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mentioning me in her thesis). And finally, big thank you to my family for motivating me
throughout my studies, and for not killing me during the isolation.

vi



Abstract

In the thesis, we propose a novel method for solving the problem of finding the time-optimal
trajectory for vehicles with limited turning radius, variable speed, and bounded acceleration.
The proposed method extends the Dubins vehicle model for which the path consists of arcs
and a straight line. Unlike the Dubins path, the proposed trajectory might have different
initial and final turning radius selected to minimize the total time needed to travel the path.
The proposed multi-radius Dubins path for the specified Dubins vehicle model is then utilized
in time-optimal multi-goal trajectory planning. The problem is defined as the time-optimal
variant of the Dubins Traveling Salesman Problem (DTSP) and solved using the Variable
Neighborhood Search (VNS) combinatorial metaheuristic. In comparison to the Dubins path,
the reported results for the vehicle’s parameters of the fixed-wing aircraft Cessna 172 show
a decrease in the travel time in point-to-point trajectories about 5–20 % on average, and about
15–30 % on a trajectory over multiple locations.

Keywords: Dubins vehicle; time-optimal trajectory planning; multi-radius Dubins path;
speed profile; Dubins traveling salesman problem

Abstrakt

V této práci navrhujeme novou metodu plánováńı časově-optimálńı cesty pro vozidla s omeze-
ným poloměrem zatáčeńı, proměnnou rychlost́ı a limitovanou akceleraćı. Navrhovaná metoda
rozšǐruje model Dubinsova vozidla, pro který se optimálńı cesta skládá z část́ı kružnice
o minimálńım poloměru zatáčeńı a úsečky. Na rozd́ıl od Dubinsovy cesty, navrhovaný model
uvažuje r̊uzné poloměry zatáčeńı na začátku a konci cesty. Vhodnou volbou poloměr̊u zatáčeńı
je nalezena časově optimálńı trajektorie splňuj́ıćı dané omezeńı rychlosti a zrychleńı. Navržená
metoda je dále použita při řešeńı časově-optimálńıho plánováńı cesty přes v́ıce ćıl̊u, for-
mulované jako časově-optimálńı varianta úlohy obchodńıho cestuj́ıćıho pro Dubinsovo vozidlo
(DTSP). Úloha je řešena kombinatorickou metaheuristikou Variable Neighborhood Search
(VNS) s využit́ım nalezených časově-optimálńıch trajektoríı mezi jednotlivými ćıli. V práci
reportované výsledky (pro model parametrizovaný dle letadla Cessna 172) indikuj́ı časové
zkráceńı trajektoríı v pr̊uměru o 5 až 20 % v porovnáńı s řešeńım založeným na klasickém
modelu Dubinsova vozidla. V př́ıpadě trajektoríı přes v́ıce ćıl̊u dosahuje navrhovaná metoda
časového zkráceńı o 15 až 30 %.

Kĺıčová slova: Dubinsovo vozidlo; časově-optimálńı plánováńı; Dubinsova cesta s v́ıce polo-
měry; rychlostńı profil; problém obchodńıho cestuj́ıćıho pro Dubinsovo vozidlo
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CTU Czech Technical University in Prague

DTP Dubins Touring Problem

DTSP Dubins Traveling Salesman Problem

TSP Traveling Salesman Problem

TTE Travel Time Estimate
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CHAPTER 1
Introduction

In this thesis, we study planning of time-optimal curvature-constrained trajectories that are
feasible for vehicles with limited turning radius, variable speed, and bounded acceleration.
The curvature-constrained trajectory for a vehicle with a defined minimum turning radius
can be modeled using the Dubins vehicle [1], which moves only forward with a constant
speed. Since the Dubins vehicle has constant forward speed, such a trajectory is called the
Dubins path. The Dubins path is the shortest in a 2D plane between two configurations (loca-
tions) with a specified vehicle’s heading angle and given turning radius, and has a closed-form
solution. The Dubins path consists of three segments, which can be an arc with the mini-
mum turning radius, or a straight line. The optimal closed-form solution supports constant
computational complexity [2], and the Dubins path can be determined in microseconds using
nowaday computational resources [3]. However, the regular Dubins vehicle model is limited by
the assumption of constant forward speed and single (minimal) turning radius. Therefore, we
aim to propose a generalization of the Dubins vehicle model towards time-optimal trajectories
that would also be computationally effective.

The main idea of the proposed approach is considering the acceleration of the vehicle on
the straight segment of the Dubins path; however, the crux of the achieved reduction of the
travel time along the found trajectories is in considering a larger turning radius and different
initial and terminal turning radii. Thus, the Dubins path with two arcs and a straight line
segment consists of the first arc with the initial turning radius, followed by the straight line
segment, and terminated by the arc of different turning radius. Generally, using a larger
turning radius allows a higher forward speed of the vehicle; hence, an overall faster trajectory
can be determined. By using a larger radius, the total trajectory length can be increased,
and the trade-off between the length increase and time decrease needs to be found. Hence,
a speed profile needs to be computed to obtain the speed throughout the trajectory and the
total travel time, based on the particular turning radii. The concept of multiple radii has
already been utilized for finding time-optimal [4], energy-optimal trajectories [5], and safe
emergency landing trajectories [6]. However, none of the mentioned work deals with the time-
optimal trajectory planning with a limited acceleration of the vehicle. Therefore, we aim to fill
this niche and propose time-optimal trajectory planning for a vehicle with a limited turning
radius, variable speed, and bounded acceleration.
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Chapter 1. Introduction

In the first part of the thesis, we focus on trajectory computation between two config-
urations of the vehicle, where the configuration is given by vehicle position, forward speed,
and heading angle. We propose to extend the Dubins vehicle model to take advantage of
larger turning radii, which allows increasing the speed and generate faster trajectories [7].
An example of the proposed multi-radius Dubins paths is shown in Fig. 1.1. The travel time
improvement of the shortest trajectory (red) with a speed increase on the straight segment
in comparison to the trajectory traveled at a constant speed is 38 %. The fastest trajec-
tory (green) reaches 54 % travel time improvement compared to the shortest trajectory with
constant speed, which is an additional 16 %. Another trajectory is also proposed in the the-
sis, utilizing variable radii and multiple segments for time-optimal trajectory planning for
the specified vehicle. The trajectory allows further time decrease in comparison with the
multi-radius Dubins path, but is harder to optimize.

q1 q2

Figure 1.1: Example of extended Dubins paths with various turning radii. The original Dubins path
with minimal turning radius is marked red, possible trajectories using multiple radii Dubins path are
blue, and the fastest trajectory found using local optimization is marked with green color.

The second part of the bachelor thesis is dedicated to employing the proposed multi-
radius Dubins path in multi-goal trajectory planning formulated as a variant of the Traveling
Salesman Problem (TSP) with curvature-constrained trajectories, in particular, the Dubins
TSP [8]. Both the TSP and DTSP are known to be NP-hard [9, 8], and the proposed time-
optimal variant is even more challenging. Therefore, we solve the extended variant of DTSP by
the combinatorial metaheuristic Variable Neighborhood Search (VNS) [10], already deployed
in routing problems with Dubins vehicle [11, 12, 13]. The VNS is particularly utilized because
it can improve the solution by moving it out of local optima, and allows to incorporate the
proposed model into the computation easily.

The thesis is structured as follows. The addressed time-optimal trajectory planning is
formally introduced in Chapter 2. The proposed methods for determining the trajectory
between two configurations is described in Chapter 3. The results of the empirical evaluation
of the two proposed trajectories are reported in Chapter 4. The employment of the proposed
method in the solution of the multi-goal planning and its empirical evaluation is presented in
Chapter 5. The conclusion is in Chapter 6.
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CHAPTER 2
Problem Statement

The problem studied in the thesis is the optimization problem of finding the fastest curvature-
constrained trajectory feasible for a vehicle with limited turning radius, variable speed, and
maximal acceleration/deceleration. The considered vehicle model is the Dubins vehicle, ex-
tended by using variable speed. The speed on an arc segment of the Dubins path is limited,
and by increasing the turning radius, the speed can be increased as well, which allows decreas-
ing the total travel time. Here, it is worth mentioning that the vehicle’s forward acceleration
is bounded to make the model more accurate, which contrasts with time-optimal trajectories
proposed in [4]. The rest of the chapter is organized as follows. The travel time optimiza-
tion problem of finding the fastest trajectory between two configurations with the motion
constraints is formulated in Section 2.1. The extended formulation for multi-goal trajectory
planning is presented in Section 2.2.

2.1 Time-Optimal Trajectory Planning

The addressed problem of the time-optimal trajectory is to determine curvature-constrained
trajectory between two configurations, where the configurations correspond to the vehicle
state q,

q = 〈p, θ〉, q ∈ SE(2), (2.1)

where p is the position in R2 and θ is the heading angle of the vehicle at p from the interval
[0, 2π). The vehicle is allowed to move forward with variable speed v along the trajectory
with the curvature κ. The vehicle motion can be described as the Dubins vehicle [1]

q̇ =

 ẋ
ẏ

θ̇

 = v

 cos θ
sin θ
κ

 . (2.2)

The curvature κ represents the current turning rate, and it is a scalar value, which can be
positive or negative. The sign of the curvature indicates the turn direction. The positive sign
denotes counter-clockwise (left) turn, and negative is clockwise (right) turn. The curvature
can be computed at any given point as

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

, (2.3)

3



Chapter 2. Problem Statement

and the turning radius can be obtained as r = |κ−1|. The vehicle is limited by the minimal
turning radius rmin, and thus the curvature κ is constrained by

|κ| ≤ 1

rmin
. (2.4)

The speed of the vehicle v is variable and is assumed to be limited to the interval

v ∈ [vmin, vmax], vmin, vmax > 0. (2.5)

For the aerial vehicle, the value vmin is larger than the vehicle’s stall speed, which allows the
flight in still air. The value vmax depends on the physical capabilities of the vehicle. The
speed is further constrained based on the curvature such that

v ≤
√
g tan(ϕmax)

|κ| , (2.6)

where g is the gravitational acceleration, and ϕmax represents the maximal bank angle. The
bank angle is the angle at which the fixed-wing aircraft can be tilted sideways, and is used
to change its turn rate. The speed limitation (2.6) ensures that the aircraft can compensate
for the centrifugal force and maintain a steady flight configuration with zero side-slip without
exceeding the maximum bank angle.

The forward acceleration and deceleration are also restricted to make the vehicle model
more accurate. The acceleration v̇ is limited by its minimal and maximal values

v̇ ∈ [amin, amax], amin < 0, amax > 0. (2.7)

The formulas (2.1–2.7) ensure that the defined constraints for the vehicle motion are ful-
filled. The problem of finding the fastest trajectory Γ between two configurations is formulated
as a continuous optimization Problem 1, where the minimized variable is the terminal travel
time T of the trajectory Γ.

Problem 1 (Time-optimal trajectory planning between two configurations)

min
Γ

T,

s.t. Γ : [0, T ]→ SE(2),

Γ(0) = q1, Γ(T ) = q2,

(2.1− 2.7) are met.

2.2 Multi-Goal Time-Optimal Trajectory Planning

The multi-goal time-optimal trajectory planning is an extension of Problem 1, where the
time-optimal trajectory is visiting n specified locations. The problem consists of two main
parts. First, we need to determine the visiting order of the locations. This is a combinatorial
optimization problem that is a variant of the TSP to find a cost-efficient closed tour over the
given set of locations [9]. Besides, we need to find the most suitable heading angle for each
location and determine the connecting trajectories between every two subsequent locations on
tour. Thus, the second part is a continuous optimization problem, where finding individual
trajectories is a solution to Problem 1.

