CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Faculty of Electrical Engineering

Department of Computer Science

Master’s Thesis

Visual Localization with HoloLens

Pavel Lucivnak

Supervisor: doc. Ing. Tomas Pajdla Ph.D.

Field of study: Artificial Intelligence
Study programme: Open Informatics
August 2020

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
s N
Student's name: Lucivhak Pavel Personal ID number: 435627

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Artificial Intelligence

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Visual Localization with HoloLens

Master’s thesis title in Czech:

Vizualni lokalizace pro HoloLens

Guidelines:

1) Review the state of the art in indoor visual localization, see [1,2] and

references therein.

2) Adjust method [2] to local environment and image acquisition using HoloLens.

Create new 3D data set for the local environment and evaluate the accuracy of the

localization w.r.t. a ground truth in that environment.

3) Apply InLoc localization method on data from HoloLens, evaluate behavior and inaccuracies of the localization on this
data. Investigate a possibility of using multiple images for improving the localization.

4) Demonstrate and evaluate the improved method for HoloLens localization.

Bibliography / sources:

[1] Arandjelovi¢, R.; Gronat, P.; et al. NetVLAD: CNN architecture for
weakly supervised place recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[2] Taira, H.; Okutomi, M.; et al. InLoc: Indoor Visual Localization with
Dense Matching and View Synthesis. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2018, ISSN 1063-6919,
pp. 7199-7209, doi:10.1109/CVPR.2018.00752.

[3] Garg, R.; Kumar, B. V,; et al. Unsupervised CNN for single view depth
estimation: Geometry to the rescue. In European Conference on Computer
Vision, Springer, 2016, pp. 740-756.

[4] Zhang, Y.; Funkhouser, T. Deep Depth Completion of a Single RGB-D
Image. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[5] Van Gansbeke, W.; Neven, D.; et al. Sparse and Noisy LIDAR Completion
with RGB Guidance and Uncertainty. In 2019 16th International
Conference on Machine Vision Applications (MVA), IEEE, 2019, pp. 1-6.

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:
doc. Ing. Tomas Pajdla, Ph.D., Applied Algebra and Geometry, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 04.02.2020 Deadline for master's thesis submission: 14.08.2020

Assignment valid until: 30.09.2021

doc. Ing. Tomas Pajdla, Ph.D. Head of department’s signature
Supervisor’s signature

prof. Mgr. Petr Pata, Ph.D.

Dean’s signature

\
lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgments

I would like to thank my family for their support and motivation; especially during
the times when I was struggling to make progress. My supervisor Tomas Pajdla was
very helpful with his suggestions and leadership. Special thanks to Torsten Sattler, who
took the time to clarify my questions about the use his open-source software; and Anna
Zderadickova whose experience with HoloLens allowed me to capture the raw sequential
data quickly.

vi

Prohlaseni

Prohlasuji, ze jsem predlozenou praci vypracoval samostatné a ze jsem uvedl veskeré
pouzité informacni zdroje v souladu s Metodickym pokynem o dodrzovani etickych
principt pri pripravé vysokoskolskych zavéreénych praci.

V Praze, 14. 8. 2020

vii

viii

Abstract

Visual localization is a common computer
vision problem of estimation of the cam-
era pose that took a particular RGB im-
age. The pose is estimated relative to a
certain coordinate system. One partic-
ular instance of this problem occurs in
HoloLens mixed reality. In a mixed re-
ality settings, we are projecting virtual
objects into the real world environment.
In order to maintain the objects as the
user navigates around a room, we need to
keep track of the device pose. HoloLens
already does this, however there is a room
for improvement. A new indoor visual-
ization datasets, consisting of 2 rooms
and 3 query sets, has been created. Two
of these query sets are sequential images
(from HoloLens). Reference poses are also
provided (although not for all queries).
We have designed new methods that aim
to merge InLoc [I] approach to indoor
visual localization with the data from
HoloLens. My implementation outper-
formed the original InLoc paper on the
task of sequential localization from RGB
images. However, our approach turned
out to perform significantly worse than
the pose estimation from HoloLens itself.
I provide an overview of sources of errors
in the new and InLoc methods for poten-
tial future improvement.

Keywords: HoloLens, localization,
Matterport, Vicon

Supervisor: doc. Ing. Tomés Pajdla
Ph.D.

CIIRC CVUT,

Jugoslavskych partyzénu 1580/3,
Praha 6 - Dejvice,

160 00

Abstrakt

Vizualni lokalizace je ¢asto fesend pro-
blematika v pocitacovém vidéni. Typicky
chceme urc¢it pézu (polohu a orientaci)
fotoaparatu, ktery poridil dany RGB sni-
mek. Odhadnuta péza se vztahuje k néja-
kému nami definovanému souradnicovému
systému. Tento problém se naptiklad resi
ve smisené realité v HoloLens. Promitame
zde virtudlni objekty to redlného prostoru.
Abychom mohli udrzet tyto objekty na
spravném misté, zatimco se uzivatel bryli
pohybuje, je potieba védét, kde se Holo-
Lens nachazi. HoloLens jako takové umi
sledovat svou vlastni pézu, ale vysledek
neni perfektni. Vytvoril jsem novou sadu
dat, ktera obsahuje skeny dvou mistnost{ a
tFi mnoziny query obrazki. Dveé z nich po-
chazi pravé z HoloLens. Obsahem datové
sady jsou i referencéni pozy fotoaparatu (u
nékterych zatim chybi, ale daji se v pri-
padé potieby vygenerovat). Navrhl jsem
nové algoritmy, které kombinuji metodu
InLoc [1] s daty, co ndm déva HoloLens.
M4 implementace je na sekvenénich ob-
razcich presnéjsi, nez puvodni InLoc. Mé
metody jsou ale vyrazné méné presné, nez
lokalizace ze samotnych HoloLens. V préci
shrnuji mé poznatky, pro¢ vnikaji urcité
chyby souvisejici s novymi metodami nebo
s InLocem. V budoucnu je mozné na préci
navazat a chyby zredukovat.

Klicova slova: HoloLens, lokalizace,
Matterport, Vicon

Preklad nazvu: Vizudlni lokalizace pro
HoloLens

Contents
1 Introduction 1l
2 Literature review 3
21 InLoc ...l 3
22 NetVLAD bl
23P3P. ... 15
2.4 Camera coordinate system 6]
2.5 Multi-camera pose estimation ...
2.6 Procrustes analysis.............
2.7 Devices used 9
2.8 InLoc improvement

2.9 Single View Depth Estimation . .

2.10 Deep Depth Completion

2.11 Marker-based HoloLens
localization 11l

2.12 Augmenting Microsoft’s HoloLens
with vuforia tracking for
neuronavigation 11]

2.13 Magnetic field and Visual Sensors
for Indoor Localization 11l

2.14 Visual Indoor Localization in
Known Environments 12l

2.15 Multi-sensor-based Indoor

Localization System
3 Dataset 13
3.1 Reference poses...............
3.2 Habitat.............

321Usagecoovvii...
4 Implementation

4.1 Source code and dataset structure

4.2 Pseudocode
4.3 MultiCameraPose............. 138

4.3.1 Introduced changes.........

4.32Usagecoviiiiiii..
5 Evaluation 47
5.1 Experiment design
5.2 s10e query set iy
5.3 HoloLens1 query set

5.3.1 Summary

5.3.2 Best custom method

5.4 Sources of errors

5.4.1 Previous queries have
meaningful correspondences but
current query does not have any
correspondences

5.4.2 Bad input score matrix

5.4.3 Hard to pick top 10
combinations for non-trivial
segments

5.4.4 No HoloLens poses

5.4.5 Geometric verification fails . .

5.5 Computational complexity

6 Conclusion

6.1 Future work..................

A Bibliography

Xi

Figures
2.1 Camera coordinate system
3.1 Coordinate systems in use
3.2 Camera and Marker........... 18

3.3 HoloLens and Vicon timelines .. [19

3.4 Reprojection error on optimized

s10e parameters 21
3.5 FOV quality comparison.
4.1 Organization of sub-projects ...
4.2 Core project structure

4.3 Dataset construction tool

structure L. 32
4.4 Dataset structure 133l
4.5 MultiCameraPose structure [33
5.1 s10e query pipeline............

5.2 Translation error threshold vs

accuracy on slOe query set 45|
5.3 s10e B-315 top-view

Xii

5.4 s10e B-670 top-view

5.5 Translation error threshold vs
accuracy on HoloLensl query set .

5.6 HoloLensl query pipeline

5.7 HoloLens1 B-315 top-view

Tables 5.6 Queries affected by inaccurate

3.1 Evaluation of optimized HoloLens1

5.7 Processing times of the
reference poses

experiments

3.2 Evaluation of non-optimized
HoloLens1 reference poses........

3.3 Optimal HoloLens delay
parameters..................... 22

3.4 Statistics of the InLocCIIRC

3.5 Handling of reflective surfaces ..

4.1 Input parameters of
multiCameraPose MATLAB

function 40
5.1 s10e pose estimation errors. 43|

5.2 InLoc and InLocCIIRC

performance on non-sequential
queries ... 45|

5.3 s10e pose estimation error
statistics............ 45

5.4 InLocCIIRC performance on
HoloLens1 query set.............

5.5 HoloLens1 pose estimation error
statistics.......... 48

xiii

Chapter 1

Introduction

Visual localization is a common computer vision problem where, given an RGB
image, we want to estimate the camera pose. Such a camera pose can be specified
by 6 parameters - 3 of which describe its position in space and the other 3 represent
its orientation in the space. In case of outdoor visual localization, the problem can
be simplified by making use of GPS for approximate position localization. Visual
localization is a problem that also needs to be addressed indoors, however. It has
use cases in e.g. augmented and mixed reality applications. Of course, the GPS
signal is unusable in a building. In this thesis, I am going to focus on indoor visual
localization with HoloLens. HoloLens is a mixed reality device; providing a powerful
tracking of the camera as user navigates around a room. The accuracy is already
high, however the idea of this thesis is to improve it further. Imagine a use case
where we place virtual objects into the mixed reality. As user navigates around
the room, we need to track the pose of HoloLens in order to maintain the object
placements. The indoor environment is problematic for several reasons. One of
them being that there are a lot of similar areas - the same type of windows, doors,
textureless walls. Furthermore, the environment can change easily as people interact
with it.

The objectives of this work are as follows:

1. State of the art in indoor localization must be reviewed; in particular the
NetVLAD [2] and InLoc [I] papers.

2. A new indoor dataset based on the InLoc dataset [I] shall be created. The new
dataset must also contain query images that were taken in a sequence (as an
user with HoloLens walks in the room).

1

1. Introduction

3. Make InLoc run on the newly created dataset, by processing the query images
in non-sequential fashion.

4. Implement an improvement that takes the HoloLens data into account. One of
the improvements should include taking multiple historical camera data into
account (InLoc currently only uses a single camera pose, because it does not
deal with sequential data).

5. At last, the performance of the newly implemented algorithms shall be evaluated.

This work is organized the following way. Chapter [2| contains related work on the
topic of indoor visual localization. Background that my software and algorithms
rely on is also described. The newly acquired dataset is described in Chapter [3.
It contains statistics of the dataset, its structure and how it was created. An
implementation of the techniques described here are covered in Chapter 4. Note that
it is only a proof-of-concept implementation, unsuitable for deployment out of the
box (just as the InLoc implementation). Chapter 5 evaluates the newly developed
methods and compares them with some baseline methods. Sources of errors are also
noted. Finally, the Chapter [6] is a summary of this work, whether it fulfilled the
assignment and possible future work.

Chapter 2

Literature review

This chapter provides a review of relevant work. It also provides a theoretical or
technical background on topics we are dealing with within this thesis.

. 2.1 InLoc

InLoc [I] a powerful method (state-of-the-art in 2018) for indoor visual localization.
All the newly developed algorithms in this work use InLoc or its modification at its
core. Not necessarily because there is no better method out there, but because it is
the topic of this thesis (and the thesis supervisor is a co-author of the InLoc paper,
which is beneficial for getting familiar with the method quickly). To understand the
methods developed in this work better, it is useful to learn about InLoc first.

InLoc operates on top of an InLoc dataset. The dataset contains:

256 query RGB photos,

10000 cutout RGBD images,

277 reference panorama poses (determined using [3]),

reference query poses,

query-cutout similarity matrix (known as score).

3

2. Literature review

The dataset has been acquired at the Washington University in St. Louis. Five
floors (at two buildings) were used to build the dataset. The InLoc method assumes
existence of a 3D map. In the InLoc dataset, the 3D map was constructed using a
high-end Faro 3D scanner. Each scan with that device produces an RGBD panorama
image. The data from the various scans was then merged to create a single 3D
model for each floor (using [3]). In addition, database images, also called cutouts
were produced. The cutout RGBD images are a result of perspective view extraction
from the RGBD panorama images. The panorama images were captured across
all five floors using a high-end Faro 3D scanner. The query RGB images represent
the images for which we aim to determine camera pose. These were taken using
a smartphone camera with no depth information. Queries were taken only at two
floors; the other floors serve as a confusion for InLoc.

