
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 8, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: SFTP Proxy for AWS S3

 Student: Bc. Matej Matula

 Supervisor: Ing. Tomáš Janeček

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

SFTP is the most widely used open-source standardized protocol to exchange files, it is based on the SSH
protocol and communicates in streaming fashion.
AWS is one of the most prominent cloud providers and its Simple Storage Service (S3) is object storage (file
storage) exposed via REST API.

The goal of the thesis is to design and implement a Java service (using existing open-source libraries) and
which will expose an SFTP endpoint, backed by AWS S3.
It should be possible to connect to the service using any SFTP client and upload, download and list files and
directories stored in AWS S3.
The service should be configurable to map different AWS S3 paths to different users. Users will be
authenticated by the public key.
The service should be published under MIT license on GitHub or a similar platform.

One of the main challenges will be to come up with an efficient way to bridge the streaming SFTP protocol
with request/response based AWS S3 REST API.

References

Will be provided by the supervisor.

Master’s thesis

Sftp proxy for AWS

Bc. Matej Matula

Department of Software Engineering
Supervisor: Ing. Tomáš Janeček

July 30, 2020

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on July 30, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Matej Matula. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Matula, Matej. Sftp proxy for AWS. Master’s thesis. Czech Technical Univer-
sity in Prague, Faculty of Information Technology, 2020.

Abstrakt

Pokrok v technológii, najmä v oblasti cloud computingu, tlačí čoraz viac po-
užívateľov k využívaniu svojich služieb. Používatelia používajú svoje úložné
servery už mnoho rokov. Prechod na úložisko typu cloud nemusí nutne zna-
menať, že používatelia musia prestať používať svojich obľúbených klientov
SFTP alebo prepísať časť kódovej základne, ktorá s ňou komunikuje. Táto
práca sa zaoberá vytvorením služby okolo úložiska S3 Amazon Web Service,
ktoré funguje ako server SFTP. Týmto spôsobom môžu klienti/procesy pokra-
čovať v prístupe k súborom uloženým v S3 pomocou existujúceho protokolu
SFTP s existujúcimi metódami autentifikácie SFTP, takže prechod do cloudu
nie je zrejmý.

Klíčová slova AWS, amazon-web-services, S3, sftp

Abstract

The progress in technology, especially in cloud computing pushes more and
more users into using their services. Users have been using their storage servers
for many years. Moving to cloud-based storage doesn’t necessarily mean users
have to stop using their favorite SFTP clients or rewrite part of the codebase

v

that handles communication with it. This thesis deals with creating a service
around Amazon Web Service’s S3 storage that acts like SFTP server. This
way, client/processes can continue to access the files stored in S3 using the
existing SFTP protocol with existing SFTP authentication methods making
the transition to a cloud seemless.

Keywords AWS, amazon-web-services, S3, sftp

vi

Contents

Introduction 1

1 Objective 3
1.1 State of art . 3

1.1.1 Transfer family . 3

2 Concepts 5
2.1 Network protocol . 5
2.2 SSH . 5
2.3 Public-key cryptography . 6
2.4 SSH public key authentication 6
2.5 SFTP . 6
2.6 Cloud computing . 7
2.7 REST . 7
2.8 API . 7
2.9 High-availability . 7
2.10 Eventual Consistency . 7
2.11 Amazon web service . 8
2.12 AWS S3 . 8

2.12.1 AWS S3 - Bucket . 9
2.12.2 AWS S3 - Objects . 9
2.12.3 AWS S3 - Keys . 9
2.12.4 AWS S3 - Regions . 9
2.12.5 Amazon S3 data consistency model 10
2.12.6 Proxy . 11

3 Technologies 13
3.1 Java . 13
3.2 GitLab . 13

vii

3.2.0.1 SSHD MINA 13
3.2.1 JSCH . 13
3.2.2 Maven . 14

4 Analysis and design 15
4.1 Requirements . 15
4.2 Requirement analysis . 15
4.3 Functional requirement . 16
4.4 Non-functional requirements . 16
4.5 Use cases . 17

4.5.1 Owner . 19
4.5.1.1 Configuration 19
4.5.1.2 Creating accounts 19
4.5.1.3 Permission and mapping for bucket 19

4.5.2 User . 19
4.5.2.1 Login . 19

4.5.3 Listing files . 19
4.5.4 Removing files . 20
4.5.5 Renaming files . 20
4.5.6 Moving files . 20
4.5.7 Uploading files . 20
4.5.8 Downloading files . 20
4.5.9 Creating directories . 20
4.5.10 Deleting directories . 20

4.6 User scenarios . 20
4.6.1 Owner . 20

4.6.1.1 Configuration 20
4.6.1.2 Creating accounts 22
4.6.1.3 Permission and mapping for bucket 22

4.6.2 User . 24
4.6.2.1 Login . 24
4.6.2.2 Listing files . 25
4.6.2.3 Removing files 26
4.6.2.4 Renaming files 27
4.6.2.5 Uploading files 28
4.6.2.6 Downloading files 29
4.6.2.7 Creating directories 30
4.6.2.8 Deleting directories 31
4.6.2.9 Moving files 32

5 Realisation 33
5.1 Configuration . 33
5.2 MINA . 34
5.3 Authentication . 36

viii

5.4 S3 proxy . 37
5.4.1 Listing files . 39
5.4.2 Other communication with AWS 40

5.5 First approach - overriding methods that handle command pro-
cesing . 40

5.6 Second approach - implementing FileSystem and Java NIO . . 42
5.7 S3Path . 42
5.8 S3FileSystem . 43
5.9 FileSystemprovider . 43

5.9.1 Determining AWS path from local Path 43
5.9.2 Opening and reading directories 43
5.9.3 Retrieving information about files 45
5.9.4 Opening files . 48
5.9.5 Downloading file . 48
5.9.6 uploading files . 50
5.9.7 Creating directories . 52
5.9.8 Deleting . 52
5.9.9 Renaming and moving files 52
5.9.10 Clearing reasources . 53

6 Performance 55
6.1 Goal . 55
6.2 The way of measuring . 55
6.3 Enviroment . 56
6.4 Measuring . 56

6.4.1 Upload . 57
6.4.2 Download . 59
6.4.3 First observation . 60
6.4.4 More accurate way . 60
6.4.5 Comparing the overheat of SFTP 62

7 Testing 67
7.1 Unit testing . 69

7.1.1 Testing filesystem . 69
7.2 Mapping Test . 71
7.3 Util Test . 72
7.4 Integration Test . 72

Conclusion 75

Bibliography 77

A Acronyms 81

B Contents of enclosed CD 83

ix

List of Figures

2.1 data consistency model . 11

4.1 Diagram of actors . 17
4.2 Use cases . 18
4.3 Activity diagram of creating configuration 21
4.4 Activity diagram of creating user account 22
4.5 Activity diagram of creating user mapping of buckets and permissions 23
4.6 Activity diagram of connecting to server 24
4.7 Activity diagram of listing files . 25
4.8 Activity diagram of removing files 26
4.9 Activity diagram of renaming files 27
4.10 Activity diagram of uploading files 28
4.11 Activity diagram of downloading files 29
4.12 Activity diagram of create directories 30
4.13 Activity diagram of deleting directories 31
4.14 Activity diagram of moving files 32

5.1 MINA . 36
5.2 Authentication on server . 37
5.3 factory class . 38
5.4 Opening and reading directory . 41
5.5 Opening dir . 45
5.6 Diagram of happy flow of retreiving file attributes 47
5.7 Diagram of happy flow of downloading file 49
5.8 Diagram of happy flow of uploading files 51

6.1 Bar graph upload times on EC2 using multiple files 57
6.2 Bar graph of the transfering speed of the upload 58
6.3 Bar graph of download times on EC2 using multiple files 59
6.4 Bar graph of the transfering speed of the download 60

xi

6.5 Bar graph of upload times on EC2 with overheat 61
6.6 Bar graph of download times on EC2 with overheat 62
6.7 Bar graph of compared overheats 63
6.8 Bar graph of overheats using MINA’s default functionality 64
6.9 Bar graph of the comparasion of the overheats 65

xii

List of Tables

1.1 transfer family cost table . 4
1.2 transfer family cost table . 4

6.1 Table of EC2 specifications . 56
6.2 Table of upload times on EC2 using multiple files 57
6.3 Table of the transfering speed of the upload 58
6.4 Table of download times on EC2 using multiple files 59
6.5 Table of the transfering speed of the download 59
6.6 Table of upload times on EC2 with overheat 61
6.7 Table of download times on EC2 with overheat 62
6.8 Table of compared overheats . 63
6.9 Table of overheats using MINA’s default functionality 64
6.10 Table of the comparasion of the overheats 65

xiii

Introduction

As the technology progresses, so raises the access to the information and the
reason to store the information. With this, the storage requirement for that
information has also increased. The amount of data stored can be so big,
users need to use multiple storage servers. For this reason, many companies
moved to cloud services, with unlimited online storage capacity. Cloud stor-
age provides a web user interface and API allowing the users to manipulate
or communicate with cloud or manipulate with their stored data. Users usu-
ally communicate with their storage servers using SSH File Transfer Protocol
(SFTP), thus moving to a different storage service can lead to broken or dys-
functional production code, scripts, or API. Some cloud services provide SFTP
endpoint, but it is not free. Users, paying for cloud services, need to pay extra
for SFTP endpoints. Teams using cloud services need to manage access to
particular storage, create and grant access to members of the team individu-
ally using on the level of their cloud service. In some use cases, it is preferred
to map the stored data into a custom directory structure for better clarity or
more explicit meaning of the content of data. Using official SFTP endpoints,
users are obliged to stick with the directory structure of cloud service and their
way of granting access to specific storage. This thesis was created to fulfill
the need of custom mapping and creating users with specific permissions on
the level of applications. In section ”Objective” I talk what is the aim of the
thesis and describe what solution could be used as a replacement. In section
”Concepts” I explain and describe terms that I use in this thesis, so the reader
will be familiar with them. In section ”Technologies” I describe technologies
that were used to create and/or test this application. In the section ”Analysis
and design” I explain terms used in analysis and identify requirements for
the creation of this application and describe them using use cases and user
scenarios accompanied by activity diagrams for each user scenario. In section
”Implementation” I describe the process of creating the application, explain-
ing the structure, dependencies, and relationships between each package while
also describing the thought process behind the work. In the section ”Perfor-

1

Introduction

mance” I demonstrate the times it takes to upload and download files using
the application and compare it to the default way of uploading and download-
ing files to AWS. In section ”Testing” I explain the way testing was done and
explain the idea behind the test. In ”Conclusion” I write my thoughts of this
work and future possibilities that can be achieved with this work and possible
adjustments or expansion of this work.

2

Chapter 1
Objective

The objective of this thesis is to create a proxy for AWS that acts as an
SFTP server and store the underlying files to AWS S3 behind the scenes.
Additionally, the application should support custom mapping between AWS
S3 bucket and the SFTP file tree with configurable permissions at a user
account level.