4



Chapter 2. Problem Statement

The set of n locations can be denoted P,

P = 〈p1, . . . ,pn〉, pi ∈ R2 ∀i ∈ {1, . . . , n}. (2.8)

The visiting order of locations is a permutation of the locations set Σ,

Σ = 〈σ1, . . . , σn〉, σi ∈ {1, . . . , n}, σi 6= σj for i 6= j. (2.9)

Because the multi-goal trajectory is defined as a closed-loop, the two locations σ1 and σn are
adjacent, which is reflected in the equivalence

σj , σj−n for j > n. (2.10)

The best heading angle θi for each location pi is in the set Θ,

Θ = 〈θ1, . . . , θn〉, θi ∈ [0, 2π) ∀i ∈ {1, . . . , n}. (2.11)

The configurations qi are indexed by the visiting order

qi = 〈pσi , θσi〉, i ∈ {1, . . . , n}. (2.12)

The problem of finding the fastest multi-goal trajectory Γ̂ over a set of specified locations
P is a combined optimization problem, where the minimized variable is the terminal travel
time T of the trajectory Γ̂. The trajectory Γ̂ consists of n trajectories of Problem 1, and
thus, the same motion constraints of the vehicle (2.1–2.7) need to be also fulfilled for Γ̂. Note
that the constraint (2.7) ensures that the subsequent trajectories have equal speed in the
connecting location, and the speed on Γ̂ is continuous.

Problem 2 (Time-optimal trajectory planning over multiple locations)

min
Σ,Θ,Γ̂

T =
n∑
i=1

Ti,

s.t.

Γ̂ = 〈Γ1, . . . ,Γn〉,
Γi = [0, Ti]→ SE(2),

Γi(0) = qi, Γi(Ti) = qi+1,

(2.1− 2.12) are met.
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Chapter 2. Problem Statement
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CHAPTER 3
Proposed Method for Time-Optimal
Trajectory Generation

In this chapter, the proposed method of time-optimal trajectory planning for the extended
model of Dubins vehicle is described to solve Problem 1. The motivational vehicle of the
thesis is a fixed-wing aircraft with variable speed, which allows utilizing a variable turning
radius. The vehicle’s forward acceleration is limited, and a speed profile is used to compute
the time needed to travel the determined trajectory.

The proposed method is motivated by existing approaches introduced in the literature
for planning paths between two locations, like the Dubins path [1], the Bézier curves [14],
segmented paths utilizing arcs with multiple radii [4, 5, 6] to name few. We consider the
variable speed and turning radius, and propose a method, which decreases the travel time
of the trajectory while simultaneously, we also aim to develop a computationally efficient
solution. A brief overview of existing approaches follows.

The Bézier curves [14] are smooth curves computed numerically between two locations,
and they are able to resemble any shape, even similar to the Dubins path [15]. They have been
utilized in surveillance scenarios [16] and collision-free planning [17]. However, the minimum
turning radius has to be checked in the derivation of the Bézier curve, and the travel time
must be calculated numerically, which is computationally demanding.

The trajectory generation using multiple segments with variable radii can produce a wide
variety of trajectories. The energy-optimal trajectory for the Dubins vehicle introduced in [5]
reaches a lower energy consumption compared to the Dubins path with speed increase on the
straight segment. The trajectories created from segments with varying curvature for time-
optimal planning are described in [4], but the authors do not consider the bounded acceleration
of the vehicle, which is a less realistic scenario. Both approaches take advantage of the variable
speed and increased radius, and use a local optimization to find the best trajectory.

Closed-form expression for the shortest path of the Dubins vehicle [1] allows computation-
ally efficient calculation of the Dubins path together with the travel time. Therefore, it has
been found a suitable model for the addressed trajectory planning. We propose to combine
the variable radii and Dubins path to exploit the benefit of the analytic computation and
increased vehicle speed on the arcs with a large radius to decrease the time needed to travel
the trajectory. On the other hand, increasing the radius elongates the entire trajectory, and
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therefore, the trade-off between the trajectory length and possible vehicle speed needs to be
found to minimize the travel time. Hence, we need to find a solution to optimization Prob-
lem 1, where the trajectory Γ is a variant of the Dubins path consisting of arcs and a straight
segment.

The rest of the chapter is organized as follows. In Section 3.1, the Dubins path is described
as a background for the reader together with the visual path representation. Section 3.2 shows
the proposed trajectory with multiple radii that provides trajectories with decreased travel
time compared to the Dubins path. The employed computation of the Travel Time Estimate
(TTE) for the proposed three-segment trajectory is presented in Section 3.3, together with the
method to compute the TTE for trajectories with an arbitrary number of segments. Finally,
we further generalize the idea of the multi-radius Dubins path and propose multi-segment
trajectory parametrization in Section 3.4.

3.1 Dubins Path

The problem of planning the shortest curvature-constrained path connecting two locations
with the prescribed initial and final orientation of the vehicle was studied in 1957 by Dubins
in [1]. The considered vehicle motion model assumes the vehicle is moving forward with a fixed
speed and has ability to turn left or right with a limited turning radius. Dubins showed that
the optimal path consists only of three segments of two types. Besides, the solution to the
optimal path has a closed-form expression.

The first segment type, denoted as C, is an arc with the minimum turning radius rmin.
The second type is a straight line segment, denoted as S. Two types of the Dubins path are
thus CSC or CCC. Furthermore, the C segment type can be distinguished by turn direction:
clockwise or right and counter-clockwise or left, marked R and L, respectively. Thus, the
total number of possible combinations is six: RSR, RSL, LSL, LSR, LRL, and RLR. A major
benefit of the Dubins path is that it can be found analytically using closed-form expression,
making it computationally efficient. The computation is described in detail in Section A.1.
Example of the CSC path types are visualized in Fig. 3.1 and example of the CCC path type
in Fig. 3.2. Due to the necessary connectivity of all three circles for given configurations, the
CCC maneuvers are feasible only when the length between circle centers c1 and c2 is smaller
than or equal to 4rmin, and the maximum distance between configurations is 6rmin.

q1

c1

q2

c2

α
β

l

(a) RSR path.

q1

c1 q2

c2

α

β

l

(b) RSL path.

Figure 3.1: Example of the CSC Dubins paths.
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q1

c1
q2

c2c3

α

β

γ

Figure 3.2: Example of the CCC (RLR) Dubins path.

3.2 Generalized Multi-Radius Dubins Path

The proposed trajectory for planning between the two configurations is the extended Dubins
path with the individual radius for each arc segment of the CSC path type. The proposed
method allows for changing the turning radius of each arc segment independently. For a larger
radius, the speed can increase, and thus shorter travel times can be achieved despite the path
being longer. The different radii combinations on both arcs need to be examined to find
the shortest travel time. In the proposed multi-radius Dubins path extension, we consider
only the four CSC path types. The closed-form expression for a particular first and second
radius and configurations of the vehicle is presented in Section A.2. Notice that the turning
radii of the fastest trajectory can be determined by examining possible combinations of radii,
e.g., using discrete samples of the radii or by local optimization of the initial and final radii.
Examples of the proposed trajectories are shown in Fig. 3.3.

q1

c1r1

q2

c2

r2

α

β

δ

(a) RSR path type.

q1

c1
r1

q2

c2
r2

α

β

δ

(b) RSL path type.

Figure 3.3: Example of the extended Dubins paths with variable turning radii.

The CSC path types are utilized based on empirical evaluation of the CCC path benefits.
The CCC paths are optimal solutions only for relatively close configurations, i.e., closer than
four times the minimal turning radius, and thus they are optimal solutions less frequently
than CSC paths. The ratio between the length of the Dubins paths using both CSC and CCC
types to the length of the paths using only the CSC path type is depicted in Table 3.1. The
results indicate that the benefit of the CCC path type on the configurations that are distant
from rmin up to 6rmin is overall 4 %.
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Table 3.1: Dubins path length of CCC path type compared with CSC path type for distances between
the configurations up to 6rmin averaged over 1 000 000 random paths.

Path Type
Distance between q1 and q2 / rmin

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 overall

CSC only 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CSC and CCC 0.84 0.89 0.95 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 0.96

In the Dubins path computation, we need to evaluate all six possible paths and select the
shortest (feasible) one. In the multi-radius Dubins path, we can consider discretization of the
turning radii into a finite set of k radii samples, and the number of combinations of the path
types becomes 4k2 for the CSC paths and 2k3 for the CCC paths. For k ≥ 3, the number
of the CCC-based combinations becomes significantly higher than for the CSC path types.
Considering the number of combinations and the expected benefit reported in Table 3.1, we
decided not to use the CCC path type for the employed multi-radius Dubins paths.

3.3 Travel Time Estimation

The Travel Time Estimation (TTE) is a method for obtaining the expected time to travel the
planned trajectory. The travel time is used for evaluating the trajectory cost and determining
the fastest trajectory. The TTE is a value of the terminal time in the speed profile, which is
suited specifically for a fixed-wing aircraft, but could be customized for other vehicles. The
employed model is extended from [4], and we bound the vehicle’s acceleration, which makes
the model more accurate regarding the estimation of real travel time.

The speed profile is computed with respect to the speed limitations from (2.5–2.6). The
maximum speed vmax is limited by the physical properties of the vehicle, and the speed on
each segment is also limited by the curvature. Accelerating to vmax is possible on a straight
line or an arc with a large turning radius, where the aircraft is able to maintain control and
avoid a side slip. The turning radius r can be obtained from the curvature κ as r = |κ−1|.
The maximum speed v̂ on the segment with the curvature κ is computed as

v̂(κ) = min

(√
g tan(ϕmax)

|κ| , vmax

)
, (3.1)

where g is the gravitational acceleration, and ϕmax is the maximum bank angle of the aircraft.
In the trajectory computation, we limit the turning radius of the arcs r between the minimum
and maximum value rmin and rmax as

r ∈ [rmin, rmax], rmin =
v2

min

g tan(ϕmax)
, rmax =

v2
max

g tan(ϕmax)
. (3.2)

Using radius smaller than rmin is prohibited, as it would require unsafe flight with speed below
vmin, or with the risk of side-slip. On the other hand, a radius longer than rmax elongates
the trajectory but does not allow increasing the speed above vmax, and therefore it is not
beneficial.
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3.3.1 Travel Time Estimation for the Extended Dubins Path

The multi-radius Dubins path introduced in Section 3.2 consists of three segments, with two
arcs and one straight segment in the middle. Let the radius of the initial segment be r1, and
the radius of the final segment be r2. The segment lengths are denoted as l1 for the initial arc,
ls for the straight segment, and l2 for the final arc. The speed can change in each segment,
but the main speed increase and decrease happen on the straight segment. On the straight
segment, the vehicle accelerates towards vmax and decelerates to match the next segment’s
maximum speed to achieve the shortest possible travel time.

q1

r1

q2
r2

l1

l2

ls

(a) The RSR multi-radius Dubins path.
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v
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2
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(b) Three different speed profile cases. The colored parts in the speed profile correspond to the
segments of same color in Fig. 3.4a.

Figure 3.4: Speed profile for three-segment Dubins path.

