
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 18, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Linked Data Notifications and ActivityPub Client and Server

 Student: Bc. Antonín Karola

 Supervisor: RNDr. Jakub Klímek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The student will get familiar with Linked Data, the RDF data model, the recent W3C Recommendations
[1][2][3] and the Solid project [4], a recent activity of the inventor of the Web, Sir Tim Berners-Lee.
The student will implement a client and a server supporting decentralized messaging on the Web according
to the Linked Data Notifications [2] and ActivityPub [3] W3C Recommendations in support of the Web re-
decentralization.
The client part will be a new, user friendly messaging application.
Based on the analysis of existing Solid server implementations, the student will determine what is missing
in the existing implementations for the given task.
The missing features will be implemented either as a new Solid server, or an existing implementation will
be enhanced.
The client and the server will be documented, evaluated, tested and published as open-source on GitHub.
The tests will consist of unit tests and tests of compatibility with existing tools implementing the
Recommendations.

References

[1] Linked Data Platform 1.0, W3C Recommendation, 2015, https://www.w3.org/TR/ldp/
[2] Linked Data Notifications, W3C Recommendation, 2017, https://www.w3.org/TR/ldn/
[3] ActivityPub, W3C Recommendation, 2018, https://www.w3.org/TR/activitypub/
[4] Solid, MIT, https://solid.mit.edu/

Master’s thesis

Linked Data Notifications and ActivityPub
Client and Server

Bc. Antońın Karola

Katedra softwarového inženýrstv́ı
Supervisor: RNDr. Jakub Kĺımek, Ph.D.

July 30, 2020

Acknowledgements

I would like to thank my supervisor, RNDr. Jakub Kĺımek, Ph.D. for his
guidence, valuable insight and patience.

Besides my supervisor, I would like to thank my family for their endless
support, not just throughout my studies. Furthermore, big thanks to my
friends for moral support and believing in me, especially Petr, Petra, Mı́̌sa
and Radim. My sincere thanks also goes to Nathaniel, Vratislav, Ema, Honza
and Mike for their help.

Last but not least, thanks to IDC CEMA for their flexibility and meeting
me halfway with my needs.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on July 30, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Antońın Karola. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Karola, Antońın. Linked Data Notifications and ActivityPub Client and Server.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

”Źıskejme web zpět!“ - Sir Tim Berners-Lee, tv̊urce World Wide Webu.
Pro podporu re-decentralizace webu, princip̊u otevřených dat a skutečného

vlastnictv́ı dat, tato práce buduje aplikace na základě technologíı od Web
Consortium (W3C).

Tato práce prozkoumává nejnověǰśı W3C protokoly a doporučeńı: Linked
Data (propojená data), RDF datový model, Linked Data Platform, Linked
Data Notifications (LDN), ActivityPub (AP) a projekt Solid.

Pro d̊ukaz použitelnosti těchto technologíı byly vytvořeny a publikovány tři
proof-of-concept aplikace (na ověřeńı konceptu) - inbox, implementace Linked
Data Notifications; ldn-target-showcase, implementace LDN Targetu; a js-
notification-poc, implementace JavaScript Notification API a Push API.

Hlavńım ćılem této práce je vytvořit uživatelsky př́ıvětivou webovou ap-
likaci podporuj́ıćı decentralizovanou komunikaci. Jako prvńı je provedena
analýza existuj́ıćıch LDN a AP aplikaćı. Na základě této analýzy je vybrán
za server solid-server a je vytvořena nová aplikace inbox-client. Tento klient
je otestován, zdokumentován a publikován jako open-source na GitHubu. In-
stance této aplikace je dále nasazena na web.

Kĺıčová slova webová aplikace, propojená data, návrh webové aplikace,
implementace webové aplikace, Linked Data Platform, Linked Data Notifi-
cations, ActivityPub, Activity Streams, RDF, JavaScript, REST, JavaScript
Notifications API, JavaScript Push API, node.js, Solid

vii

Abstract

”Reclaim the web!” - Sir Tim Berners-Lee, the inventor of the World Wide
Web.

To support Web re-decentralization, open data principles and true data
ownership, this thesis builds applications on top of the Web Consortium
(W3C) technologies.

This thesis investigates the current W3C protocols and recommendations:
Linked Data, the RDF data model, the Linked Data Platform, Linked Data
Notifications (LDN), ActivityPub (AP) and the Solid project.

To prove the applicability of W3C protocols and recommendations, three
proof-of-concept applications are created and published - inbox, a Linked Data
Notifications implementation; ldn-target-showcase, an LDN Target implemen-
tation; and js-notification-poc, a JavaScript Notifications API and Push API
implementation.

The main goal of the thesis is to create a user-friendly web application sup-
porting decentralized messaging. First, an analysis of existing LDN and AP
applications is conducted. Based on this analysis, solid-server is chosen as a
server and a new inbox-client application is created. The client is tested, doc-
umented and published as open-source on GitHub, and its instance deployed
on the web.

Keywords Web application, Linked Data, Linked Data Platform, Linked
Data Notifications, ActivityPub, Activity Streams, RDF, JavaScript, REST,
JavaScript Notifications API, JavaScript Push API, node.js, Solid

viii

Contents

Introduction 1
Goals of this work . 2

1 State-of-the-art and available technology 5
1.1 Current technologies that address the centralization problem . 5

1.1.1 RDF . 6
1.1.2 Linked Data . 7
1.1.3 Linked Data Platform 8
1.1.4 Linked Data Notifications 9
1.1.5 Activity Streams . 12
1.1.6 ActivityPub . 14
1.1.7 Solid . 15

2 Analysis 17
2.1 Requirements . 17

2.1.1 Actors . 17
2.1.2 List of requirements . 18

2.2 Use cases . 19
2.2.1 List of use cases . 19

2.3 Analysis of existing solutions 21
2.3.1 Criteria for analysis of existing solutions 21
2.3.2 Overview of all analysed applications 22
2.3.3 Detailed analysis of selected applications 25

2.4 Analysis results . 30

3 Design 33
3.1 inbox - LDN proof-of-concept 33

3.1.1 Architecture . 33
3.1.2 Technologies . 34

3.2 LDN-target . 35

ix

3.2.1 Architecture . 35
3.2.2 Technologies . 35

3.3 js-notification-poc . 36
3.3.1 Architecture . 36
3.3.2 Technologies . 36

3.4 inbox-client . 36
3.4.1 Architecture . 37
3.4.2 Technologies . 37

4 Implementation 39
4.1 inbox - LDN proof-of-concept 39

4.1.1 consumer + sender . 39
4.1.2 receiver . 40
4.1.3 target . 41

4.2 LDN-target POC . 42
4.3 js-notification-poc . 42

4.3.1 About JavaScript notification API 42
4.3.2 POC description . 43

4.4 inbox-client . 45
4.4.1 Modules . 45
4.4.2 User interface . 46

5 Testing 49
5.1 Terms definition . 49

5.1.1 Unit tests . 49
5.1.2 E2E tests . 49
5.1.3 Usability testing . 49

5.2 Application testing . 50
5.2.1 inbox . 50
5.2.2 LDN-target . 50
5.2.3 js-notification . 50
5.2.4 inbox-client . 50

6 Documentation 53
6.1 Versioning - Git on GitHub . 53
6.2 Deployment - Heroku . 53
6.3 inbox . 53

6.3.1 Source code . 53
6.3.2 Requirements . 54
6.3.3 Install . 54
6.3.4 Run . 54
6.3.5 Usage . 54

6.4 ldn-target-showcase . 54
6.4.1 Source code . 55

x

6.4.2 Requirements . 55
6.4.3 Install . 55
6.4.4 Run . 55
6.4.5 Usage . 55
6.4.6 Live version . 56

6.5 js-notification-poc . 56
6.5.1 Source code . 56
6.5.2 Requirements . 56
6.5.3 Install . 56
6.5.4 Build . 56
6.5.5 Run . 56
6.5.6 Documentation . 57
6.5.7 Live version . 57

6.6 inbox-client . 57
6.6.1 Source code . 57
6.6.2 Requirements . 57
6.6.3 Install . 57
6.6.4 Build . 57
6.6.5 Run . 58
6.6.6 Usage . 58
6.6.7 Documentation . 58
6.6.8 Live version . 58

Conclusion 59
Problems encountered . 60
Future work . 61

Bibliography 63

A Glossary 67

B Testing 69
B.1 UC1 - start monitoring inbox 69

B.1.1 Use case summary . 70
B.2 UC2 - Stop monitoring inbox 72
B.3 UC3 - Read list of messages . 74
B.4 UC4 - Read detail of a received message 75
B.5 UC5 - Receive a system notification on a new message 76

B.5.1 Use case summary . 77
B.6 UC6/7 - Send a message to a person/resource from contact list

using LDN/AP . 78
B.6.1 Use case summary . 78

B.7 UC8/9 - Send a message to an unknown person/resource using
LDN/AP . 81

xi

B.7.1 Use case summary . 82

C Attached medium content 83

xii

List of Figures

0.1 Example of centralized social networks [1] 2

1.1 Example of a connected graph that can be represented with RDF. [2] 6
1.2 Structure of Linked Data Platform Resources [3]. 8
1.3 Overview of Linked Data Notifications. LDN overview with

distinct roles - Consumer, Sender and Receiver [4]. 10
1.4 Illustration of a solid pod with application [5]. An illustra-

tion of interaction of a web/mobile application with user’s solid
pod. 16

2.1 Solid inbox - list of messages. Screenshot of the current official
inbox client application. 27

2.2 Solid inbox - message detail. Screenshot of the current official
inbox client application. 28

2.3 Solid inbox - message content. Screenshot of the current official
inbox client application. 29

4.1 inbox - index screen. Screenshot of the index page 40
4.2 The push notification implementation flow. JavaScript Push

API overview with distinct actors - User, Application, Service
worker and Push Server [6]. 43

4.3 inbox-client screen 1 - watched inboxes 46
4.4 inbox-client screen 2 - added watched inbox 47
4.5 inbox-client screen 3 - send message to a friend 47

xiii

Introduction

Internet was designed from the start as a decentralized network. It began
as the military’s ARPANET, where in the case of one network node being
incapacitated, technologies like network packets and dynamic routing would
still allow the rest of the nodes to communicate [7]. The internet infrastructure
has since become very robust, and it is virtually impossible to take it down
by disabling even multiple nodes.

Meanwhile, market monopolization has introduced a new problem - web
centralization [8]. Companies like Google (with YouTube) and Facebook
(owning Instagram) have made users dependent on them for information or
entertainment [9]. As a result, the internet has become very centralized re-
garding ownership and services. Furthermore, web applications are incapable
of intercommunication because they are closed systems (e.g. a Facebook user
cannot comment on YouTube, YouTube cannot send you notifications to the
app of your choice, etc.).

An important part of this problem is data ownership. For example, when
you upload your photograph to the Facebook platform, you are granting Face-
book many rights:

”Specifically, when you share, post, or upload content that is cov-
ered by intellectual property rights ..., you grant us a non-exclusive,
transferable, sub-licensable, royalty-free, and worldwide license to
host, use, distribute, modify, run, copy, publicly perform or dis-
play, translate, and create derivative works of your content ... This
means, for example, that if you share a photo on Facebook, you
give us permission to store, copy, and share it with others ... This
license will end when your content is deleted from our systems.” 1

The World Wide Web Consortium (W3C) together with the web creator
Tim Berners-Lee are working to address these problems with technical solu-
tions. They have proposed protocols such as Linked Data (LD), LD Platform

1From Facebook terms of use: https://www.facebook.com/terms.php

1

https://www.facebook.com/terms.php

Introduction

Figure 0.1: Example of centralized social networks [1]

(LDP) and Notifications (LDN), its extension ActivityPub (AP) and Activi-
tyStreams (AS), so web developers can build their applications without these
problems. Users would then can be able to choose e.g. their data provider
and applications could intercommunicate.

We can see this development already taking place with social networks
such as the decentralized platform mastodon 2 or AS video streaming service
PeerTube 3. In fact, a whole platform of interconnected, federated, open-
sourced applications that are making use of the ActivityPub and other open
protocols has emerged - fediverse 4.

Goals of this work

This work aims to provide a Linked Data Notifications and ActivityPub im-
plementation that is easy to use and is not merely a proof-of-concept. The
assignment divided the implementation into two parts - a client and a server.

The client should be a user-friendly messaging application that takes ad-
vantage of system notifications.

The server should be an AP and LDN compliant implementation, either
an enhanced existing one or a new implementation.

2https://joinmastodon.org/
3https://peertube.video/
4Home page: https://fediverse.party/, about page: https://fediverse.party/en

/fediverse

2

https://joinmastodon.org/
https://peertube.video/
https://fediverse.party/
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse

Goals of this work

Both client and server should be documented, evaluated, tested and pub-
lished as open-source on GitHub.

