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Instructions

CDCL SAT solvers often use many numeric parameters such as restart period, amount of randomness in
heuristics, etc. that have a significant impact on the performance. The task in the thesis is to set these
parameters specifically according to the given input formula instead of using default values aiming at
maximizing the performance. It is assumed that various attributes can be derived from the formula that can
be used to predict the solver performance for a particular set of parameters. This thesis will focus on
employing machine learning techniques to automate the process of parameter setting. The student will
fulfill the following tasks:
1. Study the design of CDCL SAT solvers and their parameters.
2. Suggest attributes that can be derived from the formula and have a significant impact on the
performance.
3. Design and implement parameter settings based on selected machine learning techniques using the
attributes.
4. Perform experimental evaluation on a relevant set of benchmarks.

References

[1] Gilles Audemard, Laurent Simon: On the Glucose SAT Solver. International Journal on Artificial Intelligence Tools
27(1): 1840001:1-1840001:25 (2018)

[2] Andre Biedenkapp, Marius Lindauer, Katharina Eggensperger, Frank Hutter, Chris Fawcett, Holger H. Hoos: Efficient
Parameter Importance Analysis via Ablation with Surrogates. AAAI 2017: 773-779

[3] James Bergstra, Daniel Yamins, David D. Cox: Making a Science of Model Search: Hyperparameter Optimization in
Hundreds of Dimensions for Vision Architectures. ICML (1) 2013: 115-123



Master’s thesis

Parameter Setting in SAT Solver Using
Machine Learning Techniques

Bc. Filip Beskyd

Department of Applied Mathematics
Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

July 30, 2020



Acknowledgements

In this place, I want to thank my supervisor doc. RNDr. Pavel Surynek, Ph.D.
for providing guidance, consultations, his time and valuable advices through-
out whole time I was writing this thesis. I also want to thank my family for
continuous support during my studies. Thanks to the Metacentrum.cz [1] for
providing the computational resources which I extensively used to produce
this thesis.



Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on July 30, 2020 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Filip Beskyd. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Beskyd, Filip. Parameter Setting in SAT Solver Using Machine Learning
Techniques. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2020.



Abstrakt

SAT řešiče jsou nezbytné nástroje pro mnohé oblasti poč́ıtačové vědy a pr̊umyslu.
Obsadily funkci univerzálńıho nástroje, který uživatelé použ́ıvaj́ı k řešeńı problémů,
jež by v opačném př́ıpadě museli řešit ad-hoc, což by pravděpodobně nebylo
zdaleka tak efektivńı jako moderńı SAT řešiče.

V posledńıch dvou a v́ıce dekádách spojených s výzkumem SAT řešič̊u
bylo vytvořeno mnoho heuristik. Ty nejefektivněǰśı z nich jsou dnes neodmys-
litelnou součást́ı moderńıch SAT řešič̊u, což dále zlepšuje jejich efektivitu v
porovnáńı s jejich předch̊udci. Heuristiky mohou být, před samotným prove-
deńım prohledávaćıho procesu konkrétńı SAT instance, laděny jedńım nebo
v́ıce numerickými parametry.

V této diplomové práci představuji nástroj, který za pomoci technik stro-
jového učeńı předpov́ıdá hodnoty těchto parametr̊u pro heuristiku z podkla-
dové struktury SAT instance s ćılem redukce výpočetńıho času.

Kĺıčová slova SAT problém, splnitelnost, řešič, grafová sktuktura, strojové
učeńı, heuristika, laděńı parametru
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Abstract

SAT solvers are essential tools for many domains in computer science and
engineering. SAT solvers took a place of a universal tool which their users use
when in need for solution of their problems, which would otherwise require
ad-hoc solution, which would probably be nowhere near the effectiveness of
modern SAT solvers.

Over the course of at least two decades of SAT related research, many
heuristics were produced, most effective ones are embedded in SAT solvers
of present day, which further increase their effectiveness compared to their
predecessors. Heuristics can usually be tuned by single or multiple numeri-
cal parameters prior to executing the search process over the concrete SAT
instance.

In this thesis I present machine learning approach which predicts the pa-
rameter values for heuristic from underlying SAT instance structure in view
of reducing computational time.

Keywords SAT problem, satisfiability, solver, graph structure, machine
learning, heuristic parameter tuning
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Introduction

SAT problem is one of the fundamental computer science problems. Con-
cretely SAT problem was the first one to be proven to belong to NP-Complete
class of problems [3]. Its major use-cases come from industries such as software
testing [4], automated planning [5], hardware verification [6] or cryptography
[7], as well as many other, more of a theoretical character problems of com-
puter science can be reduced to a SAT problem.

Standard and in practice most used way of solving given problem is to
convert it, in some way, to concrete SAT instance which is then given to
another program as an input, so called SAT Solver, which solves the instance
and answers whether there exists an truth assignment by which it can be
satisfied or not, with the concrete proof, that is either variables assignment
which satisfy the formula or conflict.

There exist many solvers to SAT problem. Solvers are divided into two
major groups, online and offline solvers. This thesis is focused on one of-
fline solver, based on Conflict-driven clause-learning (CDCL) algorithm the
Minisat [8]. CDCL SAT solvers have witnessed dramatic improvements in
their efficiency over the last 20 years, and consequently have become drivers
of progress in many areas of computer science such as formal verification [9].
There is general agreement that these solvers somehow exploit structure in-
herent in industrial instances. Typically, solvers have many parameters which
need to be set prior to solver being executed to find the solution. Depending
on how various parameters are set, will be mirrored in running time duration
of the solver, thus naturally it makes sense to try to apply machine learning
to predict values for these parameters which would hopefully reduce solv-
ing time, based on type of given concrete instance. This is logical because
previous research shows that many instances are in some way similar thus
formula’s hidden structure will be similar too. For example structure of an
instance which comes from hardware verification industry is vastly different
from the structure of the instance which was constructed for pigeon-hole prob-
lem [10]. Problems which belong to the same class of problems tend to have
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Goals

similar structure within the class and concrete values of parameters works bet-
ter for them, than having pre-determined parameter values globally for every
instance.

Goals

First of the goals of this thesis is to show in an experimental way that there
exist a dependency of SAT solver’s parameters on solving time of the instance,
and thus it makes great sense to try to tune the parameters to minimize solving
time.

Second goal is to explore various input instance features and experiment
with automated setting of selected SAT solver parameters to speed up solver’s
solving time, by extracting features from the instance. These features should
be then used in machine learning technique which would be used to learn
function of the features and hopefully predict parameter settings which would
yield faster solving time than the solver’s default parameter values.

Third and last goal is to evaluate how predicted parameters perform on
both training set and testing set which is made of new instances which the
learning technique did not encounter during its learning.

Contribution

1. Clear visual summary of dependencies of parameters on solving time in
form of plots.

2. Extension of usual features extracted by SAT solvers from instances,
by computing graph related features additionally on clause graph (CG),
and variable–clause graph (VCG), which better capture the underlying
structure of the instance.

3. Experimental, not stand–alone python program (Jupyter notebooks [11])
able to extract features, train model and predict parameters.

Structure of the thesis

In chapter 1, I define necessary terminology from logic and graph theory.
Chapter 2 focuses on explaining SAT related terminology, principles, and
pseudo-codes of 2 main SAT solvers. Chapter 3 explains which heuristics
are used in underlying solver, and parameters of MiniSat solver which can
tune these heuristics. In chapter 4, I provide brief overview of 3 other works,
which are similar to what I am doing in this thesis. Chapters 5, 6 and 7 are
core of this thesis, in chapter 5, I experimentally show that there are depen-
dencies of parameters on solving time for selected classes of SAT instances,

2



Structure of the thesis

and therefore show why it is worth a try to use machine learning technique to
auto-tune MiniSat’s parameters. Chapter 6 shows how I derive features from
graph representation of SAT instance, which features I use for machine learn-
ing and provide pseudo-codes of my implementation. Final chapter 7 present
how predicted parameters compare to MiniSat’s default parameters in terms
of solving time (number of conflicts).

3



Chapter 1
Theoretical background

Purpose of this chapter is to make reader acquaint with basics necessary to
understand what I will be doing in this thesis. Thus this chapter is a place
where I will define relevant terms from logic and satisfiability theory as well
as CNF.

1.1 Basic Boolean logic terminology

This section will provide exact definitions of terms from logic theory that I
will be using further in the text.

1.1.1 Boolean variable

Definition 1.1.1. Boolean variable is a variable that can only take two pos-
sible values, those are true and false (numerically respectively 1 and 0).

1.1.2 Literal

Definition 1.1.2. A literal is either a variable (x) or its negation (¬x), also
interpreted as a pair of variable (x) and sign (negative meaning ¬ and positive
meaning absence of ¬). Sign is also called polarity of a variable in some
literature and papers.

Boolean variables and literals are usually represented as small letters of
English alphabet such as x, y or z.

1.1.3 Boolean operator

Definition 1.1.3. Basic Boolean operators are and – conjunction (∧) , or –
disjunction (∨) and not – negation (¬).

4



1.2. Graph theory

There are more Boolean operators, but to understand the idea of SAT
problem they are not necessary here. Operators are also called connectives in
other literature.

1.1.4 Boolean formula

The language of Boolean formula consists of Boolean variables, Boolean op-
erators and parentheses.

Definition 1.1.4. Boolean formula is formed by connecting Boolean variables
by Boolean operators, these interconnections are enclosed in parentheses into
logical sentences.

Definition 1.1.5. Boolean variable alone is also a Boolean formula.

Definition 1.1.6. A clause is a disjunction (∨) of literals.