The query photos were taken at a different time of the day, to take illumination
and interior changes into account. The query reference poses are needed, to attest
how well InLoc performs on the pose estimation task. These reference poses were
determined using (paraphrased from [1]):

1. Selection of the visually most similar cutout images.
Automatic matching of query images to selected cutout images.
Computing the query camera pose and visually verifying the reprojection.

Manual matching of difficult queries to selected cutout images.

S B B B

Quantitative and visual inspection.

Understanding the details of reference pose generation is not necessary for un-
derstanding this work. This is because, as we will see in Chapter [3, our new
dataset:

® Already contains reference panorama poses from Matterport.

® Uses a pose-tracking system Vicon to estimate the reference query poses.

Let’s take a look at a high-level overview of how the InLoc method operates. The
following is a simplified and paraphrased (from the InLoc paper [I]) description:

1. For every query image: find top N similar cutout images using the score
similarity matrix.

2.2. NetVLAD

2. For every query-cutout pair: find tentative pixel-to-pixel correspondences using
matching of NetVLAD [2.2 features. This step is called geometric verification.

3. Re-rank the top N cutout lists according to the highest number of tentatives
found (if there is a draw, the original query-cutout score decides the order).

4. Choose top M < N cutouts in the lists.

5. For all query-cutout pairs, construct a pose estimate using P3P-RANSAC.
This is possible since the pixel-to-pixel correspondences can be converted into
2D-3D correspondences (cutouts are RGBD).

6. Project the estimated poses and evaluate their similarities to the query images
(pose verification step).

7. For every query: choose the cutout for which we have a synthesized query image
with highest similarity to the query image (using DenseRootSIFT [5] [6]).

The computational requirements are missing from the InLoc paper. However, the
authors mention the need for about 14 GB RAM in their experiment, to hold the
image descriptors in memory.

B 2.2 NetVLAD

NetVLAD [2] is a convolutional neural network? (CNN) architecture for visual place
recognition. The input to this network is an RGB image and the output is a feature
representation of that image. Given two images and their corresponding features, we
can compute to what extent they resemble the same place. In this work, as well as
in InLoc [1], we use a VGG-16 [9] + NetVLAD model that is pre-trained on Pitts30k
[2] dataset.

B 23 p3p

The P3P problem [4] is a problem of estimating a calibrated camera pose using
at least three 2D-3D correspondences. A calibrated camera is a camera for which
we know its calibration matrix (see section 2.4). RANSAC [4] can be used to

P3P is covered in section [2.3} refer to [@] for RANSAC description.
2See the original paper [7] or a Deep learning survey [8].

5

2. Literature review

further improve estimation accuracy, if some of the correspondences are imprecise or
incorrect.

B 2.4 Camera coordinate system

Figure [2.1] shows a camera coordinate system -y, that defines the camera pose.

Calibration matrix. A camera calibration matrix K is a linear transformation that
converts points in camera coordinate system into points in image coordinate system
B. It is defined by five parameters [10]:

k11 k12 ki3
K=|0 kyp k. (2.1)
0 0 1

They represent focal length, sensor dimensions, origin of the image coordinate
system and more.

Our implementation, however, only requires a subset of those parameters. Thus
the calibration matrix K can be constructed as:

f 0 w/2
K=|0 f h/2]|, (2.2)
0 0 1

where w and h are width and height of the camera sensor in pixels. Focal length
f is also in pixel units.

2.5. Multi-camera pose estimation

Va,

Figure 2.1: Camera coordinate system ~ with bases €1, ¢, 3; and with origin at C with
respect to some World coordinate system . Camera points the €3 direction, having ¢;
on its right. 53 defines the origin of image coordinate system (pixel at 0,0). Vectors
51, 52 are considered to be orthogonal, as we are dealing with a rectangular sensor in
this thesis. Point X with 3D coordinates X projects onto the image plane to a point x
with image coordinates #. The two points form a 2D-3D correspondence. Figure is from

page 36 of [10].

B 2.5 Multi-camera pose estimation

Throughout this work, we often operate on query images that were taken in a
sequence. Imagine a person walking around a room and taking a picture every once
in a while. Considering the sequential nature of the queries can help us improve

7

2. Literature review

the localization performance. To achieve this, we need to be able to estimate poses
of multiple cameras in the sequence. In general, these cameras are referred to as a
rig of cameras. The generalized pose-and-scale problem (GP4Ps/gsP4P), defined
in [I1] describes such a problem in general and provides an efficient solution. A
particular implementation of the solver is provided as an open source software,
named MultiCameraPose. The project is a result of a recent work [12]. For my
use-case, I modified the implementation slightly and it is available at [I3]. The
implementation is very fast, computing the pose estimates of a rig with 5 cameras
in about 60 milliseconds. A concrete usage of the MultiCameraPose program and
the changes I have made are described in the Implementation chapter /4.

B 26 Procrustes analysis

Consider two k-tuples containing points in n-dimensional space:

X = (1, Fay ooy T0),Y = (1, T ooes 1)- (2.3)

We wish to find an (approximate) linear transformation for the corresponding
pairs of points:

=Ty, Viellk]. (2.4)
This is especially meaningful if:

1. Points in X are all with respect a common coordinate system, call it a.
2. Points in Y are all with respect a common coordinate system, call it 3.

3. The points Z; and g; represent (with possible noise) a common point in .

Procrustes minimizes the sum of squared errors of points:

k
arg min Z (Z; — T -7;)% (2.5)
T =1

8

2.7. Devices used

We will be using an implementation in MATLAB called procrustes; it is available
as part of the Statistics and Machine Learning Toolbox [14].

. 2.7 Devices used

Matterport. Matterport is a device capable of creating a 3D map of indoor envi-
ronments. Compared to the Faro 3D scanner used in InLoc dataset [I], Matterport
is a cheaper alternative. Matterport operating time is also lower, and the resulting
point cloud is of lower quality [3].

Vicon. Vicon is a stationary system capable of tracking an object’s pose with high
accuracy [I5]. The tracked object, Marker, contains spheres which have a reflexive
surface. Vicon is used for reference pose determination in the newly created dataset
within this work.

HoloLens. HoloLens is a mixed reality device. Mixed reality (MR) is the blending
of virtual and real environment, such that the user of MR can interact with both
of these environments; see [16] for a difference between augmented reality, virtual
reality and mixed reality. HoloLens is a head-worn device capable of mapping the
real environment and localizing itself within it [I7]. In this thesis, we are making
use of the 1st generation HoloLens [18], referred to as HoloLens for simplicity.

HoloLens contains the following sensors [17] [I8]:

main RGB camera,

B 4 environment-understanding grayscale cameras,

a depth sensor,

4 microphones,

B other sensors.

The environment mapping and localization are done directly on the device in
real-time in a SLAMP?|-like manner [I7]. In an experiment conducted in [I7], the

3See [19], [20], [21].

2. Literature review

poses estimated by HoloLens had the following mean accuracy with respect to the
ground truth poses:

® 1.6 + 0.2 cm translation error,

| 2.2 £ 0.3° orientation error.

B 28 InLoc improvement

The paper called Is This the Right Place? Geometric-Semantic Pose Verification for
Indoor Visual Localization [22] suggests an improvement to the original InLoc. It
focuses on significantly improving the the pose verification step. Neither the source
code nor the data have been published as of August 9, 2020; and there exists no
other open-source implementation to my knowledge. Implementing the methods in
this paper would be very time consuming; thus, the results of this paper are not
used in our work.

B 29 Single View Depth Estimation

The authors of [23] provide a method for learning a convolutional neural network
(CNN). The network’s task is to, given an input RGB image, estimate the depth of
each pixel. The impact of their work is that they managed to do so in unsupervised
fashion; eliminating the cost of manually labelling the data [23]. The results of that
paper could be useful to us, as we could use it to create depth data to improve
localization accuracy. However, HoloLens already includes a depth sensor [17].
Although the sensor provides a limited field of view (FoV), it shall be first tested,
whether the sensor data are sufficient for our purposes.

B 210 Deep Depth Completion

The paper [24] also provides a solution to the problem of depth estimation from a
single RGB image. However, it makes use of the device’s depth sensor, builds upon
it and improves its accuracy. The problem with many depth cameras is that they

10

2.11. Marker-based HololLens localization

often fail to sense depth for shiny, bright, transparent, and distant surfaces [24].
This work, while promising, shall only be considered after we find that the HoloLens
depth camera is not sufficient for our purposes.

. 2.11 Marker-based HoloLens localization

In the paper [25], authors suggest a method for improving the localization capability
of 1st generation HoloLens. They do so by placing markers (2D QR code-like objects)
across the environment. The method then allows them to accurately place large
virtual models into the environment within a spatial accuracy of few centimeters
[25]. The problem of this approach is that it requires the knowledge of the location
of the markers with respect to some model coordinate system.

B 212 Augmenting Microsoft’s HoloLens with vuforia
tracking for neuronavigation

Paper [26] describes a significant improvement of HoloLens accuracy in a medical
scenario. It does so by using proprietary Vuforia SDK. The proprietary aspect of it
is, however, not ideal for open-source projects.

B 213 Magnetic field and Visual Sensors for Indoor
Localization

Paper [27] shows how to improve localization accuracy by using both visual sensors
and a magnetometer. The magnetometer is only present in 2nd generation HoloLens,
which we do not have access to. We could use a custom sensor and attach it to the
device, however.

11

2. Literature review

. 2.14 Visual Indoor Localization in Known
Environments

The article [28] suggests a different approach from InLoc to tackle the indoor
localization problem. Instead of constructing a 3D model of the environment in the
first stage, visual features are detected in a video sequence and SURF features [29]
are extracted. According to the article: “the sequence must cover all the areas in
which localization will be needed. ... each frame is manually labeled with positional
information with a time-consuming procedure”. During the localization, query video
frames are matched to frames in the reference video sequence.

This article may be worth considering when we do not have access to a dedicated
3D-environment scanning device.

B 2.15 Multi-sensor-based Indoor Localization System

The authors of [30] propose a method for robust indoor localization integrating
multiple sensors and a visual localization from a single RGB camera. Promising
results are shown, but I was unable to find a reference implementation. Creating my
own based on the paper would be very time consuming.

12

Chapter 3

Dataset

The original InLoc implementation is using the InLoc dataset [1], which is based on
data taken at the Washington University in St. Louis (WUSTL dataset [3]). The
InLocCIIRC dataset aims to keep the same structure as the InLoc dataset. The new
dataset was created at the Czech Institute of Informatics, Robotics and Cybernetics

(CITRC).

The dataset is a result of scanning two rooms at CITIRC: the B-670 lecture hall
and a room B-315. For scanning the environments, a Matterport 3D scanner is used.
Let’s call the environments spaces. Compared to the Faro 3D scanner used in InLoc
dataset [I], Matterport is a cheaper alternative. Matterport operating time is also
lower, and the resulting point cloud is of lower quality [3]. Matterport creates a
point cloud and a mesh model of each space. This is made possible by scanning the
area at various locations. Let’s call each such scan a sweep, to match the Matterport
API terminology. To construct the models, RGBD panoramas are taken around
the rooms. In B-670, I have taken 31 such panoramas. In B-315, I have taken
27 panoramas. Overall, there are 58 RGBD panoramas taken by Matterport 3D
scanner. The scanner was mounted on a tripod at height of approximately 1.52cm
and I tried to avoid walls and objects in 60cm radius.

When creating an RGBD panorama, the Matterport scanner has to revolve around
yaw axis in order to capture the scene in 360°. For each RGBD panorama, we are
given the pose of the Matterport scanner at the moment right before the rotation
started. These poses are provided by Matterport, so we don’t have to go through
the hurdles of estimating them ourselves as in [3].

Another outcome of the sweeps are RGB panoramas. Matterport does not support

13

3. Dataset

automatic gathering of these panoramas, so they have to be downloaded manually
for every sweep. Another problem is that these downloaded RGB panoramas are
not pointing the same direction as is the initial orientation of the Matterport
camera. Therefore, I have created a tool to semi-automatically find the proper
orientations. This is done by

1. projecting the point cloud model according to the sweep pose,

2. sampling the RGB panoramas around the yaw axis and picking such a sample
that best matches the projection. The matching is done by picking such a
sample for which the amount of edges in a differential edge image is minimal.