3

Chapter 1
State-of-the-art and available

technology

This chapter introduces current technologies that are being used to address
the centralization problem. It covers protocols developed by the World Wide
Web Consortium (W3C), mainly by its Linked Data Platform Working Group
and Social Web Working Group. These include Linked Data, Linked Data
Platform and Notifications.

The main building block is Linked Data (LD) with its RDF representa-
tion. It allows resources to be more than just a heap of binary data. LD
introduces data semantics, it gives data meaning and allows the resources to
be interlinked. Furthermore, this enables data to be computer-readable and
allows automated querying and processing of the data.

On top of Linked Data and RDF, W3C has developed protocols such as
LD Platform (LDP) and LD Notifications (LDN). These protocols specify
data formats and communications methods, so compliant applications can
work together and exchange data. This allows e.g. various web applications
to interchange notifications and messages. More specifically, with a LDN-
compliant social network, a user could post e.g. comments on a video from
another LDN-compliant video application.

1.1 Current technologies that address the
centralization problem

World Wide Web Consortium (W3C) is trying to address the centralization
problem with various technologies. The technologies described in this section
were not necessarily created to address the centralization problem, but they
are being used to do so.

5

1. State-of-the-art and available technology

1.1.1 RDF

Resource Description Framework (RDF) is a standard graph data model cre-
ated for data interchange on the web. It was created as a W3C specifica-
tion [10] and is used for modelling information like web resources. RDF can
be understood as a language for describing statements about things/entities.
It consists of triples: subject + predicate + object:

Listing 1.1: RDF triple example

<subject> <predicate> <object>

These together create an oriented labeled multigraph, where subjects and
objects represent nodes and predicates represent edges. Aditionally, RDF
supports named graphs, thus creating quads: subject + predicate + object +
graph label.

Figure 1.1: Example of a connected graph that can be represented with
RDF. [2]

RDF supports a big variety of data serialization formats, Turtle/N-Triples
being the most human-readable:

Listing 1.2: RDF Turtle/N-Triples serialization example. Turtle repre-
sentation of the main subset of the graph at Figure 1.1

<http://example.org/#bob>
<http://perceive.net/schemas/relationship/isInterestedIn>

6

1.1. Current technologies that address the centralization problem

<http://example.org/#mona-lisa> .

In web applications, JSON-LD (JSON for Linking Data) [11] serialization
is easier to use because JSON-LD is still valid JSON, which has robust support
among web application technologies:

Listing 1.3: JSON-LD serialization example. JSON-LD representation of
list of LDP notifications.

{
"@context": "http://www.w3.org/ns/ldp#",
"@id": "http://localhost:5001/API/notifications/",
"@type": "ldp:Container",
"ldp:contains": [

{
"@id": "http://localhost:5001/API/notifications/0"

},
{
"@id": "http://localhost:5001/API/notifications/1"

},
{
"@id": "http://localhost:5001/API/notifications/2"

},
{
"@id": "http://localhost:5001/API/notifications/3"

},
{
"@id": "http://localhost:5001/API/notifications/4"

}
]

}

1.1.2 Linked Data

Linked Data are structured data that are interlinked. More specifically, it is a
term defined by Tim Berners-Lee in his 2006 design note ”Linked Data” [12].
He outlines four basic principles of Linked Data:

1. use URI (IRI) to identify entities

2. use HTTP URI to access data

3. use RDF + SPARQL to retrieve useful information on entities

4. include links to other entities for discovery

7

1. State-of-the-art and available technology

1.1.3 Linked Data Platform

Linked Data Platform (LDP) is a W3C recommendation [13] from the 26 of
February 2015, published by the Linked Data Platform Working Group5. It is
a set of rules that applications must follow to exchange Linked Data resources.

LDP differentiates between a client and a server. They communicate using
defined HTTP methods and exchange Linked Data in specific format, typi-
cally RDF. More specifically, LDP defines LDP Resource (LDPR) as a HTTP
resource that conforms to the LDP patterns and conventions [3]. LDPR can
be either RDF or a non-RDF resource (see Figure 1.2).

Figure 1.2: Structure of Linked Data Platform Resources [3].

Furthermore, LDP introduces an important concept for LDN - Linked Data
Platform Containers (LDPC). Simply put, an LDP Container is an RDF
resource where the subject is the container, the predicate is ldp:contains,
and the object is the real data resource:
<LDPC URI> <ldp:contains> <document-URI>

Listing 1.4: Simple LDP Container. Example of a Linked Data Platform
Basic Container in an RDF Turtle serialization format [14].

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<http://example.org/c1/>
a ldp:BasicContainer;
dcterms:title "A very simple container";
ldp:contains <r1>, <r2>, <r3>.

The LDP Container concept is further extended in the Linked Data
Notification protocol - LDN Inbox is based on LDP Basic Container.

5https://www.w3.org/2012/ldp/wiki/Main Page

8

https://www.w3.org/2012/ldp/wiki/Main_Page

1.1. Current technologies that address the centralization problem

The following code is an example of a full LDP exchange. It repre-
sents an LDP-conformant client’s request and the server’s response.

Request to http://example.org/container1/:

Listing 1.5: Example of LDP exchange - request. Example of a full
Linked Data Platform communication - client’s request [14].

GET /container1/ HTTP/1.1
Host: example.org
Accept: text/turtle
Prefer: return=representation;

include="http://www.w3.org/ns/ldp#PreferMinimalContainer"

And response:

Listing 1.6: Example of LDP exchange - response. Example of a full
Linked Data Platform communication - server’s response [14].

HTTP/1.1 200 OK
Content-Type: text/turtle
ETag: "_87e52ce291112"
Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type",

<http://www.w3.org/ns/ldp#Resource>; rel="type"
Accept-Post: text/turtle, application/ld+json
Allow: POST,GET,OPTIONS,HEAD
Preference-Applied: return=representation
Transfer-Encoding: chunked

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<http://example.org/container1/>
a ldp:DirectContainer;
dcterms:title "A Linked Data Platform Container of
Acme Resources";

ldp:membershipResource <http://example.org/container1/>;
ldp:hasMemberRelation ldp:member;
ldp:insertedContentRelation ldp:MemberSubject;
dcterms:publisher <http://acme.com/>.

To summarize, LDP is introducing important concepts like LDP Con-
tainers, it defines communication roles (client/server), methods (HTTP) and
formats (RDF). Together it represents an important building block for further
applications like LDN.

1.1.4 Linked Data Notifications

Linked Data Notifications (LDN) is a W3C recommendation [4] from the So-
cial Web Working Group. It is a subset of Linked Data Platform. LDN is a

9

1. State-of-the-art and available technology

protocol that specifies generic notification format for sharing between various
web applications.

It defines the following roles: target (for inbox discovery [15]), server with
inbox = receiver and client = consumer/sender: Figure 1.3

Figure 1.3: Overview of Linked Data Notifications. LDN overview with
distinct roles - Consumer, Sender and Receiver [4].

Consumer and Sender is typically one client web application. User A
sends a notification using his application (LDN sender) to the user B’s inbox
on his receiver application. User B can then access the notification on his
receiver using his application - LDN consumer. Inbox is an endpoint on the
Receiver, to which the notifications are sent by the Sender and from which they
are being accessed by the Consumer. Furthermore, LDN specifies a Target.

Target provides a way for a user to discover another person’s Inbox [15].
There are two ways to present the Inbox’s URL:

• as a response to an HTTP request using the Link header with rel value
http://www.w3.org/ns/ldp#inbox,

• or as a predicate <http://www.w3.org/ns/ldp#inbox> in
an RDF graph, where the subject is the requested resource
and the object is the Inbox: <http://localhost:3000/>
<http://www.w3.org/ns/ldp#inbox>
<http://localhost:5001/API/notifications/>

The first option is a way to present the Inbox by the server’s response headers,
the second way can be embedded in the content’s body, e.g. RDF, JSON-LD
or even embedded in the HTML (e.g. on a blog post):

1. HTTP Link

10

1.1. Current technologies that address the centralization problem

a) HEAD > Link: <http://example.org/inbox/>;
rel="http://www.w3.org/ns/ldp#inbox"

b) GET > Link: <http://example.org/inbox/>;
rel="http://www.w3.org/ns/ldp#inbox"

2. RDF

a) JSON with relation of type http://www.w3.org/ns/ldp#inbox

b) HTML <a> tag with rel="http://www.w3.org/ns/ldp#inbox"

c) HTML <link> tag with rel="http://www.w3.org/ns/ldp#inbox"

d) HTML <section> tag with
property="http://www.w3.org/ns/ldp#inbox"

e) text/turtle with <http://www.w3.org/ns/ldp#inbox> relation

Simple discovery example:

Listing 1.7: Example of LDN discovery. Example of a Linked Data Noti-
fications discovery of a Inbox using HTTP request to a LDN Target.

GET / HTTP/1.1
Accept: */*
Cache-Control: no-cache
Host: localhost:3000

HTTP/1.1 200 OK
Link: <http://localhost:5001/API/notifications/>;

rel="http://www.w3.org/ns/ldp#inbox"
Content-Type: text/html; charset=utf-8
Content-Length: 249
Date: Sat, 18 Jul 2020 10:02:35 GMT

<!DOCTYPE html>
<html>

...
</html>

LDN also specifies the message format (RDF, preferably JSON-LD) and
defines the application communication using HTTP protocol. Notifications
can contain any data. The following HTTP dump is example of a simple LDN
communication. The client, which is called ”consumer” in LDN, sends a GET
request to the Receiver to access his notifications. The server with the LDN’s
receiver role responds with RDF data (see Listing 1.8):

Listing 1.8: Example of LDN exchange - request and response. Exam-
ple of a Linked Data Notifications communication - consumer’s request and
receiver’s response.

11

1. State-of-the-art and available technology

GET /API/notifications/ HTTP/1.1
Host: localhost:5001
Accept: application/ld+json

HTTP/1.1 200 OK
Access-Control-Allow-Credentials: true
Content-Type: application/ld+json; charset=utf-8
Content-Length: 390
Date: Sat, 18 Jul 2020 08:43:20 GMT
{

"@context": "http://www.w3.org/ns/ldp#",
"@id": "http://localhost:5001/API/notifications/",
"@type": "ldp:Container",
"ldp:contains": [

{
"@id": "http://localhost:5001/API/notifications/0"

},
...
{
"@id": "http://localhost:5001/API/notifications/4"

}
]

}

To summarize, LDN is a protocol for a universal notification exchange
between LDN-compliant web applications. It uses RDF as data format and
HTTP as communication protocol.

1.1.5 Activity Streams

Activity Streams 2.0 is a W3C data format specification [16]. It is ba-
sically a way of representing an activity in JSON. AS is specified with
application/activity+json MIME media type.

Listing 1.9: Basic AS example. Very simple example of an Activity Streams
data format.

{
"@context": "https://www.w3.org/ns/activitystreams",
"summary": "A note",
"type": "Note",
"content": "CTU FIT is awesome."

}

Using Activity Vocabulary6, AS defines entities that are neccessary to
represent an Activity. For example summary, type of an activity (e.g. ”Like”,

6https://www.w3.org/TR/activitystreams-vocabulary/

12

https://www.w3.org/TR/activitystreams-vocabulary/

1.1. Current technologies that address the centralization problem

”Create”), actor and others. Furthermore, it defines collections, pagination
and other useful constructs The five core objects are:

• Object

• Actor

• Activity

• Collection

• CollectionPage

In the following example, you can see an example of a Person adding an
object of type Article to his blog, located at the target: id URL:

Listing 1.10: Detailed AS example. Example of an Activity Streams with
additional details [16].

{
"@context": "https://www.w3.org/ns/activitystreams",
"summary": "Martin added an article to his blog",
"type": "Add",
"published": "2015-02-10T15:04:55Z",
"actor": {
"type": "Person",
"id": "http://www.test.example/martin",
"name": "Martin Smith",
"url": "http://example.org/martin",
"image": {
"type": "Link",
"href": "http://example.org/martin/image.jpg",
"mediaType": "image/jpeg"

}
},
"object" : {
"id": "http://www.test.example/blog/abc123/xyz",
"type": "Article",
"url": "http://example.org/blog/2011/02/entry",
"name": "Why I love Activity Streams"
},
"target" : {
"id": "http://example.org/blog/",
"type": "OrderedCollection",
"name": "Martin's Blog"
}

}

Activity Streams is used as the data format of the protocol ActivityPub.

13

1. State-of-the-art and available technology

1.1.6 ActivityPub

ActivityPub7 is a protocol for decentralized social networks, which can also
be extended to create all kinds of federated apps [17]. It is a W3C recommen-
dation that provides two kinds of API:

• client-server API - protocol for AP clients for creating, updating and
deleting content;

• server-server API (federation protocol) for delivering notifications
and content between AP applications.

