
Master Thesis

Czech
Technical
University
in Prague

F2 Faculty of Mechanical Engineering

Department of Mechanics, Biomechanics and Mechatronics

Robotic Painting Cell Design Using Worker’s Motion
Tracking and Imitation

Bc. Megi Mejdrechová

Supervisor: Ing. Jan Pelikán, Ph.D.
Field of study: Mechatronics
July 2020

Declaration
I hereby declare I have written this master thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, 31. July 2020

v

Acknowledgements
I would first like to thank my supervisor Ing. Jan Pelikán, Ph.D. for providing guidance
and advice throughout the work on this thesis. The knowledge, experience and ideas he
shared with me were always helpful.

Next, I wish to express my gratitude to the Czech Technical University in Prague
and especially the Faculty of Mechanical Engineering for giving me opportunity to study
and learn and walk the whole way up to my master thesis. I am also grateful for the
chance to visit universities abroad that widened my professional skills and ambitions. My
gratefulness belongs to the foundation Nadání Josefa, Marie a Zdeňky Hlávkových, that
supported my abroad studies.

A special thanks belongs to Ing. Martin Nečas, MSc., Ph.D., who helped me carry
out the measurements with laser trackers. Extra thankyou deserves Bc. Ladislav Dvořák
for helping me with the construction of slider-crank measurement device and being an
unfailing encouragement to me.

My big gratitude goes out to my family, my parents, for their support and love.

vi

Abstract
The topic of this thesis is automation of industrial painting operation and design of a
robotic painting cell. A novel concept of robotic trajectory planning based on motion
tracking technology is introduced, implemented and tested. This work offers a comparison
of possibly used sensors supported by simulations and experiments and verifies the
designed concept using a robotic model. Further, it elaborates software for realization of
the task of industrial painting automation. The result is presented in context of whole
automated robotic painting cell including code for PLC control.

Keywords: Automation, industrial painting, robotic painting, trajectory planning,
motion tracking, inertial sensors, PLC control, Moore state machine

Abstrakt
Tématem této práce je automatizace procesu průmyslového lakování a návrh robotického
lakovacího pracoviště. V úvodu je představen unikátní koncept plánování robotické
trajektorie založený na technologii snímání pohybu, který je dále implementován a
otestován. Jsou představeny možné senzory pro snímání pohybu, jejichž porovnání je
vytvořeno na základě simulací a experimentů. Ověření navrhovaného konceptu je provedeno
pomocí simulačního modelu robota. Dále je navrhnut a vypracován software pro podporu
procesu automatizace průmyslového lakování. Výsledné řešení je prezentováno v kontextu
celistvého automatizovaného robotického lakovacího pracoviště včetně kódu pro jeho PLC
řízení.

Klíčová slova: Automatizace, průmyslové lakování, robotické lakování, plánování
trajektorie, snímání pohybu, inerciální senzory, PLC řízení, Moorův stavový stroj

Překlad názvu: Návrh robotického lakovacího pracoviště s využitím snímání pohybu a
imitace lakýrníka

vii

Contents
1 Introduction 1

2 Background and literature review 3

3 Concept of the solution 7

4 Thesis targets 11

5 Motion tracking task 13
5.1 Overview of motion tracking techniques . 14
5.2 Coordinate frames and transformations . 17
5.3 Dynamics . 20
5.4 Laser Trackers . 21
5.4.1 Method . 22
5.4.2 Hardware specification . 22
5.4.3 Software specification . 24
5.4.4 Post-processing . 25
5.4.5 Simulation . 29
5.4.6 Measurement scenarios . 30
5.4.7 Results . 30

5.5 Inertial Sensor . 32
5.5.1 Method . 33
5.5.2 Hardware specification . 35
5.5.3 Software specification . 36
5.5.4 Post-processing . 40
5.5.5 Simulation . 45
5.5.6 Measurement scenarios . 46
5.5.7 Results . 47

5.6 Visual and inertial sensor fusion . 49
5.6.1 Method . 50
5.6.2 Hardware specification . 51
5.6.3 Software specification . 52
5.6.4 Post-processing . 53
5.6.5 Measurement scenarios . 56
5.6.6 Results . 56

5.7 Comparison . 57

viii

6 Robot control program synthesis 59
6.1 Transformation . 59
6.2 Inverse kinematic problem . 60
6.3 Control commands generation . 62
6.4 Simulation . 63
6.4.1 PyBullet . 63
6.4.2 ROS - Descartes . 65

6.5 Conclusions from simulations . 66

7 Software project design 69
7.1 Introduction . 69
7.2 Software specification . 70
7.2.1 User roles, agents and actions . 71
7.2.2 Hardware and software requirements . 73

7.3 Software analysis . 74
7.4 Software testing . 75

8 Robotic painting cell design and control 85
8.1 Task description . 86
8.1.1 The painting operation description . 86
8.1.2 Fault diagnosis and isolation . 89
8.1.3 Emergency stop . 89

8.2 Task analysis . 89
8.2.1 Hardware design . 90

8.3 State model . 91
8.4 State machine algorithm design . 91
8.4.1 Moore state machine algorithm design . 92

8.5 State machine algorithm implementation . 93

9 Discussion and conclusions 111

10 Future work 115

Bibliography 117

A Motion tracking measurements results 125
A.1 Laser Trackers . 126
A.2 MMR IMU sensor . 146
A.3 T 265 tracking camera . 179
A.4 MMR IMU sensor and T265 tracking camera . 187

ix

B Robot simulation results 195
B.1 Simulation data . 196
B.2 PyBullet . 201
B.3 ROS - Descartes . 204

C Source code 207
C.1 Laser Trackers post-processing . 207
C.2 MMR IMU sensor control and post-processing . 207
C.3 T265 tracking camera post-processing . 207
C.4 PyBullet KUKA robot simulation . 207
C.5 ROS - Descartes ABB robot simulation . 207
C.6 PLC control program . 207

x

List–of–Figures
2.1 The world’s first industrial robot by Norwegian company Trallfa. The robot was
developed for industrial painting and later bought by ASEA (ABB) [2]. 3

5.1 The absolute laser trackers AT901 (front) and AT960 (back) by Leica. Dimensions
ca. 250x250x500 millimeters, weight 15 kilograms. [37]. 23

5.2 Two Super CatEye reflectors mounted on a solid bar and fixed on a rotary drive
during experiment. 24

5.3 The algorithm of dead-reckoning. Orientation and position are determined based
on measured angular velocity and external specific force [23]. 34

5.4 The MetaMotionR+ sensor by Mbientlab. The PCB and battery are enclosed in a
plastic case (now open). Dimensions 27x27x4 millimeters, weight 6 grams. The
orientation of the body coordinate frame is shown (following the RGB-xyz
convention). 35

5.5 The slider-crank measurement device built to perform experiments with Mbientlab
MMR sensor and RealSense T265 tracking camera. The device consists of three
revolute joints and one sliding joint realized by four wheels. The MMR sensor can be
placed in the paper boxes in three different configurations, the camera can be
mounted with two screws at the end of the sliding part in three different
configurations as well. 47

5.6 The tracking camera T265 by Intel RealSense. Dimensions 108x24.5x12.5
millimeters, weight 60 grams [60]. The orientation of the body coordinate frame is
shown (following the RGB-xyz convention). 51

6.1 Simulation of KUKA LBR iiwa in PyBullet. 64
6.2 Simulation of ABB IRB 2400 in ROS. 65

7.1 Context model of the Robo-Painter software. 72
7.2 Context model of the Robo-Painter software, detail. 76
7.3 Entity relationship diagram of the Robo-Painter software. 77
7.4 Data flow diagram of the Robo-Painter software at level 0, system overview. . . 78
7.5 Data flow diagram of the Robo-Painter software at level 1, software processes. . 79
7.6 Data flow diagram of the Robo-Painter software at level 2, software processes from
the user’s (agent’s) perspective. 80

7.7 State transition diagram of the Robo-Painter software at level 0. 81
7.8 State transition diagram of the Robo-Painter software at level 1, from the
functional subsection’s perspective (measurement and post-processing). 82

xi

7.9 State transition diagram of the Robo-Painter software at level 1, from the
functional subsection’s perspective (optimization and robot control). 83

8.1 3D model of the robotic painting cell with labeled elements. 88
8.2 Diagram of the pneumatic circuit used in the robotic painting cell. 91
8.3 State model. Sequential function chart of the super state mode, with identified
transitions (c) and states (s). 94

8.4 Sequential function chart of the automatic mode, with identified transitions (c) and
states (s). 95

8.5 Sequential function chart of the automatic mode, detail of the failure and
emergency stop handling part. 96

8.6 Sequential function chart of the manual mode, with identified transitions (c) and
states (s). 97

8.7 Table of transitions for the super state mode 1/2. 98
8.8 Table of transitions for the super state mode 2/2. 98
8.9 Table of states for the super state mode. 99
8.10 Table of transitions for the automatic mode 1/4. 100
8.11 Table of transitions for the automatic mode 2/4. 101
8.12 Table of transitions for the automatic mode 3/4. 102
8.13 Table of transitions for the automatic mode 4/4. 103
8.14 Table of states for the automatic mode. 104
8.15 Table of transitions for the manual mode 1/4. 105
8.16 Table of transitions for the manual mode 2/4. 106
8.17 Table of transitions for the manual mode 3/4. 107
8.18 Table of transitions for the manual mode 4/4. 108
8.19 Table of states for the manual mode. 109

A.1 Laser tracker simulation, dynamic calibration by circular movement, trajectory. 127
A.2 Laser tracker simulation, dynamic calibration by circular movement, position
vector. 128

A.3 Laser tracker simulation, dynamic calibration by circular movement with
maximum noise, calibration error. 128

A.4 Laser tracker simulation, dynamic calibration by circular movement with
minimum noise, calibration error. 129

A.5 Laser tracker simulation, dynamic calibration by random movement, trajectory. 130
A.6 Laser tracker simulation, dynamic calibration by random movement, position
vector. 131

xii

A.7 Laser tracker simulation, dynamic calibration by random movement with
maximum noise, calibration error. 131

A.8 Laser tracker simulation, dynamic calibration by random movement with
minimum noise, calibration error. 132

A.9 Laser tracker measurements, dynamic calibration, trajectory. 133
A.10 Laser tracker measurements, dynamic calibration, calibration error. 134
A.11 Laser tracker measurements, circular movement with common reflector,
trajectory. Data based on dynamic calibration are not coincident. 135

A.12 Laser tracker measurements, static calibration, trajectory. 136
A.13 Laser tracker measurements, static calibration, calibration error. 137
A.14 Laser tracker measurements, circular movement with common reflector,
trajectory. Data based on static calibration are coincident. 138

A.15 Laser tracker measurements, circular movement with common reflector,
orientation. Rotation around x-axis is not defined. 139

A.16 Laser tracker measurements, random movement, orientation. Rotation around
x-axis is not defined. 139

A.17 Laser tracker measurements, random movement 1 with common reflector,
trajectory. 140

A.18 Laser tracker measurements, random movement 1, velocity measured by tracker 1.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal. 141

A.19 Laser tracker measurements, random movement 1, velocity measured by tracker 2.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal. 141

A.20 Laser tracker measurements, random movement 1, acceleration measured by
tracker 1. The dense parts of the diagram are oscillations due to laser tracker’s loss of
signal. 142

A.21 Laser tracker measurements, random movement 1, acceleration measured by
tracker 2. The dense parts of the diagram are oscillations due to laser tracker’s loss of
signal. 142

A.22 Laser tracker measurements, random movement 2 with common reflector,
trajectory. 143

A.23 Laser tracker measurements, random movement, velocity measured by tracker
1. 144

A.24 Laser tracker measurements, random movement, velocity measured by tracker 2.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal. 144

A.25 Laser tracker measurements, random movement, acceleration measured by
tracker 1. 145

xiii

A.26 Laser tracker measurements, random movement, acceleration measured by
tracker 2. The dense parts of the diagram are oscillations due to laser tracker’s loss of
signal. 145

A.27 MMR and ideal IMU simulations, steady state, sensor readings. Deviation of
MMR data from an ideal IMU is visible. 147

A.28 MMR IMU simulation, steady state, histogram of measured acceleration with
Gaussian fit. Offset from ideal zero measurements is shown, noise appears to be
Gaussian. 148

A.29 MMR and ideal IMU simulations, rotation about z-axis, with added Gaussian
noise, sensor readings. Deviation of MMR data from an ideal IMU is visible. . . . 149

A.30 MMR IMU simulation, rotation about z-axis, with added Gaussian noise, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out. 150

A.31 MMR IMU simulation, rotation about z-axis, with added Gaussian noise,
acceleration. Undesirable oscillation in x- and y-axis is visible. 151

A.32 MMR IMU simulation, rotation about z-axis, with added Gaussian noise,
position. Original signal diverges, but coincides with reference when filtered. . . . 152

A.33 MMR IMU simulation, rotation about z-axis, with added Gaussian noise,
traveled trajectory. Without filtering, motion that was not present is generated due
to double integration of errors. 153

A.34 MMR and ideal IMU simulations, harmonic motion in x- and z-axis, with added
Gaussian noise, sensor readings. Deviation of MMR data from an ideal IMU is
visible. 154

A.35 MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, global acceleration. Large oscillation in y-axis is visible, possibly filtered out. 155

A.36 MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, velocity. Original signal diverges, but coincides with reference when fully
filtered. 156

A.37 MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, position. Original signal diverges, but coincides with reference when fully
filtered. 157

A.38 MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, traveled trajectory. With filtering, the trajectory reflects real motion. 158

A.39 MMR IMU experiment, transformation of coordinate frames. 159
A.40 MMR IMU experiment, steady state, calibrated linear acceleration, histogram
with Gaussian fit. Offset from ideal zero measurements is shown, noise appears to be
Gaussian. 160

xiv

A.41 MMR IMU experiment, steady state, not calibrated linear acceleration,
histogram with Gaussian fit. Offset from ideal zero measurements is shown, noise
appears to be Gaussian. 161

A.42 MMR IMU experiment, steady state, raw acceleration, histogram with Gaussian
fit. Offset from ideal zero measurements is shown, noise appears not Gaussian. . 162

A.43 MMR IMU experiment, repeated translation in z-axis, linear acceleration, global
acceleration. The undesirable bias increases with time. 163

A.44 MMR IMU experiment, repeated translation in z-axis, linear acceleration, Euler
angles. Visible drift and deviations are sufficiently small. 164

A.45 MMR IMU experiment, harmonic motion in z-axis (fast), linear acceleration,
Euler angles. Visible drift and deviations are sufficiently small. 165

A.46 MMR IMU experiment, repeated translation in z-axis, calibrated linear
acceleration, traveled trajectory. Even when filtered, the trajectory does not reflect
real motion. 166

A.47 MMR IMU experiment, repeated translation in z-axis, not calibrated linear
acceleration, traveled trajectory. Even when filtered, the trajectory does not reflect
real motion. 167

A.48 MMR IMU experiment, repeated translation in z-axis, raw acceleration, traveled
trajectory. Even when filtered, the trajectory does not reflect real motion. 168

A.49 MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, local
acceleration. 169

A.50 MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration,
global acceleration. 170

A.51 MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out. 171

A.52 MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration,
velocity. Original signal diverges, but can be filtered out to show expected values. 172

A.53 MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration,
position. Original signal diverges, but can be filtered out to show expected values. 173

A.54 MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, local
acceleration. 174

A.55 MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, global
acceleration. 175

A.56 MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out. 176

xv

A.57 MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration,
velocity. Original signal diverges, but can be filtered out to show expected values. 177

A.58 MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration,
position. Original signal diverges, but can be filtered out to show expected values. 178

A.59 RealSense T265 experiment, transformation of coordinate frames. 180
A.60 RealSense T265 experiment, steady state, histogram with Gaussian fit. Offset is
visible but sufficiently small, no noise distribution is shown. 181

A.61 RealSense T265 experiment, steady state, position. The measured data are stable
in sufficient range. 182

A.62 RealSense T265 experiment, repeated translation in y-axis, position. With
coordinate frames initialization part. 183

A.63 RealSense T265 experiment, harmonic motion in y-axis (fast), position. With
coordinate frames initialization part. Data resemble expected values. 184

A.64 RealSense T265 experiment, harmonic motion in y-axis (slow), position. With
coordinate frames initialization part. Data resemble expected values. 185

A.65 RealSense T265 experiment, harmonic motion in y-axis (fast), position. With
coordinate frames initialization part. Data resemble expected values, but with an
observable drift. 186

A.66 MMR IMU and RealSense T265 experiment, repeated translation in y-axis,
position. T265 shows expected data, MMR follows them only inaccurately. 188

A.67 MMR IMU and RealSense T265 experiment, translation in z-axis, position. T265
shows expected data, MMR follows them only inaccurately. 189

A.68 MMR IMU and RealSense T265 experiment, harmonic motion in y-axis (fast),
position. T265 shows expected data, MMR follows them only inaccurately, with
offset. 190

A.69 MMR IMU and RealSense T265 experiment, harmonic motion in y-axis (slow),
position. T265 shows expected data, MMR follows them only inaccurately, with
offset. 191

A.70 MMR IMU and RealSense T265 experiment, harmonic motion in z-axis (fast),
position. T265 shows expected data, MMR follows them only inaccurately, with
offset. 192

A.71 MMR IMU and RealSense T265 experiment, harmonic motion in z-axis (slow),
position. T265 shows expected data, MMR follows them only inaccurately, with
offset. 193

xvi

B.1 Trajectory 1 sampled by tracking camera T265 held in hand, random motion
imitating painting, 1D. 197

B.2 Trajectory 1 sampled by tracking camera T265 held in hand, random motion
imitating painting, 3D. 198

B.3 Trajectory 2 sampled by tracking camera T265 held in hand, random motion
imitating painting, 1D. 199

B.4 Trajectory 2 sampled by tracking camera T265 held in hand, random motion
imitating painting, 3D. 200

B.5 Error of solutions of inverse kinematics while performing trajectory 1 by KUKA in
PyBullet simulation. 202

B.6 Error of solutions of inverse kinematics while performing trajectory 2 by KUKA in
PyBullet simulation. 202

List–of–Tables
5.1 Mbientlab MMR motion tracking sensors characteristics [43],[44]. 36

5.2 Structure of the csv file with downloaded logged data from the MMR IMU sensor. 39

5.3 Intel RealSense tracking camera T265 sensors characteristics [60]. 51

5.4 Structure of the csv file with downloaded logged data from the Intel RealSense
tracking camera T265. 53

5.5 Comparison of presented motion tracking techniques with respect to the use case of
tracking of a hand-held spray gun. 58

7.1 Data glossary of the Robo-Painter software. 74

8.1 Table of identified errors that can occur during a run of the PLC program. 90

8.2 Details of the emergency stop mode that occurs when the emergency stop switcher
is activated during a run of the PLC program. 90

8.3 Structure of the table of transitions. 92

8.4 Structure of the table of states. 92

xvii

Chapter 1

Introduction

According to [1], spray painting was the first industrial application employing robots. It
happened in a Norwegian company Trallfa producing wheelbarrows and the motivation was
unsurprisingly the same as today. Unpleasant working environment in paint workshops drew
people away and there was lack of workforce.

Trallfa managed to develop a commercial successful painting robot that was in 1985
bought by ASEA (later ABB). Since then, painting robots take part in manufacturing
ordinarily, especially a lot they are used in automotive industry [1].

At the early stages, robots were installed in painting operations as these were considered
being easy to automate [1]. Nowadays, a lot of effort is put into research in area of industrial
painting automation, because it may be easy to automate in the first place, but it eventually
shows to be difficult to do it optimally, efficiently and in top quality.

This work aims to contribute to the topic of robotic painting and industrial painting
automation overall. It presents a novel approach to robotic trajectory planning based on
human painter’s know how and skills. It focuses on automation of batch productions suggesting
time, cost and effort efficient solution that has moreover the potential to be optimal and
accurate.

The contribution is not only on a theoretical level, neither is its scope reduced to a
specific problem without a context, although some parts are elaborated very thoroughly. On
the contrary, this work approaches the automation of industrial painting as a complex task
and designs a complete solution to it.

1

2

Chapter 2

Background and literature review

Figure 2.1: The world’s first industrial robot by Norwegian company Trallfa. The robot was
developed for industrial painting and later bought by ASEA (ABB) [2].

Industrial painting or more generally coating is a technological operation often included
in manufacturing processes. Its purpose is to cover a product’s surface with a layer of material
to provide it with mechanical and chemical protection and/or desired visual characteristic.
The coated product can be made of various materials, mostly metal or wood. Industries
employing this manufacturing process are mainly automotive, metal and furniture industries.
The material of coating layer can be various e.g. metallic alloy, ceramics, polymer and is
applied as a solid in form of powder, rods, plates, wires or other arrangements, or as a liquid

3

2. Background and literature review
or gas [3].

There exist different mechanisms of coating material deposition that can be sorted into
bigger groups. Vapor deposition is done in a chamber with high vacuum where the material
is transfer to a vapor state and afterwards condensates on the surface of a coated product.
Electrodeposition coating takes place in a cell filled with electrolyte and is powered by electric
current. The material is transferred towards surface of coated product where it creates a
desired layer. Sol-gel coating is done by dipping the coated product into a tub with adhesive
sol-gel substance that sticks to it and forms a layer on its surface [3].

Spraying is another group of deposition techniques. It includes thermal spray, plasma
spray, cold spray, warm spray and arc wire spray coating. These methods differ in the way
how material is prepared before it is sprayed by a high-speed jet through air onto the coated
product. Some use heat produced by diverse sources, some rely on impact and solid mechanics
of material particles [3].

The other than spraying techniques are performed in chambers or tubs and the role
of human worker in these processes is a role of an operator who controls the process and
manipulates with the material, but is not directly involved in the coating itself. The spraying
techniques on the contrary require a presence of a worker who holds a spraying tool (a spray
gun with jet) against the coated product and with his or her movements defines and performs
the coating operation. These techniques are due to their nature possible to automate by
replacing the human worker with an industrial robot.

This work focuses on spraying techniques, particularly on in industry very often used
cold spray or spray painting, where the material is deposited in form of aerosol. There are
multiple factors influencing quality of painted layer such as its thickness, uniform coverage,
speed an angle of spraying gun and state of the aerosol. It can be concluded that most of the
factors depend on the trajectory of the painting tool and therefore the trajectory planning
plays a crucial role in the success of a painting operation.

There has been a lot of research done in the topic of painting robot trajectory planning.
Many of known methods utilize CAD models (3D data about product’s geometry) and
mathematical and physical models of painting mechanics. The first representative of these was
an Automatic Trajectory Planning System (ATPS) developed by a team of professor Suk-Hwan
Suh in 1991 [4]. It did surface approximation using B-splines and path decomposition on
short intervals. Other recent examples are [5] or [6].

The trajectory can be also generated as a sequence of predefined trajectories valid
for geometric primitives on which the product’s surface is decomposed [7]. The trajectory
planning can also be solved by optimization techniques, defining the task as a constrained
variational problem. This approach minimizes variation in accumulated layer thickness by

4

.................................... 2. Background and literature review

evaluating it for each surface point and painting tool position and orientation and applying
nonlinear optimization to find desired solution [8].

Alternatively, instead of a CAD model, a set of pictures of the product can be used to
extract its geometric features [7]. To allow even more flexible trajectory planning a system
utilizing 3D scanner can be used, that scans the part when moving into the painting cell on a
conveyor and designs the trajectory right before the painting operation [9].

There are also solutions that employ vision systems into the trajectory planning and
painting operation control. The painting process can be accelerated when the products that
come into a painting cell on a conveyor do not stop but move continuously. To be able to
paint these moving parts, robot has to be flexible and correct its trajectory to correspond
with the actual position of painted parts. Such system is implemented for example in [10].
Robots can achieve even higher level of autonomy by performing self-localization techniques
using vision systems mounted on the robot’s end effector. Such solution exists for mobile
robot performing industrial painting of walls in construction sites [11].

An interesting approach is to use virtual reality (VR) system, simulate painting operation
and use collected data for robot programming [12].

The research and literature concerning topic of painting robot trajectory planning and
optimization is extensive. Each method has specific aspects making it more ideal in some
cases and less ideal in others. The topic is definitely not closed yet, there has not been an
optimal solution discovered. A fact to keep in mind is, that the industrial practice is still very
often hard automation and trial-and-error methods. This thesis presents a novel method of
painting robot trajectory planning and aspires to contribute to the topic with own innovative
and competent solution.

5

6

Chapter 3

Concept of the solution

Chapters 1 and 2 describe the selected problem of industrial painting automation, its
background and motivation for solving it. This chapter aims to present a concept of the
solution designed and elaborated further in this work. The solution is meant to be innovative
and to provide an alternative, efficient way of automation of a painting operation, that can in
general be extended to other manufacturing processes.