The computation of the speed profile begins with obtaining v̂(κ) for each segment, and
the possible speed profile cases are shown in Fig. 3.4. The speed in the initial and final
configurations is set to v̂ for a given radius. In the next step, it is determined if the vehicle is
able to accelerate from v̂(r−1

1 ) to vmax and then decelerate to v̂(r−1
2 ) on the straight segment

of the length ls. If so, then the speed profile is constructed as in case 1 in Fig. 3.4b. Otherwise,
the length necessary to change the speed from v̂(r−1

1 ) to v̂(r−1
2 ) is calculated, and if the length

is less than or equal to ls, then the maximum reachable speed on the straight segment vx is
determined, and the speed profile is constructed as in the case 2.

If changing the speed from v̂(r−1
1 ) to v̂(r−1

2 ) is not possible on the straight segment, there
are two other cases. The first one is that ls and the length of the segment with the larger
radius are sufficient to change the speed from v̂(r−1

1 ) to v̂(r−1
2 ) and the case 3 of the speed

profile is constructed that occurs only if r1 6= r2. The last case is when the maximum speed on
the initial or final configurations cannot be reached concerning the motion constraints. Such
a trajectory is either not time-optimal or feasible, and therefore, this case is prohibited. By
prohibiting the last case, the initial and final speed matches the maximum possible for the
given radius in both configurations. We also disqualify the cases, which are likely not optimal
by using an inefficiently large radius.

The resulting travel time is the sum of times for individual segments tA + tB + tC . The
closed-form expression exists for computing the TTE of the multi-radius Dubins path, and it
is presented in Section A.3.
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3.3.2 Travel Time Estimation using Two-Phase Algorithm

The computation of the TTE can be further generalized for paths with more than three
segments. The time is computed using the uniform acceleration in a similar way as for the
previous case. Then, the total travel time can be computed using a two-phase algorithm
with computational complexity linearly proportional to the number of segments. The full
computational example is visualized in Fig. 3.5.

l

v

(a) Initialization: for each segment, set the maximum speed by its curvature.

l

v

(b) Forward phase: continuous acceleration or sharp speed drop, moving from
the first segment to the last.

l

v

(c) Backward phase: continuous acceleration or sharp speed drop, moving in
the opposite direction from the last segment to the first.

l

v

(d) Result: minimum speed from 3.5b and 3.5c at each point.

Figure 3.5: General two-phase algorithm for computing the TTE.

The initial step is the same. The maximum speed is computed on each segment, shown in
Fig. 3.5a. After that, the first phase of the two-phase algorithm is the forward phase, which
calculates the speed increase using amax when the speed on the next part is higher than on the
current part. If the next maximum speed is lower than the current speed, it is set abruptly
to the next speed, e.g., as shown in Fig. 3.5b. The second step mimics the first step, but
the vehicle starts at the trajectory end, and the profile is computed as if the vehicle would
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move backward. The speed increase is computed using −amin, and the result is visualized in
Fig. 3.5c. The resulting speed profile is then obtained as the minimum value in each point
from the forward and backward phase; see Fig. 3.5d.

The speed v is not linear with the distance l. The lines are drawn as linear in Fig. 3.5 for
intuitive visualization. During the practical computation, the minimum speed value is taken
at each position of the trajectory.

3.4 Trajectory with Multiple Segments

The Dubins path with two arc segments with different turning radii can be further generalized
by considering multiple segments with increasing/decreasing turning radius that allows the
vehicle to accelerate/decelerate, and thus quickly achieve maximal possible speed. This is
contrary to the Dubins path, where the vehicle can increase its speed only on the straight
segment. The proposed approach replaces the initial and final arc of the Dubins path with
multiple segments and optimizes their curvature to achieve a shorter time to traverse the
whole trajectory. The construction of the multi-segment trajectory is illustrated in Fig. 3.6.

+ +

+

+

+

+

+

+

q0
1 q0

2

q3
1

q3
2

q1
1

q2
1 q2

2

q1
2

Figure 3.6: Multi-segment trajectory construction with three arcs on each side. The green segments
are the initial sequence of arcs, and the red segments are the final sequence of arcs. The blue part is
a Dubins path with maximum turning radius.

The multi-segment trajectory is constructed from the Dubins path with the minimum
turning radius rmin connecting the given configurations q1 and q2. The type of the Dubins
path’s segments define the curvature’s sign of the additional turning segments. Let denote
the curvature κ1 for the initial arc, κ2 for the final arc, and let m be the number of additional
segments on each side. Thus, the total number of segments is 2m + 3. The set K specifies
the curvature, constrained by (3.2), of all segments

K = 〈κ1
1, . . . , κ

m
1 , κ

1
2, . . . , κ

m
2 〉, |κi1|, |κi2| ∈

[
1

rmax
,

1

rmin

]
∀i ∈ {1, . . . ,m}. (3.3)

The curvature is limited because a larger radius than rmax elongates the path, but a further
increase of the speed above vmax is not possible. Similarly, a smaller turning radius than rmin

would require flying at the unsafe speed lower than vmin. Note that the values κ1
1, . . . , κ

m
1

have the same sign as κ1, whereas the values κ1
2, . . . , κ

m
2 have the opposite sign of κ2, because

they are used for arcs computation in the opposite direction.

The turn angles of the arcs are organized into a set Ξ defined as

Ξ = 〈ξ1
1 , . . . , ξ

m
1 , ξ

1
2 , . . . , ξ

m
2 〉, ξi1, ξ

i
2 ∈

[
0,

2π

m

]
∀i ∈ {1, . . . ,m}, (3.4)
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where the first arc starts at the configuration q1, ends at q2. Thus, the used notation is that
the i-th arc starts at the end of the previous arc qi−1

j and the whole sequence of arcs ends at

the configuration qi
j, where qi

j = 〈pi
j, θ

i
j〉. For the first sequence of arcs q1 = q0

1. However,

q0
2 = 〈p2, θ2 + π〉 because arcs for q2 are computed in the opposite direction.

The heading angles of the particular configurations of additional arcs are computed from

θij = θi−1
j + ξijsgn(κij), (3.5)

where sgn(κ) is the sign of the curvature κ. The position pi
j is computed as

pi
j = pi−1

j +
1

κij

(〈
sin θi−1

j ,− cos θi−1
j

〉
+
〈
− sin θij , cos θij

〉)
, ∀i ∈ {1, . . . ,m}, j ∈ {1, 2}.

(3.6)
Thus, the first sequence of arcs ends at the configuration qm

1 and the final sequence at qm
2 .

The configurations qm
1 and qm

2 are connected by the Dubins path with the maximal turning
radii rmax to enable the fastest speed. The Dubins path simplifies the computation, as the
sequence of arcs can end with an arbitrary heading angle. It is not further optimized, because
the maximum speed on all three segments is equal to vmax

Based on the proposed trajectory parametrization, we define the time-optimization of the
trajectory as Problem 3, where the function D(qm

1 ,q
m
2 ) returns the length of the Dubins

path with rmax between configurations qm
1 and qm

2 . The time to traverse the trajectory
TTE(L, V, amin, amax) is computed by the two-phase algorithm from Section 3.3.2, where L and
V denote the segments’ lengths and segments’ speeds, respectively, with the corresponding
order of the particular segments. The L and V are the result of the initialization phase for
the two-phase algorithm. The speed v̂(κ) for the curvature κ is computed using (3.1).

Problem 3 (Time-optimal planning for a path with multiple segments)

min
K,Ξ

T,

s.t.

l = D(qm
1 ,q

m
2 ),

L =

〈
ξ1

1

|κ1
1|
, . . . ,

ξk1
|κk1|

, l,
ξk2
|κk2|

, . . . ,
ξ1

2

|κ1
2|

〉
,

V =
〈
vκ11 , . . . , vκk1

, vmax, vκk2
, . . . , vκ12

〉
,

T = TTE(L, V, amin, amax).

3.4.1 Planning Trajectory with Multiple Segments

The optimization problem proposed in this section is solved by a local optimization to find the
lengths and radii of the trajectory’s segments. The optimization function accepts an initial
vector 〈K,Ξ〉, and the lower and upper bounds determined as the minimum and maximum
values from the limits of K and Ξ. The vector for the optimization is thus 4m long, which is
very challenging to optimize for large values of m. Therefore, reported results on the planning
trajectory with multiple segments are presented only for relatively small m.

A proper initialization is essential for the local optimization methods that can find only
a local optimum. The initial Dubins path is employed for the initialization, which is computa-
tionally efficient and provides a suitable solution being improved. The arc angles ξ1

1 , . . . , ξ
m
1 are
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Figure 3.7: Example of proposed trajectories with multiple segments, θ1 = π
4 , θ2 = 3π

2 . The orange
trajectory is the initial Dubins path; the green trajectory is extended multi-radius Dubins path with
optimal radii found using local optimization.

initialized from the angle of the initial segment of the Dubins path that is divided into m seg-
ments. Similarly, the initial values of the angles of the arcs ξ1

2 , . . . , ξ
m
2 are determined from

the final Dubins segment. The values of curvature κ1
1, . . . , κ

m
1 are initialized as sgn(κ1)r−1

min,
and κ1

2, . . . , κ
m
2 with −sgn(κ2)r−1

min. Example paths are shown in Fig. 3.7 and corresponding
improvements on the trajectory time are depicted in Table 3.2. Note that only increasing

Table 3.2: Travel and execution times of the multi-segment trajectories in comparison to Dubins path.

Trajectory type
Travel
Time

Improvement [%] vs. Tcpu

[s]Dubins rmin Multi-radius

Dubins path with rmin 1.31 0.0 −14.2 <0.01
Multi-radius Dubins path & Optim 1.15 12.4 0.0 0.05
Multi-segment trajectory, m = 1 1.11 15.4 3.4 0.49
Multi-segment trajectory, m = 2 1.07 18.3 6.6 2.68
Multi-segment trajectory, m = 3 1.07 18.3 6.7 1.55
Multi-segment trajectory, m = 4 1.07 18.5 7.0 4.39
Multi-segment trajectory, m = 5 1.06 19.4 8.0 5.15
Multi-segment trajectory, m = 6 1.05 19.8 8.5 10.45
Multi-segment trajectory, m = 7 1.07 18.5 7.0 12.60
Multi-segment trajectory, m = 8 1.07 18.1 6.5 28.13
Multi-segment trajectory, m = 9 1.12 14.7 2.6 12.05
Multi-segment trajectory, m = 10 1.09 17.0 5.3 33.27

The reported results are mean values over 30 runs using the computational
environment as reported in Chapter 4

the number of segments does not necessarily lead to decreasing the travel time. It is because
of the increased number of variables being optimized, for which the local optimization stuck
in a local extreme.
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CHAPTER 4
Evaluation of the Proposed
Time-Optimal Trajectory Planning

In this chapter, the proposed solutions to time-optimal trajectory planning based on the
multi-radius Dubins path and multi-segment trajectory are examined and compared to the
existing methods. The evaluations are designed to show how the travel time is decreased
by utilizing higher turning radii than the minimal. Besides, we studied the influence of
different parameters on the resulting trajectories and reported the results. The trajectories
also depend on the used vehicle, and for this thesis, we consider Cessna 172 aircraft [18],
which is mostly used in general aviation. The used parameters are summarized in Table 4.1,
where the minimal turning radius for selected speed has been computed using equation (2.6).
The minimum speed vmin, which is the maximum reachable speed on the minimum turning

Table 4.1: Values of the Cessna 172 aircraft for trajectory computation.

Parameter Symbol Value

Stall speed vstall 27.0m s−1

Minimal velocity vmin 30.0m s−1

Maximal velocity vmax 67.0m s−1

Maximal bank angle ϕmax 60.0 °
Min. turning radius for vmin and ϕmax rmin 65.7m

Min. turning radius for vmax and ϕmax rmax 264.2m

Minimal acceleration amin −3.0m s−2

Maximal acceleration amax 2.0m s−2

radius, has been selected higher than the stall speed vstall of the aircraft to ensure a safe flight.
The maximal speed vmax is determined by the maximum power output of the vehicle.