An example of a Boolean formula: φ = ((x ∨ ¬z) ∧ (¬y ∧ z))

1.1.5 Rules for logical sentence creation

Definition 1.1.7. Let A and B be Boolean formulas. Then (¬A), (A ∧ B),
(A ∨B), are Boolean formulas as well.

Finite application of these rules allow to create complicated formulas.
Note: This definition enforces that every sentence constructed by Boolean

operators must be enclosed in parentheses. To improve readability, we can
omit most of the parentheses for small cases, if we keep an order of precedence.
The order of precedence in propositional logic is (from highest to lowest): ¬,
∧, ∨.

1.1.6 Partial and complete assignment

Definition 1.1.8. Partial truth assignment for formula φ assigns a truth
value (true or false) to some of the variables of φ. Special case of partial
truth assignment is complete truth assignment for formula φ, assigns a truth
value to every variable of φ. Both are functions from variables to truth values:
V : var(φ)→ {true, false}.

An example of an assignment: υ = {x 7→ true, y 7→ false, z 7→ true}

Definition 1.1.9. A clause is falsified with respect to an assignment, if all
the literals in the clause evaluate to false.

1.2 Graph theory

This section contains definitions of graph types used later in the parameter
tuning chapter.

5



1.3. Boolean Satisfiability Problem

1.2.1 Graph

Definition 1.2.1. Graph G is a pair or 2 sets V and E, G = (V,E). V is a
set of vetrices/nodes, E is a set of unordered pairs of vertices from V , called
edges, E ⊆ {(x, y)|x, y ∈ V 2}.

1.2.2 Bipartite graph

Definition 1.2.2. Graph G = ({X∪Y }, E) is bipartite when its set of vertices
V , can be partitioned into two disjoint sets X,Y called partity such that no
two vertices in X are connected with an edge, and no two vertices in Y are
connected with an edge.

1.3 Boolean Satisfiability Problem

Definition 1.3.1. The Boolean Satisfiability Problem, in practice often abbre-
viated as ”SAT problem” or simply ”SAT”, is the problem of finding assign-
ment to the variables of the Boolean formula such that the formula evaluates
to true.

If this is true, the formula is said to be satisfiable. On the other hand, if
no such assignment exists, the function expressed by the formula is false for
all possible variable assignments and the formula is called unsatisfiable.

For example, the formula (A ∧ (¬B)) is satisfiable because one can find an
assignment A = true and B = false, which yields (A ∧ (¬B)) = true. In
contrast, (A∧ (¬A)) is obviously contradictory and whether we let A = true
or A = false, formula can not evaluate to true and thus is unsatisfiable.

1.4 Conjunctive normal form

While the grammar of propositional logic is suited for manual formula manipu-
lation, a simpler structure is advantageous for algorithmic manipulation. The
most common choice for SAT solving is the conjunctive normal form (CNF).

The usefulness of the conjunctive normal form for SAT solving was first
highlighted by Davis and Putnam in [12]. A formula in conjunctive normal
form consists of a conjunction of clauses. This allows a simple representation
as a set of sets of literals.

Definition 1.4.1. A conjunctive normal form (CNF) of a formula is a con-
junction (∧) of clauses.

Any propositional logic formula can be transformed to CNF. Simplest is
to convert each subformula of the original formula to CNF by first replacing
all implications and equivalences, then apply De Morgan laws, skolemize, etc.,
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1.4. Conjunctive normal form

but this naive recursive approach has an exponential growth in space of the
formula. There are many efficient ways to do this.

Common way to obtain CNF of the formula is to use Tseitin transforma-
tion [13]. For satisfiability testing its not necessary to obtain equal formula,
but rather equisatisfiable formula. The Tseitin transformation is a linear trans-
formation from an arbitrary propositional formula to CNF, preserving satisfi-
ability.

Definition 1.4.2. Two formulas φ and ψ are equisatisfiable if and only if φ
is satisfiable when ψ is satisfiable.

The idea of Tseitin transformation is to introduce new variable for every
sub-formula, except for literals, and use these new variables as fresh variables
in the formula. Thus the resulting formula is not only on the original vari-
ables, but also on new variables. Then conjunct all of the new variables and
transform each of them by the logic laws to CNF.

1.4.1 Tseitin transformation example

An example of this transformation can be illustrated on this small formula:
Let φ = ((x ∨ y) ∧ z)⇒ (¬w).

Sub formulas are:
¬w
x ∨ y
(x ∨ y) ∧ z
((x ∨ y) ∧ z)⇒ (¬w).

Now new variables a1, a2, a3, a4 are introduced and assigned for each sub-
formula:
a1 ⇔ ¬w
a2 ⇔ (x ∨ y)
a3 ⇔ (a2 ∧ z)
a4 ⇔ (a3 ⇒ a1).

These are then conjuncted, and on this conjuction, the last step is to replace
equivalences and implications by standard Boolean operators rules. Resulting
formula is equisatisfiable to φ and in CNF.

I will refer the reader to [14] Chapter 2 – ”CNF Encodings” for fully de-
tailed information on this topic.

Very obvious, but very important property of CNF is that, the formula in
CNF is satisfied when all of its clauses are satisfied, and formula is unsatisfi-
able when at least one of its clauses is unsatisfiable.
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Chapter 2
SAT solving

In this chapter, I will define SAT solver’s related terminology and describe
the principle of SAT solvers, as well as how SAT solvers work internally in-
cluding the format of inputs and common heuristics they use today. Addi-
tionally, I will provide DPLL [15] (which is base for many modern solvers)
and CDCL (version with restarts) [16] pseudo-codes, whose actual implemen-
tation is solver MiniSat, which I will be using throughout all experiments, and
whose parameters setting is the main goal of this thesis. I will briefly explain
their fundamental anatomy such as procedures they use, the principle of how
solvers work and how most important heuristics used in these solvers work.

Definition 2.0.1. SAT solvers are computer programs that take a Boolean
formula as an input (denoted by φ) whose goal is to output an assignment sat-
isfying the input formula if such an assignment indeed exists, in other words,
if the input Boolean formula is satisfiable. Otherwise SAT solver guarantees
that there is no such assignment and formula is unsatisfiable

Modern SAT solvers expect the input Boolean formula to be in conjunctive
normal form (CNF). Any Boolean formula can be transformed into CNF with
only a linear increase in formula size using the Tseitin transformation [13],
described in previous chapter. Hence, requiring CNF as input does not limit
the space of allowable Boolean formulas. The advantage of CNF is that the
SAT solver only needs to worry about clauses and as will be shown further
in the text, modern SAT solvers implement propagation and clause learning
techniques that operates efficiently over clauses. [17]

2.1 Solver’s principle – resolution rule

Since DPLL algorithm (described in the next paragraph) is based on resolution
rule, so I will explain what it is first here.

The resolution rule in propositional logic is a inference rule that produces
a new clause implied by two clauses containing complementary literals. Two
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literals are said to be complements if one is the negation of the other, an ex-
ample are c and ¬c. The resulting clause contains all the literals that do not
have complements.

This rule is formally defined as follows:

a1 ∨ a2 ∨ · · · ∨ c, b1 ∨ b2 ∨ · · · ∨ ¬c
a1 ∨ a2 ∨ · · · ∨ b1 ∨ b2 ∨ · · ·

or equivalently, and perhaps more transparently re-written as:

(¬a1 ∧ ¬a2 ∧ · · · )→ c, c→ (b1 ∨ b2 ∨ · · · )
(¬a1 ∧ ¬a2 ∧ · · · )→ (b1 ∨ b2 ∨ · · · )

where ai, bj , c and ¬c are literals, and fraction line stands for ”logical con-
sequence”.

Two clauses produce third one, which does not contain variable c. Clauses
produced by resolution rule are called the resolvents. This rule can be viewed
as the principle of consensus applied to clauses rather than terms.

Most trivial example of this rule is fundamental logic rule ”Modus ponens”:

p→ q, p

q
is equivalent to ¬p ∨ q, p

q
.

2.2 DPLL

DPLL algorithm [15] is an algorithm to establish whether a CNF formula
is satisfiable. DPLL is a complete search over the space of all possible as-
signments of the formula, while using backtracking. It was introduced in
1962 by Martin Davis, George Logemann and Donald W. Loveland, thus the
name DLL after its authors surnames, the ”P” in DPLL comes from the fact
that DPLL was based on earlier work from 1960 by Martin Davis and Hilary
Putnam’s who developed DP algorithm [12], which is a resolution-based pro-
cedure for checking the validity of a first-order logic formula. Especially in
older publications, the Davis–Logemann–Loveland algorithm is often referred
to as the ”Davis–Putnam method” or the ”DP algorithm” instead of today’s
DPLL. In comparison to DP algorithm, DPLL removed the need for explicit
representation of the resolvents.

There are several methods in the literature that form the basis for most
SAT solver implementations. The first described satisfiability testing proce-
dure that can be seen as a predecessor to modern SAT solvers is the afore-
mentioned Davis-Putnam procedure (DPP), which also introduced the con-
junctive normal form into satisfiability testing. DPP consists of three rules,
which modify the set of CNF clauses without changing its satisfiability.

The recursive character of DPLL (which can be seen in later paragraph)
allows us to define decision levels of truth assignments. Decision level n refers
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to the assignment implied by the decision in the n-th recursive call of DPLL
and all assignments deduced from this assignment by unit propagation. When
the solver backtracks to level l, all assignments with decision levels higher than
l must be reverted back to the assignments of that level. This technique is
”smarter backtrack” referred to as backjumping.

2.2.1 Unit propagation rule

Definition 2.2.1. Unit clause is a clause which consists only of a single
unassigned literal.