The main idea of presented solution is to make use of explicit and implicit knowledge
and experience of a human worker, who performs the industrial painting professionally. The
solution employs a robot and demands it to resemble the human. The goal is to generate a
trajectory for the robot and a control program for the robot in such way, that the robotic
painting operation imitates the worker’s painting operation. To achieve so, motion tracking
technique is used to precisely capture the real painting performed by a worker. The trajectory
of worker’s painting tool is sampled during painting and transformed to the robot trajectory.
The control program for the robot is then generated to follow this trajectory, which results in
the robot repeating the painting operation according to worker’s example.

The intention is that the human paints first several products of a series, finds the optimal
way of painting it and then records the ideal painting operation using a motion tracking
system. From this record the trajectory of painting tool is extracted and transferred to the
robotic control system. The system then generates a control program so, that the painting
tool held by the robot as end-effector reproduces the trajectory of the tool held by the worker.
The robot then starts painting the rest of the products in the series instead of the human but
in the same way the human would do. This approach is motivated by several thoughts:. A professional industrial painter is highly skilled in the painting activity. It is a person,

who understands the problem very well and who has experienced many of its forms.. Trajectory planning systems try to design an optimal trajectory utilizing knowledge base
and mathematical and physical models. A human painter has an extensive knowledge

7

3. Concept of the solution ..
base and a natural sense for physics, supported by experience.. Even if the planning system had a very good knowledge base and model, it would be
by a big part constructed with the help of human painter. Therefore, it would hardly
outperform the human.. The trajectory planning systems need a reasoning engine to infer an optimal trajectory
from presented data. Humans are by default equipped by an excellent reasoning system,
usually outperforming the artificial one.. Data needed to help the system to plan a trajectory, as for example 3D models of painted
product’s geometry, are often not available. Their collection would be an extra operation.. It is not desired to automate industrial painting operations because humans would not
do it well enough. The reason is, there is a lack of workforce. Therefore, the robot does
not have to do it better than humans, doing it just the same is sufficient.. Using motion tracking of a painter for generation of robot control program does not
require any other specialist or robotic expert. It reduces cost and maintains exclusive
know-how.

Implementing this approach has several further advantages:. The painter can review several attempts to paint a product optimally and merge them
to create a truly optimal trajectory he or she would otherwise not be able to achieve at
once.. The company that performs industrial painting can keep a few highly skilled painters to
record the model trajectories. The profession will not be forgotten, the workers will not
lose their jobs, but their working conditions will improve significantly, since they will
spend less time with the painting itself.. The automation of painting of a new product does not require a specialist for robotics
and the company with such system is therefore more flexible.

The suggested solution is meant mostly for companies engaged in middle and small series
production. The solution would be overly complicated for a job production company. In mass
production it would be probably easier for a robotic expert to fine tune the robot control
program using available conventional methods, when there is time and space for doing so.

From the technical point of view the designed solution should be implemented in form
of a sensory system with a corresponding control software. The sensors include a motion

8

.. 3. Concept of the solution

tracking sensor fixed to a spray gun by a custom-made jig. The role of the motion tracking
sensor is to track trajectory of the spray gun. To reconstruct the painting operation not only
position but also orientation need to be captured in form of 6DoF data. In fact, information
about rotation of the spray gun around its own longitudinal axis is unnecessary, since the
beam of paint is parallel to this axis and has usually a circular trace. The way how the
beam falls on a painted product is independent on the rotation around longitudinal axis and
therefore, even 5DoF measurements are sufficient.

In terms of accuracy, we assume that units of millimeters are satisfactory. The painting
tool is not in contact with the product, the optimal distance to it has tolerances. Also, it is a
common practise that the product goes through a quality control after it is painted and any
imperfections are fixed afterwards. Often there are also spots needed to be painted with a
brush not a spray gun, which is also done outside the main painting operation. The presence
of human inspection and correction after the robotic painting lowers the requirements on
robotic painting accuracy.

Another sensor mounted on the spray gun is there to record when the spray gun
was triggered. The corresponding software should also allow for data management and
automatically generate control program for a robot based on recorded trajectory.

The solution presented as a concept in this chapter is elaborated further in this work in
chapters 5 - 8.

9

10

Chapter 4

Thesis targets

The goal of this work is to automate an industrial painting operation by designing a
robotic painting cell. The automation process is based on novel approach using worker’s
motion tracking to imitate the painting performed by human. The ambition of this work is to
provide a complex solution for the painting operation automation problem. It approaches it
as an engineering task to be solved rather than a theoretical study. It means it aims to be
concerned with all main parts and stages of automation and eventually provide a complete
and real solution for it.

At the same time, the aspiration is to design a novel approach that would in some aspects
outperform existing solutions. This work will also contribute to the indoor motion tracking
problem, that is a real engineering challenge in general and therefore deserves attention of
academic community.

This chapter defines several thesis targets to meet:. Define a concept of a novel solution of the industrial painting automation task (Chapter 3).. Build and test a system for trajectory recording using motion tracking sensors (Chapter 5).. Provide a transfer of the trajectory to a robotic control program and verify the concept
of the solution by simulations (Chapter 6).. Elaborate a study of a software supporting the defined solution (Chapter 7).. Design a whole robotic painting cell including control of the manufacturing process to
complete the task of automating a painting operation (Chapter 8).

11

12

Chapter 5

Motion tracking task

This chapter addresses a key part of the presented solution of industrial painting
automation task. Using motion tracking of a human for robot trajectory synthesis is a
novelty that has the potential to reduce cost, time and effort, usually needed to automate a
manufacturing process. This work builds on this premise and hence a lot of attention was
dedicated to mastering motion tracking task. Also, the motion tracking part introduces most
of the engineering challenges associated with this work and is therefore the most elaborate of
all chapters.

The aim of motion tracking in general is to determine position and orientation in time,
or possibly other motion characteristics, of a tracked object using sensory measurements. The
tracked object may be various - an aircraft, a tool or a part of human body, the sensors may
be of different kinds and combinations too. The output depends on the goal of tracking and
the capability of used measurement technique. The level of detail, extensiveness and accuracy
can greatly vary [13].

In outdoor environments Global Navigation Satellite System (GNSS) dominates. It is
used in almost every navigation application, sometimes improved by fusing with additional
measurement techniques [13], [14].

Indoor positioning, navigation or motion tracking is compared to outdoor techniques
more varied, still evolving and still not perfectly mastered. This confirms also holding of
International Conference on Indoor Positioning and Indoor Navigation [15] organized yearly
since 2010. The issues with indoor positioning come from several sources. First, many
tracked operations indoor may require very high accuracy (e.g. manufacturing tasks, surgical
operations). Next, the indoor environment may be very dynamic (e.g. manufacturing line,
a warehouse). It can be as well cramped, blocking the view or reach of sensors. Also, the
conditions regarding air and light, magnetic or electric disturbances may be harsh.

This chapter describes a detailed analysis of indoor motion tracking task in context of
industrial painting automation and provides a design of its solution, supported by performed

13

5. Motion tracking task ...
experiments and studied literature. Sections 5.1 - 5.3 provide overview, needed background
and equations. Sections 5.4 - 5.7 focus on particular tracking techniques, experiments and
conclusions.

5.1 Overview of motion tracking techniques

Motion tracking is a general task and there are many different techniques of solving
it. They differ in the physical principal they are based on and can be sorted in following
categories [16], [13]:

.Optical techniques

. Light pulses. Camera

. Inertial techniques

.Magnetic techniques

. Acoustic techniques

. Radio techniques

. Bluetooth. Ultra-wideband.Global Navigation Satellite System (GNSS)

. Hybrid techniques

In this section, I provide a general overview of available motion tracking technologies. In
the rest of this chapter, I focus on three of them that seem relevant to the application of motion
tracking of a hand-held spray gun. For each of them, I provide detailed description of working
principle and hardware and software characteristics. I chose real products representing the
given tracking techniques, got them to work, prepared experiments, tested them, evaluated
their performance and compared them. Section 5.4 is concerned with laser trackers, an
example of optical techniques utilizing light pulses. Section 5.5 is dedicated to inertial sensors,
section 5.6 to a combination of inertial sensor and a camera.

14

................................ 5.1. Overview of motion tracking techniques

Optical techniques

Optical techniques employing light pulses utilize transmitters and receivers, optionally
also reflectors. They are based on measurement of time of travel by a light beam between
transmitter and receiver, followed by trilateration calculations. Alternatively, they are
combined with other techniques such as inertial sensing or angle encoders. The achieved
accuracy can be very high [17].

The set-up of such system is relatively space demanding. There are usually multiple
receivers distributed over the area of motion. Also, the hardware for pulse generation can not
be very small. These systems require a free line of sight between the receivers and transmitters,
that further limits the type of environment and motion it is suitable for. Next, it is necessary
to calibrate the mutual position of the distributed receivers [14].

An example of the optical techniques utilizing light pulses are laser trackers [17], visible
light communication systems [18] or devices for virtual reality [19].

Optical techniques based on camera images use image correlation, visual features
detection and tracking and other computer vision algorithms. Also, depth cameras or sensing
visual landmarks can be applied. Similar to the light pulses techniques they are space
demanding. They usually require multiple cameras distributed around the measurement
area and may stop working when the view is blocked. Also, they need ideal light operating
conditions [20], [21].

An example of motion tracking systems utilizing cameras are gaming systems such as
Microsoft Kinect [22] or systems used by self-guided vehicles [14].

Inertial techniques

Implemented in form of inertial measurement units, inertial techniques make use of
accelerometer, gyroscope and optionally magnetometer data. Accelerometer measures vector
of acceleration, gyroscope measures vector of angular velocities and magnetometer vector of
magnetic field intensity. An integration and double integration procedure are necessary to
derive orientation and position from measured data. The magnetometer data can be fused
together to reference the calculated orientation [23].

The achieved accuracy is low and progressively decrease with length of measurement.
The inertial technique, when used alone, serves only for rough estimates of tracked motion.
However, it is realized by an inexpensive, compact, small in size and low energy consumption
hardware. For that reason, it is used widely in industry, being part of smartphones, wearables,
and often complements other motion tracking techniques [23], [14], [24], [25].

15

5. Motion tracking task ...
Magnetic techniques

This technique is built on magnetic field intensity measurements. There exist local
anomalies of Earth’s magnetic field that can be detected by a magnetometer. Mapping these
anomalies to space is used for self-localization in that space. When used indoors, it utilizes
the fact that an anomaly of the ambient magnetic field in a building is constant and unique,
being caused by static metal parts in the construction and the environment [26].

The sensor can be very small and wireless, which is for an advantage. On the other
hand, the magnetic technique requires prior generation of a magnetic map of the space. It is
also affected by any moving magnetic parts, changing the otherwise static ambient magnetic
field, which makes it difficult to use in an industrial environment. The precision depends on
the resolution of magnetic map and is around units of centimeters [26].

The magnetometer can as well be used only as a compass to determine tracked object’s
heading [14].

Acoustic techniques

These techniques work in a similar way as the optical ones using light pulses. Instead of
light, ultrasound pulses are used in this case. The system is built up from transmitters and
receivers and based on time of flight measurements and trilateration [27]. Alternatively, the
system can utilize echoes from nearby objects instead of having receivers [28].

The space set-up is demanding, but the accuracy can be very high, even bellow one
millimeter. These systems are less sensitive to environmental conditions than the optical ones,
however, suffer from the line of sight limitations equally [27], [28].

Radio techniques

Radio techniques rank among active beacons techniques together with some optical and
acoustic techniques. The systems of active beacons are composed of transmitters and receivers.
One group is mounted around a space at known locations in large number representing the
beacons, the other group is in low number mounted on the tracked object. The system
measures either time of arrival and performs trilateration, or direction in form of heading
angle and performs triangulation [14].

Alternatively, the technique utilizes strength of signal measurements instead of time of
flight or angle of arrival. Similar to magnetic techniques, a map of space based on values of
signal strength can be built and use for self-localization. The Bluetooth systems are built on
ability to measure the strength of signal. An advantage of Bluetooth technology is, that it is
commonly available in smartphones and wearables. Applications aiming to provide indoor

16

.................................5.2. Coordinate frames and transformations

navigation for people in shopping malls, museums, offices or other complex buildings are
implemented based on this premise [29].

The ultra-wideband technique is based on time of arrival measurement. The signals can
travel and be measured on longer distances than by Bluetooth and they can also get though
obstacles smoothly. These characteristics make the ultra-wideband technique generally more
accurate than the Bluetooth, below one centimeter. On the other hand, it requires building
an infrastructure of beacons and receivers. The ultra-wideband systems are implemented for
navigation more in warehouses or factories [16].

Global Navigation Satellite Systems (GNSS) are well established for outdoor positioning.
The well-known example is the Global Positioning System (GPS). Unfortunately, they can not
be used indoors, which is very limiting for industrial applications. The technique is based on
measurements of time of arrival of radio signals from satellites to receivers on the ground and
performing trilateration. Even the accuracy in tens of centimeters is not enough for industrial
usage [14].

The radio techniques are in general not capable of orientation estimates.

Hybrid techniques

A wide selection of motion tracking technologies with different characteristics allows
for their combination in order to achieve better performance. A typical sensor that is being
combined with others is the inertial sensor. There are many applications where sensor fusion
is applied on inertial data and ultrasound measurements [30], [31], or inertial and optical
measurements [19], [21]. The inertial sensor can also complement systems based on radio
techniques to extend their position tracking by orientation data [23].

5.2 Coordinate frames and transformations

A crucial issue of any motion tracking task is the correct understanding of used coordinate
systems and reference frames and knowledge of their relationship to the measured data. A
reference or coordinate frame is understood as an ordered set of three mutually orthogonal
unit-length direction vectors. A coordinate system specifies a mechanism for locating points
within a reference frame [32].

Within this work, I refer to several types of coordinate frames [32], [23]:

.Geographical reference frame - NED - it is a coordinate frame having the x-axis
aligned with geographic north, y-axis aligned with geographic east and z-axis pointing
down (towards the Earth’s surface, antiparallel to its outward normal). The absolute

17

5. Motion tracking task ...
orientation is measured w.r.t. this frame. It is sometimes called world frame or local
navigational frame, when its origin lies in the center of gravity of navigated body..Geographical reference frame - ENU - another variant of the inertial reference
frame having the x-axis aligned with geographic east, y-axis with geographic north and
z-axis pointing up (towards the sky, parallel to Earth’s outward normal). The absolute
orientation can be measured w.r.t. this frame, but this convention is not used within
this work..Body coordinate frame - it is rigidly attached to a body, moves and rotates with the
body. The raw inertia sensor measurements are expressed in this frame. Within this
work, it is also called local frame.. Initial coordinate frame - a static coordinate frame. A frame corresponding to
the body coordinate frame of the sensor, as it was positioned at the beginning of
the measurement. Within this work, it can be also called global frame. The relative
orientation is measured w.r.t. this frame.

Some sensors enable the user to express the measured data in the NED (ENU) frame,
initial frame, or both.

In our application, a trajectory of a spray gun is tracked during painting to be later
repeated by a robot leading ideally to the same result. It is necessary to set a reference
coordinate frame in the space and a reference coordinate frame on the product that is being
painted, with a constant transformation between these two frames. Ideally, the space reference
frame could be attached to a part of the holder of the product, so that the position and
orientation of the product w.r.t. to this frame remains constant. The trajectory tracking
should be further done so, that the 6DoF data can be expressed w.r.t. this space reference
coordinate frame.

The most straight forward solution would be to align the space reference coordinate
frame with the coordinate frame in which the measured data are expressed. Either the space
reference coordinate frame can be aligned with NED, or the body frame of the sensor can be
at the beginning of the measurement aligned with the chosen space coordinate frame. All the
measurement can be later transformed into the NED or initial body frame respectively.

I chose the second option, being easier to achieve in practice and possible to achieve
with all types of used sensors. It would be also possible to choose the reference frame
for measurement so, that it is not aligned with the reference space frame, but that a
known constant transformation between them exists. I did not choose to do so, finding it
unnecessarily complicated to transform all the data once more, but I admit that it can be the

18

.................................5.2. Coordinate frames and transformations

most comfortable case in the real measurement set-up in the painting workplace. Knowing
the orientation of the initial coordinate frame of the sensor, we can align it with the space
reference coordinate frame at the beginning of the measurement easily. In practice, it would
be convenient to manufacture a jig so that placing the spray gun with the attached sensor
into that jig would ensure the frames alignment.

As a result of accurate measurement preparation, the 6DoF trajectory data are expressed
w.r.t. to the known reference space coordinate frame. The position and orientation of the
robot coordinate frame is also known and the constant transformation from this robot frame
to the reference space frame can be determined. Finally, the 6DoF data are transformed to
the robot coordinate frame by multiplying them by the robot-space frame transformation
matrix. Based on that transformed data, the robot control program can be generated.

In the rest of this section, I present a set of useful formulas needed for coordinate frames
transformation calculations.

A matrix of directional cosines S [33] is expressed using quaternions as follows:

S =

q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) q2

0 − q2
1 − q2

2 + q2
3

 , (5.1)

where q0, q1, q2, q3 are components of a unit quaternion q such that q = q0 + q1i + q2j + q3k
[34].

The matrix of directional cosines S expressed using Euler angles is of a form:

S =

cosψ cos θ − cosψ sin θ sinψ

cosφ sin θ + sinφ sinψ cos θ cosφ cos θ − sinφ sinψ sin θ − sinφ cosψ
sinφ sin θ − cosφ sinψ cos θ sinφ cos θ + cosφ sinψ sin θ cosφ cosψ

 , (5.2)

assuming the rotation in XYZ sequence about φ, ψ, θ angles [34].

From (5.1) and (5.2) it can be derived that:

φ = arctan −s23
s33

,

ψ = arctan s13√
1− s2

13

,

θ = arctan −s12
s11

,

(5.3)

19

5. Motion tracking task ...
and

q0 = − sin φ2 sin ψ2 sin θ2 + cos φ2 cos ψ2 cos θ2 ,

q1 = sin φ2 cos ψ2 cos θ2 + cos φ2 sin ψ2 sin θ2 ,

q2 = − sin φ2 cos ψ2 sin θ2 + cos φ2 sin ψ2 cos θ2 ,

q3 = sin φ2 sin ψ2 cos θ2 + cos φ2 cos ψ2 sin θ2 ,

(5.4)

where sij stands for an i-th row, j-th column element of matrix S [34].
Equations (5.1), (5.2), (5.3) and (5.4) are implemented in Matlab in the Robotics System

Toolbox as quat2rotm, eul2rotm, rotm2eul and rotm2quat respectively.

5.3 Dynamics

To derive equations later needed to accomplish the motion tracking task, I followed the
description of particle dynamics presented for example in [35]. First, the position vector is
expressed:

rg(t) = x(t)i + y(t)j + z(t)k, (5.5)

where the i, j, k are unit directional vectors defining the global coordinate frame. Since the
global frame is fixed, these components are not functions of time. Further, the velocity vector
can be expressed as:

vg(t) = dr
dt

= vx(t)i + vy(t)j + vz(t)k,

vx(t) = dx(t)
dt

,

vy(t) = dy(t)
dt

,

vz(t) = dz(t)
dt

,

(5.6)

followed by the acceleration vector:

ag(t) = dv
dt

= ax(t)i + ay(t)j + az(t)k,

ax(t) = dvx(t)
dt

= d2x(t)
dt2

,

ay(t) = dvy(t)
dt

= d2y(t)
dt2

,

az(t) = dvz(t)
dt

= d2z(t)
dt2

.

(5.7)

20

... 5.4. Laser Trackers

The derivatives in relationships (5.6) and (5.7) can be approximated by finite differences
resulting in:

vk+1
x = akx(tk+1 − tk) + vkx,

vk+1
y = aky(tk+1 − tk) + vky ,

vk+1
z = akz(tk+1 − tk) + vkz

(5.8)

and finally leading to equations for position calculation:

xk+1 = vkx(tk+1 − tk) + xk,

yk+1 = vky (tk+1 − tk) + yk,

zk+1 = vkz (tk+1 − tk) + zk.

(5.9)

The equations (5.8) and (5.9) can be reformulated for velocity calculation from position
vector:

vkx = xk+1 − xk

(tk+1 − tk) ,

vky = yk+1 − yk

(tk+1 − tk) ,

vkz = zk+1 − zk

(tk+1 − tk) .

(5.10)

and acceleration calculation from velocity vector:

akx = vk+1
x − vkx

(tk+1 − tk) ,

aky =
vk+1
y − vky

(tk+1 − tk) ,

akz = vk+1
z − vkz

(tk+1 − tk) ,

(5.11)

The superscript k indicates the time step.

5.4 Laser Trackers

In order to design an appropriate method of tracking the trajectory of a painting tool,
we conducted several benchmark measurements. For these we chose a device that is capable
of highly accurate measurements without a need to consider if it is suitable for the application
in a painting workplace or not. The measurements were conducted in laboratory and should
simulate measurements of real painting operation in a painting workplace. The results are
meant to give us a notion of the character of measured movements, data and measurement
conditions.

21

5. Motion tracking task ...
We decided to use absolute laser trackers. Laser tracker is a 3D position tracking device

widely used in industrial applications thanks to its high accuracy. The output of the laser
tracker is the position of a tracked point, expressed relatively to the tracker’s local coordinate
system. The declared accuracy of the position data is within 15 to less than 500 micrometers,
depending on the distance of the tracked point and used measurement accessories [36], which
is beyond the needs of our application and therefore considered as optimal.

5.4.1 Method

A laser tracker is composed of a stand with a laser source and a head that has two
degrees of freedom. The head points the laser beam towards a reflector, optical device, that
reflects the beam back to the head. The head can rotate around the vertical and the horizontal
axis so that it is able to follow the reflector in space. The position of the reflector at each
time is described by horizontal and vertical angles of the head and the distance traveled
by the laser from the head to the reflector and back. The distance is determined from the
interference of the reflected laser beam when it reaches the interferometer in the laser head
[17].

The described principal works under an assumption that the line of sight between the
laser head and the reflector is clear and the beam can reach the reflector. This can be limiting
when measuring movements include wide range rotations or are carried out in a dynamic
environment with moving objects or people, potentially blocking the line of sight.

We focus on motion tracking of a painting tool, which is represented as a body in space
and has six degrees of freedom. Since that, the three coordinates of a position vector obtained
from one laser tracker are not enough to locate the paining tool in space. To handle this
limitation, we used two laser trackers and we were tracking two different points. Measuring
position of two points on a body allows for computation of the orientation of the body. The
two measured points were fixed on a solid bar representing the painting tool. Although
we measured six coordinates, only five of them are independent. This is a conclusion of a
constrain put on the distance between the two points, which has to remain constant. Using
this set-up, it becomes possible to reconstruct the position and orientation of the tool except
for the rotation along its own axis. We assume this information to be unnecessary as explained
earlier in chapter 3.

5.4.2 Hardware specification

We used two absolute laser trackers Leica AT960 [37] and Leica AT901 [38] (Fig. 5.1)
and two RRR 1.5" corner-cube reflectors with acceptance angle ±30◦ [36]. First, we intended

22

... 5.4. Laser Trackers

to use the Super CatEye reflectors (Fig. 5.2). They allow to track a target even when it is
moving in wide physical area and rotates a lot, because it has an ultra-wide laser acceptance
angle of ±75◦ [36]. After several tests, we concluded that the accuracy drops compared to
the classical corner-cube reflectors and there still occur situations when the line of sight is
interrupted, hence it is not beneficial. Both laser trackers can cover a measurement volume of
up to 160 meters in diameter.

Figure 5.1: The absolute laser trackers AT901 (front) and AT960 (back) by Leica. Dimensions ca.
250x250x500 millimeters, weight 15 kilograms. [37].

23

5. Motion tracking task ...

Figure 5.2: Two Super CatEye reflectors mounted on a solid bar and fixed on a rotary drive
during experiment.

5.4.3 Software specification

The AT960 controller runs the system software and provides interface to the tracker. It
offers a Real-Time Feature Pack that provides measurement data in real-time over EtherCAT
at frequency up to 1000 Hz and handles the synchronization of the two laser trackers when
used together. The Tracker Pilot software by Leica enables user to quickly check the AT
system, initialize it and set some necessary parameters connected to the AT hardware and
software [37].

For data acquisition, analysis and management, including logging and export, a third-
party metrology software has to be used [37]. In our laboratory, we use TwinCAT 3 software
by Beckhoff. The software allows to configure the measurement and to export the measured
data into csv files.

24

... 5.4. Laser Trackers

5.4.4 Post-processing

To get the desired trajectory data some post-processing must be applied on the logged
measurements. Firstly, the data in form of vertical angle [rad], horizontal angle [rad] and
distance [m] w.r.t. the tracker coordinate frame (world) need to be used to calculate position
vector rw = [xw yw zw]T defining the position of tracked target in the world coordinate frame.
After this stage, each laser tracker has its own measured data expressed w.r.t. its own world
frame.

Next, it is necessary to transform the position vectors rw to one common coordinate
frame in order to get a uniform description of the motion of tracked body. Also, this enables
further computation with the position vectors such as the orientation determination. In
order to transform both vectors to one common frame, it is necessary to know the mutual
position and orientation of the two world frames of individual trackers. It is achieved by a
calibration procedure that leads to determination of a transformation matrix T [33] describing
the transformation from one to another.