This approach works well, however it may still fail in an exceptional case. Then,
a user is encouraged to try the 2nd lowest amount of edges, 3rd least amount and
so on. Alternatively, one may try to increase the point size of projected the model.
As a last resort, one can manually find the RGB panorama sample by observing all
perspective projections of that panorama, generated via a provided script.

Once we have the RGB panoramas which are pointing the same direction as the
RGBD panoramas, we can move onto the next stage. Here we construct cutouts,
which are perspective projections of the RGB panoramas at a specific orientation.
As in InLoc, I am sampling around the yaw axis per 30°, under the pitch direction
of {—30,0,30} degrees. The cutouts also contain information about the depth (not
provided by Matterport).

The dataset contains sets of query images (queries). The first set, called s10e,
was taken by a smartphone camera — via Samsung Galaxy S10e’s wide angle rear
facing lens (i.e. the main lens). I have taken 40 query images in a restricted area
of room B-315. This room was chosen to be in the dataset, because it contains a
pose estimation system called Vicon. The other two sets of queries were obtained
using 1st generation HoloLens; and were also taken in that restricted area. The sets
are named HoloLensl and HoloLens2 — the suffix number indicates the sequence
number. The major difference between s10e and HoloLens query datasets is that
the queries from HoloLens form a sequence of images, as the user walked around
the room. The sequential nature of those query datasets shall be leveraged, and
data from multiple cameras may be used for a higher-precision pose estimation of a
current frame.

All of the query images were taken in this specific area of room B-315, so that
their reference pose is known. No queries were taken in room B-670, as it would be
time consuming to estimate the reference poses manually (or creating a program
that does this). Hence, its only purpose is to serve as a confuser.

14

3. Dataset

The queries in the s10e set have a pixel resolution 4032 x 3024. InLoc implementa-
tion requires the knowledge of focal length of the camera that was used when taking
the query images. I found conflicting information about the S10e’s field of view
(FoV) online, and the focal length didn’t add up. I ended up computing the focal
length manually with the help of a tripod and a ruler. The focal length turned out
to be 3172 pixels. The IDs of query images are sorted in a non-decreasing difficulty,
e.g. queries with IDs 1 to 10 were taken such that the camera’s direction vector is
roughly parallel with the floor. Queries with higher IDs have the camera rotated on
a tripod under any direction.

The HoloLens queries have a pixel resolution of 1344 x 756 pixels and according
to the official documentation, the horizontal FoV is 67°. Because the results were
not very precise at some point of development, I began to question whether the
documented FoV of 67° is indeed true. Looking at the data generated while capturing
the sequences, HoloLens provides a cameraProjectionTransform matrix. According
to an article [31], the effective hFoV can be computed as

1
hFoV = 2 - arctan (———) , (3.1)
cameraProjectionTransform.mil1

which gives the value of 65.83 degrees. This is the more accurate result, as a
reprojection error was lower with this redefined constant.

The sweeps, used to construct the point cloud model, were taken on Thursday /Fri-
day midnight. The s10e query images were taken on a Monday morning 3 days
later. Note that there was a weekend between the two time frames, meaning the
scene didn’t change a lot during that time. The reason the query images were taken
later was to test what happens when items such as chair, lighting and people move
around or change.

The two HoloLens sequences were captured about three weeks later. This means
the environment was more challenging to work with, because it has changed from
the state in which it was scanned by Matterport.

Alignments define the pose of individual sweeps within the space they are in.
Because the poses are given to us from Matterport, we do not need to perform the
generalized iterative closest point (GICP) step, as in InLoc. Because Matterport
gives us an entire model (point cloud and mesh) of each scanned space, we do
not need to consider alignments at all. They were useful in InLoc, where there
were individual point clouds for sweeps and thus the 3D coordinates of the points
projecting onto cutouts were with respect to (wrt) the sweep coordinate system.

15

3. Dataset

In InLoc, there are point cloud models for every sweep. On the contrary, in
InLocCITIRC we have a model for each space.

The InLoc implementation requires the knowledge of scores between every pair of
a query image and a cutout image. An individual score describes similarity between
the two images. When the software is run, InLoc chooses, for each query, top N
cutouts with the highest scores. The other cutouts will not be considered. It is
thus quite important that these scores are relevant. NetVLAD [2] descriptors are
computed for both cutouts and query images. The features are the output of the
L2 normalization layer. A score between a query image and a cutout is computed
using a dot product between the two feature vectors. Note that the similarity scores
of cutouts for a query do not represent a probability distribution, and thus don’t
need to sum up to one. The code for doing so was not provided in InLoc, so I came
up with an implementation that reuses existing InLoc MATLAB components. The
resulting scores seem to be meaningful, but a reference implementation would have
been better.

B 3.1 Reference poses

We need to know the reference pose of each query, in order to evaluate how accurate
the pose estimation algorithms are. The pose of the cameras used to take the query
pictures in query sets was also being tracked by a pose estimation system — Vicon.
Figure 3.2a/shows the s10e camera (thus also its coordinate system) and a coordinate
system that is being tracked by Vicon. Let the latter coordinate system be called
Marker.

Let’s now focus on a more difficult scenario, which is the reference pose determi-
nation of the HoloLens queries. There are three reasons why the reference poses
cannot be simply taken from the Vicon tracking:

1. camera pose and Marker are widely different,
2. the Vicon coordinate system differs from the World?| coordinate system,

3. Vicon started tracking before HoloLens was run, as visualized in figure |3.3.

'For exceptions caused by delays take a look at table [3.3]
2The World coordinate system is a coordinate system of the point cloud and mesh models
provided by Matterport.

16

3.1. Reference poses

OmegaToWorld
OmegaToCamera

Omega

Camera

MarkerToCamera

ViconToMarker WorldToVicon

Marker

Figure 3.1: Visualization of the coordinate systems we are dealing with. Omega is
the initial unknown HoloLens CS (see section [2.4] for a an example of a coordinate
system). Notice that Omega has a scaling independent of the World CS scaling. Linear
transformations are shown by the arrows. There are in fact two slightly different Camera
coordinate systems — one that is estimated from HoloLens and another one (reference
pose) that is estimated using Vicon. OmegaToCamera is known for most'of the HoloLens
queries, because the data comes from HoloLens. ViconToMarker is provided from Vicon
tracking. WorldToVicon has been manually determined. MarkerToCamera has been
approximated by an algorithm described in the Reference poses section |3.11

Luckily, the second issue turned out to be easily mitigated. I have been told where
the origin of the Vicon coordinate system is. And by experimentation, the rotation
matrix that converts Vicon bases to World bases was found. Because the Vicon
bases and World bases are aligned to the room (i.e. a basic vector is parallel with
the floor or the walls), the rotation matrix can be represented by a simple rotation.

The transformation from Marker to camera is considered to be a constant (for
all queries in a query set), because the tracking device is securely attached to the
camera. One could manually estimate that transformation and visually evaluate how
close the model projection is to the original query image. However, this approach is
prone to errors. Instead, a quantitative approach was employed, which I describe
next.

For a particular query set, we need to manually set up the reference poses for a
small number of queries. I used 6 of them in HoloLensl. Let these queries be called
interesting queries. For such a query, we manually find nine 2D-3D correspondences.
The 2D correspondences are carefully chosen, such that they actually represent the

17

3. Dataset

(a) : s10e query set. (b) : HoloLens2 sequence.

Figure 3.2: The camera and marker (the object tracked by Vicon). Marker coordinate
system is visualized in subfigure by the xyz arrows.

same 3D point — because the 3D points were captured up to three weeks earlier
than the query images and the environment has changed. For each query with the
correspondences, we compute its initial reference pose using P3P. The pose returned
by P3P may not be completely accurate, however.

Given reference poses for 6 queries and corresponding poses from Vicon, we
can almost compute individual Marker to camera transformations. The last piece
missing is a synchronization constant, to match the correct Vicon pose taken at
Vicon time with a particular query taken at HoloLens time. I created a script,
findOptimalParamsForInterestingQueries.m, which computes the Marker to
camera transformations and evaluates the reference poses quality both quantitatively
(reprojection error) and visually (manually investigated by the user). Currently,
user must guess a synchronization constant. Finding a reasonable synchronization
constant does not take long. Alternatively, one could implement a brute-force
search, where various synchronization constants are guessed and the one with lowest
quantitative error is chosen. In my case this was not necessary. At the end of the
script, a generic transformation is suggested, which is an average of the individual
transformations. The quality of the generic transformation is again evaluated on
all the 6 queries. This generic transformation and the synchronization constant are
used as a baseline and are further optimized, described next.

A brute-force search is employed to find an improved version of the baseline
transformation and synchronization constant in nearby space. First, an improved
synchronization constant is estimated, by simply evaluating the interesting queries
on the same transformation but for different synchronization constants, that are
close to the baseline constant. Then, different transformations are being tried. An
Marker to camera transformation is described by a 3D translation vector and a

18

3.1. Reference poses

o o o HoloLens time
| [[[[[[[

:O
o
|—H—|—|—|—|—|—|—|—|— o *| Vicon time
O T

100 FPS

Figure 3.3: Visualization of the HoloLens and Vicon timelines. The synchronization
constant must be found. Note that the sampling frequencies are vastly different. However,
given a query image from HoloLens taken at some point in time (HoloLens sampling
frequency), we find the corresponding reference pose that has the nearest timestamp
(after taking the synchronization constant into account; Vicon sampling frequency).

3x3 rotation matrix. Note that this rotation matrix can be represented by three
parameters (yaw, roll and pitch). Thus, the code iterates over predefined values of
the 6 parameters, such that every combination is tried. For each combination, the
reprojection error is computed and stored for later. The parameters are continuous,
but I try a sequence of values nearby the baseline value, with a constant offset.
When it comes to the translation parameters, I have had good experience with trying
17 values, where the middle value is the baseline. The offset was 0.023 Matterport
meters. Each orientation parameter was evaluated on 11 values with even offsets,
where the middle value was the baseline. The offset was 0.5°. The brute-force search
is very time consuming, taking about 20 hours on a machine capable of processing 45
threads at once. Optionally, one can iterate over 5 synchronization constant values,
for even more optimal parameters to be found. Of course, by doing that, the search
will take asymptotically 5 times as much time and memory resources.

Table [3.1] shows quantitative evaluation of the quality of reference poses, after the
brute-force optimization. Table [3.2] shows the same statistics for parameters prior to
the optimization (baseline transformation). The improvement is not significant: 1
cm lower translation error and 0.14° lower orientation error. Figure |3.4| shows an
example of the 9 manually defined correspondences and their reprojection errors.

The resulting reference poses are not perfectly matching ground truth poses, which
can be seen when projecting the reference poses and comparing the results with the
query images. I have created the following procedure in order to estimate the mean
translation and orientation error (reference vs ground truth poses). Although we
do not know the true ground truth poses, one can use the poses from HoloLens.

19

3. Dataset

Query ID | Average projection error [px] | Sum of projection errors [px]
1 3.47 31.24
94 9.80 88.19
237 10.06 90.52
281 3.83 34.48
155 5.07 45.63
198 3.23 29.10
| Sum | N/A [319.16

(a) : Reprojection error.

Mean errors | Standard deviation of errors
Translation [m] 0.15 0.08
Orientation [m] 2.09 1.69

(b) : Estimate of reference vs ground truth poses errors. All the queries in the
sequence were considered, with two kinds of exceptions. Queries, for which we
do not have a reference pose (Vicon got lost) are not considered in the statistics.
Queries for which we do not have a corresponding pose from HoloLens (due
to the delay) are also not included in the statistics. Ground truth poses are
estimated from the poses provided from HoloLens, after conversion to World
coordinate system.

Table 3.1: Quantitative evaluation of reference poses quality. HoloLensl sequence
shown. Parameters describing the Marker to camera transformation were optimized
using brute-force search.

According to [I7], the poses estimated by HoloLens have the following mean accuracy
with respect to the ground truth poses:

B 1.6 £ 0.2 cm translation error,

® 2.2 4 0.3° orientation error.

Notice that namely the the translation error is very low. To estimate the quality of
my reference poses with respect to (wrt) ground truth poses, I consider the HoloLens
poses as the ground truth poses. However, because the poses from HoloLens are wrt
some unknown initial HoloLens coordinate system (Omega), I first need to convert
those poses to be wrt World. To achieve this, I use procrustes [32], which finds a
linear transformation from one coordinate system to another (translation, rotation,
scale), given corresponding 3D points. In my case, the 3D points are simply the
camera, centers. Procrustes minimizes the sum of squared errors of points in the same
coordinate system. After the conversion, we would have ground truth estimates.