1.1 State of art
Currently, there are not many solutions that could be used. Big corporations
tend to use official endpoints that come with fees. The fees vary from cloud to
cloud. Various cloud services charge various fees with various ranges of price.
Amazon web services currently provide one service for integrating S3 storage
with SFTP servers.

1.1.1 Transfer family
”The Amazon Web Services provide official and fully managed support for file
transfers directly into and out of Amazon S3. It supports Secure File Transfer
Protocol (SFTP), File Transfer Protocol over SSL (FTPS), and File Transfer
Protocol (FTP), you select the protocols, identity provider, and endpoint
configuration to enable transfers over the chosen protocols”.[1]

This service is not free of charge. You pay for every hour the server is
running and for every gigabyte you(or your team)upload or download. The
pricing table for SFTP protocol is shown in the table below:

3

1. Objective

Name of the service price
Time SFTP is enabled on your endpoint $0.30
SFTP data uploads $0.04 per gigabyte (GB) transferred
SFTP data downloads $0.04 per gigabyte (GB) transferred

Table 1.1: transfer family cost table

Using the example listed on the official site, the cost of SFTP server run-
ning for one month with 1gb trasnfered:

Cost of endpoint $0.30 * 24 hours * 30 days = $216
Cost of data transfer $0.04 * 1 GB * 30 days = $1.20
total $216 + $1.20 = $217.20.

Table 1.2: transfer family cost table

4

Chapter 2
Concepts

In this section I describe and explain terms used in this thesis.

2.1 Network protocol

The easiest and the most straightforward way how to explain what network
protocol stands for is as predefined rules that describe how to format, send, and
receive data. Network protocols allow communication between two sides by
following these predefined rules. “In a sense, protocols are to communication
what algorithms are to computation. An algorithm allows one to specify or
understand a computation without knowing the details of a particular CPU
instruction set. Similarly, a communication protocol allows one to specify or
understand data communication without depending on detailed knowledge of
a particular vendor’s network hardware.”[2]

2.2 SSH

”Secure Shell (SSH) is a cryptographic network protocol for operating net-
work services securely over an unsecured network.”[3] Networks services can
be secured with SSH. SSH operates on the client-server model, which means
SSH client connects to the SSH server over a channel. In order for connection
to be established, the remote machine must run software operating the SSH
server(usually called SSH daemon), which listens on a specific network port,
authenticate incoming requests, and handles the communication. SSH server
Applications using SSH provides a command-line interface, log in to server
and remote command execution on the server.SSH server provides numerous
ways of authentication including the most basic way - using a password, and
the most common way - public key authentication.

5

2. Concepts

2.3 Public-key cryptography
Public-key cryptography, or asymmetric cryptography, is a cryptographic sys-
tem that uses public keys, which may be disseminated widely, and private
keys, only known to user. The generation of keys depends on cryptographic
algorithms based on mathematical problems to produce one-way functions.
For maximum and effective security, the private key must be kept private; the
public key can be openly distributed without compromising security.[4] The
public key of the receiver is used by the sender to encrypt the message sent
over the channel and the private key of the receiver is used by the receiver to
decrypt the message encrypted by his public key.

2.4 SSH public key authentication
In order to authenticate using the public key, the user needs to generate a key
pair - private and public key. The public key must be copied into a file within
the user’s home directory, to ~/.ssh/authorized_keys.

When users want to authenticate to the SSH server, the server checks its
authorized\keys file for the public key, generates a random message, and
encrypts it with the user’s public key. Client, upon receiving the encrypted
message from the server, decrypts the message using his private key, adds
session ID which was previously negotiated and generates MD5 hash from
this value, and sends it back into the server. The server knowing the session
ID and sent message compares MD5 hashes and decides if the client is in
possession of the private key or not, and thus authenticating him or not.

2.5 SFTP
”A file transfer utility provides a means of exchanging files between two com-
puter systems sharing a network. This involves copying a file from a file system
on one computer running some operating system to the file system on another
computer running another operating system.”[5] SSH File Transfer Protocol
(or Secure File Transfer Protocol) is a network protocol that provides file ac-
cess, file transfer, and file management over any reliable data stream. This
protocol has currently 6 versions and requires authentication to the server it
is connected to, usually runs over SSH session. SSH provides a secure channel
between client and server (or remote computer). We shoudln’t confuse SFTP
with FTP run over SSH. It is new protocol designed from the ground up by the
IETF SECSH working group. Simple File Transfer Protocol is often confused
with SFTP.[6] Unlike FTP (File transfer protocol) SFTP transfers are over the
control channel, thus there is no need to open another data channel in order
to complete the file transfer. In this time, SFTP is pretty much considered as
a standard for secure data transfer.

6

2.6. Cloud computing

2.6 Cloud computing
Cloud computing is the on-demand delivery of IT with pay-as-you-go pricing.
User does not buy, own, and maintain physical data centers and servers, in-
stead user can access technology services, for example computing power, stor-
age, and databases, on an as-needed basis from a cloud provider like Amazon
Web Services (AWS).[7] Cloud computing enables organizations or other users
to obtain a flexible, secure IT infrastructure with , in same way that national
electric grids enable homes to plug into energy source.[8] In other words, it
means accessing, storing, and manipulating data and programs over the in-
ternet on the remote machine instead of on the local computer. According to
researches supporting cloud services in applications accounts for more than a
third of all IT spending worldwide.

2.7 REST
The REST Web is the subset of the HTTP based World Wide Web, in which it
provides uniform interface semantics, create, retrieve, update and delete, and
manipulate resources only by the exchange of representations and messages.[9]
The REST communication is stateless, meaning each communication does
dont depend on state of conversation or application. Each exchanged message
is standalone message.

2.8 API
Application Programming Interface(API) is software intermediary, that allows
two applications to talk to each other. For example client programs use API
to communicate with web services. In other words, API exposes a set of data
and functions for better communication.

2.9 High-availability
Systems that provide nearly full-time availability are known as high availabil-
ity systems. These are the systems that provide their functionality even after
a failure occurs in the system, either hardware or software. The most common
way of providing High availability is to have duplicated system components.
If one becomes unable to provide its functionality another one can be used,
there is no single point of failure.[10]

2.10 Eventual Consistency
Eventual consistency(or optimistic replication) is a consistency model used in
distributed computing to achieve high availability that informally guarantees

7

2. Concepts

that, if no new updates are made to a given data item, eventually all accesses
to that item will return the last updated value.[11]

The idea behind eventual consistency is quite simple it consists of 3 steps:

• Replica data across all participans(every node of server).

• On each participant perform updates locally.

• Propagate local updates to others participants.

Nodes must be configured to handle conflicted updates consistently so the
behavior will be deterministic. Eventually, consistent systems may return any
value before all values across every participant are propagated and system
converges.

2.11 Amazon web service
Amazon web service(AWS) is easy to use computing platform offered by Ama-
zon. It offers flexible and scalable cloud computing services. AWS uses the
”Pay-as-you-go” model, meaning user’s fees are calculated based on multiple
factors. The user can select and configure hardware, OS, software, networking
features required availability, redundancy, security, and service options. It is
a combination of infrastructure as a service, platform as a service and software
as a service offering.

2.12 AWS S3
”Amazon Simple Storage Service (Amazon S3) is an object storage service that
offers industry-leading scalability, data availability, security, and performance.”[12].
It is used to store, retrieve, or manipulate with any amount of data remotely.
Any file can be uploaded or downloaded from AWS storage.

The concept of S3 revolves around Buckets and Objects. The bucket is
a container for objects. There can be multiple buckets for the user account.
Everything that is stored inside S3 is an object. This object has meta-data
attached to it (name of the object, size, and date). Every object needs to
be placed inside the bucket, where it is identified by a unique identifier (key).
Objects also include their Access Control list that indicates whether object
can be shared across the internet or not. As of today, AWS S3 offers various
features:

• Storing objects up to 5 TB in size.

• Read and write entire object.

• Every object has a unique developer assign key.

8

2.12. AWS S3

• Collect objects into bucket.

• Every object has a unique URL.

• Full control of access rights.

• Eventual consistency data model.

• Supports versioning.

2.12.1 AWS S3 - Bucket
A bucket is a container for every objects stored in Amazon S3. Bucket cannot
contain another bucket. Every object stored on AWS S3 must be contained
in a bucket.[13]

Buckets serve several purposes:

• They organize the Amazon S3 namespace at the highest level.

• They identify the account responsible for storage and data transfer
charges.

• They play a role in access control.

• They serve as the unit of aggregation for usage reporting.

Buckets can be configured to be created in specific region.

2.12.2 AWS S3 - Objects
Objects are fundamental for Amazon S3. They containts object data and meta
data.[13] The data portion is opaque to Amazon S3. The metadata is a set of
name-value pairs that serves as the way to describe the object. These include
some default metadata, such as the date last modified, and standard HTTP
metadata, such as Content-Type. Custom meta-data can be declared too.[13]

Object are uniquely identified inside a bucket they belong to.

2.12.3 AWS S3 - Keys
A key is a unique identifier for an object stored inside the bucket. Every object
can have only one key. The objects inside AWS S3 are uniquely identified by
bucket, key, and version ID of said object.

2.12.4 AWS S3 - Regions
Regions represents the geographical AWS Region where buckets will be stored.
Regions can be chosen to reduce latency or cost. Objects stored in a Region
never leave the Region unless you explicitly transfer them to another Region.
For example, objects stored in the Europe (Ireland) Region never leave it.

9

2. Concepts

2.12.5 Amazon S3 data consistency model
Amazon S3 provides read-after-write consistency for PUTS of new objects in
S3 bucket.However if a HEAD or GET request to a key name before the object
is created is made, and object is created after that request a subsequent GET
might not return the object due to eventual consistency.

Amazon S3 offers eventual consistency for overwrite PUTS and DELETES
in all Regions.

Updates to a single key are atomic. If PUT is used on existing key, a
subsequent read might return the old data or the updated data. However it
will never return corrupted, or partial data.

Amazon S3 achieves high availability by replicating data across multiple
servers within AWS data centers. If a PUT request is successful,data is safely
stored. This change must be first replicated across Amazon S3, before the
replicaiton is completed following behavior can be observed.

• A process writes a new object to Amazon S3 and immediately lists keys
within its bucket. Until the change is fully propagated, the object might
not appear in the list.

• A process replaces an existing object and immediately tries to read it.
Until the change is fully propagated, Amazon S3 might return the pre-
vious data.

• A process deletes an existing object and immediately tries to read it. Un-
til the deletion is fully propagated, Amazon S3 might return the deleted
data.

• A process deletes an existing object and immediately lists keys within
its bucket. Until the deletion is fully propagated, Amazon S3 might list
the deleted object. [13]

10

2.12. AWS S3

Figure 2.1: data consistency model
Source: https://docs.aws.amazon.com/

2.12.6 Proxy
A proxy server is a server application or appliance that acts as an intermediary
for requests from clients seeking resources from servers that provide those
resources.[14] In other words, the proxy server is masking the origin of the
request to the resource server and masks the origin of the requested data
to the client. Client, instead of communicating directly with the resource
server communicates with the proxy server that handles retrieving requested
resources from the resource server and sending it to the client.