When the position vectors rw are transformed to a common frame, their difference is
used to calculate orientation of the tracked body. The velocity and acceleration along the
trajectory can be calculated as well.

All data post-processing was implemented in Matlab R2019b and can be found in
script laser_data_post.m, that also includes visualizations and animations. A script called
laser_velocity_acceleration.m contains code for velocity and acceleration calculations and
visualizations. The source code is to be found in the appendix (C.1). It also includes a
template script cutting_the_data_2_march.m for basic raw data management. That contains
functions for handling outliers, removing insignificant data parts and basic visualization. There
is no need for data synchronization. Data signals from both laser trackers are synchronized
by the AT960 controller running the Real-Time Feature Pack.

Calculation of position vectors

The laser trackers determine the position of a tracked point by providing the vertical
and the horizontal angle of the tracker’s head orientation and the distance between the head
and the tracked point. It is necessary to determine how the angles are defined and in what
range their values lie. The vertical angle, labeled θ, is an elevation angle of the tracker’s head,
measured from the positive z-axis of the tracker coordinate frame (pointing towards the sky)
towards the xy-plane. The θ ∈< −π;π > is equal zero when the head points upwards.

The horizontal angle ϕ is an azimuth angle, ϕ ∈< −π;π >. There was a discrepancy
between the two laser trackers. AT960 measures ϕ from the positive x-axis, where ϕ = 0,

25

5. Motion tracking task ...
increasing towards the positive y-axis and decreasing towards the negative y-axis. When
aligned with negative x-axis, ϕ = −π or π. AT901 measures ϕ from the positive y-axis, where
ϕ = 0, increasing towards the positive x-axis and decreasing towards the negative x-axis.
ϕ = −π or π when aligned with negative y-axis. To unify the angles declaration, I decided to
use the AT960 notation and recalculate the AT901 horizontal angle as ϕ = π

2 − ϕ̃, where the
ϕ̃ is the originally measured one.

Having angles θ, ϕ and distance d defined as described, the position of tracked point
is determined by an equivalent of spherical coordinates. To transform it to the Cartesian
coordinates equation (5.12) is utilized. To distinguish between the two laser trackers, I use
subscripts, 1 stands for the AT901 and 2 for the AT960. r1 describes the position of the
reflector tracked by AT901 expressed in the AT901 coordinate frame. r2 describes the position
of the other reflector tracked by AT960 expressed in the AT960 coordinate frame.

r = [x y z]T ,

x = d sin θ cosϕ,

y = d sin θ sinϕ,

z = d cos θ.

(5.12)

Calibration

To be able to relate the measurements of both laser trackers and make further computa-
tions, it is necessary to know the mutual position and orientation of the two tracker’s world
frames. An ideal way of doing that is to find a transformation matrix T12 from the world
frame of AT901 to the world frame of AT960 that satisfies following equation:

1r2 = T12
2r2. (5.13)

The superscript denotes in which global coordinate frame is the vector r expressed.
The matrix T12 is determined using a calibration procedure. During the calibration,

only one reflector is used and both laser trackers track it together. If the matrix T12 was
known and the vector 2r2 was transformed to the coordinate frame 1 using (5.13), the identity
1r1 = 1r2 would hold. Based on this conclusion a regression formula can be derived as follows:

˜1r1 = T12 ˜2r2, (5.14)

where ˜1r1 and ˜2r2 are matrices of measured position vectors r of dimensions 4xN. The fourth
row of ones is added for consistency with the matrix T dimensions 4x4. N stands for the
number of measurements.

26

... 5.4. Laser Trackers

From (5.14) applying pseudoinversion final expression for T12 is derived:

T12 = (˜1r1 2̃rT2)(˜2r2 2̃rT2)−1. (5.15)

Alternatively, the elements of matrix T12 can be determined using an optimization
method. The objective vector function f ca be defined as:

f = T12 ˜2r2 − ˜1r1, (5.16)

where the elements of matrix T12 are the optimized parameters.
Minimizing f using least square method leads eventually to the same solution as the

regression in (5.15). This conclusion was confirmed by the experiments where both approaches
were tested. The optimization was implemented using a Matlab function lsqnonlin.

It would be possible to further adjust the form of equations (5.15) and (5.16) to utilize
the general knowledge of matrix T characteristics. The matrix dimensions are 4x4 but the
elements in the last row are known constants [0 0 0 1]. In fact, the matrix has only six
independent variables. The matrix of directional cosines S that is a submatrix of the matrix
T (5.17) is orthonormal [33] and therefore represents only three independent variables, the
three angles of rotations. The other three are elements of a displacement vector r.

T =

 S r
0 0 0 1

 = Tϕx(ϕx)Tϕy(ϕy)Tϕz(ϕz)Td(xd, yd, zd)

=

1 0 0 0
0 cosϕx − sinϕx 0
0 sinϕx cosϕx 0
0 0 0 1

cosϕy 0 sinϕy 0

0 1 0 0
− sinϕy 0 cosϕy 0

0 0 0 1

cosϕz − sinϕz 0 0
sinϕz cosϕz 0 0

0 0 1 0
0 0 0 1

1 0 0 xd

0 1 0 yd

0 0 1 zd

0 0 0 1

 .
(5.17)

Choosing the elements of matrix T12 to be the unknown parameters directly is however
computationally easier than choosing the rotation angles and displacements. Proceeding with
the second option would require to differentiate the expressions (5.15) and (5.16) with respect
to the angles ϕx, ϕy, ϕz and displacements xd, yd, zd and the resultant relationships would
be nonlinear.

The number of unknown parameters equal 12 or even 16, when all elements of T12 are
being identified, is still very low compared to the amount of easily collected measurement
data. Therefore, the calibration will converge and there is no need of using the alternative
demanding approach with six parameters. This conclusion was confirmed even experimentally.

27

5. Motion tracking task ...
Transformation and calculation of orientation

The tracking device is static and its coordinate frame can be assumed as the world
coordinate frame. The reflector is the moving part, attached to the tracked object. All
measured data (position of the reflector) are expressed w.r.t. the world frame, which is
convenient, since the world frame is determined from the position and orientation of the laser
tracker and its location can be therefore easily reconstructed. For that reason, I set the world
frame to be the global coordinate frame and the coordinate frame of a reflector to be the
local frame.

It is important to notice, that measurement done by each laser tracker has its own global
and local reference frame. Also, the measurement determines only the position of the center
of the respective local frame, not its orientation. Aiming to determine 6DoF trajectory data
of a body represented by the solid bar on which the reflectors are mounted, it is necessary to
choose one global and one local frame and relate the 6DoF data to them. I chose the resultant
global frame to be the global frame of laser tracker 1 (AT901) and the local frame to have its
center in the local frame of reflector 1.

The position of the local frame is equal to the position vector r1 and does not need to
be transformed anyhow. To determine the orientation of the local frame, the position vector
r2 first needs to be transformed to the global frame using the equation (5.13).

As already mentioned in section 5.4.1, it is not possible to determine all three orientation
angles. Therefore, I set the x-axis of the body local frame to be parallel to the connecting
line between reflector 1 and reflector 2. This x-axis represents the longitudinal axis of the
spray gun and rotation about this axis is thus not interesting for our objective.

The vector of connecting line between reflectors can be noted as R and calculated as
follows:

R = [Rx Ry Rz]T

R = 1r1 − 1r2.
(5.18)

Then we can project the vector R into the xy-plane of the global frame and calculate
the angle ϕR between the x-axis and the projected vector Rxy:

ϕR = arctan Ry
Rx

. (5.19)

Next, we determine the angle θR between the projected vector Rxy in the xy-plane and
the original vector R:

θR = −π/2 + arctan ‖R
xy‖
Rz

. (5.20)

The two angles ϕR and θR determine the orientation of the local frame. To express it in
form of Euler angles the most straight forward way is to use the ZY X sequence. The first

28

... 5.4. Laser Trackers

rotation is about z-axis by angle ϕR, the second rotation is about y-axis by angle θR, the
third rotation cannot be determined and can thus be omitted.

Another option is to compose the matrix of directional cosines S:

S = Sz(ϕR)Sy(θR)

S =

cosϕR − sinϕR 0
sinϕR cosϕR 0

0 0 1

cos θR 0 sin θR
0 1 0

− sin θR 0 cos θR

 =

=

cos θR cosϕR − sinϕR cosϕR sin θR
cos θR sinϕR cosϕR sin θR sinϕR
− sin θR 0 cos θR

 .
(5.21)

From matrix S (5.21) Euler angles and quaternions can be determined using (5.3) and (5.4).

Calculation of velocity and acceleration

The calculation of velocity and acceleration is done simply by differentiating values of
the position vector using (5.10) and (5.11) from section 5.3. The used superscript indicates
the time step, or rather the measurement index, going from k = 1 to k = K, where K is the
number of measurements. The expression (tk+1 − tk) stands for the length of the k-th time
step, that is calculated from the vector of time stamps corresponding to the r data.

Velocity and acceleration were calculated from 1r1, 2r2 and 1r2 data, resulting in 1v1,
2v2, 1v2 and 1a1, 2a2, 1a2.

5.4.5 Simulation

Before proceeding with the experiments, I prepared a simulation to verify how the
calibration procedure performs. The simulation resembles dynamic calibration. The dynamic
calibration is easier to perform and it is desired to find out whether and under which conditions
it can be used.

I chose a position and orientation of the world frame of AT960 expressed in the world
frame of AT901 and calculated the true transformation matrix T12. Then, I generated
trajectories 1r1 of length 100 points. Position vector 2r2 was calculated using the inverse of
true T12 matrix following (5.13).

Two different levels of Gaussian white noise were added. First, the maximum value of
the random component was set to 15 micrometers, next it was set to 500 micrometers. These
values correspond to the range of accuracy of the laser tracker measurements declared by the

29

5. Motion tracking task ...
manufacturer [36]. Therefore, the two designed variants represent the best and the worst case
of the real measured data regarding their accuracy.

5.4.6 Measurement scenarios

Simulation

The generated simulation data were of two types, random and circular. The random
data were generated as a random walk, the circular using harmonic functions.

Experiment

First set of measurements was done to collect calibration data. The aim of calibration
procedure is to gather data from both laser trackers following one common target. First, we
did dynamic measurement, performing random movement of one reflector held by hand. Next,
we did static measurements. The reflector was put on 12 different places, where it was left
static for several seconds. The 12 short sets of static measurements were put together and
used for calibration.

For the next measurement scenario, we made use of the laboratory equipment and
mounted the solid bar with two fixed reflectors on a rotary drive (Fig. 5.2). The laser trackers
measured circular trajectory of reflectors, either each following one reflector or both following
the same one. This scenario, when the true trajectory is known, serves well for analysis of the
goodness of calibration.

Lastly, we measured with two reflectors fixed on the solid bar held in hand. We performed
random movements possibly similar to those done during painting.

The sampling frequency was set to 1000 Hz.

5.4.7 Results

We conducted two series of laboratory measurements with two laser trackers following
scenarios in section 5.4.6. All data were post-processed and visualized using laser_data_post.m
and laser_velocity_acceleration.m. Based on an analysis of results, I drew several conclusions,
which I present in this section. The conclusions are supported by visualizations in Fig. A.1 -
A.26 in the appendix A.1.

In the presented figures, I use RGB-xyz convention to indicate coordinate frames. The
trajectory plots are final frames of animation done by the visualization part of the script, the
large coordinate frame represents the global frame, the small one is the local frame and moves

30

... 5.4. Laser Trackers

during the animation based on the measured orientation. There are always both tracked
reflectors shown in the trajectory plot, one in black and one in magenta color.

Conclusions form simulations. The calibration error, calculated as the absolute difference between 1r1 and 1r2, depends
on the level of added Gaussian noise rather than on the type of motion (Fig. A.3, A.4,
A.7, A.8)..When data contain maximum level of noise, the calibration is not accurate enough. The
calibration error is in units of millimeters (10−3 m) (Fig. A.3, A.7).. The calibration is sufficiently accurate when the level of noise is minimal. The calibration
error is in units of hundredths of millimeters (10−5 m) (Fig. A.4, A.8).

Conclusions from experiments. The dynamic calibration procedure is not accurate enough. The mean value of error,
calculated as the absolute difference between 1r1 and 1r2, is in units of millimeters
(10−3 m). That is, compared to the accuracy of individual laser tracker measurement,
very large error (Fig. A.10).. Inaccurate calibration leads to inaccurate trajectory data. There is a visible offset in
trajectories after transformation and the orientation calculation is not reliable (Fig. A.11).. The static calibration procedure is very accurate. The mean values of error, calculated
as the absolute difference between 1r1 and 1r2, is in units of hundredths of millimeters
(10−5 m) (Fig. A.13).. The static calibration is the optimal approach. It was also recommended by experts from
the laser tracker manufacturer. However, they did not state any reason why the dynamic
procedure should not be used (Fig. A.14).. The calibration error of dynamic calibration procedure corresponds to the simulated
calibration with maximum added noise (Fig. A.3, A.7, A.10).. The calibration error of static calibration procedure corresponds to the simulated cali-
bration with minimum added noise (Fig. A.4, A.8, A.13).. It is possible to determine the body local frame orientation from the measurements of
two tracked reflectors as described in section 5.4.4. The Euler angles can be directly
determined (Fig. A.15, A.16).

31

5. Motion tracking task ...
. Values of velocity during a random movements resembling movements of spray gun during

painting are in units of tenths of meters per second (10−1m
s) (Fig. A.18, A.19, A.23,

A.24).

. Values of acceleration during a random movements resembling movements of spray gun
during painting lie between 0.5 and 6 g (5 to 60 m

s2) (Fig. A.20, A.21, A.25, A.26).. The laser trackers measuring in real time mode with sampling frequency 1000 Hz suffer
from data loss. Sometimes measurement entry is not returned on time and is therefore
replaced with the previous one. The smoothness of motion is corrupted and outliers are
brought to the data.

. The lost data lead to sharp changes in calculated velocity values. The velocity values
then oscillate between zero and a large number (Fig. A.18, A.19, A.24).

. The outliers in velocity created as a result of position data loss propagate further to the
acceleration (Fig. A.20, A.21, A.26).

. The AT960 suffers from data loss more than the AT901 (Fig. A.18 - A.26).

.Major problem of this measurement method is the reliance on a clear line of sight between
the laser tracker and the reflector. During the measurements of random movements
trackers often lost the reflector when it moved too fast or rotated too much.

.When there are multiple reflectors involved in a measurement and a laser tracker looses
its reflector, it is very likely that it will find and continue tracking a different one. This
strongly complicates application of method with two trackers and two reflectors described
in section 5.4.1.

5.5 Inertial Sensor

An inertial sensor or an inertial measurement unit (IMU) refers to a measurement device
that consists of an accelerometer and a gyroscope. Such device usually provides measurement
in 6 axis using three-axis accelerometer and three-axis gyroscope. A three-axis magnetometer
can be added to form a 9-axis sensor.

The IMU sensor outputs measurements in the body coordinate frame (the frame rigidly
attached to the sensor) with respect to the inertial reference frame. The gyroscope measures
angular velocity ω [rad/s], the rate of change of the sensor’s orientation. Accelerometer
measures specific force f [m/s2] consisting of the sensor’s linear acceleration a [m/s2] and

32

... 5.5. Inertial Sensor

the earth’s gravity acceleration g [m/s2] [23]. To determine the sensor’s linear acceleration,
the gravity component must be subtracted during post-processing.

Since the IMUs are nowadays often implemented as microelectromechanical systems
(MEMS), they can be very small, light and inexpensive. They are widely used in electronic
devices such as smart phones, wearables or virtual reality controllers [23].

On the other hand, the nature of MEMS brings several aspects, that negatively influence
the sensor performance and accuracy. There have been attempts to analyze and model these
issues, while using the models can help to compensate their impact [25]. Among the main
issues belong bias and scale factor. Bias (zero offset) is the average sensor output over a
specific time measured at specified operating conditions that has no correlation with the
input. The scale factor (sensitivity) represents the change in sensor output against the change
of sensor input - the measured quantity [24]. Another important issue is that the MEMS
IMUs when used in low-g applications such as motion tracking of handheld tools show low
signal-to-noise ratio [24].

Both scale factor and bias are influenced by material and construction of the sensor
(nonlinearity, hysteresis, axis misalignment etc.) and by the conditions of operation (tem-
perature, pressure) [25]. Their effect can be partially removed by calibration, however it is
not a perfect solution. The calibration of an IMU can be performed by leaving the sensor
stationary for a short period of time, sensing its data and calculating the mean. This method
is sufficient in case of the gyroscope, since it is expected to measure only the earth’s angular
velocity. The earth’s angular velocity is of order 10−5, whereas the bias is usually of order
10−2 and hence the earth’s angular velocity can be neglected [23].

The accelerometer when stationary should measure the gravity, the centrifugal accelera-
tion and the Coriolis acceleration. The gravity component is significantly higher in magnitude
than the other two and should be observed in the measurement of acceleration in z-axis (as-
suming the sensor coordinate frame to be aligned with the earth coordinate frame). However,
the board (PCB) on which the sensor lies and the sensor case in which the accelerometer is
mounted are not completely flat and also the accelerometer is not mounted perfectly aligned
with the case. As a result, the gravity components in x- and y-axis are nonzero and therefore,
it is not possible to distinguish between measured gravity and bias [23], [14].

Another thing to consider is that the sensor bias can vary over time due to a flicker
noise [25], [23], which can be hardly modeled.

5.5.1 Method

The option to use an IMU sensor for motion tracking of the spraying gun seems to
be very promising. The IMU sensor is light, small, has low power consumption and can be

33

5. Motion tracking task ...
used wireless. On top of that, the sensor is resistant to the harsh environment of a painting
workplace, because the electronics can be closed in an impermeable case. For these reasons, I
decided to design and test a solution of the motion tracking task with an IMU sensor. The
sensor is meant to be mounted directly on the spraying gun and to measure the operator’s
movements during the painting operation.

The algorithm of obtaining orientation and pose estimates from data from an IMU sensor
is called dead-reckoning. The principal of dead-reckoning is shown in Fig. 5.3. The biggest
problem of this algorithm lies in the integration and double integration operations. The noise
and bias in the IMU measurements introduce an error that, after integration of such noisy
signal, results in an integration drift. The error accumulates with time and increases without
bound. After a while, the position and orientation estimates are useless. The literature
describing the issue of the integration drift is extensive.

Figure 5.3: The algorithm of dead-reckoning. Orientation and position are determined based on
measured angular velocity and external specific force [23].

There are two options how to handle the inaccuracy of position and orientation estimates
from IMU sensors. The first is to properly filter the measured data before they are post-
processed. This option was implemented for instance in [39], [40] or [41]. The model of sensor’s
characteristics (bias, nonlinearity etc.) is utilized at this stage to design such pre-processing
that together with filtering corrects the most of sensor’s error. I focus on this approach in
this section.

The second option is to fuse the IMU data with another sensor measuring position and
orientation with lower frequency and thus repeatedly correct the IMU estimates. This way,
the integration drift is suppressed (bounded) and good position and orientation estimates of
a high frequency are obtained. Many such solutions are described in literature, among the
additional sensors belong GPS (global positioning system), optical sensors (cameras) or UWB

34

... 5.5. Inertial Sensor

(ultra-wideband) systems [23]. I will cover this option in section 5.6.

5.5.2 Hardware specification

For the motion tracking of hand-held spray gun by an IMU sensor I chose a product
MetaMotionR made by Mbientlab [42]. The MMR is a wireless motion and environmental
sensor designed mainly for wearable applications. It includes PCB with six on-board sensors,
Bluetooth Low Energy module, NOR flash memory and rechargeable Lipo battery (via micro
USB) enclosed in a splash resistant (IP40) plastic case (see Fig. 5.4). The on-board sensors
are gyroscope, accelerometer, magnetometer, barometer, luminosity sensor and temperature
sensor. I was originally working with a version MMR+ that includes also a vibrating coin
motor soldered to the PCB, which I later had to remove, since it was made of metal and was
heavily disrupting the magnetometer measurements.

All named sensors are made by Bosch (except the luminosity one by Lite-On). The
sensors used for the motion tracking application are BMI160 (3-axis accelerometer and 3-axis
gyroscope) [43] and BMM150 (3-axis magnetometer) [44]. An overview of sensor characteristics
is displayed in Tab. 5.1.

Figure 5.4: The MetaMotionR+ sensor by Mbientlab. The PCB and battery are enclosed in a
plastic case (now open). Dimensions 27x27x4 millimeters, weight 6 grams. The orientation of the
body coordinate frame is shown (following the RGB-xyz convention).

35

5. Motion tracking task ...
Accelerometer Gyroscope Magnetometer

Temperature range −40...+ 85◦C −40...+ 85◦C −40...+ 85◦C

Range ±2g, ±4g, ±8g, ±16g ±125◦/s, ±250◦/s, ±500◦/s, ±1300µT (x, y − axis),
±1000◦/s, ±2000◦/s ±2500µT (z − axis)

Sensitivity ±2g : 16384 LSB/g ±125◦/s : 262.4 LSB/◦/s

±4g : 8192 LSB/g ±250◦/s : 131.2 LSB/◦/s

±8g : 4096 LSB/g ±500◦/s : 65.6 LSB/◦/s -
±16g : 2048 LSB/g ±1000◦/s : 32.8 LSB/◦/s

±2000◦/s : 16.4 LSB/◦/s

Offset ±40mg ±3◦/s ±40µT
TCO ±1mg/K 0.05◦/s/K -
Noise density 180µg/

√
Hz 0.007◦/s/

√
Hz -

Resolution 16 bit 16 bit 0.3µT

Table 5.1: Mbientlab MMR motion tracking sensors characteristics [43],[44].

5.5.3 Software specification

Mbientlab provides an SDK for sensor control MetaWear C++ API [45] and wrappers
of the shared C++ library for several other programming languages. There exists a basic
app for Android, Windows and iOS for data acquisition but the developers can use the APIs
available in Swift, C++, C#, Javascript and Python to create their own applications.

Since the MetaWear App provides only basic access to sensor configuration, measurement
settings and visualization, I designed my own application. It was developed on Linux and
written in Python 3 using the shared C++ MetaWear library with Python API wrapper and
bindings [45]. At this stage, the application serves the research and development purposes of
this thesis and it is accessible through the command line. The configuration is done either by
parameters part in the head of the script or passed as command line arguments. Later, the
procedure can be easily adjusted to fit the hardware and software of the user. To run the
application described in this section, the user needs to follow the initial steps of downloading
and installing the MetaWear SDK, Python API etc. described in the Mbientlab tutorial
page, in section Linux/Pyton APIs [46]. The source code of the application is available in the
appendix C.2.

Sensor fusion software

An important feature of the Mbientlab sensor is that it comes equipped with the 9-axis
Bosch Sensortec Sensor fusion software [47]. The Kalman filter based fusion software fuses
raw measured data from accelerometer, gyroscope and (optionally) magnetometer to calculate
absolute or relative orientation of the sensor. There are four different operation modes -
NDoF (absolute orientation), IMUPlus, Compass and M4G (relative orientation) [48]. The

36

... 5.5. Inertial Sensor

orientation is expressed in form of Euler angles or quaternions w.r.t. NED coordinate frame
(in case of absolute orientation) or initial coordinate frame (in case of relative orientation).
The initial frame coincides with the sensor coordinate frame at time zero of the measurement.
The sensor coordinate frame is depicted in Fig. 5.4.

The Sensor fusion software also utilizes the sensor error models and offers corrected
values of measured angular velocity and corrected acceleration together with measured gravity
vector and linear acceleration, which is the acceleration vector free of gravity components.
The fusion algorithm makes use of factory calibration data, while the results shall be further
improved, if the user performs calibration procedure before the respective measurement.

There are several limitations connected with the usage of the Bosch sensor fusion. The
update frequency is 100 Hz, which is significantly lower compared to the maximal raw data
output frequency (3200 Hz for accelerometer and 1600 Hz for gyroscope). Further, the
software does not allow more than two fused data outputs at a time and also lowers the
number of additional raw data outputs that can be logged. In practice it means that the user
is unable to measure for example quaternions, raw acceleration and gravity together. Another
thing to keep in mind is, that even the calibrated sensor fusion can hardly correct the varying
bias or unexpected magnetic disturbances (i.e. presence of metal object near the sensor).

Streaming and logging data

The MMR sensor runs in two different modes - streaming and logging. In general, the
data signals integrated in the developed application are: Euler angles [deg], quaternions [1],
linear acceleration [g], gravity vector [g], raw acceleration [g], raw angular velocity [deg/s]
and magnetic field intensity [T]. The measured data are always transferred by the Bluetooth
Low Energy technology, which limits the amount of data transferred by the unit of time.
During the streaming, the data are sent to controlling PC in the real time, allowing for
real-time visualization. During the logging, data are stored in the sensor internal memory
and downloaded at a later stage, when the measurement finishes. As a result, the streaming
mode allows only one sensor fusion signal at a time or one (or a combination of more) raw
data signals depending on the chosen sampling frequency.