When algorithm encounters unit clause, it will propagate the consequences
of this information to other clauses, hence the name unit propagation. To
satisfy the formula, unit clause’s literal must be true because the clause is part
of conjunction (formula is in CNF). Assuming true for the literal’s value, all
clauses containing that literal are satisfied (because the clause is a disjunction
by definition) and can be removed. All clauses containing the literal’s negation
are modified by removing the negated literal, which cannot make a clause’s
value become true, in other words, clause’s evaluation does not depend on the
value of this literal.

2.2.2 Pure literal elimination rule

When an unassigned variable x only appears in its positive form or only if
in its negative form in the set of undecided clauses, literal is said to be pure.
That means if literal ¬x doesn’t appear anywhere then it is safe to assume the
pure literal’s value is true, and add x = true to the current assignment, as this
cannot cause any clauses to become unsatisfied, and as a consequence, satisfy
all the clauses containing the literal x, this effectively means that all clauses
containing this literal can be removed. similarly if variable x only appears in
its negative form, ¬x, we can add x = false to the current assignment.

2.2.3 Resolution rule

Resolution rule as defined in previous section can be used to eliminate a vari-
able from the set of clauses. All clauses containing the variable are grouped
into the set of literals with a positive occurrence and with a negative occur-
rence. All those clauses are then replaced with the new one clause instead,
formed as disjunction of both sets. When this disjunction is converted back
into the conjunctive normal form it becomes the set of all disjunctions formed
by taking a clause of either set.

The resolution rule is problematic as it generates a large number of clauses,
quickly exhausting the available amount of memory. This prompted Loveland
and Logemann to replace it with a splitting rule that successively explores
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the conclusion of assuming a variable to be true or false, thereby creating a
recursive algorithm. This is the DPLL procedure which still forms the basis
for most recent complete SAT solvers. [18]

Iterative application of these rules reduces the set to either the empty set,
if satisfiable, or to a set containing an empty clause (contradiction), if unsat-
isfiable.

The splitting rule on a variable x is implemented by recursively invoking the
DPLL procedure twice, once with the variable assumed true and once assumed
false. This is equivalent to adding a unit clause with the literal x or ¬x, which
will trigger the unit propagation in the recursive call.

2.2.4 Pseudo-code

Algorithm 1 DPLL
1: function dpll-sat(φ)
2: clauses = clausesOf(φ)
3: variables = variablesOf(φ)
4: υ = ∅ . Empty assignment
5: return dpll(clauses, vars, υ)
6: end function
7:
8: function dpll(clauses, vars, υ)
9: if ∀c ∈ clauses, υ∗(c) = true then . υ∗ denotes current assignment

10: return true
11: end if
12: if ∃c ∈ clauses, υ∗(c) = false then
13: return false
14: end if
15: υ = υ ∪ unitPropagation(clauses, υ)
16: υ = υ ∪ pureLiteralElimination(clauses, υ)
17: x ∈ vars ∧ x /∈ υ . Select unassigned variable
18: return dpll(clauses, vars, υ ∪ {υ(x) = true}) or

dpll(clauses, vars, υ ∪ {υ(x) = false})
19: end function

Theorem 2.2.1. DPLL algorithm is sound and complete and always termi-
nates.

It is an depth-first search style of searching through the space of all possible
partial assignments. It is worth noting that the algorithm first performs unit
propagation and then eliminates pure literals, because unit propagation could
cause creating of new pure literals.
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2.3 CDCL

The brute force nature of DPLL limits its practical utility. The CDCL [16]
paradigm extends DPLL with a series of techniques and heuristics such as
conflict-driven branching, clause learning, backjumping, and frequent restarts
that dramatically improve its performance over the plain DPLL solver [17],
which makes them so useful for solving real-life industrial problems.

2.3.1 Branching

Branching means the operation of selection of an unassigned variable together
with selection its value, and then adding it to the current assignment. When
variable is assigned by branching process is said to be decision variable. A
pair of decision variable and its assigned value is called decision literal.

The decision level of a decision variable is the number of decision variables
already in the assignment prior to assignment of selected variable. Decision
level of a literal is the decision level of its corresponding variable.

The decision level of a propagated variable x is the number of decision
variables in the assignment in the moment variable was being propagated.

For example, let υ = {x 7→ true, y 7→ false} be the current assignment,
and lets suppose both x and y were assigned by branching, variables z and s
are yet to be assigned, so the branching procedure will select say z and assign
value true, and add it to υ, the decision level of literal z is 2.

2.3.2 Backjumping

When conflict arises, solver needs to revert part of assignment, because it is not
possible to further extend the current assignment because of of the clauses is
falsified. More efficient way of backtracking was introduced in GRASP solver
[16]. Unlike backtrack which only ”jumps up” by one level, backtracking by
multiple decision levels is possible, sometimes this technique is called a non-
chronological backtrack. CDCL solvers use this by backjumping to the smallest
decision level at which the newest learnt clause becomes unit clause. For a
learnt clause produced by a UIP cut, solver will backjump to highest decision
level of all the variables in the learnt clause since it is asserting clause, this is
the reason why asserting clauses are preferred.

2.3.3 Boolean Constraint Propagation (BCP)

Boolean constraint propagation (BCP) in context of CDCL solvers is just
like unit propagation in DPLL. When a clause with n literals and assignment
with n − 1 literals which evaluate to false, remaining literal must be set to
true. BCP is first run at the start of the search and it will assign as many
variables as possible just by propagation of unit clauses. Every time a variable
is propagated, it cuts the current search space in half so its unnecessary for
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the solver to explore the other half for which this propagated variable would
be assigned opposite value. So its natural that we want to trigger BCP often.
BCP is triggered only on clauses for which there is only one unassigned literal
left, intuitively shorter clauses are better at cutting the search space since
they are more likely to propagate. BCP is responsible for maintaining a data
structure called the implication graph. Implication graph will be defined in
section about conflict analysis.

2.3.4 Conflict driven clause learning

CDCL SAT solvers implement approach of ”conflict driven clause learning”
[16], hence the abbreviation CDCL. This means that the solver is dynamically
analyzing conflicts during the recursion, and stores/”learns” new clauses which
prevent occurrence of future conflicts, they are called conflict clauses or some-
times learnt clauses. The first implementation of clause learning was solver
GRASP [16], simpler and more efficient way of clause learning was introduced
by RelSat [19] and further improvements brought by Chaff [20].

Clause learning proceeds by following the normal branching process of
DPLL until there is a ”conflict” after unit propagation. If this conflict oc-
curs without any branches, the formula is declared unsatisfiable. Otherwise,
the ”conflict graph”/”implication graph” is constructed and analyzed and the
”cause”/”reason” of the conflict is learned in the form of a ”conflict clause”.
Then the algorithm backjumps and continue as ordinary DPLL, treating the
now learned clause just like initial ones. A clause is said to be known at a
stage if it is either an initial clause or has already been learned. The learning
process is expected to save us from redoing the same computation when we
later have an assignment that causes conflict due in part to the same reason
[21].

2.3.5 Conflict analysis and clause learning

The conflicts happen for a logical reason, meaning that following the sequence
of assignments of some clauses will lead to a conflict (clause is falsified in
the current assignment). The solver is ”navigated” by newly learned rea-
sons (learnt clauses) and will avoid conflicts hence the name ”conflict driven”.
Learning clauses is crucial because they prune the search space. To derive a
clause that will help with avoiding that reason which led to an occurrence of
conflict, concept of ”implication graph” is used.

Definition 2.3.1. Implication graph is a directed acyclic graph. Vertices are
all literals of current assignment. Every time the unit propagation happens,
new edges pointing to the literal of the unit clause are added from each negated
literal of the original clause. Additionally, falsified clauses have edges from the
negation of each of its literal to a special vertex ⊥.
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When the unit propagation deduces an assignment, it is due to a clause,
which became unit. This clause is called the reason of the assignment. Impli-
cation graph can be viewed as chaining of these events.

Example:

{A ∨B ∨ C}
{¬B ∨ C}
{¬C}

{A ∨B}
{¬B}

{A}

¬C

¬B

¬C

A

¬B

¬C

From the example it can be seen that assignment of literal A is true, and
the reason for that are literals ¬B,¬C.

In more complex case with more clauses, a conflict may arise. The conflict
is when it is deduced that a literal’s X value should be both true and false.
Algorithm will learn a new clause from this conflict by cutting the implication
graph in two parts, one partition has all the decision assignments on one side
(reason side) and the conflicting assignments on the other side (conflict side).

The idea of cutting the graph is to separate literals which caused conflict,
and learn the conflict clause from reason side of the cut. A clause containing
all negated literals of nodes with an outgoing edge crossing the cut is then
constructed. Saving this clause and treating it as if it was part of the original
CNF allows algorithm to avoid encountering same conflict. But this technique
of course memory demanding and solvers usually offer user to control how
much memory can be used for these new clauses. Another approach is that
size of the set of learnt clauses is managed dynamically by assigning each
clause ”timeout”, meaning that if that clause was not used for a long time
it will be removed by periodical garbage collection service. More about this
heuristic will be described in later section about how branching works.

There are usually multiple possible ways of cutting the implication graph,
but some cuts are preferred in comparison to other, because they yield better
learnt clause.

Depending on the graph cut used, it is necessary to backtrack multiple
levels until the new learnt clause becomes unit. The new clause can be unit
for multiple levels and in practice backtracking to the lowest level where the
clause is unit, known as backjumping has been shown to be effective [16] [18].
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When learning clauses, special clauses are to be preferred, called asserting
clauses.

Definition 2.3.2. Asserting clause is a clause with exactly one literal from
the current decision level.

Why asserting clauses are preferred is interconnected with backjumping
and will be explained later.