11

Chapter 3
Technologies

3.1 Java
Java is a general-purpose programming language. Java is class-based and
object-oriented. It is intended to let developers write once, run anywhere
(WORA),[15] meaning that compiled Java code can run on all platforms that
support Java without the need for recompilation.[16]

Java was selected for business reasons, as this application should be part
of bigger systems written in java.

3.2 GitLab
”GitLab is a web-based DevOps lifecycle tool that provides a Git-repository
manager providing wiki, issue-tracking and continuous integration/continuous
deployment pipeline.”[17]

3.2.0.1 SSHD MINA

Apache SSHD is a 100% pure java library to support the SSH protocols at
client and server side. This library is based on Apache MINA, a scalable and
high performance asynchronous IO library.

SSHD’s purpose isn’t to replace the SSH client or SSH server from Unix op-
erating systems, but to provides support for Java based applications requiring
usage of SSH.[18]

3.2.1 JSCH

JSch is a pure Java implementation of SSH2. JSch allows user to connect to
an sshd server. It can be used as client side of the sftp.

13

3. Technologies

3.2.2 Maven
Maven is tool that is used for automation of build in mainly for Java projects.
Maven resolves around concept of a Maven Build Lifecycle. A lifecycle is
composed of one or more sequential phases in a fixed order.[19] Maven mainly
solves two problems of building the software project. How the software is
build, and its dependencies. order (imposed by the Maven designers).

14

Chapter 4
Analysis and design

Analysis and design is a crucial step of software development, that assures we
are aware of criteria required by the development and we meet expectations
of quality of developed software. It also helps to transform specifications into
implementation - human-readable specifications into code.

4.1 Requirements
The software requirements are a description of software functionalities and
capabilities. They describe how the act, appear, or perform.

4.2 Requirement analysis
In software engineering, requirements analysis has goal to determine the needs
to meet the criteria of the new product or project, taking account of the pos-
sibly conflicting requirements , analyzing, documenting, validating software
requirements.[20]

The results of the requirement analysis should be the answer to the ques-
tion ”what software must do ”

A side product of requirement analysis are use cases which are usually iden-
tified and created during requirement analysis and help to describe functional
requirements in use case scenario

15

4. Analysis and design

4.3 Functional requirement
Functional requirements explain what has to be done by identifying the nec-
essary task, action, or activity that must be accomplished. Functional re-
quirements analysis will be used as the top-level functions for functional
analysis.[20]

Following functional requirements were identified during requirement anal-
ysis:

• Adding layer of communication with AWS S3 - application must be able
to communicate with AWS S3 with given credentials for authorization
with user still using SFTP protocol

• Defining user accounts on application level - application must be able to
define users account, given credentials and connection to AWS S3

• Deciding if user account acts as typical SFTP server or communicates
with AWS S3 - application must allow user to choose, if given account
is account communicating with AWS S3 proxy with given credentials,
or is account that communicates with remote machine, thus acting as
basic SFTP server

• Adding mapping of bucket to custom folder and adding permission -
application must be able to specify custom mapping of AWS S3 bucket
to selected directory structure, thus allowing more explicit meaning of
stored data and add permission to those mappings

4.4 Non-functional requirements
Non-functional requirements are requirements that specify criteria that can
be used to judge the operation of a system, rather than specific behaviors.

These non-functional requirements have been identified during analysis:

• Secure authentication - application must use a secure way of authenti-
cation - public key authentication instead of less secure password au-
thentication

• User cannot notice that it is not communicating with SFTP server - the
communication with AWS S3 must be hidden from the user

• The private key of the server must be loaded from the classpath

16

4.5. Use cases

4.5 Use cases
Use cases are actions that describe the interaction of a defined role within the
application. As mentioned earlier, use cases were identified during requirement
analysis.

Actor(or a role) ”specifies a role played by a user or any other system that
interacts with the subject.”[21] We can distinguish two different user roles in
this application. They divide the functionality of the application based on the
selected user role.

• Owner/Admin

• User

• The owner/Admin is the person running the application. Owner/Ad-
min’s purpose is to configure the application and to create users and
adding permissions to them, thus allowing other user roles to fully use
the functionality of the application.

• The user is a target user of the application, that uses the functionality
of this application to communicate with a remote SFTP server or AWS
S3 storage.

Figure 4.1: Diagram of actors

17

4. Analysis and design

According to identified actors, we can assign use cases to each actor

Figure 4.2: Use cases

18

4.5. Use cases

4.5.1 Owner
4.5.1.1 Configuration

The owner configures the whole application using in-application config. The
owner sets the running port of the application and buffer sizes for downloading
and uploading files to AWS S3 storage. The owner can configure if the upload
and download will be paraller or not, and number of threads that will be used.

4.5.1.2 Creating accounts

The owner creates user accounts, he adds user name and a public key which
serves for public-key authorization. Depending on what type of account of
what account owner wishes to create, either account that communicates with
AWS or account that acts as typical SFTP accounts, the owner creates an
instance of the selected user account.

4.5.1.3 Permission and mapping for bucket

While creating an account, the owner sets mapping for the bucket. He sets
what bucket from passed AWS S3 instance should be mapped on directory
structure he chooses, adding permissions access to this bucket. Let’s say we
have following buckets in AWS :

bucket1
bucket2
The Owner can choose the directory structure where this buckets will be

mapped to. For example he can do following mapping:
bucket1 —> /dir1/dir2/bucket1
bucket2 —> /dir1/dir2/bucket1/bucket2
In the SFTP client, all files in bucket1 will have prefix
/dir1/dir2/bucket1
added to their path
and all files in bucket2 will have prefix
/dir1/dir2/bucket1/bucket2
added to their path.

4.5.2 User
4.5.2.1 Login

User logs in into the application using his credentials.

4.5.3 Listing files
User can list files in directory.

19

4. Analysis and design

4.5.4 Removing files
User can remove file.

4.5.5 Renaming files
User can rename file.

4.5.6 Moving files
User can move file.

4.5.7 Uploading files
User can upload file.

4.5.8 Downloading files
User can download file.

4.5.9 Creating directories
User can create directory.

4.5.10 Deleting directories
User can delete directory.

4.6 User scenarios
User scenarios are stories that help to show or demonstrate how can selected
actor achieve the goal in the application. It describes the interaction of user
and system in greater detail than use cases, helping target audience to better
understand the concept of use case and understand the functionality.

4.6.1 Owner
4.6.1.1 Configuration

The owner adds dependency of SFTP proxy for AWS to his project, creates an
instance of Configuration, and sets required parameters of this configuration.
Basic configuration attributes such as port, private key path, and list of users
are required in each and every configuration. Each specific implementation of
the Configuration interface may require additional parameters in order for it
to work as expected. After creating this configuration, the owner passes it to
the server which uses its parameters to set up the application.

20

4.6. User scenarios

Figure 4.3: Activity diagram of creating configuration

21

4. Analysis and design

4.6.1.2 Creating accounts

The owner creates an account by creating an instance of one of the imple-
mentations of the UserConfiguration interface. According to what the user
account owner wishes to create he selects appropriate implementation. Every
user account needs to have a user name, the public key in string format, and
file system that decides what file system will operate on user’s requests (and
thus deciding if user account shall be typical SFTP account or account that
communicates with AWS S3 storage). Each specific implementation of the
UserConfiguration interface may require additional attributes in order for it
to work. After creating a wanted user account, the owner passes it to the
configuration.

Figure 4.4: Activity diagram of creating user account

4.6.1.3 Permission and mapping for bucket

In a specific account that communicates with AWS S3 storage, the owner needs
to specify the mapping of buckets to his created and selected custom directory
tree. In every mapping, the owner specifies what bucket to be mapped, custom

22

4.6. User scenarios

directory tree where it should be mapped, and permissions of the user whom
the mapping belongs to this bucket.

Figure 4.5: Activity diagram of creating user mapping of buckets and permis-
sions

23

4. Analysis and design

4.6.2 User

4.6.2.1 Login

The user decides what client he wants to use for SFTP connections. The user
inputs his username and his private key for authorization. If users credentials
matches the account stored in servers configuration user is connected to the
SFTP server, if not user’s credentials are refused and to log into the server he
needs to input correct credentials.

Figure 4.6: Activity diagram of connecting to server

24

4.6. User scenarios

4.6.2.2 Listing files

User logs into the server. Users can change freely directory using the client of
his choice. User sends command to list the files and the files are returned to
the users.

Figure 4.7: Activity diagram of listing files

25

4. Analysis and design

4.6.2.3 Removing files

Users logs into the server. Changes directory to a directory that contains file
he wants to remove and remove specific file by sending command using the
client of his choice. Users can delete files by specifying the whole path of the
file, thus he can omit changing directory.

Figure 4.8: Activity diagram of removing files

26

4.6. User scenarios

4.6.2.4 Renaming files

User logs into the server. Changes directory to a directory that contains file
he wants to remove and rename the specific file by sending command using
the client of his choice. User provide the name of the file he wants to rename
and the new name of said file. The name of the new file must be unique to the
directory it is stored in, there cannot exist file or directory with user-specified
new name of the file.

Figure 4.9: Activity diagram of renaming files

27

4. Analysis and design

4.6.2.5 Uploading files

User logs into the server. User changes directory to directory where he wants
to put a new file and upload the file by sending command using the client of
his choice. The user specifies the file he wants to upload and uploads files.
Users can change directory and select a current working directory as a place
where to upload file or he can specify the absolute path where to upload the
file.

Figure 4.10: Activity diagram of uploading files

28

4.6. User scenarios

4.6.2.6 Downloading files

User logs into the server. User changes directory to directory that contains
file he wants to download and downloads the file by sending command using
the client of his choice. The user specifies the file he wants to download
and download path. Users can change directory and select a current working
directory as a place where to upload file or he can specify the absolute path
where to upload the file.

Figure 4.11: Activity diagram of downloading files

29

4. Analysis and design

4.6.2.7 Creating directories

User logs into the server. The user changes the current working directory
to directory where he wants to create a directory and creates directory be
sending command using the client of his choice providing the name of the
directory. The name of the directory to be created must be unique, meaning
there must not exist any file/directory with that name in the directory where
a new directory should be created.

Figure 4.12: Activity diagram of create directories

30

4.6. User scenarios

4.6.2.8 Deleting directories

User logs into the server. User changes directory to directory which contains
directory he wants to delete and deletes directory be sending command using
the client of his choice. In order for a directory to be deleted, it must not
contain any files or directories. Otherwise, error informing the user that the
directory is not empty is returned.

Figure 4.13: Activity diagram of deleting directories

31

4. Analysis and design

4.6.2.9 Moving files

User logs into the server. Changes directory to a directory that contains file
he wants to move and moves the specific file by sending command using the
client of his choice. User provide the name of the file he wants to move and
the new destination of the file. The new destination of the file must be unique,
there cannot exist file or directory with user-specified new destination of the
file.

Figure 4.14: Activity diagram of moving files

32

Chapter 5
Realisation

In this section, I describe the process of creating an application and explain
particular dependencies and relationships between packages.