All the proposed solutions have been implemented in Julia language, version 1.2, and were
executed on a personal computer with Intel CPU i7-8550U @ up to 4.0 GHz. A library for
time-optimal trajectories with unbounded acceleration [4] written in C++ was also used, and
the generated trajectories are parsed by Julia.
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The rest of the chapter is organized as follows. The first section is dedicated to the
proposed multi-radius Dubins path, which has also been published in [7]. The multi-segment
trajectory is studied in Section 4.2. The results compared to the approach Wolek et al. [4]
are reported in Section 4.3.

4.1 Evaluation of the Proposed Multi-Radius Dubins Path

The benefits of the proposed multi-radius Dubins path are evaluated and compared to the
Dubins path with the minimal turning radius [1]. The focus of the examination is to find the
influence of the radii on the travel time with random initial and final configurations. Two
solution methods for finding a multi-radius Dubins path are examined. The first is a local
optimization of the radii on each arc, initialized from the Dubins path with the minimum
turning radius. The second method is sampling with different sample distributions.

The evaluation is divided into three parts. The influence of the turning radii on the tra-
jectory travel time is studied in Section 4.1.1. In Section 4.1.2, we reported on the utilization
of various radii and the achieved shortening of the trajectory travel time. Different radii dis-
tributions and numbers of radii samples are compared with the local optimization approach
in Section 4.1.3.

4.1.1 Influence of the Turning Radii on the TTE

First, we examine the TTE on the initial and final radii for the fixed leaving and arriving
angles, and distance between the configurations. The radii are uniformly sampled with a small
step, and the travel time is computed between the configurations for each radii combination.
The determined trajectories are compared to the shortest Dubins path with the minimum
turning radius and speed increase in the middle segment.

Figure 4.1: Possible trajectories for various turning radii, distance between the configurations 5.5 rmin,
θ1 = 0 , θ2 = 1. The red trajectory shows the shortest Dubins path, the green trajectories are candidate
trajectories, and the light blue trajectory is the fastest trajectory from all candidates.

Few candidate trajectories that are faster than the shortest trajectory between two con-
figurations are shown in Fig. 4.1. In Fig. 4.2, the gradient of speed-up on trajectories with
different initial and final radii (the XY axis) is shown. The speed-up is the ratio between the
TTE of the shortest trajectory (Dubins path) and the TTE of the newly proposed trajectory
with two turning radii. The white dots in Fig. 4.2 represent selected candidate trajectories
shown in Fig. 4.1. The change of the path type causes a sharp change in the gradient. The
gradient is continuous if the neighboring maneuver type is the same. However, when then
the path type changes, the value of the travel time may change abruptly. The Fig. 4.2 shows
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Figure 4.2: Influence of the initial/final turning radius on the TTE for the distance between the con-
figurations 5.5 rmin, θ1 = 0, θ2 = 1. Color scale represents the speed-up with respect to the trajectory
with the minimum turning radius (speed-up = 1). The red and light blue diamonds correspond to the
shortest trajectory and the fastest trajectory.

that the turning radii in the continuous part of the gradient can be easily locally optimized.
However, the optimization might get stuck in a local optimum. If the value of the speed-up
is smaller than one after the path type change, it means that the turning angles α or β are
larger than π, because the radius is inefficiently large. The trajectory becomes too long to
be compensated by the increased speed on a larger radius, which shows the importance of
selecting suitable radii for particular configurations.
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4.1.2 Influence of Distance Between the Configurations

Next, we examine the influence of the distance between the configurations on the radii usage.
The distance is selected from an interval from one to forty times the minimum turning radius.
For each distance, 500 random instances are generated, and the percentile of radii usage and
speed-up improvement is computed. An example of the best multi-radius Dubins path with
fixed distance and the same heading angles is shown in Fig. 4.3. Notice that the trajectories
with a larger distance between configurations have a longer straight segment.

0 2 4 6 8 10 12 14

0

1

2

3

4

Figure 4.3: Trajectories with fixed initial and final heading angles and different distances.

In Fig. 4.4, the percentile indicates how often the radius is used, and a certain speed-up
achieved. The trajectory speed-up is compared to the shortest Dubins path with the speed
increase on the straight segment. We used an optimization framework called Optim [19] with
the L-BFGS [20] optimization method to find the best turning radii for minimizing the TTE
of the trajectory.

The resulting percentiles of the speed-up are shown in Fig. 4.4a. The maximum value
is reached approximately at a distance between two configurations four times the minimum
turning radius rmin apart. On a larger distance, the maximum speed-up of the multi-radius
Dubins path is smaller because the length of straight segment allows to reach the maximum
vehicle speed for both the shortest and fastest trajectory. The radii usage based on the distance
is shown in Fig. 4.4b. For short distances, the minimum turning radius is used most often,
as a large turning radius increases the trajectory length disproportionately to the possible
speed-up. Short trajectories usually do not have a long straight segment, which allows the
highest speed increase. However, for long distances, the maximum turning radius is used in
the majority of cases. The maximum radius is used in more than 50 % of cases, and usage
of the minimum radius drops below 5 %. The maximum vehicle speed can be utilized on the
arc with the maximum radius, and the trajectory length increase by using a larger radius is
perceptually not that significant.

The maximum speed-up achieved by optimizing the turning radii is above 1.9. Hence,
the reported results show how selecting the optimal value of turning radii varies based on the
distance between the configurations, and why using the full range of possible turning radii
can be beneficial.
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(a) Percentile of the speed-up. Color bar shows time improvement with respect to the
shortest trajectory with minimum turning radius.

5 10 15 20 25 30 35 40

Distance / rmin

20

40

60

80

100

P
er

ce
n
ti

le
[%

]

1.0

1.3

1.6

2.0

2.3

2.6

3.0

3.3

3.6

4.0

(b) Percentile of turning maneuver usage. Color bar shows turning radii, with minimum
radius normalized to one.

Figure 4.4: Influence of the distance between initial and final configuration on the overall speed-up
and turning radius usage.
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4.1.3 Radii Distribution

The most suitable radii are found by the optimization framework Optim [19] in the results
reported in the previous section. However, the local optimization can fall in a local optimum.
Besides, convergence time depends on the instance. Thus, we compare the computational time
of the local optimization with the approach based on the explicit discretization of the turning
radii. Two sampling schemata are considered: linear and exponential. The linear sampling
uniformly distributes the radii between the minimum radius rmin and maximum radius rmax.
The number of samples is denoted k, and the i-th sample si, i ∈ {1, . . . , k} is computed as

si = rmin + (i− 1) · rmax − rmin

k − 1
. (4.1)

In the exponential sampling, the samples interval is also between rmin and rmax, but the radii
are more densely sampled near rmin. The i-th sample si, i ∈ {1, . . . , n} is computed as

si = exp

[
ln rmin + (i− 1) · ln rmax − ln rmin

k − 1

]
. (4.2)

1 2 3 4 5

1.0 1.44 1.89 2.33 2.78 3.22 3.67 4.11 4.56 5.0

1.0 1.2 1.43 1.71 2.04 2.45 2.92 3.5 4.18 5.0

Figure 4.5: Distributions of ten samples between rmin = 1, rmax = 5. The blue values of radii are
sampled uniformly, and the green exponentially.

All the combinations of samples are examined to select the fastest multi-radius Dubins
path. The number of combinations is 4k2 because of four CSC path types. Two utilized
sampling distributions are visualized in Fig. 4.5 on an interval between rmin, rmax, where
rmin = 1, rmax = 5, and k = 10. The blue marks represent values of the linear radii samples
computed by (4.1), and the green are exponential samples (4.2).

The speed-up values averaged over 500 iterations are shown in Fig. 4.6. The exponential
sampling shows to be more beneficial than the linear sampling mainly for small distances, due
to the dense sample distribution near rmin. The difference between the distributions is most
visible when using a small number of samples. On ten radii samples, the average speed-up
is approximately the same in both distributions and similar to the speed-up achieved with
the Optim framework. The value of speed-up computed using Optim is higher because the
optimization function can change the radius more precisely. However, the local optimization
is vulnerable to falling into a local optimum, and that is why the sampling-based approach
provides better results for large distances. The average speed-up at distance 6rmin is about
10 %, and about 20 % on distance 15rmin, which is shown in Fig. B.1.

The computation times are shown in Fig. 4.7. The results suggest that a relatively small
number of radii samples helps to increase the speed-up competitively with the numeric op-
timization using the Optim framework. However, the computational time of discrete radii
samples is more than three orders of magnitude shorter than for the optimization method.
The average computational time of multi-radius Dubins path with the corresponding TTE
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is 2.6 ms for ten radii samples on average. The same computation using optimization with Op-
tim framework is about 1063.5 ms on average because a large number of candidate trajectories
(thousands) are examined before converging.
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Figure 4.6: Average speed-up of TTE based on the distance between initial and final configuration.
All results are averaged over 100 randomly generated instances.
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Figure 4.7: Computational time based on the distance between initial and final configuration up to
distance 6rmin. All results are averaged over 100 randomly generated instances.
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4.2 Examination of the Multi-Segment Trajectory

The multi-segment trajectory proposed in Section 3.4 is made of two sequences of segments
(arcs), and the sequences are connected by the Dubins path with the maximum turning radius.
The arc lengths and radii have to be determined to construct the trajectory. For a single
segment on each side, the number of parameters is equal to four, and the discretization would
result in large amount of combinations. Therefore, we decided to compute the trajectory
by the local optimization. Thus, the trajectory is initialized as the Dubins path with the
minimum turning radius. The turning radii of all segments are set to rmin, and segments
length are set to the length of the corresponding turn of the Dubins path, divided by the
number of segments.

The multi-segment trajectory generation is examined regarding the influence of the number
of segments to the required computational time, and the results are reported in Section 4.2.1.
Then, we examine the initialization of the multi-segment trajectory using the multi-radii
Dubins path in Section 4.2.2.

4.2.1 Computational Requirements of Multi-Segment Trajectory

We compare the multi-segment trajectory to the Dubins path with the minimum turning
radius, and the multi-radius Dubins path. The multi-segment trajectory is computed using
local optimization of the Optim framework [19] for test instances with the fixed distance and
randomly generated initial and final configurations. The results for the number of segments
in the range 〈1, . . . , 10〉 are depicted in Table 4.2. The multi-radius Dubins paths are also

Table 4.2: Multi-segment trajectory in comparison to the original and extended Dubins path. With-
out optimization limits, 10 random instances, distance 5rmin between configurations.