The streaming helps to quickly check it the sensor is working, what is the range of mea-
sured values, identify the orientation of NED coordinate frame, discover sources of magnetic
distortions etc. To realize such test measurement, the user runs the stream_and_plot.py
script, passing the command line arguments in form of: data signal (eul/ quaternion/
linacc/ gravity/ acc_gyro_mag) measurement duration (float, in seconds) calibrate (True/
False) print_measurement (True/ False). The script stream_and_plot.py further runs
stream_multi_sensor.py where can be found and manually set low-level configuration of

37

5. Motion tracking task ...
the sensors if needed and animate_multi_sensor.py that handles the visualization of the
measured data. The example command for streaming Euler angles for 10 seconds with prior
calibration and without printed results in the terminal window would look as follows:

python3 eul 10 True False

For the purpose of spraying tool tracking and trajectory generation the sensor should be
run in logging mode. The logging mode stores the measured data signals into the internal
flash memory first, which makes it possible to measure more data outputs at a time with
higher frequency than by streaming, because it does not involve the Bluetooth transfer. The
data are downloaded from the memory via Bluetooth later, once the measurement finishes.

There are however still some limitations of the number and frequency of outputs, caused
by the Sensor fusion algorithm described in section 5.5.3.

The script for data logging with Mbientlab MMR sensor is called log_multi_sensor.py.
The script controls the sensor, data logging and downloading, storing in a form of csv file and
basic data visualization. The high-level configuration can be accessed in the head of the script,
allowing to choose which data signals should be logged (Euler angles, quaternions, linear
acceleration, gravity, acceleration, gyroscope, magnetometer). One or more than one can be set
True, but not all combinations are feasible by the sensor. Working combinations of signals are
for example eul+linacc, linacc+gravity+acc, gravity+acc, quaternion+acc or acc+gyro+mag.
Those that are not working are for instance eul+gravity+acc, quaternion+gravity+acc,
eul+linacc+acc. Further, the user chooses if to perform calibration prior to the measurement
or not, how long the measurement should last (in seconds), if to print the results in the
terminal and the output folder, where the csv files with measured data will be stored.

The structure of the log_multi_sensor.py is following. The PC first connects to the
MMR sensor via Bluetooth using the sensor mac address. At the end of the sensor operation
the sensor must be again properly disconnected. In case the sensor wasn’t disconnected
properly after the last operation due to an unexpected error or similar reasons, the following
logging procedure fails. Because of that, the script first connects and disconnects the sensor
and then connects again.

The interaction with the sensor is implemented through a class State that includes three
main methods: setup, start and stop. Further, each data signal has its own data handler
method that manages data download and write to file operations.

In the setup method, the sensor signals are first configured. The user can access the
low-level configuration parameters here. Namely they are: accelerometer data range and
sampling frequency, gyroscope data range and sampling frequency, magnetometer mode

38

... 5.5. Inertial Sensor

Euler angles eul_data_timetag.csv epoch [ms] pitch [deg] roll [deg] yaw [deg] heading [deg]
Quaternions quaternion_data_timetag.csv epoch [ms] w [1] x [i] y [j] z [k]
Linear linacc_data_timetag.csv epoch [ms] x-axis [g] y-axis [g] z-axis [g]
acceleration
Gravity vector gravity_data_timetag.csv epoch [ms] x-axis [g] y-axis [g] z-axis [g]
Acceleration acc_data_timetag.csv epoch [ms] x-axis [g] y-axis [g] z-axis [g]
Angular velocity gyro_data_timetag.csv epoch [ms] x-axis [deg/s] y-axis [deg/s] z-axis [deg/s]
Magnetic field mag_data_timetag.csv epoch [ms] x-axis [T] y-axis [T] z-axis [T]
intensity

Table 5.2: Structure of the csv file with downloaded logged data from the MMR IMU sensor.

and sensor fusion mode. Note that if the sensor fusion output is chosen, the sensor fusion
configuration parameters override the accelerometer and gyroscope parameters (e.g. it is not
possible to change the sampling frequency of the accelerometer, while it is set to sensor fusion
default 100 Hz). All the available configuration constants can be found in the python script
cbindings.py on the GitHub page accessible through the MetaWear SDK [45]. Next, a logger
object is created for each chosen data signal.

Next, the start method triggers logging operation, enables respective data signals and
starts logging. When the stop method is called, it stops the logging, disables the data signals
and subscribes to all active loggers to download the logged data. The data are downloaded
with the help of respective data handlers and saved into csv files in a designed format. There
is always exactly one csv file for each chosen data signal (quaternion, acceleration etc.) and it
is saved in the output folder labeled with an automatically generated date and time tag to
ensure name uniqueness and clarity. The structure of the individual csv files is described in
the Tab. 5.2.

After the logged data are download, the script resets the device configuration and
disconnects it properly. Eventually, a plot of measured data is displayed to provide a brief
visual check that the measurement was done correctly.

Calibration

Thanks to the fact that I design my own application for data acquisition it was possible
to include automatic calibration procedure to the process of measurement. The Bosch sensor
comes factory calibrated and further calibration should not be necessary. Nevertheless, the
Mbientlab tutorials [46] recommend to always perform calibration before measurement if it
includes the outputs from Sensor fusion software. The MetaWear basic App does not provide
the option to calibrate the sensor, instead a calibration script must be run and for that the
user already needs to get involved in the developer style interaction with the device.

39

5. Motion tracking task ...
Both main streaming and logging scripts mentioned in the section 5.5.3 allow the user

to set calibration parameter True and provide methods to handle the calibration procedure.
The calibration itself consists of three activities and the user is asked to perform it before the
script continues to the setup stage.

Firstly, the sensor should be left lying on a flat surface to calibrate for the gyroscope bias.
Secondly, the sensor should be rotated around one of its axes (chosen arbitrarily). The rotation
should be stopped for a while after each 45◦. This should calibrate the accelerometer bias.
Thirdly, the user should move the sensor randomly in space, calibrating the magnetometer.
During the calibration user can watch the calibration status of each of the three sensors,
starting at 0 (not calibrated) and increasing up to 3 (calibrated) during the procedure. When
all the sensors are calibrated (value 3), the script continues with the measurement task itself.

It is important to note, that the sensor has to be reset after each measurement operation
and it therefore loses its calibrated state. The calibration if desired has to be performed
repeatedly at the beginning of each new measurement.

5.5.4 Post-processing

The section 5.5.3 describes the available data outputs of the MMR IMU sensor. The
Bosch Sensortech Sensor fusion software fuses raw data to obtain orientation, but there is
not further post-processing done in order to calculate velocity and position from the raw
data. Since the motion tracking task and painting trajectory generation requires 6DoF data
(orientation and position) I attempted to design a post-processing procedure based on the
dead-reckoning algorithm (see Fig. 5.3) to calculate the position from accelerometer data. To
first get to know the limits of the designed solution (either hardware, based on the sensors
characteristics or software, based on the used calculations and functions) I decided to create
a simulation of the MMR IMU sensor. The simulation serves as a testing tool and as a proof
of concept of the designed post-processing solution. The details follow in the section 5.5.5.

All the post-processing was done in Matlab R2019b. The main script for IMU data
post-processing is called mbientlab_data_post.m and it utilizes a function double_int_filter.m,
which takes care of the double integration and the filtering part. It also performs extensive
data visualization, including trajectory animation. All source code is available in the appendix
(C.2).

The code is configurable through several parameters available at the beginning of the
script, of which the most important are the import and name. By the import parameter the
user chooses which types of data will be loaded to data_all structure for post-processing
(quaternions, acceleration etc.). By the name the unique csv file is identified (name equals
the unique time tag created during measurement and included in the csv file name).

40

... 5.5. Inertial Sensor

Synchronization

When the data are loaded into a data_all structure, they first need to be synchronized.
Each data output in the csv file contains an epoch entry, a time stamp, stating when the data
were sampled in form of the unix time stamp. If more than one data signal were enabled
and logged, the data entries of each data signal are slightly shifted in time, because the data
signals could not be enabled in the very same moment. It is therefore necessary to synchronize
the data entries based on the epoch entry. Unfortunately, the resolution of the epoch (the
unix time stamp) provided by Mbientlab is only 1 millisecond. In practice, it means that if
the used sampling frequency is higher than 1000 Hz, there will be more than one data entry
with the identical time stamp. Also, the real sampling frequency does not exactly correspond
with the one demanded during configuration, due to the hardware limitations of the sensor.
To know the exact time elapsed between two consecutive acceleration measurements is very
important for the double integration operation, therefore the data synchronization deserves
attention.

Each field in the data_all structure contains measured data from one data signal (e.g.
quaternions, acceleration, gyroscope measurement etc.). Firstly, the start time stamp is
identified as the latest one of the initial time stamps of all present data signals. Secondly, the
end time stamp is identified as the earliest one of the last time stamps of all present data
signals. All the data signals are afterwards cropped to contain only data entries between the
start and end time stamp.

Further, the data signal with the highest sampling frequency (the one with the most
data entries between the start and the end time stamp) is found and the vector of its time
stamps is set to be the synchronization time vector for all the other data signals. The other
data signals are upsampled using interp1 function in a "sample and hold" manner (using the
parameter previous).

If the average sampling frequency of the synchronization data signal was higher than
1000[Hz there are repeated entries in the synchronization time vector. Such time vector could
not be used in the double integration operation, because the time difference between two data
entries would be calculated as equal to zero and would result in an undefined mathematical
operation of zero division. In such case, the time vector is replaced by a vector of linearly
spaced values between start and end time stamp of a length identical with the length of the
synchronization data signal.

The described manipulations with the data time stamps can possibly affect the results
of the post-processing operation. However, it cannot be avoided, since it originates from the
hardware and software character of the used sensor.

41

5. Motion tracking task ...
Transformation

A crucial issue of any motion tracking task is the correct understanding of used coordinate
frames and knowledge of their relationship to measured data. The MMR IMU sensor produces
raw measurement expressed in the body coordinate frame (local). The local frame is rigidly
attached to the sensor and its orientation is obvious from the Fig. 5.4. The local coordinate
frame moves together with the sensor. The Sensor fusion algorithm produces all data except
for the orientation measurements also w.r.t. the local frame. The orientation data (Euler
angles and quaternions) are expressed either w.r.t. the NED (north-east-down) coordinate
frame or the initial coordinate frame (global). The first case is valid when NDoF fusion mode
is used, which is the case for all the measurements presented in this work.

I chose to express all measured data in the initial coordinate frame (global). However, in
case of the MMR IMU sensor, I make use of the orientation expressed w.r.t. the NED frame,
because I needed to subtract the gravitational component from the vector of specific force
measured by the accelerometer. For the transformation calculations I was following common
rules and relationships described for instance in [33].

Firstly, I calculate the matrix of directional cosines Swg that describes the transformation
from the NED coordinate frame (world) to the initial coordinate frame (global) using the
initial orientation data entry expressed in the world frame. The Swg matrix is used to
transform vectors in the global frame into vectors in the world frame. Secondly, I calculate
the matrices of directional cosines Sm

wl that describe the transformation from the world frame
to the local frame from each orientation data entry. The matrix of directional cosines can be
formed either using Euler angles following (5.2) or quaternions following (5.1).

Using the Sm
wl, the local acceleration measurements can be transformed to the world

frame following this equation:
am

w = Sm
wlam

l , (5.22)

where the aw stands for the acceleration vector expressed in the world frame and al stands
for the acceleration vector expressed in the local frame. The superscript m denotes the
measurement (data entry) index.

Note that we do not need to use the full transformation matrix T [33] that includes
rotation and translation part, since we are interested only in the relative orientation of the
considered frames and do not even have the information about the displacement.

When the raw acceleration is used, the gravity vector must be subtracted to obtain
gravity free acceleration. In case the linear acceleration is used, this step is skipped, because
the linear acceleration is already gravity free. The gravity vector gw expressed in the NED
coordinate system is gw = [0 0 g0]T , where g0 = 9.80665 m/s2 stands for the standard

42

... 5.5. Inertial Sensor

acceleration due to Earth’s gravity according to the International Bureau of Weights and
Measures [49]. The gravity free acceleration aw,free at each time step m is therefore calculated
as follows:

am
w,free = am

w − gw. (5.23)

Thirdly, the acceleration is transformed from the world frame to the global frame using
the Swg matrix. The transformation needed here is inverse to the one obtained from the
orientation measurement, the matrix Swg must be therefore inverted:

am
g = (Swg)−1am

w,free, (5.24)

the am
g stands for the gravity free acceleration vector expressed w.r.t. to global coordinate

frame. The ag is further used in position calculations.
Eventually, the measured orientation expressed w.r.t. the NED frame needs to be

transformed to the global frame as well. In other words, we would like to have orientation
that describes transformation from the global frame to the local frame at each time step.
Such transformation would be denoted as Sm

gl and based on the rules of transformation it can
be expressed using the Sm

wl and Swg:

Sm
gl = (Swg)−1Sm

wl. (5.25)

The orientation in form of Euler angles or quaternions can be then derived from the Sgl

matrix directly using (5.3) and (5.4).

Double integration

The vector of acceleration ag represents the acceleration of a particle - the origin of the
local coordinate frame of the IMU sensor - in three axes of the fixed global coordinate frame.
The aim is to calculate the position vector rg that would describe the motion of the particle.
For that purpose, equations (5.8) and (5.9) from section 5.3 were used.

For the calculation of discrete values of the components of the position vector rg, the ax,
ay, az in the equation (5.8) are substituted with components of measured ag. The superscript
indicates the time step, or rather the measurement index, going from k = 1 to k = K, where
K is the number of measurements. The expression (tk+1 − tk) stands for the length of the
k-th time step, that is calculated from the vector of time stamps corresponding to the ag

data, referred in section 5.5.4. The initial conditions v1
x, v

1
y , v

1
z , x

1, y1, z1 were assumed zero.

Filtering

The procedure of position calculation from acceleration measurements described in
section has certain shortcomings. The goodness of approximation of derivatives depends

43

5. Motion tracking task ...
on the length of time steps (tk+1 − tk), getting worse with longer time steps. This can be
influenced by the used sampling frequency during measurement. The main flaw already
mentioned in 5.5.1 lies in the fact, that any small inaccuracy in the initial conditions estimate
or acceleration measurements propagates through time and eventually leads to very inaccurate
position data. For that reason, digital filtering was applied. All filtering was applied offline
during post-processing.

Firstly, the post-processing script handles possible outliers using matlab filloutliers
function with ’quartiles’ method, because the data are not normally distributed [50]. Secondly,
I filtered the acceleration measurements ag using Savitzky-Golay filter. It is a smoothing
filter based on least-square fitting of polynomial to data in a moving window. It is similar to
standard averaging FIR (Finite Impulse Response) filters or moving average filters (special
case of FIR filters), but recommended for signals with a large frequency span [51]. Smoothing
was used in place of low-pass filtering to remove high-frequency noise and implemented
using sgolayfilt Matlab function available in the Signal Processing Toolbox. I decided for
Savitzky-Golay filter based on several experiments, where it outperformed the general moving
average filter. The parameters of the filter are the polynomial order, which I mostly set
to equal five, and window size, which I adjusted based on the sampling frequency of the
measurement and the nature of the captured motion.

Thirdly, it was needed to handle the measurement drift. Without that, the measurements
and therefore, even the position calculations were non-zero even when the sensor was static.
For that purpose, I applied a high-pass filter, with cut-off frequency below 1 Hz. The cut-off
frequency parameter has to be tuned based on the nature of the motion. Also, it must be
taken into account, that the drift varies in time and therefore even the length of the motion
should be considered when designing the high-pass filter. The experiments showed that it is
useful to apply the high-pass filter not only to the acceleration data but also to the integrated
velocity data and further to the integrated position data. The repeated filtering handles the
drift introduced by the mathematical operation of integration based on approximations in
(5.8) and (5.9) and can help to get better results.

There are several implementations of high-pass filter in Matlab Signal Processing Toolbox,
of which I implemented and tested high-pass FIR filter designed using designfilt with parameter
’highpassfir’ [52], Butterworth high-pass filter using butter with parameter ’high’ [53] and a
general high-pass filter using highpass [54]. The filtering and double integration is done by a
function script called double_int_filter.m and controlled by parameters configurable from the
main script mbientlab_data_post.m. The parameter filtering determines what signals should
be high-passed filtered (acceleration and/or velocity and/or position) and what filters to use
(Savitzky-Golay and/or high-pass FIR or Butterworth high-pass or general high-pass). The

44

... 5.5. Inertial Sensor

simulation and later the experiments showed that the optimal combination is the acceleration
data smoothing by Savitzky-Golay filter and high-pass filtration of all data signals with
general high-pass filter.

5.5.5 Simulation

A useful tool for analysis of how the designed solution of motion tracking task using
IMU will work offers a measurement simulation. I made use of Matlab Sensor Fusion and
Tracking Toolbox imuSensor function that allows the user to create an IMU simulation model
based on the datasheet characteristics [55].

I designed two models - one of an ideal IMU, measuring without offset and noise,
and one of the Mbientlab MMR sensor based on the characteristics from the Tab. 5.1.
The object created by the imuSensor function takes motion data in the NED frame as
arguments and simulates the sensor measurements of such motion. The simulation produces
acceleration, gyroscope and magnetometer data in the body (local) frame. The examples in
[55] recommend to generate motion data so, that the user defines motion in the local frame
and uses kinematicTrajectory function [56] to transform them to the NED frame. In such way,
the ground truth data for position, orientation, velocity, acceleration and angular velocity
are obtained and available for later comparison. This fact motivated me to use the NED
frame for simulated measurements reference frame instead of the initial one, used during the
experiments.

It is not possible to simulate the MMR Sensor Fusion algorithm, because it is a commercial
product of Bosch Sensortech and users do not have access to equations and mechanisms that
stand behind it. Therefore, I did not try to simulate the orientation data output of the MMR
sensor and focused on the acceleration data instead. I also added a portion of white Gaussian
noise to some simulated measurements to match the real-world scenarios more closely.

The simulated measured acceleration data are further post-process the same way as it is
intended with the real measured data, described in section 5.5.4 (transformation, filtering
and double integration). As the ground truth orientation in the world frame, needed for
acceleration transformation and gravity component subtraction, I used the available ground
truth quaternions data. Also, it is important to note that the simulated measured acceleration
returned by the IMU model, corresponding to measured specific force, is in the Matlab toolbox
defined differently compared to the conventional definition [57]. Because of that, the simulated
acceleration data have to change sign.

The simulation results are interesting for this work from three different points of view.
Firstly, it shows how well the MMR IMU sensor performs compared to the ideal IMU sensor.
Secondly, it shows how the designed post-processing works since the results can be compared

45

5. Motion tracking task ...
with simulated ground truth. Thirdly, it allows to observe how does the real MMR IMU
sensor measure compared to the IMU model based on the MMR datasheet.

5.5.6 Measurement scenarios

To test if the motion tracking can be done by the Mbientlab MMR IMU sensor I
performed several simulations and experiments. First, I was interested in the measurements
of steady state. The steady state data serve for noise inspection as described in [23]. Then I
wanted to see how the sensor measures typical motions such as rotation about one axis without
translation, harmonic motion in one or more axis without rotation and simple translation in
one axis.

I also wanted to compare results obtained by three different types of acceleration
measurements that the MMR IMU offers - linear acceleration with prior calibration, linear
acceleration without calibration and raw acceleration. Lastly, I was interested if the sensor
performance is the same when moved along all the three body frame axis (x,y,z).

Simulation

It is possible to simulate raw data outputs only, therefore I always simulated accelerom-
eter, gyroscope and magnetometer readings.

I was able to simulate the steady state measurement by passing zero local acceleration
vector and zero local angular velocity vector to kinematicTrajectory function, obtaining all
global outputs equal to zero as well. The rotation about one axis was done by passing zero
local acceleration vector and local angular velocity vector with one element equal to a nonzero
constant. The harmonic motion was achieved by generating local position vector with elements
equal to sine functions of time and double differentiating them to get the local acceleration
vector. The local angular velocity was set zero in this case. I did not simulate the simple
translation, because the assumption of constant acceleration would be oversimplified and
modelling the real shape of acceleration curve too difficult.

Experiment

The steady state measurements were done by simply letting the sensor to lie on a flat
surface.

Due to the fact that during the work on this thesis the access to laboratories was
restricted, I was not able to use any positioning device such as rotational or linear motor for
experiments. I had to construct my own measurement device to be able to perform translation
of known distance and harmonic motion of different frequencies with known amplitude of

46

... 5.5. Inertial Sensor

Figure 5.5: The slider-crank measurement device built to perform experiments with Mbientlab
MMR sensor and RealSense T265 tracking camera. The device consists of three revolute joints
and one sliding joint realized by four wheels. The MMR sensor can be placed in the paper boxes
in three different configurations, the camera can be mounted with two screws at the end of the
sliding part in three different configurations as well.

position. The measurement device was built as a slider-crank mechanism with three revolute
joints and one sliding joint, driven by an electric hand drill with adjustable speed (slow/fast).
I mounted a sort of a jig at the sliding end allowing to place the MMR sensor in three different
configurations - having the body frame x-, y- or z-axis parallel to the direction of sliding. The
length of the rotating link is 68 millimeters, therefore, the maximal length of the end point
trajectory is equal to 136 millimeters. The device is displayed in Fig. 5.5.

5.5.7 Results

I conducted many simulations and experiments based on scenarios described in sec-
tion 5.5.6, post-processed the data according to section 5.5.4 and visualized the results using

47

5. Motion tracking task ...
Matlab mbientlab_data_post.m script. Based on the observed results I drew several conclu-
sions that I present in this section. The conclusions are supported by visualizations showed
in Fig. A.27 - A.58 in the appendix A.2.

In the presented figures, I use RGB-xyz convention to indicate coordinate frames. The
acceleration, velocity and position plots show the original, partially filtered and fully filtered
(acceleration, velocity and position) signals for comparison. The trajectory plots are final
frames of animations done by the visualization part of the script, the large coordinate frame
represents the global frame, the small one is the local frame and moves during the animation
based on the measured orientation.

Conclusions form simulations. The drift of MMR IMU measurements of steady state can be, in the worst case, significant
and should not be ignored (Fig. A.27 and A.28).. Inaccuracy in the accelerometer measurements can result in false nonzero data when they
should be zero (Fig. A.30 and A.31). This effect leads to nonzero position calculations
(Fig. A.32, A.33).. The negative affect of noisy acceleration can be canceled using appropriate filtering
methods (Fig. A.30).. The drift is present in the velocity and position data even when the acceleration is filtered.
The best results are obtained if also velocity and position are filtered (Fig. A.36 - A.38).

Conclusions from experiments. The noise inspection of data measured in steady state confirms that the prior calibrated
linear acceleration measurement has the lowest bias, followed closely by not calibrated
linear acceleration. However, none of them is equal zero. The bias of raw acceleration is
significantly higher (Fig. A.40 - A.42).. The measured bias of all three types of acceleration data is greatly smaller than the
worst case depicted by simulations (Fig. A.28, A.40 - A.42).. The bias magnitude varies (mostly increases) in time (Fig. A.43).. There is an observable drift in the orientation measurements as well, even though they
are produced by the Sensor fusion algorithm that should handle it. However, the drift is
minor (Fig. A.44 and A.45).

48

.................................... 5.6. Visual and inertial sensor fusion

. Although both calibrated and not calibrated linear acceleration outperforms the raw
acceleration data in terms of bias, all three data types result in very poor position data
for translation movement (Fig. A.46 - Fig.A.48).. The measured data are noisier by a significant portion than the simulated data. Smoothing
is necessary (Fig. A.30, A.31, A.35 and A.49, A.50, A.51, A.54, A.55, A.56).. The negative affect of noisy acceleration can be canceled using appropriate filtering
methods (Fig. A.51, A.56).. The drift is present in the velocity and position data even when the acceleration is filtered.
Better results are obtained if also velocity and position are filtered (Fig. A.52, A.53, A.57,
A.58).. The high-pass filter tends to produce data that have zero mean (Fig. A.52, A.53, A.57,
A.58).

General conclusions. All types of acceleration data suffer from bias and need to be filtered. I chose to continue
the measurements using raw acceleration data, because they can be sampled by much
higher frequency and I can fully control how they are post-processed compared to the
Sensor fusion software outputs.. The orientation data either in form of quaternions or Euler angles are of sufficiently high
accuracy and can be used further without any adjustment. I chose to use quaternion
format, since it is universal compared to Euler angles that are dependent on the sequence
of rotation and can lead to loss of information due to an effect called gimbal lock [23].. The cut-off frequency of high-pass filter needs to be adjusted based on the type of motion
and may not be optimal with respect to data in all axis during the whole motion.. There is no observable difference in performance when compared between measurements
of movements aligned with x-, y- or z-axis.

5.6 Visual and inertial sensor fusion

As mentioned earlier in section 5.5, an inertial sensor alone is not good enough to solve
a motion tracking task. The reason for it is that it provides measurements that are accurate
only for a short time. When used for longer measurements, the error accumulates and the

49

5. Motion tracking task ...
data drift [23]. A possible solution to this issue is to combine a high-frequency IMU with
another sensor of lower sampling frequency, that would correct the effect of drift. One such
solution includes a visual sensor (camera) and the resultant motion tracking technique is
called visual and inertial sensor fusion, or visual inertial odometry [58].