5.1 Configuration
The first step of realization was to create a configuration that would hold all
information needed for the server to run in one place. As mentioned earlier,
every configuration needs to specify the port on which the application will
listen on. The port must be available. If the user knows what port will be
free he can directly pass port to configuration. There is another possibility to
find a free port. To find a free port user can open a new server socket(passing
port number 0 will result in finding available port to listen on), get its port
number, and close the socket. Example of this code could look like this:

private int generateRandomPort() {
ServerSocket s = null;
try {

s = new ServerSocket(0);
return s.getLocalPort();

} catch (Exception e) {
throw new RuntimeException(e);

} finally {
assert s != null;
try {

s.close();
} catch (IOException e) {

e.printStackTrace();
}}}

33

5. Realisation

Another required attribute of every configuration is the path to the private
key that ensures the identity of the server will not change after restarting the
application. The private key needs to be retrieved from the classpath. The
last required parameter that every configuration needs to have is a list of users.
Configuration for S3 needs additional parameters. This configuration needs
to have S3ProxyFactory, which provides AmazonS3 client, the client provided
by Amazon Web Services that serves as tool for direct communication with S3
storage. The next attributes required by configuration for the proxy server are
download batch size and upload batch size. These attributes serves as a way
to define the size of a buffer the data will be loaded to and then downloaded
from, and the size of buffer the data will be stored to and then uploaded from.
S3 storage has minimum upload size when uploading files in parts(the last
part can be smaller), this minimum size is 5MB of data, thus the minimum
value of upload batch size is this value, throwing an error if user inputs a
smaller value. The bigger this value is the bigger buffer is which leads to
bigger memory consumption by uploading files but ultimately leads to fewer
requests to S3 thus leading to lower cost when uploading a file. Download
batch size has no limits, but cannot be 0 or less. The buffer for downloading
is not a direct requirement of AWS S3 storage but serves as an abstraction
for fewer requests to the S3 storage, which are paid and resulting in a smaller
cost of downloading the requested file. Instead of retrieving data for every
SFTP request, we preload the bigger batch of data. Last two arguments are
indicator, if the download and upload should be done in paraller way and how
many threads should be used for this.

5.2 MINA

For this project, SSHD Apache MINA was selected as the SFTP library. Mina
supports both client and server-side. The project includes MINA as maven
dependency and extends its functionality for the desired purpose. Mina of-
fers custom implementations of PublickeyAuthenticator that offers users to
implement their own way of authorization using the public key. Mina is ini-
tialized by creating an instance of a server. We set the port, which the server
will listen on(as mentioned, port must be free), add the path to the private
key that will ensure the identity of the server won’t change after restarting
the application. SshServer takes any implementation of KeyPairProvider for
the private key. For this project, BouncyCastleGeneratorHostKeyProvider
was chosen with .pem key format. SshServer requires factories of subsystem,
which will be created after the user logs in and will handle communication
with SFTP. In this project, custom factory was created, which creates an in-
stance of the custom subsystem that extends the functionality of the SFTP
subsystem provided by MINA(which is described later in this section) Last
important argument for this project is PublicKeyAuhtneticator that handles

34

5.2. MINA

the way users are authenticated. The server is started and stopped using its
start() and stop() method. The start method is non-blocking which means an
infinite loop must follow to assure application won’t stop. The stop method
must assure all resources are freed.

In the project this code part of code is used to initialize server:

sshd = SshServer.setUpDefaultServer();
sshd.setPort(configuration.getPort());
sshd.setKeyPairProvider(new BouncyCastleGeneratorHostKeyProvider(
Paths.get(ClassLoader.getSystemResource(configuration.getPrivateKeyPath()).toURI())));

CustomSftpSubSystemFactory factory = new
CustomSftpSubSystemFactory.Builder()

.withS3ProxyFactory(configuration.getS3ProxyFactory())

.withDownloadBatchSize(configuration.getDownloadBatchSize())

.withUploadBatchSize(configuration.getUploadBatchSize()).build();

sshd.setSubsystemFactories(Collections.singletonList(factory));
sshd.setPublickeyAuthenticator(new

UserKeySetPublickeyAuthenticator(configuration.getUserConfigurations()));
sshd.start();

In project, we take mina and connect custom parts to it. Mina calls them in
its internal implementation.

35

5. Realisation

Figure 5.1: MINA

5.3 Authentication
As mentioned earlier, public key authorization is used for authenticating users.
Custom made PublickeyAuthenticator takes a list of users as a constructor
parameter. In the constructor, the user list is mapped into a map, with
the name of the user as key and user as value. During authenticating, the
authenticate method is called internally, which takes the user name and public
key of user that is trying to authenticate as an argument. The method first
checks if the map contains any value with an arrived user name, if not the
user does not exist and returns false. If the user with arrived user name
exists, the method compares the public key that has arrived and the public
key stored on the server belonging to the user name. If they match the user,
the user has provided correct credentials and object representing this user is
stored into the session of connection and true is returned, meaning the user
is authorized, otherwise false is returned and the user needs to connect with
correct credentials.

36

5.4. S3 proxy

Figure 5.2: Authentication on server

5.4 S3 proxy
In this part, proxy around communication with AWS is discussed. The proxy
resides in its own package. All classes in this package are related to this
communication.

S3 proxy provides communication with Amazon web Services. S3Proxy is
created by a proxy factory which is a necessary parameter of S3Configuration.
Users can implement the S3ProxyFactory interface and create his own imple-
mentation deciding the way S3Proxy will be created. S3ProxyFactory needs
an instance of AmazonS3 for remote communication with AWS which is sup-
plied to it as an argument to its constructor. AmazonS3 is SDK provided by
Amazon. S3 storage provides REST API for users, AmazonS3 is a wrapper
that encapsulates REST API calls and handles mapping to classes provided by
this SDK. Internally, S3Proxy makes calls to AWS using AmazonS3, mapping
results to classes defined in its package, and returning them. During mapping
to its own classes, S3Proxy takes only required parameters from returned ob-
jects.

It is up to the user to provide the way Supplier<AmazonS3> for S3ProxyFactory
is created or retrieved, the user can create it the way that suits his use cases.

37

5. Realisation

Figure 5.3: factory class

This Supplier will be used for every account created and passed to configu-
ration, meaning they will all share the same credentials. In order to retrieve
credentials, the user will need to register on the AWS site and configure his
account first.

Every call using AmazonS3 object may throws two exceptions:

• AmazonServiceException - indicating that request send to amazon was
correct, however service was not able to process it for some reason

• SdkClientException - indicating the service could not be contacted or
client couldnt parse response from the service. It is base exception for
all client exceptions, however it is good practice to catch AmazonSer-
viceException and then SdkClientException

The S3Proxy defines its exception called S3ProxyException. AWS excep-
tions are caught and then mapped into S3ProxyException which is thrown
from all methods that communicate with S3. By this concept, implementa-
tion is hidden from outside of the package. S3Proxy is interface thus allowing
us to create end-to-end testing.

38

5.4. S3 proxy

5.4.1 Listing files
The purpose of listing files is to retrieve info about files inside the directory.
However S3 does not know the concept of directories, everything is just an
object. The user interface of S3 may show directories, but it is just an ab-
straction around it.

AmazonS3 provides a method for listing the files called listObjects. This
method takes ListObjectsRequest as an argument. In order to list the files,
we need to pass the bucket name, prefix, and delimiter to this request. The
bucket represents the name of the bucket, we want to list the object from. The
prefix indicates prefix of the file we want to list directories from, for example,
if we had directory structure such as

/bucket/dir1/dir2/file1
/bucket/dir1/dir2/file2
/bucket/dir1/dir2/dir3/file3
/bucket/dir1/dir2/dir3/file4

and we wanted to list files contained in directory dir2, we would pass prefix
such as

/bucket/dir1/dir2
This alone would list all objects that contain a said prefix, including

/bucket/dir1/dir2/dir3/file3
/bucket/dir1/dir2/dir3/file4

which is unwanted behavior in the typical non-recursive directory listing. For
this we pass delimiter argument into the request, passing ”/” will result in the
typical directory listing, not recursive.

The delimiter causes keys that contain the same string between the prefix
and the first occurrence of the delimiter to be grouped into a single result
and stored in the CommonPrefixes collection. This collection is not returned
elsewhere in the response. Each rolled-up result counts as only one return
against the MaxKeys value[aws docs listing].

After receiving a response from amazon storage, the response is mapped
into S3Proxy’s own class holding the information. The response contains
metadata about requests and responses, but also a list of common prefixes
that we can interpret as directories and list of summaries of objects inside our
specified directory.

Since bucket can hold unlimited numbers of objects, amazon splits the
response using pagination for a large list of objects. Due to this fact we need
to check if the list is truncated or not, and send another request depending
on it. This is ideally done in loop until non truncated list is returned from
amazon.

39

5. Realisation

5.4.2 Other communication with AWS
Other communications with S3 storage are simple calls to amazon using their
AmazonS3 object. All exceptions in these calls are caught and mapped into
S3ProxyException which was mentioned earlier. Every return value (if there
is) is mapped into S3Proxy’s own class thus hiding the implementation and
removing the need for another dependency when using the S3Proxy package.

Some method may require more arguments, for more clarity, instead of
passing raw arguments, Requests are implemented. The specific requests hold
all data needed for the method which ensure more clarity and less chance for
failure.

5.5 First approach - overriding methods that
handle command procesing

The main class that provides processing SFTP commands is SftpSubsystem.
This class contains core functionality for SFTP processing. The first version
of the application tried to override its functionality by extending this class
and override methods invoked during the processing of particular commands.
This approach works quite well, however, it, in a certain way violates ”Don’t
repeat yourself” principle. This principle deals with reducing the repetition
of software patterns and redundancy.

Each method invoked to process the SFTP command receives buffer as a
parameter. This buffer represents data sent by the client to the server includ-
ing all metadata, parameter, and data itself needed to execute the command.
Needles to say, this buffer needs to be parsed. Overring these methods require
to implement once again the parsing of this buffer, extracting all information
needed. Not only it could lead to faulty parsing of the buffer, it directly
violates the ”Don’t repeat yourself” principle.

Another violation comes with handling the handles. Every time SFTP
wants to read the content of the directory, upload, or download file, it needs
to create a handle first. The reason for this simple. None of these processes
are finished in one request. To read and list the data of directory, SFTP
client sends openDir requests to the server. The server creates a handle for
the desired directory, assigning unique hash to it and storing it. This handle
then contains a list of files in the directory. As a response, the server sends a
generated handle hash to the client. SFTP then sends readDir command to
the server with received handle as a parameter. The server then parses the
handle parameter and extracts DirectoryHandle which it reads the content of
directory from. This command is repetitively sent by the client until EOF is
returned, indicating no more files from the directory are left to be read.

40

5.5. First approach - overriding methods that handle command procesing

Figure 5.4: Opening and reading directory

Reading and downloading files are handled correspondingly. Initially, the
client sends an open request that opens the file and generates a handle hash
which is sent back to the client. Each subsequent write or read command then
works with this handle.

