
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 13, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Security of IoT Devices Based on ESP32

 Student: Bc. Michal Vácha

 Supervisor: Ing. Jiří Dostál, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2020/21

Instructions

A typical use case for IoT is collecting telemetry data (temperature, humidity...) and sending them to the
cloud for further processing. The security of these devices so far has been given a low priority, which limits
their usage in the industry [1].

Analyze current threats related to IoT devices and propose suitable countermeasures.
Describe the ESP32 platform, focusing on its security features.
Assess known vulnerabilities in ESP32.
Compare communication protocols used in IoT (HTTP, MQTT, and COAP) regarding their communication
effectiveness, reliability, and security.
Describe various ways of device identification by the server (e.g. by using PKI, PUF...). Choose one method
and implement it.
Create an app that collects telemetry data and sends them to a cloud-based backend in a secure way.
Describe the options of security over the air update (OTA) for an app running on ESP32.

References

[1] https://www.bain.com/insights/cybersecurity-is-the-key-to-unlocking-demand-in-the-internet-of-things/

Master’s thesis

Security of IoT Devices Based on ESP32

Bc. Michal Vácha

Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.

August 4, 2020

Acknowledgements

I want to thank my parents for supporting throughout my studies, my friends
for distracting me when working on my thesis, and my supervisor for thought-
ful discussions about the IoT security and last-minute advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on August 4, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Michal Vácha. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vácha, Michal. Security of IoT Devices Based on ESP32. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Ćılem této práce je analyzovat stav zabezpečeńı ESP32, což je dnes jedna z
nejčastěji použ́ıvaných IoT platforem. Analyzuje současné hrozby pro zař́ızeńı
IoT, často použ́ıvané protokoly IoT, dostupné bezpečnostńı funkce a známé
zranitelnosti platformy ESP32. Součást́ı této práce je ukázková aplikace, která
ukazuje, jak lze pomoćı Secure Boot, Flash Encryption, vzdálených aktuali-
zaćı a vzájemné autentizace přes TLS s využit́ım HSM modulu ATECC608A
vytvořit bezpečné IoT řešeńı pro vzdálený sběr dat. Poznatky z analýzy a
implementace jsou poté shrnuty a diskutovány.

Kĺıčová slova ESP32, Bezpečnost IoT, Secure Boot, ATECC608A, Flash
Encryption, Azure IoT Hub

vii

Abstract

The focus of this thesis is to analyze the state of ESP32 security, which is one of
the most commonly used IoT platforms today. It analyzes the current threats
to IoT devices, frequently used IoT protocols, available security features, and
known vulnerabilities of the ESP32 platform. Part of this thesis is a proof of
concept app that shows how Secure Boot, Flash Encryption, OTA updates,
and TLS Mutal Authentication using the ATECC608A HSM module can be
used to create a secure IoT solution for remote telemetry. Learnings from the
analysis and the implementation are then summarized and discussed.

Keywords ESP32, IoT Security, Secure Boot, ATECC608A, Flash Encryp-
tion, Azure IoT Hub

viii

Contents

Introduction 1
Motivation . 1
Goals . 1
Thesis Organization . 1

1 IoT Devices & Security 3
1.1 IoT Security . 3

1.1.1 OWASP IoT Top Ten 2018 3
1.1.1.1 Weak, Guessable, or Hardcoded Passwords . . 3
1.1.1.2 Insecure Network Services 4
1.1.1.3 Insecure Ecosystem Interfaces 4
1.1.1.4 Lack of Secure Update Mechanism 5
1.1.1.5 Use of Insecure or Outdated Components . . . 5
1.1.1.6 Insufficient Privacy Protection 5
1.1.1.7 Insecure Data Transfer and Storage 6
1.1.1.8 Lack of Device Management 6
1.1.1.9 Insecure Default Settings 6
1.1.1.10 Lack of Physical Hardening 6

1.1.2 Other Threats . 7
1.1.2.1 Insufficient Auditing 7
1.1.2.2 Energy Harvesting 7

1.1.3 IoT Security vs Computer Security 7
1.2 Device Identity . 8

1.2.1 PUF Based Device Identity 8
1.2.2 PKI Based Device Identity 8
1.2.3 MAC Address . 9

1.3 Communication Protocols for IoT 9
1.3.1 HTTP . 10
1.3.2 MQTT . 10

ix

1.3.2.1 Security . 12
1.3.2.2 MQTT 5 . 12
1.3.2.3 MQTT-SN . 12
1.3.2.4 Support in Public Clouds 13

1.3.3 CoAP . 13
1.3.3.1 Security . 14
1.3.3.2 Support in Public Clouds 14

1.3.4 Comparison of Communication Protocols 14
1.3.4.1 Reliability and Guaranteed Delivery 14
1.3.4.2 Communication Efficiency 15
1.3.4.3 Security . 15

1.4 Transport Layer Security (TLS) 15
1.4.1 Communication Overhead 16
1.4.2 TLS 1.3 . 16

1.4.2.1 0-RTT Session Resumption 17
1.4.3 Difficulties with TLS on Constrained IoT Devices 17
1.4.4 The Most Dangerous Code in the World 18
1.4.5 SSL/TLS Certificate Validation 18

1.4.5.1 Chain-of-trust Verification 19
1.4.5.2 Hostname Verification 19
1.4.5.3 Certificate Revocation 19
1.4.5.4 Additional Checks 19

2 ESP32 Overview 21
2.1 Hardware . 21

2.1.1 SoCs, Modules and Devboards 21
2.1.2 SoC . 22
2.1.3 Flash Memory . 23
2.1.4 Low-power Subsystem 23

2.2 Software . 23
2.2.1 ESP-IDF . 23
2.2.2 FreeRTOS . 23

2.3 Platform Description . 23
2.3.1 Memory Layout . 23

2.3.1.1 System ROM 24
2.3.1.2 IRAM (SRAM) 24
2.3.1.3 IROM (Flash) 24
2.3.1.4 DRAM (SRAM) 24
2.3.1.5 DROM (Flash) 24
2.3.1.6 External SPI RAM (SRAM) 24
2.3.1.7 Fast Instructions RTC Memory (SRAM) . . . 24
2.3.1.8 Slow Data RTC Memory (SRAM) 25
2.3.1.9 Memory Allocation 25

2.3.2 Watchdog Timers . 25

x

2.3.3 Device Startup . 25
2.3.3.1 Boot . 25
2.3.3.2 Application Startup 26
2.3.3.3 No Bootloader 26

2.3.4 Flash Storage Partitioning 26
2.3.5 Factory Partition and Factory Reset 27
2.3.6 Non Volatile Storage (NVS) 27

2.4 Other ESP devices . 27
2.4.1 ESP8266 . 27
2.4.2 ESP32-S2 . 28

3 ESP32 Security Features 29
3.1 eFUSEs . 29
3.2 Secure Boot . 30

3.2.1 Secure Boot Process . 30
3.2.2 App Signature Verification 31
3.2.3 Secure Boot as a Root of Trust 31

3.3 Flash Encryption . 31
3.3.1 Flash Encryption Process 32
3.3.2 Reading Encrypted Data 32
3.3.3 Limitations of Flash Encryption 32
3.3.4 Flash Encryption and Secure Boot 32

3.4 NVS Encryption . 32
3.5 Cryptographic Accelerator . 33

3.5.1 Random Number Generator 33
3.6 Over the Air Update (OTA) . 33

3.6.1 Automatic App Rollback 34
3.6.2 Security Version . 34

3.7 Device Provisioning . 34
3.7.1 Provisioning Using SoftAP 34
3.7.2 Provisioning Using Bluetooth Low Energy (BLE) 35
3.7.3 Unified Provisioning . 36

3.7.3.1 Proof of Possession Key 36
3.7.3.2 Provisioning Flow 36

3.7.4 ESP Touch or ESP Smart Config 36
3.8 Remote Control and Cloud Connection 37

3.8.1 Amazon AWS IoT Core 37
3.8.2 Azure IoT Hub . 37

3.9 ESP-TLS . 37
3.9.1 ESP x509 Certificate Bundle 38
3.9.2 ATECC608A support 38
3.9.3 WolfSSL . 38
3.9.4 Mbed TLS . 38

3.10 Known Vulnerabilities for ESP32 38

xi

3.10.1 CVE-2019-17391 - Fault Injection and eFuse protection 39
3.10.2 CVE-2019-15894 - Fault Injection and Secure Boot . . . 39
3.10.3 CVE-2019-12587 - Zero PMK Installation 39
3.10.4 CVE-2019-12586 - EAP DoS 39
3.10.5 CVE-2018-18558 - Secure Boot Bypass 39

3.11 Security Improvements in ESP32 V3 40
3.12 Security Improvements in ESP32-S2 40

4 Practical Part 43
4.1 Overview . 43
4.2 Cloud Provider Selection . 44

4.2.1 Device Authentication 44
4.2.2 Azure IoT Hub Device Provisioning Service 45

4.3 Device Identity & Authentication 45
4.3.1 ATECC608A Provisioning and Certificate Generation . 46
4.3.2 Certificate Storage on ATECC 608A 47
4.3.3 Certificate Storage in NVS 48
4.3.4 Connection to Azure . 49
4.3.5 Validation of Azure TLS Certificate 49

4.4 Flash Partitioning . 51
4.5 WiFi Provisioning . 51
4.6 Data Collection . 52
4.7 TLS . 53

4.7.1 TLS 1.3 Support on ESP32 53
4.7.2 ESP-TLS - Insecure by Default 53
4.7.3 ATECC608A Support in ESP-TLS 53
4.7.4 Cipher Suite Selection 54

4.8 Secure Over the Air Update . 55
4.8.1 Secure Boot and Signed App Verification 55
4.8.2 Automatic Rollback and Anti-rollback Protection 56
4.8.3 Securing the Firmware Blob Storage 56
4.8.4 OTA Update Using Device Twin 57

4.9 Secure Boot and Flash Encryption 57
4.10 List of keys . 58

4.10.1 OWASP Top 10 IoT and Countermeasures 58

5 Summary & Discussion 61
5.1 Communication Protocols . 61
5.2 Device identification & Authentication 62
5.3 Secure Boot and Flash Encryption are Vulnerable 62
5.4 ESP-TLS Library is Insecure by Default 62
5.5 Great HW and SW Support . 63
5.6 Over the Air Update . 63
5.7 Proof of Concept App . 64

xii

Conclusion 65
Open Questions & Future Work . 65

Bibliography 67

A Acronyms 77

B Allowed TLS Ciphersuites 81

C Contents of enclosed CD 83

xiii

List of Figures

1.1 Mirai Botnet Attack . 4
1.2 MQTT - Message Flow . 11
1.3 MQTT - Publish Packet . 11
1.4 MQTT - Connect Packet . 12
1.5 CoAP to HTTP Proxy . 13
1.6 TLS 1.2 Handshake . 16
1.7 TSL 1.3 Handshake . 17
1.8 TLS 1.3 Session Resume . 18

2.1 ESP32 Development Board . 21
2.2 ESP32 Block Diagram . 22

4.1 DHT22, ESP32, and ATECC608A on a breadboard 43
4.2 Azure DSP Flow . 45

xv

List of Tables

1.1 HTTP, MQTT and CoAP Comparison 14

4.1 List of Cryptographic Keys . 58
4.2 OWASP IoT Top 10 and Countermeasures 59

xvii

Introduction

Motivation

ESP32 is a highly popular IoT platform and the internet is full of articles
and tutorials describing what can be built with it. Weather stations, home
security systems, remotely controlled door locks or light switches, robots, or
flower watering systems. Anything is possible, it is usually easy to do and
affordable. But the security of these solutions is often not given a second
thought. While it may seem pointless for a hobby project to deal with security,
it is not an exception that IoT devices lacking elementary security measures
are released to the market and then exploited in the wild. This thesis describes
threats to IoT devices in general, goes deep in ESP32 security features, and
presents a proof-of-concept app for the collection of telemetry data.

Goals

This thesis aims to describe the current threats related to IoT devices, de-
scribe the security features of ESP32 and its security vulnerabilities, compare
communication protocols used in IoT. Based on the analysis create a proof-of-
concept app utilizing important security features such as Secure Boot, TLS,
and OTA update, implement one of the device identification methods and de-
scribe problems encountered during implementation. Summarize and discuss
the learnings from both the analysis and the implementation.

Thesis Organization

The content of this thesis is divided into four chapters and a summary. The
first chapter describes IoT Security in general, discusses limits of TLS on IoT
devices, and how it should be used securely, plus contains the comparison of
HTTP, MQTT, and CoAP protocols in the context of IoT. The second chapter

1

Introduction

describes the ESP32 Hardware, Software, and basic features of the platform.
The third chapter is a deep dive into ESP32 security features and describes
their limits. It also contains an analysis of known ESP32 vulnerabilities and
what security changes are present in newer ESP devices. The fourth chapter,
the practical part, explains the decisions made when creating the proof of
concept app and describes what was needed to do to support the external
HSM module on ESP32. The summary presents short takeaways from the
thesis mentioning all the important points made in the text.

2

Chapter 1
IoT Devices & Security

This chapter describes IoT Security in general, discusses limits of TLS on
IoT devices and how it should be used securely, It also contains a description
of various ways IoT devices can be identified, and a comparison of HTTP,
MQTT, and CoAP protocols in the context of IoT Devices.

1.1 IoT Security

To get a comprehensive overview of security risks for IoT devices, this section
combines an OWASP IoT Top Ten list, a survey on IoT Security, and other
papers, plus a book that argues that IoT security is not just about technical
problems but also about the human-machine symbiosis.

1.1.1 OWASP IoT Top Ten 2018

In 2018 the OWASP Foundation, known for its Top Ten list of Web Ap-
plication Security Risks, has published the IoT Top Ten. It describes the
most common vulnerabilities of IoT solutions, that developers should know
about and avoid. This section discusses each point from the list and presents
potential countermeasures unless they are already obvious from the official
description.

1.1.1.1 Weak, Guessable, or Hardcoded Passwords

Use of easily brute-forced, publicly available, or unchangeable credentials, in-
cluding backdoors in firmware or client software that grants unauthorized ac-
cess to deployed systems [1].

Passwords and other kinds of credentials should never be the same across
devices. It ensures that compromise of one device does not automatically lead
to compromise of others. If password is user-configurable, the device should
check for weak passwords. There is also guidance from NIST recommending

3

1. IoT Devices & Security

that user-provided passwords should be checked against known data breaches
[2].

This vulnerability had been used by the Mirai botnet in 2016, which con-
tained over 600K mostly IoT devices whose credentials were brute-forced [3].

Figure 1.1: Mirai attack process [4]

1.1.1.2 Insecure Network Services

Unneeded or insecure network services running on the device itself, espe-
cially those exposed to the internet, that compromise the confidentiality, in-
tegrity/authenticity, or availability of information or allow unauthorized re-
mote control [1].

TLS should be used for all communication over the internet. It is not
sufficient to just support TLS, but also disable old and vulnerable versions
of the protocols, weak ciphersuites, and ensure that certificates are properly
validated.

We should also strive to make the attack surface of the device as small as
possible. Instead of making the device a server and have clients connect to
it, we should consider making the device a client that communicates with a
backend which is then used by other clients. This scenario is easier to secure,
as we have a single service that is fully managed by us, instead of servers
running on individual IoT devices that we may only have limited access to.

1.1.1.3 Insecure Ecosystem Interfaces

Insecure web, backend API, cloud, or mobile interfaces in the ecosystem out-
side of the device that allows compromise of the device or its related compo-
nents. Common issues include a lack of authentication/authorization, lacking

4

1.1. IoT Security

or weak encryption, and a lack of input and output filtering [1]. The at-
tacker may also compromise the cloud service communicating with the device.
All interactions with these services must be authenticated, audited, and use
proper authorization.

Usually, a single centralized service manages devices that are used by mul-
tiple customers, so it has to make sure that individual customer can only
control their own devices.

In 2017 an unsecured MongoDB in an ecosystem of a smart teddy bear
called ’CloudBear’ led to a disclosure of passwords and audio messages that
were recorded by kids and parents using this toy [5].

1.1.1.4 Lack of Secure Update Mechanism

Lack of ability to securely update the device. This includes lack of firmware
validation on device, lack of secure delivery (un-encrypted in transit), lack of
anti-rollback mechanisms, and lack of notifications of security changes due to
updates [1].

IoT devices should have Renewable Security[6], so not only they are secure
when released, but we can maintain their security via remote updates as new
vulnerabilities may be discovered. This process also has to ensure that non-
genuine firmware can not be downloaded to the device and that an attacker
cannot force a rollback to an older and vulnerable firmware.

1.1.1.5 Use of Insecure or Outdated Components

Use of deprecated or insecure software components/libraries that could allow
the device to be compromised. This includes insecure customization of operat-
ing system platforms, and the use of third-party software or hardware compo-
nents from a compromised supply chain [1].

Firmware developers should use technologies that are supported by their
authors and receive regular security updates. It is also important to issue a
timely patch of the firmware after a vulnerability in any of the components is
patched.

1.1.1.6 Insufficient Privacy Protection

User’s personal information stored on the device or in the ecosystem that is
used insecurely, improperly, or without permission [1].

Devices that collect information that may identify individuals (PII) have
to comply with regulations regarding data protection and ensure that such
data do not get disclosed to others without the user’s consent. They should
also support wiping of such data from the device.

5

1. IoT Devices & Security

1.1.1.7 Insecure Data Transfer and Storage

Lack of encryption or access control of sensitive data anywhere within the
ecosystem, including at rest, in transit, or during processing [1].

Apart from using TLS when data are transmitted, encryption of data
stored by the device should also be used. This ensures that even if an at-
tacker manages to dump the device memory, he will not able to extract the
secrets and other data from the device. This could become a serious issue
especially when the data collected are sensitive - e.g. location data collected
by a smartwatch or videos stored inside a camera.

1.1.1.8 Lack of Device Management

Lack of security support on devices deployed in production, including asset
management, update management, secure decommissioning, systems monitor-
ing, and response capabilities [1]. As the devices are typically installed in
remote unattended environments, we have to be able to remotely manage
them over their entire lifetime. This is typically provided by platform as a
service (PaaS) IoT solutions, e.g. Azure IoT Hub, AWS IoT Core, mDash
IoT Cloud, and others. These services have solutions for device provisioning,
remote control, and disabling stolen/lost/broken devices.

1.1.1.9 Insecure Default Settings

Devices or systems shipped with insecure default settings or lack the abil-
ity to make the system more secure by restricting operators from modifying
configurations [1].

Secure by default or secure by design is a well-known principle of HW
and SW design, that mandates the product is designed with security in mind
from the beginning and does not require any additional user configuration or
additional SW/HW to become secure. Today it has even become one of the
rules advocated by the British government [7], and in the future, it may even
become a regulatory requirement for IoT devices in the UK.

1.1.1.10 Lack of Physical Hardening

Lack of physical hardening measures, allowing potential attackers to gain
sensitive information that can help in a future remote attack or take local
control of the device [1].

As IoT devices often operate in unattended autonomous environments [4],
we have to consider the possibility that an attacker might have physical access
to them and attempts to replace their firmware, extract their secrets, or creates
a clone of a device.