To find cuts, which will lead to asserting clauses, it is necessary to find special
vertex called unique implication point.

Definition 2.3.3. A unique implication point (UIP) is a vertex of literal in
the implication graph such that all paths starting from the decision literal
with the highest decision level to the vertex ⊥ must cross the UIP vertex.

There can be many UIPs in the graph, but usually the closest one to the
conflict vertex ⊥ is picked, sometimes referred to as 1-UIP. In this thesis, by
UIP I will refer the 1-UIP.

The learnt clause by cutting at UIP contains exactly one literal with the
highest decision level, that being the UIP literal itself and thus it precisely
follows definition of an asserting clause. So the clause produced by cutting
implication graph at UIP gives a clause that is preferred.

The clause learning technique implemented by CDCL SAT solvers is essen-
tially applying the resolution rule. That is, we can apply the resolution rule
to the clauses on the conflict side of the implication graph to construct the
exact same learnt clause as a CDCL SAT solver. A CDCL SAT solver returns
unsatisfiable when a conflict occurs at decision level zero, and this is equiva-
lent to inferring an empty clause as a resolvent of the resolution rule. By this
perspective, a CDCL solver can be viewed as a resolution engine constructing
a proof of the empty clause for an unsatisfiable CNF input. [17]

2.3.6 Restarts

Restart means that the solver will discard the current assignment completely,
delete the implication graph as well and then will start the search again.
Restart strategy was introduced in [22]. It can be seen as backjumping back
to decision level 0. Restarts can be triggered in the moment when BCP does
not result in conflict. The decision whether and when to perform a restart is
up to the restart heuristic. This strategy is used with great success in practice.
It might appear like solver is getting rid of all what it was working for but the
important thing to note is, its only deleting the assignment, but keeping the
clause database that it built in the previous run.
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2.3.7 Pseudo-code

Algorithm 2 CDCL with restarts
1: function cdcl(φ)
2: υ = ∅ . Empty assignment
3: loop
4: υ = bcp(φ, υ) . Try solve by unit propagation
5: if ∃conflictingClause ∈ φ such that

Falsified(conflictingClause, υ) then
6: if CurrentDecisionLevel(υ) = 0 then
7: return false
8: end if
9: learntClause = ConflictAnalysis(conflictingClause, υ)

10: φ = φ ∪ learntClause . Clause learning
11: υ = BTtoLevel(GetBTLevel(learntClause), υ)
12: else if |υ| = |variablesOf(φ)| then
13: return true
14: else if RestartCondition = true then
15: υ = BTtoLevel(0, υ) . Restart
16: else
17: OptionalClauseDeletion( ) . Remove not-so-useful

clauses
18: var = BranchingHeuristic( ) . Select next variable
19: value = PolarityHeuristic(var) . Pick its value
20: υ = υ ∪ {var → value} . Branch
21: end if
22: end loop
23: end function

Theorem 2.3.1. CDCL algorithm is sound and complete and always termi-
nates.

Proof of soundness and completeness is not trivial and can be found in
[16].
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Chapter 3
MiniSat’s heuristics and

parameters

This short chapter will introduce and briefly explain few heuristics which are
implemented in MiniSat solver, and I will state which of these heuristics am
I going to use for experimenting, and eventually which will be tuned in terms
of predicting parameter’s value which will be passed to the solver, which is
controlling heuristic’s effect, such as probability of choosing a new variable by
decision heuristic, base restart interval and more.

3.1 Tuned parameters

In this thesis I will tune the following heuristics settings of MiniSat solver:

-var-decay the VSIDS’s decay factor

-cla-decay the clause decay factor

-rfirst base restart interval

-rinc restart interval increase factor

3.2 Decision heuristic

Duty of decision/branching heuristic is to pick a variable which is yet unas-
signed and assign it value. Decision heuristic is divided into two parts: the
variable selection heuristic (typically VSIDS [20]) is responsible for selecting
which variable to branch on and the polarity heuristic (typically phasesaving
[23]) is responsible for selecting the value [17]. For all the experiments and
measurements I always used phasesaving. Few manual tests has led me to this
decision because whenever I turned off phasesaving in Minisat solver I have
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obtained only worse results, meaning the solving time was always longer than
with phasesaving turned off.

3.2.1 VSIDS

VSIDS is an abbreviation of variable state independent decaying sum. Many
different branching heuristics were developed over the course of years, but
VSIDS has gained dominant place in SAT community, and has become a
standard choice for many popular SAT solvers, such as Minisat [8] which I
employed as default solver for my thesis.

The main idea of VSIDS heuristic is to associate each variable with float-
ing point number, an activity factor, which signifies a variable’s frequency of
appearing in recent conflicts via the mechanism of bump and decay.

Bump is a number which is incremented by 1 every time this variable ap-
pears in conflict (doesn’t matter if it is on the conflict side or reason side).
There is slightly modified version to this, which only increment bump if vari-
able appears in learnt clause, but Minisat does not use this variant.

Decay factor 0 < α < 1 is a number by which each of the variable’s activity
is multiplied after each conflict and thus decreased. A naive implementation of
decay takes linear time to perform the multiplication for each variable activity.
MiniSat [8] introduced a clever implementation of decay that reduces the cost
to amortized constant time. [17]

3.3 Clause decay

In MiniSat, similar principle as in VSIDS is used and applied to clauses.
When a learnt clause is used in the analysis process of a conflict, its activity is
incremented. Inactive clauses are periodically removed from the learnt clauses
database [8]. This strategy can be viewed as attempting to satisfy the clause
involved in a conflict, but particularly attempting to to satisfy the most recent
clauses involved in a conflict. In fact, the decision heuristic of MiniSat involves
decaying the activity of clauses more often than the standard VSIDS heuristic.
Benchmarks have shown that this schema responds faster to changes and avoid
branching on out-dated variables.

Using this heuristic, the clauses with the highest activity values represent
the clauses most actively involved in recent conflicts. Since a set of unsatisfi-
able clauses generates many conflicts, and therefore many conflict clauses, the
high activity of a clause can be seen as a potential sign of unsatisfiability. [24]

3.4 Random frequency

The frequency with which the MiniSat choose a random variable rather than
the one determined by heuristic. It is a probability parameter and thus allowed
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values are 0 ≤ ε ≤ 1.

3.5 Restart frequency

Frequency of restarts in MiniSat is determined by two parameters, the base
restart interval and restart interval increase factor. One round of search will
take as long until the search encounters given number of conflicts. For exam-
ple, minisat(120) will be searching space of assignments as long as it reaches
count of conflicts equal to 120. After that, the algorithm will pause, determine
new number of needed conflicts to force next restart, and continue searching.

Number of needed conflicts to restart L is determined as follows

L = restart base interval · restart inc factor#restarts.
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Chapter 4
Related work

In this chapter I will provide an overview of some of the related works, which
faced similar challenges as this thesis, or whose method has directly or indi-
rectly affected my work.

4.1 Portfolio solver: SatZilla

SatZilla [25] is a portfolio solver, which won many awards in SAT Competition
[26]. It introduces new approach of using many other solvers (portfolio) in the
background. The solvers are used as-is, and SatZilla does not have any control
over their execution.

Machine learning was previously shown to be an effective way to predict
the runtime of SAT solvers, and SatZilla exploits this. It uses machine learning
to predict hardness of the input instance, and then based on this prediction
select a solver from its portfolio which will be assigned to solve the problem.
Machine learning technique for predicting is ridge regression.

This works because different solvers are better for different types of in-
stances, there is no universal solver which would perform very good on every
category of instances, thus the key is to predict what kind of input instance
it is and determine which solver would suit best to solve it.

First step is to identify one or more solvers to use for pre-solving instances.
These pre-solvers are then ran for a short amount of time before features are
computed, in order to ensure good performance on very easy instances and to
allow the hardness predicting models to choose solver exclusively on harder
instances.

Predicting hardness of an instance is done by first extracting various fea-
tures from the input. To be usable effectively for automated algorithm selec-
tion, these features must be relatively cheap to compute.

To train the model, SatZilla will first compute some features on training
set of problem instances and run each algorithm in the portfolio to determine
its running times. If feature computation cannot be completed for some reason
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(error or timeout), backup solver will be determined and used for solving this
instance.

In summary, when the model for predicting the runtime of the solvers has
been already trained, SatZilla is ready to be used in practice. When the new
input instance comes, it computes its features. These are then used as input
for predictive model which predicts the best solver to be used. That particular
solver is then used to solve instance.

4.2 Parameter tuning: AvatarSat

AvatarSat [27] is a modified version of Minisat 2.0. AvatarSat introduced two
key novelties.

First one is that it used machine learning to determine the best param-
eter settings for each SAT formula. The machine learning technique used is
Support Vector Machine.

Second novelty in AvatarSat is the ”course correction” as it dynamically
”corrects” the direction in which solver is searching. Modern SAT solvers store
new learnt clauses and drop input clauses during the search, which can change
the structure of the problem considerably. AvatarSat’s argument is that the
optimal parameter settings for this modified problem may be significantly
different from the original input problem.

AvatarSat therefore first selects values of parameters for MiniSat to use
during the initial part of the search. When the number of new clauses accumu-
lated during the search crosses a threshold, the ”course correction” procedure
examines the new clauses to select a new set of parameters for MiniSat to use
after the restart. This is the principle of AvatarSat which dynamically adapts
the parameter settings to the potentially changing characteristics of the SAT
problem.

Input SAT instances are classified using features extracted from the in-
stance. Each class corresponds to the best configuration for the SAT-formulas
belonging to the class. The approach is similar as I applied in this thesis.