Trajectory type
Travel
Time

Improvement [%] vs. Tcpu

[s]Dubins rmin Multi-radius

Dubins rmin 1.85 0.00 -5.42 <0.01
Multi-radius 1.75 5.14 0.00 0.06
Multi-seg. m = 1 1.75 6.46 2.11 0.42
Multi-seg. m = 2 1.70 9.07 4.60 1.76
Multi-seg. m = 3 1.70 9.47 5.19 2.14
Multi-seg. m = 4 1.72 7.63 1.92 15.38
Multi-seg. m = 5 1.71 8.21 2.46 14.36
Multi-seg. m = 6 1.72 7.44 1.80 42.35
Multi-seg. m = 7 1.71 8.03 2.23 82.07
Multi-seg. m = 8 1.73 6.95 1.09 184.17
Multi-seg. m = 9 1.73 6.43 0.53 373.66
Multi-seg. m = 10 1.74 5.94 -0.01 355.06

determined using local optimization. It is not surprising that the computational time is
increased with an increasing number of segments. However, the final trajectory does not have
major time improvement for a high number of segments. The highest speed-up is achieved
for three segments, and is further elaborated for computational time limited to 120 s in the
next section.
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4.2.2 Influence of Initialization to Multi-Segment Trajectories

The multi-segment trajectory generation is proposed with the initialization using the Dubins
path with the minimum turning radius in Section 3.4 because the Dubins path is obtained
quickly. However, the multi-radius Dubins path is less demanding than a multi-segment
trajectory. Therefore, we decided to use a multi-radius Dubins path for the initialization to
see the influence on the travel time. The resulting trajectories are shown in Fig. 4.8.
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m = 1 (init. Dubins rmin)

m = 2 (init. Dubins rmin)

m = 3 (init. Dubins rmin)

(a) Trajectory initialized from Dubins path with rmin, most significant improvement on m = 1: 21.3 %
vs. Dubins path, 2.2 % vs. multi-radius Dubins path. For m = 3, the improvement is −3.9 % vs.
multi-radius.
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(b) Trajectory initialized from multi-radius Dubins path, most significant improvement on m = 3:
23.2 % vs. Dubins path, 4.5 % vs. multi-radius Dubins path.

Figure 4.8: Example of multi-segment trajectories with different initialization, distance between
configurations 11.41rmin, α = 1.72, β = 0.42.

Performance indicators from 100 random configurations with distance 10rmin are depicted
in Table 4.3. The trajectories initialized by the multi-radius Dubins path have almost the
same travel time as the trajectories initialized by the Dubins path with rmin up to m = 3.
For m ≥ 5, the travel time is shorter when the trajectory is initialized by the multi-radius
Dubins path; moreover, the computational time is decreased. The initial value of the travel
time is closer to a local optimum, which leads to faster convergence of the local optimization
function on average.
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Table 4.3: Multi-segment trajectory for 100 random configurations 10rmin apart with Dubins path
and multi-radius Dubins path initialization.

(a) Initialization with Dubins Path with rmin.

Trajectory type
Travel
Time

Improvement [%] vs. Tcpu

[s]Dubins rmin Multi-radius

Dubins rmin 2.76 0.00 -6.15 <0.01
Multi-radius 2.60 5.79 0.00 0.06
Multi-seg. m = 1 2.55 8.54 2.12 0.32
Multi-seg. m = 2 2.47 11.42 5.12 0.82
Multi-seg. m = 3 2.43 12.54 6.29 2.07
Multi-seg. m = 4 2.42 13.02 6.74 5.37
Multi-seg. m = 5 2.46 11.21 4.36 19.64
Multi-seg. m = 6 2.46 10.94 4.00 17.59
Multi-seg. m = 7 2.50 9.84 2.86 74.15
Multi-seg. m = 8 2.45 11.47 4.77 67.27

(b) Initialization with multi-radius Dubins Path.

Trajectory type
Travel
Time

Improvement [%] vs. Tcpu

[s]Dubins rmin Multi-radius

Dubins rmin 2.76 0.00 -6.15 <0.01
Multi-radius 2.60 5.79 0.00 0.06
Multi-seg. m = 1 2.55 8.50 2.07 0.34
Multi-seg. m = 2 2.47 11.38 5.07 1.68
Multi-seg. m = 3 2.43 12.58 6.33 3.97
Multi-seg. m = 4 2.44 12.31 6.07 15.00
Multi-seg. m = 5 2.42 13.11 6.91 24.65
Multi-seg. m = 6 2.42 13.10 6.90 48.34
Multi-seg. m = 7 2.43 12.96 6.77 53.95
Multi-seg. m = 8 2.42 13.01 6.82 42.79

4.3 Comparison of Proposed Trajectories to Time-optimal Tra-
jectories with Unbounded Acceleration

In this section, we compare the proposed trajectories with the time-optimal path planning
presented by Wolek et al. [4]. The trajectories utilize multiple segments, variable radii and
speed; however, the authors do not consider limited acceleration of the vehicle. Thus, the
travel time must be computed with the limited acceleration to allow comparison, for which
we used the two-phase algorithm from Section 3.3.2. The trajectories [4] consist of turn
denoted T and straight segments S. The turns T further consist of three arcs BCB: bang arc
B has the radius rmax and the cornering arc C has the radius rmin < rmax. The segments S, B,
and C have length ≥ 0. The segments’ length can be computed from the turning angles α, β, γ
of the turn BCB, and from the length L of the straight segment S. The possible trajectory
types are T T , T ST , T T T , and T T T T .
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The minimum speed is denoted vmin, and the maximum speed vmax is equal to 1. An ex-
ample of feasible trajectories between two configurations is shown in Fig. 4.9.
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Figure 4.9: The feasible trajectories proposed by Wolek et al. [4] between configurations q1 = 〈0, 0, 0〉,
q2 = 〈3, 0, 1.57〉 and maximum turning radius scaled to 1.

Table 4.4: Scaled values for trajectory computation with Wolek et al. library.

Parameter Symbol Value

Minimal velocity vmin 0.54m s−1

Maximal velocity vmax 1.00m s−1

Min. turning radius for vmin and ϕmax rmin 0.30m

Min. turning radius for vmax and ϕmax rmax 1.00m

Minimal acceleration amin −0.73m s−2

Maximal acceleration amax 0.49m s−2

In the available library of [4], the initial configuration is fixed to 〈0, 0, 0〉, and the turning
radii to rmin = 0.3, rmax = 1. The library does not process different initial heading angle,
and for different values of rmin and rmax, trajectories did not finish in the defined final con-
figuration. Thus, we did not use the Cessna parameters to compare the proposed trajectories
with Wolek et al. [4], as it could require more substantial modifications of the available source
codes. The trajectories are therefore examined with the vehicle model according to Table 4.4
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and the trajectory travel time is computed using the TTE for multiple segments, see Sec-
tion 3.3.2. The length of the turn segments is computed from the values of α, β, γ with the
corresponding turning radius. The straight segment and bang arcs have maximum speed vmax,
and the cornering arc vmin.

Table 4.5: Comparison of the proposed trajectories with existing approaches over 100 random in-
stances. The Multi-radius Dubins path is computed from 35 radii samples.

Trajectory type
Travel time Tcpu

[ms]Dist. 2 Dist. 3 Dist. 5 Dist. 8

Dubins rmin 3.87 4.54 6.50 9.63 0.44

Dubins rmax 6.75 6.13 6.85 10.00 0.52

Multi-radius 3.75 4.38 6.33 9.47 86.23

Multi-seg. m = 1 3.55 4.20 6.14 9.28 607.66

Multi-seg. m = 2 3.49 4.15 6.10 9.23 1549.03

Multi-seg. m = 3 3.48 4.14 6.09 9.22 6177.64

Wolek et. al. [4] 4.08 5.14 7.41 10.86 2192.31

The travel time comparison of all trajectories is shown in Table 4.5. All trajectories in one
picture are shown in Fig. 4.10. The shortest trajectories are provided by the proposed multi-
radius Dubins path and multi-segment trajectories, which are more demanding for m = 3
than the approach by Wolek et al. [4]. In all the evaluation described in this chapter, the
trajectories proposed in the thesis decreased the travel time in comparison to the Dubins path
with rmin. Moreover, the multi-radius Dubins path is computationally efficient. The multi-
segment trajectories are able to further decrease the travel time than the multi-radius Dubins
path, however, the computation requires a longer time for optimization before convergence.
The tests suggest that the trajectories by Wolek et al. have longer travel time than the Dubins
path with rmin, when using the bounded acceleration. This result was expected, considering
that the trajectories were optimized with unbounded acceleration.

28



Chapter 4. Evaluation of the Proposed Time-Optimal Trajectory Planning

−2 −1 0 1 2 3

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Multi-radius

Dubins rmax

Dubins rmin

Wolek et.al.

m = 1

m = 2

m = 3

Figure 4.10: Example of Dubins path, multi-radius Dubins path, multi-segment trajectory, and
trajectory by Wolek et al.
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CHAPTER 5
Multi-Radius Dubins Path in
Multi-Goal Scenarios

In this chapter, we describe how the proposed extended Dubins path with multiple radii is
deployed in time-optimal trajectory planning over multiple locations defined as Problem 2.
The problem is modeled as a variant of the Dubins Traveling Salesman Problem (DTSP) [8].
In the DTSP, the problem is to find a closed, cost-efficient tour to visit each location exactly
once, and the tour has to represent the fastest feasible trajectory for the Dubins vehicle.
The DTSP is a well-studied problem with many existing approaches [21, 11], and therefore,
deployment of the proposed multi-radius extension of the Dubins path is relatively straight-
forward. The main difficulty of solving instances of the DTSP is in the combination of the
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Figure 5.1: Example of DTSP with 10 random locations.

combinatorial optimization of the underlying TSP with continuous optimization of the fastest
trajectory. In the Dubins vehicle case, it is necessary to determine the optimal heading angles
of the vehicle for each target location from which optimal Dubins paths can be computed to
get a smooth multi-goal Dubins path; see an example of the solution in Fig. 5.1.

Difficulties of solving the DTSP arising from the continuous optimization of the vehicle
headings can be addressed by discretizing the possible heading angles into a finite set of sam-
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Figure 5.2: Search graph with k sampled heading angles per each of n target locations and given
sequence of visits to the locations.

ples [21, 11]. Then, for a given sequence of visits to the target locations, we can construct
a graph as in Fig. 5.2 and find optimal heading angles, and thus optimal solution on the given
discretization and sequence of visits. For k heading samples per each target locations and
a sequence of n target locations, the complexity of finding the solution can be bounded by
O(nk3) [22]. Thus, depending on the number of samples k, the solution can be found rela-
tively quickly. However, we also need to determine a sequence of visits, which is a NP-hard
combinatorial optimization problem because of the underlying TSP [9].

In the solution of the DTSP, the sequence can be determined by relaxing motion constraints
of the Dubins vehicle and solution of the Euclidean TSP [22]. Such a decoupled approach solves
the sequencing part and finds optimal heading angles independently, and thus an unfortunate
sequence can be determined. Therefore, we propose to utilize a coupled approach where
the sequence is optimized on top of the discretized heading angles, which can be further
formulated as the Generalized TSP (GTSP) [11]. The GTSP instance size depends on the
number of samples, and since the proposed multi-radius Dubins path has two radii in addition
to the heading angle, the size of the instance quickly grows. That is why we instead consider
combinatorial metaheuristic called the Variable Neighborhood Search (VNS) [10] to address
the generation of the DTSP with multi-radius Dubins paths.

Algorithm 1: VNS-based solver for the DTSP

Input: P – the set of locations coordinates
Output: Σ – the visiting sequence of the locations P.

1 Σ← initial solution found by cheapest insertion // Initialization

2 while not terminating condition // Main step

3 do
4 Σ′ ← shaking(Σ)
5 Σ′′ ← localSearch(Σ′)
6 if T (Σ′′) ≤ T (Σ) then
7 Σ← Σ′′

8 end

9 end
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The VNS is a general metaheuristic for solving combinatorial optimization problems that
has been already adapted to routing problems with the Dubins vehicle [13, 23, 12, 11]. Fur-
thermore, VNS can get out of the local optima and find the solution with a cost closer to
the global optimum than the initial solution. The VNS consists of two phases. The first is
the initialization, where the initial solution is created, e.g., using the cheapest insertion [24].
The second phase is iterative optimization until the terminating condition, such as the maxi-
mum number of iterations or given computational time, is met. The optimization phase runs
two procedures called shaking and localSearch, which are implementation-dependent. The
operation shaking randomly modifies the previous best solution, and localSearch locally
optimizes the modified solution. If the modified and optimized solution is better than the
previous best solution, it becomes the new best solution. The VNS-based solver to the DTSP
is overviewed in Algorithm 1.
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Figure 5.3: Search graph with heading angle and turning radii samples. The sequence is n locations
long, the number of heading angle samples as k, and the number of turning radii samples is l.