Unfortunately, there was another hidden problem that had to be dealt with, prior
the reference vs ground truth pose errors could be computed. The problem is that
the poses provided from HoloLens do not correspond to the query they are associated

20

3.1. Reference poses

Figure 3.4: Query 94 of HoloLens1 and its reprojections errors. The optimized transfor-
mation params were used. The same image on non-optimized parameters is not shown,
because the average improvement of reprojection error of a the correspondences is about
2 pixels. Therefore a naked eye can barely tell which image has lower reprojection error.
Green points: optimal location of 2D correspondences. Red dots: location of the 3D
correspondences (projected onto 2D image plane), under the generic parameters (that
aim to work across all queries in the sequence).

with in the data. It turns out the poses are delayed. To make matters worse, both the
translation and orientation that are used to construct the camera pose are delayed
by a different amount! To resolve this issue, the pose from HoloLens associated to a
query is computed to be based on translation and orientation data, that comes from
the future queries. I found that the best results were achieved with the delays in

table 3.3l

A consequence of the data being delayed is that, for some of the queries at end of
the sequence, we do not have the poses from HoloLens available. Recall also that
some reference poses are blacklisted, because Vicon got lost.

Using these delays and the procrustes methodﬂ we can compute the mean
reference vs ground truth pose errors, which is:

® 15 cm translation error,

® 2.09° orientation error.

These errors may be either an upper bound (the data being delayed may still
cause trouble) of the real mean errors, but they can also be approximately the true

3See section

21

3. Dataset

Query ID | Average projection error [px] | Sum of projection errors [px]
1 3.38 30.42
94 11.96 107.66
237 9.22 82.98
281 3.62 32.57
155 5.99 53.91
198 3.08 27.68
| Sum | N/A [335.22

(a) : Reprojection error.

Mean errors | Standard deviation of errors
Translation [m] 0.16 0.08
Orientation [m] 2.23 1.62

(b) : Estimate of reference vs ground truth poses errors. All the queries in the
sequence were considered, with two kinds of exceptions. Queries, for which we
do not have a reference pose (Vicon got lost) are not considered in the statistics.
Queries for which we do not have a corresponding pose from HoloLens (due
to the delay) are also not included in the statistics. Ground truth poses are
estimated from the poses provided from HoloLens, after conversion to World
coordinate system.

Table 3.2: Quantitative evaluation of reference poses quality. HoloLensl sequence
shown. Tables show performance on the parameters, describing the Marker to camera
transformation, prior using brute-force search optimization.

Type Number of frames
Translation delay 6
Orientation delay 4

Table 3.3: We are using a program [33] for fetching data from HoloLens. It provides
a CSV file containing information on the query images it took, when they were taken
(timestamp), estimated poses and more. The camera pose estimates are represented by
translation and orientation parameters, which are in Omega coordinate system. However,
these parameters are wrongly assigned, as they are in fact delayed by a number of frames.
The time difference between two consecutive frames is about 333 milliseconds. Optimal
delays for HoloLensl sequence are shown.

mean errors. As you can see, the translation error is significant. This is concerning,
because it will not clear whether our newly developed localization methods are better
than the poses provided by HoloLens themselves. Note that in case of s10e queries,
the reference poses seem to have a lower error wrt ground truth. However, because
we do not know the ground truth and no HoloLens poses are available here, I cannot
quantitatively evaluate their quality wrt ground truth (but the reprojection error on
the queries that were manually assigned 2D-3D correspondences can be computed).

The query images can be split into two categories — InMap and OffMap. An
InMap query is such a query, for which we have a cutout that has a similar pose. 1
have defined the pose similarity as:

22

3.1. Reference poses

B the translation difference is less than 1.3 meters,

® the angular distance between the reference query and cutout rotation matrices
is at most 10 degrees,

Where we define the angular distance between two 3 x 3 rotation matrices R; and
Ro, representing two orientations, as:

—1 .
arccos <Tr(R2 *51) 1) ‘ (3.2)

The set of s10e queries consists of 5 InMap queries and 35 OffMap queries. The
set of HoloLensl queries consists of 111 InMap queries and 239 OffMap queries.
The HoloLens2 does not have up to date reference poses. According to an outdated
result, it contains 48 InMap and 570 OffMap queries.

The entire dataset, excluding the generated output, occupies about 130 GB of
disk space.

The dataset statistics are depicted in table [3.4. Notice that the horizontal field of
view of database cutout images is widely different from the query horizontal FoVs.
When I tried to generate the dataset, such that the cutouts have horizontal FoV
of 60 degrees, the resulting pose estimation accuracy became 0%. I had spent a
significant time investigating why this is happening, and came to the conclusion
that the problem was in the data. When one creates a cutout of a lower FoV,
smaller portion of the 360° panorama gets rendered. This also means that the visual
quality of the image decreases. I believed that the quality of such cutouts is not
good enough for the convolutional neural network to generate reasonable feature
descriptors. Figure |3.5 illustrates this problem. It seemed that there was nothing
we can do about it, since the pixel density of each 360° panorama is determined by
Matterport. It is, however, true that one could experiment with other FoV values.
Such experiments were not conducted here, as regenerating the dataset and then
uploading it to an evaluation server takes a lot of time (one day is not an exception).
Why have I used a past tense? The thing is that the experiment, where cutouts
with hFoV 60° are used, took place a while ago. Since then, a couple of bugs in my
implementation were fixed. The hFoV 60° set-up shall be tried again (I did not have
the resources to do it).

Handling of reflective surfaces. The scanned rooms contain a couple of types of
objects that can confuse the Matterport scanner; luckily, the Matterport Capture iOS

23

3. Dataset

Type || Amount | Without ref. pose | Image size [px] | HFoV [°]
Query - s10e 40 0 4,032x 3,024 64.86
Query - HoloLensl 350 24 1344 %756 65.83
Query - HoloLens2 618 299 1344756 65.83
Cutout || 2,088 0 1,600 1,200 106.26

Table 3.4: Statistics of the InLocCITRC dataset. Note that some queries are without
a reference pose assigned to them. This occurs when Vicon gets lost (returns a non-sense
pose for a certain period of time). Such queries are ignored in performance evaluation.
Note that the HoloLens2 sequence contains a lot of queries, for which Vicon failed. This
may be related to the fact that I moved slighly faster around the room in that sequence,
making it harder for Vicon to keep track of the marker. Cutout poses are provided from
Matterport and because of their quantity, not all of them were manually verified. For I
never discovered a problem with the cutout poses, I consider their poses to be flawless.
HFoV stands for the horizontal field of view.

app contains tools designed to deal with such problems. After some experimentation,
I obtained the highest-quality 3D model with the following settings:

] Object type Handling in Matterport
Outer window Window
Indoor window Window
TV Default
Door with glass elements Window

Table 3.5: Handling of reflective surfaces in the Matterport Capture app. The options
are: Default, Window, Mirror. Best results were obtained using the values in this
table.

24

3.1. Reference poses

Figure 3.5: Visual quality comparision of the same cutout under different
FoV. Top: horizontal FoV: 106.26°. Bottom: horizontal FoV: 60.00°. The image with a
lower FoV contains a lot of artifacts and is of lower visual quality.

25

3. Dataset

. 3.2 Habitat

We provide an (incomplete) tool for generating synthetic datasets in InLoc dataset-
like format. The tool is a modification of the AI Habitat platform [34]. It currently
supports creation of sequential query sets in digitalized environments, such as the
Matterport3D dataset [35] and our InLocCIIRC dataset’. The implementation is
available at [36]. It can be used for creation of large datasets (for evaluation of
indoor localization methods) without an expensive 3D scanning equipment. However,
evaluating an improved HoloLens tracking accuracy is not very meaningful here, as
the data from HoloLens would need to be simulated.

B 3.2.1 Usage

1. Navigate to habitat-api/examples/capture_sequence.py.

2. Choose an environment in the habitat-api/configs/datasets/pointnav/
folder.

3. Adjust the environmentConfigPath variable to the selected environment.
4. Adjust the outputPath variable.

5. Run the script.

6. Navigate around the environment using WASD and arrow keys.

7. After each movement, a query image is saved and its pose within that environ-
ment stored.

8. Press F to exit.

A future work could add support for the creation of the panorama/cutout images.

4Disclaimer: I am the author of the dataset and the modified Habitat source code. But in
order to load the InLocCIIRC models into Habitat, a transformation must be performed to comply
with the Habitat format. The transformation was developed and performed by Martina Dubenova.
If you need to load custom Matterport models into Habitat, feel free to browse the AI Habitat
documentation or contact Martina at dubenmal@fel.cvut.cz.

26

Chapter 4

Implementation

InLoc [I] authors provide a demonstration in MATLAB that operates on the InLoc
dataset. I have taken this demonstration and adjusted it, so that it works on
the InLocCIIRC dataset instead. I have added an evaluation script, that was
missing from the original code. Although the evaluation of InLoc is handled by
http://www.visuallocalization.net) this tool of course doesn’t handle the newly
created InLocCIIRC dataset yet.

The entire InLocCIIRC implementation should run on a multi-core machine with
a GPU. The number of processing CPU threads can be up to 45 at a time. In
order to do this, I was running the program on a CMP! server. However, the
GPU node prohibited the use of more than 8 CPU threads per user. Therefore the
implementation was split into 2 parts: in the first run, the GPU is used; in the latter
run, no GPU is required, but a CPU with a lot of cores is used. The need for a
GPU comes from the fact that we are using inference of NetVLAD-based neural
network, which would take much longer on a CPU. This GPU restriction is present
in InLoc implementation as well.

The original InLoc implementation uses point cloud projection in the pose verifica-
tion step. However, the code for point cloud (PC) projection did not support variable
point size. Because the models in my datasets are not dense (compared to those
taken with the Faro 3D scanner), the projection can sometimes see through pillars or
objects that are close to the camera. This is not desirable, as seeing what is behind
the object can result in a different NetVLAD descriptor that is not similar to the
query image. At first I have implemented PC projection with a point size parameter,

!Center for Machine Perception at Czech Technical University in Prague.

27

http://www.visuallocalization.net

4. Implementation

but the problem is that it does not support headless?| rendering. I ended up using a
mesh model projection instead of a point cloud projection in the point verification
step. I am using existing software packages to achieve this (pyrender, trimesh,
open3D). My projectMesh method supports headless rendering. Unfortunately, it
is very demanding - requires 14 GB RAM and it also takes time to load the dataset
into memory. Of course, one would cache the model in memory and then just
call the render functions. However, this would require non-trivial implementation
changes, because the implementation is in MATLAB and the projectMesh routine
is in Python.

A major change to the implementation was adding support for sequential queries.
Currently the code’| supports specifically sequential queries from HoloLens. To
estimate poses (wrt World) of sequential queries from HoloLens, poses from HoloLens
(wrt Omega) must be provided. The latter poses are computed by HoloLens itself.
There are two approaches how the sequential nature of query sets is leveraged. Both
approaches depend on a parameter k. We want to estimate the camera pose for each
query in the query sequence. At each such query, we consider a segment of queries,
such that the last query in the segment is the currently processed query. Constant k
defines how long the segment is.

The first approach is called SequentialPV. It only leverages the other queries (in
the segment) in the pose verification step. This approach aims to be more robust
than the non-sequential one, by providing more evidence: the projection quality for
all queries in the segment is considered and compared to the input query images.
How is this done? We have top 10 camera poses (given by P3P in the pose estimation
step). These poses are the estimated poses of the current query. Next, we have
camera pose estimates for every query in the segment, provided by HoloLens. Those
poses are wrt Omega. Therefore, we convert the poses from HoloLens from Omega
to World, by aligning the two poses of the last query in the segment. The two poses
are:

® the camera pose estimate (wrt World) provided from pose estimation step,

® the camera pose estimate (wrt Omega) provided from HoloLens.

To match the two poses, we just need to compute a linear transformation (rotation,
translation). With this transformation, the other poses from HoloLens are converted
from Omega to World. With all camera pose estimates being with respect to

2Headless rendering is rendering on a computer where the rendering program is not attached to
a physical display.

3The repository implementing the new pipeline is called InLocCIIRC_demo, but the name is in
fact not very accurate, because it is not really an implementation of the InLoc paper [I]. However,
the pose estimation algorithms are indeed based on InLoc.

28

4. Implementation

World coordinate system, we run the pose verification step. The pose verification
step returns a score, symbolizing the quality of the input query image and the
reconstructed query image. All the scores in the segment are summed up. Note
that there are other ways of integrating the scores together: e.g. mean, maximum; I
haven’t tested them yet. This is done for those top 10 poses from the pose estimation
step. At the end, I choose the candidate with highest score to represent the final
camera pose estimate. This approach is a basic way to leverage the fact that the
queries were taken in a sequence (and captured with HoloLens).