AvatarSat uses 58 different features of SAT formulas such as ratio between
variables and clauses, number of variables, number of clauses, positive and
negative literal occurrences etc. Features used are very similar to those of
SatZilla, which were originally designed to measure hardness of the instance
and not its structure.

The classifier is trained by running a number of configurations of Minisat
on a number of sat instances, then each instance is paired with the optimal
configuration and that data is used to train the classifier with Radial Basis
Function (RBF). When the classifier is trained, Minisat can be configured for
any SAT formula by classifying the formula and then retrieving the configu-
ration associated with that class.
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AvatarSat is tuning only two parameters, -var-decay and -rinc, Nine
values for the first one and three for the second one, so the number of examined
configurations is 27.

4.3 Iterated local search

The key idea underlying iterated local search is to focus the search not on the
full space of all candidate solutions but on the solutions that are returned by
some underlying algorithm, typically a local search heuristic. [28]

Iterated local search is a local search algorithm that optimalizes param-
eters but only one dimension at a time, it is a one-dimensional variant of
hill climbing. It checks configurations differing in one single change from the
current configuration until it finds a better one. Iterative first improvement
are repeated until no improvement can be made by a single change. This is
most likely to be a local extreme. To escape the local extreme a fixed num-
ber s of random changes are made, and the process of making iterative first
improvements is resumed until a new local maximum is reached and the pro-
cess of perturbation and iterative first improvements are repeated until some
termination criterion is reached. [29]

In [29] author has used this algorithm for MiniSat’s parameter tuning.
There was not feature extraction approach as in AvatarSat, SatZilla and this
thesis, but it was an attempt to tune SAT solvers parameters and there-
fore I mention his solution in this chapter. Results were measured only on
cryptographic instances, concretely factorization problem instances, but this
approach performed surprisingly well. As author has mentioned, it is an open
question how the tuned solver would perform on bigger instances.
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Impact of parameters

The term “structure”, due to its vagueness, leaves much room for interpreta-
tion, though, and it remains unclear how this structure manifests itself and
how exactly it should be exploited. [30]

However, research has advanced since then, and nowdays the structure of
some instances can be exploited.

Base idea of my thesis comes from paper [31], where it was shown that
industrial instances exhibit ”hidden structures” based on which solver is learn-
ing clauses during search. In [23] researchers have shown that formulas with
good community structure tend to be easier to solve.

Variables form logical relationships and we hypothesize that VSIDS exploit
these relationships to find the variables that are most ”constrained” in the
formula. The logical relationship between variables are concretized as some
variation of the variable incidence graph (VIG). [17]

My idea is to exploit this fact, so I will construct a graph which is rep-
resenting each instance, compute various properties of this graph which will
be used as features of instances for machine learning, in addition to standard
features of the instance like number of variables, clauses, their ratios etc.

In this chapter I will present results of my initial data exploration. I
performed several observations on four different classes of problems. On these
classes I observe how the solver’s parameters affect then number of conflicts,
and thus solving time.

23



5.1. Classes of SAT instances selected

5.1 Classes of SAT instances selected

For this thesis I limited myself to four SAT problem classes for which I will
use machine learning to set solvers parameters. I have chosen these:

• Random SAT/UNSAT

• Pigeonhole problem

• Planning

– n2 − 1 problem
– Hanoi towers

• Factorization

I have selected these because they are structurally diverse, and I expect
them to have different demands on parameters.

Random SAT/UNSAT are instances of 3-SAT problem, generated ran-
domly. This class is also part of SAT category in which various solvers are
compared by efficiency they achieve. In SAT competition context the category
is simply called RANDOM.

Pigeonhole problem involves showing that it is impossible to put n + 1
pigeons into n holes if each pigeon must go into a distinct hole. It is well known
that for this combinatorial problem there is no polynomial-sized proof of the
unsatisfiability. [32] Combinatorial problems are also part of SAT competition
category, known as crafted. I chose pigeonhole problem as one representative,
because it can be generated easily with random starting positions with fixed
size.

Planning problems representatives I chose planning problem known as
n2 − 1 problem, or in its fixed size form Lloyd’s fifteen. I generate numbered
tiles order randomly, and aggregate these instances always within fixed size,
for example, I never combine problem of size 4x4 with 5x5. Another repre-
sentative of planning is Hanoi towers problem, this problem is not possible to
”randomize” because initial state is always given, this problem I added out
of curiosity to observe if it will exhibit some similarities to n2 − 1 planning
problem.

Factorization problem is problem of determining whether a big number
is a prime or otherwise it can be factored, is an example of typical INDUS-
TRIAL instance from SAT competition. I chose factorization because its easy
to generate random instances, by simply generate one big random number
and build SAT formula. I will observe for MiniSat deals with satisfiable and
unsatisfiable instances. When factorization instance is satisfiable, it means
that the number is not prime.
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5.2 Correlation of number of conflicts and solving
time

For the initial dataset building process, it is necessary to find close to optimal
solver parameters for which the solving time is lowest possible.

Since some of the harder instances take several tens of seconds to solve, it
would be unfeasible to generate dataset from solving each of these instances
by brute force search on grid of parameter values, thus I decided to build
this dataset from small instances from SATLIB. These instances are usually
solved within fraction of second by Minisat solver, but this approach has a
downside, it is hard to capture real solving time, because for these small
instances overhead usually outweigh useful computation time.

Solving time varies a bit with every run and solving time captured by
MiniSat also includes several system-originated factors which are not desired
to take part in the dataset. However, computation is deterministic with fixed
initial random seed, and number of conflicts for concrete parameters stays
always the same for every run, so it is natural to use number of conflicts as
other metric instead of actual solving time.

The following scatter plot shows strong correlation between number of con-
flicts and solving time on randomly selected instance from SATLIB, thus it is
correct to use conflict count as measurement of performance of the parameters.

Figure 5.1: Correlation between number of conflicts and solving time

The implication from this observation for this thesis is, that I decided to
measure conflicts instead of time, in this chapter and also in the final chapter
about experiments.

25



5.3. Observed parameters

5.3 Observed parameters

Each of the subsections shows how the parameter’s value depend on number
of conflicts for each of aforementioned problem classes. Note that axes do not
have same values in each of the examples. Before I made these plots I first
analyzed at what intervals should I chose to discretize. For example I observed
that variable decay parameter for values in (0, 0.4) always gave bad results so
I avoided those and only examined [0.4, 1). For space-saving purposes I have
omitted label of vertical axis, and it will always be number of conflicts.

Following plots are results of several measurements of impact of one pa-
rameter at the time. For each class of problems I have gathered multiple
instances, either downloaded or generated by myself. I ran MiniSat on every
instance, with concrete parameter value and recorded number of conflicts en-
countered during the search with that value. Then I repeated the same with
different initial random seed and computed mean of number of conflicts for
each instance. Lastly I aggregated results from previous step for each class of
problems by computing mean of conflicts for every parameter’s value.

5.3.1 Variable decay

(a) sat (b) unsat

Figure 5.2: Variable decay on random SAT instances

For random SAT instances in (a) and (b) it is obvious that variable decay
around 0.95 gives best results in terms of least conflicts. For unsatisfiable
instances the plot line is also ”smoother”, this is probably because the solver
has to search entire space so there are not many backjumps which would cut
”heavy” branches.
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5.3. Observed parameters

(a) not prime (b) prime

Figure 5.3: Variable decay on factorization instances

Factorization instances seem to require -var-decay close to 1 for fastest
solving. Again the plot for unsatisfiable instances – prime numbers (b) is
smoother.

(a) n2 − 1 (b) hanoi

Figure 5.4: Variable decay on planning instances

Obviously plots for planning instances are very different from previous
instances. As -var-decay increases from 0.9 higher number of conflicts rises
rapidly, this might mean that planning instances have variables which are
more-less independent, because setting variable decay factor close to value of
1, effectively means algorithm will decay activity of variables very slowly.
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5.3. Observed parameters

(a) pigeonhole

Figure 5.5: Variable decay on pigeonhole instances

Behavior of pigeonhole problem instances seems to be similar to factoriza-
tion.

5.3.2 Clause decay

(a) sat (b) unsat

Figure 5.6: Clause decay on random SAT instances

Plots show that for random instances the fastest solving time is when param-
eter is set to value very close to 1.
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5.3. Observed parameters

(a) not prime (b) prime

Figure 5.7: Clause decay on factorization instances

Similar results as for random instances can be seen here, but the trend
starts to decrease at approximately value of 0.93.

(a) n2 − 1 (b) hanoi

Figure 5.8: Clause decay on planning instances

These rather chaotic plots suggest that -cla-decay parameter does not
matter very much for planning instances.
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5.3. Observed parameters

(a) pigeonhole

Figure 5.9: Clause decay on pigeonhole instances

From the plot it can be seen that there is a decreasing trend from clause
decay. This is similar result as for random and factorization instances.

5.3.3 Restart interval increase factor

(a) sat (b) unsat

Figure 5.10: Restart interval increase factor on random SAT instances

Higher value seems to be better for random instance, but important note is
that the instances on which I performed these aggregations are of smaller size
than in SAT competitions [26]. For those, these plots could look very different.
I hypothesize that for big instances smaller value of this parameter would be
better, because if the value is too high, it might mean that longer the solver
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5.3. Observed parameters

is running, the interval until next restart will be too high, so the much needed
restart would not happen in very long time.

(a) not prime (b) prime

Figure 5.11: Restart interval increase factor on factorization instances

For not prime instances its hard to say which value could be suitable,
prime instances show that values over 10 seems like fastest.