ActivityPub application can implement only one or both of them, based on
the application’s scope.

AP uses Activity Streams 2.08 as its data format. It adds couple of extra
requirements. Only Link and Object entities are allowed. In the Object
entity, id and type fields are required [17]. Additionally, the Actor object
must have inbox and outbox. An inbox is a collection of all messages received
by the Actor. Similarly, an outbox is a collection of messages produced by
the Actor.

An Actor is not only a person/human user, but it can be any fitting object,
such as a company, a website, software, city and others. Typically, it is one
of the AC core types:

• Application

• Group

• Organization

• Person

• Service

However, it can also be of another type, made with ActivityStreams extension9

(= type not defined by the Activity Vocabulary10). Furthermore, ActivityPub
extends AS addressing with to, bto, cc, bcc and audience fields:

Listing 1.11: AP example - Submitting an Activity to the Outbox.
Example of an ActivityPub Like with additional details [16].

POST /outbox/ HTTP/1.1
Host: dustycloud.org
Authorization: Bearer XXXXXXXXXXX

7https://www.w3.org/TR/activitypub/
8https://www.w3.org/TR/activitystreams-core/
9https://www.w3.org/TR/activitystreams-core/#extensibility

10https://www.w3.org/TR/activitystreams-vocabulary/

14

https://www.w3.org/TR/activitypub/
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-core/#extensibility
https://www.w3.org/TR/activitystreams-vocabulary/

1.1. Current technologies that address the centralization problem

Content-Type: application/ld+json; profile="https://www.w3.org/ns/
↪→ activitystreams"

{
"@context": ["https://www.w3.org/ns/activitystreams",

{"@language": "en"}],
"type": "Like",
"actor": "https://dustycloud.org/chris/",
"name": "Chris liked 'Minimal ActivityPub update client'",
"object": "https://rhiaro.co.uk/2016/05/minimal-activitypub",
"to": ["https://rhiaro.co.uk/#amy",

"https://dustycloud.org/followers",
"https://rhiaro.co.uk/followers/"],

"cc": "https://e14n.com/evan"
}

1.1.7 Solid

Solid is a set of open specifications, built on existing open standards like
LDN and RDF, that describes how to build applications in such a way that
users can conveniently switch between data storage providers and application
providers. [18]

1.1.7.1 WebID

A WebID is a unique identifier of an agent (e.g. user, organization). It is
an Internationalised Resource Identifier (IRI) and can be dereferenced as a
FOAF profile document [19]. An example is https://tonda.solid.commun
ity/profile/card#me.

The owner can set sharing preferences of his WebID to the WebID of third
parties [19]. In Solid, WebIDs are also used to manage access rights though
Web Access Control [19].

1.1.7.2 Pod

”A Pod is where data is stored on the Web with Solid. A user may store their
data in one Pod or several Pods, and applications read and write data into the
Pod depending on the authorisations granted by the user or users associated
to that Pod.” [19] (see Figure 1.4).

15

https://tonda.solid.community/profile/card#me
https://tonda.solid.community/profile/card#me

1. State-of-the-art and available technology

Figure 1.4: Illustration of a solid pod with application [5]. An illustra-
tion of interaction of a web/mobile application with user’s solid pod.

16

Chapter 2
Analysis

This chapter deals with the analysis of the topics relevant to the thesis. First,
based on the Linked Data Notification and ActivityPub protocols, the system
actors are identified. Second, the system requirements are specified, distin-
guishing between functional and non-functional ones. Third, use cases are
derived to further specify the desired system behavior.

With this system specification, an analysis of existing application was con-
ducted in two phases. The first phase is a broad search for existing solutions
with quick analysis to determine whether the application meets the basic re-
quirements (sources, documentation are available) and is applicable for a more
detailed analysis. The second phase goes into details of the system and studies
if the application not only meets desired requirements but can support all the
use cases.

Lastly, the analysis result is presented.

2.1 Requirements

First, requirements and use cases were specified for use in further analysis.
Requirements cover required functionality on an abstract level. They are
constructed based on the required technologies and represent boundaries of
the system.

2.1.1 Actors

User roles can be divided into two roles as defined in LDN: consumer and
sender (see Figure 1.3).

2.1.1.1 Consumer

Consumer is a person who can access his inbox and notifications. He under-
stands what LDN and AP are and he wants to try communication using these

17

2. Analysis

protocols.

2.1.1.2 Sender

Sender is a person who can post notifications to other people’s inboxes. He
understands what LDN and AP are and he wants to try communication using
these protocols.

2.1.2 List of requirements

2.1.2.1 Functional requirements

F1 Support LDN. Application supports communication using Linked
Data Notification protocol.

F2 Support AP. Application supports communication using ActivityPub
protocol.

F3 Support LDP inbox monitoring. Application supports monitoring
of Linked Data Protocol inboxes that the user has access to.

F4 Support AP inbox monitoring. Application supports monitoring of
ActivityPub inboxes that the user has access to.

F5 Support JSON-LD. Application is able to exchange data with another
application using JSON-LD.

F6 Support system notifications. Application supports system notifica-
tions, such as pop-up information on incoming message to the monitored
LDP inbox.

F7 Support WebID login. Users can authorize and authenticate using
WebID 11.

F8 List of incoming messages. Application can show list of incoming
messages.

F9 List of sent messages. Application can show list of sent messages.

F10 Show message content. Application can show message content.

F11 List of contacts. Application can show list of user contacts.

F12 Show contact detail. Application can show contact detail.
11https://www.w3.org/wiki/WebID

18

https://www.w3.org/wiki/WebID

2.2. Use cases

2.1.2.2 Non-functional requirements

N1 Web application. System is implemented as a web application.

N2 Git versioning. Application sources are versioned using Git VCS 12,
publicly hosted on GitHub13.

N3 Security. User can access only messages he has access to.

2.2 Use cases

A use case is a description of the specific ways a user interacts with a system.
Use cases are a more specific view of system requirements.

2.2.1 List of use cases

2.2.1.1 Consumer

UC1 Start monitoring inbox. Consumer sets application so it monitors an
LDP/AP inbox he has access to.

a) User logs in using WebID.
b) User clicks on action ”add inbox for monitoring”.
c) System shows form to add inbox.
d) User inputs IRI of a resource and submits.
e) System discovers resource’s inbox.
f) System starts monitoring messages coming to the inbox.

UC2 Stop monitoring inbox. User can turn off monitoring of an inbox he
has previously selected for monitoring.

a) User logs in using WebID.
b) System shows list of monitored inboxes.
c) User chooses inbox to stop being monitored.
d) System stops monitoring incoming messages to the chosen inbox.

UC3 Read list of messages. Consumer can read a list of incoming messages
that he has access to in a selected inbox.

a) User logs in using WebID.
b) System shows list of monitored inboxes.

12https://git-scm.com/
13https://github.com/

19

https://git-scm.com/
https://github.com/

2. Analysis

c) User chooses inbox.
d) System shows list of incoming messages.

UC4 Read detail of a received message. Consumer can read the complete
content of a received message that he has access to.

a) User logs in using WebID.
b) User sees list of his incoming messages.
c) User can open and read the full content of the incoming message.

UC5 Receive a system notification on new message. Consumer gets
a system notification, such as pop-up message, when he receives a new
message to one of his monitored inboxes.

a) User logs in using WebID.
b) System receives a message for the user to a monitored inbox.
c) System shows a pop-up system notification to the user.

2.2.1.2 Sender

UC6 Send a message to a person/resource from contact list using
LDN. Sender sends a message to an actor from contact list using Linked
Data Notification protocol. The actor can be a person or some other
resource (like company, website, etc.) identified by IRI.

a) User logs in using WebID.
b) User sees list of his contacts.
c) User clicks on the action ”send message”.
d) User enters a content of the message.
e) User submits the message.
f) System sends the message to the resource’s inbox.

UC7 Send a message to a person/resource from contact list using
AP. Sender sends a message to an actor from contact list using Activi-
tyPub protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.
b) User sees list of his contacts.
c) User clicks on the action ”send message”.
d) User enters a content of the message.
e) User submits the message.

20

2.3. Analysis of existing solutions

f) System sends the message to the resource’s inbox.

UC8 Send a message to an unknown person/resource using LDN.
Sender sends a message to an actor that is not in his contact list using
LDN protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.
b) User opens a new message form.
c) User enters the receiver’s IRI.
d) User enters a content of the message.
e) User submits the message.
f) System sends the message to the resource’s inbox.

UC9 Send a message to an unknown person/resource using AP.
Sender sends a message to an actor that is not in his contact list us-
ing AP protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.
b) User opens a new message form.
c) User enters the receiver’s IRI.
d) User enters a content of the message.
e) User submits the message.
f) System sends the message to the resource’s inbox.

2.3 Analysis of existing solutions

An analysis of existing Solid server implementations was conducted to de-
termine whether they could be used for the given task (a server supporting
decentralized messaging). Applications were searched on the web using Google
with terms like “solid server”. Also, existing implementations linked at “LDN
Test Reports and Summary” https://linkedresearch.org/ldn/tests/summary
and https://solidproject.org/use-solid/apps were examined.

2.3.1 Criteria for analysis of existing solutions

The following criteria were considered:

• application has available sources;

• license permits extending the application;

21

2. Analysis

• application has sufficient documentation on how to run it, or it is
runnable without the need for documentation;

• application is live or with active development - sources without a commit
within 1 year were excluded;

• application support for linked data, LDP, LDN, AP, RDF and system
notification;

• application must be extensible with our cause - LDN/AP notifications.
Applications without the possibility of being extended with our use cases
were excluded.

Based on these criteria, three applications were selected for more detailed
analysis (see section Detailed analysis below).

2.3.2 Overview of all analysed applications

2.3.2.1 SCTA inbox receiver

Only a simple LDN app to pass the AP test suite. No information available
on how to run this. No extension possible.

Accessible at https://github.com/scta/scta-inbox.

2.3.2.2 Sloph/DIY Inbox

Sample/POC LDN demonstration in PHP. No extension possible. Made only
to pass the AP test suite.

Accessible at https://rhiaro.co.uk/2017/08/diy-ldn.

2.3.2.3 gold

Reference Linked Data Platform server for the Solid platform. Not main-
tained anymore - latest commit on Oct 10, 2018.

Accessible at https://github.com/linkeddata/gold.

2.3.2.4 ldn-streams

Implementation of Linked Data Notifications for RDF streams. Not main-
tained anymore - latest commit on Jun 11, 2018.

Accessible at https://github.com/jpcik/ldn-streams.

22

https://github.com/scta/scta-inbox
https://rhiaro.co.uk/2017/08/diy-ldn
https://github.com/linkeddata/gold
https://github.com/jpcik/ldn-streams

2.3. Analysis of existing solutions

2.3.2.5 Carbon LDP

Carbon LDP is ”an enterprise-class Linked Data Platform that helps artists
and engineers create and extend web applications with ease” [20]. Based
on its broad capabilities, it has been selected for a detailed analysis, see below.

Accessible at https://carbonldp.com/, https://github.com/CarbonLDP.

2.3.2.6 solid-server in Node

Solid-server is the main candidate for the possible solution. It is implemented
in NodeJS on top of the file system. Solid supports Linked Data Platform,
Web Access Control, WebID+TLS Authentication, real-time live updates
(using WebSockets) and other features. It is available both as a NodeJS
project and as a Docker container. Detailed analysis is available below.

Accessible at https://github.com/solid/node-solid-server.

2.3.2.7 pyldn

Pyldn is a lighweigth Linked Data Notifications (LDN) receiver implemented
in python. As it does not include other LDN parts, it was not selected for
further analysis.

Accessible at https://github.com/albertmeronyo/pyldn.

2.3.2.8 Virtuoso Universal Server

Commercial Data Virtualization platform. Sources not available.

Accessible at https://virtuoso.openlinksw.com/#this.

2.3.2.9 maytkso

”HTTP server and command-line RDF tool to get/send, serialise data.” [21]
Written in one JS file, merely an LDN server/receiver. Not acceptable for
extension.

Accessible at https://github.com/csarven/mayktso.

2.3.2.10 Apache Marmotta

Open platform for LDP, implemented as a Java web application. Has to be
run on a JavaEE application server. Based on its capabilities, it has been
selected for a detailed analysis below.

23

https://carbonldp.com/
https://github.com/CarbonLDP
https://github.com/solid/node-solid-server
https://github.com/albertmeronyo/pyldn
https://virtuoso.openlinksw.com/#this
https://github.com/csarven/mayktso

2. Analysis

Accessible at https://marmotta.apache.org/.