Due to this, implementing an application with this approach would re-
quire to create custom handles, each for directory and file further violating
the ”Do not repeat yourself” principle. Apache MINA does not provide the
easy(or pretty) way how to override the functionality of it’s defined handles.
Implementing whole new handles is the best way to achieve the wanted result.
However, this also adds extra work in the overriding of the SftpSubSystem.

Another reason this approach was discarded was due to the way MINA
is implemented. To write clean and readable code and follow Separation of
Concern principle we should separate SFTP handling and abstraction around

41

5. Realisation

AWS, meaning every method handling processing of commands should have
the following structure:

• parse buffer for required information

• call service that handles communication with AWS

• send response to the client with appropriate parameters

But in many cases, the service would need to import dependencies from
MINA itself, which is the quite unwanted situation and would complicate
development, if we wanted to switch MINA for any other library, or if MINA
would publish a new version that would have newly found crucial bugs or
vulnerabilities fixed, but changed the structure of the project or used Java 9
modules. This can be avoided by once again violating ”Do not repeat yourself”
principle and implementing required dependencies from MINA once again in
the service.

5.6 Second approach - implementing FileSystem
and Java NIO

The second and last approach was through implementing custom FileSystem,
FileSystemProvider, and Path interfaces provided by standard JDK. SftpSub-
System takes SftpFileSystemAccessor as a constructor parameter. This file
accessor is used to open files and directories. However, this is not used when
renaming or deleting directories. In order to delete or rename the directory,
MINA uses Java NIO File technology. Fundamentally file accessor uses the
same way of handling files, making implementing custom FileSystem, FileSys-
temProvider, and Path the optimal way how to handle all operations. In this
case, SftpSubSystem is also extended, but no method for command handling
is overwritten. The purpose of this extended class is to keep original function-
ality, but add the way for the user to pass arguments from configuration to
it, and to set filesystem.

5.7 S3Path
The Path interface represents the system dependant file path. This custom
S3Path represents the AWS path. It presents functions to retrieve file names
from the path, its parents, subpath, and or sibling. This path has a direct
dependency on the FileSystem that created it. Every time command is being
processed, the path to the file is represented as S3Path, fundamentally the
provider from FileSystem attached to S3Path is extracted, and particular
methods are invoked to achieve the goal.

42

5.8. S3FileSystem

5.8 S3FileSystem
Custom implementation of FileSystem is a root of functionality. When the
connection for the user is established, this custom file system is set for the
user. The most important function of this file system is creating S3Paths and
holding a reference to custom S3FileSystemProvider.

5.9 FileSystemprovider
Custom implementation of FileSystem provides the business logic for abstrac-
tion around AWS. It handles communication with the S3Proxy package and
logic that is required for some operations.

5.9.1 Determining AWS path from local Path
Thanks to custom mapping, the path of the file that is received by the server
isn’t in the exact format, meaning we cant use this path to make AWS call.
We must first determine what mapping to use and then use this mapping to
construct the AWS path from the local path. During initialization map of
prefixes for every mapping is created, if we have the mapping

/dir1/dir2/dir3
the map of preffixes contains

/dir
/dir/dir2
/dir/dir2/dir3

values indicating if its full path or not, in this case only /dir/dir2/dir3 is the
full path.

The rules for determining the best candidate for mapping are simple, the
mapping that contains the longest prefix is the most suitable. However, the
path must contain a full prefix to be considered as adequate mapping. In case
we have the following mapping

/bucket1 -> /dir1/dir2/bucket1
/bucket2 -> /dir1/dir3/bucket1/bucket2

And the path for listing for listing is
/dir1/dir/bucket1

the first mapping is considered as AWS mapping, for second mapping does
not contain full prefix thus making it local mapping instead.

5.9.2 Opening and reading directories
While the client sends openDir request server creates a handle for the direc-
tory(opening it) that contains the content of the required directory. Opening
the directory is handled by FileSystemProvider. During opening the directory,
the stream is created. This stream contains Collection of DirEntries - that

43

5. Realisation

represents entry(files) in the directory. In order for S3FileSystemProvider to
retrieve entries, it must determine if it should list directory from the custom
structure, or make a call to S3Proxy and receive data from AWS. The provider
first iterates over all mappings, checking if the path for listing matching any
local path, if yes it adds next directory as the entry. For example, if our
mapping looks like

/bucket1 -> /dir1/dir2/bucket1
/bucket2 -> /dir1/dir3/bucket1/bucket2

And the path for listing for listing is
/dir1
the provider would return dir2 and 3 entries. In the next step, the provider

retrieves matching mapping for AWS and makes a call to the bucket belonging
to this mapping.

In the full example, if our mapping looks like
/bucket1 -> /a/b/bucket1
/bucket2 -> /a/b/bucket1/c

and the directory path to be listed was
/a/b/bucket1

the provider will first check all mappings and see if any this path represent
any local path in mapping, in this case, it represents a local path in the second
mapping

/bucket2 -> /a/b/bucket1/c
it takes the mapping, and returns next dir in the tree, in this case

c
then it determines the mapping to list AWS files. In this case, both mappings
contain the requested URL, however as mentioned earlier, the most suitable
mapping is the mapping with the longest full prefix. In this case, it is

/a/b/bucket1
for it is the full path. This approach as consistent with how mounting works
in the unix world. i.e we can think of the bucket as being mounted into the
virtual filesystem tree exposed by SFTP. When the provider determines the
mapping, it constructs the AWS path from the local path and calls S3Proxy
to list files. After receiving data from S3Proxy, provider extract directories
and summaries of objects and map it into the SftpFile. This process repeats
as long as the batch of files is truncated, issuing the call to S3Proxy to load
the next batch of files until all files are loaded. When all files are loaded they
are stored inside DirectoryStream waiting to be read.

This process is done during creating the handle for a directory as men-
tioned in previous chapters. The handle holds the reference to this directory
stream and retrieves the iterator to a collection stored inside. During reading
MINA uses this iterator to indicate if there are any entries left to read or not.

44

5.9. FileSystemprovider

Figure 5.5: Opening dir

5.9.3 Retrieving information about files

Information about files can be requested using doStat, doLstat or doFstat
command. These two, doStat and doLstat differ only in one thing, doLstat
follows symbolic links. The last command, doFstat is the same as doStat, but
handle hash is required instead of a path to the file. Pieces of information
about the file can be also requested internally, for example during the listing
of files in the directory, we must know its size, name, modified date, and other
attributes.

We must somehow find out these pieces of information. When we want to
retrieve attributes of a local directory, no call to AWS is needed. The only
thing we need to know about the local file is that it is always the directory, and
we consider its size 0. To retrieve information about files from AWS we must
make a call to AWS using S3Proxy. The incoming path does not distinguish

45

5. Realisation

between files and directories, making it a little bit harder to determine if
we want information about file or directory inside AWS. Directories are an
abstraction in AWS, but we can simulate directory inside AWS by creating a
file with ”/” suffix, that acts as a directory. So whenever we want to retrieve
the file from AWS, we must check if the file with fileName exists and if not if
the file with fileName + ”/” exists. We must assure there will never be case
when both of these files exists during uploading files.

Knowing this, we can retrieve files by first trying to retrieve files with
a given fileName, and if it does not exist we need to try to retrieve files
with fileName and ”/” suffix, if none exists, NoSuchFileException is thrown
indicating file does not exist.

46

5.9. FileSystemprovider

Fi
gu

re
5.
6:

D
ia
gr
am

of
ha

pp
y
flo

w
of

re
tr
ei
vi
ng

fil
e
at
tr
ib
ut
es

47

5. Realisation

5.9.4 Opening files
To open files, Java NIO newChannel method is invoked. This creates a channel
that acts as a gateway to the file’s properties. We distinguish two types of
opening. Opening for reading and opening for the downloading. During the
first one, we must first check if the file with the same name with ”/” suffix, as
we try to upload, exists. This ensures no file and directory inside AWS with
the same name will exist and prevents trouble and unwanted behavior.

During downloading, we must find out the size of the file, for we need to
know the exact data we want to download, otherwise, an error could occur
from the AWS. The type of opening is distinguished by an attribute that is
passed by SFTP, thanks to this we can find the mapping that represents the
path and determine if we have access for demanded operation.

5.9.5 Downloading file
During the downloading of the file, previously discussed S3FileChannel is used.
Since we are dealing with AWS files, we need to retrieve parts of objects from
S3 storage using S3Proxy. This is where downloadBatchSize from configura-
tion comes in play. We can call S3Proxy to get part of an object from AWS
on every read call from SFTP(every call to AWS is paid), or we can approach
this the better way, and preload batch of data, store it in the buffer and read
data from it instead of calling AWS every time, thus saving calls and saving
money. On top of this, accessing AWS S3 API for every SFTP read message
would be extremely slow - hence some kind of buffer is necessary. The fact
that buffer size is configurable allows the user to choose the appropriate trade-
off between high memory consumption of the application(larger buffers) and
more frequest S3 API calls with higher cost(smaller buffers).

The initial read loads the amount of data as defined by downloadBatchSize
and store it in the buffer. Next reads take data from this buffer, if the size
of the data we want to read is bigger than elements left in the buffer, we
simply load the next batch of data from AWS to fill the buffer. This process
is repeated until no data in AWS is left and all data from the buffer are read,
making the reading process finished.

During the call to the AWS, we must calculate the start and end of the
inclusive byte range to download. If we want to retrieve more data than
object offers, an error response could be returned from AWS, meaning we
must compare the total number of data read + the size of the data we want to
fetch with the total file size which was preloaded during the open command
and adjust the requested size of data in the last call to AWS.

If the parallel flag is set in configuration, loading data from AWS is done
in parallel way, each thread from number of threads defined in configuration
is used to load batch of data. Each thread knows the range of data to load,
and know the position in buffer where to store it.

48

5.9. FileSystemprovider

Fi
gu

re
5.
7:

D
ia
gr
am

of
ha

pp
y
flo

w
of

do
w
nl
oa

di
ng

fil
e

49

5. Realisation

5.9.6 uploading files
While uploading files, we must take into consideration that the file may be
big and thus may require multiple SFTP write calls. AWS handles uploading
the big file using MultipartUplad. Before we start uploading files, we issue
the start of the multi-part upload. This returns multipart upload id, that we
store inside the map. We use this upload id to tell AWS which upload the
part of the file belongs to. This is where the uploadBatchSize parameter from
configuration comes in play. AWS allows 5 MB as the minimum size of the
part that is being uploaded, with the exception of the last part that can be
smaller. The parameter indicates how big uploaded parts will be, the bigger
buffer saves AWS calls(thus money) but demands bigger memory space. It is
up to the user to choose his preference.

When we upload files, we check if we have multipart upload id, if not we
issue a call to AWS and retrieve one. This multipart upload is then stored
inside S3FileSystemProvider. Then we start storing data into the buffer, when
buffer proceeds uploadBatchSize parameter, we send the part to the AWS.
This process repeats as many times as the buffer gets filled. When every data
from the file is sent from the client to the server, the close command is sent
to the server. During this, we flush everything that is the inside buffer(if
any data are still not sent to AWS) and inform AWS to finish the multipart
upload. After this, the file is uploaded.