(a) n2 − 1 (b) hanoi

Figure 5.12: Restart interval increase factor on planning instances

For planning instances it is clear that lower values are faster that higher,
(b) graph is clear, and on (a) there is slightly raising trend. But again I think
this is dependent on instance size. Note that x axis have different values on
(a) and (b). Lower value means more frequent restarts, that is suggesting that
solver is often in some local optima, which eventually will not lead to solution.
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5.3. Observed parameters

(a) pigeonhole

Figure 5.13: Restart interval increase factor on pigeonhole instances

Plot shows that for value 5 and higher impact of this parameter does not
show very significant improvement. Higher values are preferred for pigeonhole
problem, this means that the problem demands less restarts because it is doing
some useful work, in other words, the path to solution is narrow so there are
not many branches which lead to nowhere.

5.3.4 Restart interval base

(a) sat (b) unsat

Figure 5.14: Restart interval base on random SAT instances

Initial restart interval around 200 conflicts seems best for random instances.
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5.3. Observed parameters

(a) not prime (b) prime

Figure 5.15: Restart interval base on factorization instances

Nothing can be really drawn from this, apart from that this parameter
does not matter for factoring instances.

(a) n2 − 1 (b) hanoi

Figure 5.16: Restart interval base on planning instances

On both (a) and (b) there is increasing trend, so for planning instances
smaller initial interval is needed, and thus more frequent restarts.
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5.3. Observed parameters

(a) pigeonhole

Figure 5.17: Restart interval base on pigeonhole instances

Decreasing trend suggests that less frequent intervals perform better for
pigeonhole instances, this further confirms the hypothesis made with restart
increase factor in previous section.

5.3.5 Random variable frequency

(a) (b)

Figure 5.18: Random variable frequency on random SAT instances

It is evident that that higher the probability the solver chooses random vari-
able, the worse. The same is observed for all of the other classes of instances,
so I will only provide plots without further comments.
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5.3. Observed parameters

(a) (b)

(c) (d)

(e)

Figure 5.19: Random variable frequency on factorization, planning and pi-
geonhole instances
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5.4. Implications for parameter tuning

5.4 Implications for parameter tuning

The results show that there are some dependencies among parameters and
solving time, thus it makes sense to try and implement machine learning
system to set these parameters automatically depending on input instance.

It is debatable whether I should include parameter -cla-decay in the list
of parameters which will be learned by machine learning technique, since for
all classes of instances value close to 1 was best. I included this parameter
nevertheless.

The parameter -rnd-freq I will not include, because it is clear from the
smooth lines on the presented graphs in previous section, that in every instance
higher value yielded only worse results, and thus I take it as good suggestion
that value of 0 of this parameter is best.

Later when creating dataset for machine learning technique, for each class
of problems I will use grid-search to find optimal parameters. For each instance
of one of the classes, I will set up the grid of parameters to be searched.
The values in this grid will be those, for which I observed to be successful
individually. For example, for random SAT instances I will search the space
of -var-decay ∈ [0.8, 0.95] and -rfirst ∈ [50, 400], because I saw that values
from these intervals showed the best results.
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Chapter 6
Parameter tuning

In this chapter I will describe each of the components of the process of pa-
rameter tuning for MiniSat solver.

Starting with overview of features extracted from SAT instances which try
to describe the structure of the instance as closely as possible.

Next stage is to prepare a dataset for machine learning technique.
In comparison to related works which I listed in chapter 3, I took a slightly

different path in stage of actual learning, instead of treating this problem as
classification task, where features are used for classifying each instance into
class of the problem it most likely belong to, and only then set parameter
values, which are predetermined for each class, I will directly predict values.
Thus the dataset constructed will have n features, where n is number of ex-
tracted features, and 4 target features (parameters: -var-decay, -cla-decay,
-rinc, -rfirst). Thus, the approach I implemented is doing an multi-output
regression.

6.1 SAT instance features

6.1.1 Basic formula features

By basic features I mean characteristics of the instance which were used in
SatZilla’s [25] feature extractor which I have used with an option -base.

These features can be classified into three categories:

1. problem size

2. balance

3. proximity to Horn formula

Problem size features are number of clauses, number of variables, their
ratio. Balance features are ratio of positive and negative literals in each clause,
ratio of positive and negative occurrences of each variable, fraction of binary
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6.1. SAT instance features

and ternary clauses. Horn statistics are fraction of Horn clauses [33] , number
of occurrences in a Horn clause for each variable.

This is just an short overview of what kind of features are extracted by
SatZilla. Detailed description of these features is available in [25].

6.1.2 Structural features

To extract structural features of a SAT problem instance, I have decided to
use three common types of graph representations of a formula as defined next.

Definition 6.1.1. Variable graph (VG) has a vertex for each variable and an
edge between variables that occur together in at least one clause.

Definition 6.1.2. Clause graph (CG) has vertices representing clauses and
an edge between two clauses whenever they share a negated literal.

Definition 6.1.3. Variable-clause graph (VCG) is a bipartite graph with a
node for each variable, a node for each clause, and an edge between them
whenever a variable occurs in a clause.

From the input instance I construct each VG, CG and VCG. All of these
graphs correspond to constraint graphs for the associated constraint satis-
faction problem (CSP) [34]. Thus, they encode the problem’s combinatorial
structure.

For these three graphs I use basic node degree statistics from [25]. Feature
extractor computes degree for every node in each of three types of graphs, so
there are three separate arrays of numbers, from these arrays five statistics are
computed: minimum, maximum, entropy of the array, variance and mean, that
adds up to 15 features. Since SatZilla’s extractor is standalone application, I
decided not to append to their source and implement my own.

I constructed same 3 types of graphs (VG, CG and VCG), and addition-
ally computed several graph properties which I thought could help describe
instance’s structure closely, and at the same time are not too much time ex-
pensive.

• Variable graph features

– diameter
– clustering coefficient
– size of maximal independent set (approx.)
– node redundancy coefficient
– number of greedy modularity communities

• Clause graph

– clustering coefficient
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6.1. SAT instance features

– size of maximal independent set (approx.)

• Variable-clause graph

– latapy clustering coefficient
– size of maximal independent set (approx.)
– node redundancy coefficient
– number of greedy modularity communities

The VG is usually smallest in terms of number of nodes, thus I could
compute more properties on this graph, such as modularity communities and
diameter.

In contract CG is the biggest graph (there are more clauses than variables)
and thus I limited the number of features extracted from this graph to only
two, relatively easy–to–compute features.

VCG has the highest number of nodes among these three types of graphs
(|V ars|+ |Clauses|), but as defined earlier, it is a bipartite graph and some of
the features are easier to compute on bipartite graph than on standard graph.

6.1.3 Clustering coefficient

Clustering coefficient can be computed for every node. It measures how close
its neighbors are to being in a clique (neighbors form a complete graph).

Figure 6.1: Clustering coefficient example [2]

On the left graph the clustering coefficient of a red node is 0, because none
of his neighbors share an edge, middle graph has only 1 edge so the coefficient
would be Cred = 1/3, right graph has all 3 edges in the neighborhood of red
node so Cred = 3/3 = 1.

For undirected graphs is it formally defined as:

Ci = 2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|
ki(ki − 1)
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6.2. Constructed dataset

Where Ni is a set of neighbors of a vertex vi, ki is a number of neighbors
of a vertex vi. Computing clustering coefficient, if implemented properly, has
the complexity of O(n2 logn).

Because VCG graph is bipartite, I need to compute clustering coefficient
there too, but for bipartite network this formula would not make much sense
as the coefficient would be always 0 because neighbor of a vertex is from other
partity and by definition there is no edge between nodes in same partity. For
bipartite graphs there exist a redefinition called ”Latapy clustering coefficient”
[35].

6.1.4 Maximal independent set

Definition 6.1.4. An independent set sometimes called anticlique is a set of
vertices in a graph, no two of which are adjacent.

Definition 6.1.5. Maximal independent set (MIS) is an independent set that
is not a subset of any other independent set.

The problem of finding maximum independent set is called the maximum
independent set problem and is an NP-hard optimization problem itself. How-
ever its approximation can be computed in O(|V |/ log2 |V |) [36].

6.1.5 Greedy modularity communities

I used Clauset–Newman–Moore algorithm [37] for finding communities in a
graph.

Greedy modularity maximization begins with each node in its own com-
munity and joins the pair of communities that most increases modularity until
no such pair exists.

The principle of this algorithm is similar to hierarchical agglomeration
algorithm for detecting community structure which is faster than many com-
peting algorithms.

Its running time on a network with n vertices and m edges is O(md logn)
where d is the depth of the dendrogram describing the community structure.

Many real-world networks are sparse and hierarchical, with m ∼ n and d ∼
logn, in which case the algorithm runs in essentially linear time, O(n log2 n).

6.2 Constructed dataset

Constructing training dataset for learning consists of few steps.
For each instance I ran SatZilla’s feature extractor, then ran my extractor

and combined the computed features into one sample.
I determined the optimal values for every parameter of MiniSat for the

given instance, using the brute-force grid search.
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6.3. Pseudo-code of extracting features

Final step of compiling single sample for the dataset was to add the cor-
responding optimal parameters to the data row of extracted features.