2.3.2.11 IndieAnndroid/ blog-a-loosh

Indieweb blog platform. Developed for personal use and not applicable for
our purpose.

Accessible at https://github.com/Kongaloosh/blog-a-loosh.

2.3.2.12 LDP-CoAP

LDP for the Constrained Application Protocol. Provided mapping of LDP
over HTTP to CoAP (RFC 7252 Constrained Application Protocol [22]). Not
applicable for our purpose.

Accessible at http://sisinflab.poliba.it/swottools/ldp-coap/,
https://github.com/sisinflab-swot/ldp-coap-framework.

2.3.2.13 distbin.com

Application similar to pastebin - for easy copy, paste and share of text. Not
useful for messaging. Not available anymore.

Accessible at https://distbin.com/.

2.3.2.14 Fedora Repository

Big repository system for management and dissemination of digital content
(digital libraries and archives). It does not support use cases such as
decentralized messaging for a common user.

Accessible at https://wiki.duraspace.org/display/FF/Fedora+R
epository+Home.

2.3.2.15 SNS

Social network based on Solid build on core JavaScript. No sources available.

Accessible at https://electrapro-pk.github.io/SNS/.

2.3.2.16 Solidarity

Chat application written in node.js. It is an online chat with channels. No
license information available.

24

https://marmotta.apache.org/
https://github.com/Kongaloosh/blog-a-loosh
http://sisinflab.poliba.it/swottools/ldp-coap/
https://github.com/sisinflab-swot/ldp-coap-framework
https://distbin.com/
https://wiki.duraspace.org/display/FF/Fedora+Repository+Home
https://wiki.duraspace.org/display/FF/Fedora+Repository+Home
https://electrapro-pk.github.io/SNS/

2.3. Analysis of existing solutions

Accessible at https://github.com/scenaristeur/solidarity,
https://scenaristeur.github.io/solidarity/.

2.3.2.17 OChat

Simple chat application written with React. Not maintained anymore (last
commit on Jul 25, 2019).

Accessible at h t t p s : / / g i t h u b . c o m / j a x o n c r e e d / o - c h at,
https://chat.o.team/.

2.3.2.18 Friend Requests Exploration

Exploration into how Solid could be used for sending friend requests. Not
extensible.

Accessible at https://github.com/inrupt/friend-requests-expl
oration.

2.3.2.19 solid-inbox

Inbox for processing notifications. Single JS file app. Not maintained
anymore.

Accessible at https://github.com/solid/solid-inbox.

2.3.3 Detailed analysis of selected applications

Applications selected in the previous analysis were subjected to a more de-
tailed analysis based on the requirements and support of possible use cases.
Table 2.1 is an overview of the analysis, details follow below.

2.3.3.1 solid-server

Solid is a project led by Prof. Tim Berners-Lee, inventor of the World Wide
Web, taking place at MIT [23]. Solid-server is a server is implemented in
NodeJS on top of the file system. It supports Linked Data Platform, Web
Access Control, WebID+TLS Authentication, real-time live updates (using
WebSockets) and other features. It is available both as a NodeJS project and
as a Docker container.

It is still a developing prototype. The main instance is running at https:
//solid.community/, however it is designed so anybody can host their
instance.

It is published under the free MIT license [24], so it available for extension.
Source code and documentation is available at https://github.com/solid
/node-solid-server.

25

https://github.com/scenaristeur/solidarity
https://scenaristeur.github.io/solidarity/
https://github.com/jaxoncreed/o-chat
https://chat.o.team/
https://github.com/inrupt/friend-requests-exploration
https://github.com/inrupt/friend-requests-exploration
https://github.com/solid/solid-inbox
https://solid.community/
https://solid.community/
https://github.com/solid/node-solid-server
https://github.com/solid/node-solid-server

2. Analysis

Table 2.1: Detailed analysis. This table shows application support of re-
quirements and use cases. Only applications selected for detailed analysis are
shown. See requirements section and use cases section for details. X means
full support, 7 means no support, - means that the support could not be
verified or that it is not applicable in the application’s scope.

requirement/
use-case ID

application name
solid-server Apache Marmotta

F1 X X
F2 X 7

F3 X X
F4 X 7

F5 X X
F6 X -
F7 X 7

F8 X -
F9 X -
F10 X -
F11 X -
F12 X -
N1 X X
N2 X X
N3 X X
UC1 X -
UC2 X -
UC3 X -
UC4 X -
UC5 X -
UC6 X -
UC7 X -
UC8 X -
UC9 X -

2.3.3.2 Solid inbox client

As a part of the public Solid server instance at https://solid.community/,
there is an existing inbox client application. The problem is that its user
interface (UI) is very un-intuitive and cumbersome. Figure 2.1 is the UI for
the use case UC4 - read a list of inbox messages:

The following two screenshots Figure 2.2 and Figure 2.3 capture the solid
UI for message detail - UC4.

As you can see, the current UI makes it impossible to access the detail
content and the user is forced to use another solution (such as HTTP GET

26

https://solid.community/

2.3. Analysis of existing solutions

Figure 2.1: Solid inbox - list of messages. Screenshot of the current official
inbox client application.

the RDF document representation.

27

2. Analysis

Figure 2.2: Solid inbox - message detail. Screenshot of the current official
inbox client application.

28

2.3. Analysis of existing solutions

Figure 2.3: Solid inbox - message content. Screenshot of the current
official inbox client application.

29

2. Analysis

2.3.3.3 Apache Marmotta

Apache Marmotta is an Open Platform for Linked Data [25]. Based on the
Linked Media Framework project, it is an implementation of a Linked Data
Platform. It is implemented as a Java Web Application [25].

Marmotta features Linked Data server for the Java EE stack, LDP,
SPARQL and LDPath querying, caching and basic security mechanisms. The
installation comes as a Java Web Archive (.war) file that has to be deployed
on an application server (such as Tomcat) [25].

Marmotta is a robust, well-documented platform. However, based on the
version list [26] and issue tracker [27], it does not appear to be under active
development. The last version was published in June 2018 [26] and there are
unresolved open issues from 2018 [27].

Apache Marmotta is published under the open-source Apache Software
License, Version 2.0: https://marmotta.apache.org/license.html.

2.3.3.4 Carbon LDP

Carbon LDP is an enterprise server implementation of LDP. It aims to help
engineers and artists to create web applications supporting LDP. It provides
R/W access to RDF graph data using RESTful HTTP. Homepage: https:
//carbonldp.com/, GitHub page: https://github.com/CarbonLDP.

Carbon LDP supports REST API requests over HTTP. It supports JSON-
LD, Turtle and RDF XML serializations. Data are stored in native RDF for-
mat - RDF triples in a NoSQL database. It also supports querying documents
using SPARQL.

At first glance, Carbon LDP appears to be open source with commercial
support (like e.g. Spring framework14). However, after a more thorough analy-
sis Carbon LDP emerges as a commercial product without sources available
and without an option for extensions. It does contain open source modules,
such as a graph/document visualisation tool Workbench 15 and JavaScript
SDK 16. But these modules do not meet requirements for this theses
and thus Carbon LDP is disqualified from further use.

2.4 Analysis results

In the analysis chapter, first, requirements for the solution were formulated.
Use cases were derived from requirements to specify user actions. Based on
the requirements and use cases, a broad analysis of existing solutions was
conducted. Only solid-server and Apache Marmotta matched the first analysis
and were selected for a more detailed review.

14https://spring.io/
15https://github.com/CarbonLDP/carbonldp-workbench
16https://github.com/CarbonLDP/carbonldp-js-sdk

30

https://marmotta.apache.org/license.html
https://carbonldp.com/
https://carbonldp.com/
https://github.com/CarbonLDP
https://spring.io/
https://github.com/CarbonLDP/carbonldp-workbench
https://github.com/CarbonLDP/carbonldp-js-sdk

2.4. Analysis results

After a more detailed analysis, the solid-server was selected as a sufficient
solution to support the goals of the thesis. There is no need to implement a
new server solution.

31

Chapter 3
Design

This chapter describes the architecture and technologies used for implemen-
tation. First, three prove-of-concept applications were developed. Second,
based on the POC applications, an final client application was implemented.

3.1 inbox - LDN proof-of-concept

In this section, the design of the proof-of-concept (POC) application is de-
scribed. First, the architecture is discussed, followed with a description of
used technologies. This POC web application was created to investigate the
LDN protocol. Its purpose is to test the architecture, technologies and the
LDN, RDF libraries.

3.1.1 Architecture

Based on the actors of the LDN protocol, the application is divided into three
modules (see Figure 1.3):

• consumer - LDN consumer + sender,

• receiver - LDN receiver,

• target - sample LDN target for inbox discovery.

The consumer is designed to communicate using REST API with any
application compliant with the LDN specification. The receiver is a REST API
server with in-memory DB implementation to receive and serve notifications
using LDN protocol. The target is an implementation of the LDN target and
works for the inbox discovery.

Both consumer and server are designed to have a back-end with HTM-
L/CSS/JS front-end.

The consumer and receiver are an MVC architectures with RDF as a model
and a separate service layer.

33

3. Design

3.1.2 Technologies

After the analysis, JavaScript was chosen as the language for development.
The main reasons are the requirement of a web client with desktop notification
and the lack of back-end libraries. Only these four back-end libraries were
discovered:

• rdflib17 for Python,

• Java:

– Apache Jena18,
– Eclipse RDF4J19;

• EasyRDF20 for PHP.

server For this application, the Node.js21 server was used with the Express
22 web framework. Node.js is an asynchronous, event-driven JavaScript engine
for back-end implementations. Express is a simple web framework built on
top of Node.js.

front-end Front-end is made of HTML/CSS/JS pages. The Bootstrap
framework was used to help with the UI design. Bootstrap is an open-source
CSS/JS framework [28].

3.1.2.1 LD/RDF libraries

To read, write and manipulate Linked Data in RDF, a JavaScript library is
needed. There are not many available libraries and the existing ones are still
in development. For example, while working on this thesis, an issue23 with
the rdflib24 was encountered - the library had troubles parsing JSON-LD.

The following LD/RDF libraries were considered and examined:

rdflib rdflib.js is an RDF JavaScript library. It supports R/W with RD-
F/XML and Turtle RDF serializations. It also supports reading of JSON-LD.
Furthermore, it contains a fetch API to access RDF resources and local store
with API to query the result.

17https://rdflib.readthedocs.io/en/stable/
18https://jena.apache.org/
19https://rdf4j.org/
20https://www.easyrdf.org/
21https://nodejs.org/
22https://expressjs.com/
23https://github.com/linkeddata/rdflib.js/issues/364#issuecomment-546705383
24https://github.com/linkeddata/rdflib.js/

34

https://rdflib.readthedocs.io/en/stable/
https://jena.apache.org/
https://rdf4j.org/
https://www.easyrdf.org/
https://nodejs.org/
https://expressjs.com/
https://github.com/linkeddata/rdflib.js/issues/364#issuecomment-546705383
https://github.com/linkeddata/rdflib.js/

3.2. LDN-target

Rdflib.js sources and documentation is accessible at https://github.c
om/linkeddata/rdflib.js/. It is also available as a npm25 (JavaScript
package manager) at https://www.npmjs.com/package/rdflib.

Tripledoc Tripledoc is an RDF JavaScript library to read, create and update
documents on a Solid Pod [29]. It has a more intuitive and easy-to-understand
interface than the rdflib, however fewer capabilities.

Please note that it was not available at the time of development of the
inbox POC (first commit is Jul 17, 2019 [30]). For this reason it was not
considered for this POC, but was later used in the inbox-client application.
https://vincenttunru.gitlab.io/tripledoc/,

Shighl https://github.com/scenaristeur/shighl,

LDflex https://github.com/LDflex/LDflex.

The rdflib was chosen as the most mature technology. To access solid pods,
the solid-auth-client26 library is needed.

3.2 LDN-target

LDN-target is a simple web application that was separated from the original
inbox POC. It was extracted to a new project and extended, so it is possible to
document and deploy it separately. This way it can be a helpful contribution
to the community.

3.2.1 Architecture

Based on the LDN target discovery protocol [15], the application has the
following endpoints:

• HTTP HEAD that returns response with the Link header,

• HTTP GET that returns response with the Link header,

• HTTP GET that returns RDF content with serialization based on the
HTTP content negotiation.

3.2.2 Technologies

The technology stack is the same as for the inbox POC.
25https://docs.npmjs.com/about-npm/
26https://github.com/solid/solid-auth-client

35

https://github.com/linkeddata/rdflib.js/
https://github.com/linkeddata/rdflib.js/
https://www.npmjs.com/package/rdflib
https://vincenttunru.gitlab.io/tripledoc/
https://github.com/scenaristeur/shighl
https://github.com/LDflex/LDflex
https://docs.npmjs.com/about-npm/
https://github.com/solid/solid-auth-client

3. Design

server For this application, the Node.js27 server was used with the Express
28 web framework.

front-end Front-end is made of HTML pages with CSS styling.

