Execution time of the prototype
	Maintability and Extendability

	Design
	Technologies
	Java
	Spring
	ANTLR
	Maven
	MyBatis
	JUnit

	Modules
	Dependencies
	Extractor
	Parser
	Dataflow generator
	Execution flow

	Implementation
	Extractor
	SnowflakeExtractor and SnowflakeExtractorImpl
	SnowflakeDao and SnowflakeDaoImpl
	SnowflakeDdlGenerator
	SnowflakeDdlWriter
	AliasManager
	SnowflakeDictionaryWriter
	ParsingUtils
	Model classes

	Parser
	Lexing grammar files
	Generating custom Java functions

	Parsing grammar files
	Grammar structure
	Identifiers
	Rewrite rules

	ParserService and ParserServiceImpl
	SnowflakeAstNode
	Resolving

	Ast*
	SnowflakeContextState
	ResScope

	Dataflow generator
	FlowVisitor
	SnowflakeGraphHelper

	Testing
	manta-connector-snowflake-resolver
	manta-connector-snowflake-dataflow
	manta-connector-snowflake-extractor

	Output Samples
	Description of graph picture
	SELECT statement
	INSERT statement

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