Approach two is called MultiCameraPose. We want to estimate pose of each query
in the sequence by taking into account all poses and correspondences in the current
segment. The camera pose estimates (wrt Omega) are taken from HoloLens. The
2D-2D correspondences are computed using the geometric verification step and are
subsequently converted into 2D-3D correspondences. Given these data, an external
program called MultiCameraPose [I3] processes them and returns the camera pose
estimates wrt World. The program contains an implementation of gsP4P [I1]. For
details on the MultiCameraPose program and gsP4P, please see Chapter 2. We then
store all returned camera rig poses, as the main result of the pose estimation step.
In the pose verification step, all the estimated poses within a particular segment
are evaluated (score is computed). Again, the candidate segment with the highest
cumulative (summed up) score is selected. The last pose from the estimated poses
in the segment is selected to be the final camera pose estimate for current query.

There is an important change when MultiCameraPose is used, compared to
processing non-sequential queries. To understand that, let me first describe how the
pose estimation step works in the non-sequential case:

1. We are given top 100 candidate cutouts for each query. These cutouts aim to
be visually similar to the query. They were constructed using the input score
matrix.

2. Query and cutout features are extracted.

3. Geometric verification is executed for all query-cutout pairs. This gives us
2D-2D correspondences called “inliers” (some of which are inaccurate).

4. The top 100 candidates are re-ranked and sorted, so that query-cutout pairs
with the highest number of inliers are preferred. If the number of inliers is the
same, the original input score is used on top of it (floating point value between
zero and 1).

5. Top 10 candidate cutouts for each query are chosen.

6. Each query-cutout pair and its 2D-2D correspondences are processed. Because
one of 2D corresponding point sets lies in the cutout image, we can extract its

29

4. Implementation

corresponding 3D points (the dataset provides depth and 3D point of every
cutout pixel). The query-cutout 2D-3D correspondences are then passed into
P3P. The camera pose is estimated.

7. We now have 10 candidate pose estimates for every query.

In the MultiCameraPose approach, the segments have length & > 1. We need to
decide how to choose, for each query, top 10 query-cutout segments. The candidates
will then be processed further using pose estimation and verification. Recall that
the last query in the segment is always the one currently being processed (the one
for which we want the camera pose). My current implementation does the following:

1. We have the re-ranked and sorted top 10 candidate cutouts for each query, as
described in step |5 of the non-sequential pose estimation approach.

2. Generates all possible query-cutout segments of length k. There are 10¥ possi-
bilities.

3. Because k is expected? to be no more than 5, we can easily generate all the
combinations.

4. Every query-cutout has a score assigned, as described in step |4 of the non-
sequential algorithm. I simply choose the combinations which have the cumula-
tive (summed up) score the highest. Top 10 combinations are selected.

The algorithm in step |4/ may be a bit problematic for two reasons. First, some
query-cutout pairs may naturally have more inliers (on average) than others. It
might be sub-optimal to sum those scores. Instead, e.g. an average or a median
should be considered. The second issue is that selecting 10 combinations from 10% is
not enough. But increasing the number of chosen top combinations is currently not
possible, because pose verification is so slow. The second issue is described in more
detail in subsection 15.4.3.

Another problem not considered in the reference InLoc implementation is related
to the different aspect ratios of HoloLens queries and cutouts. Recall that HoloLens
query images have a 1344 x 758 pixel resolution, whereas the cutouts have resolution
of 1600 x 1200. This makes the HoloLens queries have 16 : 9 aspect ratio and the
cutouts have a 4 : 3 aspect ratio. Why is that a problem? The methods used in
geometric verification (GV) would break - the tentative correspondences would not
be computed properly. Therefore, we need to provide the GV step with the same

4The higher the k, the higher the chance of data associated to a particular query in the segment
is corrupted. This would negatively impact the resulting pose estimate precision.

30

4.1. Source code and dataset structure

aspect ratio (and also the same resolution by scaling). Of course, if we rescale the
query image to match the cutout image dimensions, we will deform the query view.
Therefore my solution is to add padding’ on top and bottom of the query image;
where the added pixels share the same constant value. The padding is added so that
the aspect ratio matches the cutout aspect ratio. Then we can also rescale without
deformation. In the pose estimation step, we have to undo the process on the query
inliers, so that they correspond with the properties of the camera that took those
images.

. 4.1 Source code and dataset structure

An umbrella repository referencing all the sub-projects has been created. It is
available at [37]. A brief structure overview is provided here.

VisuallocalizationWithHoloLens
masters—-thesis

t e thesis source in KITEX format
masters-thesis.pdf

InLocCIIRC_demo

InLocCIIRC_dataset (repo)

Inl.ocCITIRC_dataset

InLocCIIRC_utils

MultiCameraPose

Habitat

thabitat—api
habitat-sim

Figure 4.1: Sub-projects listed. Only those I have been working on are listed.

5 Another approach would be to crop the query image to achieve the same aspect ratio; then
rescale without deformation. Of course, the problem with this approach is that we would lower the
horizontal field of view, which would mean less RGB data to work with in the transformed query
image.

31

4. Implementation

InLocCIIRC_demo
, functions
InLocCIIRC_utils

L other external dependencies
wustl_function
parfor_denseGV.m
parfor_densePE.m
parfor_densePV.m
| evaluate.m
| inloc_demo.m.l main entry-point
| ht_toplO_densePV_localization.m
| ht_topl00_densePE_localization.m
| evaluate.m
| P3P_vs_MCP.m
| PE_stability_check.m

Figure 4.2: The organization of the source code of the core project. Only notable items
shown.

InLocCIIRC_dataset (repo)

| buildCutouts
| buildFilelists
| buildScores
tbuildFeatures.m step 1
bUildSCOresS M vttt it ittt it step 2
L fUNCLIiONS c vt e e external dependencies
| _query
buildRawPoses.m.............coovuntn optimize reference poses
holoLensPoses.m......covvverunnnn.. converted to be wrt World
transformPoses.m............. .o create reference poses
L README.MA .o vie e etieee e iieee e eiieee s detailed description

Figure 4.3: The structure of the repository containing the dataset construction tool. It
also contains other useful scripts. Only notable items shown. Some of the code depends
on a PanoBasic project [38] [39)].

32

4.1. Source code and dataset structure

InLocCIIRC_dataset

| cutouts/

| _evaluation-*/

, _inputs-x*
cutout_imgnames_all.mat
query_imgnames_all.mat
scores.mat
features/

| _models/

| outputs-—*
densePE_topl00_shortlist.mat
densePV_topl0_shortlist.mat
gv_dense/

PnP_dense_inlier/

synthesized/
| panoramas/
| query-—x*
1.jpg
2.3pg
HoloLensPoses/ccovvvnnnnnnn.. if applicable; wrt World
POSES/ ettt e reference poses
projectedPoses/..............uiet. visual quality of ref. poses
L sweepData/ ...t from Matterport API
| HoloLens sequences/...... data from the two HoloLens sequences

| __Habitat?/ .. data for AI Habitat experiments on top of our dataset

“Disclaimer: T am the author of the dataset and the modified Habitat source code. But
in order to load the InLocCIIRC models into Habitat, a transformation must be performed
to comply with the Habitat format. The transformation was developed and performed by
Martina Dubenova. If you need to load custom Matterport models into Habitat, feel free
to browse the AI Habitat documentation or contact Martina at dubenmal@fel.cvut.cz.

Figure 4.4: The structure of the InLocCIIRC dataset. Only notable items shown.

MultiCameraPose
src
kmulti_camera_pose.cc
common.h

Figure 4.5: The structure of the modified MultiCameraPose repository. Only notable
items shown.

33

4. Implementation

. 4.2 Pseudocode

mode = ’non-sequential’ or ’sequentialPV’ or ’MultiCameraPose’
segmentLength = 3 # aka ‘k‘; considered in ’sequentialPV’,
’MultiCameraPose’ modes

querySet = ’s10e’ or ’hololensl’ or ’hololLens2’
topRetrieval = 100

topGV = 10

topPE = 10

topPV = 1

neuralNet = NetVLAD()

coarselayer = ’convb’

finelayer = ’conv3’

def main():
score, queryNames, cutoutNames = initialize()
assertNonSequentialModeUsedIfQuerySetIsNonSequential ()
score represents query-cutout score matrix
Imglist = retrieval(score, queryNames, cutoutNames)
Imglist = poseEstimation(ImgList)
Imglist = poseVerification(ImgList)
evaluate (ImglList)

def initialize():
return implementationDetail()

def addSecondaryQueries(ImgList, score, queryNames, cutoutNames) :
primary query is a query user requested to perform pose estimation
on.
secondary queries are part of the k-segments of primary queries.
they need to be added in ’MultiCameraPose’ mode to be processed by
poseEstimation() onward
implementationDetail ()

def retrieval(score, queryNames, cutoutNames):

Imglist = list()

for i in len(queryNames):
queryName = queryNames
Imglist[i] .queryname = queryName
sortedScores, ind = sort(score[queryName].scores, ’descend’)
ImglList[i] .topNname = cutoutNames[ind[0:topRetrievall]
ImgList[i] .topNscore = sortedScores[0:topRetrievall

if mode == ’MultiCameraPose’
addSecondaryQueries(Imglist, score, queryNames, cutoutNames)

return Imglist

def extractFeatures(image):
image = neuralNet.averagingImageNormalization(image)
alllayerResults = neurallNet.forward(image)
features = alllLLayerResults # we need features from different layers
return features

34

4.2. Pseudocode

def loadQueryImageCompatibleWithCutouts(queryImage):
queryImage = padImageByAddingRowsToMatchCutoutAspectRatio(queryImage)
queryImage = scaleImageToMatchCutoutDimensions(queryImage)
return querylmage

def adjustInliersToMatchOriginalQuery(queryTentatives, queryDimensions,
cutoutDimensions):
reverts loadQueryImageCompatibleWithCutouts(...)
return implementationDetailC(...)

def buildFeatures(ImglList):
features = list()
for i in range(len(ImgList)):
queryName = ImgList[i].queryname
thisQueryFeatures = list() # query image features followed by
‘topRetrieval‘ cutout features
queryImage = loadImage(queryName)
queryImage = loadQueryImageCompatibleWithCutouts(queryImage)
thisQueryFeatures.append(extractFeatures(queryImage))
for j in topRetrieval:
cutoutName = Imglist([i].topNnamel[j]
cutoutImage = loadImage (cutoutName)
thisQueryFeatures.append(extractFeatures(cutoutImage))
features.append(thisQueryFeatures)
return features

def coarseToFineMatching(queryFeatures, cutoutFeatures):
queryCoarseFeats = getFeaturesAtLayer(queryFeatures, coarselLayer)
cutoutCoarseFeats = getFeaturesAtLayer (cutoutFeatures, coarselayer)
queryFineFeats = getFeaturesAtLayer (queryFeatures, finelLayer)
cutoutFineFeats = getFeaturesAtLayer(cutoutFeatures, fineLayer)
f1 = queryFineFeats
f2 = cutoutFineFeats
matchl2 = findNearestMatches(queryCoarseFeats, cutoutCoarseFeats)
return f1, £f2, matchl2

def sortImgListRowByHighestScores(ImgListRow) :
for i in len(queryNames):
sortedScores, ind = sort(ImgListRow[i].topNscore, ’descend’)
ImglistRow[i] . topNname = ImgListRow[i].topNname [ind]
ImglistRow[i] .topNscore = ImgListRow[i]topNscore[ind]
return ImglListRow

def geometricVerification(ImglList, features):
NewImageList = ImgList.copy()
for i in range(len(ImgList)):
thisQueryFeatues = features[i]
queryName = Imglist[i].queryname
parfor j in range(topRetrieval):
cutoutName = Imglist[i].topNname[j]
queryImgFeatures = thisQueryFeatures[0]

35

4. Implementation

cutoutImgFeatures = thisQueryFeatures[1+j]

matchl2, f1, f2 = coarseToFineMatching(queryImgFeatures,
cutoutImgFeatures)

inls12 = denseRansac(f1l, f2, matchl2)

save(queryName, cutoutName, f1, f2, matchl2, inlsil2)

NewImglist[i].topNscore[j] += len(inls12) # NOTE: the previous
scores were between zero and one