3.3 js-notification-poc

js-notification-poc is an implementation of the JavaScript Notification API
and Push API. Its development was intended to get familiar with the spec-
ifications and test the APIs. The Notification API part of the application
is based on the API documentation [31], the second, Push API, is directly
derived from an existing Push API example [6] (its source code available at
https://github.com/Spyna/push-notification-demo/).

3.3.1 Architecture

This application is a web application. It is split to two conceptual parts, first
being based on the JavaScript Notification API [31] and the second on the
Push API [32]. Both are a simple web page, the whole application logic is
written in JavaScript.

3.3.2 Technologies

The technology stack is the same as for the inbox POC.

server For this application, the Node.js29 server was used with the Express
30 web framework.

front-end Front-end is made of HTML pages with CSS styling. The core
functionality is written in JavaScript.

3.4 inbox-client

In this section, the design of the inbox-client is described. First, the architec-
ture is discussed, followed with a description of used technologies.

27https://nodejs.org/
28https://expressjs.com/
29https://nodejs.org/
30https://expressjs.com/

36

https://github.com/Spyna/push-notification-demo/
https://nodejs.org/
https://expressjs.com/
https://nodejs.org/
https://expressjs.com/

3.4. inbox-client

3.4.1 Architecture

As for the inbox POC, JavaScript was used as the language for development.
The main reasons are the requirement of a web client with desktop notification
and the lack of back-end libraries.

The application logic is on the client side, with server used only for serving
HTML/JS/CSS content. This is based on the findings from the development
of the inbox POC section 3.1. The reason is that the solid pods require the
solid-auth-client library for authentication. This is available only as a client-
side browser library [33].

All data are stored in the solid pod and the client-side JavaScript is using
the tripledoc library’s fetch api to create authenticated HTTP requests to
access the pod.

3.4.2 Technologies

The technology stack is the same as in the inbox POC (see subsection 3.1.2),
with the main difference of using different LD/RDF library.

server For this application, the Node.js31 server was used with the Express
32 web framework.

front-end Front-end is made of HTML/CSS/JS pages. The Bootstrap [28]
framework was used to help with the UI design.

3.4.2.1 LD/RDF libraries

To read, write and manipulate Linked Data in RDF, a JavaScript library
is needed. The tripledoc RDF JavaScript library [29] was chosen for this
application. It has more intuitive and easy-to-understand interface than the
rdflib used in the inbox POC.

To access solid pods, the solid-auth-client33 library is required.
The rdf-namespaces library (https://www.npmjs.com/package/rdf-na

mespaces is used to help with RDF namespaces. This allows to use predefined
constants like rdfnamespaces.foaf.knows instead of direct URLs like http:
//xmlns.com/foaf/0.1/knows.

31https://nodejs.org/
32https://expressjs.com/
33https://github.com/solid/solid-auth-client

37

https://www.npmjs.com/package/rdf-namespaces
https://www.npmjs.com/package/rdf-namespaces
http://xmlns.com/foaf/0.1/knows
http://xmlns.com/foaf/0.1/knows
https://nodejs.org/
https://expressjs.com/
https://github.com/solid/solid-auth-client

Chapter 4
Implementation

This chapter covers the specifiv implementation details of all the developed ap-
plications. It covers both the initial proof-of-concept applications (section 3.1)
and the following client application (section 3.4).

4.1 inbox - LDN proof-of-concept

First, a LDN proof-of-concept inbox application was created. The design and
selection of technologies is described in section 3.1, here the implementation
details are described.

The application flow is:

1. user visits consumer+sender application

2. the welcome page is shown: Figure 4.1

3. user inputs target URL or click on one from the last used list

4. consumer+sender module performs inbox discovery

5. if successful, consumer+sender reads messages from the inbox

The inbox can be located anywhere. In this application, it is located at
the receiver module.

4.1.1 consumer + sender

The main functionality is in the application services:

• receiverServices.js

– getNotifications(inboxUrl, callback) retrieve all available
notifications from the inbox/target, then execute callback

39

4. Implementation

Figure 4.1: inbox - index screen. Screenshot of the index page

– getNotificationById(id, callback) retrieve a specific notifica-
tion from the inbox/target by supplied id, then execute callback

• targetService.js

– discoverInboxAt(urlToExplore, callback) attempt to dis-
cover inbox at the urlToExplore

– getInboxUrlFromRDF(urlToExplore, callback) when no link
header is available, try to get the inbox url from RDF content

4.1.2 receiver

The main functionality is in the application service:

• notificationService.js

– processMessage (notification)

– createAllNotificationsResponse() produce valid JSON-LD en-
velope for the notifications from DB

– getNotificationById()

40

4.1. inbox - LDN proof-of-concept

4.1.3 target

Target is a simple web page to try and showcase LDN discovery [15]. It is im-
plemented as a node.js/express application that responds to HTTP requests.

As described at Figure 1.1.4, there are two options for discovery - using
HTTP Link header34, for both HEAD and GET methods, or by embedding RDF
into the resource content.

For the first option (HTTP Link header), the application accepts both
GET and HEAD HTTP requests:

const LINK_VALUE = '<' + INBOX_URL + '>;
rel="http://www.w3.org/ns/ldp#inbox"';

router.get('/', function (req, res, next) {
res.set('Link', LINK_VALUE);
res.render('index', {title: 'Inbox␣discovery␣demo'});

});

router.head('/', function (req, res, next) {
res.set('Link', LINK_VALUE);
res.status(200).end();

});

The second option is returning content based on the Accept header. It
either returns RDF in JSON-LD or Turtle, or return HTML with embedded
RDF:

// 2) RDF
router.get('/content', function (req, res, next) {

// switch response based on Accept header and set the response content
↪→ type accordingly
res.format({

// a) JSON with relation of type http://www.w3.org/ns/ldp#inbox
'application/ld+json': function () {

res.send(
{

"@context": "http://www.w3.org/ns/ldp",
"@id": "https://tonda.solid.community/",
"inbox": "https://tonda.solid.community/inbox/"

}
)

},

// b) HTML <a> with rel="http://www.w3.org/ns/ldp#inbox"
// c) HTML <link> with rel="http://www.w3.org/ns/ldp#inbox"
// d) HTML <section> with property="http://www.w3.org/ns/ldp#inbox"
'text/html': function () {

res.render('contentWithRdf');
},

34https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Link

41

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Link

4. Implementation

// e) text/turtle with <http://www.w3.org/ns/ldp#inbox> relation
'text/turtle': function () {

res.send("<https://tonda.solid.community/>␣<http://www.w3.org/
↪→ ns/ldp#inbox>␣<https://tonda.solid.community/inbox/>␣.");

},

default: function () {
// log the request and respond with 406
res.status(406).send('Not␣Acceptable')

}
})

});

4.2 LDN-target POC

The implementation details are already described as a part of the subsec-
tion 4.1.3.

4.3 js-notification-poc

After the initial LDN proof-of-concept, another technology had to be analysed
- system notifications. Since the JavaScript was chosen as the development
language (see subsection 3.1.2), the JavaScript’s notification API was exam-
ined in this JavaScript Notifications POC.

4.3.1 About JavaScript notification API

JavaScript notification API is divided into two conceptual, complementary
parts. The first, Notification API35, is a simple API to request permissions
and create system notifications. The second, Push API36, can be used to push
notifications to web applications from a server.

The Push API uses 4 actors [6]:

• User that wants to receive the notifications,

• Application that runs on the user-agent (typically the browser),

• Service worker that runs on the browser,

• Push Server that sends push messages to the service worker.

The whole interaction is illustrated in the Figure 4.2.
The service worker is also needed for Chrome on Android. However, as

the time of writing, the Push API is still an experimental technology [32].
35https://developer.mozilla.org/en-US/docs/Web/API/Notifications API
36https://developer.mozilla.org/en-US/docs/Web/API/Push API

42

https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API

4.3. js-notification-poc

Figure 4.2: The push notification implementation flow. JavaScript Push
API overview with distinct actors - User, Application, Service worker and Push
Server [6].

4.3.2 POC description

This POC is a simple static page to test JavaScript notification api. It runs on
node.js (express) server. The source code is available at https://github.com
/WhyINeedToFillUsername/js-notification-poc. It includes installation
and run documentation, as well as brief description.

The POC was created based on the MDN documentation. Quite simply,
first the application first checks if the browser supports the Notification API:

// Let's check if the browser supports notifications
if (!('Notification' in window)) {

const message = "This␣browser␣does␣not␣support␣notifications.";
console.error(message);

} else {
// yes, supports, handle user's answer
}

After the user confirms that he wants to receive notifications, a notification
is created with the following code:

function createSimpleNotification() {

43

https://nodejs.org/
https://expressjs.com/
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API/Using_the_Notifications_API

4. Implementation

var img = '/images/fit.png';
var text = 'Text␣of␣the␣notification.';
var title = 'Hello␣there!␣Cool␣title!';
const options = {

body: text,
icon: img,
// A vibration pattern to run with the display of the notification.
vibrate: [200, 100, 200],
// An ID for a given notification that allows you to find, replace,

↪→ or remove the notification using a script if necessary.
tag: "new-product",
image: img,

// URL of an image to represent the notification when there is not
↪→ enough space to display the notification itself

badge:
"https://spyna.it/icons/android-icon-192x192.png"

};
let notification = new Notification(title, options);
// hook events, save reference etc.

}

This creates a system notification with the requested parameters (the whole
list is accessible at the MDN web docs: https://developer.mozilla.org/
en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#P
arameters).

4.3.2.1 Push API

The second part, Push API implementation, is directly derived from the Push
Notifications in JavaScript article [6].

To make a full use of the JavaScript Notification + Push API, there are 6
steps [34]:

1. Check if Service Workers are supported

2. Check if the Push API is supported

3. Register a Service Worker

4. Request permission from the user

5. Subscribe the user and get the PushSubscription object

6. Send the PushSubscription object to your server

Also, to identify application and prevent spam for the clients, a VAPID key
must be generated and used in the subscription. The web-push npm package
was used for this purpose: https://www.npmjs.com/package/web-push.

Further implementation details are available in the Push Notifications in
JavaScript article [6].

44

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://www.npmjs.com/package/web-push

4.4. inbox-client

4.4 inbox-client

A final client inbox application was derived from the original proof-of-concept
(section 3.1) application. The design and selection of technologies is described
in section 3.4, here are the implementation details.

All the application’s logic is in the front-end (browser) JavaScript. To
structure the application, code is divided into separate modules based on
their functionality. During the build, JS code is processed by the browserirfy
plugin. A separate JS bundle file is created for each page. This way only used
code is being loaded.

This application uses the solid-auth-client to authenticate and tripledoc
RDF JavaScript library [29] to read and manipulate solid pod data.

4.4.1 Modules

Below is a list of the application JavaScript modules with description.

• alerts.js a helper module with
addAlert(level, message, autoDissmiss function to create a user-
friendly alerts

• inbox.js main module with the logic to add a watched in-
box, retrieve notifications from it, show them to user and de-
tect new messages. Every ten seconds, it loads notifica-
tions from the monitored inboxes and detects any new messages:
window.setInterval(loadNotifs, 1000 * 10);

– loadMonitoredInboxesFromPod(webID) retrieve monitored in-
boxes from the solid pod:

1. fetch solid profile
2. on the profile, get/create document that stores the watched

inboxes list
3. from the document, get all subjects of class schema.URL
4. each has the url saved as type string; save them to memory

and call addInboxToShownList()

• inbox-detail.js module for loading and formatting the inbox mes-
sages. Also contains methods for remove inbox from monitored list.

• inbox-discover.js module for LDP inbox discovery on the supplied
LDP target

• inbox-send.js contains methods for sending the messages using LDN
protocol (with AS format)

45

http://browserify.org/

4. Implementation

• notifications.js contains methods for handling system notifications
using the JavaScript Notification API

• pod.js using the tripledoc library [29], this module contains methods
for the communication and data retrieval from the solid pods.

– getFriends(webID) retrieve a list of user contacts (predicate
foaf.knows)

– getWatchedInboxesListDocument(profile) retrieves the
document where list of watched inboxes. If it does
not exist in the client’s profile, it is created by calling
initialiseWatchedInboxesList() method.

– initialiseWatchedInboxesList(profile, typeIndex) creates
an empty document for storing the watched inboxes list

– addWatchedInbox(inbox, watchedInboxesListDoc) stores a
watched inbox into the supplied document

– removeWatchedInbox(inboxIRI, watchedInboxesListDoc) re-
moves a watched inbox from the supplied document

• solid-login.js contains logic for solid login, using the solid-auth-client
library

• solid-logout.js functionality for the logout button

4.4.2 User interface

By using the Bootstrap CSS/JS framework [28], the UI is fully responsive.
Below are few screenshots of the UI for illustration.