To resist this attack, IoT device has to ensure that it only runs genuine
code and its memory should be encrypted with a key that is not exportable

6

1.1. IoT Security

from the device. Parts of the device that store cryptographic keys and per-
form operations with them, typically hardware secure modules (HSM) and
cryptographical coprocessors (e.g. ARM TrustZone), should also be resistant
to physical tampering and side-channel attacks [6].

1.1.2 Other Threats

Apart from the threats in OWASP IoT Top Ten, a survey on IoT Security
done by Neshenko et.al [4] mentions two more: insufficient auditing and energy
harvesting.

1.1.2.1 Insufficient Auditing

Many IoT devices lack thorough logging/auditing capabilities and even less
often are the logs analyzed by a centralized system (e.g. SIEM). This is
especially a problem for devices in the area of physical access control (cameras,
card readers, home alarms, wireless locks, etc.). Auditing (and analyzing those
logs for anomalies) can be also useful for detecting attempts at circumventing
access control and other security measures.

1.1.2.2 Energy Harvesting

This is a denial of service attack for battery-powered IoT devices. These
devices are optimized for a long battery life during regular use, but an attacker
can choose an operation that requires a lot of power, flood the device with a
large number of messages and drain the battery, which also called the vampire
attack [8][9].

1.1.3 IoT Security vs Computer Security

In the book ’The Internet of Risky Things’[10], the author argues that there
is a difference in securing IoT devices and other computers. He argues, that
computer security is based on human-machine symbiosis because people care
when their computers/phones/servers are broken or not updated. This sym-
biosis is not there for IoT devices, because there may be just too many of them
for us care about, they are cheap, and people do not even know they have to
case. Study [11] performed by Canonical has shown, that people expect that
the security of IoT devices is a responsibility of the device manufacturer, not
theirs.

This non-caring by users extends to other problems such as not using
strong credentials for the devices, or not even changing the default ones.
Which had a significant impact recently and enabled creation of the Mirai
botnet.

He also points out, that IoT devices may easily outlive the company that
made them, and then there would be no one to patch those devices in case a

7

1. IoT Devices & Security

vulnerability is discovered. Even if the company is still in business, it might
not be incentivized to produce a security patch for the device, as it is a pure
expense from their perspective. Also, many IoT devices are cheap, therefore
companies only have small profit margins on them.

1.2 Device Identity

In a web app or mobile app, we typically need the identity of the end-user,
that proves it to our service using something he knows (username+password),
something he has (USB token or a device paired to their identity) or some-
thing he is (biometric credentials). Based on the provided credentials, the
user is authenticated. In IoT, we typically want to identify the device com-
municating with our backend in order to be sure that it is a device manu-
factured/provisioned by us and not some untrustworthy or potentially cloned
device. Two ways of device identification are discussed: PUF and PKI.

1.2.1 PUF Based Device Identity

PUF stands for physically unclonable function, in practice it is an electronic1

circuit whose output depends on random physical and manufacturing varia-
tions, that even the manufacturer cannot control, therefore it is not possible
to replicate them. The output of PUF has to be unique and repeatable for
the same device, but different between any two devices.

The most commonly used variant of PUF in IoT is SRAM PUF, which uses
random differences in SRAM threshold voltages, causing individual memory
bits to either prefer 1 or 0 when the SRAM is powered on [12]. This pattern
of nonrandom 1s and 0s gives a unique fingerprint of the particular SRAM
chip. This fingerprint is then used to identify the device and to derive a secret
cryptographic key. The main advantage is the secret key does not have to be
stored anywhere in the memory, and if the device gets physically tampered
with, its fingerprint changes, and the original key is lost.

For ARM, SoCs with SRAM PUF [13] made by Intristic ID is available
and widely used2. ESP32 does not come with an integrated PUF, so the only
alternative is to use a separate chip that performs cryptographic operations
using a key derived from PUF e.g. ChipDNA ECDSA Authenticator made
my Maxim Integrated [14].

1.2.2 PKI Based Device Identity

The most common way to identify devices is to use public key infrastruc-
ture (PKI). This method is de-facto a standard used by all IoT PaaS offerings

1Optical PUFs also exist, but they are not practical to use in the context of IoT devices.
2180 million ARM devices with Intristic ID have been shipped based on a statistic at

https://www.intrinsic-id.com/.

8

https://www.intrinsic-id.com/

1.3. Communication Protocols for IoT

(Azure IoT Hub, AWS IoT Core, Google Cloud IoT, etc.). Each device has its
own certificate that it uses for authentication when communicating with the
cloud backend. This certificate can be either based on a key pair generated by
backend and then copied (together with the certificate) to the device. Or the
device itself can generate the key pair and send a certificate signing request
(CSR) to the CA, so a certificate can be issued without the private key ever
leaving the device. On ESP32 we can store this private key in device flash
memory, ideally with memory encryption and secure boot features turned on.
An alternative is using a hardware security module (HSM) to store and gen-
erate the key, e.g. Microchip ATECC608A. It has additional security features
such as tamper resistance and a TLS library can be configured to use this chip
for TLS handshakes, so no computations using the private key are performed
on the main CPU. PUF can be also used in creation of the device certificate
- we can use a signature, created by the aforementioned ChipDNA ECDSA
Authenticator chip, in a CSR that is sent to the CA to issue a certificate whose
private key can be only extracted from the PUF.

All the cloud vendors provide a UI to manage all issued device certificates,
so if a device gets lost or stolen, it is possible to revoke its certificate and
prevent it from communicating with our backend ever again. There also could
be a situation when we have to revoke device certificate, but do not want
to revoke its access, e.g. if the CA signing certificate gets revoked or it is
discovered that there is some problem with our certificates. In order to do
this, we have to have a system of remote over the air update in place, that can
update certificates on devices. In case the private key is stored on the device,
we can either renew a certificate - create a new CSR using the old key pair or
re-key it - generate a new keypair and use it to request a new certificate from
the CA.

1.2.3 MAC Address

esp_efuse_mac_get_default function from ESP-IDF can be used to retrieve
the original MAC address of a ESP32 device, that is burned into BLK0 eFuse
during manufacturing. This MAC is unique and works as a unique serial
number, but it is not secret and other devices can easily spoof it.

1.3 Communication Protocols for IoT

Unlike the Web, where a single messaging protocol (HTTP) is the standard,
there are many protocols currently used in IoT based on various require-
ments of IoT systems, the most commonly used are HTTP, AMQP, MQTT,
CoAP and XMPP [15]. Keeping in mind the subtask of this thesis - imple-
menting a demo app for collecting telemetry data, we can leave out AMQP
and XMPP from this comparison. AMQP was designed to ensure reliable
and high-performance business transaction and it is not very well suited for

9

1. IoT Devices & Security

IoT devices due to its higher power/processing/bandwidth requirements [16].
XMPP is originally an instant messaging protocol that uses XML to represent
messages, does not have guaranteed delivery (QoS), and runs over TCP, all of
which makes it less suitable for IoT, especially when communicating over low
power networks [16].

Three protocols: HTTP, MQTT, and CoAP are described and compared
in this chapter, focusing on their security features, reliability, and overhead.

1.3.1 HTTP

HTTP and RESTful APIs are the standard for many use cases today - e.g.
server to server, mobile app to server and SPA web app to server communica-
tion, this often makes HTTP the first protocol people use for communication
with IoT devices. Its main advantages are universality (same API/service can
be used by multiple different clients), a wide range of available developer re-
sources (tools, frameworks, tutorials, etc.) and widespread availability (e.g.
all PaaS IoT solutions from public cloud vendors offer HTTP based API). The
main downside is a large overhead due to protocol text-based nature which
makes it a less ideal choice for typical IoT apps that periodically transmit a
small amount of data [16].

HTTP is typically used over TLS which ensures secure communication.
A client can be authenticated by: a) presenting its certificate during TLS
handshake, b) using Basic/Digest Authentication in HTTP, c) sending a valid
access token in an HTTP header or a URL parameter.

1.3.2 MQTT

MQTT is a Client-Server publish/subscribe messaging protocol that has been
invented in 1999 by IBM for communication with sensors on oil pipelines using
a satellite connection [17]. Based on the constraints of the 1990’s MCUs and
slow satellite connection, MQTT had been designed to be simple to implement
on the clients and have minimal communication overhead, both of which are
also reasons why MQTT is one of the most popular protocols in IoT. It an
application layer protocol that is used over TCP or WebSocket.

In MQTT clients connect to a server (called broker) and subscribe to
selected topics. When a new message is published in a topic, it is immediately
sent by the broker to all subscribed clients as shown in figure 1.2. This enables
devices to communicate together in a decoupled way without delay [18]. E.g. a
CO2 sensor can periodically publish its reading into the office/co2 topic and
an actuator attached to a window subscribed to this topic can automatically
open the window if it receives a message on office/co2 topic informing it
that CO2 level is above 500ppm.

Messages (represented by the publish packet shown in figure 1.3) consist of
a small 2B long binary header, name of a topic, and a payload. Format of the

10

1.3. Communication Protocols for IoT

Figure 1.2: MQTT message flow [19].

payload is not defined in the protocol itself, therefore any format suitable for
the particular application can be used (e.g. JSON, MessagePack3, Protocol
Buffers4, etc.). There are three different Quality of Service levels that can be
set for a message: 1) QoS-0 - at most once - the message is acknowledged to the
publisher when the broker receives it 2) QoS-1 - at least once - the message is
acknowledged to the publisher if it gets delivered to any subscriber 3) QoS-2
- exactly once - using two-phase commit just once delivery of the message
is guaranteed. Messages also can have a retained flag set - then the broker
stores the latest message in a topic and sends it to a client immediately after
it subscribes to the topic. If multiple messages are sent by one publisher, they
are guaranteed to arrive in the same order to all subscribers [18]. If clients
want to receive messages (with QoS 1 and 2) in subscribed topics even when
they are temporarily offline, they can use persistent sessions by setting the
cleanFlag to false when connecting to the broker.

Figure 1.3: MQTT publish packet [19].

3https://msgpack.org/
4urlhttps://developers.google.com/protocol-buffers

11

https://msgpack.org/

1. IoT Devices & Security

1.3.2.1 Security

MQTT supports authentication using username and password fields in a con-
nect packet shown in figure 1.4. Unless MQTT is run on top of TLS, the
credentials are transported in plain text and therefore can be intercepted and
stolen. Many MQTT brokers (e.g. HiveMQ [20], Aws IoT Core [21], Azure
IoT Hub [22]) support authentication using a certificate presented by the client
during TLS handshake. A general recommendation is to only use MQTT over
TLS [20].

Figure 1.4: MQTT connect packet [19].

1.3.2.2 MQTT 5

All previously described features were for MQTT 3.1.15. MQTT 5 brings
support for HTTP/2 as transport layer, timeouts for both individual messages
and persistent sessions, extended error codes and error messages, coupling
request and response messages together directly on the protocol level, support
for challenge-response authentication flow and more as described in [23].

1.3.2.3 MQTT-SN

MQTT-SN is a variant of MQTT for devices that cannot maintain a persis-
tent connection over TCP and communicate over UDP on low power networks
such as LoRaWan, BLE, Zigbee, or NB-IoT. Devices using MQTT-SN com-
municate with an MQTT-SN gateway that implements a regular MQTT client
communicating with an MQTT broker. To save bandwidth, topics are repre-
sented by numbers instead of strings, subscriptions are permanent by default,
DTLS is used instead of TLS, and persistent sessions are used to store mes-
sages on the server for clients that are not permanently connected. These

5In the protocol itself MQTT 3.1.1 is represented as version 4, that is why the next
version is 5.

12

1.3. Communication Protocols for IoT

devices sleep most of the time and only communicate with the broker when
they want to publish a new message [24].

1.3.2.4 Support in Public Clouds

As of writing this thesis, only MQTT version 3.1.1 is supported by the widely
used public clouds (Azure, AWS, Google) and only a subset of its features is
available. None of the mentioned providers supports QoS 2 or retained mes-
sages and only AWS and Azure have support for persistent sessions [25][26][27].
None of the mentioned providers support MQTT-SN.

1.3.3 CoAP

Constrained Application Protocol (CoAP) is a protocol developed especially
for IoT devices communicating over low power (constrained) networks. It is
similar to HTTP and can be used to build RESTful APIs [28]. The main
differences are binary headers instead of text headers, UDP instead of TCP
and, usage of binary serialization format CBOR6 instead of JSON. A CoAP
to HTTP proxy can be also used for communication between devices using
CoAP and a server using HTTP as shown in figure 1.5 [29].

Figure 1.5: CoAP to HTTP proxy. IoT (constrained) devices are marked with
”C”. [30]

As described in RFC7552[29] apart from HTTP-like features CoAP also
supports multicasting (based on UDP multicast), subscribing to resource changes
(simplified publish/subscribe), asynchronous messages (when a request is sent
to a URI on a sleeping device, it is cached by the proxy and client responds
to it when it wakes up), and automatic message retransmission as it has to
communicate over UDP instead of TCP. To ensure guaranteed delivery over
UDP, CoAP implements confirmable messages.

6https://cbor.io/ is similar to MessagePack, but easier to implement on power-
constrained devices.

13

https://cbor.io/

1. IoT Devices & Security

HTTP MQTT CoAP
Architecture Client/Server Client/Broker Client/Server

Semantics Request/Response Publish/Subscribe Request/Response
Publish/Subscribe

Transport TCP TCP/WebSocket
(UDP for MQTT-SN) UDP

Security TLS TLS
(DTLS for MQTT-SN) DTLS

Representation Text Binary Binary

Header Size Undefined,
10s-100s of bytes 2 Bytes 4 Bytes

Guaranteed Delivery Yes
(TCP)

Yes
(with Qos 1 and 2)

Yes
(confirmable msg.)

Support in Public Cloud Yes Yes No

Table 1.1: Comparison of HTTP, MQTT and CoAP.

1.3.3.1 Security

CoAP is intended to be used over DTLS to ensure secure communication as
no encryption or authentication method is implemented in the protocol itself
as described in [29].

1.3.3.2 Support in Public Clouds

As of writing this theses no widely used public cloud offers CoAP as part of
their PaaS offerings for IoT. The only possibility is to run a CoAP to HTTP
proxy in a VM/Container that communicates with the REST API of the
selected platform (Azure IoT Hub, Aws IoT Core, etc.).

1.3.4 Comparison of Communication Protocols

Characteristics of previously described protocols are summarized in table 1.1.

1.3.4.1 Reliability and Guaranteed Delivery

One characteristic that can be slightly ambiguous is guaranteed delivery which
compares protocol reliability. For TCP based protocols, lost packets get au-
tomatically retransmitted, in UDP the protocol itself has to detect and re-
transmit packets to guarantee delivery. Also for Publish/Subscribe semantics,
the sender communicates with a broker and there is no guarantee that there
is another client listening for messages or if they are getting discarded. To
ensure delivery not just to a broker, but to another client, QoS in MQTT or
Confirmable Messages in CoAP can be used.

14

1.4. Transport Layer Security (TLS)

In general TCP-based protocols are intended to be used on broadband
networks (DSL, cable, WiFi, LTE, etc.) and UDP-based which are used in IoT
such as MQTT-SN or CoAP are designed specifically for low-power networks
such as NB-IOT where TCP is unreliable [31].

1.3.4.2 Communication Efficiency

A communication protocol is more efficient if it has lower overhead – less
additional data get transmitted along with the message payload. Intuitively
one can expect that HTTP is the least efficient, and MQTT and CoAP are
more efficient of the discussed protocols. This has also been shown by surveys
[15] and [16] from which the following studies were selected:

When MQTT is compared with CoAP, it has been experimentally shown
that CoAP has lower overhead if we ignore lost messages (MQTT QoS 0 and
non confirmable CoAP messages) and even if we need guaranteed delivery
(MQTT QoS 2 and confirmable CoAP messages)[32].

Another study [33] calculated protocol efficiency (as a ratio of payload
bytes exchanged and the number of bytes transmitted) for MQTT and CoAP.
It has shown that CoAP is more efficient, but MQTT has lower communication
latency if there is packet loss.

A study comparing MQTT, HTTP REST and CoAP [34] has shown that
CoAP uses the least amount of bandwidth when transmitting small payloads
(10 B to 100 KB), but HTTP is the most efficient for large payloads (1 MB+).

1.3.4.3 Security

All of the protocols support (D)TLS and clients can be authenticated using
certificates which should be the preferred choice for IoT devices. If the device
has enough processing power (such as ESP32), we can use device certificates
for TLS Mutal Authentication to prove the device identity to the server and
the backend app running on it. When using plain text authentication (e.g.
Basic Authentication in HTTP or username/password in MQTT) we have
to keep in mind that an adversary performing an attack can intercept the
credentials and then use them to impersonate the compromised device. Salted
Challenge-Response Authentication [35] can be used to prove device identity
to the server without transmitting the password itself.

1.4 Transport Layer Security (TLS)

TLS is a network protocol used to secure communication over TCP7. In IoT,
TLS is typically used with HTTP and MQTT protocols.

7The only other reliable transport protocol that is widely used with TLS is QUIC [36].
Although it is not an accepted standard yet. https://quicwg.org/

15

https://quicwg.org/

1. IoT Devices & Security

TLS provides authentication of both server and client8 using public-key
cryptography, encryption of the data in transit using a shared symmetric key
and integrity validation of data using message authentication code (MAC).

1.4.1 Communication Overhead

TLS brings communication overhead, which may be significant for scenarios
where IoT devices communicate often, but transmit only a small amount of
data, a typical scenario is collecting live data from a sensor (remote telemetry)
over HTTP. TLS adds additional two roundtrips as shown in figure 1.6 and
approximately 6.5 KB of data transfer [37] for every new connection.

This may not be an issue for a device connected to a broadband network,
but low-power networks such as LTE-M and NB-IoT are becoming common-
place and enable new scenarios for IoT devices. These low-power networks
come with high latency (10s+ for NB-IoT), low transfer speed (from 10s of
kbit/s to 1 MBit/s), and often charge per transferred data (aprox. 10 EUR
per 500 MB [38]). In these use cases using TLS 1.3 with 0-RTT Session Re-
sumption, which is described in the following paragraph, will be beneficial.
Another possibility is to use UDP based TLS called DTLS (Datagram TLS)
[39].

Figure 1.6: TLS 1.2 Handshake [40]

1.4.2 TLS 1.3

TLS 1.3 solves some of the issues regarding communication overhead as its
handshake adds only one roundtrip (shown in figure 1.7) instead of two. It
also requires perfect forward secrecy, which ensures that captured TLS ses-
sions cannot be decrypted even if the server private key is later compromised.

8Typically only the server is authenticated, but additional authentication of a client also
can be done (called mutal TLS).

16

1.4. Transport Layer Security (TLS)

Cipher suites in TLS 1.3 were reduced when compared to TLS 1.2. RSA is
no longer supported, neither is AES in CBC mode, and all other vulnerable
algorithms and ciphers were removed (RC4, MD5, SHA-1, 3DES, etc.). The
key exchange algorithm is always (EC)DHE and all cipher suites must support
AEAD (authenticated encryption). All these changes also mean that TLS 1.3
is incompatible with TLS 1.2 and older.