NewImageList[i] = sortImgListRowByHighestScores(NewImgList[i])
return NewImagelList

def getActualSegmentLength(idx, desiredSegmentLength, ImgList):
return
getSegmentLengthSuchThatSegmentQueriesAreWithinSequenceBounds (idx,
desiredSegmentLength, ImgList)

def getCandidatesForQueries(ImgList):
for each query, we have multiple candidate solutions.
parfor_densePE and parfor_densePV functions must be executed on
all of those candidates
return implementationDetail ()

def poseEstimation(ImglList):
features = buildFeatures(ImgList)
Imglist = geometricVerification(ImgList, features)
treatQueriesSequentially = mode == ’MultiCameraPose’
if not treatQueriesSequentially:
desiredSegmentLength = 1
else:
desiredSegmentlLength = segmentlLength
ImglistSequential = keepPrimaryQueriesOnly(ImgList)
for i in range(len(ImglListSequential)):
actualSegmentLength = getActualSegmentLength(i, desiredSegmentLength,
ImglistSequential)
combinations = permuteIndices([0:topGV], actualSegmentLength)
queryName = ImglistSequential[i].queryname
scores = computeScoresForSegmentCombinations(combinations, ImgList,
queryName, ’cumulative-sum’)
ind = findBestCombinations(scores, topPE)
updateTopCutoutsAndScoresInTheSegment (ImgListSequential[i], scores,
ind)
if treatQueriesSequentially:
posesFromHoloLens = getPosesFromHoloLens ()
else:
posesFromHoloLens = list()

parfor queryName, candidatelIdx in
getCandidatesForQueries(ImglListSequential):
parfor_densePE(ImgListSequential, queryName, posesFromHoloLens,

candidateIdx)

for i in len(ImgListSequential)

36

140

4.2. Pseudocode

ImglistSequential[i] .Ps = list(size=topPE) # estimated poses in the
segment, for topPE combinations
for j in topPE:
ImglistSequential[i] .Ps[j] = load_parfor_densePE_segment_poses(i, j)

return ImgListSequential

def parfor_densePE(ImglList, parentQueryName, posesFromHoloLens,
candidateIdx):
actualSegmentLength = getActualSegmentLength(parentQueryName,
implementationDetail(), ImgList)
Ps = list(size=actualSegmentLength)
useP3P = segmentlLength ==
if invalidPosesDueToDelay(posesFromHoloLens) :
useP3P = True
for j in segmentlLength:
queryName = getQueryNameBasedOnParentQueryName(j, parentQueryName)
f1, £2, matchl2, inlsl12 = load(queryName, cutoutName, candidateIdx)
queryTentatives = £1[inls12[0]]
cutoutTentatives = f2[inls12[2]]
queryTentatives = upscale(queryTentatives, cutoutSize)
queryTentatives = adjustInliersToMatchOriginalQuery(queryTentatives,
queryDimensions, cutoutDimensions)
correspondences = build2D3DCorrespondences(queryTentatives,
cutoutTentatives)

if useP3P:
P, inls = P3P(correspondences)
Ps[end] = P
save (parentQueryName, candidateIdx, inls)
else:
Ps = multiCameraPose(correspondences, posesFromHoloLens)

save (parentQueryName, candidateIdx, Ps)

def convertHLPosesToBeWrtCurrentQueryPoseEstimate (posesFromHoloLens) :
it should be clear how to do this from my textual description in the
Implementation Chapter |4
return implementationDetail()

def parfor_densePV(ImgList, parentQueryName, candidateIdx):
queriesInSegment = getQueriesInSegment (parentQueryName)
cutouts = getCutoutsInSegment (parentQueryName)
Ps = load(parentQueryName, candidateIdx)
for i in range(len(queriesInSegment))
queryName = queriesInSegment [i]
cutoutName = cutouts[i]
P = Ps[i]
queryImage = loadQueryImage (queryName)
synthQueryImage = projectPose(P)
error = compute_DSIFT_error(queryImage, synthQueryImage)

37

194
195
196
197
198
199
200

201

4. Implementation
save (parentQueryName, candidateldx, queryName, cutoutName, error,
synthImage)

def poseVerification(ImgList):
PV_list = setUpListForPoseVerificationProcessing(ImgList)

if mode == ’sequentialPV’:
posesFromHoloLens = getPosesFromHoloLens ()
posesFromHoloLens =

convertHLPosesToBeWrtCurrentQueryPoseEstimate (posesFromHoloLens)
addPosesFromHoloLensForPoseVerificationProcessing(PV_list,
posesFromHoloLens)

parfor queryName, candidateIdx in getCandidatesForQueries(PV_list):
parfor_densePV(PV_list, queryName, candidateIdx)

PV_list = reRankSortAndChooseTop(PV_list, topPV)
return PV_list

def evaluate(ImgList):
chooses top 1 poseVerification results for each query
visualEvaluationQueries(ImgList)
visualEvaluationQuerySegments(ImgList)
computeTranslationAndOrientationErrorsWrtReferencePoses(ImgList)
showLocalizationAccuracyGivenThresholds ()
showErrorStatistics()

Algorithm 4.1: InLocCIIRC_demo pseudocode.

Note that in the current version of the actual source code, I do not have the
non-sequential’ mode. Instead, it is determined by choosing 'MultiCameraPose’
mode and setting segmentLength to 1.

bl

. 4.3 MultiCameraPose

The MultiCameraPose project has been slightly modified and used as an external
dependency. The modified source code is available at [13].

MultiCameraPose estimates the poses of the cameras in the rig. It is given a
set of poses of those cameras wrt to some (unknown) coordinate system. For each
camera, 2D-3D correspondences are provided. The resulting pose estimates will be
wrt the coordinate system in which the 3D correspondences were provided.

38

4.3. MultiCameraPose

B 4.3.1 Introduced changes

® Comments for easier code understanding.
® The core multi-pose estimation procedure runs num_global_iterations-times.

® At the end of each global iteration, the new estimate is considered the best so
far, if it matches the following criteria:

® Criteria 1: The median translation error is not higher than the median transla-
tion error associated with the previous best estimate,

® (Criteria 2: The median orientation error is not higher than the median orienta-
tion error associated to the previous best estimate.

B Fixed a bug regarding translation error computation.
® Added a build script.

® QOther small changes.

B 4.3.2 Usage

The MultiCameraPose project is written in C++. It must first be compiled so that
executable programs are created. An example procedure on how to build the project
is in make_cmp.sh file. The project contains several executables, of which we are
only interested in the multi_camera_pose one. It requires a set of command line
arguments and input files, which will not be described here. However, I have created
a function in MATLAB, that:

1. Sets-up the necessary command line arguments.
2. Sets-up the necessary input files.

3. Executes the executable file.

4. Fetches the results.

5. Gives the user relevant results.

The MATLAB function is present at InLocCIIRC_utils/multiCameraPose/
multiCameraPose.m. Its usage is described in table |4.1.

39

4. Implementation

| Parameter Data type Description
. . . Path to a directory where to
workingDir string s
create auxiliary files.
queryInd n X 1 integer The IDs of the queries we are processing.

allCorrespondences2D

n X 1 cell array

Each element contains the
2D query correspondences.
Each element is a 2 x [double array,
where [is the number of correspondences found.

allCorrespondences3D

n x 1 cell array

FEach element contains the
3D cutout correspondences.
Each element is a 3 x [double array,
where [is the number of correspondences found.

inlierThreshold double Unused in multi_camera_pose.
numloStens integor Number of steps in internally used
P & Locally Optimized RANSAC.
. Multiplies the YZ coordinates of the
invertYZ boolean
3D correspondences by —1.
If not, the 2D correspondences are transformed,
pointsCentered boolean so that their origin is
at (imageWidth/2, imageHeight/2).
he i f1 i ion®
undistortionNeeded boolean Corrects the impact of lens distortion
on the 2D correspondences.
imageWidth integer How wide the camera sensors are [px].
imageHeight integer The height of the camera sensors [px].
K 3 % 3 double The camera Cali.bration matrix
(See section [2.4]).
params struct Contains experiment-specific parameters. See

InLocCIIRC_utils/params/setupParams.m.

Table 4.1: The input parameters of the multiCameraPose MATLAB function. The
function acts as an interface to the multi_camera_pose executable program.

The function has a single output - posesWrtModel. It is a 1 x n cell array. Each
element is a 3 x 4 double. The 3 x 3 sub-matrix on the left is a rotation matrix R; it
converts World bases into camera bases. The remaining 3 x 1 vector on the right is
World origin wrt camera coordinate system.

5Consider reading [40] to learn more about what lens distortion is.

40

Chapter 5

Evaluation

B 51 Experiment design

Performance of the implemented solution had to be evaluated quantitatively for
all the three main methods: Non-sequential method, sequentialPV method and
the MultiCameraPose method. The two latter methods are designed to work with
segments of queries, therefore different segment lengths, denoted by constant k& > 1
were evaluated. Some of the promising methods were also visualized for human-
friendly qualitative evaluation. The main point of the visualizations is to better
understand the sources of errors (if any), which are described in section

In order to measure how the InLocCIIRC algorithm is performing, the percentage
of correctly localized poses within a threshold from a reference pose has been
measured. Absolute position difference threshold is one of the following values, with
decreasing difficulty: 0.25m, 0.50m, 1.00m. Angular threshold is set to 10°.

However, we first need to compute the translation and orientation errors for
individual queries. An example of such data can is in table[5.1 This table shows the
content of evaluation-sl10e/errors.csv file. In general, if a row with NaN entries
is present in an evaluation/errors.csv file, it is the consequence of one of the
following:

a) parfor_densePE returned the cell array Ps with a NaN P matrix.

41

5. Evaluation

a. Data from HoloLens are missing or their poses contain NaN; (if applicable).

b. The last query-cutout in a current segment (k > 0) has an insufficient
amount of correspondences.

c. The result of P3P or multiCameraPose contains NaN.
b) We do not have a reference pose for the query.

¢) The estimated pose was in a different space than the reference query pose.

Another quantitative evaluation to consider is computing the statistics on the
translation and orientation errors. For this, the mean, median, and standard
deviation (std) were chosen.

A descriptive way to compare multiple methods is to compare percent of correctly
localized queries, as the translation threshold increases (the orientation threshold is
fixed).

I provide two kinds of visualization. The first one shows, for a subset of queries,
how they are processed - the closest cutout found, the inliers used to reconstruct
the camera pose, and an error map. This is also useful when determining why
InLocCITRC performs poorly on certain queries. The second kind of visualization
shows a top level view of a scanned environment, including some localization data:
the queries, estimated query poses and sweeps are drawn.

B 52 s10e query set

Evaluation results of the non-sequential s10e query set are shown in this section.
Table [5.1] shows the errors in pose estimation for individual queries.

Table[5.2 shows the performance under the various thresholds. The InMap/OffMap
performance is also shown. Error statistics are shown in table |5.3l Figure |5.2| shows
how the localization accuracy changes given increasing translation error threshold.

Figure 5.1 shows example queries, how they are being processed and what is the
localization result.

We say that InLocCIIRC got completely lost when the pose estimate of a query is
NaN or a wrong space was estimated.

42

5.2. s10e query set

Query ID | InMap | Translation [m] | Orientation [°]
1 Yes 0.0880 1.5386
2 Yes 0.1832 1.2987
3 No 0.1709 1.4430
4 Yes 0.1065 1.2635
5 Yes 0.2185 0.4119
6 No 0.1324 1.1850
7 Yes 0.0752 0.9260
8 No 0.2015 1.2524
9 No 0.1167 1.0074
10 No 0.1302 0.4764
11 No 0.1152 0.7651
12 No 0.2927 1.0733
13 No 0.9610 13.8282
14 No 0.1324 2.0652
15 No 0.1320 1.6251
16 No 0.3284 4.1566
17 No 0.0745 1.6222
18 No 0.1053 0.6402
19 No 0.0259 1.4572
20 No 0.0788 0.3069
21 No 0.1652 1.5283
22 No 0.2209 1.3378
23 No 0.1552 2.8651
24 No 0.6788 2.7907
25 No 0.0944 1.0374
26 No 0.4796 1.6020
27 No 0.1465 2.4818
28 No 0.0779 0.8901
29 No 0.0538 1.4261
30 No 0.0305 2.0371
31 No 0.1258 1.1690
32 No 0.1369 1.9361
33 No 0.2868 2.6586
34 No 0.2834 3.3971
35 No 2.3826 0.4984
36 No 0.1939 2.0936
37 No 0.1471 2.6406
38 No 0.0761 1.4153
39 No 0.2338 2.6006
40 No 7.8370 153.0940

Table 5.1: Pose estimation errors on s10e query images.

43

5. Evaluation

| Query image | Closest cutout | Synthesized view Error map

Query 3
OffMap
0.17 m, 1.44°

Query 16
OffMap
0.13 m, 1.19°

Query 26
OffMap
0.48 m, 1.60°

Query 31
OffMap
0.13 m, 1.17°

Query 38
OffMap
0.08 m, 1.42°

Query 40
OffMap ;
7.84 m, 153.09°

Figure 5.1: Qualitative comparison of s10e queries localization. From left to
right: Query name and localization error (meters, degrees), query image, the best
matching database image, synthesized view at the estimated pose, error map between
the query image and the synthesized view. Green dots are the inlier matches obtained by
P3P-LO-RANSAC. The majority of query images shown here are well localized within
0.5 meters and 5.0 degrees. All of the shown queries are OffMap, to test challenging
estimation scenarios. InLocCIIRC struggles to find correct inliers on query 40, see
subsection [5.4.5| for an investigation.