Figure 4.3: inbox-client screen 1 - watched inboxes

46

4.4. inbox-client

Figure 4.4: inbox-client screen 2 - added watched inbox

Figure 4.5: inbox-client screen 3 - send message to a friend

47

Chapter 5
Testing

This chapter describes how the developed applications were tested. First, the
testing terms are defined. Second, information about testing each developed
application is presented.

5.1 Terms definition

5.1.1 Unit tests

Unit tests are automated tests that verify behavior of the application’s isolated
methods. For example for a simple method sum (a, b) {return a + b;}, a
unit test should verify the method’s output. Unit tests should run with each
application build. A build should fail when the tests don’t pass. This way a
developer can be informed about code changes that broke the desired behavior
as soon as possible.

5.1.2 E2E tests

End-to-end (E2E) tests are automated comprehensive tests of the whole sys-
tem. They should simulate behavior of a typical user of the tested system,
they are usually based on the user scenarios. E2E tests of web applications
are typically run with testing frameworks that control a testing instance of a
browser. Principally they run longer than unit test, so they are usually run
periodically and/or with each release candidate.

5.1.3 Usability testing

Usability testing is manual testing of the application. Its goal is to determine
how usable for a typical user the system is. There are several types, such as
cognitive walkthrough, heuristic evaluation and user testing [35].

As a part of this thesis, the cognitive walkthrough was conducted.

49

5. Testing

5.1.3.1 Cognitive walkthrough

Cognitive walkthrough testing is typically conducted by a developer/UX ex-
pert. This person uses user scenarios to walk through the application and uses
his expertise to identify system’s UX defects [35].

More specifically, the goal is to answer the following questions [36]

1. Will the user try and achieve the right outcome?

2. Will the user notice that the correct action is available to them?

3. Will the user associate the correct action with the outcome they expect
to achieve?

4. If the correct action is performed; will the user see that progress is being
made towards their intended outcome?

5.2 Application testing

5.2.1 inbox

Aim of this POC application was to investigate technologies and protocols.
For this reason, application was tested mainly manually. To ensure LDN
protocol compliance, the modules were successfully tested with the LDN test
suite.

5.2.2 LDN-target

This POC application was tested manually together with the inbox POC.
Furthermore, it was tested when discovering inbox in the inbox-client manuall
testing.

5.2.3 js-notification

This POC application was subjected to manual testing.

5.2.4 inbox-client

As the main application of the thesis, most testing efforts were focused on the
inbox-client application.

5.2.4.1 Unit tests

For this application, a unit testing framework research was conducted. From
the candidates the Mocha testing framework (https://mochajs.org/) was
selected. It is a JavaScript test framework running on Node.js.

50

https://linkedresearch.org/ldn/tests/
https://linkedresearch.org/ldn/tests/
https://mochajs.org/

5.2. Application testing

However, during the test development it occurred that the inbox-client
application has no backed services. Because of the used available solid and
RDF libraries, all the application logic is on the front-end. The created front-
end JavaScript methods are not suitable for unit tests - they either directly
modify HTML DOM or rely on the solid session, which is created with the
external solid-client-auth library.

The result is that the unit tests were considered, investigated, unit test
frameworks researched. No suitable use was found for them and a decision
was made not to use them for the application in its current design.

5.2.4.2 E2E tests

For the inbox-client, a E2E testing framework research was conducted. From
the candidates, the Cypress E2E testing framework (https://www.cypress.
io/) was selected as the most suitable framework [37]. It is an open source,
JavaScript test framework running on Node.js and in a browser.

However a problem with the selected testing framework occurred. It does
not support pop-up windows. And as of time of writing the thesis, a pop-
up windows is the only way the solid-client-auth library is able to work. As
a result, the testing framework is unable to log into the application This is
an essential step in each UC and so the E2E tests are not part of the final
solution.

5.2.4.3 Usability testing

The key part of the thesis is to prove that the solid inbox application can be
user-friendly. To ensure this, a usability testing was conducted. Because the
application’s typical user is an experienced user, the cognitive walkthrough
was selected as the most suitable usability testing method.

How the cognitive walkthrough was conducted The tester, an experi-
enced front-end developer, followed the steps in the use cases section 2.2. At
each step, the tester was trying to answer the questions defined at subsub-
section 5.1.3.1. Afterwards, the tester summarized his findings and presented
the results.

The complete testing records with the findings is available in the Ap-
pendix B.

Cognitive walkthrough summary The cognitive walkthrough confirmed
the clear usage of the designed UI and the appropriate usability for the tested
use cases. Only various minor UX issues were found and fixing them could
increase the app’s usability for a wider range of users.

51

https://www.cypress.io/
https://www.cypress.io/

Chapter 6
Documentation

This chapter provides documentation of all the created applications. It in-
cludes links to access source code, software prerequisites; installation, build
and run steps for each.

6.1 Versioning - Git on GitHub

Source codes are versioned using Git on GitHub37, published as open-source.
GitHub is a public Git VCS with a web interface. Please note that the source
codes at GitHub are subject to change. To access the code version that comes
with this thesis, separate Git ”thesis-version” branches were made in each
repository.

6.2 Deployment - Heroku

Applications were deployed using Heroku Cloud Platform: https://www.he
roku.com. Please note that the platform is suspending applications that are
inactive for a while, so the first time you open the application’s page, you
might experience a longer delay.

6.3 inbox

This section contains the inbox POC documentation.

6.3.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/inbox

37https://github.com/

53

https://www.heroku.com
https://www.heroku.com
https://github.com/WhyINeedToFillUsername/inbox
https://github.com/

6. Documentation

6.3.2 Requirements

You need to install node.js (with included npm).

6.3.3 Install

Run the following command in the module’s root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

6.3.4 Run

consumer listens on local port 8000, receiver on 3000. You can change that
in their bin/www files. Run each module separately using following command
in the module’s root folder:

npm start

The consumer requires the receiver to be running.

6.3.5 Usage

You can try the consumer in your browser at http://localhost:8000/.
When you post

{"@context": "https://www.w3.org/ns/activitystreams",
"type": "Note",
"to": ["https://chatty.example/ben/"],
"attributedTo": "https://social.example/alyssa/",
"content": "Say, do you think that Gary Webb and Jeffrey Epstein really

↪→ killed themselves?"}

with Content-Type: application/ld+json to http://localhost:50
01/API/notifications, the receiver will return 201 with location. You
can then GET it at http://localhost:5001/API/notifications/xx. Or let the
consumer display it in the browser at http://localhost:8000/notification/xx.

6.4 ldn-target-showcase

This section contains the LDN-target POC/showcase documentation. The
app is a simple Linked Data Notification target implementation to test and
showcase all discovery options. It is a node.js (express) app.

54

https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
http://localhost:8000/
http://localhost:5001/API/notifications
http://localhost:5001/API/notifications
https://www.w3.org/TR/ldn/
https://nodejs.org/
https://expressjs.com/

6.4. ldn-target-showcase

6.4.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/ldn-target-showcase

6.4.2 Requirements

You need to install node.js (with included npm).

6.4.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

6.4.4 Run

Run with

npm start

Application is listening on the port 3000.

6.4.5 Usage

Open browser at http://localhost:3000/. You can see all the options
to try out. Use e.g. curl or Postman to make HTTP request with various
options.

For example this request:

GET /content HTTP/1.1
Accept: application/ld+json
Host: localhost:3000

gets this response:

HTTP/1.1 200 OK
Content-Type: application/ld+json; charset=utf-8
{

"@context": "http://www.w3.org/ns/ldp",
"@id": "https://tonda.solid.community/",
"inbox": "https://tonda.solid.community/inbox/"

}

55

https://github.com/WhyINeedToFillUsername/ldn-target-showcase
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
http://localhost:3000/

6. Documentation

6.4.6 Live version

Application is deployed to: https://ldn-target-showcase.herokuapp.co
m.

6.5 js-notification-poc

js-notification-poc is an implementation of the JavaScript Notification API
and Push API. It was developed to get familiar with the specifications and
test the APIs.

6.5.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/js-notification-poc

6.5.2 Requirements

You need to install node.js (with included npm).

6.5.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

6.5.4 Build

Run the following command in the root folder:

npm build

It uses browserirfy to build the project javascript bundle files.

6.5.5 Run

The node.js server is set to listen on local port 3001. You can change that in
the bin/www files. Start it by this command:

npm start

56

https://ldn-target-showcase.herokuapp.com
https://ldn-target-showcase.herokuapp.com
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
http://browserify.org/

6.6. inbox-client

Then go to http://localhost:3001/. Click on the ”Enable notifications”
button to request permission, and ”Create notification” to show system noti-
fication.

Please note that request for notifications won’t work in browser ”private”
mode.

6.5.6 Documentation

Code is self-explanatory with necessary comments. See /public/javascript
s/notifs.js to how it works.

6.5.7 Live version

Application is deployed to: https://js-notification-poc.herokuapp.co
m/.

6.6 inbox-client

Documentation for inbox-client. The application is designed as a JavaScript
client-side application with Node.js/express web framework back-end.

6.6.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/inbox-client

6.6.2 Requirements

You need to install node.js (with included npm).

6.6.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

6.6.4 Build

Run the following command in the root folder:

npm build

It uses browserirfy to build the project javascript bundle files.

57

/public/javascripts/notifs.js
/public/javascripts/notifs.js
https://js-notification-poc.herokuapp.com/
https://js-notification-poc.herokuapp.com/
https://github.com/WhyINeedToFillUsername/inbox-client
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
http://browserify.org/

6. Documentation

6.6.5 Run

The node.js server is set to listen on local port 3000. You can change that in
the bin/www file. Start it by this command:

npm start

Then go to http://localhost:3000/. Click on the ”Enable notifications”
button to request permission.

Please note that request for notifications won’t work in browser ”private”
mode.

6.6.6 Usage

Open browser at http://localhost:3000/.
Please note that you have to add the running url ”http://localhost:3000”

(exactly like this, with no trailing slash) to your trusted applications in your
solid.community profile preferences with Read, Write and Append rights.

6.6.7 Documentation

All application logic is in JavaScript in the /modules folder.

6.6.8 Live version

Application is deployed to: https://inbox-client.herokuapp.com/.
Please note that you have to add ”https://inbox-client.herokuapp.com”

(exactly like this, with no trailing slash) to your trusted applications in your
solid.community profile preferences with Read, Write and Append rights.

Or you can use the following test user:

• Username ”test-user”

• Password ”SolidCommunity@2020”

58

http://localhost:3000/
https://inbox-client.herokuapp.com/

Conclusion

In support of Web re-decentralization, the goal of this thesis was to get fa-
miliar with Linked Data, the RDF data model, the W3C Recommendations
Linked Data Platform, Linked Data Notifications, ActivityPub, and the Solid
project. Furthermore, the goal was to analyse current applications. Based on
the analysis, an existing application was then to be enhanced or a new one
implemented to produce a user-friendly messaging application.

First, the current technologies that address the centralization problems
were studied and described.

Second, requirements for the result application were formulated. Actors
in the system were identified and, from the requirements, a list of use cases
was derived.

Based on the requirements and use cases, a thorough analysis of existing
solutions and applications was conducted. The result is that the solid-server is
a sufficient solution for the application server, but no user-friendly messaging
client is available.

Next, the technologies to create the client application were researched and
described in the Design section. Based on this research, multiple proof-of-
concept applications were implemented to test these technologies for further
use. The following proof-of-concept applications were created:

• inbox - Linked Data Notifications implementation

• ldn-target-showcase - LDN Target implementation

• js-notification-poc - JavaScript Notifications API and Push API im-
plementation

inbox inbox is an implementation of the Linked Data Notifications protocol.
The resulting application was successfully tested with LDN test suite. The
source codes were published as open-source on GitHub.

59

https://linkedresearch.org/ldn/tests/

Conclusion

ldn-target-showcase ldn-target-showcase is a simple POC implementation
of the Linked Data Notification Target. Its goal is to showcase the LDN
Discovery process to the community. The source code was published as open-
source on GitHub and the application deployed for public access: https:
//ldn-target-showcase.herokuapp.com.

js-notification-poc js-notification-poc is an implementation of the
JavaScript Notification API and Push API. It was developed to get familiar
with the specifications and test the APIs. It can now serve as a technology
showcase for the developer community. The source code was published
as open-source on GitHub and the application deployed for public access:
https://js-notification-poc.herokuapp.com/.