Figure 1.7: TLS 1.3 Handshake [40]

1.4.2.1 0-RTT Session Resumption

TLS 1.3 0-RTT Session Resumption (figure 1.8) eliminates the handshake if
a client connects again to the same server. This is done using a Client Hello
packet that contains Session Ticket (to restore the session) together with data
intended to be transferred e.g. an HTTP request.

There is a certain drawback, using 0-RTT is vulnerable against replay
attack and breaks forward secrecy. The application has to protect against the
replay attack, typically by not using session resumptions for HTTP requests
that are not idempotent9, e.g. CloudFlare supports 0-RTT only for GET
requests without query parameters [41].

1.4.3 Difficulties with TLS on Constrained IoT Devices

IoT device may not have enough RAM and CPU power to support TlS (aprox.
100+MHz CPU and tens of KB of RAM are required [42]) and if they do then
the device might not have enough entropy to generate unpredictable random
numbers [43]. Another issue could be battery draining by repeatedly perform-
ing expensive cryptographic operations [9]. IoT devices also have constrained
persistent memory, so it might not be possible to store multiple CAs certifi-
cates, or many TLS cipher suites for future compatibility [42].

9an operation is idempotent if the state of the system is the same even if the operation
is repeated

17

1. IoT Devices & Security

Figure 1.8: TLS 1.3 Session Resume [40]

Pre-Shared Key Ciphersuites for Transport Layer Security (TLS-PSK)[18]
can be used on such constrained devices in order to save power or even to
fit TLS into the computing envelope of such devices. In order to use a pre-
shared key, it first has to be securely provided to both ends of the TLS con-
nection (in out case IoT device and a server). The static pre-shared key
can be either used for both authentication and data encryption (e.g. in
TLS-PSK-AES128-CBC-SHA256 cipher suite) or only for authentication. In the
latter case ephemeral keys established using DHE or ECDHE will be used for
encryption (e.g. in TLS-DHE-PSK-AES128-SHA256 cipher suite) and guaran-
teeing forward secrecy [44].

1.4.4 The Most Dangerous Code in the World

If servers certificates are not properly validated, it makes the communication
vulnerable to man-in-the-middle attacks. This was found to be a common
problem in various client libraries in 2012 by Georgiev et al. in their paper
The Most Dangerous Code in the World: Validating SSL Certificates in Non-
Browser Software. They state: “This is exactly the attack that SSL is intended
to protect against. It does not involve compromised or malicious certificate
authorities, nor forged certificated, nor compromised private keys of legitimate
servers. The only class we exploit are logic errors in client-side SSL certificate
validation”[45].

The most common problems were: SSL libraries not being secure by de-
fault, developers not handling correctly/ignoring errors returned by the SSL
libraries or application completely disabling certificate validation.

1.4.5 SSL/TLS Certificate Validation

The attacker can poison the DNS records and make the client connect to their
server with its own certificate. However, if the client correctly validates it, it
will detect that this certificate is invalid for the domain and will not establish
a secure connection to the attacker’s server.

18

1.4. Transport Layer Security (TLS)

Two basic steps in certificate validation are chain-of-trust verification and
hostname verification. The certificate also might have been revoked (e.g. if its
private key has been leaked) or could be used in a disallowed way.

1.4.5.1 Chain-of-trust Verification

As described in [45] during SSL/TLS handshake the server sends its certificate
to the client, including all CA certificates used in the chain of signatures from
servers certificate to the root CA certificate. The client then starts to validate
this chain-of-trust by starting with the server certificate and validating that
it has been signed by the CA immediately above it. Then continues with the
intermediate CA certificates until it reaches the root CA certificate. The root
CA certificate is validated against a list of trusted root certificates stored in
the device. Each certificate is checked for expiration and whether it is allowed
to sing the preceding certificate.

1.4.5.2 Hostname Verification

In order to verify the hostname, the client has to compare the fully qualified
domain name (FQDM)10 to the server certificates SubjectAltName (SAN) or
CommonName (CN). SAN should be primarily used according to RFC 2818
[46] and CN is only supported for backward compatibility. Domain name and
SAN/CN either has to be matched exactly or SAN/CN can contain a wild-
card pattern to enable usage of a single certificate for multiple domains (e.g.
certificate with CN:*.cvut.cz can be used for cvut.cz, fit.cvut.cz, fa.cvut.cz,
etc.).

1.4.5.3 Certificate Revocation

Certificate revocation status can be checked either by ensuring it is not present
on CAs certificate revocation list or by using a Online Certificate Status Pro-
tocol (OCSP). The latter is preferred in IoT devices, as revocation lists can
become too large for IoT devices to process and can effectively DoS them.

1.4.5.4 Additional Checks

X.509 certificate extensions can be used to constrain how the certificate private
key can be used. E.g. use of this key to sign other certificates, limit which
CAs/SANs can be signed with the key and other certificate policies. These
extensions are described in RFC 2527 [47].

10Example: fit.cvut.cz

19

Chapter 2
ESP32 Overview

This chapter presents an short overview of the ESP32 platform that is relevant
to understand the security features described later. It is based on the official
documentation [48] and ESP32 Technical Reference, where more information
can be found. [49].

2.1 Hardware

ESP32 uses a System on Chip architecture, integrating CPU(s), RAM, Wi-Fi,
Bluetooth, specialized co-processors, and controllers on a single chip.

2.1.1 SoCs, Modules and Devboards

ESP32 is typically used in a form of module e.g. ESP32-WROOM-32. It contains
the ESP32-D0WD11 SoC, 4MB of flash memory and a PCB antenna. Another
often used module is ESP32-WROVER-B which contains an additional 8MB of
external RAM memory. The module can be connected to other components
using its 38 pins. A development board, similar to the one shown in figure
2.1, is typically used for development, prototypes, and hobby projects.

11D - Dual-Core, 0 - 0MB of embedded flash, WD - Wi-Fi+BT/BLE

Figure 2.1: ESP32 development board with a ESP32-WROOM-32 module [50]

21

2. ESP32 Overview

2.1.2 SoC

ESP32 SoC shown in figure 2.2 contains:

• Two12 Xtensa 32-bit Cores (called PRO and APP CPU) @ 240Mhz

• RTC13 subsystem with Ultra Low Power (ULP) co-processor

• 448 KiB ROM and 530 KiB SRAM

• 8 KiB of FAST RTC SRAM and 8 KiB of SLOW RTC SRAM

• 1 Kb eFuse memory

• Integrated Radios: Wi-Fi 802.11/b/g/e/i, Bluetooth 4.2 and Bluetooth
Low Energy radios

• Peripheral Input/Output: SPI, UART, I2C, Ethernet, ADCs (analog
to digital converters), DACs (digital to analog converters), Capacitive
Touch Sensors, PWM (pulse with modulation), etc.

• Optional Embedded Flash Two chip variants exists with an embedded
flash - ESP32-D2WD with 2MiB and ESP32-PICO-D4 with 4 MiB.

• Cryptographic HW Accelerator with SHA-256, AES, RSA and RNG

Figure 2.2: ESP32 Block Diagram [51]

12There is also a single-core chip: ESP32-S0WD, but it is not commonly used.
13RTC is used by Espressif as an encompassing name for the entire low power subsystem,

it does not refer only to the Real-Time Clock.

22

2.2. Software

2.1.3 Flash Memory

Flash memory can be embedded inside the SoC or connected externally via
SPI. Typically an ESP32 module has 2 or 4 MB of external flash memory.
More details are explained later in section 2.3.1 about ESP32 memory layout.

2.1.4 Low-power Subsystem

ESP32 can enter a deep sleep mode during which the main CPU and radios are
turned off, but ULP co-processor and RTC memory remain powered. They
can use timers, internal sensors, or external devices and wake up the main
CPU if needed.

2.2 Software

2.2.1 ESP-IDF

Espressif IoT Development Framework (ESP-IDF) is the official development
platform for ESP32 and ESP32-S2. It is comprised of an API for ESP32,
individual components (e.g. esp-tls, esp-mqtt, etc.) for the platform, and an
SDK (build and flash tools, language server, IDE plugins, etc.) used by the
developers.

2.2.2 FreeRTOS

ESP-IDF FreeRTOS is a fork of FreeRTOS 8.2. with added support for sym-
metrical multiprocessing (SMP) on ESP32. There are also changes in Task
Scheduling to accommodate for the few edge cases where PRO CPU and APP
CPU cores are not interchangeable (e.g. access to RTC Fast memory is only
possible for PRO CPU). ESP-IDF FreeRTOS also adds support for per-core
idle and tick hooks, ring buffers and contains two features back-ported from
newer versions of FreeRTOS: task deletion and static allocations.

ESP-IDF FreeRTOS is a component of ESP-IDF and by default, all apps
developed using the official SDK use it.

2.3 Platform Description

This section delves into selected platform features that are relevant from the
security perspective or referred to in the rest of the thesis.

2.3.1 Memory Layout

ESP32 is based on the Harvard architecture and uses separate memory for
data and instructions. ESP32 SoC contains an internal System ROM, IRAM
(Instructions RAM), DRAM (Data RAM), Fast RTC instructions memory,

23

2. ESP32 Overview

and slow RTC data memory. Then there are regions of flash memory used
to store data (DROM) and instructions (IROM). DRAM can be extended via
external RAM.

2.3.1.1 System ROM

ROM Integrated in the SoC is used for the first-stage bootloader and other
system components. It is not accessible for applications running on ESP.

2.3.1.2 IRAM (SRAM)

Used for PRO CPU and APP CPU caches, parts of the Wi-Fi component,
interrupt handlers, and code that has been explicitly placed there (using
IRAM_ATTR macro).

2.3.1.3 IROM (Flash)

The code that is not explicitly placed in IRAM or RTC memory is kept in the
flash memory. Flash MMU handles the mapping of addresses in an application
image to the IROM range. This memory is read-only.

2.3.1.4 DRAM (SRAM)

Nonconstant static data and zero-initialized data are placed here by the linker.
Any space that is left is used as heap memory. If Bluetooth or Memory Tracing
is used, parts of DRAM become reserved and are not accessible from app code.

2.3.1.5 DROM (Flash)

Constant data except literals folded by the compiler into application code are
placed in DROM.

2.3.1.6 External SPI RAM (SRAM)

ESP32 supports up to 8MB (at most 4MB mapped at a time) of external
SRAM connected using SPI. SPI RAM extends DRAM and is used for dy-
namically allocated heap memory.

External RAM uses the same cache regions as flash memory.

2.3.1.7 Fast Instructions RTC Memory (SRAM)

Used for code intended to be run on PRO CPU after waking up from deep
sleep mode.

24

2.3. Platform Description

2.3.1.8 Slow Data RTC Memory (SRAM)

Global and static variables used by the ULV co-processor in deep sleep are be
placed here.

2.3.1.9 Memory Allocation

When a standard libc function to allocate memory (e.g. malloc) is invoked, it
internally works with the capability-based heap allocator that is used by ESP32.
It selects the appropriate memory type where the memory block should be
allocated. By default calling malloc uses MALLOC_CAP_8BIT capability, thus
it allocates memory in DRAM or external SPI RAM if available.

When an RTOS Task is started, its stack is allocated on the heap placed
in the internal DRAM.

2.3.2 Watchdog Timers

There are two watchdog timers (Main and RTC) to monitor the system for
faults and glitches. Both of these timers are started when the device boots
and during normal operation of the device, they are regularly fed (dismissed).
If this does not happen for any reason (app fault, CPU failure, deadlock, etc.)
watchdog timer enters the first (of possible four) stages and performs an action
associated with it (interrupt, CPU reset, core reset or system reset). If the
timer is still not fed within the set time period, it enters the next stage and
performs the next associated action. The last configured stage of the RTC
timer must perform system reset.

2.3.3 Device Startup

2.3.3.1 Boot

When the device starts only the PRO CPU is active and it first checks whether
it was started by wake up from deep sleep (RTC_CNTL_STORE6_REG is non-zero)
or by powered-on/software reset/watchdog reset. In the first case it validates
CRC of RTC memory (stored in RTC_CNTL_STORE7_REG) and if it is valid,
continues from an address stored in RTC_CNTL_STORE6_REG.

In the latter cases or if RTC CRC is invalid, PRO CPU core executes the
first-stage bootloader located in ROM memory embedded inside the ESP32
SoC. Bootloader first checks if the device memory should be flashed and
switches to the download mode if needed.

If the download mode is not requested, the first-stage bootloader initializes
access over SPI to the external flash, based on values stored in eFuse memory.
Then it loads the second-stage bootloader into RAM from the address 0x1000
of the external flash memory.

This bootloader reads the partition table located at 0x8000 and tries to
find a valid app partition based on the data stored in ota_data partition. If

25

2. ESP32 Overview

this process fails, it selects the factory partition. For the selected partition,
data and code are mapped into RAM (IRAM, DRAM, RTC mem, and IROM).
Flash MMU is configured to provide correct mappings from load addresses
(stored in code) to addresses in the particular memory type the code is mapped
to (IRAM or IROM). The application stored in the selected partition is then
started.

2.3.3.2 Application Startup

In the entry point of an ESP-IDF application, the call_start_cpu0 function,
the heap is initialized and APP CPU is started (up until now only PRO CPU
had been running). Both cores then execute start_cpu0 (PRO CPU) and
start_cpu1 (APP CPU) functions. ESP-IDF components are then initialized
and FreeRTOS Scheduler is started on both cores. The main task (which runs
the app_main function that functions as an entry point to the user’s code) is
created and executed on the APP CPU core.

2.3.3.3 No Bootloader

The second-stage bootloader is a regular app and if it is not needed, the
memory at 0x1000 can directly contain an app to be executed after the first-
stage bootloader finishes. Such app would have to handle all functionality of
the second-stage bootloader (OTA partitions, secure boot, flash encryption,
etc.) by itself.

2.3.4 Flash Storage Partitioning

Multiple apps and multiple kinds of data can be stored in ESP32 flash, for
this reason, it supports partitioning. A partition has a name, size, memory
offset, and one of the following types:
Type: App

• factory - Used to store an initial firmware flashed to a device during
manufacturing.

• ota_0 ... ota_15 - Used to store over-the-air installed firmware.

• test - Reserved partition for factory test firmware, used if no other valid
partition is found. Can be booted by the bootloader only if explicitly
enabled.

Type: Data

• ota - Also referred to as otadata - a partition used for firmware selection
during boot.

26

2.4. Other ESP devices

• phy - Used to store initialization data of the device physical layer (PHY).
By default, this information is stored in firmware, but this partition
can be used to configure PHY on per device basis14 without having to
maintain separate firmware versions.

• nvs - NVS partition, simple non volatile key-value store as described
later in section 2.3.6.

• nvs_keys - Used to store AES encryption keys for an encrypted NVS
partition.

2.3.5 Factory Partition and Factory Reset

Factory partition is the initial app partition the device boots into. After
startup, it can be used to download the latest firmware into an OTA partition
and then boot from it.

Factory reset (performed by holding a selected GPIO pin low for 5s) can
be used to boot into this partition apart from the first startup. Factory reset
can also clear selected data partitions (e.g. NVM or ota_data). Note that if
a secure version is set in eFuse, performing a factory reset does not alter it.

A typical use case would be to: 1) delete device internal state, 2) delete
stored config (e.g. wifi credentials), 3) reflash the possibly corrupted or out-
dated FW in OTA partition with the latest one.

2.3.6 Non Volatile Storage (NVS)

NVS (Non-volatile storage) is a library in ESP-IDF for storing key-value pairs
in a partition of type data_nvs of the flash memory. Keys are ASCII strings
of a maximum 15 characters and values can be integer types, strings (4000
chars max.), or binary data (blobs). The key-value pairs are stored inside
namespaces to prevent key collisions between different components of the sys-
tem. If there are more than one NVS partitions, they are independent and
their namespaces are separate. Storing a key in one NVS partition cannot
affect the same key in another partition.

NVS partition can be encrypted as desctibed later in section 3.4.

2.4 Other ESP devices

2.4.1 ESP8266

The predecessor of ESP32 - ESP8266 is a microcontroller with Wi-Fi support.
Its main usage is to connect another MCU to a WiFi. It can be used with

14One use case is if the end product is used in two markets with different RF regulations
(e.g. Japan and the EU). Different configurations for the WiFi module can be then stored
in the PHY partition.

27

2. ESP32 Overview

custom firmware (and is compatible with Arduino), but as it has only 80Mhz
processor and 90KB of RAM it is not suited for advanced IoT applications.
Due to its constraints, it does not properly support SSL/TLS and it also does
not have any of the security features of ESP32 such as Secure Boot or Flash
Encryption.

As a result of these limitations, it cannot be recommended for IoT devices
made with security in mind.

2.4.2 ESP32-S2

Espressif has announced ESP32-S2, a successor to the ESP32 with lower power
consumption and improved security [52]. In order to reduce power consump-
tion, the CPU is now a single-core RISC-V chip instead of a dual-core CPU
based on custom architecture in ESP32, there is less RAM and ROM memory
inside the SoC, and Bluetooth support has been dropped. Wi-Fi has a new
power-saving mode that automatically turns off the RF transceiver when not
needed. ESP32-S2 security features are described later in section 3.12.

28

Chapter 3
ESP32 Security Features

The largest part of this chapter analyzes what is possible with the ESP32
security features, what are the platform vulnerabilies, and how newer revisions
of ESP32 differ from the current version.

3.1 eFUSEs

The ESP32 has a specialized write-once memory called eFuse. This memory
is composed of individual eFuse bits, that once set to 1 cannot be reverted
back to 0.

ESP32 has in total four eFuse blocks of 256bits each, divided into eight 32
bit registers. The first block EFUSE_BLK0 is used entirely for system purposes
and is not user-programmable. Device MAC address, chip version, CPU fre-
quency, and various flags (e.g. for system encryption, JTAG debugging, con-
sole output, etc.) are stored there. Blocks EFUSE_BLK1 and EFUSE_BLK2 are
used for Flash Encryption and Secure Boot keys. Last block EFUSE_BLK3 can
be used for custom MAC address, or for any other purpose by the application.
ESP-IDF also uses a few bits of the last block. The full description of eFuse
blocks can be found in section 20 of ESP32 Technical Specification [49].

Following security fields should be set if ESP32 based device is shipped to
the end customer to ensure safe operation:

• efuse_wr_disable - disables write operations to itself and all other
fields in the eFuse memory

• efuse_rd_disable - disables read of a subset eFuse fields from SW, HW
read is unaffected. E.g. reading of Secure Boot and Flash Encryption
key can be disabled using this field.

• console_debug_disable - disables BASIC interpreter stored in ROM

• JTAG_disable - disables use of JTAG debugging

29

3. ESP32 Security Features

If the following features are not used by the user app, they can also be
disabled by setting eFuse bits:

• DISABLE_SDIO_HOST - disables SD card host

• DISABLE_BT - disables Bluetooth

• DISABLE_APP_CPU - disables APP CPU core (useful when ESP32 is used
as a WiFi module only, and another MCU communicates with it using
AT commands).