Figures 5.3 and depict the dataset including the localization results.

44

5.2. s10e query set

Threshold | InLoc || InLocCIIRC | InMap | OffMap
0.25m 38.9% 77.50% 100.00% | 74.29%
0.50m 56.5% 90.00% 100.00% | 88.57%
1.00m 69.9% 92.50% 100.00% | 91.43%

Table 5.2: Evaluation of performance of localization methods. The method in the first
column was run on InLoc dataset. The second column method was run on the s10e
query set of the InLocCITRC dataset. Percentage rate of correctly localized queries
within given threshold is shown. Angular threshold is equal to 10° in every row. The
last two columns belong to InLocCIIRC method. InMap queries are queries for which

we have a similar cutout in the dataset.

. EITor type | o nslation [m] | Orientation [°]
Statistics
Mean 0.44 5.70
Median 0.14 1.45
Standard deviation 1.26 24.00

Table 5.3: Statistics of the s10e pose estimation errors. InLocCIIRC got completely lost
0 out of 40 times. Not included in the mean/median/std errors. Errors are computed by
comparing InLocCIIRC pose estimates with reference poses. Notice that the deviations

are high. This is caused by the query 40 performing extraordinarily poorly.

100 -
X 80
8
g
=}
o 60,
<
S
=
[}
S 40
=
k3]
o
8 20 -
@)
0 | |

InLoc —e—
InLocCIIRC —e—

0 025 05 07 1

1.25 15 1.75 2

Distance threshold [meters]

Figure 5.2: Comparison between InLoc and InLocCIIRC on their respective datasets.
The s10e query set was used for InL.ocCITRC. The independent variable describes the

maximum allowed translation error. The angular threshold is set to 10°.

45

5 Evaluation s s s s s s s s s s s e E e B E E E E EEEEEEEEEESEEEEESEEESEEEE N |

Figure 5.3: View on the floor plan of room B-315. Red dots: sweeps. Blue dots: queries.
Yellow dots: estimated query poses. The s10e query set was used.

46

IIIIIIIlIlIIIIIIIIIlIlIIlIlIIIIIIIIIIIII5.2.5106qu€I’yS€t

Figure 5.4: View on the floor plan of room B-670. Red dots: sweeps. Blue dots: queries.
Yellow dots: estimated query poses. No sl0e queries were incorrectly localized to this
room.

47

5. Evaluation

B 53 HoloLensl query set

B 5.3.1 Summary
Method Threshold 14 o5 | 0.50m | 1.00m
k=1 (non-sequential) | 63.80% | 81.90% | 85.89%
sequential PV, k=2 63.80% 82.52% 86.50%
sequentialPV, k=3 63.80% | 83.44% | 86.50%
sequentialPV, k=4 61.96% | 82.52% | 85.28%
MultiCameraPose, k=2 | 68.41% | 83.74% | 87.12%
MultiCameraPose, k=3 | 68.41% | 81.60% | 86.20%
MultiCameraPose, k=5 | 67.18% | 80.67% | 85.58%
HoloLens 84.36% | 97.55% | 97.55%

Table 5.4: Evaluation of performance of localization methods on HoloLensl query set
(part of the InLocCIIRC dataset). Percentage rate of correctly localized queries within
given threshold is shown. Angular threshold is equal to 10° in every row. The HoloLens
method are the poses provided by HoloLens tracking itself, after being converted to be
wrt World coordinate system. As it can be seen, it is superior to all the custom methods
I have tried.

Method Statistics Mean Median Std
k=1 0.52m | 3.62° | 0.18m | 2.01° | 1.64m | 11.33°
sequentialPV, k=2 | 0.52m | 3.05° | 0.17m | 2.06° | 1.64m | 5.21°
sequentialPV, k=3 | 0.45m | 3.04° | 0.18m | 2.02° | 1.36m | 5.21°
sequentialPV, k=4 | 0.60m | 3.61° | 0.19m | 2.02° | 1.93m | 11.47°
MCP, k=2 0.53m | 2.76° | 0.16m | 1.85° | 1.84m | 4.41°
MCP, k=3 0.54m | 2.68° | 0.16m | 1.99° | 1.85m | 3.06°
MCP, k=5 0.60m | 3.59° | 0.17m | 2.02° | 1.92m | 11.26°
HoloLens 0.15m | 2.09° | 0.14m | 1.51° | 0.08m | 1.69°

Table 5.5: Statistics of the HoloLensl pose estimation errors. InLocCIIRC got com-
pletely lost 29 out of 350 times for all methods (except the HoloLens method). The
HoloLens method got completely lost 6 out of 350 times, which is caused by the HoloLens
delay (see table|3.3). The completely lost cases are not included in the mean/median/std
errors. Errors are computed by comparing InLocCIIRC pose estimates (or the pose
estimates from HoloLens converted to be wrt World CS) with reference poses. The
errors in [m] units are translation errors and the errors in [°] units are orientation errors.
Lowest errors are highlighted in bold. MCP stands for MultiCameraPose. The original
HoloLens method is superior to all the custom methods I have tried. Note that if the
estimated poses were compared to the (unknown) ground-truth poses, the errors would
likely be even lower, as discussed in the Reference poses section |3.1|

48

5.3. HoloLens1 query set

B 5.3.2 Best custom method

Judging from the results above, the best performing custom method is MultiCamera-
Pose with sequence length k& = 2.

100

80

60 |-

kl —e—
k2-MCP —eo—
HoloLens —eo—

40

20

Correctly localized queries [%]

0 025 05 075 1 125 15 1.75 2

Distance threshold [meters]

0

Figure 5.5: Evaluation of methods on the HoloLensl query set. Comparison between
the baseline method (k = 1, i.e. non-sequential) with the best performing custom
method (k = 2, MultiCameraPose). The original HoloLens method, that we are aiming
to surpass is also shown. The independent variable describes the maximum allowed
translation error. The angular threshold is set to 10°.

Figure depicts the top-view of B-315 including a subset of localization results
(every 20th HoloLens query is rendered). View of room B-670 is not shown, as for
this subset of results, it looks the same as in case of s10e query set, see figure [5.4

This means that none of the queries in the subset were incorrectly localized in room
B-670.

49

5. Evaluation

Query image

Query 37
OffMap
0.05 m, 2.64°

Query 57
InMap
0.17 m, 2.23°

Query 84
InMap
12.18 m, 0.29°

Query 155
OffMap
0.17 m, 0.70°

Query 206
OffMap
0.15 m, 0.80°

Query 322
OffMap
0.69 m, 3.41°

Figure 5.6: Qualitative comparison of HoloLensl queries localization. From
left to right: Query name and localization error (meters, degrees), query image, the best
matching database image, synthesized view at the estimated pose, error map between
the query image and the synthesized view. Green dots are the inlier matches obtained
by geometric verification. The pose estimation of query 84 is not completely wrong by
human standards. InLocCIIRC matched the query image with a very similar cutout
image, that is, however, at another location. Although this query is InMap, the chosen
cutout is not the one that forms the InMap propery. Note that the query images have a
different aspect ratio than the cutout images. The error maps not shown to save space.

50

S B B B S S EESSEESESSESESSEESSESEESSSESEESSEESESESR 5.3.HoloLen51queryset

1.8

sz b4l 1

G |
311120, ‘

Figure 5.7: View on the floor plan of room B-315. Red dots: sweeps. Blue dots: queries.
Yellow dots: estimated query poses. Every 20th HoloLensl query rendered.

o1

5. Evaluation

. 5.4 Sources of errors

B 5.4.1 Previous queries have meaningful correspondences but
current query does not have any correspondences

This was observed on MultiCameraPose, k=2 experiment. This results in InLocCIIRC
completely being lost (returning NaN estimated pose), thus limiting the number of
correctly localized queries given translation/orientation thresholds. In this scenario,
the queries in the segment prior to the current query being processed have 2D-3D
correspondences (found using geometric verification). Furthermore, those queries look
meaningful upon manual inspection. However, we are interested in the current query,
which does not have any correspondences. MultiCameraPose does not support a rig
containing a camera for which there are no correspondences. Of course, we cannot
use P3P on the current query, without knowing the query-cutout correspondences.
Potential solution to this problem is: use the last estimated non-NaN pose in a
sequence of queries ending with the current query. Limit the number as to how far
into history to go. I did not have time to implement it. Known affected queries in
HoloLens1 query set: 88, 122, 148, 231, 233, 236, 315, 319, 341. Why did we find
no correspondences at those affected queries? For query 122 it is understandable
- there was a very fast movement. For query 174 - it is somehow difficult, even
the preceding queries 170-173 were hard to estimate (resulting poses were not NaN,
but the errors from reference poses were high). However, for some affected queries,
namely query 88, 148 and 231, a problem was discovered. The next subsection
describes the problem.

B 5.4.2 Bad input score matrix

This was observed on non-sequential (k=1) and MultiCameraPose, k=2 experiments.
Known affected queries: 88, 148, 231!'. This issue probably affects more queries than
is currently known by me. It causes no 2D-3D correspondences to be found. It is a
problem, that currently causes NaN pose estimate for the affected queries. But it
can also lower estimation accuracy for the successor queries, if the affected query is
considered within its segment. This is because currently, P3P is used (non-sequential
pose estimation), if some of the queries in a segment have no correspondences. For
those 3 known affected queries, investigation revealed that the chosen cutout (i.e. the
top one in pose verification output) from the previous query was not even considered
in the top 100 cutouts in the pose estimation step. The reason the previous query’s

!This query is somewhat blurry, which may also have an impact.

52

5.4. Sources of errors

chosen cutout was picked is that the queries have not changed much during the two
frames. The score for those cutouts was:

’ Query ID | Ranking of the previous query’s chosen cutout

88 714
148 138
231 518

Table 5.6: The ranking after sorting all cutouts for a given query by highest score. Only
top 100 make it to the pose estimation step, others are not considered. This suggests
that the scores are not completely correct.

Bl 5.4.3 Hard to pick top 10 combinations for non-trivial segments

Geometric verification step chooses top 10 cutouts for each query based on the
highest number of inliers. The wrong ones would normally be filtered out by pose
verification. However, if segments of length k > 1 are used, the top 10 combinations
(representing the current segment) don’t necessarily contain only the reasonable
query-cutout pairs. This is because we are only choosing top 10 combinations from
10* possible combinations?. There is no easy solution to this problem. Making pose
estimation return significantly more than top 10 candidates for each query will have
a performance impact, because the pose verification step is already time consuming.

Il 5.4.4 No HoloLens poses

Due to the delay (see table|3.3), some of the queries by the end of the HoloLens1 and
HoloLens2 sequences do not have a pose estimated from HoloLens. In such a case
we have to resort to using standard P3P, which performs (on average) worse than
MultiCameraPose. Hopefully the delay was only caused by the software extracting
the data from HoloLens and the delay is not actually present in real use. If it is
present, it is a problem as the techniques based on InLoc described in this paper
would not work in real-time.

B 5.4.5 Geometric verification fails

Our approach produced a completely wrong pose estimate in Query 40 of the s10e
query set. Upon debugging the issue, it turns out that there actually were several

2We are not talking about combinations in a mathematical sense, but rather as a way of expressing
a number of possibilities.

53

5. Evaluation

viable cutouts, similar to the query image. One would expect the correspondences
to be found there. However, the geometric verification step (GV) found zero
correspondences. This issue shall be investigated further.

B 55 Computational complexity

The redesigned and improved pose estimation pipeline is a fairly complex piece of
software. It is hard to compute the asymptotic complexity of processing a query
image or a set of query images. The computational requirements are missing from
the InLoc paper [1]. However, the authors mention the need for about 14 GB RAM
in their experiment, to hold the image descriptors in memory.

Table 5.7 shows the processing times I have measured. They are not necessarily
accurate, as sometimes, the experiment was re-run while keeping some previously
computed data.

Experiment ‘ Step ‘ Processing time
s10e GPU 11 min
s10e CPU 1h 46 min

HoloLens1-k1 GPU 11 min
HoloLens1-k1 CPU | about 20 hours

HoloLens1-k5-MCP GPU 10 min
HoloLens1-k5-MCP CPU | about 48 hours

HoloLens1-k4-sequentialPV | GPU 5 min
HoloLens1-k4-sequentialPV | CPU | about 40 hours

Table 5.7: The experiment is split into two parts; the first part runs on a GPU (feature
extraction) and the rest runs on a CPU. For the CPU instance, a machine with 45
threads and K8 2000 CPUs (or similar) was used. GPU instance used a single NVIDIA
1080Ti GPU with 8 threads. The processing time is a rough estimate.