6.3 Pseudo-code of extracting features

Algorithm 3 Extract features
Input: CNF formula φ
Output: An array of numerical values, the features

1: function array stats(arr)
2: min = min(arr)
3: max = max(arr)
4: vc = variance coefficient(arr)
5: mean = mean(arr)
6: return {min,max,vc,mean}
7: end function
8:
9: function extract features(φ)

10: features = ∅
11: V G = buildVG(φ)
12: CG = buildCG(φ)
13: V CG = buildVCG(φ)
14: vg ccoef = clustering coefficient(V G)
15: vg mis = maximal independent set(V G)
16: vg nrdcy = node redundancy(V G)
17: vg mod centr = greedy modularity communities(V G)
18: cg ccoef = clustering coefficient(CG)
19: cg mis = maximal independent set(CG)
20: vcg ccoef = clustering coefficient(V CG)
21: vcg mis = maximal independent set(V CG)
22: vcg nrdcy = node redundancy(V CG)
23: vcg modcentr = greedy modularity communitie(V CG)
24: features = {array stats(x)|∀x ∈ {vg ccoef, vg nrdcy,

vg mod centr, cg ccoef, vcg ccoef, vcg nrdcy,
vcg modcentr}}

25: features = features ∪ {vg mis, cg mis, vcg mis}
26: return features
27: end function
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6.4. Learning

Function array stats is a helper function that computes statistics from
passed input array. Function extract features takes input CNF formula.
On lines 11–13 VG, CG, VCG graphs are constructed. Lines 14–22 compute
various features on each graph. Line 24 apply array stats on variables which
are currently per–node statistics number arrays, from these arrays I compute
statistics minimum, maximum, variance coefficient, mean. Line 25 appends
features vector by 3 values which numbers.

6.3.1 Algorithm complexity

array stats function is obviously O(n), with the size of input array. Build-
ing variable graph buildVG is O(n2), it iterates over every clause and then
over every literal in that clause. Building variable clause graph has the same
complexity as VG. Building Clause graph is the most expensive task to do, for
every pair of clauses, that is O(n2) operation, it checks for intersection of lit-
erals. Intersection of two sets is quadratic in worst case., thus the complexity
of buildCG is O(n4).

6.4 Learning

As underlying machine learning technique I have chosen random forest, as this
is multi-output regression and also data are from 4 distinctive classes which
have different optimal parameter demands, and I believe random forest suits
best for this task.

Another alternative was to use artificial neural net, but since I do not have
large dataset which size would be roughly in thousands of instances.
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6.5 Pseudo-code of learning process

Algorithm 4 Prepare dataset and learning
Input: Set Φ of CNF formulas
Output: Model capable of predicting parameters

1: function compile dataset(Φ)
2: rows = ∅
3: for each φ ∈ Φ do
4: SZ feat = SatZillaFeatures(φ)
5: my feat = extract features(φ)
6: features = my feat ∪ SZ feat
7: targets = optimal params(φ) . precomputed from grid-search
8: sample = (features, targets) . pair
9: rows = rows ∪ {sample}

10: end for
11: return rows
12: end function
13:
14: function train(Φ)
15: D = compile datatset(Φ)
16: model = RandomForrest(D)
17: return model
18: end function

Loop on line 3 goes over every instance in training set. Line 4 calls external
program which computes features featured in SatZilla. Line 5 calls my extrac-
tor defined earlier. On line 6 I combine these two sets of features into one.
Line 7 append corresponding optimal parameters which I precomputed, this
lookup is O(1) because it is ordered in same order as instances in Φ. Line 8
creates a tuple of features and corresponding targets, this is one row for the
dataset. Line 9 appends this row to the end of the dataset.
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Chapter 7
Evaluation

In this final chapter I will present the results achieved, in the form of plots from
which it is evident that the tuned parameters outperform MiniSat defaults.

All graphs in this chapter only show pure solving time. Time spent com-
puting features is not included.

All instances are pre-processed by SatELite instance pre-processor [38]
which is very fast and the time spent preprocessing can be neglected in any
evaluations.

In the following plots there are two columns for each instance next to each
other. Blue columns are performances on tuned parameters, green ones on
the default MiniSat’s parameters. Instances are sorted by number of conflicts
yielded by default parameter.

7.1 Performance on training instances

Figure 7.1: 100 training instances, random, satisfiable
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7.1. Performance on training instances

Instances used for training are from SATLIB, they have constant number of
variables, 250 before preprocessing.

In this plot it can be seen that tuned parameters (blue), are faster for
some of the instances but in fact slower for those instances that can be solved
very fast with default parameters, those are instances which are solved within
single digit number of restarts.

This is probably because the model tends to choose wider restart interval
(in comparison to default’s value of 2, which is quite low), because it was also
trained on the factorization instances, which require less frequent restarts. On
those random instances which take considerable time to solve by default pa-
rameters, the efficiency rises dramatically, and thus tuned parameters should
be used on random instances which have larger number of variables, because
for small instances default parameters perform better.

This could be fixed by including random instances of different sizes in the
training set, so the model could adapt to the size of the instance better, for
example, for small instances restart frequency should be also much smaller.

Figure 7.2: 97 training instances, random, unsatisfiable

For every single random unstatisfiable instance from training set (SATLIB)
the tuned parameters are much faster.

This plot proves that it is worth tuning solver’s parameters in particular
for unsatisfiable instances. There is a slight correlation between heights of
green and blue bars on the graph, unlike for random satisfiable instances.

The hardest instances are from so called phase transition which is a ratio
of clauses to variables around value 4.26, so roughly 4x more clauses than
variables.
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7.1. Performance on training instances

The computation of features is very fast for random instances as they have
balanced ratio of clauses and variables.

Figure 7.3: 25 training instances, factorization, satisfiable (not prime num-
bers)

Twelve out of twenty-five satisfiable instances were actually slower with
tuned parameters but ten of them were easier instances. This is a bit dis-
turbing result as first sight, my hypothesis is that the cause of it, is lack of
easier instances of this type of problem in the training dataset as first half
of the graph shows. On the second half of the graph it can be observed that
for harder instances, only two instances are slightly slower. I would say, for
harder instances these results are positive.

The model does not distinguish well between hard and easier instances,
and as a result it is predicting restart frequency parameters similarly for both
harder and easier instances.

Another possibility can be that there is no information to be captured
from the graph structure about how hard the instance will be.
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7.1. Performance on training instances

Figure 7.4: 10 training instances, factorization, unsatisfiable (prime numbers)

Majority of eight out of ten instances are favoring tuned parameters, for
two easiest instances the default parameters perform better but only by a tiny
bit of 500-1000 conflicts less which is small enough count to be neglected.

The improvement is only moderate, nowhere near the improvement ob-
served on random unsatisfiable instances.

Figure 7.5: Training instances, pigeonhole problem

First two bars are insignificant, but on remaining the big improvement can
be seen. Even though the training dataset contained only these four instances
of pigeonhole problem (because higher order of this problem is very difficult
and it was infeasible to perform gridsearch on many parameters values), the
model was able to predict values correctly.
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7.2. Performance on testing instances

This might mean that the structure of this instance is vastly different from
all the other instances from classes.

7.2 Performance on testing instances

As a testing set for random instances I generated instances randomly but with
300 variables in compparison to SATLIB’s 250, to observe whether the model
will be able to predict values correctly also for instances which are much harder
than the ones it was trained on.

Figure 7.6: 36 testing instances, random, satisfiable

Plot shows very good results, so this verify my hypothesis, that even model
trained on smaller instances can perform good on bigger.

For harder instances (second half of the plot ), there is only one instance
which takes almost twice as much with tuned parameters as with the default
ones.

This is probably because the structures of the random instances are ho-
mogeneous regardless of their size.
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7.2. Performance on testing instances

Figure 7.7: 60 testing instances, random, unsatisfiable

Observed results are remarkable, all instances are faster on tuned param-
eters by at least 2x, on some instances, mostly harder ones, 3x faster.

The key takeaway is that the parameter tuning is very effective way to
improve SAT solvers performance on unsatisfiable instances.

Figure 7.8: 15 testing instances, factorization, satisfiable

Similar results as on training set can be seen here for factorization, sat-
isfiable instances. Performance is better on harder instances, from harder
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7.3. Planning instances

instances only one is outperformed by default settings. Easier instances are
solved faster by default settings, most likely because of low base restart inter-
val.

Figure 7.9: 13 testing instances, factorization, unsatisfiable

For testing set I picked 2 easy instances, which can be seen as first 2 bars,
then a few average hard instances and one very hard, the last bar.

For easy instances there is no improvement, for medium instances predicted
parameters give steadily 100000 conflicts, worth noting is that, the same is for
instances in the training set. For hard instance number of conflicts is also close
to 100000, and almost 2x speedup can be seen. Tuned parameters perform
more less the same as default ones but I hypothesize that, that as hardness of
the instances increase the speedup would get more significant with it.

7.3 Planning instances

It is unfortunate that I was unable to train the model for planning problems.
This is due to computational burden that I discovered later, while trying to
extract features from the planning instances.

Constructing clause graph and computing features on it for planning in-
stances is usually very big due to the nature of planning instances, which have
very large number of clauses.

If I were to start over, I would not include clause graph for planning
instances, and focus more on graph properties of corresponding VG and VCG
graphs.
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Conclusion

One of the goals of this thesis was to experimentally show that there is a depen-
dency of SAT solver’s parameters on solving time. This was fully illustrated in
chapter 5 about the impact of parameters, on set of four, structurally diverse,
SAT instances of: 1st random 3SAT instances, 2nd combinatorial problem
– the pigeonhole problem, 3rd planning problem and 4th factorization SAT
instances.

The dependencies were measured on five of the MiniSat’s parameters re-
garding heuristics (variable decay, clause decay, random variable selection
frequency) and regarding restarts (restart interval increase factor, and base
restart interval).

Most visually evident dependencies were observed on random SAT in-
stances which exhibited clear dependency on all five parameters, Apart from
planning instances, every class showed dependency on clause decaying fac-
tor. Unsurprisingly, each of the studied classes were dependent on parameters
regarding restart frequency.