3.2 Secure Boot

Secure Boot ensures that only code signed by the private key of the device
manufacturer can run on the device. It can be used without flash encryption
if protection from physical access to memory is not required. Note that if
an attacker has physical access to an unencrypted flash, he can swap an app
image after its signature has been verified and therefore bypass the Secure
Boot.

During build app images and partition table data are signed using the
Secure Boot private key and the public key is embedded into the second stage
bootloader image. These steps can be performed independently - signing can
be performed remotely when app is built in a CI/CD pipeline, so the private
keys are kept outside of the CI environment.

Secure boot uses two keys:

• Secure Bootloader Key - AES 256 key used to calculate the digest of the
second-stage bootloader.

• Secure Boot Signing Key - ESDSA key pair used for image signing. Its
public key is embedded in the second-stage bootloader.

Secure Boot can work in two modes: One-Time Flash and Reflashable. In
One-Time Flash the secure bootloader key is generated by the device on the
first boot. In Reflashable mode, a SHA256 hash of the Secure Boot Signing
Private Key is used as the Secure Bootloader Key. Because the signing key
is available during the build process, a new bootloader image, and the secure
boot digest for it, can be generated and flashed to the device.

3.2.1 Secure Boot Process

On the first boot with Secure Boot activated (all app and partition table bina-
ries are signed and the public key is embedded in the second-stage bootloader
image), the HW generates an AES 256 key (unless there is a key already
present in BLOCK2 eFuse) and 128 B Initial Vector (IV). The key is then
used as device Secure Bootloader Key and stored in read/write protected

30

3.3. Flash Encryption

BLOCK2 eFuse. A digest is then calculated from the key, the initial vector,
and the bootloader image. The resulting digest is: (IV | Sha512(AES256(IV
| bootloaderImg | 0xFF pading))[0..64])15 and it is flashed to 0x0 ad-
dress of the flash memory. After this process, the secure boot is permanently
enabled and ABS_DONE_0 eFuse is burned. The first stage bootloader will then
only load the second stage bootloader if its digest matches with the digest
stored at 0x0.

3.2.2 App Signature Verification

The mechanism used by Secure Boot to validate an app image signature can
be used without the bootloader verification. This can be used to protect the
device against installing an unsigned firmware but does not forbid bootloader
reflashing. If enabled, an app image is verified during OTA (to prevent spoof-
ing of OTA updates) and during boot. Keep in mind, that the signature is
verified using a public key embedded inside the bootloader that can be re-
flashed, so if an attacker has physical access to the device, he will be able to
install any firmware he wants after the bootloader is reflashed.

3.2.3 Secure Boot as a Root of Trust

The Secure Boot serves as a Root of Trust for the device, as it creates a
verification chain of the code running on the device [53]. First, the first-stage
bootloader, stored in the ROM that is implicitly trusted, is loaded. Then it
verifies the second-stage bootloader using a stored digest and loads it into the
RAM. The second-stage bootloader verifies the partitioning table and selected
boot partition using ECDSA and starts the app. Secure Boot ensures integrity
and authenticity of the code running on the device, therefore we can trust for
example the telemetry data sent by the device to the server.

3.3 Flash Encryption

The main memory of ESP32 can be encrypted using a built-in Flash Encryp-
tion. By default, only the bootloader, partition table, and all app partitions
are encrypted. Other partitions are only encrypted if they have the encrypt
flag set in the partition table. Each 32B block of flash memory is split into two
16B AES blocks that are encrypted using an AES key XORed with the block
offset. The same key is used for both 16B blocks of a 32B memory block.

It is possible to either ”burn” the flash encryption key into devices eFuse
before it is booted for the first time, or let the device generate the key. If
a custom key is used, it is important not to share this key across devices as
compromising one device would break the security of others. After the key

15| marks concatenation and [0..64] is subsetting of the first 64 bytes.

31

3. ESP32 Security Features

is written into the eFuse, it cannot be read again by an app and only the
bootloader can read it.

There are two modes - developer and release mode, they differ in ability to
reflash the encrypted storage - only developer mode allows it. In the release
mode, firmware can be only updated using OTA. In development mode, the
flash encryption can also be disabled after it has been enabled.

3.3.1 Flash Encryption Process

The encryption is handled by the second stage bootloader based on the value
in flash_crypt_cnt. On the first run, the flash memory is unencrypted, the
second stage bootloader check if an encryption key is present in the BLOCK1
eFuse and if not, it generates an AES-256 key and stores it into BLOCK1.
Then it performs in-place encryption of flash memory. When the encryption is
finished, flash_crypt_cnt eFuse is updated to mark the storage as encrypted.

3.3.2 Reading Encrypted Data

When reading data stored in the flash memory and mapped into the flash
cache (e.g. IROM and DROM), decryption is performed by the flash MMU.
The only exception applies to flash regions used by NVS partitions, as they
are not encrypted using flash encryption and MMU does not decrypt them.
NVS handles its encryption separately as described in section 3.4.

3.3.3 Limitations of Flash Encryption

The flash encryption uses the same key for each successive pair of 16-byte
blocks, therefore if the blocks contain the same plain text, their ciphertexts
are also the same. This can be potentially used to reveal a secret stored in the
flash memory or to fingerprint the device. For storing secrets an encrypted
NVS partition should be used as it does not have this deficiency.

3.3.4 Flash Encryption and Secure Boot

If Secure Boot is used without Flash Encryption the flash content may be
swapped after it had been verified by secure boot. If Flash Encryption is
used without Secure Boot, encrypted partitions can be reflashed only with
pre-encrypted binaries. An attacker can also corrupt individual blocks of the
flash memory. Non-encrypted partitions can only be written to the device
using OTA update or if the Secure Boot is enabled in Re-flashable mode.

3.4 NVS Encryption

Because NVS is incompatible with Flash Encryption, it implements its own
NVS encryption. Unless NVS encryption is used, the data in NVS can be

32

3.5. Cryptographic Accelerator

read/erased or modified by anyone with physical access to the flash memory.
NVS encryption uses a standard AES-XTS algorithm (same as Bitlocker

on Windows 10 [54]). The key is stored in a nvs_keys partition in the flash
memory, which itself is encrypted using flash encryption. The nvs_keys par-
tition can either be generated externally and then flashed to the device, or the
keys can be generated by calling nvs_flash_generate_keys. For multiple
encrypted NVS partitions multiple nvs_keys partitions can be used.

3.5 Cryptographic Accelerator

The accelerator embedded in the ESP32 SoC supports:

• AES 128/192/256 (FIPS PUB 197)

• SHA 1/256/384/512 (FIPS PUB 180-4)

• RSA w. keys up to 4096b long (bigint multiplication and exponentiation)

• RNG - TRNG/PRNG

HW accelerated operations are faster than if they were performed on the
240 MHz CPU. The HW implementation also functions as a ’secure default’,
therefore developers are encouraged to use it instead of depending on external
SW libraries of potentially lower quality. The cryptographic accelerator is also
used internally by ESP for Flash Encryption and Secure Boot.

3.5.1 Random Number Generator

Random number generator works in two modes - TRNG and PRNG. If radios
are active, it uses the signal noise from them as the source of entropy and
works as a true random number generator (TRNG). It has been repeatedly
shown [55],[56] that numbers generated in this mode pass the DieHarder RNG
test suite [57]. If radios are disabled, RNG switches to pseudo-random number
generator (PRNG), but the ESP-IDF documentation explicitly warns against
using the generator in PRNG mode, as the device does not have enough en-
tropy available [58].

3.6 Over the Air Update (OTA)

Over the air update is a mechanism for updating the firmware of a running
device without user intervention. It has to be done in a secure and reliable
way, to prevent non-authorized firmware from being loaded into the device
and to prevent device bricking when the firmware update is not successful
[59]. A standard way to do OTA updates is to have (at least) two partitions
for the firmware, so when the device is booted from one partition, the new

33

3. ESP32 Security Features

firmware can be downloaded into the other. After the firmware is verified
and downloaded into the device, the second partition is set as boot partition
and after a restart, the device runs the new firmware. On ESP32 this flow is
supported by the esp-ota-https component.

3.6.1 Automatic App Rollback

To increase realiability, the FW can support automatic rollback, which hap-
pens if the new FW does not mark itself as valid (by cancelling the rollback
using esp_ota_mark_app_valid_cancel_rollback()) or forces a rollback to
a previous version by calling esp_ota_mark_app_invalid_rollback().

If during the first boot of a new FW the power goes out or the watchdog
timer is not fed, then automatic rollback will take place. Rollback is possible
only between the apps with the same security versions. If a new firmware has
a higher secure version than the old one and fails to mark itself as valid, the
device would not boot again.

3.6.2 Security Version

In order to prevent a downgrade attack (forcing an automatic rollback or
forcing a device to install an older firmware than it currently has), it is possible
to set secure_version on the firmware image. When a firmware with a
secure_version set is booted by the device, the value of this property is
stored in the eFuse memory. After that the bootloader boots only firmware
with security version larger or equal to the value stored in eFuse. If this
validation fails, the device does not boot and the firmware gets erased from
the device memory. Due to the nature of eFuse memory (inability to store 0 in
a bit that has been previously set to 1) it is only possible to have 32 different
secure versions.

3.7 Device Provisioning

When a customer receives a new device, he typically wants to connect it into
his own network and configure it. This is called device provisioning and the
two often used methods are WiFi (SoftAP) and BLE. In this section, we
discuss the advantages and disadvantages of these methods, ESP-IDF Unified
Provisioning system and one method of device provisioning that should be
avoided.

3.7.1 Provisioning Using SoftAP

The Software enabled Access Point (SoftAP) is often used for configuring Wi-
Fi in headless (without a browser or a screen) IoT devices. When the device is
first started, it creates a temporary Wi-Fi network. The customer downloads

34

3.7. Device Provisioning

a configuration app provided by the device manufacturer and connects to the
temporary Wi-Fi network. In the app, customer enters the credentials of the
Wi-Fi network the device should connect to. The device then stops the SoftAP
and joins the Wi-Fi network of the customer.

Advantages

• Device acts as AP only for a brief period of time, after that there is no
direct communication with the device and all additional configuration
can go through the cloud service.

• No additional radio (such as BT/BLE) is required.

Disadvantages

• Challenging to use for users with low technical skills [60] [61].

• Different handling of SoftAP in different mobile OSes, which may be
confusing for the end-user and may result in unpleasant user experience.
E.g. iOS does not allow an app to change the phone Wi-Fi network.

• Difficult to handle all edge cases of device handover between two WiFi
networks as the IoT device may not support SoftAP and being connected
to a different network at the same time. ESP32 does not suffer from this
shortcoming.

3.7.2 Provisioning Using Bluetooth Low Energy (BLE)

IoT device does a BLE Advertisement and a device nearby (typically smart-
phones) detects this broadcast and notifies the user to connect to the device
using Bluetooth. After the connection is made, the user uses an app provided
by the device manufacturer to set up the Wi-Fi network credentials and to
configure the device.

Advantages

• Users are familiar with this method as other (non Wi-Fi) devices use it
- e.g. smartwatches, toothbrushes, toys, cameras...

• Better user experience as both iOS and Android enable mobile apps to
scan and connect with BLE devices from apps.

Disadvantages

• Using BT increases the attack surface of the IoT device as BT is an
additional attack vector that can be abused.

35

3. ESP32 Security Features

• Additional CPU/RAM requirements caused by two radio stacks (BT
and WiFi) being active at the same time. E.g. in ESP32 this limits the
amount of RAM available to the application running on it.

3.7.3 Unified Provisioning

Unified provisioning is a new feature of ESP-IDF in version 4 [62], it comes
with mobile apps for iOS and Android and a library for ESP32 that commu-
nicate together. The developer only has to select which provisioning method
(WiFi/BLE) he wants to enable for the device, set up a proof of possession
key, choose a device name, and whether encryption should be used for the
credentials exchange. Encryption uses AES-CTR and the key is established
using the Diffie-Helmann algorithm on the X25519 elliptic curve.

3.7.3.1 Proof of Possession Key

Proof of possession key is a password that is unique for each device to make
sure that only its possessor (and not e.g. his neighbor) can configure the
device. This key can be printed on the device case or on its packaging and
read using a QR code, so the user does not even need to know about it.

3.7.3.2 Provisioning Flow

When the user downloads one of the mentioned apps, he can see all devices
that are in a provisioning mode and selects one of them either by name or by
scanning a QR code printed on the device. If he chooses the device by name,
he is asked for the proof of possession key. After that, he can select which
WiFi he wants the device to connect to and enters its credentials. This setting
is then transferred to the device and verified that it is valid. If yes, the device
is now in a configured mode and no longer is visible in the provisioning app.
If the user wants to repeat the process he typically has to press a dedicated
button on the device, that erases the stored configuration and switches the
device into the provisioning mode again.

3.7.4 ESP Touch or ESP Smart Config

ESP Touch [63] is based on proprietary protocol made by Texas Instrument
called Smart Config[64]. It is used for transferring Wi-Fi credentials to another
device by encoding them into the length field of 802.11 frames broadcasted
on a Wi-Fi network. Recipient device captures these packets and tries decode
the credentials from the length field.

Details of this protocol have never been officially published by Texas In-
struments, its description of on Espressif website is very vague, and the im-
plementation has not been open-sourced. Based on the API description of
ESP Touch it is clear that it is not possible to encrypt the transferred Wi-Fi

36

3.8. Remote Control and Cloud Connection

credentials. This issue raises serious questions about the security of this tech-
nology and Changyu Li et. al [65] has shown that indeed implementation of
Smart Config by Espressif is insecure, does not use encryption, and any device
can sniff and decode the credentials being broadcasted.

3.8 Remote Control and Cloud Connection

3.8.1 Amazon AWS IoT Core

Espressif has developed a component for ESP-IDF [66] that wraps the official
AWS IoT Device SDK [67]. It supports remote control, device shadow, and
integrates the AWS IoT MQTT broker.

The device is authenticated using PKI and connects to the AWS IoT Gate-
way Endpoint over TLS. The device validates the presented server certificate
using an AWS Root certificate embedded in the device firmware. Both of
these certificates have by default an expiration date of 30 years.

3.8.2 Azure IoT Hub

Similarly to the component for AWS IoT Core, Espressif provides a component
for Azure IoT Core, that wraps the official SDK [68]. It supports all of the
main features of the platform - device provisioning16, cloud messaging (using
MQTT), remote control, and device shadow. From device protocols, only
HTTP/MQTT is supported and for TLS it uses the esp-tls library.

Devices can be authenticated using PKI, Symmetric Key, or TPM. The
Azure CA certificate is embedded in the SDK code and will expire in 2025,
so all apps using this library will need to upgrade to a new certificate in the
near future.

3.9 ESP-TLS

ESP-TLS is a component of ESP-IDF and brings a common API for work-
ing with TLS. The API exposes functionality for server certificate validation
(CA cert, CA cert global store, and CN validation), client certificate authen-
tication, support for pre-shared keys (PSK), and ALPN (application protocol
negotiation). The API internally uses Mbed TLS or wolfSSL as the underlying
SSL/TLS library. Both of these libraries utilize the cryptographic acceleration
on ESP32. By default, Mbed TLS is used. Other configuration, e.g. cipher
suite or TLS version selection can be set using library-specific configuration
constants.

16In the context of Azure IoT Hub, device provisioning means the initial configuration
of the device using the cloud backend. It has nothing to do with BLE/SoftAP provisioning
mentioned in the previous section.

37

3. ESP32 Security Features

3.9.1 ESP x509 Certificate Bundle

This functionality creates a certificate bundle from all or a subset of Mozilla’s
NSS root certificates. It is created during build and stored in the flash memory.
This bundle can be then used by ESP-TLS to verify server certificates during
the TLS handshake.

3.9.2 ATECC608A support

Cryptographic module ATECC608A can be used for authorization in ESP-
TLS [69]. Instead of passing a client certificate private key to the library, the
library calls the crypto chip to perform all ECDSA operations using this key.
It is supported only when MBed TLS is used. This crypto chip is embedded
in the ESP23-WROOM-32SE module, but it can also be connected using I2C to
any other ESP32 module.

3.9.3 WolfSSL

WolfSSL is an SSL/TLS library often used in embedded devices for its small
size, low memory requirements, support of latest features, and FIPS compli-
ancy [70]. It is available for free under a GPLv2 license or under a commercial
license. Due to the restrictiveness of the GPL license, the source code of
solutions based on wolfSSL must be freely available, so for commercial closed-
source solutions, a commercial license is required. There is a licensed wolfSSL
4.3 binary provided by Espressif for free even for commercial EPS32 apps,
but it comes with certain limitations: omission of TLS 1.3, FIPS-compliant
features, and its free updates are guaranteed only until 2021.

3.9.4 Mbed TLS

Mbed TLS is an SLL/TLS library developed by ARM Mbed for IoT devices
that has become an industry standard. It is licensed under a permissive
Apache 2.0 license and can be used for free even in commercial closed-source
products. As of writing this thesis, it does not yet support TLS 1.3. [71].

3.10 Known Vulnerabilities for ESP32

In the last year, an unpatchable vulnerability in ESP32 main security features
- Secure Boot and Flash Encryption - has been discovered. Other known
vulnerabilities were patched by Espressif in recent versions of ESP-IDF.

38

3.10. Known Vulnerabilities for ESP32

3.10.1 CVE-2019-17391 - Fault Injection and eFuse
protection

The security of Secure Boot and Flash Encryption depends on the inability
to extract their secret keys from BLK1 and BLK2 eFuse blocks. This attack
work by injecting a 6V glitch to VDD_CPU and VDD_RTC CPU pins when the
eFuse controller is initialized and the keys are read into a buffer for the Flash
Controller [72]. It was shown that the glitching enables a readout of the keys
in read-protected eFuses. The correct timings of the attack were discovered
using Simple Power Analysis but were not described by the author. After the
keys are obtained an attacker can use them to sign a non-genuine bootloader
and firmware, and to decrypt the content of device flash memory.

According to the author, the attack requires approximately a day of work
and equipment worth $500-$1000. There is no mitigation for this vulnerability
in the form of a SW patch, it is only fixed in the latest HW revision of ESP32.

3.10.2 CVE-2019-15894 - Fault Injection and Secure Boot

This vulnerability[73] was discovered by the same author as 3.10.1 and it was
the first published fault injection vulnerability in ESP32. The attack bypasses
the Secure Boot by injecting a short 6V glitch to VDD_CPU and VDD_RTC pins of
the CPU when branching based on the result of bootloader digest verification.
A glitch makes the CPU to execute the success branch even if the digest is
invalid [74]. According to the author, the attack requires approximately a day
of work and equipment worth $500-$1000. This vulnerability is patched in
ESP-IDF 3.3.1 and newer.

3.10.3 CVE-2019-12587 - Zero PMK Installation

Zero PMK Installation vulnerability is an attack against the improper imple-
mentation of WPA2-Enterprise in ESP32 WiFi stack. It enabled bypassing of
authentication if WPA2-Enterprise was used for ESP WiFi in station mode
[75]. This vulnerability has been patched in ESP-IDF 3.3+ and also back-
ported to older versions.