When parallel flag is set in configuration, each upload is handled in thread
meaning we can upload the data and at the same time recieve another data
from SFTP and starts to fill another buffer. When the close is issued, we wait
for all threads to finnish uploading and then we finnish upload same way we
finnish it using non parallel version.

50

5.9. FileSystemprovider

Fi
gu

re
5.
8:

D
ia
gr
am

of
ha

pp
y
flo

w
of

up
lo
ad

in
g
fil
es

51

5. Realisation

5.9.7 Creating directories
When we create file in AWS with name that represents directories, these direc-
tories are shown in AWS console. For example if we create file /dir1/dir2/file.txt
both, dir1 and dir 2 are shown inside the AWS console. But they are not di-
rectories, as soon as we delete file /dir1/dir2/file.txt
both directories are deleted too since they serve no other real purpose. We
want to have directories that persists, that can contain zero files and be
empty. In order to achieve this, we can upload empty file, with empty meta-
data. Doing this we create directory that persists even if all files inside are
deleted. When MINA recieves mkdir command, it delegates the command to
S3FileSystemProvider that creates directory - a file with content length 0.

5.9.8 Deleting
There are two cases when considering deleting the file. It’s either a regular file
or directory. The first thing we need to do is to check what kind of file we are
deleting. We retrieve objects from AWS as discussed earlier and determine if
we are dealing with the directory or regular file. If the file to be deleted is
a regular file, we simply construct the AWS path and use S3Proxy to delete
the file. As per standard, the directory cannot be deleted if not empty. If we
are dealing with directory we must first check if the directory is empty. We
achieve this by trying to list files located in this directory using S3Proxy. If
the directory isn’t empty, we throw an exception indicating it is not empty,
otherwise, we delete the directory. In order to delete the directory that is not
empty, the client must send recursive delete - delete all items inside and then
directory itself.

5.9.9 Renaming and moving files
According to the SFTP standard, SFTP does not know support command,
but rename suits this functionality. Similar to SFTP, AWS does not know
the concept of renaming or moving files. What we can do, however, is to
copy the file with a different name, and delete the original file. Renaming or
moving regular file is simple, we just rename it and do checks if file like that
already exists. When renaming or moving directories we must first consider
the structure of files. As mentioned earlier, AWS does not know the concept
of directories, meaning when we have a structure similar to this:

/bucket1/dir1/file1
and we rename

dir1
to

dir2
path /bucket1/dir1/file1
still exists, because dir1 does not represent the directory, it is part of the full

52

5.9. FileSystemprovider

name of the file. This means, when moving or renaming directory, it is not
enough to just rename or move the directory itself, we must do the same action
for every file that is ”contained” in this directory, in order to move the whole
directory. When MINA receives rename or move command and delegates it
to S3FileSystemProvider, we first check if its regular file or directory. If its
regular file we simply copy objects with the new name and delete the old
one. If it is the directory, we first list every file contained inside. Then we
proceed to determine the new name of each file and copy the file. When we are
copying files with the big path (e.g path containing directories) we first create
each directory, and then copy the final object - ensuring we create persistent
directories and not ”AWS” directories that cease to exists after files inside are
deleted.

5.9.10 Clearing reasources
When we prematurely stop downloading file, or upload wont finish(it will not
tell AWS to finish multipart-upload) we need to clear resources, either clear
buffer or abort the multipart upload. In case of canceling uploading or down-
loading file, close() command is sent to server from client. This command
is sent in both cases, prematurely canceling or finnishing. For this type of
closing FileChannel provides implCloseChannel() method, where we can clear
resources in case of downloading, and finnish multipart upload in case of up-
loading file. When finnishing multipart-upload, we need to first check if buffer
is empty. If not we send data left in buffer as another part of multipart-upload
and then finnish it. However in case connection closes or client disconnected,
filesystem’s close() method is used. In this methos all unfinished multipart
uploads are aborted. The same can also be acomplished by configuring AWS
to automatically abort multipart uploads after some period of time.

53

Chapter 6
Performance

6.1 Goal

The goal of this section is to demonstrate the difference in times it takes to
download and upload the file. The extended functionality of MINA is com-
pared to uploading/downloading files to AWS using just java code, without
SFTP. Multiple sizes of the buffers are tested and demonstrated how they
affect the speed of download/upload. The functionality is also compared to
the Amazon Web Services Command Line Interface(AWS CLI) - to default
command line way how to upload or download the files.

6.2 The way of measuring

The larger file will be selected with a set size. The size of the file should be
bigger, for we better observe how the download and upload differ and act. A
smaller file may result in a non-sufficient observation. Every way of uploading
the data was done multiple times and the resulted time was averaged.

We will divide file to

• 1 whole file

• 2 equally large halves the file

• 4 equally large parts the file

• 20 equally large parts the file

• 200 equally large parts of the file.

55

6. Performance

6.3 Enviroment
Amazon Elastic Compute Cloud (EC2) is a part of Amazon.com’s cloud-
computing platform, Amazon Web Services (AWS), that allows users to rent
virtual computers on which to run their own computer applications. The
instance that was used for measuring was available on a free tier.

name of parameter value
vCPUs 1
RAM (GiB) 1
Memory (GiB) 8

Table 6.1: Table of EC2 specifications

AWS EC2 was selected as a way to make maximum usage of fast access to
S3 and reduce latency as much as possible.

6.4 Measuring
During the measuring of the times, the file size of 2gb was selected. The
performance test divided the test into 4 categories:

• uploading 2gb as the whole file

• uploading 2 equally large files with the total size of 2gb

• uploading 4 equally large files with the total size of 2gb

• uploading 20 equally large files with the total size of 2gb

• uploading 200 equally large files with a total size of 2gb.

This method is more close to the real-world usage of transferring files. Even
if we eventually upload the same size of data, the more files we upload the
more side work we need to do besides uploading. In the SFTP, for example,
we need to first initiate the open request, write data and in the end, we need
to send the close request. This is the reason why times may differ, even if we
are uploading the same size of data.

56

6.4. Measuring

6.4.1 Upload
During the uploading, the following times were measured:

number of files 5mb 50mb 100mb 200mb parallel CLI
1 115.624s 94.113s 92.243s 91.832s 89.9.447s 34.733s
2 117.912s 94.547s 92.833s 92.021s 90.302s 35.421s
4 118.952s 94.898s 93.140s 92.328s 90.311s 35.723s
20 123.221s 100.509s 95.186s 94.033s 93.704s 36.128s
200 167.454s 155.491s 166.275s 169.201 146.609s 36.848s

Table 6.2: Table of upload times on EC2 using multiple files

Figure 6.1: Bar graph upload times on EC2 using multiple files

57

6. Performance

In the following graph, we can observe the approximate speed of transfer-
ring data during the upload:

number of files 5mb 50mb 100mb 200mb parallel CLI
1 17.3Mb/s 21.3Mb/s 21.7Mb/s 21.8Mb/s 22.2Mb/s 57.6Mb/s
2 16.9Mb/s 21.2Mb/s 21.5Mb/s 21.7Mb/s 22.1Mb/s 56.4Mb/s
4 16.8Mb/s 21.1Mb/s 21.8Mb/s 21.7Mb/s 22.1Mb/s 55.9Mb/s
20 16.2Mb/s 19.9Mb/s 21.1Mb/s 21.7Mb/s 21.3Mb/s 55.3Mb/s
200 11.9Mb/s 12.9Mb/s 12.1Mb/s 11.8Mb/s 13.6Mb/s 54.3Mb/s

Table 6.3: Table of the transfering speed of the upload

Figure 6.2: Bar graph of the transfering speed of the upload

During the parallel approach, 20threads and 20mb buffer were used.

58

6.4. Measuring

6.4.2 Download
During the downloading, the following times were measured:

number of files 5mb 50mb 100mb 200mb parallel CLI
1 111.825s 88.912s 87.328s 86.504s 88.008s 32.806s
2 111.535s 94.422s 92.822s 92.031s 88.113s 33.012s
4 113.729s 94.837s 93.990s 93.007s 92.122s 34.268s
20 115.009s 96.881s 95.698s 95.064s 94.994s 34.322s
200 172.381s 150.011s 151.601s 151.209s 152.988s 35.625s

Table 6.4: Table of download times on EC2 using multiple files

Figure 6.3: Bar graph of download times on EC2 using multiple files

During the parallel approach, 20threads and 200mb buffer were used.

number of files 5mb 50mb 100mb 200mb parallel CLI
1 17.9Mb/s 22.5Mb/s 22.9Mb/s 23.1Mb/s 22.7Mb/s 60.9Mb/s
2 17.9Mb/s 21.2Mb/s 21.5Mb/s 21.7Mb/s 22.7Mb/s 60.6Mb/s
4 17.6Mb/s 21.1Mb/s 21.3Mb/s 21.5Mb/s 21.7Mb/s 58.4Mb/s
20 17.3Mb/s 20.6Mb/s 20.9Mb/s 21Mb/s 21.0Mb/s 58.3Mb/s
200 11.6Mb/s 13.3Mb/s 13.2Mb/s 13.2Mb/s 13Mb/s 56.1Mb/s

Table 6.5: Table of the transfering speed of the download

59

6. Performance

Figure 6.4: Bar graph of the transfering speed of the download

6.4.3 First observation
We can see the CLI approach is much faster than the implemented approach
using SFTP. There are multiple reasons why this call is faster:

• AWS CLI is using native calls(boto python) which are going to be a bit
faster

• when using AWS CLI we have established the client connection in java
we must first establish this connection(s)

CLI also uses different technology. CLI uses TransferManager where in
java code, we use AmazonS3 client. For example for uploading the file, the
transfer manager requires the whole file to be passed to it, and use threads
to upload the file. It also knows the size of the whole file beforehand, as it
requires the whole file to work, thus it can support random access to the data
and optimize the upload. It, however also uses multi-part upload as used in
java code. The requirement of the whole file prevents the java code to use it,
as SFTP sends a chunk of files to the server.

6.4.4 More accurate way
Comparing the speed of CLI with an implemented solution is not sufficient.
We are basically comparing two different ways of uploading data. Better mea-

60

6.4. Measuring

surement of the performance is to take java code that uploads data to AWS
and run it without SFTP overheat. The uploading to SFTP does not consist
only of the opening file, writing the file, and closing file. SFTP can invoke more
requests during the uploading of the file(for example stat request). If we mea-
sure only the time of manipulation with S3FileChannel(open S3FileChannel,
write data, close S3FileChannel), we can measure the time it takes to process
and upload incoming data without adding overheat of SFTP. This way we can
compare measured times and find out the difference in performance.