The main problem to employ the existing VNS-based solver, in particular, we consider
available implementation [12], is to determine individual trajectories connecting the target
locations. The continuous optimization is addressed by discretizing the heading angles in
k samples and possible turning radii into l samples. For a particular sequence, i.e., deter-
mined during the VNS-based combinatorial optimization, the multi-goal trajectory can be
a similar approach as for the DTSP. However, instead of the search graph shown in Fig. 5.2,
kl configurations are considered for each target locations, and the search graph looks like
in Fig. 5.3.

The complexity of multi-goal trajectory assessment for a particular sequence is relatively
costly because of more samples and more demanding multi-radius Dubins path than for the
DTSP. Therefore, we further employ windowing speed-up technique [25] based on lower bound
estimation for quick rejection of unfavorable sequences [26]. Empirical results on multi-goal
planning are reported in the following section.

5.1 Evaluation of the Multi-goal Trajectories

The proposed multi-radius Dubins path has been deployed in the VNS-based DTSP solver
with precomputed paths between every two samples of turning radii and heading angles. We
examined the influence of the sampling to the achieved TTE in random scenarios with the
number of target locations ranging from 10 to 75. The target locations are generated randomly
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Figure 5.4: Example of the found multi-goal trajectory with 30 target locations and its corresponding
speed profile.
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with uniform distribution within squared bounding-box with the size 20. The heading angles
are sampled uniformly in the range [0, 2π). The turning radii are sampled with linear and
exponential distribution. The vehicle motion constraints as of Table 4.1 are used with the
minimum turning radius scaled to 1. An example of the found multi-goal trajectory with
30 locations is depicted in Fig. 5.4. For brevity, the results with 50 locations for the TTE
examination in the rest of the section.
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Figure 5.5: Speed-up for multi-goal trajectory with 50 randomly generated target locations for
increasing number of heading samples. Average values among 50 trials. Linear and exponential
sampling schemata (see Section 4.1.3) are employed with 3, 5, and 10 samples.

We examine the results of different sampling on 50 test instances with different number of
locations. The linear and exponential sampling schemata from Section 4.1.3 are utilized with
3, 5, and 10 samples. The average achieved speed-up for multi-goal trajectories with 50 target
locations is shown in Fig. 5.5 and detail results are listed in Table 5.1. The values of Slow
time are the trajectory travel time without speed increase, and values of Fast time are with
speed increase. The speed-up of the Fast time to the Slow time is computed as

Speed-up = 100

(
Slow time

Fast time
− 1

)
. (5.1)

The Speed-up vs. rmin is the speed-up of the Fast time of the multi-radius Dubins path to
the Fast Time of Dubins path with rmin with same number of heading angle samples. The
data show that the exponential sampling schema achieves better results when considering the
same number of angle samples. The largest speed-up in comparison to rmin is >13 %, but for
a different number of goals in the same bounding box, the speed-up can be over 30 %, see
evaluations in Section B.2. The execution time increases considerably with larger number of
heading angle samples.
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Table 5.1: Results for data with 50 goals, averaged.

Num.
goals

Radii
samples

Angle
samples

Fast
time

Slow
time

Path
length

Execute
[s]

Speed-up
[%]

Speed-up vs.
rmin [%]

50 rmin 4 41.51 43.42 178.95 10.80 4.60 0.00
50 rmin 8 37.12 38.82 160.01 15.78 4.58 0.00
50 rmin 12 35.42 37.01 152.55 23.00 4.50 0.00
50 rmin 16 34.68 36.26 149.46 33.18 4.55 0.00
50 rmin 20 34.08 35.62 146.79 45.63 4.50 0.00

50 3 exp 4 40.70 47.05 193.92 24.73 6.86 1.99
50 3 exp 8 36.03 42.94 176.99 65.61 7.90 3.03
50 3 exp 12 33.98 40.29 166.03 128.81 9.09 4.24
50 3 exp 16 33.39 40.20 165.67 220.05 8.74 3.86
50 3 exp 20 32.91 40.01 164.89 363.91 8.39 3.56

50 5 exp 4 38.56 48.31 199.09 51.56 12.73 7.65
50 5 exp 8 33.98 43.20 178.03 154.11 14.39 9.24
50 5 exp 12 32.31 41.43 170.74 361.38 14.71 9.63
50 5 exp 16 31.48 40.98 168.90 912.99 15.35 10.17
50 5 exp 20 31.21 41.39 170.57 1671.50 14.30 9.20

50 10 exp 4 37.52 49.13 202.47 158.23 15.91 10.63
50 10 exp 8 32.78 44.05 181.55 654.71 18.65 13.24
50 10 exp 12 31.25 42.44 174.92 2011.68 18.62 13.34
50 10 exp 16 30.49 41.50 171.05 4032.53 19.09 13.74
50 10 exp 20 30.14 42.01 173.12 5868.47 18.40 13.07

50 3 lin 4 41.85 47.00 193.71 24.81 3.92 -0.81
50 3 lin 8 37.18 43.68 180.01 159.78 4.57 -0.16
50 3 lin 12 35.49 43.58 179.62 224.02 4.47 -0.20
50 3 lin 16 34.71 44.04 181.51 316.86 4.59 -0.09
50 3 lin 20 34.27 43.74 180.26 710.15 4.09 -0.55

50 5 lin 4 39.73 49.36 203.43 54.39 9.43 4.48
50 5 lin 8 34.79 44.14 181.94 166.94 11.79 6.69
50 5 lin 12 32.94 43.46 179.12 354.85 12.55 7.53
50 5 lin 16 32.12 43.06 177.46 666.93 13.12 7.97
50 5 lin 20 31.55 42.57 175.44 1737.26 13.01 8.02

50 10 lin 4 38.01 49.99 206.02 156.25 14.43 9.21
50 10 lin 8 32.93 44.20 182.15 655.16 18.05 12.72
50 10 lin 12 31.55 43.18 177.97 2257.73 17.51 12.27
50 10 lin 16 30.72 43.03 177.35 3525.81 18.23 12.89
50 10 lin 20 29.98 41.96 172.92 5380.44 19.01 13.68
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CHAPTER 6
Conclusion

In this thesis, two different time-optimal trajectory planning methods with the extended Du-
bins vehicle have been proposed. The proposed generalization of the Dubins vehicle considers
the variable speed and multiple turning radii. The methods are called multi-radius Dubins
path and multi-segment trajectory. Both trajectories utilize variable turning radii to find the
tradeoff between the trajectory length and time needed to travel the trajectory. The multi-
radius Dubins path is further utilized in multi-goal planning formulated as a time-optimal
variant of the Dubins Traveling Salesman Problem (DTSP). The time-optimal multi-goal
trajectory planning is addressed by VNS-based combinatorial metaheuristic. A discretized
variant of the trajectory planning is utilized with sampled heading angles and turning radii.

The multi-radius Dubins path follows the CSC type of the Dubins path, and it consists of
three segments, where the ending segments are arcs of various radii. For the given radii, the
multi-radius Dubins path can be computed using the closed-form expressions; however, finding
the suitable radii is computationally challenging. Two computational methods are proposed:
local optimization and discretization. The number of samples and sampling distributions
influence the solution, and linear and exponential distributions have been examined. Both
distributions of 10 radii samples achieve similar time improvement as the local optimization.
However, the computational time of the local optimization is, on average, a thousand times
longer than using ten radii samples. The exponential sampling provides better results than
linear when a smaller number of samples is used. Thus, the sampling-based approach is more
suitable for practical use, and exponential sampling might be preferred when computational
time is constrained.

The travel time improvement of the multi-radius Dubins path over the regular Dubins path
depends on the distance between the locations. For mutually distant locations, the vehicle
can accelerate on the straight segment of the CSC path type. The best achieved value of
speed-up reaches up to 90 % at a distance about four times the minimum turning radius rmin

in comparison to the Dubins path with rmin. For a distance of the locations about 15rmin,
the average improvement with ten radii samples on the trajectory travel time is about 20 %.

The multi-segment trajectory decreases the trajectory travel time even further than the
multi-radius Dubins path at the cost of significantly increased computational requirements.
Due to the increased number of trajectory parameters, local optimization is utilized to find
multi-segment trajectories. The optimization can be initialized by the Dubins path with rmin.
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Chapter 6. Conclusion

However, initialization using the proposed multi-radius Dubins path provides better results
by means of decreased computational time to find faster trajectories.

Furthermore, the proposed time-optimal trajectories have been compared with the ap-
proach of Wolek et al. [4], which, however, does not consider the acceleration limits of the
vehicle. Using the same vehicle model, both the proposed multi-radius Dubins path and
multi-segment trajectory provides faster trajectories than the method [4].

Finally, the multi-radius Dubins path has been employed in multi-goal planning where it
provides time improvement about 10–30 % in comparison to the Dubins path with rmin, based
on the number of target goals. The computational time increases significantly with a higher
number of goals. For datasets with 50 locations, the computational time is ten times longer
when using 3 radii samples instead of rmin, and hundred times with 10 radii samples.

Based on the reported results, we can conclude that the proposed trajectories reduce the
travel time in all examined cases. Besides, the multi-radius Dubins path is computationally
effective, and a closed-form expression exists for both the trajectory and travel time compu-
tation.
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[23] Petr Váňa, Jan Faigl, Jakub Sláma, and Robert Pěnička. Data collection planning with
dubins airplane model and limited travel budget. In European Conference on Mobile
Robots (ECMR), pages 1–6, 2017.

[24] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several
heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563–581,
1977.

40



Bibliography
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APPENDIX A
Computations

A.1 Computation of the Dubins Path

Dubins path is a three-segment path, consisting of arcs (part of a circle) or a straight line. The
arc is denoted as C and straight segment S, and the Dubins path can be of type CSC or CCC.
The described method of computing the Dubins path is based on finding the centers of the
arc segments. The required values for path construction are the turning radius, and the initial
and final configurations q1,q2. The configurations are 〈p, θ〉 ∈ SE(2), where p ∈ R2 is the
position in the 2D space, and θ ∈ [0, 2π) is the heading orientation of the vehicle. To simplify
the computation, the initial position p1 is transformed to 〈0, 0〉 and the final position p2 to
〈d, 0〉, where d is the distance between the configurations q1 and q2. The computation of the
CSC path type is described in Section A.1.1 and CCC in Section A.1.2

A.1.1 CSC Dubins Path Type

q1

c1

θ1

θ1 − π/2 q2

c2

θ2 θ2 − π/2

d
α

β

l

Figure A.1: RSR Dubins path type.