The visual inertial odometry belongs to a family of SLAM (Simultaneous Localization
and Mapping) problems. SLAM problem is defined as a task for mobile robot to localize itself
in an unknown environment, while moving in the environment [59]. In our case, the mobile
robot represents the moving spraying gun in worker’s hand.

5.6.1 Method

The visual part of the described system refers to acquisition of pictures of surroundings
and extracting relevant information from it. A picture taken by a camera consists of many
(hundreds of thousands) pixels, depending on the camera resolution. A feature detection
algorithm is applied to the picture to obtain more condensed information. Features can be
any visually interesting parts such as corners or edges, seen in the picture. This way the
amount of points to consider lowers from hundreds of thousands pixels to few hundred points
(features). Each feature point is labeled, mapped to 2D or 3D space and arranged to a feature
vector. When a new picture is taken, a feature tracking algorithm compares labeled features
in the new vector with those of previous pictures and computes the change in position based
on that [58].

The described procedure is computationally expensive and thus cannot be performed at
high frequency. The visual part is therefore complemented with an inertial sensor, that can
sample at high rate and offers accurate data in short time range (tens of milliseconds) [58].
The data from the two parts are fused repeatedly, which results in accurate high-frequency
position and orientation estimates.

Regarding the task of spraying gun motion tracking, a visual and inertial sensor fusion
seems to be a valid option. It has potential to overcome the problems with drift that the
IMU, when used alone, has. At the same time, the additional visual sensor (camera) can
be also relatively small, light and inexpensive. It can be therefore placed directly on the
spraying gun without affecting the worker’s motions in an intense negative way. However,
this measurement set-up contains issues that make it suboptimal.

Firstly, the sensor fusion algorithm is computationally expensive and is performed in
real time. The device therefore needs a power supply and can hardly be realized wireless.
Secondly, the sensor needs an appropriate lighting conditions to operate properly. Thirdly,
the optical system that is part of the camera is not resistant to the harsh environment of
a painting workplace. The paint present in the environment in form of aerosol would stick

50

.................................... 5.6. Visual and inertial sensor fusion

Cameras Accelerometer Gyroscope
Range (field of view) 163± 5◦ ±4g ±2000◦/s

Sample (frame) rate 30 fps 62.5 Hz 200 Hz

Table 5.3: Intel RealSense tracking camera T265 sensors characteristics [60].

to the camera, corrupt the acquired pictures and eventually destroy the whole sensor. To
prevent this, it is necessary to place the camera in a disposable protecting case. The case
should be transparent and thin to not to influence the optical properties of the camera though.
[58]. In practice optical sensors and cameras are used in harsh environments even for painting
applications similar to ours with commercial success [11], [10].

What influences the sensor performance further is the visual richness of the captured
scene (a smooth, unicolor surface lacks features to track), dynamics of the scene (too many
moving objects in the scene lead to algorithm confusion) and the speed of sensor motion (too
low or too high speed decrease the confidence of pose estimates) [58]. None of these issues
should have any strong impact on our application.

5.6.2 Hardware specification

As a representative of a device performing visual and inertial sensor fusion, I chose the
tracking camera T265 by Intel RealSense [21] (Fig. 5.6). It is a stand-alone compact device
that includes visual and inertial part as well as a processing unit performing SLAM algorithm.
The vision is provided by two OV9282 monochrome imagers with fisheye lenses with fixed
focus. Included inertial sensor is BMI055 IMU by Bosch Sensortech [60]. Some important
sensor features are shown in Tab. 5.3. Further, the T265 includes a processing unit Intel
Movidius Myriad 2.0 VPU. The camera connects with micro B USB 3.1 cable to a computer.

Figure 5.6: The tracking camera T265 by Intel RealSense. Dimensions 108x24.5x12.5 millimeters,
weight 60 grams [60]. The orientation of the body coordinate frame is shown (following the
RGB-xyz convention).

51

5. Motion tracking task ...
5.6.3 Software specification

The T265 is equipped with a processing unit and is able to run the sensor fusion algorithm
on board. The software is optimized by Intel and user is not introduced to any details of
the algorithm, neither has an option to configure its functioning or adjust it. Regarding the
accuracy of pose estimates, the drift is declared to be smaller than 1% of traveled distance
[60].

Intel RealSense provides an opensource software interface for working with their products
including the T265 called Intel RealSense Software Development Kit (SDK) 2.0 [61]. It can be
installed on Linux, Windows, Mac OS or Android and supports many programming languages
(Python, ROS, Matlab etc.) through included wrappers. Part of the SDK are librealsense
tools providing basic interaction between the user and the sensor and a large amount of
examples that are ready to use and well documented.

Streaming and logging data

I installed the SDK on Linux and automatically gained access to the tools and examples
through terminal commands. For the purpose of my application I utilized two tools, realsense-
viewer [62] and rs-data-collect [63]. The realsense viewer [62] is a tool with GUI, which I
used for data streaming. It shows outputs from the accelerometer, gyroscope and two fisheye
cameras in real-time. Also, it visualizes position and orientation estimates in 2D and 3D view
together with the confidence level, which is useful for determination of motion speed limits.
It allows for quick check if everything is working fine and for rough estimate of the location
of measurement reference coordinate frame.

The tool rs-data-collect [63] allows for data logging into csv file. It is a low latency
profiler with zero frames drops and it logs a timestamp in thousandths of milliseconds for each
data record (hardware in unix time and host in measurement relative time). The tool does
not store the camera images, but these are not needed for our application. The measurement
parameters are set using a configuration cfg file where user specifies the demanded data
streams, stream format, frequency of streaming and data format. For the T265 it is possible
to log accelerometer, gyroscope, fisheyes, and pose streams. The pose stream consists of the
6DoF data and its maximum streaming frequency is equal to 200 Hz.

The rs-data-collect tool is then run using command line arguments -c specifying the
cfg file, -f specifying the output csv file and -t or -m specifying the minimum measurement
length in seconds or in number of received frames respectively. An example of the usage of
the tool looks as follows:

52

.................................... 5.6. Visual and inertial sensor fusion

Stream Index Frame HW Host Data
type number timestamp [ms] timestamp [ms]
Fisheye 1 1 . . . unix time time
Fisheye 2 1 . . . unix time time
Gyro 0 1 . . . unix time time x-axis [rad/s] y-axis [rad/s] z-axis [rad/s]
Accel 0 1 . . . unix time time x-axis [m/s2] y-axis [m/s2] z-axis [m/s2]
Pose, 0 1 . . . unix time time x-axis [m] y-axis [m] z-axis [m]
translation
Pose, 0 1 . . . unix time time x[i] y[j] z[k] w[1]
rotation

Table 5.4: Structure of the csv file with downloaded logged data from the Intel RealSense tracking camera
T265.

rs-data-collect -c data_collect.cfg -f log.csv -t 60 -m 1000

It will apply streaming configuration from data_collect.cfg, then stream and collect data
for 60 seconds or 1000 frames (whatever comes first). The resulted data will be saved into
log.csv file. Data from all streams are saved into one csv file. The structure of the csv file is
illustrated in Tab. 5.4.

5.6.4 Post-processing

Compared to the data from the MMR IMU sensor (section 5.5), the tracking camera
performs sensor fusion that outputs 6DoF pose data. The 6DoF information about position
and orientation of the camera during measurement is exactly what we need for the motion
tracking application and thus it is not necessary to apply any further post-processing algorithm.
As a result it was not necessary to create any simulation and it even would not be possible
since the Intel RealSense fusion algorithm is a commercial product and the user have no
access to details about it. However, the data still need to be arranged to a required format in
order to be later used for robot trajectory generation.

All the post-processing was done in Matlab R2019b and consists of synchronization
and coordinate frames transformation. The main script for tracking camera T265 data
post-processing is called realsense_data_post.m. All source code is available in the appendix
(C.3). The code is configurable through several parameters available at the beginning of
the script, of which the most important is the name. By the name the unique csv file is
identified (name corresponds to the csv file name defined as an argument for rs-data-collect)
and its content is loaded into data_all structure. The script also performs extensive data
visualization, including trajectory animation.

53

5. Motion tracking task ...
Synchronization

The data_all structure contains data from several streams, based on the passed mea-
surement configuration file. In case only pose data were collected, it is not necessary to
perform any synchronization step, since the 6DoF data are produced by the fusion algorithm
at one time and each data entry has its timestamp in sufficient resolution (thousandths of
milliseconds). In case also raw data were logged and should be further used to produce user
defined outputs, they need to be synchronized.

The individual streams do not output data in the very same time and with the same
frequency. Therefore, the post-processing script first finds the latest start timestamp of all
data streams and the earliest end timestamp of all data streams. Then, it crops data in all
data streams so, that only the data between the latest start and the earliest end timestamp
are kept. Further, it identifies the stream with the highest number of samples and defines its
timestamp vector as a reference one. Then the script upsamples the other data streams based
on this reference timestamp vector, using interp1 function in a "sample and hold" manner
(using the parameter previous).

Transformation

The most important part of the T265 data post-processing is the coordinate frames
transformation. The 6DoF pose data are expressed w.r.t. a measurement reference frame.
The measurement reference frame for T265 is created at the beginning of a measurement and
is dependent on the initial camera position and orientation. The origin of the frame is aligned
with the origin of T265 pose frame (depicted in Fig. 5.6). The y-axis of the reference frame
is antiparallel to gravity vector pointing towards the sky. The x- and z-axis are determined
based on the camera orientation, forming a right-handed system, but are not directly aligned
with the axis of T265 pose coordinate (body) frame [60].

The creation of the measurement reference (world) frame is in general deterministic, but
hard to reconstruct and also depends on the camera initial orientation. In case the body y-axis
initially points upwards (the camera lenses point forward), the world frame is almost exactly
aligned with the initial body frame. In case it is the body z-axis that is initially aligned
with gravity vector (the camera lenses upward or downward), the world frame is initialized
arbitrarily and the measured orientation data are confused and not reliable. Therefore, it is
recommended to not to initialize the sensor pointing upwards or downwards [64], which can
be limiting for many applications. This issue has to be remembered when designing the jig
for sensor initial positioning before measurement.

The way the world frame is initialized makes it unsuitable for our tracking application,

54

.................................... 5.6. Visual and inertial sensor fusion

because the world frame cannot be reconstructed. The T265 pose data are expressed w.r.t.
this world frame and therefore need to be transformed to another reference coordinate frame,
that is stable and easy to reconstruct based on the sensor initial position and orientation.
I chose to express the data w.r.t. the initial body coordinate frame, consistently with the
IMU sensor data. Designing the transformation calculations, I followed the theory described
in [33].

First, I calculate the transformation matrix that transforms the world frame into the
initial body frame (global). In this case I have access to not only orientation but also position
data, and the transformation matrix can be full, including the translation part. The matrix
of directional cosines Swg is formed using the initial quaternion data qw according to (5.1)
and extended by the initial position vector rw = [xw yw zw]T to result in the transformation
matrix Twg:

Twg =

 Swg rw

0 0 0 1

 . (5.26)

Note that this way it is possible to choose a different then initial body frame as the
reference one. It can be helpful in cases when it is desired to have the global frame aligned
with the camera frame when pointing upwards or downwards. The user is being forced to
initialize the camera facing forward, but can later move it to the desired upward/downward
position and set the global frame to be aligned with this later one.

Further, all position data rw are transformed from the world to the global frame using
the inverse of Twg:

rm
g = (Twg)−1rm

w , (5.27)

where the superscript m denotes the measurement (data entry) index.

Next, the quaternions have to be transformed from the world frame to the global frame.
With that, orientation of the local frame expressed in the global frame will be obtained. To
do so, I form the transformation matrix Tm

wl for each time step using quaternions qmw and
position vectors rm

w according to (5.26). The desired matrix Tm
gl can be expressed based on

the transformation rules as follows:

Tm
gl = (Twg)−1Tm

wl. (5.28)

The part of the matrix Tm
gl that represents the matrix of directional cosines as indicated

in (5.26) is then used to calculate the quaternions w.r.t. the global frame qmg according to
(5.3) and (5.4).

55

5. Motion tracking task ...
5.6.5 Measurement scenarios

I conducted several experiments with the Intel RealSense tracking camera T265 in
order to examine its performance and suitability for the desired motion tracking task. Since
there was no simulation data available, I prepared such scenarios that can be realized with
the constructed measurement device described in more detail in section 5.5.6 and shown in
Fig. 5.5. I was interested in steady state measurements, because of the possibility to inspect
the sensor’s noise characteristics. Further, I tested the camera measuring typical motions
such as translation in one axis and harmonic motion in one axis.

The experiments were done in a similar manner as with the MMR IMU sensor, using the
slider-crank mechanism. The camera can be mounted on the device so, that the movement is
then realized along one of its body axes and can be rotated so, that movements in all three
axes are examined. At this moment, I faced the problem of arbitrarily initialized reference
world frame. When the camera was mounted facing upwards, I had to first rotate the whole
device, initialize the measurement, and then manipulate it back to get the camera to the
desired upward position. The global frame was then calculated not as the initial body frame
but as a later already upward facing one. When performing the harmonic motion, slow and
fast speed was tested.

I was able to mount the T265 camera on the measurement device together with the
MMR IMU sensor. I conducted experiments with both sensors mounted with their body axis
aligned and was therefore able to compare their performance directly.

5.6.6 Results

I conducted several experiments described in 5.6.5 with the slider-crank device, post-
processed measured data and visualized them using Matlab realsense_data_post.m script.
Based on the observed results I drew several conclusions presented in this section. The
conclusions are supported by visualizations showed in Fig. A.59 - A.65 in the appendix A.3.

In the presented figures, I use RGB-xyz convention to indicate coordinate frames. There
was no filtration applied to the measured data, the position plots therefore show only the
original signal.

Conclusions from experiments

.When the camera’s initial position is facing straight up or down, the orientation mea-
surements are unreliable. It is necessary to tilt the camera slightly before initialization
and put it on desired initial place later. Afterwards, the chosen global frame can be one

56

.. 5.7. Comparison

of the later ones already in the desired position, instead of the very first one (Fig. A.62 -
A.65).. The reference coordinate frame is not aligned with geographical or initial frame and
coordinate transformation is therefore essential (Fig. A.59).. The measured steady state data are very precise with absolutely inconsiderable bias
(Fig. A.60 and A.61).. Although a drift can appear due to a varying bias, it can be compensated during a
following steady part of the motion (Fig. A.62).. Fast swinging motion can lead to drift in position (Fig. A.65).. The results are influenced by the nature of the scene seen by cameras. The position
estimates are better when there are more objects in middle range distance in the scene.. The sensor fusion software included in the camera registers warnings when the speed of
the motion is too high. Despite that, the position estimates work well (Fig. A.63, A.65).. No further filtration of data is needed.. There is no observable difference in performance when compared between measurements
of movements aligned with x-, y- or z-axis.

5.7 Comparison

The slider-crank device allows to mount MMR IMU sensor and RealSense T265 tracking
camera together, therefore I was able to perform several measurements for direct comparison
of performance of both sensors. The data were post-processed and visualized using Matlab
in the same manner as by individual sensors. Based on the observed results and results of
individual sensors measurements showed in section 5.5.7 and 5.6.6 I drew several conclusions
presented in this section. The conclusions are supported by visualizations showed in Fig. A.66
- A.71 in the appendix A.4.

Conclusions from experiments. The MMR IMU sensor is not suitable for measurements of translation compared to the
camera, that depicts the motion very well. The position data from IMU show trends in
motion, but fail to describe the trajectory precisely (Fig. A.66, A.67).

57

5. Motion tracking task ...
Tracking method Technique Accuracy Environment Ease of Cost

level resistance set-up
Lase trackers optical high medium low high
IMU inertial low high high low
IMU with camera inertial and optical high low high low
IMU with light pulses inertial and optical medium medium medium medium
IMU with ultrasound sensor inertial and acoustic high high medium medium
Active beacons Bluetooth or ultra-wideband low high low medium
GNSS radio low high low low

Table 5.5: Comparison of presented motion tracking techniques with respect to the use case of tracking of a
hand-held spray gun.

. A harmonic motion can be depicted by both sensors. Both can register the same frequency
in motion and mostly even the same amplitude. However, due to the high-pass filtering
of IMU data that tends to shift data to have zero mean, the IMU position data are
distorted and can not be trusted (Fig. A.68 - A.71).. There is no observable difference in performance when compared between measurements
of movements aligned with x-, y- or z-axis.

General Conclusions. The IMU sensor only is not sufficient source of data for 6DoF motion tracking (position
and orientation).. The combination of IMU and camera using visual and inertial sensor fusion works well
and is suitable for the 6DoF motion tracking task.

The knowledge of motion tracking techniques, available technologies, sensors and algo-
rithms, gained in this chapter, can be finally summed up. Many techniques have been studied
and some of them tested in experiments with real hardware. The analysis of gained experience
and results was done with respect to the intended use case, a motion tracking of a hand-held
spray gun in an industrial painting workplace. Concluded comparison is shown in Tab. 5.5.

Assuming all four performance categories in Tab. 5.5 being of the same importance, the
overall score of each tracking method can be calculated. Combinations of IMU and camera or
IMU and an ultrasound sensor are evaluated as the best.

58

Chapter 6

Robot control program synthesis

Chapter 5 was dedicated to the sensory system and the role of sensor operator and
painter in the process of automation of industrial painting. The output of that part of the
process is a trajectory of spraying tool expressed in Cartesian coordinate system w.r.t a known
coordinate frame. In this chapter role of remaining elements of the process, robot and robot
operator, is covered.

The goal of this part is to generate a control program for the robot based on received
spray gun trajectory data. Fulfilment of the task consists of data transformation to a correct
coordinate frame (section 6.1), solving inverse kinematic problem to get values of joint variables
of the robot required to perform the trajectory (section 6.2) and based on them generating of
control commands (section 6.3). Details of this procedure depend on the characteristics of
used robot and configuration of the painting cell. These are variable, some possible examples
are presented in chapter 8. I provide a general description of robot control program synthesis,
not designed to fit any particular robot or company.

One essential assumption I made is, that the working range of chosen robot in the
painting cell is sufficient for completing the painting task, i.e. positions of all points in the
trajectory data are feasible.

6.1 Transformation

The trajectory data need to be transformed from the measurement reference coordinate
frame to the robot reference coordinate frame. The robot, painted object and measurement
reference coordinate frames are fixed and their mutual location is known and can be expressed
in form of transformation matrices, as described in section 5.2. The matrix that transforms
data from measurement reference frame to robot reference frame will be called TRM.

The trajectory data capture motion of a point defined by the motion sensor, e.g. the
center of its accelerometer, that is fixed to the painting tool. The transformation between this

59

6. Robot control program synthesis
point and a chosen reference point on the tool, for example the tip of the spray gun, is again
known and will be called TMT. Since the goal is to reproduce trajectory of the painting tool,
the resultant transformation matrix TRT used to express position and orientation of the tip
of painting tool w.r.t. the robot reference coordinate frame is:

TRT = TRMTMT. (6.1)

The painting tool attached to the robot as an end-effector is a part of a known kinematic
chain that starts in the robot reference coordinate frame and describes robot’s kinematics.
The position and orientation of the tool expressed w.r.t. the robot frame represents therefore
desired end-effector trajectory and is the input to the inverse kinematic problem.

6.2 Inverse kinematic problem

An industrial robot consists of several links connected together by joints. A type of
robot that is considered in this chapter is a serial stationary robot with 6 degrees of freedom
corresponding to its 6 revolute joints. The state of the robot is described by rotations of
individual joints, the joint variables, angles Θ. Knowing the state of the robot and the
robot’s geometry and dimensions, position and orientation of its end-effector is unique and
can be determined. Determination of end-effector pose from joint variables is called forward
kinematic problem. Its solution requires composition of elementary transformation matrices
between local coordinate frames of connected links and results in final transformation matrix:

T06(Θ) = T01(Θ1)T12(Θ2) . . .T56(Θ6), (6.2)

that is used to calculate end-effector position ree
R w.r.t. the robot reference frame:

ree
R = T06(Θ)ree

6 . (6.3)

The value of ree
6 is constant and known from robot geometry. The orientation of end-effector

is given by the directional vector between the center of last link’s local coordinate frame and
the end-effector’s local frame [65].

Finding joint variables when end-effector pose is given is reversed task called inverse
kinematic problem. The inverse problem is usually more complicated than the forward one.
Solution may not always exist but there may be also multiple solutions for one end-effector
pose. Solving inverse kinematic problem means finding elements of matrix T06(Θ) such that
equation (6.3) holds and then eliminating values of individual joint variables (Θ) from them,
which leads to solving of set of 16, usually nonlinear, equations.

60

...................................... 6.2. Inverse kinematic problem

In practice both analytical (closed form) and numerical ways of finding solution to inverse
kinematic problems exist. The closed form solution is preferred, because calculating of joint
variables is then generally faster and it allows for design of a reasonable mechanism for choosing
one among more possibly existing solutions. Many analytical solvers are however limited to
robots with maximum of 6 DoF and are based on kinematics decoupling of translation and
rotation [65].

Many examples of implemented numerical algorithms are based on Inverse kinematic
library by Samuel Buss [66], including widely used robotics simulation module PyBullet
[67]. An example of solver performing analytical solution is IKFast algorithm by OpenRAVE
framework [68]. Commercial robot control software packages are also equipped by some form
of inverse kinematic solver that is optimized for the particular robot.

Numerical solution - Damped least squares

Numerical solution is based on approximation of relationship (6.3). This relationship
in general says, that end-effector position ree

R is a function of joint variables Θ, such that
ree

R = ree
R (Θ). The following derivation refers to [69]. Jacobian matrix J(Θ) can be expressed

as follows:
J = ∂(ree

R)
∂(Θj)

, (6.4)

where j = 1 . . .M is an index of joint variable for an M-DoF robot.
Expression (6.4) leads to forward dynamics equation:

ṙee
R = JΘ̇ (6.5)

and its approximation by:
∆ree

R ≈ J∆Θ. (6.6)

The aim of inverse kinematics is to find such joint variables Θ, that the end-effector
position ree

R equals target position tR. The change in end-effector position needed to achieve
the target position can be expressed as:

e = tR − ree
R (6.7)

and approximated by:
e = ∆ree

R ≈ J∆Θ. (6.8)

The problem is therefore formulated as a problem of choosing values of ∆Θ iteratively
until equation (6.8) is satisfied. One possible way of doing so is called damped least squares
or Levenberg-Marquardt method. It finds the value of ∆Θ that minimizes:

||J∆Θ− e||2 + λ2||∆Θ||2, (6.9)

61

6. Robot control program synthesis
where λ is a chosen non-zero damping constant.

Equation (6.9) can be rewritten as:

(JTJ + λ2I)∆Θ = JTe, (6.10)

leading to damped least square method solution for ∆Θ:

∆Θ = (JTJ + λ2I)−1JTe. (6.11)

Analytical solution - IKFast

Closed form solution refers again to equation of forward kinematics. The following
derivation refers to [70]. From the relationship (6.3) set of equations is obtained, where each
equation is of a polynomial form:∑

i

ai
∏
j

cospi,j

j sinqi,j

j Θri,j

i = 0, (6.12)

where a is a constant coefficient and p, q, and r are exponents and pi,j + qi,j + ri,j <= 1.
Further, trigonometric constraints cos2

j + sin2
j −1 = 0 must not be violated.

IKFast implements algorithm of searching for roots of polynomial equations obtained
from forward kinematics. The algorithm evaluates solution and numerical complexity and
starts solving those joint variables that are the simplest and most unambiguous first. It can
find all possible discrete solutions and can handle even robots with more than 6 DoF by
methodically selecting those joints that are above 6 as free joints [70].

6.3 Control commands generation

A robot control system takes the outputs from inverse kinematics and forms the final
sequence of commands that can be sent to robot’s actuators. The system has to choose the
most optimal joint poses, when there are redundant solutions available for one end-effector
pose. Aspects to be optimized for are for instance amount of change in joint variables
compared to previous pose or energy needed to set these joint variables.

The control system is also responsible for performing collision checks and adjusting
the joint poses so, that collisions are avoided. Further, it incorporates joint range, velocity
and acceleration limits and ensures that the sequence of required joint poses is feasible.
It also controls the speed of motion, which can be either prescribed by user or optimized
automatically.

The values of joint variables from the resultant sequence are successively sent as inputs
to sophisticated control algorithm that performs feedback control of corresponding actuators
of each joint. The joints are set and the robot performs required trajectory [65].

62

... 6.4. Simulation

The process of commands generation is automated by the robot control software. However,
a human intervention is needed in some cases. Some parts of the trajectory might reveal to be
not optimal or not feasible but may be adjusted to become at least suboptimal. Alternatively,
it may be necessary to divide the trajectory into shorter sections, when it is not possible to
perform it in one continuous movement. The role of the robot operator is to review generated
robot trajectory in real or in simulation and adapt it as needed based on the operator’s
experience and knowledge of performed task.