Based on the previous analysis and technology review, a resulting appli-
cation was designed, implemented and tested:

inbox-client inbox-client is a new, user-friendly client application for
Linked Data Notification and ActivityPub messaging. The application is de-
signed as a JavaScript client-side application with Node.js back-end. It uses
Solid WebID for user authentication and authorization, Solid Pods for data
storage. The client allows its users to add their LDP inboxes for monitoring
and get system notifications for new messages.

inbox-client has been tested, documented and published as open-source
on GitHub. Furthermore, the application has been deployed for a real-world
public use: https://inbox-client.herokuapp.com/.

Problems encountered

During the analysis and development, several major problems were encoun-
tered. The first problem occurred when developing the inbox POC. The RDF
library rdflib.js had problems with JSON-LD serialization/deserialization.
The problem was discussed on Gitter Solid Chat and reported on GitHub.
In the inbox-client application, the problem was avoided by using another
RDF library.

Another related problem is with the current technology and libraries for
working with RDF data, Solid and Solid Pods. As the W3C recommendations
for this area are relatively new, the technologies are still in rapid development
and work-in-progress phases. Documentation is sparse and often insufficient.

The last major problem is with Solid rights management and the Solid
Pod settings, as it is also in a WIP phase. Setting up user and application
rights in the Solid settings are unreliable and not user-friendly. This affects
user experience with the developed application and the application developers
cannot directly influence this.

60

https://ldn-target-showcase.herokuapp.com
https://ldn-target-showcase.herokuapp.com
https://js-notification-poc.herokuapp.com/
https://inbox-client.herokuapp.com/
https://gitter.im/solid/chat

Future work

More specifically, when adding the new application to the trusted list in
Solid preferences, one must not include a slash at the end of the submitted
URL/IRI. This particular problem was resolved with the help of the Solid
Gitter chat.

Future work

Future work should focus on further development of the inbox-client applica-
tion. The main focus should be on better back-end capabilities. Because of the
lack of server-side libraries for Solid, the complete logic has to be implemented
on the front-end.

The future architecture could be an application with a modern JS frame-
work (such as Angular or React) with a REST API back-end. This would
allow for a better integration with existing applications like the social net-
work Mastodon. To allow this integration, an HTTP signature for sending
messages is required.

From the user-experience view, the client application should be extended
with loading indicators for remote calls.

Also, future work should be done in cooperation with the developer/Solid
community. This would allow further development of the existing libraries
and tools.

61

Bibliography

[1] World Wide Web Consortium (W3C). Social Network Silos [online]. [cit.
2020-07-12]. Available from: https://www.w3.org/2010/Talks/0303-s
ocialcloud-tbl/#(2)

[2] World Wide Web Consortium (W3C) Working Group. RDF 1.1 Primer
[online]. [cit. 2020-07-17]. Available from: https://www.w3.org/TR/rd
f11-primer/#section-triple

[3] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform Resources [online]. [cit. 2020-07-17]. Avail-
able from: https://www.w3.org/TR/ldp/#ldpr

[4] World Wide Web Consortium (W3C). Linked Data Notifications [online].
[cit. 2019-09-18]. Available from: https://www.w3.org/TR/ldn/

[5] Moody, G. Tim Berners-Lee unveils next step for Solid, a decentralized
Web platform with privacy built-in as standard [online]. [cit. 2020-07-22].
Available from: https://www.privateinternetaccess.com/blog/tim
-berners-lee-unveils-solid-a-decentralized-web-platform-wi
th-privacy-built-in-as-standard/

[6] Spyna, L. Push Notifications in JavaScript? Yes, you can! [online]. [cit.
2020-07-24]. Available from: https://itnext.io/an-introduction-to
-web-push-notifications-a701783917ce

[7] Abbate, J. E. From ARPANET to Internet: A history of ARPA-sponsored
computer networks, 1966-1988. [cit. 2020-07-18].

[8] Hindman, M. The Internet Trap: How the Digital Economy Builds Mo-
nopolies and Undermines Democracy (2018). Princeton University Press,
2018, ISBN 9780691159263. Available from: https://books.google.c
o.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+o

63

https://www.w3.org/2010/Talks/0303-socialcloud-tbl/#(2)
https://www.w3.org/2010/Talks/0303-socialcloud-tbl/#(2)
https://www.w3.org/TR/rdf11-primer/#section-triple
https://www.w3.org/TR/rdf11-primer/#section-triple
https://www.w3.org/TR/ldp/#ldpr
https://www.w3.org/TR/ldn/
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://itnext.io/an-introduction-to-web-push-notifications-a701783917ce
https://itnext.io/an-introduction-to-web-push-notifications-a701783917ce
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false

Bibliography

f+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTq
AIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false

[9] Peng, Z. Decentralized Internet [online]. [cit. 2020-07-18]. Available from:
https://www.cse.wustl.edu/˜jain/cse570-19/ftp/decentrl/index
.html

[10] World Wide Web Consortium (W3C). Resource Description Framework
(RDF) [online]. [cit. 2020-03-29]. Available from: https://www.w3.org
/RDF/

[11] W3C JSON-LD Working Group. JSON for Linking Data [online]. [cit.
2020-07-13]. Available from: https://json-ld.org/

[12] Berners-Lee, T. Linked Data [online]. World Wide Web Consortium
(W3C), [cit. 2020-07-12]. Available from: https://www.w3.org/Des
ignIssues/LinkedData.html

[13] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform [online]. [cit. 2020-07-17]. Available from:
https://www.w3.org/TR/ldp/

[14] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform Containers [online]. [cit. 2020-07-17]. Avail-
able from: https://www.w3.org/TR/ldp/#ldpc

[15] World Wide Web Consortium (W3C). Linked Data Notifications - Dis-
covery [online]. [cit. 2020-07-24]. Available from: https://www.w3.org
/TR/ldn/#discovery

[16] World Wide Web Consortium (W3C), Social Web Working Group. Ac-
tivity Streams 2.0 [online]. [cit. 2020-07-20]. Available from: https:
//www.w3.org/TR/activitystreams-core/

[17] Castaño, A. What is ActivityPub? [online]. [cit. 2020-07-20]. Available
from: https://alexcastano.com/what-is-activity-pub/

[18] This Week in Solid 2019-12-12 [online]. [cit. 2020-04-14]. Available from:
https://solidproject.org/this-week-in-solid/2019-12-12

[19] What is a Pod? [online]. [cit. 2020-07-22]. Available from: https://so
lidproject.org/faqs#pod

[20] About Carbon LDP implementation [online]. [cit. 2020-06-07]. Available
from: https://www.w3.org/wiki/LDP Implementations#Carbon LDP
.28Client and Server.29

64

https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://www.cse.wustl.edu/~jain/cse570-19/ftp/decentrl/index.html
https://www.cse.wustl.edu/~jain/cse570-19/ftp/decentrl/index.html
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://json-ld.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/#ldpc
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-core/
https://alexcastano.com/what-is-activity-pub/
https://solidproject.org/this-week-in-solid/2019-12-12
https://solidproject.org/faqs#pod
https://solidproject.org/faqs#pod
https://www.w3.org/wiki/LDP_Implementations#Carbon_LDP_.28Client_and_Server.29
https://www.w3.org/wiki/LDP_Implementations#Carbon_LDP_.28Client_and_Server.29

Bibliography

[21] maytkso, HTTP server and command-line RDF tool to get/send, serialise
data. [online]. [cit. 2020-06-07]. Available from: https://github.com/c
sarven/mayktso

[22] Internet Engineering Task Force (IETF). RFC 7252, The Constrained
Application Protocol (CoAP) [online]. [cit. 2020-06-07]. Available from:
https://tools.ietf.org/html/rfc7252

[23] Solid [online]. [cit. 2020-07-29]. Available from: https://solid.mit.ed
u/

[24] Solid license [online]. [cit. 2020-07-29]. Available from: https://github
.com/solid/node-solid-server/blob/master/LICENSE.md

[25] The Apache Software Foundation. Apache Marmotta [online]. [cit. 2020-
07-29]. Available from: https://marmotta.apache.org/

[26] The Apache Software Foundation. Download Apache Marmotta [online].
[cit. 2020-07-29]. Available from: https://marmotta.apache.org/down
load.html

[27] The Apache Software Foundation. Apache Marmotta - Open issues [on-
line]. [cit. 2020-07-29]. Available from: https://issues.apache.org/ji
ra/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissue
s

[28] Bootstrap (front-end framework) [online]. [cit. 2020-07-24]. Available
from: https://en.wikipedia.org/wiki/Bootstrap (front-end f
ramework)

[29] Inrupt. Tripledoc GitLab - project page [online]. [cit. 2020-07-24]. Avail-
able from: https://gitlab.com/vincenttunru/tripledoc

[30] Inrupt. Tripledoc GitLab - first commit [online]. [cit. 2020-07-24]. Avail-
able from: https://gitlab.com/vincenttunru/tripledoc/-/commit
/802f3661920dddedf34120d4c07cacb8d4a49c94

[31] Mozilla and individual contributors. MDN web docs - Push API [online].
[cit. 2020-07-24]. Available from: https://developer.mozilla.org/en
-US/docs/Web/API/Notifications API

[32] Mozilla and individual contributors. MDN web docs - Push API [online].
[cit. 2020-07-24]. Available from: https://developer.mozilla.org/en
-US/docs/Web/API/Push API

[33] Solid-auth-client GitHub [online]. [cit. 2020-07-29]. Available from: http
s://github.com/solid/solid-auth-client

65

https://github.com/csarven/mayktso
https://github.com/csarven/mayktso
https://tools.ietf.org/html/rfc7252
https://solid.mit.edu/
https://solid.mit.edu/
https://github.com/solid/node-solid-server/blob/master/LICENSE.md
https://github.com/solid/node-solid-server/blob/master/LICENSE.md
https://marmotta.apache.org/
https://marmotta.apache.org/download.html
https://marmotta.apache.org/download.html
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://gitlab.com/vincenttunru/tripledoc
https://gitlab.com/vincenttunru/tripledoc/-/commit/802f3661920dddedf34120d4c07cacb8d4a49c94
https://gitlab.com/vincenttunru/tripledoc/-/commit/802f3661920dddedf34120d4c07cacb8d4a49c94
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://github.com/solid/solid-auth-client
https://github.com/solid/solid-auth-client

Bibliography

[34] Copes, F. The Push API Guide [online]. [cit. 2020-07-24]. Available from:
https://flaviocopes.com/push-api/

[35] Nielsen Norman Group. Summary of Usability Inspection Methods [on-
line]. [cit. 2020-07-30]. Available from: https://www.nngroup.com/arti
cles/summary-of-usability-inspection-methods/

[36] Interaction Design Foundation. How to Conduct a Cognitive Walkthrough
[online]. [cit. 2020-07-30]. Available from: https://www.interaction-
design.org/literature/article/how-to-conduct-a-cognitive-w
alkthrough

[37] SLANT TEAM. JavaScript E2E test framework comparison [online]. [cit.
2020-07-30]. Available from: https://www.slant.co/versus/9648/206
24/˜nightwatch-js vs cypress

66

https://flaviocopes.com/push-api/
https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.slant.co/versus/9648/20624/~nightwatch-js_vs_cypress
https://www.slant.co/versus/9648/20624/~nightwatch-js_vs_cypress

Appendix A
Glossary

AP ActivityPub

AS Activity Streams

ČVUT České vysoké učeńı technické v Praze

GUI Graphical User Interface

IRI Internationalized Resource Identifier

JS JavaScript

LD Linked Data

LDN Linked Data Notifications

LDP Linked Data Platform

LDPC Linked Data Platform Container

LDPR Linked Data Platform Resources

NPM Node Package Manager

POC Proof of concept

R/W Read/Write

RDF Resource Description Framework

REST API Representational State Transfer Application Program Interface

SPARQL SPARQL Protocol and RDF Query Language

SSO Single Sign-On

URI Uniform Resource Identifier

67

A. Glossary

UX User Experience

VCS Version Control System

VPN Virtual Private Network

W3C World Wide Web Consortium

WIP Work-In-Progress

68

Appendix B
Testing

This appendix contains detailed results of the cognitive walkthrough testing.

B.1 UC1 - start monitoring inbox

Consumer sets application so it monitors an LDP/AP inbox he has access to.

Table B.1: Step A: User logs in using WebID. User clicks on blue button
with label Login and then the log in popup appears. User has to write/paste
his WebID and to click the blue button with label Go.

Question Answer Comment Recommendation
Q1 Yes

Q2 Yes
Login button is the
most visible element
on the page.

There is missing
direct sign-up button.

Q3 Yes

On the login screen
the user can choose
from three various
login options.

Q4 No

If the browser blocks
the popup window
the user will hardly
see the issue.

The login process
should not open a
new tab. Instead it
should open a modal
window in the same
tab (in the same
DOM).