3.10.4 CVE-2019-12586 - EAP DoS

This vulnerability has been reported together with the previous one and it
allowed the attacker to crash the device by sending EAP-SUCCESS before PMK
negotiation is completed. The two vulnerabilities were patched together.

3.10.5 CVE-2018-18558 - Secure Boot Bypass

Secure Boot contained a vulnerability where an attacker could create an app
binary that would overwrite part of the second-stage bootloader and bypass

39

3. ESP32 Security Features

the Secure Boot if Flash Encryption was not enabled. It was patched in ESP-
IDF 3.1.1 and backported to 3.0.6.

3.11 Security Improvements in ESP32 V3

To address the vulnerability described in section 3.10.1 (CVE-2019-17381),
Espressif has released[76] a new revision of ESP32 referred to as V3 or ECO
V3 with the following improvements:

• Secure Boot now uses standard public-key cryptography (RSA) to verify
the second-stage bootloader (previously an AES key was used to calcu-
late its digest). The key is stored in flash and its hash is stored in eFuse
[77].

• Resilience to Physical Fault Injection The new revision has improved
resistance to fault injection attacks to mitigate vulnerability CVE-2019-
17381 described in section 3.10.1.

Modules with ESP32 V3 are ESP32-WROVER-E and ESP32-WROOM-32E.

3.12 Security Improvements in ESP32-S2

As mentioned previously in section 2.4.2 Espressif has announced a new ver-
sion of ESP32 with most notable changes being reduced power consumption
and improved security features.

ESP32-S2 brings the following security improvements when compared to
ESP32 [77]:

• Secure Boot v2 uses standard public-key cryptography (RSA-PSS) in-
stead of custom digest algorithm (described in section 3.3.3) used by
ESP32. The public key is stored in eFuse memory.

• Flash Encryption now uses AES-XTS, previously this algorithm has only
been used to encrypt NVS partitions and flash encryption used a custom
AES based mechanism, that had drawbacks mentioned in section 3.2.1.

• New cryptographical accelerator with faster performance and support for
ECC and AES-GCM. It also supports the ability to sign messages using
RSA without letting the app access the private key. This previously
required an external chip e.g. Microchip ATECC608A17.

• Increased size of eFuse memory - as RSA keys and signatures are larger
than AES keys and SHA-256 hashes, the size of eFuse memory has been
increased to 4Kbits.

17ATECC608A supports ECDSA (elliptic curve digital signature algorithm) instead of
RSA based signatures.

40

3.12. Security Improvements in ESP32-S2

• Resilience to Physical Fault Injection The new chip patches vulnera-
bility CVE-2019-17381 described in section 3.10.1 by having improved
resistance against fault injection.

41

Chapter 4
Practical Part

This chapter describes a proof-of-concept app I have created that utilizes the
described security features of ESP32. This app implements a typical IoT
scenario - collection of live data from a sensor and sending them to a cloud
service.

This part contains examples of the app source code. The examples are
often simplified and have non-essential parts (such as error checking or variable
declaration) omitted for brevity.

4.1 Overview

The app is build using the ESP-IDF platform and communicates with an
Azure IoT Hub as the backend service. It collects live data from a DHT-22
temperature and humidity sensor and sends them to the cloud for potential
further processing. All communication is secured using TLS with the device

Figure 4.1: DHT22, ATECC608A and ESP32 connected on a breadboard [50].

43

4. Practical Part

being authenticated by presenting its X.509 certificate. This certificate is
stored in a separate partition of the device storage, so it is not a part of
the firmware, which can be then shared among multiple devices. The private
key to this certificate is generated and then stored in an ATECC 608A HSM
module, connected over I2C, and never leaves this device nor is present in the
device memory. The app also uses Secure Boot, NVS Encryption, and Flash
Encryption.

4.2 Cloud Provider Selection

I have considered two PaaS cloud services for this thesis - Aws IoT Core and
Azure IoT Hub. The services are mostly similar in what they offer (device
management, remote control, messaging, etc.) and for both, there are official
ports of their SDKs available for the ESP-IDF platform. AWS has a more
user-friendly interface and is easier to understand and configure. Azure, on
the other hand, has a better component for ESP-IDF which does not suffer,
from my experience, with bugs in basic functionalities, is better integrated
with the rest of ESP-IDF toolkit, and its Github repository (esp-azure18)
seems to be more active compared to esp-aws-iot19. For these reasons I have
picked Azure over AWS for this thesis, even though I found working with AWS
IoT Core more pleasant than with the Azure platform.

4.2.1 Device Authentication

In both services, users can add their own CA in order to use certificates signed
by this CA for device authentication. AWS also has a built-in CA, so users
can send CSRs to it and the devices can use certificates signed by AWS IoT
Core CA.

There are however differences in how the certificates are bound to indi-
vidual devices. In AWS IoT Core a certificate is explicitly bound to a device
and a policy. Azure IoT Hub does not have this configurable binding but the
certificate has to have Common Name matching the device name. Because of
this, there is no management of device certificates directly in Azure IoT Core.

This leads to a different behavior for banning/disabling devices - in Azure,
if a device is disabled it means that IoT Hub will disable connection from
a device with the disabled name in its certificate. In AWS IoT Core it is
possible to disable device certificate, in order to prevent it from connecting
again, and then attach a different certificate to the device. To achieve the
same workflow in Azure, we have to use an additional service - Azure IoT
Hub Device Provisioning Service [78].

18https://github.com/espressif/esp-azure
19https://github.com/espressif/esp-aws-io

44

https://github.com/espressif/esp-azure
https://github.com/espressif/esp-aws-io

4.3. Device Identity & Authentication

4.2.2 Azure IoT Hub Device Provisioning Service

This service works as a coordinator that assigns individual IoT Hubs (in large
solutions there may be multiple instances of IoT Hub e.g. for different regions
or customers) and initial device configuration to devices when they connect
to Azure for the first time.

Figure 4.2: Azure Device Provisioning Service flow [78]

The process is shown in figure 4.2. In the first step device credentials
(X.509 certificate, symmetric key, or TPM identity) are added to the enroll-
ment list in the Device Provisioning Service (DSP). The device then connects
to DSP (step 2) and DSP validates its identity (step 3). In the next step, a
device is created in an IoT Hub and device twin (also called device shadow) is
populated with the desired initial configuration. After that (step 5) the DSP
sends access information to the device (step 6). The device now can commu-
nicate directly with the IoT Hub (step 6) and receives the desired state from
its twin (step 7).

The credentials used for each enrollment can be individually managed, it
is possible to manage individual device certificates with this service. If it is
later needed to change the device certificate, the old enrollment with the old
certificate can be deleted, a new enrollment with a new certificate created,
and the device deleted from IoT Hub. The device can then be re-provisioned
using the new certificate.

As this process is too cumbersome for a demo app that should showcase
the security features of ESP32, I choose not to use it.

4.3 Device Identity & Authentication

The device is identified using its certificate. This certificate is signed by a
self-signed CA for the demonstration purposes of this app. The CA certificate
must be uploaded and verified in the Azure IoT Core service first, so the
service can validate the certificate presented by the device.

45

4. Practical Part

I have decided to store this certificate private key in an external HSM
instead of the ESP32 flash because of the vulnerability affecting eFuses and
SecureBoot as mentioned before in section 3.10.1.

To work with the ATECC608 I have used an esp-cryptoauthlib compo-
nent which wraps Microchip CryptoAuthLib20 library as an ESP-IDF compo-
nent and also contains a utility to provision the module.

The library is intended to be used with ESP32SE and not regular ESP32,
but the only modifications I needed for it to run was changing the ports
ATECC 608A is connected to in the ESP32 HAL hal_esp32_i2c.c as follow-
ing,

#define SDA_PIN 21
#define SCL_PIN 22

and changing the I2C bus used to communicate with ATECC module from 2
to 1.

ATCAIfaceCfg cfg_ateccx08a_i2c_default = {
.iface_type = ATCA_I2C_IFACE,
.devtype = ATECC608A,
{

.atcai2c.slave_address = 0xC0,

.atcai2c.bus = 1,

.atcai2c.baud = 400000,
},
.wake_delay = 1500,
.rx_retries = 20

};

When secrets are transported over the I2C bus, they are encrypted using
an IO Protection feature of ATECC608A. Unfortunately, its description is not
available in the public version of the documentation [79].

4.3.1 ATECC608A Provisioning and Certificate Generation

At first we need to provision the cryptochip and generate a device certificate.
This is done using the secure_cert_mfg.py script:

python secure_cert_mfg.py --fw secure_cert_mfg.bin \
--signer-cert-private-key ca-key.pem \
--signer-cert ca-cerr.pem --port COM3

The script and the provisioning FW is from the esp-cryptoauthlib 21

library and it does the following:
20https://github.com/MicrochipTech/cryptoauthlib/
21https://github.com/espressif/esp-cryptoauthlib

46

https://github.com/MicrochipTech/cryptoauthlib/
https://github.com/espressif/esp-cryptoauthlib

4.3. Device Identity & Authentication

1. Opens a connection over the serial port (set by --port) with the device
and loads the specified firmware secure_cert_mfg.bin into its RAM
(IRAM and DRAM). Note, that this FW is not flashed to the device.

2. Sends a command to the device to generate a new ECC 256 key-pair
using the ATECC module and send back the public key.

3. Sends a command to the device to create a certificate signing request
(CSR) signed by the key generated in the previous step. It uses the
device MAC as CN in the CSR.

4. The received CSR is then signed by the CA and stored in PEM format
in the device-cert.pem file.

The provisioning FW is distributed by Espressif only as a binary.

4.3.2 Certificate Storage on ATECC 608A

I have also explored the possibility of storing the device certificate directly in
the cryptomodule. In order to do that I needed to customize the provisioning
firmware. Fortunately, I have found an older version of it in a fork of the
official esp-idf repo22.

I compiled the firmware with the ESPWROOM32SE flag. This flag switches
the library used for cryptographical actions from mbedtls to cryptoauthlib
which used for communication with the ATECC module.

The module supports certificate storage via the atcacert_write_cert
function, but because the module has a small amount of memory, the cer-
tificate is stored in a compressed form as described in [80]. The problem is
that this compression is achieved by storing only a minimum amount of data
inside the chip. And storing the rest in a certificate definition and a certificate
template in the application. The certificate template is just a byte array, but
the certificate definition is a struct in c (parts of both shown below).

const uint8_t cert_template[] = {
0x30, 0x82, 0x01, 0xcc, 0x30, 0x82, 0x01, 0x73,
0x02, 0x14, 0x24, 0x9f, 0xb7, 0xe7, 0x9d, 0x58,
...

}

const atcacert_def_t cert_def = {
.type = CERTTYPE_X509,
.template_id = 2,

22https://github.com/AdityaHPatwardhan/esp-idf/tree/feature/add_example_for_
using_atecc608a_with_WROOM32SE/examples/security/atecc608a_ecdsa/secure_cert_
mfg/main

47

https://github.com/AdityaHPatwardhan/esp-idf/tree/feature/add_example_for_using_atecc608a_with_WROOM32SE/examples/security/atecc608a_ecdsa/secure_cert_mfg/main
https://github.com/AdityaHPatwardhan/esp-idf/tree/feature/add_example_for_using_atecc608a_with_WROOM32SE/examples/security/atecc608a_ecdsa/secure_cert_mfg/main
https://github.com/AdityaHPatwardhan/esp-idf/tree/feature/add_example_for_using_atecc608a_with_WROOM32SE/examples/security/atecc608a_ecdsa/secure_cert_mfg/main

4. Practical Part

.chain_id = 0,

.private_key_slot = 0,

.sn_source = SNSRC_PUB_KEY_HASH,

.cert_sn_dev_loc = {
.zone = DEVZONE_NONE,

},
.std_cert_elements = {

{ // STDCERT_PUBLIC_KEY
.offset = 315,
.count = 64

},
...

}
...

}

The certificate definition may slightly change even with a small change
in the certificate and this would require building a new firmware with each
certificate (in a real-world scenario a unique FW for each device). I found this
impractical and hard to work with and decided to store the device certificate
in an encrypted NVS partition instead.

4.3.3 Certificate Storage in NVS

The device X.509 certificate is stored in an encrypted NVS partition. In a
real-world scenario, this enables decoupling of the app from per-device specific
data (in our case the device certificate), so the app FW does not have to be
recompiled separately for all devices.

First, the encryption key for the partition is generated:

python nvs_partition_gen.py generate-key --keyfile nvs-key.bin

The partition is defined by the certs_nvs.csv file, which describes its
name and where is the device certificate located. This file is then transformed
into a binary file (certs-nvs.bin) with the specified size (0x20000) and en-
crypted with the key.

python nvs_partition_gen.py encrypt --keyfile nvs-key.bin
certs_nvs.csv certs-nvs.bin 0x20000

Now the two partitions can be flashes to the device to their corresponding
offsets in the flash memory:

esptool.py write_flash --port COM3 0x29000 certs-nvs.bin
esptool.py write_flash --port COM3 0x49000 nvs-key.bin

48

4.3. Device Identity & Authentication

The app reads the certificate during the initialization of the HSM module
layer by Azure IoT SDK. It firsts finds the correct partition with the en-
cryption key, parses it, then initializes the certs NVS partition, opens it for
reading, and reads the PEM certificate stored in it into a string, that is then
passed into the tlsio layer.

esp_partition_t* keys_partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA,
ESP_PARTITION_SUBTYPE_DATA_NVS_KEYS, "nvs_keys");

nvs_flash_read_security_cfg(keys_partition, &nvs_keys);
nvs_flash_secure_init_partition("certs", &nvs_keys);
nvs_flash_init_partition("certs");
nvs_open_from_partition("certs", "certs", NVS_READONLY, &nvs);
...
nvs_get_str(nvs, "device_cert", buff, &required_size);

4.3.4 Connection to Azure

In order to connect with Azure IoT Hub, I had to make small changes to the
esp-azure component. First, I needed to connect the Azure IoT SDK with the
ATECC608a HSM. There is an API [81] for HSMs that store X.509 certificates
and the SDK uses this API to load the certificates and associated private keys.
As this is not possible, I only implemented the custom_hsm_get_certificate
method, that returns the certificate stored in the device memory. In the
custom_hsm_get_key method I return a dummy value, so the checks in the
SDK do not fail. Values from these methods then flow into the tlsio layer that
servers as an abstraction of TLS communication for the SDK and its imple-
mentation is platform-specific. ESP32 implementation is in tlsio_esp_tls.c
which uses the esp-tls library. Here the only thing I had to change was set-
ting the use_secure_element property and disable loading of the private key.

After that the HSM module can be initialized and then used to authenti-
cate with the IoT Hub:

iothub_security_init(IOTHUB_SECURITY_TYPE_X509);
client = IoTHubDeviceClient_LL_CreateFromConnectionString(

connectionString, MQTT_Protocol)

The connectionString contains only the IoT Hub hostname and Devi-
ceId, there are no credentials in it when HSM is used.

4.3.5 Validation of Azure TLS Certificate

As earlier described in section 1.4.4, the validation of the server certificate
is essential to ensure that the TLS connection is secure, so I was naturally

49

4. Practical Part

interested to see how the Azure certificate is validated. As mentioned previ-
ously, all TLS operations in Azure IoT SDK are handled by platform-specific
libraries, in our case esp-tls, that leaves the validation to the underlying
TLS library, expecting that either it will validate the certificate against the
Microsoft Root CA certificate.

Because the esp-tls library is insecure by default, as later describes, the
validation has to be explicitly configured by setting the OPTION_TRUSTED_CERT
option. The validation is handled later in the tlsio HAL and passed to the
underlying mbedTLS library.

#include "certs.h"
...
IoTHubDeviceClient_LL_SetOption(iotHubClientHandle,

OPTION_TRUSTED_CERT, certificates);

The certificates variable comes from certs.h file of the SDK and con-
tains all Azure CA certificates used by IoT Hub. There is also an additional
build flag USE_BALTIMORE_CERT that ensures only the certificate of Azure
Global is used and excludes CA certificates of Azure Germany and Azure
China from the certificates array.

An alternative is to use the ESP x509 Certificate Bundle with Mozilla’s
NSS root certificate store. It can be used in tlsio_esp_tls.c in the following
way:

#include "esp_crt_bundle.h"
static int tlsio_esp_tls_open_async(...){
...
tls_io->esp_tls_cfg.crt_bundle_attach = esp_crt_bundle_attach;
...
}

Now the library is correctly configured and it performs Common Name val-
idation and Chain of trust validation (against the CA cert/CA store). Addi-
tionally, expiration checking can be enabled by the MBEDTLS_HAVE_TIME_DATE
constant. Mbed TLS also supports checking of the CA Certificate Revocation
List (CRL), if MBEDTLS_X509_CRL_PARSE_C is defined. Note that there is cur-
rently a bug23 that makes CRL checking effectively non-functional in Mbed
TLS unless MBEDTLS_HAVE_TIME_DATE is also defined.

The app uses OPTION_TRUSTED_CERT validation and is build with follow-
ing constants defined: USE_BALTIMORE_CERT, MBEDTLS_HAVE_TIME_DATE, and
MBEDTLS_X509_CRL_PARSE_C.

23urlhttps://github.com/ARMmbed/mbedtls/pull/3433

50

4.4. Flash Partitioning

4.4 Flash Partitioning

The device flash memory has the following partitions:

• nvs - Default NVS storage used by various ESP-IDF componnents (e.g.
Unified Provisioning).

• phy_init - System partition with settings for the physical layer, de-
scribed in section 2.3.4.

• certs - Encrypted NVS partition containing the device certificate (and
potentionally other certificates and secrets).

• nvs_keys - Keys for the certs partition.

• ota_data - System partition with data for OTA.

• ota_0 - Default OTA partition.

• ota_2 - Second OTA partition.

In the demo app, this partition table is specified in the partitions.csv
file, transformed into a binary file during build, and then flashed to the device.

Sometimes it is needed to know the exact offsets of individual partitions,
to get them the binary partition table can be transformed back to a .cvv file:

python gen_esp32part.py build/partition_table/partition-table.bin
partitions_w_offset.csv

4.5 WiFi Provisioning

For WiFi configuration (also called WiFi provisioning), I used the Unified
Provisioning component that is described in section 3.7.3. I choose to use
the SoftAP method and not BLE in order to keep the app image smaller
and also to try the security features of the provisioning. According to the
docs [82] if the security1 scheme is enabled, the transmitted credentials are
encrypted using AES in CTR mode with the key created using ECDH on
the Curve25519. There is also a SHA256 hash of the proof of possession
key (a secret that should be unique per device to prevent non-owners from
provisioning it) that is XORed to the shared secret established using ECDH
to get the final AES-265 shared key.

To keep the app image the same for potentially multiple devices, I have de-
cided to store the proof of possession key in the same encrypted NVS partition
as a device certificate.

I had a few issues with Unified Provisioning - first, it made the app image
larger than 1M, so I had to change the partitioning table. Second, the key
exchange uses Mbed TLS, so I had to enable support for Curve25519. Also,

51

4. Practical Part

the iOS app provided by Espressif has become buggy and the provisioning
process sometimes failed for me.