The RSR path type is visualized in Fig. A.1 and RSL in Fig. A.2. To construct the path,
the angles of the initial and the final arc α, β and the length of the straight segment l are
needed. The computation of the CSC maneuver begins with determining the center of each
turn. Let the center of the initial turn be denoted c1 and the final one c2. The configuration
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Appendix A. Computations

q1

c1
θ1

θ1 − π/2 q2

c2

θ2

d

δα

β

l

Figure A.2: RSL Dubins path type.

qi lies at the tangent of the circle, and the coordinates of the vector with the length of the
radius r and angle θi ± π

2 are obtained using the sin and cos functions. The angle correction
of π

2 is added based on the turn directions as

ci =

{
pi + r [sin θi,− cos θi] for right turn center,

pi + r [− sin θi, cos θi] for left turn center.
(A.1)

After computing the path centers, the angle ξ is calculated, which is the direction of the
vector c1c2 = 〈xc, yc〉 between the circle centers c1 and c2,

ξ = arctan
yc
xc
. (A.2)

The distance d between the circle centers is calculated as

d = ||c2 − c1|| =
√
x2
c + y2

c . (A.3)

The turning angles α and β are computed using the following equations, where α, β ∈ [0, 2π)
and can be shifted to the interval by the correction constant 2kπ, k ∈ Z if necessary,

α =

{
+(θ1 + π

2 )− (ξ + δ) for RSR/RSL,

−(θ1 − π
2 ) + (ξ − δ) for LSL/LSR,

(A.4)

β =


−(θ2 + π

2 ) + (ξ + δ) for RSR,

+(θ2 − π
2 )− (ξ − δ) for LSL,

+(θ2 − π
2 )− (ξ + δ + π) for RSL,

−(θ2 + π
2 ) + (ξ − δ + π) for LSR,

(A.5)

and the auxiliary angle δ is computed by

δ =

{
π
2 for RSR/LSL,

arccos 2r
d for RSL/LSR.

(A.6)
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The total length of the Dubins path is denoted L and is calculated using the arc angles α, β
and the length of the central segment l as

L = αr + l + βr. (A.7)

The length of the center segment can be calculated as

l =

{
d for RSR/RSL,√
d2 − 4r2 for LSL/LSR.

(A.8)

A.1.2 CCC Dubins Path Type

q1

c1θ1

θ1 − π/2 q2

c2

θ2
δ

d

c3

π − 2δ

α

β

γ

Figure A.3: RLR Dubins path type.

For the CCC paths (Fig. A.3), the middle segment is also a part of a circle, and the path
computation differs slightly from the computation of the CSC maneuvers. The centers c1
and c2 are computed the same as for the CSC maneuvers by (A.1). The angle ξ (A.2) and
distance d between the circle centers c1, c2 (A.3) are also needed. However, the CCC path
type is only feasible if the distance d is less than or equal to 4r, otherwise the initial and final
segments cannot be connected by a part of circle with radius r. The center c3 is the center
of the middle segment and is computed as

c3 =

{
c1 + 2r[cos(ξ − δ), sin(ξ − δ)] for RLR,

c1 + 2r[cos(ξ + δ), sin(ξ + δ)] for LRL.
(A.9)

The angles of the curve segments α, β and γ are computed using the following equations,
where α, β, γ ∈ [0, 2π) and can be shifted to the interval by the correction constant 2kπ, k ∈ Z
if necessary,

α =

{
+(θ1 + π

2 )− (ξ − δ) for RLR,

−(θ1 − π
2 ) + (ξ + δ) for LRL,

(A.10)

β =

{
−(θ2 + π

2 ) + (ξ + π + δ) for RLR,

+(θ2 − π
2 )− (ξ + π − δ) for LRL,

(A.11)
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γ = π + 2δ + 2kπ for both RLR and LRL, (A.12)

and the auxiliary angle δ for both RLR and LRL maneuvers is determined as

δ = arccos
d

4r
. (A.13)

The total length of the Dubins path for the CCC maneuver is

L = (α+ γ + β)r. (A.14)

A.2 Computation of the Multi-Radius Dubins Path

The closed-form expression exists for the Dubins path, and constructing the path is compu-
tationally efficient. The closed-form expression for the multi-radius Dubins path is presented
in this thesis.

q1

c1r1

θ1

θ1 − π/2 q2

c2

r2

θ2
d

α

β

δ

l

Figure A.4: Examples of multi-radius Dubins paths: RSR maneuver.
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θ1 − π/2 q2
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r2
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α

β

δ

Figure A.5: Examples of multi-radius Dubins paths: RSL maneuver.
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The centers of the initial and final segments are computed the same way as for the single
radius Dubins with using the correct curve radius. The distance between the centers c1 and
c2 is denoted as d. The angle ξ of the vector c1c2 and total path length L are also calculated
the same way, see equations (A.1-A.7).

Calculation of the length of the straight segment l is different as the straight segment is
no longer perpendicular to the vector between the circle centers c1c2,

l =

{√
d2 − (r1 − r2)2 for RSR/RSL,√
d2 − (r1 + r2)2 for LSL/LSR.

(A.15)

The turn angles α and β are computed almost as for the single radius Dubins with the only
difference in computation of the auxiliary angle δ,

δ =

{
arccos r1−r2d for RSR/LSL,

arccos r1+r2
d for RSL/LSR.

(A.16)

A.3 TTE computation for the multi-radius Dubins path

In this section, the computation of each speed profile case is described. The possible cases
of the speed profile are shown in Fig. A.6.
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q2
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(a) The RSR multi-radius Dubins path.
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(b) Three different speed profile cases.

Figure A.6: Speed profile for three-segment Dubins path.

The computation of the TTE for multi-radius Dubins path starts with determining if the
vehicle is able to accelerate to maximum vehicle speed vmax on the straight segment. The
time t1 needed to accelerate from v̂(r1) to vmax is computed as

t1 =
vmax − v̂(r1)

amax
, (A.17)

and time t2 to decelerate from vmax to v̂(rr) is

t2 =
v̂(r1)− vmax

amin
. (A.18)
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In time ti, the vehicle travels the length li, i ∈ {1, 2}, which is computed as

lti = ti
v̂(ri) + vmax

2
. (A.19)

If the length sum lt1 + lt2 is shorter or equal to the length of the straight segment ls, the
speed-up to the maximum speed is possible. The total time of the path T , which is the value
of TTE, is in this case computed as

T =
l1

v̂(r1)︸ ︷︷ ︸
tA

+ t1 +
ls − lt1 − lt2

vmax
+ t2︸ ︷︷ ︸

tB

+
l2

v̂(r2)︸ ︷︷ ︸
tC

for case 1. (A.20)

If lt1 +lt2 is larger than ls, and the vehicle can change the speed from v̂(r1) to v̂(r2) on distance
shorter than ls, the maximum reachable speed vx has to be calculated as

vx =

√
amaxv̂(r2)2 − 2amaxaminls − aminv̂(r1)2

amax − amin
, (A.21)

and the total time of the path T is in this case computed as

T =
l1

v̂(r1)︸ ︷︷ ︸
tA

+
vx − v̂(r1)

amax
+
v̂(r2)− vx
amin︸ ︷︷ ︸

tB

+
l2

v̂(r2)︸ ︷︷ ︸
tC

for case 2. (A.22)

The speed profile can be computed using closed-form expression, and calculation of the
TTE is computationally efficient and easy to implement into the final solution. The speed
profile looks differently based on the value of initial and final radius, and all the posssible
speed profiles for the multi-radius Dubins are shown in Figures A.7–A.9
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(b)

Figure A.7: Speed profile: Equal initial speed and final speed of the vehicle.
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Figure A.8: Speed profile: Initial vehicle’s speed smaller than final.

In the case 3 in Fig. A.8, the TTE is calculated as:

T =
l1

v̂(r1)︸ ︷︷ ︸
tA

+
v̂(r2)− v̂(r1)

amax︸ ︷︷ ︸
tB

+
ls + l2 −

ltB︷ ︸︸ ︷
v̂(r2)2 − v̂(r1)2

2amax

v̂(r2)︸ ︷︷ ︸
tC

. (A.23)
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Figure A.9: Speed profile: Initial vehicle’s speed larger than final.

The case 3 in Fig. A.9 is the reverse of case 3 in Fig. A.8, and the TTE is calculated as

T =
l1 + ls −

ltB︷ ︸︸ ︷
v̂(r2)2 − v̂(r1)2

2amin

v̂(r1)︸ ︷︷ ︸
tA

+
v̂(r2)− v̂(r1)

amax︸ ︷︷ ︸
tB

+
l2

v̂(r2)︸ ︷︷ ︸
tC

. (A.24)
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APPENDIX B
Evaluations

B.1 Radii Distribution on higher distances

The average speed-up of the multi-radius Dubins path on larger distances is shown in Fig. B.1.
The highest average speed-up is 20 % at distance approximately 15rmin. The speed-up for rmin

is omitted in the plot for better visualization.

6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

1.10

1.12

1.14

1.16

1.18

1.20

Distance / rmin

A
ve
ra
ge

sp
ee
d
-u
p

3 exp. 3 lin.

5 exp. 5 lin.

10 exp. 10 lin.

Optim

Figure B.1: Speed-up based on the distance between initial and final configuration from distance
6rmin up to 20rmin. All results are averaged over 500 randomly generated instances.
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B.2 Different Number of Locations in Multi-Goal Trajectories
Evaluations

The evaluations for different number of target locations in multi-goal trajectories are shown
in this section. The results show that for densely spaced goals the achieved speed-up is
smaller than for sparse goals datasets. This corresponds to the evaluation of trajectories
from Chapter 4. The number of locations examined are 10, 20, 30, and 75, evaluated over
50 random goals datasets.
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Figure B.2: Speed-up comparison with different heading angles and turning radii samples for 10 ran-
domly generated goals in 50 datasets.
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Figure B.3: Speed-up comparison with different heading angles and turning radii samples for 20 ran-
domly generated goals in 50 datasets.
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Figure B.4: Speed-up comparison with different heading angles and turning radii samples for 30 ran-
domly generated goals in 50 datasets.
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Figure B.5: Speed-up comparison with different heading angles and turning radii samples for 75 ran-
domly generated goals in 50 datasets.
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Table B.1: Results for data with 10 goals, averaged.

Num.
goals

Radii
samples

Angle
samples

Fast
time

Slow
time

Path
length

Execute
[s]

Speed-up
[%]

Speed-up vs.
rmin [%]

10 rmin 4.00 13.57 15.51 63.94 7.61 14.15 0.00
10 rmin 8.00 13.06 15.02 61.92 7.68 14.91 0.00
10 rmin 12.00 12.92 14.92 61.49 7.96 15.40 0.00
10 rmin 16.00 12.86 14.84 61.16 8.26 15.34 0.00
10 rmin 20.00 12.79 14.80 60.99 8.70 15.60 0.00

10 3 exp 4.00 12.10 17.45 71.91 8.01 29.40 12.15
10 3 exp 8.00 10.85 16.69 68.79 9.11 39.41 20.37
10 3 exp 12.00 10.63 16.82 69.32 11.13 41.20 21.54
10 3 exp 16.00 10.36 16.75 69.04 13.63 44.33 24.13
10 3 exp 20.00 10.15 16.81 69.28 16.90 46.78 26.01

10 5 exp 4.00 11.38 17.35 71.49 8.69 37.67 19.24
10 5 exp 8.00 10.42 16.84 69.42 11.69 45.38 25.34
10 5 exp 12.00 10.05 16.51 68.05 16.93 49.73 28.56
10 5 exp 16.00 9.87 16.58 68.35 24.07 51.67 30.29
10 5 exp 20.00 9.78 16.56 68.24 31.86 52.64 30.78

10 10 exp 4.00 11.11 17.53 72.26 11.75 41.11 22.14
10 10 exp 8.00 10.07 16.66 68.65 24.09 50.65 29.69
10 10 exp 12.00 9.85 16.60 68.40 43.53 52.89 31.17
10 10 exp 16.00 9.64 16.49 67.98 69.14 55.38 33.40
10 10 exp 20.00 9.59 16.53 68.12 102.63 55.93 33.37

10 3 lin 4.00 12.06 17.97 74.07 8.05 29.52 12.52
10 3 lin 8.00 10.92 17.70 72.96 9.15 38.40 19.60
10 3 lin 12.00 10.48 17.08 70.37 10.83 43.25 23.28
10 3 lin 16.00 10.30 16.86 69.49 13.39 45.19 24.85
10 3 lin 20.00 10.22 17.26 71.14 16.88 45.74 25.15

10 5 lin 4.00 11.41 17.52 72.20 8.67 37.38 18.93
10 5 lin 8.00 10.41 17.02 70.15 11.79 45.49 25.46
10 5 lin 12.00 9.99 16.46 67.82 16.89 50.58 29.33
10 5 lin 16.00 9.90 16.81 69.30 23.69 50.93 29.90
10 5 lin 20.00 9.75 16.57 68.28 32.31 53.13 31.18

10 10 lin 4.00 11.16 17.55 72.33 11.61 40.26 21.59
10 10 lin 8.00 10.11 17.02 70.16 23.75 49.90 29.18
10 10 lin 12.00 9.81 16.57 68.30 43.21 53.48 31.70
10 10 lin 16.00 9.65 16.56 68.27 70.01 55.21 33.26
10 10 lin 20.00 9.55 16.62 68.48 101.83 56.48 33.93
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Table B.2: Results for data with 20 goals, averaged.