69

B. Testing

Table B.2: Step B: System shows form to add inbox.

Question Answer Comment Recommendation
Q1 Yes The “add inbox” is vis-

ible immediately after
successful login.

Q2 Yes The Add button is the
only blue element on the
page, therefore the most
visible element.

Q3 Yes The input field with the
Add button could be
positioned closer to the
heading “monitored in-
boxes”.

Q4 Yes

Table B.3: Step C: User inputs IRI of a resource and submits.

Question Answer Comment Recommendation
Q1 Yes The input field men-

tioned abbreviation IRI,
which could not be clear
for all users. There
could be a help icon
showing more informa-
tion on a click/hover
event.

Q2 Yes
Q3 Yes
Q4 Yes The application shows

confirmation/error no-
tification after clicking
on the Add button with
describing the output of
the action.

The notifications could
be grouped if there are
duplicates.

B.1.1 Use case summary

Possible UX issues were found on the login process, however it is an external
functionality provided by the Solid framework. The process of adding new
resource and getting proper feedback on the actions is clear for the end user.

70

B.1. UC1 - start monitoring inbox

Table B.4: Step D: System discovers resource’s inbox.

Question Answer Comment Recommendation
Q1 Yes The user is informed via

the confirmation notifi-
cation.

Q2 Yes The user can easily see
the list of the discov-
ered and monitored re-
sources on the same
screen.

Q3 Yes
Q4 Yes

Table B.5: Step E: System starts monitoring messages coming to the inbox.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes The user can easily see

the list of the discov-
ered and monitored re-
sources on the same
screen.

Q3 Yes
Q4 Yes

71

B. Testing

B.2 UC2 - Stop monitoring inbox

User can turn off monitoring of an inbox he has previously selected for moni-
toring.

Step A: User logs in using WebID - already tested in UC1/A.

Table B.6: Step B: System shows list of monitored inboxes.

Question Answer Comment Recommendation
Q1 Yes The list of monitored

inboxes is below the
“monitored inboxes”
heading.

Q2 Yes
Q3 Yes
Q4 Yes

Table B.7: Step C: User chooses inbox to stop being monitored.

Question Answer Comment Recommendation
Q1 Yes The resource card has

on-hover effect chang-
ing the cursor icon to
pointer which is helping
user to understand the
element as clickable.

Q2 Yes Text “click to show mes-
sages” could be differ-
ent to not limit only to
show messages, but re-
source’s detail in gen-
eral.

Q3 Yes The “Stop monitoring
this inbox” button is
clear and correctly col-
ored with red color.

Q4 Yes The user will see the list
of monitored resources
without the deleted
item.

There could be a no-
tification confirming
the successful deletion
(would be beneficial in
case of dozen resources
in the lost)

72

B.2. UC2 - Stop monitoring inbox

Table B.8: Step D: System stops monitoring incoming messages to the chosen
inbox.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes
Q3 Yes
Q4 Yes The user will see the list

of monitored resources
without the deleted
item.

There could be a no-
tification confirming
the successful deletion
(would be beneficial in
case of dozen resources
on the list of monitored
resources).

73

B. Testing

B.3 UC3 - Read list of messages

Consumer can read a list of incoming messages that he has access to in a
selected inbox.

Step A: User logs in using WebID - already tested in UC1/A.
Step B: System shows list of monitored inboxes - already tested in

UC2/B.

Table B.9: Step C: User chooses inbox.

Question Answer Comment Recommendation
Q1 Yes The resource card has

on-hover effect chang-
ing the cursor icon to
pointer which is helping
user to understand the
element as clickable.

Q2 Yes Text “click to show mes-
sages” above the list of
items clearly communi-
cates the way to the de-
sired action to read a
list of messages.

Q3 Yes
Q4 Yes After clicking on the in-

box card, it shows its
detail page.

Table B.10: Step D: System shows list of incoming messages.

Question Answer Comment Recommendation
Q1 Yes In case of zero mes-

sages, there should be
information explaining
it, otherwise the user
could get confused.

Q2 Yes User can easily see the
list of available mes-
sages under the “notifi-
cations” heading.

Q3 Yes
Q4 Yes

74

B.4. UC4 - Read detail of a received message

B.4 UC4 - Read detail of a received message

Consumer can read the complete content of a received message that he has
access to.

Step A: User logs in using WebID. Already tested in UC1.A.
Step B: User sees list of his incoming messages. Already tested in

UC3.D.

Table B.11: Step C: User can open and read the full content of the incoming
message.

Question Answer Comment Recommendation
Q1 Yes The action is obvious

thanks to the chevron-
down icon on the right
side of each message
card.In addition the
cursor is changed to a
pointer on the hover
event.

Q2 Yes
Q3 Yes
Q4 Yes The chevron-down

icon could change to
chevron-up when the
message’s detail is
expanded to clearly
communicate the pos-
sibility to close its
detail.

75

B. Testing

B.5 UC5 - Receive a system notification on a new
message

Consumer gets a system notification, such as a pop-up message, when he
receives a new message to one of his monitored inboxes.

Step A: User logs in using WebID. Already tested in UC1.A.

Table B.12: Step B: System receives a message for the user to a monitored
inbox.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes
Q3 Yes
Q4 Yes The steps correctness

can be confirmed by the
step C or checking the
inbox detail (the list of
the incoming message).

Table B.13: Step C: System shows a pop-up system notification to the user.

Question Answer Comment Recommendation
Q1 Yes The notification is

shown on the top of
the application as the
rest of the system
notifications.

Q2 Yes The notification con-
tains a link to the inbox
containing the message.

On clicking the notifi-
cation’s link the correct
message could be auto
expanded on the inbox
page.

Q3 Yes
Q4 Yes The message has cor-

rect label (e.g. “New
message in inbox http
s://test- user2.s
olid.community/inb
ox/ !”) and a correct
informative color back-
ground (blue).

76

https://test-user2.solid.community/inbox/
https://test-user2.solid.community/inbox/
https://test-user2.solid.community/inbox/
https://test-user2.solid.community/inbox/

B.5. UC5 - Receive a system notification on a new message

B.5.1 Use case summary

The use case of receiving a system notification in case of a new message has a
clear behavior.

77

B. Testing

B.6 UC6/7 - Send a message to a person/resource
from contact list using LDN/AP

Sender sends a message to an actor from contact list using Linked Data No-
tification/ActivityPub protocol. The actor can be a person or some other
resource (like company, website, etc.) identified by IRI.

Step A: User logs in using WebID. Already tested in UC1.A.

Table B.14: Step B: User sees list of his contacts.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes The list is available on

the “Send notification”
page via select box.

For dozens of contacts
the select box could in-
clude a text search sup-
porting the search help
functionality.

Q3 Yes
Q4 Yes After choosing the de-

sired contact the user
will clearly see that the
option is selected.

Table B.15: Step C: User clicks on the action ”send message”.

Question Answer Comment Recommendation
Q1 Yes The option is available

as “Send a notification”
in the main navigation.

Q2 Yes
Q3 Yes
Q4 Yes The user immediately

sees the message editor
after clicking the “Send
a notification” option in
the main navigation.

B.6.1 Use case summary

From users perspective the process of sending a message to a known contact
is smooth. The only UX issue is the complicated process of adding a new
contact through the 3rd party form available at https://taisukef.github.
io/solid-addfriend/.

78

https://taisukef.github.io/solid-addfriend/
https://taisukef.github.io/solid-addfriend/

B.6. UC6/7 - Send a message to a person/resource from contact list using
LDN/AP

Table B.16: Step D: User enters a content of the message.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes
Q3 Yes
Q4 Yes The action consists of

basic text writing into a
textarea field. Submit-
ting the empty message
correctly informs about
needs of writing any
text into the “Notifica-
tion content” textarea.

The character counter
could have an extra UX
value for the user. Plus
there is not informa-
tion about the maxi-
mum text length of the
message.

Table B.17: Step E: User submits the message.

Question Answer Comment Recommendation
Q1 Yes The send button has a

blue color and therefore
is the most visible ele-
ment in the form (cor-
rect behavior for the
“Call to action” but-
tons).

Q2 Yes
Q3 Yes
Q4 Yes The application cor-

rectly shows the green
system notification
confirming about the
successfully sending the
message.

79

B. Testing

Table B.18: Step F: System sends the message to the resource’s inbox.

Question Answer Comment Recommendation
Q1 Yes
Q2 Yes
Q3 Yes The form content is re-

seted after the submit,
which is a correct be-
havior allowing user to
write another message
without any extra ac-
tion needed.

Q4 Yes The application cor-
rectly shows the green
system notification
confirming about the
successfully sending the
message.

80

B.7. UC8/9 - Send a message to an unknown person/resource using
LDN/AP

B.7 UC8/9 - Send a message to an unknown
person/resource using LDN/AP

Sender sends a message to an actor that is not in his contact list using LD-
N/AP protocol. The actor can be a person or some other resource (like com-
pany, website, etc.) identified by IRI.

Step A: User logs in using WebID. Already tested in UC1.A.
Step B: User opens a new message form. Already tested in UC6/7.C.

Table B.19: Step C: User enters the receiver’s IRI.

Question Answer Comment Recommendation
Q1 Yes The input field is clearly

visible and correctly po-
sition after the “known
contacts” field.

In case of wrong input
the field should inform
about the correct IRI
syntax.

Q2 Yes
Q3 Yes
Q4 Yes

Step D: User enters content of the message. Already tested in
UC6/7.D.

Table B.20: Step E: User submits the message.

Question Answer Comment Recommendation
Q1 Yes The send button has a

blue color and therefore
is the most visible ele-
ment in the form (cor-
rect behavior for the
“Call to action” but-
tons).

Q2 Yes
Q3 Yes
Q4 Yes The application cor-

rectly shows the green
system notification
confirming about the
successfully sending the
message.

In case of not exist-
ing receiver’s IRI, two
system notifications are
fired. One message ex-
plaining the issue would
be sufficient.

Step F: System sends the message to the resource’s inbox. Already
tested in UC6/7.F.

81

B. Testing

B.7.1 Use case summary

Sending a message to an unknown person/resource using LDN/AP could be
problematic in case if users does not know the syntax of the Internationalized
Resource Identifiers. It could be easily fix by showing an explanation (or a
link to the external resource) in case wrong IRI entered. Otherwise the use
case has a smooth UX.

82

Appendix C
Attached medium content

apps source codes of the developed applications
inbox.................................inbox application source code
ldn-target.......................ldn-target application source code
js-notification..............js-notification application source code
inbox-client...................inbox-client application source code

text ... diploma thesis document
src document source code in LATEX
thesis.pdf......................................document in PDF

readme.txt................................medium content description

83

	Citation of this thesis
	Introduction
	Goals of this work

	State-of-the-art and available technology
	Current technologies that address the centralization problem
	RDF
	Linked Data
	Linked Data Platform
	Linked Data Notifications
	Activity Streams
	ActivityPub
	Solid

	Analysis
	Requirements
	Actors
	List of requirements

	Use cases
	List of use cases

	Analysis of existing solutions
	Criteria for analysis of existing solutions
	Overview of all analysed applications
	Detailed analysis of selected applications

	Analysis results

	Design
	inbox - LDN proof-of-concept
	Architecture
	Technologies

	LDN-target
	Architecture
	Technologies

	js-notification-poc
	Architecture
	Technologies

	inbox-client
	Architecture
	Technologies

	Implementation
	inbox - LDN proof-of-concept
	consumer + sender
	receiver
	target

	LDN-target POC
	js-notification-poc
	About JavaScript notification API
	POC description

	inbox-client
	Modules
	User interface

	Testing
	Terms definition
	Unit tests
	E2E tests
	Usability testing

	Application testing
	inbox
	LDN-target
	js-notification
	inbox-client

	Documentation
	Versioning - Git on GitHub
	Deployment - Heroku
	inbox
	Source code
	Requirements
	Install
	Run
	Usage

	ldn-target-showcase
	Source code
	Requirements
	Install
	Run
	Usage
	Live version

	js-notification-poc
	Source code
	Requirements
	Install
	Build
	Run
	Documentation
	Live version

	inbox-client
	Source code
	Requirements
	Install
	Build
	Run
	Usage
	Documentation
	Live version

	Conclusion
	Problems encountered
	Future work

	Bibliography
	Glossary
	Testing
	UC1 - start monitoring inbox
	Use case summary

	UC2 - Stop monitoring inbox
	UC3 - Read list of messages
	UC4 - Read detail of a received message
	UC5 - Receive a system notification on a new message
	Use case summary

	UC6/7 - Send a message to a person/resource from contact list using LDN/AP
	Use case summary

	UC8/9 - Send a message to an unknown person/resource using LDN/AP
	Use case summary

	Attached medium content