I was also curious to see how the WiFi credentials are stored and I have
found in the documentation [82] that they are stored in the default NVS
partition. Unfortunately the implementation of esp-wifi is closed-source, so
I was not able to check how exactly the credentials are stored, but they can
be read in plain text using the esp_wifi_get_config function.

wifi_config_t wifi;
esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi);
printf("ssid: %s, pswd: %s", wifi.sta.ssid, wifi.sta.password);

Based on that I choose to also use encryption for the default NVS encryp-
tion to ensure its content cannot be read by dumping the flash memory. And
as explained earlier in section 3.4, the NVS partitions are not encrypted by
default even if Flash Encryption is used.

4.6 Data Collection

To collect some real-world telemetry data, I used the DHT-22 temperature
and humidity sensor. To read the values from the sensor I used a dht2224

library that implements the protocol used by DHT-22. The data are collected
every 1m and send in JSON to the IoT Hub over MQTT.

{
"deviceId": "01237539495F6120EE",
"temperature": 27.40,
"humidity": 40.33

}

The received data are routed by the Azure Event Hub to the Azure Table
Storage, which stores them. A real-world app we would have apps processing
the live messages received by the Event Hub, e.g the received telemetry data
could be stored in a time-series database TimeScale25 which enables efficient
querying of the latest data and their automatic aggregation. The Table Stor-
age or similar service would function as a cold-storage, which is cheap, has all
the data, but is slow to query.

24https://github.com/gosouth/DHT22
25https://www.timescale.com/

52

https://github.com/gosouth/DHT22
https://www.timescale.com/

4.7. TLS

4.7 TLS

4.7.1 TLS 1.3 Support on ESP32

TLS 1.3 is not well supported on ESP32. One issue with TLS 1.3 on ESP32 is
that non of its supported ciphers (AES GCM/CCM, CHACHA20, (EC)DHE
and POLY1305) are HW accelerated on the device and therefore are up to 10
times slower [83]. Mbed TLS also does not yet support TLS 1.3 and while
WolfSSL does, it is only available under commercial or restrictive GPL license.
But this can change soon, as ECDHE and AES-GCM have HW acceleration
on ESP32-S2, and MBed TLS has a prototype implementation of TLS 1.3.
[84].

4.7.2 ESP-TLS - Insecure by Default

I have discovered that the esp-tls library does not perform any chain of trust
validation unless explicitly configured, and it does not even produce a security
warning. This goes against a basic rule of secure software development - secure
by default, which is also part of IoT OWASP Top Ten.

The problematic method is set_client_config that checks if any of the
certificate validation (namely: certificate bundle, global store, and ca certifi-
cate) method has been configured and if not, it configures the underlying
library (Mbed TLS or wolfSSL) to not perform validation on the received
server certificate. This makes the communication vulnerable to the man in
the middle attack, therefore any party that can intercept the traffic is also
able to decrypt the communication.

Note that this is the exact same problem a famous paper “The most dan-
gerous code in the world” [45] described as being widely present in 2012, that
is still present today in a SW stack used by tens of millions devices.

4.7.3 ATECC608A Support in ESP-TLS

As I was working on this thesis, Espressif has published an official integra-
tion of ATECC608A into the esp-tls library [85]. So I discarded some of
the patches, for communication with the HSM, I had been working on and
switched to the official implementation. It requires ESP-IDF 4.2 or newer,
which is still a beta version and the following build constants to be set.

• CONFIG_ATECC608A_TCUSTOM - Sets the type of ATECC608A module.

• CONFIG_ESP_TLS_USE_SECURE_ELEMENT - Builds the esp-tls library with
support for the module.

• CONFIG_ATCA_MBEDTLS_ECDSA, CONFIG_ATCA_MBEDTLS_ECDSA_SIGN, and
CONFIG_ATCA_MBEDTLS_ECDSA_VERIFY - Makes the mbed-tls library call
the ATECC608A for ECDSA operations.

53

4. Practical Part

• CONFIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED - The secp256r1 curve is
the only one implemented by ATECC608A.

Then the support can be enabled by setting single property in esp-tls
configuration:

esp_tls_cfg_t cfg = {
...
.use_secure_element = true,

};

The constants are usually set correctly by the ESP configuration tool, but
that sometimes fails and either the cryptoauthlib or the mbed-tls library
starts to return nondescript errors.

4.7.4 Cipher Suite Selection

I have configured the Mbed TLS library to only use DHE-RSA, ECDHE-RSA, and
ECDHE-ECDSA based ciphersuites as they ensure forward secrecy. For symmet-
ric cipher, I have allowed AES in CBC, CCM, and GCM modes, because only
AES is HW accelerated on ESP32. For hashing algorithms, only SHA-1 and
SHA-256 are allowed. Note that SHA-1 is still considered secure for usage in
HMAC-SHA1 as HMAC is not compromised if the weak-collision resistance
of the hashing function is compromised [86].

The resulting list of all allowed TLS ciphersuites (obtained by enabling
debug logging in Mbed TLS) is in appendix B. It could be further pruned
by disallowing AES-CBC encryption that may be considered weak due to
padding oracle vulnerabilities (e.g. POODLE) discovered in various libraries
implementing it. It is not insecure by itself, as some TLS implementations,
e.g. Mbed TLS26, had never been susceptible to this vulnerability [87].

I have also disabled older TLS 1.0 and 1.1 versions, so only TLS 1.2 is sup-
ported by the app. During this I have discovered that disabling TLS 1.1 was
broken in esp-tls and submitted a pull request to the esp-idf repository27.

For communication with the Azure IoT Hub, the server chooses its pre-
ferred cipher suite TLS-ECDHE-RSA-AES-128-CBC-SHA256 from the list of al-
lowed ones presented by the client. It is the same cipher suite as Edge on
Windows 10 or Safari on iOS chooses by default, as shown in a report by SSL
labs28.

26When the POODLE attack was published in 2014, Mbed TLS was still called Polar
SSL.

27https://github.com/espressif/esp-idf/pull/5675
28https://www.ssllabs.com/ssltest/analyze.html?d=esp-thesis.azure-devices.net

54

https://www.ssllabs.com/ssltest/analyze.html?d=esp-thesis.azure-devices.net

4.8. Secure Over the Air Update

4.8 Secure Over the Air Update

To implement secure over the air update (OTA) I have used Direct method in-
vocation from the IoT Hub and esp-https-ota library from ESP-IDF. Direct
method invocation allows request-response communication between cloud and
the device when the device is online. When the ota method is invoked with
the following payload:

{"url": "https://esp32thesisstorage.blob.core.windows.net/
otafw/thesis-app.bin"}

the method callback on the device executes the following code.

esp_http_client_config_t config = {
.url = url,
.cert_pem = (char *)certificates,

};
return esp_https_ota(&config);

It establishes an HTTPS connection, validates the server certificate with Azure
Baltimore Root CA certificate29 and downloads the firmware. The library then
checks the firmware signature, if secure boot or code signing is enabled, and
installs the FW into an OTA partition that is not currently booted. After that
a response is returned to the sender, informing him whether the operation was
successful. The device then reboots and boots into the new firmware.

4.8.1 Secure Boot and Signed App Verification

To ensure only authorized firmware is used on the device, signed app verifi-
cation should be used. It is required if Secure Boot is active, but can also be
used without it by explicitly enabling it in the project configuration. I have
used it to verify that the entire process of OTA update with signed binaries is
working correctly without risking bricking the device. First an ECDSA key-
pair on secp256r1 curve must be generated and the public key extracted into
a .bin file:

openssl ecparam -name prime256v1 -genkey -noout
-out signing_key.pem

python espsecure.py extract_public_key
--keyfile signing_key.pem signing_pub.bin

The public key is then added in the project configuration as the Secure Boot
Signing Key (even if only Signed App Verification is used) and the private key
is used for signing the firmware binary as following:

29I choose to store the firmware in Azure Blob Storage, that is why the same Root CA
certificate can be used.

55

4. Practical Part

espsecure.py sign_data --keyfile signing_key.pem thesis-app.bin

Now the binary can be uploaded to the Blob Storage and its URL send to the
device by invoking the ota method. Its signature will be verified before it is
written to the flash memory and then every time before it is booted.

4.8.2 Automatic Rollback and Anti-rollback Protection

As described earlier in section 3.6.1, to ensure the correct function of the
device, an Automatic Rollback functionality can be used to restore the previous
firmware if the new OTA firmware is not working correctly on the device. This
functionality has to be enabled in the project configuration, which sets the
CONFIG_APP_ROLLBACK_ENABLE constant. In the proof of concept app I use
the code below which calls esp_ota_mark_app_valid_cancel_rollback() if
the first boot, when ESP_OTA_IMG_PENDING_VERIFY is set, of the new firmware
is successful.

partition = esp_ota_get_running_partition();
res = esp_ota_get_state_partition(partition, &part_state);
if (res != ESP_OK) return;

//Confirm OTA FW if pending
if (part_state == ESP_OTA_IMG_PENDING_VERIFY){

ESP_ERROR_CHECK(esp_ota_mark_app_valid_cancel_rollback());
}

To prevent installing an old firmware and potentially insecure firmware
on the device, the anti-rollback protection can be enabled, which disallows
booting a firmware with a lower security version than the one stored in an
eFuse. I have only tested this feature in the emulation mode, which does not
burn the eFuse.

4.8.3 Securing the Firmware Blob Storage

For the example above I have used the Blob Storage in a mode that allows
anonymous access, enabling anyone with the link download the particular
firmware. The Azure Storage does not support authentication using a client
certificate, so either the firmware would have to be downloaded through a
proxy service (e.g. an Azure Function with certificate authentication) or a SAS
token can be used. The SAS token is part of the URL and allows temporary
access to the resource [88]. In our case, the device receives firmware URL
with a token that enables the device to download one particular file in the
next hour. The token can be even restricted only to the device’s public IP.
With the SAS token the payload of ota method looks like this:

56

4.9. Secure Boot and Flash Encryption

{"url":"https://esp32thesisstorage.blob.core.windows.net/otafw/
thesis-app.bin?sp=r&st=2020-08-01T00:05:29Z&se=2020-08-01T01:05
:29Z&spr=https&sv=2019-12-12&sr=b&sig=sIBVGwlCB483ly956jv78\%2F
ybM\%2BzrPYIqQuBmz8NJx2o\%3D"}

The main advantage is that the app does not have to be modified in order to
work with the SAS token authentication.

4.8.4 OTA Update Using Device Twin

An alternative to the direct method would be using device twin with the new
firmware URL being passed as the desired state. After the firmware is updated,
the device would confirm the update by sending this URL as a reported state.
The advantage of this method is compatibility with bulk device provisioning
using Azure IoT Hub Device Provisioning Service. The disadvantage is that
this is an indirect (asynchronous) method and there is no built-in feature to
report back errors that occurred during OTA.

4.9 Secure Boot and Flash Encryption

With the proof-of-concept app, my intention was to test these features, and
not to create a production-ready device, as I have used both features in a
development mode only.

I have used Secure Boot in reflashable mode with SECURE_BOOT_INSECURE
option, so JTAG would not be disabled, and reflashing the device via UART
would still be possible. The main difference between these settings and Signed
App Verification is that the bootloader digest is also being verified.

For Flash Encryption I have used the Development mode, which again
enables reflashing and even disabling the Flash Encryption after it has been
enabled. I choose that the key would be generated by the device on the first
run, so the binaries are flashed unencrypted to the device, which then encrypts
them.

For a production device, both Secure Boot and Flash Encryption must be
enabled in the production mode, which also disables features like JTAG de-
bugging and UART ROM download. Otherwise, the device would be basically
insecure.

Even with both Secure Boot and Flash Encryption being vulnerable to a
fault injection attack, they still prevent less sophisticated attacks, so I believe
there is still value in using them, but should not be used with the expectation
of protecting secrets on the device or protecting against non-genuine firmware.

57

4. Practical Part

4.10 List of keys

All the cryptographic keys are used to secure the app are listed in the table
4.1.

Keep in mind, that all the keys that are generated outside of the device
should not be reused between multiple devices and should be securely stored.
If the keys are reused, one compromised key can leave multiple devices vul-
nerable.

Purpose Type Key Storage Generated By

Device Identity & Authentication ECC 256
(secp256r1)

ATECC 608A (Private key)
Flash memory (Certificate) ATECC 608A

Bootloader Digest AES 256 eFuse, external External (PC)

Secure Boot App Signing ECC 256
(secp256r1)

External (Private key)
Flash memory (Public key) External (PC)

Certs NVS Partition AES 256 Flash memory External (PC)
Flash Encryption AES 256 eFuse ESP32

Table 4.1: List of cryptographic keys used by the device.

4.10.1 OWASP Top 10 IoT and Countermeasures

Table 4.2 shows all OWASP Top 10 IoT, which were discussed in the first
chapter, and countermeasures that were taken to prevent them in the proof-of-
concept app. The other risks to IoT devices discussed were energy harvesting
and insufficient auditing. The first one does only apply to battery-powered
devices, which this thesis did not explore. And for insufficient auditing, there
just are not any practical solutions available - none of the PaaS IoT services
offer log collect solution. Also, the ESP-IDF framework is not written with
auditing in mind, so it was not implemented in the proof-of-concept app.

58

4.10. List of keys

OWASP Top 10 IoT Countermeasures
Weak, Guessable, or Hardcoded
Passwords

Only unchangable password is the proof of posession key.
It is not shared between devices and has sufficient lenght.

Insecure Network Services
No network services run on the device except when WiFi
provisioning is active.
In standard operation the device is only a client, not a server.

Insecure Ecosystem Interfaces All IoT Hub APIs use encrypted communication and require
authentication.

Lack of Secure Update
Mechanism Secure OTA update.

Use of Insecure or Outdated
Components

Latest versions of components with no known vulnerabilities
are used.
OTA updates are supported.

Insufficient Privacy Protection WiFi credentials are stored in an NVS encrypted partition.
No other PII are stored on the device.

Insecure Data Transfer and
Storage

TLS 1.2 is used for all communication.
No data are stored on the device itself.

Lack of Device Management Azure IoT Hub is used for device management.
Insecure Default Settings There are no user settings that have impact on security.
Lack of Physical Hardening Cryptographic keys are stored in a tamper-resistant HSM.

Table 4.2: OWASP IoT Top Ten and counter measures used by the app.

59

Chapter 5
Summary & Discussion

In this chapter, all the main points of the analysis and learning from creating
of the proof-of-concept app are summarized and discussed.

5.1 Communication Protocols

• MQTT should always be used with TLS, as it is not an encrypted pro-
tocol.

• MQTT is the right choice for most IoT solutions.

• CoAP or MQTT-SN can be used for IoT devices communicating over
LPWAN.

• TLS has large overhead, especially if reconnection is frequent and ses-
sions tickets are not used.

• TLS 1.3 support is not yet supported on ESP32 and PaaS solutions.

MQTT has rightfully become the standard protocol in the IoT world, it is
efficient, secure if used with TLS, reliable, and supported by all the PaaS
services for IoT by major public cloud vendors. Unfortunately, the MQTT
brokers in PaaS offerings only support a subset of MQTT features. Where
MQTT is not usable (e.g. on LPWAN networks such as SigFox or NB-IoT)
an MQTT-SN bridge or CoAP protocol can be used to achieve reliable cloud-
to-device and device-to-cloud communication.

Using TLS brings overhead of two handshakes and approximately 6KB
unless session tickets or 0-RTT connection resumption is used. TLS 1.3, which
implements 0-RTT, is not yet well supported by the ESP32 and neither by
PaaS offerings for IoT solutions.

61

5. Summary & Discussion

5.2 Device identification & Authentication

• Devices should be identified using PKI, ideally in combination with an
HSM module.

• Usage of PUF is not as widely used on ESP32 as it is on ARM.

I have found that the only widely used solution for ESP32 device identification
is by using PKI. The device private key can be stored in an HSM chip or
an external PUF. I have used an external HSM by Microchip that performs
ECDSA operations with a private key that never leaves the HSM. This key is
then used to sign a CSR passed to a CA which is trusted by the cloud service.
The devices use the issued certificate for authentication to the service.

ESP32 does not have a PUF solution integrated in the SoC as many ARM
MCUs have and there are no known solutions with good support for ESP.

5.3 Secure Boot and Flash Encryption are
Vulnerable

• Secure Boot and Flash Encryption can be circumvented using fault in-
jection attack.

• Secure Boot cannot be used as a Root of Trust for the device.

• Flash Encryption itself is insufficient to protect secrets stored on the
device.

• Use ESP32-V3 or ESP32S2 when available, consider using HSM for cryp-
tographic keys.

ESP32 is vulnerable to a fault injection attack which can be used to circum-
vent Secure Boot and Flash Encryption, so the device can be reflashed with
untrusted code and its memory dumped and decrypted. Therefore additional
security measures should be taken to preserve the confidentiality of secrets
stored on ESP32. One possibility is to use an HSM such as ATECC608a I
used in this thesis or ESP32SE which has this HSM directly in its module.
This vulnerability has been patched in newer HW revision ESP32-V3 and in
ESP32S2, which should be used for new designs. Unfortunately, none of them
were available as a DevKit in retail stores when writing this thesis.

5.4 ESP-TLS Library is Insecure by Default

• ESP-TLS makes the device vulnerable to MiTM attack unless properly
configured.

62

5.5. Great HW and SW Support

• Disabling TLS 1.1 is broken in the current version.

• Consider using Mbed TLS without the ESP-TLS wrapper.

I have discovered, that the ESP-TLS library does not validate the certificate
presented by the server unless it is explicitly configured to do so. This behav-
ior does not cause any warnings to the developer, potentially leaving many
applications vulnerable to MitM attack on TLS by accident. This vulnera-
bility is also inherited by other libraries using ESP-TLS such as ESP-MQTT
or ESP-Azure. I’ve also discovered that disabling TLS 1.1 in ESP-TLS does
not disable it in the underlying library. I’ve fixed it and it has been merged
into esp-idf master. My recommendation for future projects would be to use
MBed TLS directly and do not rely on potentially buggy ESP-TLS wrapper.

5.5 Great HW and SW Support

• ESP32 is a popular platform with great support.

• Official SDK supports many features, but the quality is sometimes lack-
ing.

• Most of the platform is open-sourced.

ESP32 is very popular and has many libraries and HW drivers available, made
both by Espressif and community. Espressif’s libraries are usually available as
open-source software and the official documentation is also well-made. What
is sometimes lacking is the quality and reliability of apps and tools as even
the official ones crash, or stop working.

5.6 Over the Air Update

• Should verify the firmware signature.

• Should support rollback and anti-rollback protection.

• Use the official library in ESP-IDF.

The official library for over the air update is simple to use and supports all the
required features such as code signature verification, an automatic rollback in
case the new FW malfunctions, and also protection against installing an old
and potentially insecure firmware.

63

5. Summary & Discussion

5.7 Proof of Concept App

• Uses ATECC 608A HSM to store device private key.

• Implements certificate-based authentication with Azure IoT Hub.