6.4 Simulation

For the purpose of the simulation, I recorded several sets of data with the Intel RealSense
tracking camera T265 (described in section 5.6) held by hand. I performed random movements
imitating those possibly done during industrial painting.

There are many manufacturers of industrial robots and each of them provides own
control software for their robots. Their functionality is similar but implementation differs.
I did not use any commercial software in order to keep this work general and avoid details
about software that may be for most applications useless. Instead, I prepared simulation of
robot control program synthesis and execution in two open-source programs.

First software called PyBullet [67] is a tool often used by researchers in field of robotics
and machine learning. It includes numerical inverse kinematic solver, simulates and visualizes
robot control. Second software is Robot operating system (ROS) [71] that includes a number of
libraries and tools for robot control, simulation and visualization and enables also commands
execution on real robots and real hardware.

6.4.1 PyBullet

PyBullet [67] is a python implementation of simulator for robotics simulations and
machine learning focused on sim-to-real transfer. It even contains implementation of several
industrial robots that can be easily included in user’s application.

I chose to use a model of industrial robot KUKA LBR iiwa. This robot has 7 DoF, its
working range is relatively small but thanks to its light weight and small footprint it can be
mounted on a carriage and become mobile. Besides, the robot is collaborative and allows
teaching by demonstration, meaning that the operator can easily guide the robot through
desired trajectory. It can be helpful when a part of trajectory is not feasible or optimal and
needs to be adjusted. It is also suitable for painting operations [72]. The Pybullet model
includes information about its joint range, velocity and acceleration limits and rest poses.

63

6. Robot control program synthesis

Figure 6.1: Simulation of KUKA LBR iiwa in PyBullet.

All source code including python dependencies in a .yml file needed for the PyBullet
simulation is to be found in the appendix C.4. The main script pybullet_kuka_simulation.py
loads trajectory data from provided csv file and transforms them to the robot reference
coordinate frame. It creates an instance of class KukaGymEnv and sends the trajectory data
to it in a for loop. The KukaGymEnv class defined in KukaGymEnv.py is a custom definition
of simulation set-up. It initializes instance of Kuka class and includes basic methods to control
it. The Kuka class (kuka.py) contains necessary information about the real robot.

One of the Kuka methods I implemented is apply_accurate_IK that solves inverse
kinematics by numerical method of damped least squares described in section 6.2. It allows
user to set tolerances on achieved end-effector position and orientation and upper limit
of iterations. The algorithm tries to find solution iteratively, until the pose is within the
tolerances or maximum iteration is achieved. The velocity is indirectly controlled by specifying
a duration of each simulation step (one loop), that corresponds to the sampling time of recorded
trajectory data. I also used null-space parameter to make the algorithm to take into account
joint limits and optimized towards robot’s rest poses.

The robot executes a movement each simulation step, even when the desired tolerance
was violated, and eventually evaluates error of each step in terms of difference between desired
and achieved position and orientation of end-effector.

64

... 6.4. Simulation

6.4.2 ROS - Descartes

Figure 6.2: Simulation of ABB IRB 2400 in ROS.

Descartes [73] is a package introduced by industrial consortium called ROS-Industrial
that extends capabilities of often used platform MoveIt [74]. It is meant for robotic trajectory
planning (joint variables) based on Cartesian trajectory data (end-effector position and
orientation) given as a function of time.

The path planner available in MoveIt is more suitable for standard trajectory planning
tasks, when user specifies only several waypoints and lets robot interpolate between them
as needed. In our application we prescribe sequence of many waypoints, the trajectory
discretization is therefore very dense, and we demand visiting next waypoint each time step,
that is shorter than one second. For these reasons, I decided to use Descartes. Another useful
feature of this package is option to plan for only 5DoF trajectories, meaning that it allows
the robot to rotate around the longitudinal axis of the end-effector freely, which makes the
planning more flexible and is suitable for the case of industrial painting with a spray gun.
Descartes can also avoid collisions with the robots itself and other specified objects in the
environment [73].

I followed Descartes tutorials [75] and prepared robo_painting.cpp script written in
C++ that loads csv file with end-effector position and orientation data, transforms them to
the reference coordinate frame of the robot, calculates the inverse kinematics, extracts final

65

6. Robot control program synthesis
sequence of joint variables, simulates its execution and sends the respective commands to real
robot if available. The source code is to be found in appendix C.5.

The robot used in this simulation is IRB 2400 by ABB, a commonly used 6DoF robot
with large working range that is also available with increased environment protection [76].
The model of the robot and data about its kinematics, joint range, velocity and acceleration
limits are included in the ABB MoveIt package, that is also maintained by ROS-Industrial.

The inverse kinematics is calculated using IKFast algorithm (section 6.2) implemented
in the Descartes package. The solutions for the whole sequence of end-effector pose data
are arranged in a graph. In case there are points for which no solution exists, the algorithm
returns error and IDs of these points. In case one or multiple solutions exists for each point,
the solutions are represented by nodes in the graph [77].

The algorithm then tries to connect nodes of two consecutive points by edges. Two
nodes can be connected only if the transition between them is feasible in time given by the
time step with respect to the joint limits. If there are two consecutive points for which no
pair of nodes exists that would be connected with an edge, the algorithm returns error and
IDs of such points [77].

Lastly, the algorithm performs Dijkstra’s graph search algorithm to find the sequence of
nodes (joint variables) while optimizing a cost function. The cost function is a sum of costs
of edges in the sequence. An edge cost is defined as a norm of the difference between joint
variables (nodes) that are connected by the edge. In other words, the algorithm enforces
smooth robot trajectories [77].

The robot trajectory defined by found sequence of joint variables is then performed by
the robot simulation and may be executed by real robot if available.

6.5 Conclusions from simulations

I conducted several simulations using both PyBullet and ROS - Descartes. The aim
of the simulations was to proof if the trajectory of a hand-held tool sampled by a sensor
can be transformed into robotic trajectory and executed. With respect to this aim, I made
simulations with two different robots using two different kinds of software and tested both on
the same recorded data, to enhance general validity of achieved results.

I was able to transfer sets of relatively complex recorded trajectories into both simulated
robots and proofed that the concept of trajectory planning introduced in this thesis is
meaningful. The results in form of graphs and videos are available in the appendix B. In
addition to that, I derived several conclusions, which I present in this section.. The trajectory data recorded by Intel RealSense tracking camera T265 do not need

66

..................................... 6.5. Conclusions from simulations

any additional filtering, the robot movement generated based on them is smooth and
reasonable.. It is very important to choose configuration of the robot w.r.t. the painted object carefully,
so that the recorded trajectory transformed to the robot coordinate frame is for the robot
feasible. A small change in configuration may change the feasibility.. There may be parts of trajectory that are not feasible by a standard industrial robot. A
human arm has more DoF and is capable of poses that robot with 6 or 7 DoF may not
be able to achieve.. Relaxation of 6DoF to 5DoF planning with free rotation around tool’s longitudinal axis
helps to find more feasible solutions of inverse kinematic problem.. PyBullet simulation with KUKA iiwa using numerical inverse kinematic solver was more
robust and able to imitate more complex trajectories than the one done using Descartes.. In Descartes there are situations when a continuous rotational movement is interrupted,
the last link rotates by almost 360◦ in the opposite direction to the movement and then
continues the movement further. This movement is not achievable within the given time
limit and the algorithm returns error. I believe it is because the not optimally defined
orientation by Euler angles that is discontinuous.

67

68

Chapter 7

Software project design

The aim of this work is to take the problem of automation of industrial painting process
as a complex task and provide a solution for it as a whole. A solution of such complex
task includes several hardware elements such as sensors, that further need a software for
control. The solution is required to provide multiple functionalities, be generalized enough
and complete in terms of coverage of the whole automation process. An indispensable part
of such solution is naturally a software program that frames all mentioned features into one
arranged, easy to use package, providing the necessary support for completing the painting
automation task from the beginning till the end.

I approached this need and created a software study that precisely determines all wanted
and needed features and functionalities. The study represents a framework that brings
together tools designed in chapter 5 and 6 of this work. I worked out most of the parts of this
software study, however, the attention is still paid mainly to the engineering challenges and
solving of practical problems. Therefore, the software is a working version for engineers and
developers rather than for general public, but should be later upgraded to a robust and user
friendly software based on the study presented in this chapter. I call the designed software
Robo-Painter.

7.1 Introduction

The Robo-Painter software is a tool that helps with automation of industrial painting
tasks. The software provides user with a possibility to record trajectory of a hand-held
painting tool using a sensory system and transform it into robot control commands. The
software post-processes the recorded data, based on user defined configuration and generates
input data for a robot control system. It also allows user to visualize and optimize generated
data. The robot control system transforms input data into commands and creates robot
control program. The robot running such control program from the Robo-Painter software

69

7. Software project design ..
will imitate the recorded painting trajectory.

The main functionalities of the software are trajectory data collection and visualization,
post-processing, optimization of the trajectory and generation of commands for the robot
control program.

7.2 Software specification

The software should be used in the workplace where industrial painting is performed.
The Robo-Painter is designed as a supporting software for workers (painters), automation
engineers and robot programmers. It allows them to cooperate on design of a solution for
automation of a selected painting operation. Each process of automation of a particular
painting operation is well documented and all respective data are stored under a project in
the database.

The Robo-Painter software consists of two main parts – human painter data collection
with analysis, and robotic painting data synthesis and generation. Both parts are further
divided into subsections and these can be performed separately at different times, by different
users. Each subsection represents a certain operation over data. It takes data from the
database as an input, modifies them in a defined way and stores them back into the database.

The database is an essential element of the whole system. The basic organization unit in
the database is a project. One project represents one attempt to automize the painting of one
product. The project is uniquely described by the user defined name and the database keeps
the information about when it was created and modified. A project stores data about the
product in the main section. These are part identification number and the painting process
details such as the catalogue number of the used paint, the thickness of the painted layer,
required time of drying. Further, it stores all recorded tool trajectory data into the section
raw data under a unique identifier based on the start time of the measurement. When the
data are further processed, the database creates new section and stores the modified data in
there together with the information about the configuration of the processing. The sections
in the database correspond to the functional subsections of the system.

The functional subsections of the system are: tool trajectory data collection, tool
trajectory data post-processing, robot trajectory synthesis, robot trajectory optimization,
robot control. Further, the software offers functions such as data visualization and trajectory
simulation, and report generation from the robot control system. The post-processing involves
data synchronization, filtration, cropping and optional mathematical operations such as double
integration. The optimization involves data comparison, averaging, copy, paste and replace.
The robot control involves robot control commands generation, robot program generation

70

.. 7.2. Software specification

and loading.

The software is meant to be locally installed on regular personal computers of involved
users (automation engineers, robot programmers, managers. . .) with an access to the common
database located either on a shared hard drive or a cloud server, based on the user’s choice.
The amount of copies of the software installed locally is not limited and the system does not
expect any restricted access in form of a login or user registration. The access rights to the
database are in the competence of the user and are not enforced by the system. Each user
can work with all functions of the software.

Further, the Robo-Painter software exists in a minimal install version with capabilities
limited to data recording and storing only. This version should be installed on a simple
small singe-board computer and should be used by the worker while painting a product
and recording the painting tool trajectory. In this scenario, the regular PC would not be
suitable because of its size, weight and mainly the risk of being destroyed by the aerosol in the
environment. Also, the painter is supposed not to interact with the software further beyond
the stage of the trajectory recording, therefore this minimal version should optimally cover
painter’s use case.

7.2.1 User roles, agents and actions

The software does not recognize different types of users and all users can therefore
access all functionalities. The software further does not expect any restricted access in form
of a login or user registration. However, different types of use cases can be distinguished,
corresponding to different types of user roles. For this reason, I differentiate between the user
roles from the point of view of the software and its usage, rather than based on real people or
their job titles. Most likely, one person will occupy more user roles alongside. Furthermore,
the software interacts with a sensory system and a robot.

The overview of user roles and their relationship to the system is showed in Fig. 7.1.

71

7. Software project design ..

Figure 7.1: Context model of the Robo-Painter software.

Painter

The painter is a worker who uses the minimal install version of the software. He or she
is involved in the subsection tool trajectory data collection only. The painter can start the
measurement and end the measurement (by sending commands to the sensory system). He or
she can also set up a new project in the database.

Sensor operator

The sensor operator is involved in the subsections tool trajectory data collection, tool
trajectory data post-processing and robot trajectory synthesis. The sensor operator can set
up a new project in the database. He or she can create a measurement configuration file
and save it into the database, or view an existing configuration file. The sensor operator can
visualize the raw data stored in the database. Further, he or she can create a post-processing
configuration file and save it into the database or view an existing one. The sensor operator
can post-process the raw data based on the configuration, visualize them, and save them
into the database or delete them. After the post-processing, the sensor operator can ask the
software to synthetize the robot trajectory and store it into the database.

72

.. 7.2. Software specification

Robot operator

Functional subsections that belong to robot operator are robot trajectory optimization
and robot control. The robot operator creates the optimization configuration file or views an
existing one, loads the robot trajectory data, and optimize them based on it. He or she can
then visualize the trajectory data, store them or delete them. The robot operator can ask the
software to generate robot control commands, view the simulation of robotic painting process
and load the control program into the robot. He or she can also view the reports generated
by the robot and stored in the database.

Sensory system

The sensory system receives commands from the Robo-Painter system. It collects the
tool trajectory data according to received configuration file for the period of time controlled
by the configuration file. It stores the raw trajectory data into the database.

Robot

The robot receives commands from the robot control system in form of a program and
performs them. It sends the system report that is stored into the database.

7.2.2 Hardware and software requirements

The full version of the Robo-Painter software is meant to be installed on personal
computers, while an average performance level should suffice. The operation system needs to
be enough flexible to handle interaction with the sensory system, computing system, robot
control system and the robot. The software is not responsible for any time or mission critical
tasks.

The computing and robot control systems need a support of third-party software, that
will be integrated into the Robo-Painter software.

The minimal install version of the software should be installed on a single-board computer
with a wireless connection module, memory card slot, external power supply and operation
system identical with the one for the full version.

The database should be stored on a shared hard drive or a cloud service. The expected
amount of stored data is approximately 0.5 GB per project.

73

7. Software project design ..
Name Type Description
project_name string Unique name of project, user defined
product_id unsigned short int Product identification number, match the user’s system
paint_id unsigned short int Paint catalogue number
layer_thickness unsigned short int Thickness of layer to be painted on the product, in micrometers
drying_time unsigned short int Time needed for the painted product to dry, in seconds
data_raw_traj array Tool trajectory data recorded by the sensory system
data_post_traj array Tool trajectory data post-processed by sensor operator
data_robot_traj array Robot trajectory generated by the sensor operator
data_opt_robot_traj array Optimized robot trajectory by the robot operator
data_robot_command array Commands for the robot generated by the robot operator
robot_program object The control program loaded into the robot
config_meas record Configuration file used for tool trajectory data recording
config_post record Configuration file used for the post-processing
config_opt record Configuration file used for the optimization
report_robot record Report file returned by the robot

Table 7.1: Data glossary of the Robo-Painter software.

7.3 Software analysis

To identify and describe important aspects of the software an analysis in form of a
detailed context model (Fig. 7.2) with data glossary (Tab. 7.1), entity relationship diagram
(Fig. 7.3), data flow diagram (Fig. 7.4 - 7.6) and state transition diagram (Fig. 7.7 - Fig. 7.9)
was made.

The entity relationship diagram ERD (Fig. 7.3) represents the database structure, that
resembles the functional subsections of the software.

The dataflow diagram DFD (Fig. 7.4 - 7.6) is depicted at different levels of detail. Level
0 (Fig. 7.4) shows the system overview, understanding each functional subsection of the
software as a system process. The system processes are further analyzed at level 1 (Fig. 7.5)
and extended by the additional processes at level 2 (Fig. 7.6).

The transitions between states in the STD State transition diagram (Fig. 7.7 - 7.9)
represent mostly commands coming from user interaction with the graphical user interface
(GUI). Design of the GUI is beyond the scope of this work, however, the STD of this form
represents a draft of the GUI, listing most of the input controls and navigational components.
For clarity, the software STD is divided into sections.

Since the GUI design is not part of this work, the user commands, such as set up new
project, measure, post-process, are not included in the data glossary (Tab. 7.1).

74

...7.4. Software testing

7.4 Software testing

From the software analysis it is obvious that the Robo-Painter software can be decom-
posed into functional subsections. Each of these subsections – measurement, post-processing,
optimization, robot control, will be designed and developed separately and should be also
tested separately using dummy test data. When the subsections are ready, the communication
with agents outside of the system boundary is implemented and tested. The sections are
tested again on a real test data. After the connection between the software subsections is
established, the data flow through the whole system is tested...1. Subsection tests with dummy test data..a. Measurement section

(i) Measurement
(ii) Visualization..b. Post-processing section

(i) Post-processing
(ii) Robot trajectory generation
(iii) Visualization..c. Optimization section

(i) Optimization
(ii) Robot commands generation
(iii) Visualization..d. Robot control section

(i) Robot simulation
(ii) Robot program generation
(iii) Robot reports..2. Interaction tests with agents and users..a. Sensoric system/measurement section interaction..b. Robot/robot control section interaction..c. User/database interaction..3. Integration tests with real data..a. Subsection tests (as in 1.)..b. Complete data flow test

75

7. Software project design ..

Figure 7.2: Context model of the Robo-Painter software, detail.

76

...7.4. Software testing

Figure 7.3: Entity relationship diagram of the Robo-Painter software.

77

7. Software project design ..

Figure 7.4: Data flow diagram of the Robo-Painter software at level 0, system overview.

78

...7.4. Software testing

Figure 7.5: Data flow diagram of the Robo-Painter software at level 1, software processes.
79

7. Software project design ..

Figure 7.6: Data flow diagram of the Robo-Painter software at level 2, software processes from
the user’s (agent’s) perspective. 80

...7.4. Software testing

Figure 7.7: State transition diagram of the Robo-Painter software at level 0.

81

7. Software project design ..

Figure 7.8: State transition diagram of the Robo-Painter software at level 1, from the functional
subsection’s perspective (measurement and post-processing).

82

...7.4. Software testing

Figure 7.9: State transition diagram of the Robo-Painter software at level 1, from the functional
subsection’s perspective (optimization and robot control).

83

84

Chapter 8

Robotic painting cell design and control

The final part of a design of an automation of any manufacturing process is the design of
a real workplace with hardware and control software needed to carry out the manufacturing
task. I elaborate on this final part in this chapter.

I designed a robotic painting cell that demonstrates how the automated painting operation
would eventually look like. My intention was not to design a workplace that perfectly fit to a
real manufacturer or a particular product, while that would require a careful choice of the
used robot and hardware.

There are multiple options how to design the workplace with respect to the robot and
product relationship. Either, the robot can be stationary with reachable area large enough to
be able to paint a whole static product. Or, the product can be movable and moved when
the robot needs to reach a different part of it. There could be also two or multiple stationary
robots placed at the opposite sides of a stationary product, whose total range would be
sufficient. Another option is to use a mobile robot, that would move around a stationary
product, either along a given track or freely, using a navigational system.

The design I chose assumes one stationary robot and a movable product, realized by a
turn table. The particular type of robot is not specified, since it depends on the manufacturer’s
choice. In the design, I included the assumption that a painting workplace is classified as
possibly explosive and its design is therefore subject to safety restrictions. No electric drives
were placed inside the painting booth.

During the design I followed a common approach of a design of any automated manu-
facturing operation that starts with analysis of the automated task, choice of hardware and
software and further design and realization of a control part - creating a PLC (programmable
logic controller) program.

85

8. Robotic painting cell design and control
8.1 Task description

8.1.1 The painting operation description

At the beginning of the process, the gates open (2a, 2b) and the product (1) starts
moving to the painting booth. After the product (1) arrives at the required position, the
gates (2a, 2b) close, the water wall (5) is turned on and the robot (6) starts painting the
first side of the product (1). Once the first side is finished, the product (1) is turned by 180◦

and the second side is painted. When the painting finishes, the gates (2a, 2b) open and the
product (1) leaves the painting booth.

Automatic mode

When the manufacturing line is turned on in automatic mode (auto_sw), the gates (2a,
2b) open (pneumatic motors Aa, Ab) and the overhead conveyor (3) starts to move (electric
motor B). The bar code scanner (4) identifies the product (1) before it enters the painting
booth.

Once the product (1) reaches the desired position in the painting booth (photoelectric
sensor (s3)), the conveyor (3) stops (B). The gates (2a, 2b) close (Aa, Ab) and the water wall
(5) is turned on. Based on the product identification, the first painting program of the robot
(6) is selected and activated.

After the first painting program finishes, the turn table switch (7) turns the product (1)
by 180◦ (pneumatic motor C). The second painting program is activated.

After the second painting program finishes, the turn table switch (7) turns the product
(1) by 180◦ back (C). The water wall (5) is turned off and the gates (2a, 2b) open (Aa, Ab).
The overhead conveyor (3) starts to move (B). The product (1) leaves the painting booth.

If an error occurs during any of the above processes, the operator is notified and the
process is suspended. After the operator quits the failure, the process continues.

If the operator activates the emergency stop (em_stop_sw) the robot (6) goes to stop
mode (steady, spray gun off). The gates (2a, 2b) open, the conveyor (3) stops. The water
wall (5) is turned off. The system waits until the operator handles the emergency and switch
the emergency stop (em_stop_sw) off again.

Manual mode

When the manufacturing line is turned on in manual mode (manual_sw), the operator
opens (gates switcher mAa_sw, mAb_sw) the gates (2a, 2b) and turns on (conveyor switcher

86

.. 8.1. Task description

mB_sw) the overhead conveyor (3). If turned on (p4m), the bar code scanner (4) identifies
the product (1) before it enters the painting booth.

Once the product (1) reaches the desired position in the painting booth, the operator
stops (conveyor switcher mB_sw) the conveyor (3). Now the operator closes (mAa_sw,
mAb_sw) the gates (2a, 2b) and can turn the water wall (5) on (p5m). The operator can
choose the painting program of the robot (6) and activate it (p6m). The operator can turn
the product (1) by rotating (mC_sw) the turn table switch (7).

After the operator finishes the desired operations, the operator opens (gates switcher
mAa_sw, mAb_sw) the gates (2a, 2b) and turns the overhead conveyor (3) on (mB_sw).
The product (1) leaves the painting booth.

If the operator activates the emergency stop (em_stop_sw) the robot (6) goes to stop
mode (steady, spray gun off). The gates (2a, 2b) open, the conveyor (3) stops. The water
wall (5) is turned off. The system waits until the operator handles the emergency and switch
the emergency stop (em_stop_sw) off again.

Elements (see Fig. 8.1)
1 - product
2a, 2b - gates
3 - overhead conveyor
4 - bar code scanner
5 - water wall
6 - robot
7 - turn table switch

Motors
Aa, Ab - pneumatic motors (gates)
B - electric motor (conveyor)
C - pneumatic motor (turn table switch)

Sensors
Aa0, Aa1, Ab0, Ab1 - pneumatic motors limit switches (gates)
C0, C1 - pneumatic motor limit switch (turn table switch)
s2a, s2b - photoelectric sensors (gates)
s3 - photoelectric sensor (conveyor, product on place)

Switchers

87

8. Robotic painting cell design and control

Figure 8.1: 3D model of the robotic painting cell with labeled elements.

start_sw - on/off switcher
mode_sw - mode switcher (auto_sw/manual_sw/service_sw/)
em_stop_sw - emergency stop switcher
mAa_sw, mAb_sw - gates manual open/close switcher
mB_sw - conveyor manual on/off switcher
mC_sw - turn table manual 180◦/0◦ switcher

Buttons
fail_quit - operator quits an error
next - operator moves to next step in manual mode

Software processes
p4out - bar code scanner command (on/off)
p4m - bar code scanner manual command (on/off)

88

.. 8.2. Task analysis

p4in - bar code scanner value (ready/id/error)
p5out - water wall command (on/off)
p5m - water wall manual command (on/off)
p5in - water wall value (on/off/error)
p6out - robot controller command (run program id/steady/home)
p6m - robot controller manual command (run program id/steady/home)
p6in - robot controller value (ready/running program id/error)

Timers
tAa, tAb - gates opening/closing
tC - turn table switch turning
ts3 - product arriving to desired place
ts2b - product leaving the painting booth

8.1.2 Fault diagnosis and isolation

Each state in the production mode has its associated error state. The transition to the
error state is conditioned by the respective sensor readings and is specific for each state. The
error state defines which error from the Tab. 8.1 is identified. Based on the identified error,
the operator is notified and actions are taken. After the operator removes the error and press
the quit button (fail_quit), the process returns to the state from which it was raised.

8.1.3 Emergency stop

In any state in any mode (automatic/manual/service) it is possible to switch on the
emergency stop switcher (em_stop_sw) and move to the emergency stop mode. In the
emergency stop mode, the actions minimize possible danger and damage. Further, the
operator is allowed to control the motors of the gates (Aa, Ab), conveyor (B) and the turning
table (C). The operator can also give commands to the robot (p6out). See Tab. 8.2 for details.