Num.
goals

Radii
samples

Angle
samples

Fast
time

Slow
time

Path
length

Execute
[s]

Speed-up
[%]

Speed-up vs.
rmin [%]

20.00 rmin 4.00 21.21 23.01 94.84 8.02 8.45 0.00
20.00 rmin 8.00 19.66 21.39 88.14 8.65 8.72 0.00
20.00 rmin 12.00 19.30 21.09 86.92 9.64 9.20 0.00
20.00 rmin 16.00 19.00 20.72 85.40 11.00 8.98 0.00
20.00 rmin 20.00 19.02 20.76 85.56 12.89 9.10 0.00

20.00 3 exp 4.00 19.78 25.15 103.63 10.08 16.62 7.23
20.00 3 exp 8.00 17.67 23.52 96.92 15.60 21.37 11.26
20.00 3 exp 12.00 17.11 24.38 100.47 23.45 23.63 12.80
20.00 3 exp 16.00 16.68 23.91 98.53 36.39 24.62 13.91
20.00 3 exp 20.00 16.53 23.75 97.87 51.33 25.94 15.06

20.00 5 exp 4.00 18.49 25.59 105.46 13.06 24.83 14.71
20.00 5 exp 8.00 16.71 24.06 99.18 28.24 28.34 17.65
20.00 5 exp 12.00 16.13 24.31 100.18 51.36 31.10 19.65
20.00 5 exp 16.00 15.69 24.06 99.17 80.28 32.59 21.10
20.00 5 exp 20.00 15.56 24.04 99.10 120.49 33.84 22.24

20.00 10 exp 4.00 18.15 26.50 109.24 27.72 27.11 16.86
20.00 10 exp 8.00 16.28 24.56 101.20 82.78 31.82 20.76
20.00 10 exp 12.00 15.58 24.13 99.44 167.04 35.81 23.88
20.00 10 exp 16.00 15.32 24.20 99.73 290.24 35.72 24.02
20.00 10 exp 20.00 15.17 24.01 98.96 502.02 37.42 25.38

20.00 3 lin 4.00 20.32 26.94 111.03 10.07 13.59 4.38
20.00 3 lin 8.00 18.24 25.86 106.57 15.49 17.52 7.79
20.00 3 lin 12.00 17.55 26.66 109.87 23.55 20.54 9.97
20.00 3 lin 16.00 17.00 26.18 107.90 36.40 22.22 11.76
20.00 3 lin 20.00 16.73 25.93 106.85 50.89 24.43 13.69

20.00 5 lin 4.00 18.89 26.52 109.29 13.17 22.18 12.28
20.00 5 lin 8.00 16.99 25.24 104.02 28.01 26.19 15.72
20.00 5 lin 12.00 16.32 24.75 102.02 50.58 29.73 18.26
20.00 5 lin 16.00 15.66 24.65 101.59 80.02 32.78 21.33
20.00 5 lin 20.00 15.66 24.55 101.19 119.49 32.98 21.46

20.00 10 lin 4.00 18.19 26.24 108.16 28.10 26.79 16.60
20.00 10 lin 8.00 16.25 24.41 100.61 81.90 31.96 20.98
20.00 10 lin 12.00 15.74 24.86 102.45 167.01 34.46 22.62
20.00 10 lin 16.00 15.46 24.57 101.27 297.23 34.53 22.90
20.00 10 lin 20.00 15.19 24.34 100.32 472.14 37.19 25.21
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Table B.3: Results for data with 30 goals, averaged.

Num.
goals

Radii
samples

Angle
samples

Fast
time

Slow
time

Path
length

Execute
[s]

Speed-up
[%]

Speed-up vs.
rmin [%]

30 rmin 4.00 28.30 30.15 124.28 8.60 6.53 0.00
30 rmin 8.00 25.75 27.42 113.02 10.46 6.47 0.00
30 rmin 12.00 24.96 26.61 109.66 12.96 6.57 0.00
30 rmin 16.00 24.44 25.99 107.12 16.36 6.31 0.00
30 rmin 20.00 24.35 25.96 107.00 20.79 6.58 0.00

30 3 exp 4.00 27.17 32.90 135.58 13.78 11.15 4.16
30 3 exp 8.00 24.12 30.56 125.93 28.32 13.83 6.76
30 3 exp 12.00 23.26 30.20 124.47 47.88 14.46 7.31
30 3 exp 16.00 22.62 29.76 122.65 81.02 15.07 8.05
30 3 exp 20.00 22.39 29.24 120.50 113.88 16.08 8.75

30 5 exp 4.00 25.68 33.53 138.18 21.74 17.48 10.20
30 5 exp 8.00 22.75 31.03 127.91 58.34 20.71 13.19
30 5 exp 12.00 21.86 30.48 125.64 112.37 21.81 14.18
30 5 exp 16.00 21.33 30.33 125.01 188.92 21.99 14.58
30 5 exp 20.00 21.22 29.98 123.57 294.81 22.47 14.75

30 10 exp 4.00 24.88 34.14 140.72 55.27 21.37 13.75
30 10 exp 8.00 22.04 31.21 128.63 187.29 24.56 16.83
30 10 exp 12.00 21.11 30.52 125.78 458.51 26.17 18.24
30 10 exp 16.00 20.72 30.91 127.41 876.07 25.58 17.95
30 10 exp 20.00 20.33 29.96 123.47 2276.12 27.81 19.77

30 3 lin 4.00 28.02 34.36 141.61 13.47 7.79 1.00
30 3 lin 8.00 25.03 32.47 133.83 28.31 9.68 2.88
30 3 lin 12.00 24.20 33.15 136.60 48.09 10.00 3.14
30 3 lin 16.00 23.51 33.31 137.26 84.01 10.65 3.96
30 3 lin 20.00 22.92 32.90 135.60 115.62 13.45 6.24

30 5 lin 4.00 26.10 34.92 143.93 21.96 15.66 8.43
30 5 lin 8.00 23.02 31.07 128.06 61.83 19.21 11.86
30 5 lin 12.00 22.15 31.58 130.17 115.79 20.24 12.69
30 5 lin 16.00 21.46 30.34 125.04 193.46 21.23 13.89
30 5 lin 20.00 21.41 31.91 131.50 303.21 21.37 13.73

30 10 lin 4.00 25.13 34.30 141.36 58.15 20.12 12.61
30 10 lin 8.00 22.14 31.74 130.82 190.61 24.01 16.31
30 10 lin 12.00 21.34 31.51 129.87 465.82 24.82 16.96
30 10 lin 16.00 20.89 31.09 128.13 886.50 24.57 16.99
30 10 lin 20.00 20.60 31.49 129.79 1429.35 26.11 18.20

57



Appendix B. Evaluations

Table B.4: Results for data with 75 goals, averaged.

Num.
goals

Radii
samples

Angle
samples

Fast
time

Slow
time

Path
length

Execute
[s]

Speed-up
[%]

Speed-up vs.
rmin [%]

75 rmin 4.00 56.97 59.11 243.60 16.99 3.74 0.00
75 rmin 8.00 49.83 51.57 212.54 28.73 3.50 0.00
75 rmin 12.00 47.61 49.23 202.90 46.90 3.40 0.00
75 rmin 16.00 46.35 47.99 197.76 69.61 3.53 0.00
75 rmin 20.00 45.77 47.35 195.14 99.26 3.45 0.00

75 3 exp 4.00 56.16 63.12 260.15 52.61 5.31 1.44
75 3 exp 8.00 49.37 55.45 228.54 159.52 4.54 0.93
75 3 exp 12.00 46.87 53.40 220.09 407.70 5.14 1.58
75 3 exp 16.00 45.36 52.99 218.39 736.04 5.88 2.18
75 3 exp 20.00 44.65 51.99 214.27 992.89 6.17 2.51

75 5 exp 4.00 53.33 64.90 267.47 115.23 10.95 6.83
75 5 exp 8.00 46.40 56.88 234.43 421.40 11.23 7.39
75 5 exp 12.00 44.34 54.67 225.30 1017.66 11.12 7.37
75 5 exp 16.00 42.98 53.86 221.98 1959.65 11.73 7.84
75 5 exp 20.00 42.08 52.72 217.27 3026.79 12.62 8.77

75 10 exp 4.00 51.85 65.84 271.34 413.32 14.12 9.87
75 10 exp 8.00 44.74 57.73 237.92 1740.74 15.35 11.38
75 10 exp 12.00 42.38 56.19 231.57 4213.00 16.28 12.34
75 10 exp 16.00 41.34 54.58 224.93 7550.80 16.22 12.12
75 10 exp 20.00 40.68 53.79 221.68 12064.50 16.58 12.51

75 3 lin 4.00 57.28 62.26 256.59 51.64 3.29 -0.54
75 3 lin 8.00 50.46 55.14 227.26 153.04 2.31 -1.25
75 3 lin 12.00 48.11 55.01 226.71 306.51 2.48 -1.04
75 3 lin 16.00 47.11 54.05 222.74 632.30 1.97 -1.61
75 3 lin 20.00 46.61 56.42 232.53 1014.47 1.71 -1.80

75 5 lin 4.00 55.05 65.79 271.16 116.70 7.49 3.49
75 5 lin 8.00 48.16 57.59 237.33 438.51 7.18 3.47
75 5 lin 12.00 45.55 56.25 231.84 1083.51 8.19 4.52
75 5 lin 16.00 44.46 55.89 230.33 1921.22 8.03 4.25
75 5 lin 20.00 43.19 54.49 224.57 3018.99 9.73 5.97

75 10 lin 4.00 52.26 67.10 276.55 410.83 13.19 9.01
75 10 lin 8.00 45.24 58.71 241.97 1802.73 14.11 10.15
75 10 lin 12.00 42.92 56.12 231.29 4382.61 14.82 10.93
75 10 lin 16.00 41.80 56.32 232.10 7786.35 14.91 10.89
75 10 lin 20.00 40.87 55.44 228.49 12238.91 15.97 11.99
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