The preprocessing step shall also be taken into account. It takes about 20
minutes to create the score matrix for an s10e query set. It is done by executing
buildFeatures.m followed by buildScores.m. The same task takes 22 minutes on
the HoloLensl query set. Note that both tasks share the same number of cutouts
that require processing by buildFeatures.m.

The recommended amount of RAM for re-running the experiments is 90 GB.

o4

Chapter 6

Conclusion

I have created a new dataset suitable for indoor visual localization; either on single
RGB images or on a sequence of query images and localization data from HoloLens.
I have adjusted the original'| InLoc implementation and made it work on the newly
acquired dataset. The performance on the non-sequential s10e query set is very
good (compared to results in InLoc paper). This is likely caused by the fact that
our dataset is much smaller than the InLoc dataset. I have also implemented two
novel methods that are based on InLoc [I] - the sequentialPV method and the
MultiCameraPose method. It was expected that the sequentialPV method would
not to perform very well compared to HoloLens tracking. The MultiCameraPose
method is more accurate than both the baseline InLoc method and the sequentialPV
method. The resulting estimated poses are usable. However its performance is still
significantly below the precision of HoloLens tracking itself. It is not clear why the
new MultiCameraPose method is not performing that well. In the previous chapter,
I have described known sources of errors, a lot of which can be targeted in a future
work. This will certainly improve the evaluation performance.

. 6.1 Future work

Improve the accuracy of the MultiCameraPose method by fixing known sources
of errors. Spend extra time to analyze why there are inaccurate poses for certain
queries and suggest an enhancement. The work on the HoloLens2 sequence should
be continued - we need to compute reference poses. The code is there, but currently

!Original InLoc implementation available at [4T].

95

6. Conclusion

we are missing more manually set-up 2D-3D correspondences. Also, the work on
synthetic dataset generation using Al Habitat shall be continued. Although it
cannot give us data from HoloLens tracking, it can be used to generate new indoor
localization datasets, without the need for expensive equipment (such as a Matterport
scanner). There are extra parameters such as setting up the cutout horizontal field of
view, dslevell, MultiCameraPose software [13] parameters and more. The accuracy
of the reference poses wrt ground truth poses shall be also improved.

The paper [22] provides an improvement of the InLoc pose verification step. Once
a reference implementation is available, I recommend incorporating the changes into
our implementation.

The cutouts shall be regenerated with horizontal field of view equal to 60°, to see
if it improves performance. This hFoV would also match the InLoc cutouts’ hFoV.

2Determines how much to downsample images in the pose verification step.

56

Appendix A

Bibliography

Taira, H.; Okutomi, M.; et al. InLoc: Indoor Visual Localization with Dense
Matching and View Synthesis. In CVPR, 2018.

Arandjelovié, R.; Gronat, P.; et al. NetVLAD: CNN architecture for weakly
supervised place recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

Wijmans, E.; Furukawa, Y. Exploiting 2D Floorplan for Building-scale
Panorama RGBD Alignment. In Computer Vision and Pattern Recognition,
CVPR, 2017. Available from: http://cvprl7.wijmans.xyz/CVPR2017-0111|
pdf

Fischler, M.; Bolles, R. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. In
Readings in Computer Vision, Morgan Kaufmann, 1987, ISBN 978-0-08-051581-
6, pp. 726 — 740, doi:https://doi.org/10.1016/B978-0-08-051581-6.50070-2.

Arandjelovi¢, R.; Zisserman, A. Three things everyone should know to improve
object retrieval. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 2911-2918.

Liu, C.; Yuen, J.; et al. SIFT Flow: Dense Correspondence across Scenes and Its
Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,
volume 33, no. 5, 2011: pp. 978-994.

Fukushima, K. Neocognitron: a self organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, volume 36, no. 4, 1980: p. 193—202, ISSN 0340-1200, doi:10.1007/
bf00344251. Available from: https://doi.org/10.1007/bf00344251

o7

http://cvpr17.wijmans.xyz/CVPR2017-0111.pdf
http://cvpr17.wijmans.xyz/CVPR2017-0111.pdf
https://doi.org/10.1007/bf00344251

A. Bibliography

8]

[10]

[11]

[13]

[14]

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Net-
works, volume 61, 2015: pp. 85 — 117, ISSN 0893-6080, doi:https://doi.org/10.
1016/j.neunet.2014.09.003.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In International Conference on Learning Representations,
2015.

Pajdla, T. Elements of Geometry for Computer Vision. 2020.

Kukelova, Z.; Heller, J.; et al. Efficient Intersection of Three Quadrics and
Applications in Computer Vision. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

Wald, J.; Sattler, T.; et al. Beyond Controlled Environments: 3D Camera
Re-Localization in Changing Indoor Scenes. In Proceedings IEEE European
Conference on Computer Vision (ECCYV), 2020.

Sattler, T.; Lucivndk, P. MultiCameraPose. [online|, 2020, [cit. 2020-08-14].
Available from: https://github.com/lucivpav/MultiCameraPose

The MathWorks, Natick, MA, USA. MATLAB Statistics and Machine Learn-
ing Toolbox. [online|, 2019, [cit. 2020-08-09]. Available from: https://www,
mathworks.com/help/releases/R2019b/stats/index.html

Merriaux, P.; Dupuis, Y.; et al. A Study of Vicon System Positioning Perfor-
mance. Sensors, volume 17, 07 2017: p. 1591, doi:10.3390/s17071591.

Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE
Trans. Information Systems, volume vol. E77-D, no. 12, 12 1994: pp. 1321-1329.

Hiibner, P.; Clintworth, K.; et al. Evaluation of HoloLens Tracking and Depth
Sensing for Indoor Mapping Applications. Sensors, volume 20, 02 2020: pp.
1021:1-23, doi:10.3390/s20041021.

Zeller, M.; et al. HoloLens (1st gen) hardware. [online|, 2020, [cit. 2020-
08-09]. Available from: https://docs.microsoft.com/en-us/hololens/
hololensl-hardware

Smith, R. C.; Cheeseman, P. On the Representation and Estimation of Spatial
Uncertainty. The International Journal of Robotics Research, volume 5, no. 4,
1986: pp. 5668, doi:10.1177/027836498600500404.

Smith, R.; Self, M.; et al. Estimating Uncertain Spatial Relationships in
Robotics. 01 1986, pp. 435-461, doi:10.1109/ROBOT.1987.1087846.

Leonard, J. J.; Durrant-Whyte, H. F. Simultaneous map building and local-
ization for an autonomous mobile robot. In Proceedings IROS ’91:IEEE/RSJ
International Workshop on Intelligent Robots and Systems 91, 1991, pp. 1442—
1447 vol.3.

o8

https://github.com/lucivpav/MultiCameraPose
https://www.mathworks.com/help/releases/R2019b/stats/index.html
https://www.mathworks.com/help/releases/R2019b/stats/index.html
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://docs.microsoft.com/en-us/hololens/hololens1-hardware

[22]

[23]

[24]

[25]

[30]

A. Bibliography

Taira, H.; Rocco, I.; et al. Is This the Right Place? Geometric-Semantic
Pose Verification for Indoor Visual Localization. 10 2019, pp. 4372-4382, doi:
10.1109/ICCV.2019.00447.

Garg, R.; B G, V. K.; et al. Unsupervised CNN for Single View Depth Estima-
tion: Geometry to the Rescue. 03 2016, doi:10.1007/978-3-319-46484-8_ 45.

Zhang, Y.; Funkhouser, T. Deep Depth Completion of a Single RGB-D Image.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Hiibner, P.; Weinmann, M.; et al. Marker-based localization of the Microsoft
HoloLens in building models. ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, volume 621, 2018:
pp- 195-202.

Frantz, T.; Jansen, B.; et al. Augmenting Microsoft’s HoloLens with vuforia
tracking for neuronavigation. Healthcare Technology Letters, volume 5, no. 5,
2018: pp. 221-225.

Liu, Z.; Zhang, L.; et al. Fusion of Magnetic and Visual Sensors for Indoor
Localization: Infrastructure-Free and More Effective. IEEE Transactions on
Multimedia, volume 19, no. 4, 2017: pp. 874-888.

Piciarelli, C. Visual Indoor Localization in Known Environments. IEEFE Signal
Processing Letters, volume 23, no. 10, 2016: pp. 1330-1334.

Bay, H.; Ess, A.; et al. Speeded-Up Robust Features (SURF). Computer Vision
and Image Understanding, volume 110, no. 3, 2008: pp. 346 — 359, ISSN 1077-
3142, doi:https://doi.org/10.1016/j.cviu.2007.09.014, similarity Matching in
Computer Vision and Multimedia.

Xu, S.; Chou, W.; et al. A Robust Indoor Localization System Integrating
Visual Localization Aided by CNN-Based Image Retrieval with Monte Carlo
Localization. Sensors, volume 19, no. 2, Jan 2019: p. 249, ISSN 1424-8220, doi:
10.3390/s19020249. Available from: http://dx.doi.org/10.3390/s19020249

Southworth, M. Calculating the Practical Field of View of the HoloLens. [online],
2018, [cit. 2020-08-09]. Available from: https://www.linkedin.com/pulse/
calculating-practical-field-view-hololens-michael-southworth/

Kendall, D. A Survey of the Statistical Theory of Shape. Statistical Science,
volume 4, no. 2, 1989: pp. 87-99, ISSN 08834237.

Zderadickova, A.; Schonberger, J.; et al. HoloLensDataAcquisition. [on-
line], 2020, [cit. 2020-08-09]. Available from: https://github.com/lucivpav/
HoloLensDataAcquisition

Savva, M.; Kadian, A.; et al. Habitat: A Platform for Embodied AI Research.
In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

99

http://dx.doi.org/10.3390/s19020249
https://www.linkedin.com/pulse/calculating-practical-field-view-hololens-michael-southworth/
https://www.linkedin.com/pulse/calculating-practical-field-view-hololens-michael-southworth/
https://github.com/lucivpav/HoloLensDataAcquisition
https://github.com/lucivpav/HoloLensDataAcquisition

A. Bibliography

[35] Chang, A.; Dai, A.; et al. Matterport3D: Learning from RGB-D Data in Indoor
Environments. International Conference on 3D Vision (3DV), 2017.

[36] Lucivndk, P.; Steidl, S.; et al. Habitat. [online], 2020, [cit. 2020-08-10]. Available
from: https://github.com/lucivpav/Habitat|

[37] Luc¢ivnak, P. VisualLocalizationWithHoloLens. [online], 2020, |[cit.
2020-08-14]. Available from: https://github.com/lucivpav/
Visuall.ocalizationWithHoloLens|

[38] Zhang, Y.; Song, S.; et al. Panocontext: A whole-room 3d context model for
panoramic scene understanding. 2014: pp. 668—686.

[39] Zhang, Y.; Song, S.; et al. PanoBasic: Toolbox for panorama image processing.
[online], 2017, [cit. 2020-03-24]. Available from: https://github.com/yindaz/
PanoBasicl

[40] Grigonis, H. Understanding Lens Distortion in Photography (And How To Fix
It). [online], [cit. 2020-08-13]. Available from: https://expertphotography!
|com/what-is-lens-distortionl

[41] Taira, H.; et al. InLoc_ demo. [online], 2017, [cit. 2019-10-05]. Available from:
https://github.com/HajimeTaira/InLoc_demo|

60

https://github.com/lucivpav/Habitat
https://github.com/lucivpav/VisualLocalizationWithHoloLens
https://github.com/lucivpav/VisualLocalizationWithHoloLens
https://github.com/yindaz/PanoBasic
https://github.com/yindaz/PanoBasic
https://expertphotography.com/what-is-lens-distortion
https://expertphotography.com/what-is-lens-distortion
https://github.com/HajimeTaira/InLoc_demo

	Introduction
	Literature review
	InLoc
	NetVLAD
	P3P
	Camera coordinate system
	Multi-camera pose estimation
	Procrustes analysis
	Devices used
	InLoc improvement
	Single View Depth Estimation
	Deep Depth Completion
	Marker-based HoloLens localization
	Augmenting Microsoft’s HoloLens with vuforia tracking for neuronavigation
	Magnetic field and Visual Sensors for Indoor Localization
	Visual Indoor Localization in Known Environments
	Multi-sensor-based Indoor Localization System

	Dataset
	Reference poses
	Habitat
	Usage

	Implementation
	Source code and dataset structure
	Pseudocode
	MultiCameraPose
	Introduced changes
	Usage

	Evaluation
	Experiment design
	s10e query set
	HoloLens1 query set
	Summary
	Best custom method

	Sources of errors
	Previous queries have meaningful correspondences but current query does not have any correspondences
	Bad input score matrix
	Hard to pick top 10 combinations for non-trivial segments
	No HoloLens poses
	Geometric verification fails

	Computational complexity

	Conclusion
	Future work

	Bibliography