8.2 Task analysis

The task analysis was done in form of an SFC diagram. See diagrams in Fig. 8.3 - 8.6.

89

8. Robotic painting cell design and control
Identifier Description Condition Action
etAa_o opening 2a error (gates 2a) tAa > tAa_max Aa := 0
etAb_o opening 2b error (gates 2b) tAb > tAb_max Ab := 0
etAa_c closing 2a error (gates 2a) tAa > tAa_max Aa := 1
etAb_c closing 2b error (gates 2b) tAb > tAb_max Ab := 1
etAa_c_m closed gates 2a error (gates 2a) mB_sw = 1 AND Aa0 = 1 B:=0
etAb_c_m closed gates 2b error (gates 2b) mB _sw= 1 AND Ab0 = 1 B:=0
etC_o turning error opening (turn table 7) tC > tC_max C := 0
etC_c turning error closing (turn table 7) tC > tC_max C := 1
es2a gates closing when s2a detects an obstacle (gates 2a) s3 = 1 AND s2a = 1 OR

mAa_sw = 0 AND s2a = 1 Aa := 1
es2b gates closing when s2b detects an obstacle (gates 2b) s3 = 1 AND s2b = 1 OR

mAb_sw = 0 AND s2b = 1 Ab := 1
ets3 product didn’t arrive on place (product 0) ts3 > ts3_max B := 0
ets2b product didn’t leave the painting booth (product 0) ts2b > ts2b_max B := 0
ep4 bar code scanner error (scanner 4) p4in = ‘error’ -
ep5 water wall error (water wall 5) p5in = ‘error’ -
ep6 robot controller error (robot controller 6) p6in = ‘error’ -
ep5A_m water running error (water wall 5) mAa_sw = 1 AND mAb_sw = 1 AND p5in = ‘on’ -
ep6A_m robot operation error (robot controller 6) mAa_sw = 1 AND mAb_sw = 1 AND p6in = ‘id’ -

Table 8.1: Table of identified errors that can occur during a run of the PLC program.

Description Condition Action
emergency stop em_stop_sw = 1 auto_sw := 0;

Aa :=1; Ab :=1; B := 0; C :=0;
p4out := ‘off’; p5out := ‘off’;
p6out := ‘steady’

Table 8.2: Details of the emergency stop mode that occurs when the emergency stop switcher is activated
during a run of the PLC program.

8.2.1 Hardware design

All three pneumatic motors (Aa, Ab, C) were designed the same way. The desired
movement is achieved by a single acting cylinder with spring return. The air inlet of the
cylinder is connected via one-way flow control valve to a 3/2 mono stable valve. The 3/2
valve is electrically actuated and normally closed (closed when signal equals False). The 3/2
valve is connected to an air-preparation unit in form of an FRL (filter, regulator, lubricator)
unit. The diagram of the pneumatic circuit is showed in Fig. 8.2.

90

.. 8.3. State model

Figure 8.2: Diagram of the pneumatic circuit used in the robotic painting cell.

8.3 State model

State model of the task is shown in a form of an SFC diagram in Fig. 8.3. There are
seven super states identified: stopped, starting, idle, emergency_stopped, service, automatic
and manual. The emergency_stopped, automatic and manual states are elaborated further.

When the production is off, the production unit remains in the stopped state. After
the start and initialization, the production unit goes to idle, from where it can continue to
either service, automatic or manual mode, based on the choice of the operator. The operation
unit stays in the set mode until the operator decides to stop or change it. After the operator
decides to finish with the chosen mode, the necessary operations are finished and the unit
returns to idle.

From any state or super state, it is possible to jump to the emergency_stopped super
state. After the emergency is handled, the production unit transfers to idle.

8.4 State machine algorithm design

The individual SFC diagrams and the state model of the task were used to design the
algorithm for PLC controller. The algorithm is based on the Moore state machine described
for instance in [78].

The transitions between individual super states are controlled by super state control

91

8. Robotic painting cell design and control
transition index cond_in mask_in cond_state active_state

i

Table 8.3: Structure of the table of transitions.

state index cond_out mask_out
j

Table 8.4: Structure of the table of states.

algorithm. When the automatic/manual mode is activated, the unit is controlled by automat-
ic/manual control algorithm respectively. The activation of desired control algorithm section
is organized by local variable flag of type byte. Thanks to this system, the production unit
can be easily extended by another modes (super states) as for example maintenance mode.

8.4.1 Moore state machine algorithm design

Each control algorithm works with a table of transitions (Tab. 8.3) and a table of states
(Tab. 8.4). The number and order of rows in the table of transitions (Tab. 8.3) is equal to
the identified transitions in the corresponding SFC diagram (Fig. 8.3 - 8.6). The columns
represent the combination of input values (cond_in) and states (cond_state) needed to find a
valid transition. The column mask_in chooses relevant input variables and ignores values
of those that are irrelevant. The column active_state determines which states are activated
when the valid transition is realized.

The output variable out of type word is set based on the table of states (Tab. 8.4). Each
bit of the variable out represents one output variable. The column mask_out says which
variables to change and which to keep unchanged. The column cond_out prescribes if the
relevant variable should be set or reset. The values in the two tables are directly derived from
the corresponding SFC diagrams (Fig. 8.3 - 8.6) for each control section.

At the beginning of each PLC cycle, the input variables and relevant local variables are
loaded into an array input_array and converted to one variable in of type double word. Each
bit represents one input variable. All input and output variables need to be of type bool. For
this purpose, the string variables p4in, p5in, p5out etc. were replaced by Boolean variables
p4in, p4in_error etc. At the end of each cycle, the algorithm writes values to output_array
and then to the individual output variables based on the value of the output word out.

The main idea of the designed algorithm is presented in the code snippet below:

92

................................ 8.5. State machine algorithm implementation

i f f l a g = mode then
i := 0 ;
whi l e i < n_mode_transitions do (∗ loop through tab l e o f t r a n s i t i o n s ∗)

i := i + 1 ;
i f ((mask_in [i] and in) = cond_in [i]) and

((s t a t e and cond_state [i]) = cond_state [i])
then s t a t e := ac t i v e_s ta t e [i] ; i := n_mode_transitions ;

end_if ;
end_while ;
i f s t a t e = start_of_another_mode then (∗ f l a g s e t ∗)

f l a g := new_mode ;
s t a t e := s1_in_new_mode ;

end_if ;
end_if ;

i f f l a g = mode then
f o r j := 1 to n_mode_states by 1 do (∗ loop through tab l e o f s t a t e s ∗)

i f (s t a t e and a l l_ s t a t e [j]) = a l l_ s t a t e [j] then
out := (cond_out [j] and mask_out [j]) or

(out and not (mask_out [j])) ;
end_if ;

end_for ;
end_if ;

8.5 State machine algorithm implementation

The algorithm designed in section 8.4 was implemented, simulated and tested in OpenPLC
Editor [79]. The code was written in Structured Text following the IEC 1131-3 standard. The
tables of transitions and states for super state, automatic and manual mode are shown in
Fig. 8.7 - 8.19.

93

8. Robotic painting cell design and control

Figure 8.3: State model. Sequential function chart of the super state mode, with identified
transitions (c) and states (s).

94

................................ 8.5. State machine algorithm implementation

Figure 8.4: Sequential function chart of the automatic mode, with identified transitions (c) and states (s).

95

8. Robotic painting cell design and control

Figure 8.5: Sequential function chart of the automatic mode, detail of the failure and emergency
stop handling part.

96

................................ 8.5. State machine algorithm implementation

Figure 8.6: Sequential function chart of the manual mode, with identified transitions (c) and states (s).

97

8. Robotic painting cell design and control

Figure 8.7: Table of transitions for the super state mode 1/2.

Figure 8.8: Table of transitions for the super state mode 2/2.

98

................................ 8.5. State machine algorithm implementation

Figure 8.9: Table of states for the super state mode.

99

8. Robotic painting cell design and control

Figure 8.10: Table of transitions for the automatic mode 1/4.

100

................................ 8.5. State machine algorithm implementation

Figure 8.11: Table of transitions for the automatic mode 2/4.

101

8. Robotic painting cell design and control

Figure 8.12: Table of transitions for the automatic mode 3/4.

102

................................ 8.5. State machine algorithm implementation

Figure 8.13: Table of transitions for the automatic mode 4/4.

103

8. Robotic painting cell design and control

Figure 8.14: Table of states for the automatic mode.

104

................................ 8.5. State machine algorithm implementation

Figure 8.15: Table of transitions for the manual mode 1/4.

105

8. Robotic painting cell design and control

Figure 8.16: Table of transitions for the manual mode 2/4.

106

................................ 8.5. State machine algorithm implementation

Figure 8.17: Table of transitions for the manual mode 3/4.

107

8. Robotic painting cell design and control

Figure 8.18: Table of transitions for the manual mode 4/4.

108

................................ 8.5. State machine algorithm implementation

Figure 8.19: Table of states for the manual mode.
109

110

Chapter 9

Discussion and conclusions

This thesis is concerned with a problem of automation of an industrial painting operation.
This technological operation is indeed a specific manufacturing operation and there are many
aspects of it making it difficult to automate. However, there have been attempts to do so,
their overview is presented in chapter 2.

The aim to automate industrial painting is motivated by several aspects. An automated
manufacturing operation can be, after an initial investment, performed repeatedly without
additional cost and effort, except the operating cost and maintenance. An automated robotic
workplace can run constantly for a long time, it is efficient and works with guaranteed
repeatability.

Although the economic aspects are self-evident, individual conditions should be assessed.
A company painting products in only medium or small series or batches may hesitate if
the investment is profitable. It would need to program the robot each time a new product
comes, this procedure may be time and cost demanding and eventually not worth it. Another
aspect to consider is, that the quality of end product depends directly on the planned robot
trajectory and the quality of its controls. There is a risk that the performance will drop if the
robot is not programmed well enough. This work aims to handle these issues and propose a
solution that is suitable for companies doing middle and small batch production and is based
on utilizing skills and know-how of human industrial painters. The solution is presented in
chapter 3.

Another reason to automate industrial painting are the health concerns connected to
it. The work of an industrial painter is physically demanding and the working environment
is harsh, unpleasant and possibly unhealthy. At the end, this issue is projected back to the
economical site of the problem, since it leads to a lack of work force, lack of people willing to
do industrial painting and further results in lack of highly skilled workers in this area. Fear
of destroying job opportunities by automation of manufacturing processes is odd in general,
in this particular case especially. There is already a problem of too few people willing to do

111

9. Discussion and conclusions.......................................
industrial painting.

I would also like to disclaim the idea that if a painter will not have to paint all day every
day, he or she will lose the ability to do it well and there will be eventually nobody to teach
the robots. There are true professionals among the industrial painters, but they are too few.
If they spend their working time spreading their know-how in form of creating and capturing
ideal painting trajectories, it will be beneficial for the field and increase the professionalism
of industrial painting. Furthermore, the captured ideal trajectories can be used to create a
knowledge base useful for possible employment of artificial intelligence and machine learning
methods.

The key element of the tool is the sensory system that performs motion tracking. Motion
tracking in an indoor environment is a challenging engineering problem and I dedicated
chapter 5 to it. The problem was first analyzed and then three different methods were chosen
to solve it. It included hardware choice and work spent on putting it into operation and
preparing software tools to control it. Simulations and experiments followed to collect data
and their analysis led to conclusions presented in section 5.7.

An optimal sensory system was found with respect to specific conditions of industrial
painting operation, different aspects were considered and eventually a combination of inertial
and optical sensor in form of Intel RealSense tracking camera T265 was chosen. Based on
our beliefs, this system allows to track the motion of a spray gun with sufficient accuracy
without negatively affecting painters movements and the quality of performed operation. It is
low in cost and easy to work with. Its drawbacks in form of the need of power supply and a
covering against paint sticking to lenses can be handled as described in section 5.6.

The concept was further proven by a simulation of robotic operation based on the
collected trajectory data. A program was made to perform needed actions and is together
with the simulation results presented in chapter 6. Nowadays, control systems of industrial
robots allow to generate control programs easily, performing inverse kinematics and dynamics
calculations automatically and are able to handle collisions as well. The only crucial part is
to provide the robotic trajectory, which is the output of previous step of designed system and
is therefore taken care of.

As a framework for transfer of the proposed concept to real world a software study was
made and is presented in chapter 7. It identifies necessary elements of a system that supports
automation process of industrial painting and brings together tools designed in chapter 5 and
6.

Lastly, a design of a whole automated robotic painting cell was done in chapter 8 to
show how the system is eventually integrated to the manufacturing process of a company
that performs industrial painting. The robot performing painting based on worker’s motion

112

.......................................9. Discussion and conclusions

tracking is one element of the painting cell, together with other necessary hardware to carry
out automated painting. The resultant unit needs an industrial level control, and therefore
this chapter includes control program for a PLC and so finishes the process of industrial
painting automation.

113

114

Chapter 10

Future work

This work contains analysis of the problem of industrial painting automation, besides
that, attempts have been made to provide a solution to it. Real hardware was chosen and
tested and the final form of motion tracking system was designed.

The next step is to carry out measurements in a real painting workplace. All hardware
and needed parts of software are ready, the measurement set-up is thought-out and described
in this work. What needs to be done more, is the design of a custom holder for fixing the T265
camera to a spray gun and a jig for positioning the spray gun into during the measurement
initialization. These items depend on the environment of the particular painting workplace.

If a suitable product is chosen for the experiment in a real painting workplace, the data
can be used for robot control program generation. Then the robotic painting can be also
experimentally tested, its performance can be compared with the provided simulation.

The contribution of this work could be further extended in the software part. The
study of a software project done in this work should be used to create a robust and user
friendly software. All individual necessary parts have already been elaborated, a graphical
user interface and an architecture that would frame and unify them are yet still to be done.

A more detailed study of the layout of the robotic painting cell can be made in case a
real industrial painting workplace gets involved. Specific requirements and remarks would
be incorporated to the robotic painting cell design and a real working automated industrial
painting workplace would be created.

115

116

Bibliography

1. WALLÉN, Johanna. The History of the Industrial Robot. Linköping University Electronic
Press. 2008.

2. TRALLFA. Photography of the first industrial robot [online] [visited on 2020-07-08].
Available from: https://trallfa.no/en/#history.

3. FOTOVVATI, Behzad; NAMDARI, Navid; DEHGHANGHADIKOLAEI, Amir. On
Coating Techniques for Surface Protection: A Review. 2019, vol. 3. Available from DOI:
10.3390/jmmp3010028.

4. SUH, S. -.; WOO, I. -.; NOH, S. -. Development of an automatic trajectory planning
system (ATPS) for spray painting robots. 1991, pp. 1948–1955 vol.3.

5. WEIHUA SHENG; NING XI; MUMIN SONG; YIFAN CHEN; MACNEILLE, P. Auto-
mated CAD-guided robot path planning for spray painting of compound surfaces. 2000,
vol. 3, pp. 1918–1923 vol.3.

6. HULÍNSKÝ, Lukáš. Automated painting algorithms. Czech Technical University in
Prague, 2019.

7. PICHLER, Andreas; VINCZE, Markus; ANDERSEN, Henrik; MADSEN, Ole; HAUSLER,
K. A Method for Automatic Spray Painting of Unknown Parts. 2002, vol. 1, pp. 444–449
vol.1. ISBN 0-7803-7272-7. Available from DOI: 10.1109/ROBOT.2002.1013400.

8. ANTONIO, J. K. Optimal trajectory planning for spray coating. 1994, pp. 2570–2577
vol.3.

9. AGT, Robotics. Robotic Painting Cell with STL [online] [visited on 2020-07-09]. Available
from: https://agtrobotics.com/machinery/robotic-painting-cell-with-slt/.

10. FANUC. Wooden chairs painted by FANUC M-20iA Robots [online] [visited on 2020-
07-09]. Available from: https://en.industryarena.com/fanuc/tv/wooden-chairs-

painted-by-fanuc-m-20ia-robots--7822.html.

117

https://trallfa.no/en/#history
https://doi.org/10.3390/jmmp3010028
https://doi.org/10.1109/ROBOT.2002.1013400
https://agtrobotics.com/machinery/robotic-painting-cell-with-slt/
https://en.industryarena.com/fanuc/tv/wooden-chairs-painted-by-fanuc-m-20ia-robots--7822.html
https://en.industryarena.com/fanuc/tv/wooden-chairs-painted-by-fanuc-m-20ia-robots--7822.html

10. Future work...
11. OKIBO. Smart robotics for construction sites [online] [visited on 2020-07-09]. Available

from: https://okibo.com.

12. ROBNOR. Virtual reality in reality [online] [visited on 2020-07-09]. Available from:
https://www.robnor.se/virtual-reality.

13. CHALLA, Subhash; MORELANDE, Mark R.; MUSICKI, Darko; EVANS, Robin J.
Fundamentals of Object Tracking. USA: Cambridge University Press, 2011. ISBN 978-0-
521-87628-5.

14. BORENSTEIN, Johann; EVERETT, Hobart R.; FENG, Liqiang; WEHE, David K.
Mobile robot positioning: Sensors and techniques. J. Field Robotics. 1997, vol. 14, pp.
231–249.

15. IPIN 2019 Tenth international conference on indoor positioning and indoor navigation
[online] [visited on 2020-07-07]. Available from: http://ipin-conference.org/2019/.

16. ALARIFI, Abdulrahman; AL-SALMAN, AbdulMalik; ALSALEH, Mansour; ALNAFES-
SAH, Ahmad; ALHADHRAMI, Suheer; AL-AMMAR, Mai; AL-KHALIFA, Hend. Ultra
Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors.
2016, vol. 16, pp. 1–36. Available from DOI: 10.3390/s16050707.

17. Three and Five Axis Laser Tracking Systems, PA 4714339A (US). Inventor KAM
C. LAU, Robert J. Hocken. Available also from: https://patents.google.com/

patent/US4714339A/en.

18. LIU, Xiaohan; MAKINO, Hideo; MASE, Kenichi. Improved Indoor Location Estimation
Using Fluorescent Light Communication System with a Nine-Channel Receiver. IEICE
Transactions. 2010, vol. 93-B, pp. 2936–2944. Available from DOI: 10.1587/transcom.

E93.B.2936.

19. GREIFF, M.; ROBERTSSON, A.; BERNTORP, K. Performance Bounds in Positioning
with the VIVE Lighthouse System. 2019 22th International Conference on Information
Fusion (FUSION). 2019, pp. 1–8.

20. WOLF, J.; BURGARD, W.; BURKHARDT, H. Robust vision-based localization by
combining an image-retrieval system with Monte Carlo localization. IEEE Transactions
on Robotics. 2005, vol. 21, no. 2, pp. 208–216.

21. INTEL, Corporation. Intel RealSense Tracking Camera T265 [online] [visited on 2020-
07-01]. Available from: https://www.intelrealsense.com/tracking-camera-t265/.

22. ZHANG, Zhengyou. Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia [online].
2012, vol. 19, pp. 4–12 [visited on 2020-06-07]. Available from: https://www.microsoft.

com/en-us/research/publication/microsoft-kinect-sensor-and-its-effect/.

118

https://okibo.com
https://www.robnor.se/virtual-reality
http://ipin-conference.org/2019/
https://doi.org/10.3390/s16050707
https://patents.google.com/patent/US4714339A/en
https://patents.google.com/patent/US4714339A/en
https://doi.org/10.1587/transcom.E93.B.2936
https://doi.org/10.1587/transcom.E93.B.2936
https://www.intelrealsense.com/tracking-camera-t265/
https://www.microsoft.com/en-us/research/publication/microsoft-kinect-sensor-and-its-effect/
https://www.microsoft.com/en-us/research/publication/microsoft-kinect-sensor-and-its-effect/

...10. Future work

23. KOK, Manon; HOL, Jeroen D.; SCHÖN, Thomas B. Using Inertial Sensors for Position
and Orientation Estimation. Foundations and Trends in Signal Processing. 2017, vol. 11,
no. 1-2, pp. 1–153. ISSN 1932-8354. Available from DOI: 10.1561/2000000094.

24. ANG, W. T.; KHOO, S. Y.; KHOSLA, P. K.; RIVIERE, C. N. Physical model of a
MEMS accelerometer for low-g motion tracking applications. 2004, vol. 2, pp. 1345–1351
Vol.2.

25. KOWALCZUK, Zdzislaw; MERTA, Tomasz. Modelling an accelerometer for robot
position estimation. 2014 19th International Conference on Methods and Models in
Automation and Robotics, MMAR 2014. 2014, pp. 909–914. Available from DOI: 10.

1109/MMAR.2014.6957478.

26. HAVERINEN, Janne; KEMPPAINEN, Anssi. Global indoor self-localization based on
the ambient magnetic field. Robotics and Autonomous Systems. 2009, vol. 57, no. 10, pp.
1028–1035. ISSN 0921-8890. Available from DOI: https://doi.org/10.1016/j.robot.

2009.07.018. 5th International Conference on Computational Intelligence, Robotics
and Autonomous Systems (5th CIRAS).

27. HEXAMITE, LTD. xyz laboratory 3D studio [online]. 2016 [visited on 2020-07-06].
Available from: https://www.hexamite.com/pdfs/xyzlab.pdf.

28. ZHOU, Bing; ELBADRY, Mohammed; GAO, Ruipeng; YE, Fan. BatTracker: High
Precision Infrastructure-free Mobile Device Tracking in Indoor Environments. Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. 2017.

29. JOHAN, Larsson. Distance Estimation and Positioning Based on Bluetooth Low Energy
Technology. 2015. Available also from: http://urn.kb.se/resolve?urn=urn:nbn:se:

kth:diva-174857.

30. FOXLIN, Eric; HARRINGTON, Michael; ALTSHULER, Yury. Miniature 6-DOF inertial
system for tracking HMDs. Proceedings of SPIE - The International Society for Optical
Engineering. 2002. Available from DOI: 10.1117/12.317434.

31. WON, Seong-hoon; MELEK, W.W.; GOLNARAGHI, M. A Kalman/Particle Filter-
Based Position and Orientation Estimation Method Using a Position Sensor/Inertial
Measurement Unit Hybrid System. Industrial Electronics, IEEE Transactions on. 2010,
vol. 57, pp. 1787–1798. Available from DOI: 10.1109/TIE.2009.2032431.

32. NASA, Facility Navigation Ancillary Information . An
Overview of Reference Frames and Coordinate Systems in the SPICE Context [online].
2020 [visited on 2020-07-08]. Available from: https://naif.jpl.nasa.gov/pub/

119

https://doi.org/10.1561/2000000094
https://doi.org/10.1109/MMAR.2014.6957478
https://doi.org/10.1109/MMAR.2014.6957478
https://doi.org/https://doi.org/10.1016/j.robot.2009.07.018
https://doi.org/https://doi.org/10.1016/j.robot.2009.07.018
https://www.hexamite.com/pdfs/xyzlab.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174857
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174857
https://doi.org/10.1117/12.317434
https://doi.org/10.1109/TIE.2009.2032431
https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf

10. Future work...
naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf.
Tutorials.

33. STEJSKAL, Vladimír; VALÁŠEK, Michael. Kinematics and dynamics of machinery.
New York: Marcel Dekker, 1996. ISBN 0-8247-9731-0.

34. HENDERSON, D. M. Euler Angles, Quaternions, and Transformation Matrices —
Working Relationships. Texas: NASA Technical report NASA-TM-74839, 1977.

35. HIBBELER, R.C. Engineering Mechanics: Dynamics. 14th ed. Pearson, 2016. ISBN
9780133915389.

36. HEXAGON, AB. Laser Tracker Systems [online]. 2020 [visited on 2020-07-02]. Available
from: https://www.hexagonmi.com/products/laser-tracker-systems.

37. LEICA, Geosystems AG. Leica AT930/AT960 User Manual [online]. Switzerland, 2017.

38. HEXAGON, Metrology. Leica Absolute Tracker AT901 Product Brochure [online]. Ger-
many, 2010.

39. PAN, T.; KUO, C.; HU, M. A noise reduction method for IMU and its application on
handwriting trajectory reconstruction. 2016, pp. 1–6.

40. GUO, Hui; HONG, Huajie. Research on Filtering Algorithm of MEMS Gyroscope Based
on Information Fusion. Sensors. 2019, vol. 19. Available from DOI: 10.3390/s19163552.

41. DU, Jiaying. Signal processing for MEMS sensor based motion analysis system. 2016.
ISBN 978-91-7485-256-1. Available also from: http://www.es.mdh.se/publications/

4358-.

42. MBIENTLAB. MMR [online]. 2019 [visited on 2020-06-21]. Available from: https:

//mbientlab.com/metamotionr/.

43. BOSCH, Sensortec. BMI160 [online] [visited on 2020-06-21]. Available from: https:

//www.bosch-sensortec.com/products/motion-sensors/imus/bmi160.html.

44. BOSCH, Sensortec. BMM150 [online] [visited on 2020-06-21]. Available from: https:

//www.bosch-sensortec.com/products/motion-sensors/magnetometers-bmm150/.