Following times were measured for uploading of files using this approach:

number of files java proxy upload sftp sftp overheat
1 64.893s 65.104s 117.967 52.763s
2 65.020s 65.297s 121.516s 56.419s
4 68.171 68.512 123615 55.103s
20 69.263s 69.848 124385 55.137s
200 107.153s 109.914s 172.554s 65.64

Table 6.6: Table of upload times on EC2 with overheat

Figure 6.5: Bar graph of upload times on EC2 with overheat

As we can observe, both approaches averaged at similar times. The reason
why SFTP adds such a large overheat can be caused by the implementation
of the library itself. We must also take into consideration, that SFTP calls

61

6. Performance

AWS every time it needs to check if file exists, read its attributes, etc.(these
calls are internally used multiple times) that adds to this overheat.

During the download the following times were measured:

number of files java proxy download sftp sftp overheat
1 32.469s 33.828s 117.967 52.763s
2 33.486s 33.880s 121.516s 54.150s
4 33.747s 33.948s 123.615s 55.103s
20 34.863s 35.248s 124.385s 55.137s
200 43.291s 45.610s 172.554s 65.64

Table 6.7: Table of download times on EC2 with overheat

Figure 6.6: Bar graph of download times on EC2 with overheat

Same as with upload, the average of resulted times does not differs in big
way.

6.4.5 Comparing the overheat of SFTP
In both cases, download, and upload we measured SFTP overheat. We can
validate this overheat by adjusting SFTP not to communicate with AWS. We
measure the time it takes to upload the file, however, in S3FileChannel, we do
nothing. It is preferred to measure this trough uploading the file. The client
sends data to the server as long as all of the data weren’t send to the server.

62

6.4. Measuring

When we download files, the client issues read requests as long as EOF is not
returned from the server. For this reason, we can better simulate this using
uploading.

In the following table, we compare SFTP overheat we calculated during
upload of the files in the previous section and newly measured overheat with-
out AWS calls

number of files calculated overheat measured overheat
1 53.763 55.507s
2 54.150 55.040s
4 55.103s 55.317s
20 55.137s 55.248
200 65.64s 66.569s

Table 6.8: Table of compared overheats

Figure 6.7: Bar graph of compared overheats

As seen in the graph, the times do not differ in a big way.
As the next step, we can measure the time it takes MINA to upload the

file using its default functionality and measure the time it takes to open the
file, write to file, and close the file.

That way we can measure overheat in its default implementation and com-
pare it.

63

6. Performance

number of files mina open/write/close sftp overheat
1 58.227s 4.498s 53.729s
2 58.347 4.547s 53.800s
4 59.949 6.993s 52.956s
20 62.868s 7.219s 55.649s
200 73.973s 8.990s 64.983s

Table 6.9: Table of overheats using MINA’s default functionality

Figure 6.8: Bar graph of overheats using MINA’s default functionality

As seen from the table and graph, using MINA’s default implementation
also results in quite a big SFTP overheat when uploading or downloading files.

Lastly, we can compare the measured overheats from MINA’s default func-
tionality, and from the application itself.

64

6.4. Measuring

number of files mina proxy
1 53.729s 55.507
2 53.800s 55.040
4 52.956s 55.317
20 55.649s 55.248
200 64.983s 66.659

Table 6.10: Table of the comparasion of the overheats

Figure 6.9: Bar graph of the comparasion of the overheats

We can observe that the overheats in both cases are close. From these
performance tests we can assume the implemented proxy’s speed is comparable
with java approach, however keeps the overheat of the MINA and SFTP.

65

Chapter 7
Testing

Program testing is a basically destructive process, where we try to find the
errors in the program. Successful test case helps us furthers progress in this
direction by causing the program to fail.[22]

Eventually, we want to establish the level of functionality that ensures the
program will follow our desired rules and behaves as expected in a determinis-
tic way. It is hard and we can even say impossible to create test cases for every
functionality of our program. The bigger the program the more impossible
task we would try to achieve by covering every edge case of functionality with
tests.

By testing, we can determine if we

• correctly understood all functional and non-functional requirements.

• tested software’s architecture is adequate.

• identified all requirements for the software.

• overlooked flaws in the design.

The tests were created prior to implementation and expected to fail. As
the implementation was done the tests were expected to pass. The test de-
fined the expected behavior of the unit or service they were testing. The tests
were testing the functionality of all classes and services. For the testing pur-
pose, JUnit, Mockito, and JSch were used. Mockito was used for mocking
classes and for implementing matchers. JSch was used as an SFTP client for
tests. Before every test, the requirements were configured. If the test needed
FileSystem for its functionality, the FileSystem was created. If the test needed
to communicate with the actual SFTP server, the server was configured and
created. If it needed mocked functionality, the class was mocked. This was
all done in method with @Before annotation, thus invoking before every test.
Example of the setup requirements for running test:

67

7. Testing

@Before
public void setUp() throws Exception {

int port = generateRandomPort();
sftpServer = createSftpServer(port, new

S3ProxyFactoryImpl(this::createAmazonS3Client));
sftpServer.start();

sftp = new JSch();
sftp.addIdentity(Paths.get(ClassLoader.getSystemResource(name).toURI()).toString());

Session session = sftp.getSession("test", "localhost", port);
session.setConfig("StrictHostKeyChecking", "no");
session.setConfig("PreferredAuthentications", "publickey");
session.connect();

sftpChannel = (ChannelSftp) session.openChannel("sftp");
sftpChannel.connect();

}

In this configuration we do not want to check if the server we are connecting
to is known host, that is the reason we set StrictHostKeyChecking property
to no.

After every test, we must ensure the connection is closed.

@After
public void cleanUp() throws IOException {

sftpChannel.disconnect();
sftpServer.stop();

}

68

7.1. Unit testing

7.1 Unit testing
Unit testing is the method of testing where the units in the program are tested
individually. Developers usually write unit tests to document requirements
and detect if functionality matches with wanted results. Unit tests can also
reveal flaws in design.[23]

7.1.1 Testing filesystem
In tests handling testing functionality of implemented filesystem, multiple
tests were created. The first and easiest components that were tested were
S3PathTest and S3FileSystemTest, testing as the name suggest S3Path and
S3FileSystem. Both tests are unit tests, they do not require any mocking.
However, S3PathTests needs the S3FileSystem in order for it to work as ex-
pected.

Each of these tests is testing all methods that are provided by the interface
these classes implement.

Listing 7.1: Example of unit test
@Test
public void testGetPath() throws Exception {

S3Path path = fileSystem.getPath("/");
Assert.assertTrue(path.getRoot().toString().equals("/"));
Assert.assertTrue(path.getNameCount() == 0);

S3Path path2 = fileSystem.getPath("a");
Assert.assertTrue(path2.getRoot() == null);
Assert.assertTrue(path2.getNameCount() == 1);

S3Path path3 = fileSystem.getPath("/a");
Assert.assertTrue(path3.getRoot().toString().equals("/"));
Assert.assertTrue(path3.getNameCount() == 1);

}

Next, S3FileChannelTest was implemented. This test tests the functionality
of reading and opening files. This test needs S3Proxy in order to be able to
write or read data. S3Proxy is mocked using mockito, to return wanted values
and act as the real implementation of S3Proxy. In each test method we also
check the exact number of times, each S3Proxy method is called, to ensure we
do not call proxy methods more time than needed.

Some methods of S3Proxy require specific request as parameters. In order
to mock this method, each specific request had his own matcher implemented.

69

7. Testing

Listing 7.2: Example of mocked test

@Test
public void testRead() throws Exception {

String contentPart1 = "testu";
String contentPart2 = "01234";

List<S3ObjectSummaryWrapper> s3ObjectSummaries = Collections
.singletonList(createS3ObjectSummaryWrapper("testiik", "file1",

10, new Date()));

Mockito.when(proxy.listObjects("file1", "testiik"))
.thenReturn(createS3ObjectListing(EMPTY_DIRECTORY_LIST,

s3ObjectSummaries));

Mockito.when(proxy.getObject("testiik", "file1", 0,
5)).thenReturn(createS3ObjectWrapper(contentPart1));

Mockito.when(proxy.getObject("testiik", "file1", 5,
5)).thenReturn(createS3ObjectWrapper(contentPart2));

S3Path path = fileSystem.getPath("/a/b/testiik/file1");
List<S3toSftpMapping> mapping =

account.getAwsOpenMapping(path.toString());
S3FileChannel channel = new S3FileChannel(path,

Collections.singleton(StandardOpenOption.READ),
mapping.get(0));

byte[] data = new byte[5];
ByteBuffer byteBuffer = ByteBuffer.wrap(data, 0, 5);

channel.read(byteBuffer);

byte[] data2 = new byte[5];
ByteBuffer byteBuffer2 = ByteBuffer.wrap(data2, 0, 5);

channel.read(byteBuffer2);

Assert.assertTrue(new String(data).equals(contentPart1));
Assert.assertTrue(new String(data2).equals(contentPart2));

}

70

7.2. Mapping Test

Lastly, S3FileSystemProviderTest is testing the functionality of all other
SFTP functions. This test also uses the advantage of mocking and mocks
S3Proxy. Since here we do not call S3Proxy directly, we check the number of
calls to the specific S3Proxy methods we need.

Listing 7.3: Example of mocked test

@Test
public void testRename() throws Exception {

Mockito.when(proxy.listObjects("file1","testiik"))
. .thenReturn(createS3ObjectListing(EMPTY_DIRECTORY_LIST,

Arrays.asList(createS3ObjectSummaryWrapper("testiik","file1",4000,null,"tag"))));

Mockito.when(proxy.listObjects("file2","testiik"))
.thenReturn(createS3ObjectListing(EMPTY_DIRECTORY_LIST,EMPTY_OBJECTSUMMARY_LIST));

Mockito.when(proxy.listObjects("file2/","testiik"))
.thenReturn(createS3ObjectListing(EMPTY_DIRECTORY_LIST,EMPTY_OBJECTSUMMARY_LIST));

S3Path path = fileSystem.getPath("/a/b/testiik/file1");
S3Path path2 = fileSystem.getPath("/a/b/testiik/file2");
provider.move(path, path2);

Mockito.verify(proxy, Mockito.times(1)).listObjects("file1",
"testiik");

Mockito.verify(proxy, Mockito.times(1)).listObjects("file2",
"testiik");

Mockito.verify(proxy, Mockito.times(1)).listObjects("file2/",
"testiik");

Mockito.verify(proxy, Mockito.times(1)).copyObject("testiik",
"file1", "testiik", "file2");

Mockito.verify(proxy, Mockito.times(1)).deleteObject("testiik",
"file1");

Mockito.verifyNoMoreInteractions(proxy);
}

7.2 Mapping Test

In S3ToSftpMappingTest, the mapping and its functionality are tested. We
test if the mapping can return next local dir if we are considering local path,
if we can determine the correct mapping and if we can construct the correct
AWS path from the local path.

71

7. Testing

7.3 Util Test

In SftpUtilTest, the methods that resolve around parsing and retrieving bucket
and file name from received SFTP path are tested.