• Implements secure over the air update.

• Wifi Configuration using a mobile app is easy to implement, but the app
sometimes crashes.

• Shows how Secure Boot, NVS, and Flash Encryption can be used.

The proof of concept app was developed to try the previously described secu-
rity feature. There were just small issues when integrating the ATECC 608A
crypto chip, that has been added to ESP-IDF recently. I’ve also encountered
crashes when using the official app for Unified Provisioning, which is used to
connect the device to a WiFi.

64

Conclusion

The thesis first described the issues of IoT security in general and then moved
to security features of the platform that may be used to prevent them. Known
vulnerabilities of the ESP32 platform were described and countermeasures
presented in the practical part. Main communication protocols and ways of
device identification were analyzed. In the end, a proof-of-concept app has
been created utilizing the described features, working around their limits, and
even discovering two more issues in the TLS library. It communicates with
Azure IoT Hub and authorizes using a key stored in ATECC608 HSM. The app
has also implemented secure over the air update and secure wifi provisioning.

The learnings from the analysis and making the proof-of-concept app were
summarized and discussed. To pick just a few: MQTT is an efficient choice
for IoT, and secure if used over TLS, Secure Boot and Flash Encryption are
vulnerable on ESP32, ESP-TLS library is not secure by default, HSM should
be used for storing secret keys, and over the air update is easy to do and
supports all the required features.

As can be seen, all the goals of the thesis were accomplished and a few
more things were done on top of the original assignment.

Open Questions & Future Work

Some issues were mentioned in this thesis, but not addresses in-depth as they
were out of its scope. One of these issues is privacy and how to make privacy-
aware solutions based on ESP32. Another is the management of PKI infras-
tructure and how to handle certificate rotation/revocation in IoT infrastruc-
ture efficiently. The thesis also touched the area of security on constrained
IoT devices, that may not have enough power to run TLS or maintain a reli-
able TCP connection. The next interesting area is how do we solve the issue
of devices outliving the companies that made them, and therefore potentially
being forever insecure. I believe all of these are interesting questions and could
be areas of future study.

65

Bibliography

[1] OWASP Internet of Things Project - OWASP. https://wiki.owasp.org/
index.php/OWASP_Internet_of_Things_Project#tab=Main, (Accessed
on 08/02/2020).

[2] Grassi, P. A.; Fenton, J. L.; et al. NIST special publication 800-63b: dig-
ital identity guidelines. Enrollment and Identity Proofing Requirements.
url: https://pages. nist. gov/800-63-3/sp800-63a. html, 2017.

[3] Antonakakis, M.; April, T.; et al. Understanding the mirai botnet. In
26th {USENIX} security symposium ({USENIX} Security 17), 2017, pp.
1093–1110.

[4] Neshenko, N.; Bou-Harb, E.; et al. Demystifying IoT security: an exhaus-
tive survey on IoT vulnerabilities and a first empirical look on internet-
scale IoT exploitations. IEEE Communications Surveys & Tutorials, vol-
ume 21, no. 3, 2019: pp. 2702–2733.

[5] Internet of Things Teddy Bear Leaked 2 Million Parent and Kids
Message Recordings. https://www.vice.com/en_us/article/pgwean/
internet-of-things-teddy-bear-leaked-2-million-parent-and-
kids-message-recordings, (Accessed on 08/03/2020).

[6] Hunt, G.; Letey, G.; et al. The seven properties of highly secure devices.
tech. report MSR-TR-2017-16, 2017.

[7] Secure by Design - GOV.UK. https://www.gov.uk/government/
collections/secure-by-design, (Accessed on 08/02/2020).

[8] Vasserman, E. Y.; Hopper, N. Vampire attacks: Draining life from wire-
less ad hoc sensor networks. IEEE transactions on mobile computing,
volume 12, no. 2, 2011: pp. 318–332.

67

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=Main
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=Main
https://www.vice.com/en_us/article/pgwean/internet-of-things-teddy-bear-leaked-2-million-parent-and-kids-message-recordings
https://www.vice.com/en_us/article/pgwean/internet-of-things-teddy-bear-leaked-2-million-parent-and-kids-message-recordings
https://www.vice.com/en_us/article/pgwean/internet-of-things-teddy-bear-leaked-2-million-parent-and-kids-message-recordings
https://www.gov.uk/government/collections/secure-by-design
https://www.gov.uk/government/collections/secure-by-design

Bibliography

[9] Trappe, W.; Howard, R.; et al. Low-energy security: Limits and oppor-
tunities in the internet of things. IEEE Security & Privacy, volume 13,
no. 1, 2015: pp. 14–21.

[10] Smith, S. The Internet of Risky Things: Trusting the devices that sur-
round us. ”O’Reilly Media, Inc.”, 2017.

[11] Who should bear the cost of IoT security: consumers or vendors?
— Ubuntu. https://ubuntu.com/blog/who-should-bear-the-cost-
of-iot-security-consumers-or-vendors, (Accessed on 08/03/2020).

[12] Zhao, S.; Zhang, Q.; et al. Providing root of trust for ARM TrustZone
using on-chip SRAM. In Proceedings of the 4th International Workshop
on Trustworthy Embedded Devices, 2014, pp. 25–36.

[13] Anchoring Arm TrustZone with SRAM PUF - TrustZone for Armv8-
M blog - TrustZone for Armv8-M - Arm Community. https://
community.arm.com/developer/ip-products/processors/trustzone-
for-armv8-m/b/blog/posts/anchoring-trustzone-with-sram-puf,
(Accessed on 07/15/2020).

[14] DS28E38 DeepCover® Secure ECDSA Authenticator with
ChipDNA PUF Protection - Maxim Integrated. https:
//www.maximintegrated.com/en/products/embedded-security/
secure-authenticators/DS28E38.html, (Accessed on 07/15/2020).

[15] Naik, N. Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. In 2017 IEEE international systems engineer-
ing symposium (ISSE), IEEE, 2017, pp. 1–7.

[16] Dizdarević, J.; Carpio, F.; et al. A survey of communication protocols
for internet of things and related challenges of fog and cloud computing
integration. ACM Computing Surveys (CSUR), volume 51, no. 6, 2019:
pp. 1–29.

[17] IBM Podcasts - MQTT. https://www.ibm.com/podcasts/software/
websphere/connectivity/piper_diaz_nipper_mq_tt_11182011.pdf,
(Accessed on 07/05/2020).

[18] Eronen, P.; Tschofenig, H. Pre-Shared Key Ciphersuites for Trans-
port Layer Security (TLS). RFC 4279, RFC Editor, December 2005,
http://www.rfc-editor.org/rfc/rfc4279.txt. Available from: http:
//www.rfc-editor.org/rfc/rfc4279.txt

[19] MQTT Essentials - All Core Concepts explained. https:
//www.hivemq.com/mqtt-essentials/, (Accessed on 07/05/2020).

68

https://ubuntu.com/blog/who-should-bear-the-cost-of-iot-security-consumers-or-vendors
https://ubuntu.com/blog/who-should-bear-the-cost-of-iot-security-consumers-or-vendors
https://community.arm.com/developer/ip-products/processors/trustzone-for-armv8-m/b/blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/developer/ip-products/processors/trustzone-for-armv8-m/b/blog/posts/anchoring-trustzone-with-sram-puf
https://community.arm.com/developer/ip-products/processors/trustzone-for-armv8-m/b/blog/posts/anchoring-trustzone-with-sram-puf
https://www.maximintegrated.com/en/products/embedded-security/secure-authenticators/DS28E38.html
https://www.maximintegrated.com/en/products/embedded-security/secure-authenticators/DS28E38.html
https://www.maximintegrated.com/en/products/embedded-security/secure-authenticators/DS28E38.html
https://www.ibm.com/podcasts/software/websphere/connectivity/piper_diaz_nipper_mq_tt_11182011.pdf
https://www.ibm.com/podcasts/software/websphere/connectivity/piper_diaz_nipper_mq_tt_11182011.pdf
http://www.rfc-editor.org/rfc/rfc4279.txt
http://www.rfc-editor.org/rfc/rfc4279.txt
http://www.rfc-editor.org/rfc/rfc4279.txt
https://www.hivemq.com/mqtt-essentials/
https://www.hivemq.com/mqtt-essentials/

Bibliography

[20] TLS/SSL - MQTT Security Fundamentals. https://www.hivemq.com/
blog/mqtt-security-fundamentals-tls-ssl/, (Accessed on
07/11/2020).

[21] X.509 client certificates - AWS IoT. https://docs.aws.amazon.com/
iot/latest/developerguide/x509-client-certs.html, (Accessed on
07/11/2020).

[22] Understand Azure IoT Hub security — Microsoft Docs. https:
//docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-
security#supported-x509-certificates, (Accessed on 07/11/2020).

[23] MQTT 5 Essentials. https://www.hivemq.com/mqtt-5/, (Accessed on
07/05/2020).

[24] Ian Craggs, D. O., Simon Johnson. MQTT-SN: MQTT for the Internet of
Smaller Things, 2020, oASIS Open Standards - MQTT-SN Subcommit-
tee. Available from: https://www.youtube.com/watch?v=Cvt7LoAXau0

[25] MQTT - AWS IoT. https://docs.aws.amazon.com/iot/latest/
developerguide/mqtt.html, (Accessed on 07/05/2020).

[26] Understand Azure IoT Hub MQTT support — Microsoft Docs. https://
docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support,
(Accessed on 07/05/2020).

[27] Requirements — Cloud IoT Core Documentation — Google
Cloud. https://cloud.google.com/iot/docs/requirements, (Accessed
on 07/05/2020).

[28] GOTO 2017 • An Intro to IoT Protocols: MQTT, CoAP, HTTP
& WebSockets • A. Almeida & J. Berciano - YouTube. https://
www.youtube.com/watch?v=s6ZtfLmvQMU, (Accessed on 07/11/2020).

[29] Shelby, Z.; Hartke, K.; et al. The Constrained Application
Protocol (CoAP). RFC 7252, RFC Editor, June 2014, http:
//www.rfc-editor.org/rfc/rfc7252.txt. Available from: http://
www.rfc-editor.org/rfc/rfc7252.txt

[30] CoAP Video Tutorial - Internet of Things - Internet of Things
- Arm Community. https://community.arm.com/iot/b/internet-of-
things/posts/coap-video-tutorial, (Accessed on 07/11/2020).

[31] Wirges, J.; Dettmar, U. Performance of TCP and UDP over Narrowband
Internet of Things (NB-IoT). In 2019 IEEE International Conference on
Internet of Things and Intelligence System (IoTaIS), 2019, pp. 5–11.

69

https://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl/
https://www.hivemq.com/blog/mqtt-security-fundamentals-tls-ssl/
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security#supported-x509-certificates
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security#supported-x509-certificates
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-security#supported-x509-certificates
https://www.hivemq.com/mqtt-5/
https://www.youtube.com/watch?v=Cvt7LoAXau0
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://cloud.google.com/iot/docs/requirements
https://www.youtube.com/watch?v=s6ZtfLmvQMU
https://www.youtube.com/watch?v=s6ZtfLmvQMU
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
https://community.arm.com/iot/b/internet-of-things/posts/coap-video-tutorial
https://community.arm.com/iot/b/internet-of-things/posts/coap-video-tutorial

Bibliography

[32] Sarafov, V. Comparison of iot data protocol overhead. In Proceedings of
the Seminars of Future Internet (FI) and Innovative Internet Technolo-
gies and Mobile Communication (IITM), volume 720, 2018.

[33] Thangavel, D.; Ma, X.; et al. Performance evaluation of MQTT and
CoAP via a common middleware. In 2014 IEEE ninth international con-
ference on intelligent sensors, sensor networks and information process-
ing (ISSNIP), IEEE, 2014, pp. 1–6.

[34] Tandale, U.; Momin, B.; et al. An empirical study of application layer
protocols for IoT. In 2017 International Conference on Energy, Commu-
nication, Data Analytics and Soft Computing (ICECDS), IEEE, 2017,
pp. 2447–2451.

[35] Salted Challenge Response Authentication Mechanism - Wikipedia.
https://en.wikipedia.org/wiki/Salted_Challenge_Response_
Authentication_Mechanism, (Accessed on 07/13/2020).

[36] QUIC, a multiplexed stream transport over UDP - The Chromium
Projects. https://www.chromium.org/quic, (Accessed on 05/13/2020).

[37] TLS overhead - netsekure rng. http://netsekure.org/2010/03/tls-
overhead/, (Accessed on 05/14/2020).

[38] Pricing - The 1NCE IoT Flat Rate explained — 1NCE - IoT SIM. https:
//1nce.com/en/pricing/, (Accessed on 05/14/2020).

[39] Kothmayr, T.; Schmitt, C.; et al. DTLS based security and two-way
authentication for the Internet of Things. Ad Hoc Networks, volume 11,
no. 8, 2013: pp. 2710–2723.

[40] TLS 1.3 is going to save us all, and why IoT is still insecure.
https://blog.cloudflare.com/why-iot-is-insecure/, (Accessed on
05/14/2020).

[41] Introducing Zero Round Trip Time Resumption (0-RTT). https://
blog.cloudflare.com/introducing-0-rtt/, (Accessed on 05/14/2020).

[42] David Brown, L. IoT TLS: Why It’s Hard, 2018, open Source Summit +
Embedded Linux Conference & OpenIoT Summit Europe 2018. Available
from: https://www.youtube.com/watch?v=C7snRkLbIWM

[43] Researchers Exploit Low Entropy of IoT Devices to Break RSA
Certificates - IEEE Spectrum. https://spectrum.ieee.org/tech-
talk/telecom/security/low-entropy-iot-internet-of-things-
devices-security-news-rsa-encryption, (Accessed on 05/13/2020).

70

https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://www.chromium.org/quic
http://netsekure.org/2010/03/tls-overhead/
http://netsekure.org/2010/03/tls-overhead/
https://1nce.com/en/pricing/
https://1nce.com/en/pricing/
https://blog.cloudflare.com/why-iot-is-insecure/
https://blog.cloudflare.com/introducing-0-rtt/
https://blog.cloudflare.com/introducing-0-rtt/
https://www.youtube.com/watch?v=C7snRkLbIWM
https://spectrum.ieee.org/tech-talk/telecom/security/low-entropy-iot-internet-of-things-devices-security-news-rsa-encryption
https://spectrum.ieee.org/tech-talk/telecom/security/low-entropy-iot-internet-of-things-devices-security-news-rsa-encryption
https://spectrum.ieee.org/tech-talk/telecom/security/low-entropy-iot-internet-of-things-devices-security-news-rsa-encryption

Bibliography

[44] When to use Pre Shared Key (PSK) Cipher Suites - wolf-
SSL. https://www.wolfssl.com/when-to-use-pre-shared-key-psk-
cipher-suites-2/, (Accessed on 07/05/2020).

[45] Georgiev, M.; Iyengar, S.; et al. The most dangerous code in the world:
validating SSL certificates in non-browser software. In Proceedings of the
2012 ACM conference on Computer and communications security, 2012,
pp. 38–49.

[46] Rescorla, E. HTTP Over TLS. RFC 2818, RFC Editor, May 2000,
http://www.rfc-editor.org/rfc/rfc2818.txt. Available from: http:
//www.rfc-editor.org/rfc/rfc2818.txt

[47] Chokhani, S.; Ford, W. Internet X.509 Public Key Infrastructure Certifi-
cate Policy and Certification Practices Framework. RFC 2527, RFC Edi-
tor, March 1999, http://www.rfc-editor.org/rfc/rfc2527.txt. Avail-
able from: http://www.rfc-editor.org/rfc/rfc2527.txt

[48] ESP-IDF Programming Guide - ESP32 - — ESP-IDF Program-
ming Guide documentation. https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/, (Accessed on 07/17/2020).

[49] Systems, E. ESP32 Technical Reference Manual V4.1. https:
//www.espressif.com/sites/default/files/documentation/esp32_
technical_reference_manual_en.pdf, 2019, (Accessed on 05/11/2020).

[50] Fritzing Parts. https://fritzing.org/parts/, (Accessed on
05/25/2020).

[51] Commons, W. File:Espressif ESP32 Chip Function Block Di-
agram.svg — Wikimedia Commons the free media repository.
2020, [Online; accessed 24-May-2020]. Available from: https:
//commons.wikimedia.org/w/index.php?title=File:Espressif_
ESP32_Chip_Function_Block_Diagram.svg&oldid=417508187

[52] Espressif Announces the Release of ESP32-S2 — Espressif Systems.
https://www.espressif.com/en/news/espressif-announces-%E2%80%
A8esp32-s2-secure-wi-fi-mcu, (Accessed on 05/24/2020).

[53] Securing the IoT: Part 2 - Secure boot as root of trust - Em-
bedded.com. https://www.embedded.com/securing-the-iot-part-2-
secure-boot-as-root-of-trust/, (Accessed on 07/16/2020).

[54] BitLocker (Windows 10) - Microsoft 365 Security — Microsoft
Docs. https://docs.microsoft.com/en-us/windows/security/
information-protection/bitlocker/bitlocker-overview, (Ac-
cessed on 05/25/2020).

71

https://www.wolfssl.com/when-to-use-pre-shared-key-psk-cipher-suites-2/
https://www.wolfssl.com/when-to-use-pre-shared-key-psk-cipher-suites-2/
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2527.txt
http://www.rfc-editor.org/rfc/rfc2527.txt
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://fritzing.org/parts/
https://commons.wikimedia.org/w/index.php?title=File:Espressif_ESP32_Chip_Function_Block_Diagram.svg&oldid=417508187
https://commons.wikimedia.org/w/index.php?title=File:Espressif_ESP32_Chip_Function_Block_Diagram.svg&oldid=417508187
https://commons.wikimedia.org/w/index.php?title=File:Espressif_ESP32_Chip_Function_Block_Diagram.svg&oldid=417508187
https://www.espressif.com/en/news/espressif-announces-%E2%80%A8esp32-s2-secure-wi-fi-mcu
https://www.espressif.com/en/news/espressif-announces-%E2%80%A8esp32-s2-secure-wi-fi-mcu
https://www.embedded.com/securing-the-iot-part-2-secure-boot-as-root-of-trust/
https://www.embedded.com/securing-the-iot-part-2-secure-boot-as-root-of-trust/
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview

Bibliography

[55] ESP32 Arduino: Random Number Generation – techtutorialsx.
https://techtutorialsx.com/2017/12/22/esp32-arduino-random-
number-generation/, (Accessed on 05/11/2020).

[56] RNG Quality (Dieharder Test Results) - ESP32 Forum. https://
www.esp32.com/viewtopic.php?t=12622, (Accessed on 05/11/2020).

[57] Brown, R. G. Robert G. Brown’s General Tools Page. http:
//webhome.phy.duke.edu/˜rgb/General/dieharder.php, (Accessed on
05/11/2020).

[58] Miscellaneous System APIs - ESP32 - — ESP-IDF Programming
Guide latest documentation. https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/system/system.html#_
CPPv410esp_randomv, (Accessed on 05/11/2020).

[59] Updating firmware reliably - Embedded.com. https://
www.embedded.com/updating-firmware-reliably/, (Accessed on
08/01/2020).