Second goal was to explore various input instance features and experiment
with automated setting of MiniSat’s parameters. This was achieved success-
fully in chapter 6 about parameter tuning where I provided two pseudo-codes
which I also implemented and used to evaluate predicted parameters in chap-
ter 7.

Last goal was to evaluate how predicted parameters perform on both train-
ing set and testing set. This was partially successfully done, it is quite a
disappointment that I was not able to evaluate the performance on planning
instances as they are most connected to the real-life application of SAT solvers,
due to their nature of having large number of clauses, which are multiplied
by the complexity of building CG and computing features on it. However for
other classes of instances I accomplished my goal.

The most positive achievement was tuning parameters for unsatisfiable
random SAT instances, where for handful number of instances tested I achieved
even 3x speedup.
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Overall conclusion of the thesis is that I fulfilled all goals which I set in
the introduction chapter.

As a suggestion for a future work I would try to focus more on computing
features of VG and VCG and leave CG out as it is very computationally ex-
pensive and often causes feature extractor execution time to outweighs actual
solving time.
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[11] Fernando Pérez, B. G. JuPYteR Notebook, a web-based interactive com-
putational environment for creating Jupyter notebook documents. Avail-
able from: https://jupyter.org/

[12] Davis, M.; Putnam, H. A computing procedure for quantification theory.
In J. ACM, vol. 7, no. 3, 1960, pp. 201–215.

[13] Tseitin, G. S. On the Complexity of Derivation in Propositional Calculus.
In Springer Berlin Heidelberg, 1983, pp. 466–483.

[14] Biere, A.; Biere, A.; et al. Handbook of Satisfiability: Volume 185 Fron-
tiers in Artificial Intelligence and Applications. NLD: IOS Press, 2009,
ISBN 1586039296.

[15] Moskewicz, M. W.; Madigan, C. F.; et al. Chaff: engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference
(IEEE Cat. No.01CH37232), 2001, pp. 530–535.

[16] Marques Silva, J. P.; Sakallah, K. A. GRASP-A new search algorithm for
satisfiability. In Proceedings of International Conference on Computer
Aided Design, 1996, pp. 220–227.

[17] Liang, J. H. Machine Learning for SAT Solvers. Dissertation thesis, 2018,
[Cited 2020-19-6].

[18] Harder, J. Development of SAT solver. 2014, [Cited 2020-2-7]. Avail-
able from: https://www.isp.uni-luebeck.de/sites/default/files/
jannis-harder-bsc-thesis.pdf

[19] Bayardo, R. J.; Schrag, R. C. Using CSP Look-Back Techniques to Solve
Real-World SAT Instances. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence and Ninth Conference on Innovative
Applications of Artificial Intelligence, AAAI’97/IAAI’97, AAAI Press,
1997, ISBN 0262510952, p. 203–208.

54

http://user.it.uu.se/~tjawe125/software/pigeonhole/
http://user.it.uu.se/~tjawe125/software/pigeonhole/
https://jupyter.org/
https://www.isp.uni-luebeck.de/sites/default/files/jannis-harder-bsc-thesis.pdf
https://www.isp.uni-luebeck.de/sites/default/files/jannis-harder-bsc-thesis.pdf


Bibliography

[20] Moskewicz, M. W.; Madigan, C. F.; et al. Chaff: engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference
(IEEE Cat. No.01CH37232), 2001, pp. 530–535.

[21] Beanie, P.; Kautz, H.; et al. Understanding the Power of Clause Learn-
ing. In Proceedings of the 18th International Joint Conference on Artifi-
cial Intelligence, IJCAI’03, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003, p. 1194–1201.

[22] Gomes, C. P.; Selman, B.; et al. Boosting Combinatorial Search through
Randomization. In Proceedings of the Fifteenth National/Tenth Confer-
ence on Artificial Intelligence/Innovative Applications of Artificial Intel-
ligence, AAAI ’98/IAAI ’98, USA: American Association for Artificial
Intelligence, 1998, ISBN 0262510987, p. 431–437.

[23] Pipatsrisawat, K.; Darwiche, A. A Lightweight Component Caching
Scheme for Satisfiability Solvers. In Theory and Applications of Satis-
fiability Testing – SAT 2007, edited by J. Marques-Silva; K. A. Sakallah,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, ISBN 978-3-540-
72788-0, pp. 294–299.

[24] D’Ippolito, N.; Frias, M.; et al. Alloy+HotCore: A Fast Approximation
to Unsat Core. 02 2010, pp. 160–173, doi:10.1007/978-3-642-11811-1 13.

[25] Xu, L.; Hutter, F.; et al. SATzilla: Portfolio-based Algorithm Selection
for SAT. J. Artif. Intell. Res., volume 32, 2008: pp. 565–606.

[26] SAT competition website. Available from: http://
www.satcompetition.org/

[27] Ganesh, V.; Singh, R.; et al. AvatarSAT: An Auto-tuning Boolean SAT
Solver. 08 2009.

[28] Lourenço, H.; Martin, O.; et al. Iterated Local Search: Framework and
Applications, volume 146. 09 2010, ISBN 978-1-4419-1663-1, pp. 363–397,
doi:10.1007/978-1-4419-1665-5 12.

[29] Pintjuk, D. Boosting SAT-solver Performance on FACT Instances
with Automatic Parameter Tuning. 2015, [Cited 2020-15-7]. Avail-
able from: https://www.diva-portal.org/smash/get/diva2:811289/
FULLTEXT01.pdf

[30] Sinz, C.; Dieringer, E.-M. DPvis – A Tool to Visualize the Structure of
SAT Instances. In Theory and Applications of Satisfiability Testing, edited
by F. Bacchus; T. Walsh, Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, ISBN 978-3-540-31679-4, pp. 257–268.

55

http://www.satcompetition.org/
http://www.satcompetition.org/
https://www.diva-portal.org/smash/get/diva2:811289/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:811289/FULLTEXT01.pdf


Bibliography
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Appendix A
Acronyms

CDCL Conflict-driven clause-learning

CG Clause graph

CNF Conjunctive normal form

CSP Constraint satisfaction problem

DP Davis–Putnam algorithm

DPLL Davis–Putnam–Logemann–Loveland algorithm

SAT Boolean satisfiability problem

SVM Support vector machine

VCG Variable-clause graph

VG Variable graph

VSIDS Variable state independent decaying sum
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Appendix B
Software description

Software source codes accompanying this thesis which I implemented during
writing this thesis is experimental, meaning that the main purpose was to
produce necessary graphs, plots, statistics etc.

It is not stand-alone application ready to be used in practice as that was
not part of my assignment.

Source code is written in Python, specifically across multiple Jupyter note-
books.

The following section I will mention frameworks, languages and tools which
were used in this thesis.

B.1 Python

Python is an interpreted, high-level, general-purpose programming language.
Created by Guido van Rossum and first released in 1991, Python’s design phi-
losophy emphasizes code readability with its notable use of significant whites-
pace.

For implementation I chose programming language Python [39], because I
am most familiar with it and it libraries, and also because there was expected
a lot of interactive data science, scientific computing and manipulation with
the data which is comfortably done in Jupyter Notebook.

B.2 JuPYteR Notebook

The JuPYteR Notebook is an open-source web application that allows you to
create and share documents that contain live code, equations, visualizations
and narrative text. Uses include: data cleaning and transformation, numeri-
cal simulation, statistical modeling, data visualization, machine learning, and
much more. [11]
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B.3. Numpy and Scipy

All the code I wrote is in Jupyter notebooks, it is easy to execute, easy
to make changes and immediately see the results without need for switching
between IDE and multiple terminals.

B.3 Numpy and Scipy

NumPy is a library for the Python programming language, adding support
for large, multi-dimensional arrays and matrices, along with a large collection
of high-level mathematical functions to operate on these arrays. [40]

SciPy is a free and open-source Python library used for scientific computing
and technical computing. SciPy contains modules for optimization, linear
algebra, integration, interpolation, special functions, FFT, signal and image
processing, ODE solvers and other tasks common in science and engineering.
[41]

I used both libraries when manipulating data, preparing data for plotting,
generating instances SAT for testing, and much more.

B.4 Pandas

In computer programming, pandas is a software library written for the Python
programming language for data manipulation and analysis. In particular, it
offers data structures and operations for manipulating numerical tables and
time series. It is free software released under the three-clause BSD license.
[42]

Pandas was used for concatenating multiple tabular data, storing and sort-
ing results.

B.5 Scikit-learn

Scikit-learn is a free software machine learning library for the Python pro-
gramming language. It features various classification, regression and cluster-
ing algorithms including support vector machines, random forests, gradient
boosting, k-means and DBSCAN, and is designed to interoperate with the
Python numerical and scientific libraries NumPy and SciPy. [43]

I used scikit’s implementation of Random forest algorithm for training the
predictive model. I also used it for generating parameter’s grid for grid-search.

B.6 Matplotlib

Matplotlib is a plotting library for the Python programming language and its
numerical mathematics extension NumPy. It provides an object-oriented API
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B.7. NetworkX library

for embedding plots into applications using general-purpose GUI toolkits like
Tkinter, wxPython, Qt, or GTK+. [44]

Every data plot in this thesis was rendered by matplotlib.

B.7 NetworkX library

NetworkX is a Python package for the creation, manipulation, and study of
the structure, dynamics, and functions of complex networks. [45]

NetworkX’s graph implementation was used for constructing VG, CG, and
VCG. Four of graph algorithms were used to compute SAT instance’s features.
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Appendix C
Contents of enclosed CD

readme.txt ........................... detailed CD contents description
src ...................................................... source codes
text src.......................... thesis latex source codes and images
2020 Beskyd Filip thesis.pdf............................thesis PDF
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