45. MBIENTLAB. Introduction - MetaWear C++ API 0.17.0 documentation [online]. 2018
[visited on 2020-06-21]. Available from: https://mbientlab.com/cppdocs/latest/

index.html.

46. MBIENTLAB. Tutorials - MbientLab [online]. 2019 [visited on 2020-06-22]. Available
from: https://mbientlab.com/tutorials/index.html.

120

https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/self_training/individual_docs/16_frames_and_coordinate_systems.pdf
https://www.hexagonmi.com/products/laser-tracker-systems
https://doi.org/10.3390/s19163552
http://www.es.mdh.se/publications/4358-
http://www.es.mdh.se/publications/4358-
https://mbientlab.com/metamotionr/
https://mbientlab.com/metamotionr/
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi160.html
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi160.html
https://www.bosch-sensortec.com/products/motion-sensors/magnetometers-bmm150/
https://www.bosch-sensortec.com/products/motion-sensors/magnetometers-bmm150/
https://mbientlab.com/cppdocs/latest/index.html
https://mbientlab.com/cppdocs/latest/index.html
https://mbientlab.com/tutorials/index.html

...10. Future work

47. BOSCH, Sensortec. Sensor Fusion Software [online] [visited on 2020-06-21]. Available
from: https://www.bosch- sensortec.com/software- tools/software/sensor-

fusion-software/.

48. MBIENTLAB. Sensor Fusion - MetaWear C++ API 0.17.0 documentation [online]. 2018
[visited on 2020-06-22]. Available from: https://mbientlab.com/cppdocs/latest/

sensor_fusion.html.

49. POIDS ET MESURES, Bureau International des. The International System of Units
(SI). 9th ed. Taylor & Francis, 2019. ISBN 978-92-822-2272-0.

50. MATHWORKS. Detect and replace outliers in data [online] [visited on 2020-06-25].
Available from: https://www.mathworks.com/help/matlab/ref/filloutliers.html.
Help Center, Documentation.

51. MATHWORKS. Savitzky-Golay filter design [online] [visited on 2020-06-25]. Available
from: https://www.mathworks.com/help/signal/ref/sgolay.html. Help Center,
Documentation.

52. MATHWORKS. Design digital filters [online] [visited on 2020-06-25]. Available from:
https://www.mathworks.com/help/signal/ref/designfilt.html. Help Center,
Documentation.

53. MATHWORKS. Butterworth filter design [online] [visited on 2020-06-25]. Available
from: https://www.mathworks.com/help/signal/ref/butter.html. Help Center,
Documentation.

54. MATHWORKS. High-pass filter signals [online] [visited on 2020-06-25]. Available from:
https : / / www . mathworks . com / help / signal / ref / highpass . html. Help Center,
Documentation.

55. MATHWORKS. IMU simulation model [online] [visited on 2020-06-25]. Available from:
https://www.mathworks.com/help/fusion/ref/imusensor-system-object.html.
Help Center, Documentation.

56. MATHWORKS. Rate-driven trajectory generator [online] [visited on 2020-06-25]. Avail-
able from: https://www.mathworks.com/help/nav/ref/kinematictrajectory-

system-object.html. Help Center, Documentation.

57. MATHWORKS. What is the IMU Sensor measuring in the Sensor Fusion and Tracking
Toolbox? [online] [visited on 2020-06-25]. Available from: https://www.mathworks.com/

matlabcentral/answers/486192-what-is-the-imu-sensor-measuring-in-the-

sensor-fusion-and-tracking-toolbox. Matlab Answers.

121

https://www.bosch-sensortec.com/software-tools/software/sensor-fusion-software/
https://www.bosch-sensortec.com/software-tools/software/sensor-fusion-software/
https://mbientlab.com/cppdocs/latest/sensor_fusion.html
https://mbientlab.com/cppdocs/latest/sensor_fusion.html
https://www.mathworks.com/help/matlab/ref/filloutliers.html
https://www.mathworks.com/help/signal/ref/sgolay.html
https://www.mathworks.com/help/signal/ref/designfilt.html
https://www.mathworks.com/help/signal/ref/butter.html
https://www.mathworks.com/help/signal/ref/highpass.html
https://www.mathworks.com/help/fusion/ref/imusensor-system-object.html
https://www.mathworks.com/help/nav/ref/kinematictrajectory-system-object.html
https://www.mathworks.com/help/nav/ref/kinematictrajectory-system-object.html
https://www.mathworks.com/matlabcentral/answers/486192-what-is-the-imu-sensor-measuring-in-the-sensor-fusion-and-tracking-toolbox
https://www.mathworks.com/matlabcentral/answers/486192-what-is-the-imu-sensor-measuring-in-the-sensor-fusion-and-tracking-toolbox
https://www.mathworks.com/matlabcentral/answers/486192-what-is-the-imu-sensor-measuring-in-the-sensor-fusion-and-tracking-toolbox

10. Future work...
58. GRUNNET-JEPSEN, Anders; HARVILLE, Michael; FULKERSON, Brian; PIRO,

Daniel; BROOK, Shirit; RADFORD, Jim. Introduction to Intel RealSense Visual SLAM
and the T265 Tracking Camera [online] [visited on 2020-07-01]. Available from: https:

//dev.intelrealsense.com/docs/intel- realsensetm- visual- slam- and- the-

t265-tracking-camera. RealSense Documentation.

59. DURRANT-WHYTE, Hugh; BAILEY, Tim. Simultaneous localization and mapping:
Part I. Robotics & Automation Magazine, IEEE. 2006, vol. 13, pp. 99–110. Available
from DOI: 10.1109/MRA.2006.1638022.

60. INTEL, Corporation. Intel RealSense Tracking Camera - Datasheet [online]. 4th ed.
2019.

61. INTEL, Corporation. Intel RealSense SDK [online] [visited on 2020-07-02]. Available
from: https://github.com/IntelRealSense/librealsense.

62. INTEL, Corporation. Intel RealSense Viewer [online] [visited on 2020-07-02]. Available
from: https://github.com/IntelRealSense/librealsense/tree/master/tools/

realsense-viewer. librealsense.

63. INTEL, Corporation. re-data-collect Tool [online] [visited on 2020-07-02]. Available from:
https://github.com/IntelRealSense/librealsense/tree/master/tools/data-

collect. librealsense.

64. VIDULLAN. Downward facing T265 #4080 [online]. 2019 [visited on 2020-07-02].
Available from: https://github.com/IntelRealSense/librealsense/issues/4080.
librealsense, Issues.

65. SPONG, M.W.; HUTCHINSON, S.; VIDYASAGAR, M. Robot Modeling and Control.
2nd ed. John Wiley Sons, 2020. ISBN 9781119523994.

66. BUSS, Samuel R. Inverse kinematics demos [online] [visited on 2020-07-19]. Available
from: https://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html.

67. ERWIN COUMANS, Yunfei Bai. PyBullet Quickstart Guide [online]. 2016-2020 [vis-
ited on 2020-07-19]. Available from: https : / / docs . google . com / document / d /

10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3.

68. OPEN, RAVE. IKFast: The Robot Kinematics Compiler [online] [visited on 2020-07-19].
Available from: http://openrave.org/docs/latest_stable/openravepy/ikfast/

#ikfast-the-robot-kinematics-compiler.

69. BUSS, Samuel. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse
and damped least squares methods. IEEE Transactions in Robotics and Automation.
2004, vol. 17.

122

https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://doi.org/10.1109/MRA.2006.1638022
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense/tree/master/tools/realsense-viewer
https://github.com/IntelRealSense/librealsense/tree/master/tools/realsense-viewer
https://github.com/IntelRealSense/librealsense/tree/master/tools/data-collect
https://github.com/IntelRealSense/librealsense/tree/master/tools/data-collect
https://github.com/IntelRealSense/librealsense/issues/4080
https://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
http://openrave.org/docs/latest_stable/openravepy/ikfast/#ikfast-the-robot-kinematics-compiler
http://openrave.org/docs/latest_stable/openravepy/ikfast/#ikfast-the-robot-kinematics-compiler

...10. Future work

70. DIANKOV, Rosen. Automated Construction of Robotic Manipulation Programs. Pitts-
burgh, Pennsylvania: Carnegie Mellon University, 2010.

71. OPEN, Robotics. About ROS [online] [visited on 2020-07-19]. Available from: https:

//www.ros.org/about-ros/.

72. KUKA. Sensitive robotics_LBR iiwa [online] [visited on 2020-07-19]. Available from:
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/

kuka_lbr_iiwa_brochure_en.pdf?rev=7141546264dd45ca9f613adbe6393405. PB0004/EN/4/0317.

73. ROS.ORG. descartes [online] [visited on 2020-07-19]. Available from: http://wiki.ros.

org/descartes.

74. MOVEIT, ROS. MoveIt [online] [visited on 2020-07-19]. Available from: https://

moveit.ros.org/.

75. ROS-INDUSTRIAL. descartes_tutorials [online] [visited on 2020-07-19]. Available from:
https://github.com/ros-industrial-consortium/descartes_tutorials.

76. ABB. IRB 2400 [online] [visited on 2020-07-19]. Available from: https://new.abb.com/

products/robotics/industrial-robots/irb-2400.

77. DE MAEYER, J.; MOYAERS, B.; DEMEESTER, E. Cartesian path planning for arc
welding robots: Evaluation of the descartes algorithm. 2017, pp. 1–8.

78. ŠMEJKAL, Ladislav. PLC a automatizace. Praha: BEN - technická literatura, 2005.
ISBN 80-7300-087-3.

79. OPENPLC. The OpenPLC project [online] [visited on 2020-06-26]. Available from:
https://openplcproject.com/.

123

https://www.ros.org/about-ros/
https://www.ros.org/about-ros/
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_brochure_en.pdf?rev=7141546264dd45ca9f613adbe6393405
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa_brochure_en.pdf?rev=7141546264dd45ca9f613adbe6393405
http://wiki.ros.org/descartes
http://wiki.ros.org/descartes
https://moveit.ros.org/
https://moveit.ros.org/
https://github.com/ros-industrial-consortium/descartes_tutorials
https://new.abb.com/products/robotics/industrial-robots/irb-2400
https://new.abb.com/products/robotics/industrial-robots/irb-2400
https://openplcproject.com/

124

Appendix A

Motion tracking measurements results

125

A. Motion tracking measurements results..................................

A.1 Laser Trackers

126

... A.1. Laser Trackers

Figure A.1: Laser tracker simulation, dynamic calibration by circular movement, trajectory.

127

A. Motion tracking measurements results..................................

Figure A.2: Laser tracker simulation, dynamic calibration by circular movement, position vector.

Figure A.3: Laser tracker simulation, dynamic calibration by circular movement with maximum
noise, calibration error.

128

... A.1. Laser Trackers

Figure A.4: Laser tracker simulation, dynamic calibration by circular movement with minimum
noise, calibration error.

129

A. Motion tracking measurements results..................................

Figure A.5: Laser tracker simulation, dynamic calibration by random movement, trajectory.

130

... A.1. Laser Trackers

Figure A.6: Laser tracker simulation, dynamic calibration by random movement, position vector.

Figure A.7: Laser tracker simulation, dynamic calibration by random movement with maximum
noise, calibration error.

131

A. Motion tracking measurements results..................................

Figure A.8: Laser tracker simulation, dynamic calibration by random movement with minimum
noise, calibration error.

132

... A.1. Laser Trackers

Figure A.9: Laser tracker measurements, dynamic calibration, trajectory.

133

A. Motion tracking measurements results..................................

Figure A.10: Laser tracker measurements, dynamic calibration, calibration error.

134

... A.1. Laser Trackers

Figure A.11: Laser tracker measurements, circular movement with common reflector, trajectory.
Data based on dynamic calibration are not coincident.

135

A. Motion tracking measurements results..................................

Figure A.12: Laser tracker measurements, static calibration, trajectory.

136

... A.1. Laser Trackers

Figure A.13: Laser tracker measurements, static calibration, calibration error.

137

A. Motion tracking measurements results..................................

Figure A.14: Laser tracker measurements, circular movement with common reflector, trajectory.
Data based on static calibration are coincident.

138

... A.1. Laser Trackers

Figure A.15: Laser tracker measurements, circular movement with common reflector, orientation.
Rotation around x-axis is not defined.

Figure A.16: Laser tracker measurements, random movement, orientation. Rotation around x-axis
is not defined.

139

A. Motion tracking measurements results..................................

Figure A.17: Laser tracker measurements, random movement 1 with common reflector, trajectory.

140

... A.1. Laser Trackers

Figure A.18: Laser tracker measurements, random movement 1, velocity measured by tracker 1.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

Figure A.19: Laser tracker measurements, random movement 1, velocity measured by tracker 2.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

141

A. Motion tracking measurements results..................................

Figure A.20: Laser tracker measurements, random movement 1, acceleration measured by tracker
1. The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

Figure A.21: Laser tracker measurements, random movement 1, acceleration measured by tracker
2. The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

142

... A.1. Laser Trackers

Figure A.22: Laser tracker measurements, random movement 2 with common reflector, trajectory.

143

A. Motion tracking measurements results..................................

Figure A.23: Laser tracker measurements, random movement, velocity measured by tracker 1.

Figure A.24: Laser tracker measurements, random movement, velocity measured by tracker 2.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

144

... A.1. Laser Trackers

Figure A.25: Laser tracker measurements, random movement, acceleration measured by tracker 1.

Figure A.26: Laser tracker measurements, random movement, acceleration measured by tracker 2.
The dense parts of the diagram are oscillations due to laser tracker’s loss of signal.

145

A. Motion tracking measurements results..................................

A.2 MMR IMU sensor

146

..A.2. MMR IMU sensor

Figure A.27: MMR and ideal IMU simulations, steady state, sensor readings. Deviation of MMR
data from an ideal IMU is visible.

147

A. Motion tracking measurements results..................................

Figure A.28: MMR IMU simulation, steady state, histogram of measured acceleration with
Gaussian fit. Offset from ideal zero measurements is shown, noise appears to be Gaussian.

148

..A.2. MMR IMU sensor

Figure A.29: MMR and ideal IMU simulations, rotation about z-axis, with added Gaussian noise,
sensor readings. Deviation of MMR data from an ideal IMU is visible.

149

A. Motion tracking measurements results..................................

Figure A.30: MMR IMU simulation, rotation about z-axis, with added Gaussian noise, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out.

150

..A.2. MMR IMU sensor

Figure A.31: MMR IMU simulation, rotation about z-axis, with added Gaussian noise, acceleration.
Undesirable oscillation in x- and y-axis is visible.

151

A. Motion tracking measurements results..................................

Figure A.32: MMR IMU simulation, rotation about z-axis, with added Gaussian noise, position.
Original signal diverges, but coincides with reference when filtered.

152

..A.2. MMR IMU sensor

Figure A.33: MMR IMU simulation, rotation about z-axis, with added Gaussian noise, traveled
trajectory. Without filtering, motion that was not present is generated due to double integration
of errors.

153

A. Motion tracking measurements results..................................

Figure A.34: MMR and ideal IMU simulations, harmonic motion in x- and z-axis, with added
Gaussian noise, sensor readings. Deviation of MMR data from an ideal IMU is visible.

154

..A.2. MMR IMU sensor

Figure A.35: MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, global acceleration. Large oscillation in y-axis is visible, possibly filtered out.

155

A. Motion tracking measurements results..................................

Figure A.36: MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, velocity. Original signal diverges, but coincides with reference when fully filtered.

156

..A.2. MMR IMU sensor

Figure A.37: MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, position. Original signal diverges, but coincides with reference when fully filtered.

157

A. Motion tracking measurements results..................................

Figure A.38: MMR IMU simulation, harmonic motion in x- and z-axis, with added Gaussian
noise, traveled trajectory. With filtering, the trajectory reflects real motion.

158

..A.2. MMR IMU sensor

Figure A.39: MMR IMU experiment, transformation of coordinate frames.

159

A. Motion tracking measurements results..................................

Figure A.40: MMR IMU experiment, steady state, calibrated linear acceleration, histogram with
Gaussian fit. Offset from ideal zero measurements is shown, noise appears to be Gaussian.

160

..A.2. MMR IMU sensor

Figure A.41: MMR IMU experiment, steady state, not calibrated linear acceleration, histogram
with Gaussian fit. Offset from ideal zero measurements is shown, noise appears to be Gaussian.

161

A. Motion tracking measurements results..................................

Figure A.42: MMR IMU experiment, steady state, raw acceleration, histogram with Gaussian fit.
Offset from ideal zero measurements is shown, noise appears not Gaussian.

162

..A.2. MMR IMU sensor

Figure A.43: MMR IMU experiment, repeated translation in z-axis, linear acceleration, global
acceleration. The undesirable bias increases with time.

163

A. Motion tracking measurements results..................................

Figure A.44: MMR IMU experiment, repeated translation in z-axis, linear acceleration, Euler
angles. Visible drift and deviations are sufficiently small.

164

..A.2. MMR IMU sensor

Figure A.45: MMR IMU experiment, harmonic motion in z-axis (fast), linear acceleration, Euler
angles. Visible drift and deviations are sufficiently small.

165

A. Motion tracking measurements results..................................

Figure A.46: MMR IMU experiment, repeated translation in z-axis, calibrated linear acceleration,
traveled trajectory. Even when filtered, the trajectory does not reflect real motion.

166

..A.2. MMR IMU sensor

Figure A.47: MMR IMU experiment, repeated translation in z-axis, not calibrated linear acceler-
ation, traveled trajectory. Even when filtered, the trajectory does not reflect real motion.

167

A. Motion tracking measurements results..................................

Figure A.48: MMR IMU experiment, repeated translation in z-axis, raw acceleration, traveled
trajectory. Even when filtered, the trajectory does not reflect real motion.

168

..A.2. MMR IMU sensor

Figure A.49: MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, local
acceleration.

169

A. Motion tracking measurements results..................................

Figure A.50: MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, global
acceleration.

170

..A.2. MMR IMU sensor

Figure A.51: MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out.

171

A. Motion tracking measurements results..................................

Figure A.52: MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, velocity.
Original signal diverges, but can be filtered out to show expected values.

172

..A.2. MMR IMU sensor

Figure A.53: MMR IMU experiment, harmonic motion in z-axis (slow), raw acceleration, position.
Original signal diverges, but can be filtered out to show expected values.

173

A. Motion tracking measurements results..................................

Figure A.54: MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, local
acceleration.

174

..A.2. MMR IMU sensor

Figure A.55: MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, global
acceleration.

175

A. Motion tracking measurements results..................................

Figure A.56: MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, global
acceleration. Undesirable oscillation in x- and y-axis is visible, possibly filtered out.

176

..A.2. MMR IMU sensor

Figure A.57: MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, velocity.
Original signal diverges, but can be filtered out to show expected values.

177

A. Motion tracking measurements results..................................

Figure A.58: MMR IMU experiment, harmonic motion in z-axis (fast), raw acceleration, position.
Original signal diverges, but can be filtered out to show expected values.

178

....................................... A.3. T 265 tracking camera

A.3 T 265 tracking camera

179

A. Motion tracking measurements results..................................

Figure A.59: RealSense T265 experiment, transformation of coordinate frames.

180

....................................... A.3. T 265 tracking camera

Figure A.60: RealSense T265 experiment, steady state, histogram with Gaussian fit. Offset is
visible but sufficiently small, no noise distribution is shown.

181

A. Motion tracking measurements results..................................

Figure A.61: RealSense T265 experiment, steady state, position. The measured data are stable
in sufficient range.

182

....................................... A.3. T 265 tracking camera

Figure A.62: RealSense T265 experiment, repeated translation in y-axis, position. With coordinate
frames initialization part.

183

A. Motion tracking measurements results..................................

Figure A.63: RealSense T265 experiment, harmonic motion in y-axis (fast), position. With
coordinate frames initialization part. Data resemble expected values.

184

....................................... A.3. T 265 tracking camera

Figure A.64: RealSense T265 experiment, harmonic motion in y-axis (slow), position. With
coordinate frames initialization part. Data resemble expected values.

185

A. Motion tracking measurements results..................................

Figure A.65: RealSense T265 experiment, harmonic motion in y-axis (fast), position. With
coordinate frames initialization part. Data resemble expected values, but with an observable
drift.

186

..............................A.4. MMR IMU sensor and T265 tracking camera

A.4 MMR IMU sensor and T265 tracking camera

187

A. Motion tracking measurements results..................................

Figure A.66: MMR IMU and RealSense T265 experiment, repeated translation in y-axis, position.
T265 shows expected data, MMR follows them only inaccurately.

188

..............................A.4. MMR IMU sensor and T265 tracking camera

Figure A.67: MMR IMU and RealSense T265 experiment, translation in z-axis, position. T265
shows expected data, MMR follows them only inaccurately.

189

A. Motion tracking measurements results..................................

Figure A.68: MMR IMU and RealSense T265 experiment, harmonic motion in y-axis (fast),
position. T265 shows expected data, MMR follows them only inaccurately, with offset.

190

..............................A.4. MMR IMU sensor and T265 tracking camera

Figure A.69: MMR IMU and RealSense T265 experiment, harmonic motion in y-axis (slow),
position. T265 shows expected data, MMR follows them only inaccurately, with offset.

191

A. Motion tracking measurements results..................................

Figure A.70: MMR IMU and RealSense T265 experiment, harmonic motion in z-axis (fast),
position. T265 shows expected data, MMR follows them only inaccurately, with offset.

192

..............................A.4. MMR IMU sensor and T265 tracking camera

Figure A.71: MMR IMU and RealSense T265 experiment, harmonic motion in z-axis (slow),
position. T265 shows expected data, MMR follows them only inaccurately, with offset.

193

194

Appendix B

Robot simulation results

195

B. Robot simulation results..

B.1 Simulation data

196

...B.1. Simulation data

Figure B.1: Trajectory 1 sampled by tracking camera T265 held in hand, random motion imitating
painting, 1D.

197

B. Robot simulation results..

Figure B.2: Trajectory 1 sampled by tracking camera T265 held in hand, random motion imitating
painting, 3D.

198

...B.1. Simulation data

Figure B.3: Trajectory 2 sampled by tracking camera T265 held in hand, random motion imitating
painting, 1D.

199

B. Robot simulation results..

Figure B.4: Trajectory 2 sampled by tracking camera T265 held in hand, random motion imitating
painting, 3D.

200

..B.2. PyBullet

B.2 PyBullet

201

B. Robot simulation results..

Figure B.5: Error of solutions of inverse kinematics while performing trajectory 1 by KUKA in
PyBullet simulation.

Figure B.6: Error of solutions of inverse kinematics while performing trajectory 2 by KUKA in
PyBullet simulation.

202

..B.2. PyBullet
Videos of robotic simulation performing trajectory 1 and 2 are available in form of an

electronic appendix.

203

B. Robot simulation results..

B.3 ROS - Descartes

204

.. B.3. ROS - Descartes

Videos of robotic simulation performing trajectory 1 and 2 are available in form of an
electronic appendix.

205

206

Appendix C

Source code

C.1 Laser Trackers post-processing

C.2 MMR IMU sensor control and post-processing

C.3 T265 tracking camera post-processing

C.4 PyBullet KUKA robot simulation

C.5 ROS - Descartes ABB robot simulation

C.6 PLC control program

All source code is available in form of an electronic appendix or on GitHub at https://github.com/megi-
mejdrechova/DP-Robo-Painter.

207

	Introduction
	Background and literature review
	Concept of the solution
	Thesis targets
	Motion tracking task
	Overview of motion tracking techniques
	Coordinate frames and transformations
	Dynamics
	Laser Trackers
	Method
	Hardware specification
	Software specification
	Post-processing
	Simulation
	Measurement scenarios
	Results

	Inertial Sensor
	Method
	Hardware specification
	Software specification
	Post-processing
	Simulation
	Measurement scenarios
	Results

	Visual and inertial sensor fusion
	Method
	Hardware specification
	Software specification
	Post-processing
	Measurement scenarios
	Results

	Comparison

	Robot control program synthesis
	Transformation
	Inverse kinematic problem
	Control commands generation
	Simulation
	PyBullet
	ROS - Descartes

	Conclusions from simulations

	Software project design
	Introduction
	Software specification
	User roles, agents and actions
	Hardware and software requirements

	Software analysis
	Software testing

	Robotic painting cell design and control
	Task description
	The painting operation description
	Fault diagnosis and isolation
	Emergency stop

	Task analysis
	Hardware design

	State model
	State machine algorithm design
	Moore state machine algorithm design

	State machine algorithm implementation

	Discussion and conclusions
	Future work
	Bibliography
	Motion tracking measurements results
	Laser Trackers
	MMR IMU sensor
	T 265 tracking camera
	MMR IMU sensor and T265 tracking camera

	Robot simulation results
	Simulation data
	PyBullet
	ROS - Descartes

	Source code
	Laser Trackers post-processing
	MMR IMU sensor control and post-processing
	T265 tracking camera post-processing
	PyBullet KUKA robot simulation
	ROS - Descartes ABB robot simulation
	PLC control program