[60] Wikipedia contributors. SoftAP — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=SoftAP&oldid=
954025876, 2020, [Online; accessed 11-May-2020].

[61] The Challenges of Soft AP: What Goes Wrong and Why. https://
blog.cirrent.com/challenges-soft-ap, (Accessed on 05/11/2020).

[62] Unified Provisioning - ESP32 - — ESP-IDF Programming Guide latest
documentation. https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/provisioning/provisioning.html,
(Accessed on 05/11/2020).

[63] ESP-Touch Resources — Espressif Systems. https://
www.espressif.com/en/products/software/esp-touch/resources,
(Accessed on 05/11/2020).

[64] CC3100 Provisioning Smart Config - Texas Instruments Wiki.
https://processors.wiki.ti.com/index.php/CC3100_Provisioning_
Smart_Config, (Accessed on 05/11/2020).

[65] Li, C.; Cai, Q.; et al. Passwords in the air: Harvesting wi-fi credentials
from smartcfg provisioning. In Proceedings of the 11th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, 2018, pp. 1–11.

[66] espressif/esp-aws-iot: AWS-IoT SDK as an ESP-IDF component. https:
//github.com/espressif/esp-aws-iot, (Accessed on 05/11/2020).

72

https://techtutorialsx.com/2017/12/22/esp32-arduino-random-number-generation/
https://techtutorialsx.com/2017/12/22/esp32-arduino-random-number-generation/
https://www.esp32.com/viewtopic.php?t=12622
https://www.esp32.com/viewtopic.php?t=12622
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/system.html#_CPPv410esp_randomv
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/system.html#_CPPv410esp_randomv
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/system.html#_CPPv410esp_randomv
https://www.embedded.com/updating-firmware-reliably/
https://www.embedded.com/updating-firmware-reliably/
https://en.wikipedia.org/w/index.php?title=SoftAP&oldid=954025876
https://en.wikipedia.org/w/index.php?title=SoftAP&oldid=954025876
https://blog.cirrent.com/challenges-soft-ap
https://blog.cirrent.com/challenges-soft-ap
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/provisioning/provisioning.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/provisioning/provisioning.html
https://www.espressif.com/en/products/software/esp-touch/resources
https://www.espressif.com/en/products/software/esp-touch/resources
https://processors.wiki.ti.com/index.php/CC3100_Provisioning_Smart_Config
https://processors.wiki.ti.com/index.php/CC3100_Provisioning_Smart_Config
https://github.com/espressif/esp-aws-iot
https://github.com/espressif/esp-aws-iot

Bibliography

[67] aws/aws-iot-device-sdk-embedded-C: SDK for connecting to AWS IoT
from a device using embedded C. https://github.com/aws/aws-iot-
device-sdk-embedded-C, (Accessed on 05/11/2020).

[68] Azure/azure-iot-sdk-c: A C99 SDK for connecting devices to Mi-
crosoft Azure IoT services. https://github.com/Azure/azure-iot-
sdk-c, (Accessed on 08/03/2020).

[69] ESP-TLS - ESP32 - — ESP-IDF Programming Guide latest documen-
tation. https://docs.espressif.com/projects/esp-idf/en/latest/
esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-
element-with-esp-tls, (Accessed on 07/21/2020).

[70] wolfCrypt FIPS 140-2 Information — wolfSSL Embedded SSL/TLS
Library. https://www.wolfssl.com/license/fips/, (Accessed on
05/13/2020).

[71] Comparison of TLS implementations - Wikipedia. https:
//en.wikipedia.org/wiki/Comparison_of_TLS_implementations,
(Accessed on 05/13/2020).

[72] Pwn the ESP32 Forever: Flash Encryption and Sec. Boot Keys Ex-
traction - LimitedResults. https://limitedresults.com/2019/11/
pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-
extraction/, (Accessed on 08/01/2020).

[73] CVE - CVE-2019-15894. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-15894, (Accessed on 08/01/2020).

[74] Pwn the ESP32 Secure Boot - LimitedResults. https:
//limitedresults.com/2019/09/pwn-the-esp32-secure-boot/,
(Accessed on 08/01/2020).

[75] Security advisories about Zero PMK installation and beacon crash
— Espressif Systems. https://www.espressif.com/en/Security_
advisories_about_Zero_PMK_installation_and_beacon_crash,
(Accessed on 08/01/2020).

[76] ESP32 Fault Injection Vulnerability - Impact Analy-
sis — Espressif Systems. https://www.espressif.com/en/
news/ESP32_FIA_Analysis?position=13&list=fZxdQ9z_
aBYeVOwDFgYTMhhva5QUMshYyNCoG5dU4z0, (Accessed on 05/25/2020).

[77] ESP32-S2 — Security Features - The ESP Journal - Medium.
https://medium.com/the-esp-journal/esp32-s2-security-
improvements-5e5453f98590, (Accessed on 05/24/2020).

73

https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-c
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://www.wolfssl.com/license/fips/
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15894
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15894
https://limitedresults.com/2019/09/pwn-the-esp32-secure-boot/
https://limitedresults.com/2019/09/pwn-the-esp32-secure-boot/
https://www.espressif.com/en/Security_advisories_about_Zero_PMK_installation_and_beacon_crash
https://www.espressif.com/en/Security_advisories_about_Zero_PMK_installation_and_beacon_crash
https://www.espressif.com/en/news/ESP32_FIA_Analysis?position=13&list=fZxdQ9z_aBYeVOwDFgYTMhhva5QUMshYyNCoG5dU4z0
https://www.espressif.com/en/news/ESP32_FIA_Analysis?position=13&list=fZxdQ9z_aBYeVOwDFgYTMhhva5QUMshYyNCoG5dU4z0
https://www.espressif.com/en/news/ESP32_FIA_Analysis?position=13&list=fZxdQ9z_aBYeVOwDFgYTMhhva5QUMshYyNCoG5dU4z0
https://medium.com/the-esp-journal/esp32-s2-security-improvements-5e5453f98590
https://medium.com/the-esp-journal/esp32-s2-security-improvements-5e5453f98590

Bibliography

[78] Service concepts in Azure IoT Hub Device Provisioning Service —
Microsoft Docs. https://docs.microsoft.com/en-us/azure/iot-dps/
concepts-service, (Accessed on 07/26/2020).

[79] ATECC608A CryptoAuthentication Device Summary Data
Sheet. http://ww1.microchip.com/downloads/en/DeviceDoc/
ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-
DS40001977B.pdf, (Accessed on 07/30/2020).

[80] ATECC CryptoAuthentication Device Family - Compressed Certificate
Definition. http://ww1.microchip.com/downloads/en/AppNotes/
Atmel-8974-CryptoAuth-ATECC-Compressed-Certificate-
Definition-ApplicationNote.pdf, (Accessed on 07/27/2020).

[81] azure-iot-sdk-c/using custom hsm.md at master · Azure/azure-iot-
sdk-c. https://github.com/Azure/azure-iot-sdk-c/blob/master/
provisioning_client/devdoc/using_custom_hsm.md#hsm-x509-api,
(Accessed on 07/29/2020).

[82] Network Configuration — ESP-Jumpstart documentation.
https://docs.espressif.com/projects/esp-jumpstart/en/latest/
networkconfig.html#nvs-persistent-key-value-store, (Accessed
on 07/31/2020).

[83] wolfSSL Espressif Support - wolfSSL. https://www.wolfssl.com/docs/
espressif/, (Accessed on 07/21/2020).

[84] Any plans for TLS 1.3 support? · Issue #508 · ARMmbed/mbedtls.
https://github.com/ARMmbed/mbedtls/issues/508#issuecomment-
601258457, (Accessed on 07/21/2020).

[85] ESP-TLS - ESP32 - — ESP-IDF Programming Guide latest documen-
tation. https://docs.espressif.com/projects/esp-idf/en/latest/
esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-
element-with-esp-tls, (Accessed on 07/29/2020).

[86] Bellare, M. New proofs for NMAC and HMAC: Security without collision-
resistance. In Annual International Cryptology Conference, Springer,
2006, pp. 602–619.

[87] PolarSSL is not vulnerable to POODLE-against-TLS - Tech Updates
- Mbed TLS (Previously PolarSSL). https://tls.mbed.org/tech-
updates/blog/polarssl-not-vulnerable-to-poodle-against-tls,
(Accessed on 07/31/2020).

[88] Grant limited access to data with shared access signatures (SAS)
- Azure Storage — Microsoft Docs. https://docs.microsoft.com/

74

https://docs.microsoft.com/en-us/azure/iot-dps/concepts-service
https://docs.microsoft.com/en-us/azure/iot-dps/concepts-service
http://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-DS40001977B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-DS40001977B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATECC608A-CryptoAuthentication-Device-Summary-Data-Sheet-DS40001977B.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8974-CryptoAuth-ATECC-Compressed-Certificate-Definition-ApplicationNote.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8974-CryptoAuth-ATECC-Compressed-Certificate-Definition-ApplicationNote.pdf
http://ww1.microchip.com/downloads/en/AppNotes/Atmel-8974-CryptoAuth-ATECC-Compressed-Certificate-Definition-ApplicationNote.pdf
https://github.com/Azure/azure-iot-sdk-c/blob/master/provisioning_client/devdoc/using_custom_hsm.md#hsm-x509-api
https://github.com/Azure/azure-iot-sdk-c/blob/master/provisioning_client/devdoc/using_custom_hsm.md#hsm-x509-api
https://docs.espressif.com/projects/esp-jumpstart/en/latest/networkconfig.html#nvs-persistent-key-value-store
https://docs.espressif.com/projects/esp-jumpstart/en/latest/networkconfig.html#nvs-persistent-key-value-store
https://www.wolfssl.com/docs/espressif/
https://www.wolfssl.com/docs/espressif/
https://github.com/ARMmbed/mbedtls/issues/508#issuecomment-601258457
https://github.com/ARMmbed/mbedtls/issues/508#issuecomment-601258457
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html#atecc608a-secure-element-with-esp-tls
https://tls.mbed.org/tech-updates/blog/polarssl-not-vulnerable-to-poodle-against-tls
https://tls.mbed.org/tech-updates/blog/polarssl-not-vulnerable-to-poodle-against-tls
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

Bibliography

en-us/azure/storage/common/storage-sas-overview, (Accessed on
08/01/2020).

75

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

Appendix A
Acronyms

AES Advanced Encryption Standard

ALPN Application Layer Protocol Negotiation

AMQP Advanced Message Queuing Protocol

API Application Programmable Interface

AP Access Point

AWS Amazon Web Services

BLE Bluetooth Low Energy

BT Bluetooth

CA Certificate Authority

CBC Cipher Block Chaining

CN Common Name (in a certificate)

CRC Cyclic Redundancy Check

CVE Common Vulnerabilities and Exposures

CoAP Constrained Application Protocol

DDoS Distributed Denial of Service

DHE Diffie-Hellman Ephemeral

DMA Direct Memory Access

DNS Domain Name Server

DSA Digital Signature Algorithm

77

A. Acronyms

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EEA European Economic Area

ESP-IDF Espressif IoT Development Platform

FIPS Federal Information Processing Standard

FQDM Fully Qualified Domain Name

FW Firmware

GPIO General Purpose Input/Output

HAL Hardware Abstraction Layer

HMAC Keyed-hash Message Authentication Code

HSM Hardware Security Module

IV Initial Vector (e.g. in AES)

IoT Internet of Things

LPWAN Low Power Wide Area Network

MAC Media Access Control Address

MCU Micro-controller

MMU Memory Management Unit

NIST National Institute of Standards and Technology

NVS Non-volatile Storage

OCSP Online Certificate Status Protocol

OTA Over the Air (e.g. update)

OWASP Open Web Application Security Project

PaaS Platform as a Service

PAL Platform Abstraction Layer

PCB Printed Circuit Board

78

PHY Physical layer

PKI Public Key Infrastructure

PRNG Pseudo Random Number Generator

PR Public Relations

PSK Pre-Shared Key

PUF Physically Unclonable Function

QoS Quality of Service

RAM Random Access Memory

RFC Request For Comments

RF Radio-Frequency

RNG Random Number Generator

ROM Read Only Memory

RTC Real Time Control

RTOS Real Time Operating System

RTT Round Trip Delay Time

SAN Subject Alternative Name (in a certificate)

SDK Software Development Kit

SIEM Security Information and Event Management

SMP Symmetrical Multiprocessing

SPI Serial Peripheral Interface

SSL Secure Socket Layer

SoC System on Chip

TLS Transport Layer Security

TRNG True Random Number Generator

ULP Ultra Low Power

URI Uniform Resource Identifier

VM Virtual Machine

XMPP Extensible Messaging and Presence Protocol

79

Appendix B
Allowed TLS Ciphersuites

• TLS-ECDHE-ECDSA-WITH-AES-256-CCM

• TLS-DHE-RSA-WITH-AES-256-CCM

• TLS-DHE-RSA-WITH-AES-256-CBC-SHA256

• TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA

• TLS-ECDHE-RSA-WITH-AES-256-CBC-SHA

• TLS-DHE-RSA-WITH-AES-256-CBC-SHA

• TLS-ECDHE-ECDSA-WITH-AES-256-CCM-8

• TLS-DHE-RSA-WITH-AES-256-CCM-8

• TLS-ECDHE-ECDSA-WITH-AES-128-GCM-SHA256

• TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256

• TLS-DHE-RSA-WITH-AES-128-GCM-SHA256

• TLS-ECDHE-ECDSA-WITH-AES-128-CCM

• TLS-DHE-RSA-WITH-AES-128-CCM

• TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA256

• TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA256

• TLS-DHE-RSA-WITH-AES-128-CBC-SHA256

• TLS-ECDHE-ECDSA-WITH-AES-128-CBC-SHA

• TLS-ECDHE-RSA-WITH-AES-128-CBC-SHA

• TLS-DHE-RSA-WITH-AES-128-CBC-SHA

81

B. Allowed TLS Ciphersuites

• TLS-ECDHE-ECDSA-WITH-AES-128-CCM-8

• TLS-DHE-RSA-WITH-AES-128-CCM-8

82

Appendix C
Contents of enclosed CD

thesis..............................the directory containing this thesis
src.........................the directory with the proof-of-concept app

main......................the directory with source codes of the app
components....the directory with forked components used by the app

esp-cryptoauthlib ATECC 608 component
esp cryptoauth utility.....provisioning utility and firmware

utils the directory with utilities mentioned in the practical part

83

	Introduction
	Motivation
	Goals
	Thesis Organization

	IoT Devices & Security
	IoT Security
	OWASP IoT Top Ten 2018
	Weak, Guessable, or Hardcoded Passwords
	Insecure Network Services
	Insecure Ecosystem Interfaces
	Lack of Secure Update Mechanism
	Use of Insecure or Outdated Components
	Insufficient Privacy Protection
	Insecure Data Transfer and Storage
	Lack of Device Management
	Insecure Default Settings
	Lack of Physical Hardening

	Other Threats
	Insufficient Auditing
	Energy Harvesting

	IoT Security vs Computer Security

	Device Identity
	PUF Based Device Identity
	PKI Based Device Identity
	MAC Address

	Communication Protocols for IoT
	HTTP
	MQTT
	Security
	MQTT 5
	MQTT-SN
	Support in Public Clouds

	CoAP
	Security
	Support in Public Clouds

	Comparison of Communication Protocols
	Reliability and Guaranteed Delivery
	Communication Efficiency
	Security

	Transport Layer Security (TLS)
	Communication Overhead
	TLS 1.3
	0-RTT Session Resumption

	Difficulties with TLS on Constrained IoT Devices
	The Most Dangerous Code in the World
	SSL/TLS Certificate Validation
	Chain-of-trust Verification
	Hostname Verification
	Certificate Revocation
	Additional Checks

	ESP32 Overview
	Hardware
	SoCs, Modules and Devboards
	SoC
	Flash Memory
	Low-power Subsystem

	Software
	ESP-IDF
	FreeRTOS

	Platform Description
	Memory Layout
	System ROM
	IRAM (SRAM)
	IROM (Flash)
	DRAM (SRAM)
	DROM (Flash)
	External SPI RAM (SRAM)
	Fast Instructions RTC Memory (SRAM)
	Slow Data RTC Memory (SRAM)
	Memory Allocation

	Watchdog Timers
	Device Startup
	Boot
	Application Startup
	No Bootloader

	Flash Storage Partitioning
	Factory Partition and Factory Reset
	Non Volatile Storage (NVS)

	Other ESP devices
	ESP8266
	ESP32-S2

	ESP32 Security Features
	eFUSEs
	Secure Boot
	Secure Boot Process
	App Signature Verification
	Secure Boot as a Root of Trust

	Flash Encryption
	Flash Encryption Process
	Reading Encrypted Data
	Limitations of Flash Encryption
	Flash Encryption and Secure Boot

	NVS Encryption
	Cryptographic Accelerator
	Random Number Generator

	Over the Air Update (OTA)
	Automatic App Rollback
	Security Version

	Device Provisioning
	Provisioning Using SoftAP
	Provisioning Using Bluetooth Low Energy (BLE)
	Unified Provisioning
	Proof of Possession Key
	Provisioning Flow

	ESP Touch or ESP Smart Config

	Remote Control and Cloud Connection
	Amazon AWS IoT Core
	Azure IoT Hub

	ESP-TLS
	ESP x509 Certificate Bundle
	ATECC608A support
	WolfSSL
	Mbed TLS

	Known Vulnerabilities for ESP32
	CVE-2019-17391 - Fault Injection and eFuse protection
	CVE-2019-15894 - Fault Injection and Secure Boot
	CVE-2019-12587 - Zero PMK Installation
	CVE-2019-12586 - EAP DoS
	CVE-2018-18558 - Secure Boot Bypass

	Security Improvements in ESP32 V3
	Security Improvements in ESP32-S2

	Practical Part
	Overview
	Cloud Provider Selection
	Device Authentication
	Azure IoT Hub Device Provisioning Service

	Device Identity & Authentication
	ATECC608A Provisioning and Certificate Generation
	Certificate Storage on ATECC 608A
	Certificate Storage in NVS
	Connection to Azure
	Validation of Azure TLS Certificate

	Flash Partitioning
	WiFi Provisioning
	Data Collection
	TLS
	TLS 1.3 Support on ESP32
	ESP-TLS - Insecure by Default
	ATECC608A Support in ESP-TLS
	Cipher Suite Selection

	Secure Over the Air Update
	Secure Boot and Signed App Verification
	Automatic Rollback and Anti-rollback Protection
	Securing the Firmware Blob Storage
	OTA Update Using Device Twin

	Secure Boot and Flash Encryption
	List of keys
	OWASP Top 10 IoT and Countermeasures

	Summary & Discussion
	Communication Protocols
	Device identification & Authentication
	Secure Boot and Flash Encryption are Vulnerable
	ESP-TLS Library is Insecure by Default
	Great HW and SW Support
	Over the Air Update
	Proof of Concept App

	Conclusion
	Open Questions & Future Work

	Bibliography
	Acronyms
	Allowed TLS Ciphersuites
	Contents of enclosed CD