7.4 Integration Test

The next step in the testing process is the integration of units. Program build
from units that work probably and has been tested should function when
tested. But it may not be true. This is because of the differences in the types
of errors that one discovers at various levels of testing. When the testing
unit, the developer’s focus is mainly on algorithmic aspects, testing if the unit
performs the required function. The goal of integration testing is to test the
interaction between particular units.[24]

In other words, integration tests determine if all previously developed and
tested units of software work correctly together as part of the system. It
does not matter what approach is used for creating software, every time the
development comes to the point where it needs to test the communication
between each unit and the functionality as a whole unit composed of smaller
units integration tests are used.

Listing 7.4: Example of integration test
@Test
public void testListing() throws SftpException {

Vector firstEntries = sftpChannel.ls("/");
sftpChannel.cd("/");

List<LsEntryMatcher> matchers1 =
Arrays.asList(createLsEntryMatcher(".", 0, "drw-------"),

createLsEntryMatcher("a", 0, "drw-------"));

List<ChannelSftp.LsEntry> entries1 = new ArrayList<>(firstEntries);
Assert.assertThat(entries1,

Matchers.containsInAnyOrder((Collection) matchers1));

Vector secondEntries = sftpChannel.ls("a");
sftpChannel.cd("a");

List<LsEntryMatcher> matchers2 =
Arrays.asList(createLsEntryMatcher(".", 0, "drw-------"),

createLsEntryMatcher("..", 0, "drw-------"),
createLsEntryMatcher("b", 0, "drw-------"));

List<ChannelSftp.LsEntry> entries2 = new
ArrayList<>(secondEntries);

72

7.4. Integration Test

Assert.assertThat(entries2,
Matchers.containsInAnyOrder((Collection) matchers2));

Vector thirdEntries = sftpChannel.ls("b");
sftpChannel.cd("b");

List<LsEntryMatcher> matchers3 =
Arrays.asList(createLsEntryMatcher(".", 0, "drw-------"),

createLsEntryMatcher("..", 0, "drw-------"),
createLsEntryMatcher("testiik", 0, "drw-------"));

List<ChannelSftp.LsEntry> entries3 = new ArrayList<>(thirdEntries);
Assert.assertThat(entries3,

Matchers.containsInAnyOrder((Collection) matchers3));

try {
sftpChannel.cd("wrong");
Assert.fail("should fail");

} catch (Exception e) {
Assert.assertThat(e.getMessage(), Matchers.equalTo("No such file

or directory"));
}

try {
sftpChannel.ls("wrong");
Assert.fail("should fail");

} catch (Exception e) {
Assert.assertThat(e.getMessage(), Matchers.equalTo("No such file

or directory"));
}

Vector d = sftpChannel.ls("testiik");
List<ChannelSftp.LsEntry> resultList = new ArrayList<>(d);
Assert.assertThat(resultList,

Matchers.hasItem(Matchers.hasProperty("filename",
Matchers.is("c"))));

}

73

Conclusion

I have analyzed the applications that could be used as a replacement for this
thesis. I have analyzed AWS S3 storage, the SFTP protocol, and multiple
ways to extend the functionality of APACHE MINA. Methods were discussed
and the best method was used to implement the objective of the thesis. After
implementation, the application was properly tested and measured, assuring
correct functionality and proper performance. The usage of direct communica-
tion with AWS using the command line interface is faster, which is expected,
however, the created application offers comfortable abstraction over SFTP
protocol, cost-free, and with an adequate speed of download and upload. Us-
ing more powerful instances on EC2 will result in better performance that
keeps the difference in speed between CLI and this thesis the same, however,
it could make it negligible. After further performance testing, I discovered the
download and upload speed using a proxy is approximately the same as using
just java code with the same functionality, however, SFTP and MINA add
overheats that affect the performance. In further works, other SFTP library
could be selected and tested performance using this library.

This thesis is a good choice for integration in applications, where SFTP
protocol was previously used, and the server was replaced with AWS S3 stor-
age, which provides an advantage over standard CLI.

In the future, the application could be extended to offer support for more
cloud storage or added database for extended functionality. More types of
accounts could be added, each representing different cloud storage or way of
communicating with said storage.

I think the objective of the thesis was fulfilled. As the product of this
thesis will be published as open-source, I believe many developers will find it
useful.

75

Bibliography

[1] https://www.aws.amazon.com. AWS Transfer Fam-
ily[online]. 2020 [cit. 2020-07-27]. Avaible at:
https://aws.amazon.com/aws-transfer-family/?whats-new-cards.sort-
by=item.additionalFields.postDateTime&whats-new-cards.sort-
order=desc

[2] Comer,DOUGLAS E. Internetworking with TCP/IP Vol. I: Principles,
Protocols, and Architecture. New Jersey: Prentice-Hall International,
1991. ISBN 978-0132169875.

[3] YLONEN, T. a C. LONVICK. The Secure Shell (SSH) Pro-
tocol Architecture[online]. 2006 [cit. 2020-07-27]. Avaible:
https://tools.ietf.org/html/rfc4251

[4] STALLINGS, William. Cryptography and Network Security. : Principles
and Practice. Prentice Hall, 1999. ISBN 9780138690175.

[5] BROWN, L. Secure file transfer over TCP/IP.[online]. 1992 [cit. 2020-06-
20]. Avaible at: https://ieeexplore.ieee.org/document/271896.

[6] Barrett, Daniel; Silverman, Richard E., SSH, The Secure Shell: The Defini-
tive Guide, Cambridge: O’Reilly, 2001. ISBN 0-596-00011-1.

[7] https://www.aws.amazon.com. What is Cloud Computing?[online]. 2020
[cit. 2020-07-27]. Avaible at: https://aws.amazon.com/what-is-cloud-
computing

[8] Varia, Jinesh, and Sajee Mathew. Overview of amazon web services [online]
2014 [cit. 2020-07-27]. Avaible at: http://cabibbo.dia.uniroma3.it/asw-
2014-2015/altrui/AWS_Overview.pdf

[9] w3.org. Web Services Architecture[online]. 2004 [cit. 2020-07-27]. Avaible
at: https://www.w3.org/TR/ws-arch/

77

Bibliography

[10] Gadir, O.M., Subbanna, K., Vayyala, A.R., Shanmugam, H., Bo-
das, A.P., Tripathy, T.K., Indurkar, R.S. and Rao, K.H. High-
availability cluster virtual server system[online]. 2005 [cit. 2020-
07-27]. Avaible at: https://patentimages.storage.googleapis.com
/5a/80/46/dbc7b6753bfdd5/US6944785.pdf

[11] Vogels, W. Eventually consistent[online]. 2009 [cit. 2020-07-27]. Avaible
at: https://dl.acm.org/doi/10.1145/1435417.1435432

[12] https://aws.amazon.com/s3/. Amazon s3 [online]. 2020 [cit. 2020-07-27].
Avaible at: https://aws.amazon.com/s3/

[13] https://docs.aws.amazon.com[online]. 2020 [cit. 2020-07-27]. Avaible at:
https://docs.aws.amazon.com/AmazonS3/ latest/dev/Introduction.html

[14] World-Wide Web Proxies[online]. 1994 [cit. 2020-07-27]. Avaible at:
http://courses.cs.vt.edu/ cs4244/spring.09/documents/Proxies.pdf

[15] www.computerweekly.com. Write once, run any-
where?[online]. 2002 [cit. 2020-07-27]. Avaible at:
https://www.computerweekly.com/feature/Write-once-run-anywhere

[16] Oracle Corporation. ”1.2 Design Goals of the Java™ Pro-
gramming Language”[online]. 1999 [cit. 2020-07-27]. Avaible at:
https://www.oracle.com/java/technologies/introduction-to-Java.html

[17] Https://gitlab.com. About Us [online]. 2020 [cit. 2020-07-27]. Avaible on:
https://about.gitlab.com/features/gitlab-ci-cd/

[18] Https://mina.apache.org. ”About” [online]. 2020 [cit. 2020-07-27]. Dos-
tupné z: https://mina.apache.org/sshd-project/

[19] Mcintosh, Shane, Bram Adams, and Ahmed E. Hassan. The evolu-
tion of Java build systems[online]. 2011 [cit. 2020-07-27]. Avaible at:
https://link.springer.com/article/10.1007/s10664-011-9169-5

[20] Kotonya, Gerald; Sommerville, Ian. Requirements Engineering: Pro-
cesses and Techniques. Chichester, UK: John Wiley and Sons. 1998. ISBN
9780471972082.

[21] OMG Unified Modeling Language (OMG UML), Super-
structure, V2.1.2[online]. 2009 [cit. 2020-07-27]. Avaible at:
https://www.omg.org/spec/UML/2.2/Superstructure/PDF

[22] Myers, Glenford J., Corey Sandler, Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

78

Bibliography

[23] N. Tillmann ; W. Schulte, Unit tests reloaded: parameterized unit
testing with symbolic execution[online]. 2006 [cit. 2020-07-27]. Avaible
at:https://ieeexplore.ieee.org/abstract/document/1657937

[24] M.E. Delamaro ; J.C. Maidonado ; A.P. Mathur. Interface Mutation: an
approach for integration testing[online]. 2001 [cit. 2020-07-27]. Avaible at:
https://ieeexplore.ieee.org/abstract/document/910859

79

Appendix A
Acronyms

CI Continous Integration

AWS Amazon Web Services

CLI Command Line Interface

81

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

wbdcm .. implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

83

	Introduction
	Objective
	 State of art
	Transfer family

	Concepts
	Network protocol
	SSH
	Public-key cryptography
	SSH public key authentication
	SFTP
	Cloud computing
	REST
	API
	High-availability
	Eventual Consistency
	Amazon web service
	AWS S3
	AWS S3 - Bucket
	AWS S3 - Objects
	AWS S3 - Keys
	AWS S3 - Regions
	Amazon S3 data consistency model
	Proxy

	Technologies
	Java
	GitLab
	SSHD MINA
	JSCH
	Maven

	Analysis and design
	Requirements
	Requirement analysis
	Functional requirement
	Non-functional requirements
	Use cases
	Owner
	Configuration
	Creating accounts
	Permission and mapping for bucket

	User
	Login

	Listing files
	Removing files
	Renaming files
	Moving files
	Uploading files
	Downloading files
	Creating directories
	Deleting directories

	User scenarios
	Owner
	Configuration
	Creating accounts
	Permission and mapping for bucket

	User
	Login
	Listing files
	Removing files
	Renaming files
	Uploading files
	Downloading files
	Creating directories
	Deleting directories
	Moving files

	Realisation
	Configuration
	MINA
	Authentication
	S3 proxy
	Listing files
	Other communication with AWS

	First approach - overriding methods that handle command procesing
	Second approach - implementing FileSystem and Java NIO
	S3Path
	S3FileSystem
	FileSystemprovider
	Determining AWS path from local Path
	Opening and reading directories
	Retrieving information about files
	Opening files
	Downloading file
	uploading files
	Creating directories
	Deleting
	Renaming and moving files
	Clearing reasources

	Performance
	Goal
	The way of measuring
	Enviroment
	Measuring
	Upload
	Download
	First observation
	More accurate way
	Comparing the overheat of SFTP

	Testing
	Unit testing
	Testing filesystem

	Mapping Test
	Util Test
	Integration Test

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

